WO1998031933A1 - Kraftstoffeinspritzeinrichtung für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzeinrichtung für brennkraftmaschinen Download PDF

Info

Publication number
WO1998031933A1
WO1998031933A1 PCT/DE1997/002053 DE9702053W WO9831933A1 WO 1998031933 A1 WO1998031933 A1 WO 1998031933A1 DE 9702053 W DE9702053 W DE 9702053W WO 9831933 A1 WO9831933 A1 WO 9831933A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
injection
valve member
pressure
injection device
Prior art date
Application number
PCT/DE1997/002053
Other languages
English (en)
French (fr)
Inventor
Franz Guggenbichler
Jaroslaw Hlousek
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP97943768A priority Critical patent/EP0898650B1/de
Priority to US09/155,113 priority patent/US6431148B1/en
Priority to DE59712768T priority patent/DE59712768D1/de
Priority to JP53348998A priority patent/JP3980069B2/ja
Publication of WO1998031933A1 publication Critical patent/WO1998031933A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0005Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • F02M63/0029Valves characterised by the valve actuating means hydraulic using a pilot valve controlling a hydraulic chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves

Definitions

  • the invention is based on a fuel injection device for internal combustion engines according to the preamble of claim 1.
  • a fuel injection device known from EP 0 657 642
  • a fuel high-pressure pump pumps fuel from a low-pressure chamber into a high-pressure collecting chamber, which is connected via injection lines to the individual injection valves projecting into the combustion chamber of the internal combustion engine to be supplied, the latter being common Pressure storage system (common rail) is kept at a certain pressure level by a pressure control device.
  • an electrically controlled control valve is provided on each of these, which controls the high-pressure fuel injection at the injection valve when it is opened and closed.
  • the control valve on the known fuel injection device is designed as a 3/2-way valve, which has a high-pressure channel opening at the injection opening of the injection valve with the injection line leading away from the high-pressure collection space or connects to a relief line in a low pressure room.
  • Closing forces due to the pressure relief of the high pressure line can be made correspondingly smaller with high system security.
  • the known fuel injection device Since the 3/2-way control valve in the known fuel injection device is actuated directly by the actuator of an electrically controlled solenoid valve, the known fuel injection device has the disadvantage that the stroke of the solenoid valve affects the actuating movement on the valve spool of the 3/2-way valve. Control valve limited.
  • the closing force counteracting the high fuel pressure on the 3/2-way control valve is applied solely by the return spring of the solenoid valve, so that this spring holding force of the solenoid valve limits the maximum system pressure in the high pressure fuel section at the control valve to a value that no longer meets today's requirements .
  • the hydraulic working space on the control valve is advantageously delimited by an upper end face of the piston-shaped valve member of the control valve and is continuously supplied with fuel under high pressure from the injection line via a throttle cross section between the control valve member and the bore wall leading this.
  • a relief line leads away from the hydraulic working space on the side facing away from the valve member of the control valve and can be opened and closed by the solenoid valve.
  • This relief line advantageously has a larger cross section than the throttle cross section to the injection line, so that the pressure in the hydraulic work space can be relaxed very quickly when the relief line is opened.
  • the control valve is advantageously designed as a double-seat valve, the two valve seat surfaces of which face one another, so that the adjustment movement of the control valve member is in each case limited by the contact with one of the valve seats, which reduces possible leakage losses to a minimum.
  • the throttle section between the injection line and the hydraulic working space is formed in a first embodiment by a throttle bore in the control valve member.
  • this throttle can also be formed by a remaining throttle ring gap between the wall of the piston-shaped control valve member and the bore wall leading it.
  • control valve member adjoining the second valve seat between the high-pressure channel and a relief line is guided in a sliding manner on the wall of the receiving bore and thus forms a guide for the control valve member.
  • overflow openings are provided on the control valve member.
  • B. can be formed by surface grinding on the control valve member or by corresponding through holes.
  • a further advantage can be achieved by providing a stroke-controlled throttle between the first and second sealing seats of the control valve, by means of which the amount of fuel flowing from the injection line to the high-pressure channel is throttled in a first phase of the injection process.
  • a throttle point in the relief line can also assist in closing the injection valve at the end of the spray and prevent any after-spraying.
  • this outlet throttle controls the residual pressure at the injection valve after the end of fuel injection in such a way that cavitation in the high-pressure channel can be avoided.
  • FIG. 1 shows a first exemplary embodiment in an overall view, in which the throttle section between the injection line and the hydraulic working chamber on the control valve is formed by a throttle bore in the control valve member thereof,
  • FIG. 5 shows a fourth exemplary embodiment analogous to the illustration in FIG. 3 with a stroke-controlled throttle between the two valve seats on the control valve
  • FIG. 6 shows a fifth exemplary embodiment in an overall view, in which the control valve member is formed in one piece and the second valve seat between the high-pressure duct and the relief line is designed as a slide valve,
  • FIG. 8 shows a seventh exemplary embodiment in which an additional throttle point is provided between the high-pressure inlet and the valve seat.
  • the first exemplary embodiment of the fuel injection device for internal combustion engines shown in FIG. 1 has a high-pressure fuel pump 1, which is connected on the suction side via a fuel delivery line 3 to a fuel-filled low-pressure chamber 5 and on the delivery side via the delivery line 3 to a high-pressure collection chamber 7.
  • Injection lines 9 lead from this high-pressure collecting space 7 to the individual injection valves 11, which protrude into the combustion chamber of the internal combustion engine to be supplied
  • Control of the injection process is provided with an electrically actuable control valve 13 designed as a 3/2-way valve on each injection valve 11.
  • the injection valve 11 is clamped axially by means of a clamping nut 15 against a valve holding body 17, on which a lateral high-pressure connection 19 is provided, into which a pipe socket 21 of the corresponding injection line 9 is inserted.
  • the valve holding body 17 has an axial through bore 23 into which a piston-shaped control valve member 25 of the control valve 13 is inserted on the side facing away from the injection valve 11.
  • This control valve 13 which is designed as a double-seat valve, connects a connection channel 27 leading away from the injection line 9 in the pipe socket 21 to a high-pressure channel 29 which axially penetrates the valve holding body 17 and which, on the end face of the valve holding body 17 facing the injection valve 11, in a known manner to a not shown Pressure line opens in the injection valve 11, which on the other hand opens up to an injection cross-section of the injection valve 11 which can be opened by a valve needle 31 of the injection valve 11.
  • the high-pressure channel 29 can be alternately connected via the control valve 13 to the injection line 9 or a relief line 33, which is formed from the part of the through-bore 23 on the injection valve side and a return line leading away from it and which opens into the low-pressure chamber 5.
  • the adjustment movement of the control valve member 25 of the control valve 13 is controlled by a solenoid valve 35 which is inserted into the valve holding body 17 on the side facing away from the injection valve 11 and which is controlled by an electrical control device 37 which processes a large number of operating parameters of the internal combustion engine to be supplied .
  • the control valve member 25 of the control valve 13, shown enlarged in FIG. 2, is designed as a stepped piston, the cross-section of which tapers downward in the direction of the injection valve 11 via two conical annular surfaces.
  • a first upper ring end face 39 is provided in the region of the junction of the connecting channel 27 to the injection line 9.
  • a second annular end face forms a first conical valve sealing face 41, which cooperates with a first conical valve seat 43, this first sealing seat formed between the valve sealing face 41 and the valve seat 43 closing the injection line 9 from the high-pressure channel 29.
  • the control valve member 25 has a sleeve 45, on which a second valve sealing surface 41 facing the first valve sealing surface 41 is provided, which cooperates with a second valve seat 49 on the wall of the through bore 23.
  • the valve seat surfaces 43 and 49 are designed so that they limit the adjustment movement of the control valve member 25 in both stroke directions.
  • the second sealing cross section formed between the second valve sealing surface 47 and the second valve seat surface 49 closes the connection between the high-pressure channel 29 and the relief line 33, which is partly formed by the through-bore 23, into the low-pressure chamber 5.
  • a hydraulic working chamber 51 is provided for actuating the control valve member 25 and is delimited in the bore 23 by the upper end face 53 of the control valve member 25 facing away from the injection valve 11.
  • Control valve member 25 facing away from the hydraulic working chamber 51 is limited by an intermediate plate 55 to the solenoid valve 35.
  • a relief duct 57 leading away from the working space 51 is provided, which extends into a return conduit opening into the low-pressure space 5.
  • nal 59 opens and which can be closed by a valve member of the solenoid valve 35.
  • This valve member of the solenoid valve 35 is designed as a valve ball 61 which is guided in a valve seat adjoining the relief channel 57 and which, when the solenoid valve 35 is switched off, keeps the relief channel 57 closed by the force of a solenoid valve spring 63.
  • valve ball 61 is articulated on an armature 65 of the solenoid valve 35 which, when the solenoid valve 35 is energized, is displaced in the direction facing away from the restoring force of the spring 63 in the direction facing away from the working space 51, so that the valve ball 61 is lifted from its seat by the pressure in the working space 51 and the relief channel 57 to the return line 59 is opened.
  • a filling bore 67 is provided in the control valve member 25, which has a throttle point 69, the cross section of which is smaller than the cross section of the relief channel 57. This leads into the end face 53 filling bore 67 below the first ring end face 39 of the control valve member 25, so that the hydraulic working space 51 is connected via the filling bore 67 to the injection line 9 at all times.
  • part of the high-pressure fuel quantity is throttled into the hydraulic working space 51 via the annular gap 71 remaining between the control valve member 25 and the wall of the bore 23, so that even if the filling bore 67 is closed, an emergency operation function of the control valve 13 is guaranteed.
  • the fuel injection device for internal combustion engines shown in FIGS. 1 and 2 in a first exemplary embodiment operates in the following manner.
  • the high-pressure fuel pump pe 1 a high-pressure fuel is built up in the common high-pressure collection space 7 (common rail), which continues via the various injection lines 9 to the respective valve holding body 17 of the injection valves 11.
  • the solenoid valve 35 is de-energized before the start of the injection phase, so that the valve ball 61 of the solenoid valve 35 keeps the relief channel 57 closed.
  • the hydraulic working chamber 51 is filled with high-pressure fuel via the filling bore 67 and presses the control valve member 25 against the first valve seat 43 against the first valve seat 43 due to the area ratio between the end face 53 and the first ring end face 39.
  • the high-pressure injection at the injection valve 11 is ended by switching off the solenoid valve 35 again, as a result of which the solenoid valve spring 63 moves the valve ball 61 back to its seat on the relief channel 57, so that a closing pressure can be built up again in the hydraulic working space 51 via the filling bore 67 , which again moves the control valve member 25 of the control valve 13 designed as a 3/2-way valve with the first valve sealing surface 41 in contact with the first valve seat 43.
  • the connection of the injection line 9 to the high-pressure channel 29 is thus closed again.
  • the second sealing seat between the second valve sealing surface 47 and the second valve seat 49 is opened again, so that the high-pressure fuel in the high-pressure channel 29 relaxes very quickly into the relief line 33, which results in rapid needle closing on the fuel injection valve 11.
  • the second exemplary embodiment of the fuel injection device according to the invention shown in FIG. 3 differs from the first exemplary embodiment in the type of design of the control valve member 25 of the control valve 13.
  • the control valve member 25 is now formed in one piece and is guided in a cylinder liner 73 inserted in the through bore 23 of the valve holding body 17 .
  • a lower cross-sectional part of the control valve member 25 facing away from the solenoid valve 35 forms a guide Part 75 of the control valve member 25 which slides with little play in the inner diameter of the cylinder liner 73.
  • the hydraulic working chamber 51 in the second exemplary embodiment is only filled via the annular gap 71 between the control valve member 25 and the inner wall of the cylinder liner 73.
  • the annular gap 71 is designed as a throttle point in such a way that the entire flow cross section is smaller than the cross section of the relief channel 57 of the hydraulic working space 51.
  • valve sealing surface 47 and the relief chamber 77 downstream of the valve seat 49 into the relief line 23, 33 take place via a blind bore 81 in the control valve member 25 which extends from the lower end surface 79 facing away from the upper end surface 53 and from which a transverse bore 83 designed as a throttle bore leads away the relief space 77 opens out.
  • the fuel is transferred from the high-pressure channel 29 into the relief line 23, 33 via a surface grinding 85 on the circumferential surface of the control valve member 25 in the guide region 75.
  • the axial length of this rectangular surface grinding 85 is thus leads that the upper part of the ground section facing the solenoid valve 35 is constantly connected to the high-pressure channel 29, while the lower end of the ground section 85 forming a control edge 87 only when the first valve sealing surface 41 is in contact with the first valve seat 43 from the overlap with the cylinder liner 73 dips, which also contributes to the system security of the fuel injector.
  • the fourth exemplary embodiment of the fuel injection device shown in FIG. 5 is analogous to that in FIG. Gur 3 shown second embodiment and additionally has a stroke-controlled throttle between the first and second sealing seat.
  • This stroke-controlled throttle is formed by an annular collar 89 on the control valve member 25, the transition regions of which are conical to the adjoining shaft part of the control valve member 25.
  • This collar 100 interacts with an annular web 91 on the wall of the through bore 23 in such a way that when the first valve sealing surface 41 abuts the first valve seat 43, it overlaps the latter.
  • the annular collar 89 constantly emerges from the overlap with the annular web 91 and, during opening of the connection between the injection line 9 and the connecting channel 27 with the high-pressure channel 29, continuously gives a larger overflow cross section free.
  • the quantity of high-pressure fuel flowing to the injection valve can thus be throttled at the beginning of the injection process, as a result of which the injection course at the injection valve 11 can be shaped.
  • the fifth exemplary embodiment of the fuel injection device shown in FIG. 6 in a simplified overall representation also differs from the previous exemplary embodiments by the design of the control valve member 25.
  • the annular cross section 71 between the injection line 9 and the working space 51 is defined by an annular groove 93 divided into an upper throttle gap 95 and a lower throttle gap 97.
  • the flow at the annular gap 71 between the injection line 9 and the working space 51 can now be precisely adjusted via the axial extent of the annular groove 93.
  • the second sealing seat which controls the overflow cross section between the high-pressure duct 29 and the relief line 33 is designed as a slide valve seat in the fifth exemplary embodiment.
  • the control valve member 25 at its lower End facing the injection valve 11 has a slide head 99, the outer diameter of which corresponds to the diameter of the through bore 23 in the guide region 75 except for a very slight play.
  • the upper boundary edge of the slide head 99 facing the solenoid valve 35 forms a valve control edge 101 which interacts with the guide section 75 of the through bore 23 and whose immersion in the overlap with the guide section 75 of the through bore 23 controls the connection between the high-pressure channel 29 and relief line 33 controls.
  • the valve control edge 101 of the slide head 99 is preceded by another ring collar 103 on the control valve member 25, which forms a discharge throttle point for the high-pressure fuel flowing out of the high-pressure channel 29 into the relief line 33.
  • the stroke limitation of the control valve member 25 in the direction of the solenoid valve 35 takes place in the fifth exemplary embodiment by the abutment of the upper end face 53 of the control valve member 25 against an end wall 105 delimiting the hydraulic working space 51.
  • the sixth exemplary embodiment of the fuel injection device shown in FIG. 7 is constructed analogously to the second exemplary embodiment shown in FIG. 3 and, in addition to this, has a further throttle point in the relief line 33.
  • This throttle point is formed by a throttle insert 107 inserted into the relief line 33, the flow cross-section of which is designed in such a way that the injection valve is supported at the end of the injection and subsequent injection is prevented.
  • the residual pressure of the fuel remaining at the end of the injection in the high-pressure channel 29 can thus be set such that cavitation damage can be avoided.
  • the fuel is first led from the through bore 23 via the relief line 33 to the magnetic valve 35 and from there via the return channel 59 derived to the low pressure room 5.
  • This flow through the solenoid valve 35 has the advantage that the solenoid valve chamber can be cooled and vented during the operation of the fuel injection device.
  • FIG. 8 shows a seventh exemplary embodiment, the structure of which essentially corresponds to the third exemplary embodiment shown in FIG.
  • an additional throttle point 111 is provided between the high-pressure inlet channel 27 and the valve seat 43, via which the flow of the injection fuel in the opening stroke phase, in particular at the beginning thereof, can be controlled and by which the closing stroke movement of the control valve member 25 is damped can be.
  • This throttle point 111 is formed in the seventh embodiment as a narrow gap between the inner wall of the cylinder liner 73 and the control valve member 25, a shoulder 113 being provided on the control valve member 25, through which the narrow gap is opened after a certain opening stroke of the control valve member 25 into a larger flow cross section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit einem von einer Hochdruckpumpe (1) mit Kraftstoff befüllbaren gemeinsamen Hochdrucksammelraum (7) (Common Rail), der über Einspritzleitungen (9) mit in den Brennraum der zu versorgenden Brennkraftmaschine ragenden Einspritzventilen (11) verbunden ist, deren Öffnungs- und Schließbewegungen jeweils von einem elektrisch angesteuerten Steuerventil (13) gesteuert werden, wobei das Steuerventil als 3/2-Wege-Ventil ausgebildet ist, das einen an eine Einspritzöffnung des Einspritzventils (11) mündenden Hochdruckkanal (29) mit der Einspritzleitung (9) oder einer Entlastungsleitung (33) verbindet. Dabei ist am Steuerventilglied (25) des Steuerventils (13) ein mit Kraftstoffhochdruck befüllbarer hydraulischer Arbeitsraum (51) vorgesehen, der zur Verstellung der Einstellposition des Steuerventilgliedes (25) des Steuerventils (13) in einen Entlastungskanal (57) aufsteuerbar ist.

Description

Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einer Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Bei einer solchen aus der EP 0 657 642 be- kannten Kraftstoffeinspritzeinrichtung fördert eine Kraf - Stoffhochdruckpumpe Kraftstoff aus einem Niederdruckraum in einen Hochdrucksammelräum, der über Einspritzleitungen mit den einzelnen, in den Brennraum der zu versorgenden Brennkraftmaschine ragenden Einspritzventilen verbunden ist, wo- bei dieses gemeinsame Druckspeichersystem (Common Rail) durch eine Drucksteuereinrichtung auf einem bestimmten Druckniveau gehalten wird. Zur Steuerung der Einspritzzeiten und Einspritzmengen an den Einspritzventilen, ist an diesen jeweils ein elektrisch angesteuertes Steuerventil vorgese- hen, das mit seinem Öffnen und Schließen die Kraftstoffhochdruckeinspritzung am Einspritzventil steuert. Dabei ist das Steuerventil an der bekannten Kraftstoffeinspritzeinrichtung als 3/2- ege-Ventil ausgebildet, das einen an die Einspritzöffnung des Einspritzventils mündenden Hochdruckkanal mit der vom Hochdrucksammeiraum abführenden Einspritzleitung oder mit einer Entlastungsleitung in einen Niederdruckraum verbindet. Auf diese Weise wird erreicht, daß der im gemeinsamen Hochdrucksammeiräum und in den Einspritzleitungen anstehende Kraftstoffhochdruck während der Einspritzpausen nicht das Einspritzventil beaufschlagt, so daß dessen
Schließkräfte durch die Druckentlastung der Hochdruckleitung, bei hoher Systemsicherheit entsprechend kleiner ausgeführt werden können.
Da das 3/2-Wegesteuerventil dabei bei der bekannten Kraft- stoffeinspritzeinrichtung direkt vom Stellglied eines elektrisch angesteuerten Magnetventils betätigt wird, weist die bekannte Kraftstoffeinspritzeinrichtung den Nachteil auf, daß der Hubweg des Magnetventils die Stellbewegung am Ven- tilschieber des 3/2-Wege-Steuerventils begrenzt. Zudem wird die dem Kraftstoffhochdruck entgegenwirkende Schließkraft am 3/2-Wege-Steuerventil allein durch die Rückstellfeder des Magnetventils aufgebracht, so daß diese Federhaltekraft des Magnetventils den am Steuerventil anstehenden maximalen Sy- stemdruck im Kraftstoffhochdruckteil auf einen Wert begrenzt, der heutigen Anforderungen nicht mehr genügt.
Vorteile der Erfindung
Die erfindungsgemäße Kraftstoffeinspritzeinrichtung für
Brennkraftmaschinen mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß das elektrisch betätigbare Magnetventil das Steuerventilglied des 3/2-Wege-Steuerventils unter Zwischenschaltung eines hy- draulischen Arbeitsraumes betätigt. Dabei kann durch die
Ausgestaltung der den hydraulischen Arbeitsraum begrenzenden Fläche des Steuerventilgliedes eine hydraulische Übersetzung am Ventilglied des Steuerventils erreicht werden, so daß dieses wie ein Servokolben wirkt. Auf diese Weise ist der Verstellweg des Steuerventilgliedes des 3/2-Wege- Steuerventils unabhängig vom Hub des Magnetventils, wobei der hydraulische Arbeitsrraum zugleich die Rückstellfunktion des Steuerventilgliedes übernimmt, so daß auch sehr große Systemdrücke von über 2000 bar im Kraftstoffhochdruckteil möglich sind. Zudem hält der Druck im Arbeitsraum mit Aufbau des Systemdrucks das Steuerventil in einer den Durchfluß zwischen der Einspritzleitung und dem Hochdruckkanal verschließenden Lage, so daß bei sehr hohem wirksamen Schließdruck auf eine zusätzliche Schließfeder verzichtet werden kann.
Der hydraulische Arbeitsraum am Steuerventil ist dabei in vorteilhafter Weise von einer oberen Stirnfläche des kolbenförmigen Ventilgliedes des Steuerventils begrenzt und wird über einen Drosselquerschnitt zwischen dem Steuerventilglied und der dieses führenden Bohrungswand ständig mit unter hohem Druck stehenden Kraftstoff aus der Einspritzleitung versorgt. Zudem führt vom hydraulischen Arbeitsraum auf der dem Ventilglied des Steuerventils abgewandten Seite eine Entla- stungsleitung ab, die vom Magnetventil auf- bzw. zusteuerbar ist. Diese Entlastungsleitung weist dabei in vorteilhafter Weise einen größeren Querschnitt als der Drosselquerschnitt zur Einspritzleitung auf, so daß der Druck im hydraulischen Arbeitsraum beim Aufsteuern der Entlastungleitung sehr rasch entspannbar ist.
Das Steuerventil ist dabei in vorteilhafter Weise als Doppelsitzventil ausgebildet, dessen zwei Ventilsitzflächen einander zugewandt sind, so daß die Verstellbewegung des Steuerventilgliedes jeweils durch die Anlage an einem der Ventilsitze begrenzt ist, was mögliche Leckageverluste auf ein Minimum reduziert. Dabei ist die Drosselstrecke zwischen der Einspritzleitung und dem hydraulischen Arbeitsraum in einem ersten Ausführungsbeispiel durch eine Drosselbohrung im Steuerventilglied gebildet. Alternativ kann diese Dros- seistrecke jedoch auch durch einen verbleibenden Drossel- ringspalt zwischen der Wand des kolbenförmigen Steuerventilgliedes und der diesen führenden Bohrungswand gebildet sein.
Der sich an den zweiten Ventilsitz zwischen dem Hochdruckkanal und einer Entlastungsleitung anschließende Bereich des Steuerventilgliedes ist gleitend an der Wand der Aufnahmebohrung geführt und bildet somit eine Führung des Steuerventilgliedes. Für einen Kraftstoffübertritt in die Entlastun- gleitung sind Überströmöffnungen am Steuerventilglied vorgesehen, die z. B. durch einen Flächenanschliff am Steuerventilglied oder durch entsprechende Durchtrittsbohrungen gebildet sein können.
Ein weiterer Vorteil kann durch das Vorsehen einer hubgesteuerten Drossel zwischen dem ersten und zweiten Dichtsitz des Steuerventils erreicht werden, durch die die von der Einspritzleitung zum Hochdruckkanal überströmende Kraftstoffmenge in einer ersten Phase des Einspritzvorganges ge- drosselt wird.
Durch das Vorsehen einer Drosselstelle in der Entlastungs- leitung kann zudem das Schließen des Einspritzventils am Spritzende unterstützt und eventuelle Nachspritzer vermieden werden. Zudem wird durch diese Ablaufdrossel der Restdruck am Einspritzventil nach Beendigung der Kraftstoffeinspritzung derart gesteuert, daß eine Kavitation im Hochdruckkanal vermieden werden kann.
Es ist somit mit der erfindungsgemäßen Kraftstoffeinspritzeinrichtung möglich, mit relativ niedrigen Betätigungskräften und Hüben des Magnetventils große Fördermengen und hohe Drücke am Einspritzventil zu steuern. Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, den Patentansprüchen und der Zeichnung entnehmbar.
Zeichnung
Sechs Ausführungsbeispiele der erfindungsgemäßen Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen sind in der Zeichnung dargestellt und werden in der nachfolgenden Be- Schreibung näher erläutert . Es zeigen
die Figur 1 ein erstes Ausführungsbeispiel in einer Gesamtdarstellung, bei dem die Drosselstrecke zwischen Einspritzleitung und hydraulischem Arbeitsraum am Steuerventil durch eine Drosselbohrung in dessen Steuerventilglied ausgebildet ist,
die Figur 2 eine vergrößerte Schnittdarstellung durch das Steuerventil der Figur 1,
die Figur 3 ein zweites Ausführungsbeispiel analog zur
Darstellung der Figur 2 mit einer Steuerventilgliedführung im unteren Bereich, die über eine Drosselbohrung mit dem Entlastungsraum verbunden ist und bei dem der Drosselquerschnitt zwischen der Einspritzleitung und dem hydraulischen Arbeitsraum über einen Ringspalt zwischen dem Ventilglied des Steuerventils und der diesen führenden Bohrungswand gebildet ist,
die Figur 4 ein drittes Ausführungsbeispiel analog zur
Darstellung der Figur 3 , bei dem Abflachungen am Führungsdurchmesser des Steuerventilgliedes vorgesehen sind,
ie Figur 5 ein viertes Ausführungsbeispiel analog zur Darstellung der Figur 3 mit einer hubgesteuerten Drossel zwischen den beiden Ventilsitzen am Steuerventil,
die Figur 6 ein fünftes Ausführungsbeispiel in einer Ge- samtdarstellung, bei dem das Steuerventilglied einteilig ausgebildet ist und der zweite Ventilsitz zwischen dem Hochdruckkanal und der Entlastungsleitung als Schieberventil ausgebildet ist,
die Figur 7 ein sechstes Ausführungsbeispiel in einem
Schnitt durch die Einspritzeinrichtung, bei dem eine Drossel in der Entlastungsleitung vorgesehen ist und
die Figur 8 ein siebentes Ausführungsbeispiel, bei zwischen dem Hochdruckzulauf und dem Ventilsitz eine zusätzliche Drosselstelle vorgesehen ist.
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 dargestellte erste Ausführungsbeispiel der Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen weist eine Kraftstoffhochdruckpumpe 1 auf, die saugseitig über eine Kraftstoffförderleitung 3 mit einem kraftstoffgefüllten Niederdruckraum 5 und druckseitig über die Förderleitung 3 mit einem Hochdrucksammeiraum 7 verbunden is . Von diesem Hochdrucksammelräum 7 führen Einspritzleitungen 9 zu den einzelnen, in den Brennraum der zu versorgenden Brenn- kraftmaschine ragenden Einspritzventilen 11 ab, wobei zur Steuerung des Einspritzvorganges jeweils ein elektrisch betätigbares, als 3/2-Wegeventil ausgebildetes Steuerventil 13 an jedem Einspritzventil 11 vorgesehen ist.
Dabei ist das Einspritzventil 11 mittels einer Spannmutter 15 axial gegen einen Ventilhaltekörper 17 verspannt, an dem ein seitlicher Hochdruckanschluß 19 vorgesehen ist, in den ein Rohrstutzen 21 der entsprechenden Einspritzleitung 9 eingesetzt ist. Der Ventilhaltekörper 17 weist eine axiale Durchgangsbohrung 23 auf, in die auf der dem Einspritzventil 11 abgewandten Seite ein kolbenförmiges Steuerventilglied 25 des Steuerventils 13 eingesetzt ist. Dieses als Doppelsitzventil ausgebildete Steuerventil 13 verbindet dabei einen von der Einspritzleitung 9 im Rohrstutzen 21 ab- führenden Verbindungskanal 27 mit einem den Ventilhaltekörper 17 axial durchdringenden Hochdruckkanal 29, der an der dem Einspritzventil 11 zugewandten Stirnfläche des Ventilhaltekörpers 17 in bekannter Weise an eine nicht näher dargestellte Druckleitung im Einspritzventil 11 mündet, die an- dererseits bis an einen von einer Ventilnadel 31 des Einspritzventils 11 aufsteuerbaren Einspritzquerschnitt des Einspritzventils 11 mündet. Dabei ist der Hochdruckkanal 29 über das Steuerventil 13 wechselnd mit der Einspritzleitung 9 oder einer Entlastungsleitung 33 verbindbar, die aus dem einspritzventilseitigen Teil der Durchgangsbohrung 23 und einer von dieser abführenden Rücklaufleitung gebildet ist und die in den Niederdruckraum 5 mündet. Die Verstellbewegung des Steuerventilgliedes 25 des Steuerventils 13 wird dabei von einem Magnetventil 35 gesteuert, das auf der dem Einspritzventil 11 abgewandten Seite in den Ventilhaltekörper 17 eingesetzt ist und das von einem elektrischen Steuergerät 37 angesteuert wird, das eine Vielzahl von Betriebsparametern der zu versorgenden Brennkraftmaschine verarbeitet . Das in der Figur 2 vergrößert dargestellte Steuerventilglied 25 des Steuerventils 13 ist als Stufenkolben ausgebildet, dessen Querschnitt sich nach unten in Richtung Einspritzventil 11 über zwei konisch ausgebildete Ringflächen verjüngt. Dabei ist eine erste obere Ringstirnfläche 39 im Bereich der Einmündung des Verbindungskanals 27 zur Einspritzleitung 9 vorgesehen. Eine zweite Ringstirnfläche bildet eine erste konische Ventildichtfläche 41, die mit einem ersten konischen Ventilsitz 43 zusammenwirkt, wobei dieser zwischen der Ventildichtfläche 41 und dem Ventilsitz 43 gebildete erste Dichtsitz die Einspritzleitung 9 gegenüber dem Hochdruckkanal 29 verschließt. An seinem unteren, dem Einspritzventil 11 zugewandten Ende weist das Steuerventilglied 25 eine Hülse 45 auf, an der eine zweite, der ersten Ventildichtfläche 41 zugewandte Ventildich fläche 47 vorgesehen ist, die mit einem zweiten Ventilsitz 49 an der Wand der Durchgangsbohrung 23 zusammenwirkt. Dabei sind die Ventilsitzflächen 43 und 49 so ausgebildet, daß sie die Verstellbewegung des Steuerventilgliedes 25 in beiden Hubrich- tungen begrenzen. Der zwischen der zweiten Ventildichtfläche 47 und der zweiten Ventilsitzfläche 49 gebildete zweite Dichtquerschnitt verschließt dabei die Verbindung zwischen dem Hochdruckkanal 29 und der zum Teil durch die Durchgangs- bohrung 23 gebildeten Entlastungsleitung 33 in den Nieder- druckraum 5.
Zur Betätigung des Steuerventilgliedes 25 ist ein hydraulischer Arbeitsraum 51 vorgesehen, der durch die obere, dem Einspritzventil 11 abgewandte Stirnfläche 53 des Steuerven- tilgliedes 25 in der Bohrung 23 begrenzt ist. Auf der dem
Steuerventilglied 25 abgewandten Seite ist der hydraulische Arbeitsraum 51 durch eine Zwischenscheibe 55 zum Magnetventil 35 begrenzt. In dieser Zwischenscheibe 55 ist ein vom Arbeitsraum 51 abführender Entlastungskanal 57 vorgesehen, der in einen in den Niederdruckraum 5 mündenden Rücklaufka- nal 59 einmündet und der durch ein Ventilglied des Magnetventils 35 verschließbar ist. Dieses Ventilglied des Magnetventils 35 ist dabei als Ventilkugel 61 ausgebildet, die in einem an den Entlastungskanal 57 angrenzenden Ventilsitz ge- führt ist und die bei stromlos geschaltetem Magnetventil 35 den Entlastungkanal 57 durch die Kraft einer Magnetventilfe- der 63 geschlossen hält. Die Ventilkugel 61 ist an einem Anker 65 des Magnetventils 35 angelenkt, der bei bestromtem Magnetventil 35 entgegen der Rückstellkraft der Feder 63 in der vom Arbeitsraum 51 abgewandten Richtung verschoben wird, so daß die Ventilkugel 61 von dem im Arbeitsraum 51 anstehenden Druck von ihrem Sitz abgehoben und der Entlastungskanal 57 zur Rücklaufleitung 59 aufgesteuert wird.
Zur Befüllung des hydraulischen Arbeitsraumes 51 mit unter hohem Druck stehenden Kraftstoff ist im Steuerventilglied 25 eine Füllbohrung 67 vorgesehen, die eine Drosselstelle 69 aufweist, deren Querschnitt kleiner als der Querschnitt des Entlastungskanals 57 ausgebildet ist. Dabei führt diese in die Stirnfläche 53 mündende Füllbohrung 67 unterhalb der ersten Ringstirnfläche 39 des Steuerventilgliedes 25 ab, so daß der hydraulische Arbeitsraum 51 über die Füllbohrung 67 jederzeit mit der Einspritzleitung 9 verbunden ist. Zusätzlich zu dieser Befüllung des hydraulischen Arbeitsräumes 51 gelangt ein Teil der KraftStoffhochdruckmenge über den zwischen dem Steuerventilglied 25 und der Wand der Bohrung 23 verbleibenden Ringspalt 71 gedrosselt in den hydraulischen Arbeitsraum 51, so daß auch bei einem möglichen Verschluß der Füllbohrung 67 eine Notlauffunktion des Steuerventils 13 gewährleistet ist.
Die in den Figuren 1 und 2 in einem ersten Ausführungsbei- spiel gezeigte Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen arbeitet in folgender Weise. Beim Anlaufen des Systems wird zunächst über die Kraftstoffhochdruckpum- pe 1 ein Kraftstoffhochdruck im gemeinsamen Hochdrucksammei- räum 7 (Common Rail) aufgebaut, der sich über die verschiedenen Einspritzleitungen 9 bis an die jeweiligen Ventilhaltekörper 17 der Einspritzventile 11 fortsetzt. Das Magnet- ventil 35 ist vor Beginn der Einspritzphase stromlos geschaltet, so daß die Ventilkugel 61 des Magnetventils 35 den Entlastungskanal 57 verschlossen hält. Dabei wird der hydraulische Arbeitsraum 51 über die Füllbohrung 67 mit Kraftstoffhochdruck befüllt und preßt das Steuerventilglied 25 aufgrund des Flächenverhältnisses zwischen der Stirnfläche 53 und der ersten Ringstirnfläche 39 mit der ersten Ventildichtfläche 41 gegen den ersten Ventilsitz 43. Somit ist die Verbindung zwischen der Einspritzleitung 9 und dem an den Einspritzquerschnitt am Einspritzventil 11 mündenden Hochdruckkanal 29 verschlossen. Gleichzeitig ist der zweite Dichtquerschnitt zwischen der zweiten Ventildichtfläche 47 und dem zweiten Ventilsitz 49 geöffnet, so daß sich der Druck im Hochdruckkanal 29 bis auf einen bestimmten Rest- druck in die Entlastungsleitung 33 entspannen kann. Soll eine Einspritzung am Einspritzventil 11 erfolgen, wird zunächst das Magnetventil 35 über das elektrische Steuergerät 37 bestromt, so daß der Anker 65 angezogen wird und die Ventilkugel 61 den Entlastungskanal 57 freigibt. Da der Querschnitt des Entlastungskanals 57 größer ist als der der Drosselstelle 69 in der Füllbohrung 67 entspannt sich der
Druck im Arbeitsraum 51 sehr rasch über den Magnetventilräum in den Rücklaufkanal 59, so daß der an der Ringstirnfläche 39 anstehende Kraftstoffhochdruck nunmehr ausreicht, das Steuerventilglied 25 zu verschieben. Dabei wird das Steuer- ventilglied 25 bei dieser Öffnungshubbewegung derart verschoben, daß der erste Dichtquerschnitt zwischen der ersten Ventildichtfläche 41 und dem ersten Ventilsitz 43 nunmehr aufgesteuert wird und der zweite Dichtsitz zwischen der zweiten Ventildichtfläche 47 und dem zweiten Ventilsitz 49 durch Anlage des Steuerventilgliedes 25 am zweiten Ventil- sitz 49 verschlossen wird. Dabei strömt nunmehr der in der Einspritzleitung 9 befindliche, unter hohem Druck stehende Kraftstoff am Steuerventilglied 25 entlang in den Hochdruckkanal 29 zum Einspritzventil 11 und hebt dort in bekannter Weise die Ventilnadel 31 entgegen der Rückstellkraft einer Ventilfeder von deren Nadelsitz, so daß der Kraftstoff am Einspritzventil 11 über die Einspritzöffnungen in den Brennraum der zu versorgenden Brennkraftmaschine eingespritzt wird. Die Hochdruckeinspritzung am Einspritzventil 11 wird durch erneutes stromlos schalten des Magnetventils 35 beendet, in dessen Folge die Magnetventilfeder 63 die Ventilkugel 61 an ihren Sitz am Entlastungskanal 57 zurückverschiebt, so daß sich über die Füllbohrung 67 erneut ein Schließdruck im hy- draulischen Arbeitsraum 51 aufbauen kann, der das Steuerventilglied 25 des als 3/2-Wegeventils ausgebildeten Steuerventils 13 erneut mit der ersten Ventildichtfläche 41 in Anlage an den ersten Ventilsitz 43 verschiebt. Somit ist die Verbindung der Einspritzleitung 9 zum Hochdruckkanal 29 wieder verschlossen. Gleichzeitig wird der zweite Dichtsitz zwischen der zweiten Ventildichtfläche 47 und dem zweiten Ventilsitz 49 erneut aufgesteuert , so daß sich der im Hochdruckkanal 29 befindliche Kraftstoffhochdruck sehr rasch in die Entlastungsleitung 33 entspannt, was ein rasches Nadel- schließen am Kraftstoffeinspritzventil 11 zur Folge hat.
Das in der Figur 3 dargestellte zweite Ausführungsbeispiel der erfindungsgemäßen Kraftstoffeinspritzeinrichtung unterscheidet sich zum ersten Ausführungsbeispiel in der Art der Ausbildung des Steuerventilgliedes 25 des Steuerventils 13. Das Steuerventilglied 25 ist dabei nunmehr einteilig ausgebildet und in einer in der Durchgangsbohrung 23 des Ventilhaltekörpers 17 eingesetzten Zylinderbüchse 73 geführt. Dabei bildet ein unterer, dem Magnetventil 35 abgewandter Querschnittsteil des Steuerventilgliedes 25 einen Führungs- teil 75 des Steuerventilgliedes 25, der mit geringem Spiel im Innendurchmesser der Zylinderbüchse 73 gleitet. Zudem erfolgt die Befüllung des hydraulischen Arbeitsraumes 51 im zweiten Ausführungsbeispiel nur noch über den Ringspalt 71 zwischen dem Steuerventilglied 25 und der Innenwand der Zylinderbüchse 73. Der Ringspalt 71 ist dabei als Drosselstelle derart ausgebildet, daß der gesamte Durchflußquerschnitt kleiner ausgebildet ist als der Querschnitt des Entlastungskanals 57 des hydraulischen Arbeitsraumes 51. Die Kraft- stoffabfuhr aus einem, dem zweiten Dichtsitz zwischen der
Ventildichtfläche 47 und dem Ventilsitz 49 nachgeschalteten Entlastungsraum 77 in die Entlastungsleitung 23, 33 erfolgt dabei über eine von der der oberen Stirnfläche 53 abgewandten unteren Stirnfläche 79 im Steuerventilglied 25 ausgehen- den Sackbohrung 81, von der eine als Drosselbohrung ausgebildete Querbohrung 83 abführt, die in den Entlastungs- raum 77 mündet.
Bei dem in der Figur 4 dargestellten dritten Ausführungsbei- spiel erfolgt der Kraftstoffübertritt vom Hochdruckkanal 29 in die Entlastungsleitung 23, 33 über einen Flächenanschliff 85 an der Umfangsflache des Steuerventilgliedes 25 im Führungsbereich 75. Dabei ist die axiale Länge dieses rechtwinklig ausgebildeten Flächenanschliffs 85 so ausge- führt, daß der dem Magnetventil 35 zugewandte obere Teil des Flächenanschliffes ständig mit dem Hochdruckkanal 29 verbunden ist, während das untere eine Steuerkante 87 bildende Ende des Flächenanschliffes 85 erst bei Anlage der ersten Ventildichtfläche 41 am ersten Ventilsitz 43 aus der Überdek- kung mit der Zylinderbüchse 73 austaucht, was zusätzlich zur Systemsicherheit der Kraftstoffeinspritzeinrichtung beiträgt .
Das in der Figur 5 dargestellte vierte Ausführungsbeispiel der Kraftstoffeinspritzeinrichtung ist analog zum in der Fi- gur 3 dargestellten zweiten Ausführungsbeispiel aufgebaut und weist zusätzlich eine hubgesteuerte Drossel zwischen dem ersten und zweiten Dichtsitz auf. Diese hubgesteuerte Drossel ist durch einen Ringbund 89 am Steuerventilglied 25 aus- gebildet, dessen Übergangsbereiche zum angrenzenden Schaftteil des Steuerventilgliedes 25 konisch ausgebildet sind. Dieser Ringbund 89 wirkt dabei mit einem Ringsteg 91 an der Wand der Durchgangsbohrung 23 derart zusammen, daß er bei am ersten Ventilsitz 43 anliegender ersten Ventildichtfläche 41 mit diesem in Überdeckung steht. Während der Verstellhubbewegung des Steuerventilgliedes 25 in Richtung Magnetventil 35 taucht der Ringbund 89 stetig aus der Überdeckung mit dem Ringsteg 91 aus und gibt dabei während des Aufsteuerns der Verbindung zwischen der Einspritzleitung 9 bzw. dem Ver- bindungskanal 27 mit dem Hochdruckkanal 29 stetig einen größeren Überströmquerschnitt frei. Somit kann die zum Einspritzventil strömende Kraftstoffhochdruckmenge zu Beginn des Einspritzvorganges gedrosselt werden, wodurch sich der Einspritzverlauf am Einspritzventil 11 formen läßt.
Das in der Figur 6 in einer vereinfachten Gesamtdarstellung gezeigte fünfte Ausführungsbeispiel der Kraftstoffeinspritzeinrichtung unterscheidet sich zu den vorangegangenen Aus- führungsbeispielen ebenfalls durch die Ausgestaltung des Steuerventilgliedes 25. Dabei ist der den Drosselquerschnitt zwischen der Einspritzleitung 9 und dem Arbeitsraum 51 bestimmende Ringspalt 71 durch eine Ringnut 93 in einen oberen Drosselspalt 95 und einen unteren Drosselspalt 97 unterteilt. Über die axiale Erstreckung der Ringnut 93 läßt sich nunmehr der Durchfluß am Ringspalt 71 zwischen Einspritzleitung 9 und Arbeitsraum 51 genau einstellen. Der den Überströmquerschnitt zwischen dem Hochdruckkanal 29 und der Entlastungleitung 33 steuernde zweite Dichtsitz ist beim fünften Ausführungsbeispiel als Schieberventilsitz ausgebildet. Dazu weist das Steuerventilglied 25 an seinem unteren dem Einspritzventil 11 zugewandten Ende einen Schieberkopf 99 auf, dessen Außendurchmesser bis auf ein sehr geringes Spiel dem Durchmesser der Durchgangsbohrung 23 im Führungsbereich 75 entspricht. Dabei bildet die obere, dem Magnetven- til 35 zugewandte Begrenzungskante des Schieberkopfes 99 eine Ventilsteuerkante 101, die mit dem Führungsabschnitt 75 der Durchgangsbohrung 23 zusammenwirkt und deren Eintauchen in die Überdeckung mit dem Führungsabschnitt 75 der Durchgangsbohrung 23 das Zusteuern der Verbindung zwischen Hoch- druckkanal 29 und Entlastungsleitung 33 steuert. Zudem ist der Ventilsteuerkante 101 des Schieberkopfes 99 ein weiterer Ringbund 103 am Steuerventilglied 25 vorgeschaltet, der eine Abflußdrosselstelle für den aus dem Hochdruckkanal 29 in die Entlastungsleitung 33 abströmenden Hochdruckkraftstoff bil- det . Die Hubbegrenzung des Steuerventilgliedes 25 in Richtung Magnetventil 35 erfolgt beim fünften Ausführungsbei- spiel durch die Anlage der oberen Stirnfläche 53 des Steuerventilgliedes 25 an einer den hydraulischen Arbeitsraum 51 begrenzenden Stirnwand 105.
Das in der Figur 7 dargestellte sechste Ausführungsbeispiel der Kraftstoffeinspritzeinrichtung ist analog zum in der Figur 3 gezeigten zweiten Ausführungsbeispiel aufgebaut und weist zusätzlich zu diesem eine weitere Drosselstelle in der Entlastungsleitung 33 auf. Diese Drosselstelle ist dabei durch einen in die Entlastungsleitung 33 eingesetzten Drosseleinsatz 107 gebildet, dessen Durchflußquerschnitt so ausgelegt ist, daß am Einspritzende das Schließen des Einspritzventils unterstützt und eventuelles Nacheinspritzen verhindert wird. Zudem kann somit der am Einspitzende im Hochdruckkanal 29 verbleibende Restdruck des Kraftstoffes derart eingestellt werden, daß Kavitationsschäden vermieden werden können. Dabei wird der Kraftstoff aus der Durchgangs- bohrung 23 über die Entlastungsleitung 33 zunächst zum Ma- gnetventil 35 geführt und von dort über den Rücklaufkanal 59 zum Niederdruckraum 5 abgeleitet. Dieses Durchströmen des Magnetventils 35 hat dabei den Vorteil, daß der Magnetventilraum während des Betriebs der Kraftstoffeinspritzeinrichtung gekühlt und entlüftet werden kann.
In der Figur 8 ist ein siebentes Ausführungsbeispiel dargestellt, dessen Aufbau im wesentlichen dem in der Figur 4 dargestellten dritten Ausführungsbeispiel entspricht. Dabei ist beim siebenten Ausführungsbeispiel gemäß der Figur 8 eine zusätzliche Drosselstelle 111 zwischen dem Hochdruckzulaufkanal 27 und dem Ventilsitz 43 vorgesehen, über die der Durchfluß des Einspritzkraftstoffes in der Öffnungshubphase, insbesondere an dessen Beginn steuerbar ist und durch die die Schließhubbewegung des Steuerventilgliedes 25 ge- dämpft werden kann. Diese Drosselstelle 111 ist dabei im siebenten Ausführungsbeispiel als Engspalt zwischen der Innenwand der Zylinderbüchse 73 und dem Steuerventilglied 25 ausgebildet, wobei am Steuerventilglied 25 ein Absatz 113 vorgesehen ist, durch den der Engspalt nach einem bestimmten Öffnungshub des Steuerventilgliedes 25 in einen größeren Durchflußquerschnitt aufgesteuert wird.

Claims

Ansprüche
1. Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit einem von einer Hochdruckpumpe (1) mit Kraftstoff be- füllbaren gemeinsamen Hochdrucksammeiraum (7) , der über Einspritzleitungen (9) mit Einspritzventilen (11) verbunden ist, deren Offnungs- und Schließbewegungen jeweils von einem elektrisch angesteuerten, am Einspritzventil (11) angeordneten Steuerventil (13) gesteuert wird, wobei das Steuerventil (13) als 3/2-Wege-Ventil ausgebildet ist, mit einem zwei Dichtflächen (41, 47) aufweisenden Steuerventilglied (25) , das einen an eine Einspritzöffnung des Einspritzventils (11) mündenden Hochdruckkanal (29) mit der Einspritzleitung (9) oder einer Entlastungsleitung (33) verbindet, dadurch gekennzeichnet, daß das Steuerventilglied (25) durch einen in einem Arbeitsraum (51) herrschenden Druck entgegen einer Rückstellkraft betätigbar ist, wobei der Druck im Arbeits- räum (51) durch einen konstanten Zufluß und einen gesteuerten Abfluß steuerbar ist .
2. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Arbeitsraum (51) als ein mit Kraft- Stoffhochdruck befüllbarer hydraulischer Arbeitsraum (51) am Steuerventilglied (25) des 3/2-Wege-Steuerventils (13) ausgebildet ist, der das Steuerventilglied (25) entgegen einer an diesem angreifenden hydraulischen Öffnungskraft in Schließrichtung eines Durchströmquerschnittes zwischen Ein- spritzleitung (9) und Hochdruckkanal (29) beaufschlagt und der in einen Entlastungsraum (59) aufsteuerbar ist.
3. Kraftstoffeinspritzeinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der hydraulische Arbeitsraum (51) von einer oberen Stirnfläche (53) des kolbenförmigen Steuerventilgliedes (25) begrenzt wird und über einen Drosselquerschnitt (69, 71) ständig mit der Einspritzleitung (9) verbunden ist sowie mit einem vom Arbeitsraum (51) abführenden verschließbaren Entlastungskanal (57) , dessen Querschnitt größer als der Drosselquerschnitt zur Einspritzleitung (9) ausgebildet ist und der mittels eines elektrischen Stellventils (35) auf- bzw. zusteuerbar ist.
4. Kraftstoffeinspritzeinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß das elektrische Stellventil (35) als Magnetventil ausgebildet ist, dessen Stellglied durch eine Ventilkugel (61) gebildet wird, die mit einem an den Entlastungskanal (57) angrenzenden Ventilsitz zusammenwirkt.
5. Kraftstoffeinspritzeinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Drosselquerschnitt zur Einspritzleitung (9) durch eine Drosselbohrung (69) im Steuerventilglied (25) gebildet ist.
6. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das 3/2-Wege-Steuerventil (13) als Doppelsitzventil ausgebildet ist, mit einem ersten, den Durchfluß zwischen der Einspritzleitung (9) und dem Hochdruckka- nal (29) steuernden ersten Dichtsitz (41, 43) und einem den Durchfluß zwischen dem Hochdruckkanal (29) und der Entlastungsleitung (33) steuernden zweiten Dichtsitz (47, 49) , wobei die beiden Ventilsitzflächen (43, 49) einander zugewandt angeordnet sind und jeweils die Verstellbewegung des Steuerventilgliedes (25) in einer Hubrichtung begrenzen.
7. Kraftstoffeinspritzeinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Drosselquerschnitt zwischen dem Arbeitsraum (51) und der Einspritzleitung (9) als Ring- spalt (71) zwischen der Umfangsflache des kolbenförmigen
Steuerventilgliedes (25) und der Wand einer diesen führenden Zylinderbohrung (23) ausgebildet ist.
8. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das kolbenförmige Steuerventilglied (25) einteilig ausgebildet ist.
9. Kraftstoffeinspritzeinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß am Steuerventilglied (25) eine Ring- Stirnfläche (39) im Bereich der Überdeckung mit der Einspritzleitung (9) vorgesehen ist, an der der Kraftstoffhochdruck in Gegenrichtung zur Verstellrichtung des hydraulischen Arbeitsraumes (51) am Steuerventilglied (25) angreift.
10. Kraftstoffeinspritzeinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß am Steuerventilglied (25) eine Durchtrittsöffnung zwischen dem zweiten Dichtsitz (47, 49) und der Entlastungsleitung (33) vorgesehen ist.
11. Kraftstoffeinspritzeinrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Durchtrittsöffnung als in die Entlastungsleitung (23, 33) mündende Sackbohrung (81) ausgebildet ist, in die eine Querbohrung (83) mündet.
12. Kraftstoffeinspritzeinrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Durchtrittsöffnung als Flächenanschliff (85) am Steuerventilglied (25) ausgebildet ist, der erst nach Verschließen des Übergangsquerschnittes zwischen der Einspritzleitung (9) zum Hochdruckkanal (29) aufgesteu- ert wird.
13. Kraftstoffeinspritzeinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß zwischen dem ersten und zweiten Dicht- sitz (43, 49) eine hubgesteuerte Drossel (89, 91) vorgesehen ist, die die von der Einspritzleitung (9) zum Hochdruckkanal (29) überströmende Kraftstoffhochdruckmenge in einer ersten Phase des Einspritzvorganges drosselt .
14. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß in die vom Steuerventil (13) aufsteuerbare Entlastungsleitung (33) eine Drosselstelle (107) eingesetzt ist.
PCT/DE1997/002053 1997-01-21 1997-09-13 Kraftstoffeinspritzeinrichtung für brennkraftmaschinen WO1998031933A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97943768A EP0898650B1 (de) 1997-01-21 1997-09-13 Kraftstoffeinspritzeinrichtung für brennkraftmaschinen
US09/155,113 US6431148B1 (en) 1997-01-21 1997-09-13 Fuel injection device for internal combustion engines
DE59712768T DE59712768D1 (de) 1997-01-21 1997-09-13 Kraftstoffeinspritzeinrichtung für brennkraftmaschinen
JP53348998A JP3980069B2 (ja) 1997-01-21 1997-09-13 内燃機関のための燃料噴射装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19701879.3 1997-01-21
DE19701879A DE19701879A1 (de) 1997-01-21 1997-01-21 Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/869,057 Continuation-In-Part US6745952B1 (en) 1999-10-26 2000-10-20 Fuel injector with integrated flow restrictor

Publications (1)

Publication Number Publication Date
WO1998031933A1 true WO1998031933A1 (de) 1998-07-23

Family

ID=7817871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002053 WO1998031933A1 (de) 1997-01-21 1997-09-13 Kraftstoffeinspritzeinrichtung für brennkraftmaschinen

Country Status (5)

Country Link
US (1) US6431148B1 (de)
EP (1) EP0898650B1 (de)
JP (1) JP3980069B2 (de)
DE (2) DE19701879A1 (de)
WO (1) WO1998031933A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2811026A1 (fr) * 2000-06-29 2002-01-04 Bosch Gmbh Robert Injecteur a haute pression a fuite reduite
WO2002093000A1 (de) 2001-05-17 2002-11-21 Robert Bosch Gmbh Kraftstoffeinspritzsystem
JP2003512565A (ja) * 1999-10-21 2003-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 液圧式に制御される制御スプールを備えた高圧燃料インジェクタ
JP2003513197A (ja) * 1999-10-26 2003-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 貫流制限機能を組み込まれた燃料インジェクタ

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19910589C2 (de) * 1999-03-10 2002-12-05 Siemens Ag Einspritzventil für eine Brennkraftmaschine
DE19921878C2 (de) * 1999-05-12 2001-03-15 Daimler Chrysler Ag Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE19923421C2 (de) * 1999-05-21 2003-03-27 Bosch Gmbh Robert Injektor
DE19928846A1 (de) * 1999-06-24 2001-03-08 Bosch Gmbh Robert Common-Rail-Injektor
DE19937713C1 (de) 1999-08-10 2001-03-15 Siemens Ag Steuerventilanordnung zum Einsatz in einem Kraftstoffinjektor für Verbrennungsmotoren
DE19946515A1 (de) * 1999-09-24 2001-03-29 Htw Dresden Vorrichtung zur Steuerung der Kraftstoffeinspritzung für Hubkolbenmotore
DE19947196A1 (de) * 1999-10-01 2001-04-05 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19949528A1 (de) * 1999-10-14 2001-04-19 Bosch Gmbh Robert Doppelschaltendes Steuerventil für einen Injektor eines Kraftstoffeinspritzsystems für Brennkraftmaschinen mit hydraulischer Verstärkung des Aktors
DE19949848A1 (de) * 1999-10-15 2001-04-19 Bosch Gmbh Robert Druckübersetzer für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE19951004A1 (de) * 1999-10-22 2001-04-26 Bosch Gmbh Robert Hydraulische Steuervorrichtung, insbesondere für einen Injektor
DE19963367B4 (de) * 1999-12-28 2008-07-31 Robert Bosch Gmbh Common-Rail-Injektor
DE19963720C2 (de) * 1999-12-29 2002-03-14 Bosch Gmbh Robert Common-Rail-System
DE19963920B4 (de) * 1999-12-31 2005-01-13 Robert Bosch Gmbh Injektor für ein Common-Rail-Kraftstoffeinspritzsystem mit schiebergesteuertem Zulaufkanal und direkter Kopplung von Steuerkolben und Düsenkanal
DE10002109A1 (de) 2000-01-19 2001-08-02 Bosch Gmbh Robert Einspritzsystem
DE10002705A1 (de) * 2000-01-22 2001-08-02 Bosch Gmbh Robert Vorrichtung und Verfahren zum Bereitstellen eines Systemdrucks in einer Einspritzeinrichtung
DE10002702A1 (de) * 2000-01-22 2001-08-02 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10029629A1 (de) * 2000-06-15 2002-01-03 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10031278A1 (de) * 2000-06-27 2002-01-17 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10031574B4 (de) * 2000-06-29 2008-12-04 Robert Bosch Gmbh Druckgesteuerter doppelschaltender Hochdruckinjektor
DE10031579A1 (de) * 2000-06-29 2002-01-17 Bosch Gmbh Robert Druckgesteuerter Injektor mit Vario-Register-Einspritzdüse
DE10031733A1 (de) * 2000-06-29 2002-01-17 Bosch Gmbh Robert Common-Rail-System
DE10031571A1 (de) * 2000-06-29 2002-01-17 Bosch Gmbh Robert Injektor mit zentralem Hochdruckanschluß
DE10031572A1 (de) * 2000-06-29 2002-01-17 Bosch Gmbh Robert Injektor mit ablaufseitiger Steuerfläche
DE10031583A1 (de) * 2000-06-29 2002-01-17 Bosch Gmbh Robert Hochdruckfester Injektor mit kugelförmigem Ventilelement
DE10032517A1 (de) 2000-07-05 2002-01-24 Bosch Gmbh Robert Injektor mit Steuerteilführung
DE10032924A1 (de) * 2000-07-06 2002-01-24 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10032923A1 (de) * 2000-07-06 2002-01-24 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10110845A1 (de) * 2000-07-10 2002-01-31 Bosch Gmbh Robert Injektor zum Einspritzen von Kraftstoff mit nachgeschaltetem Drucksteuerungselement
DE10036578A1 (de) * 2000-07-27 2002-02-07 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE10036868B4 (de) * 2000-07-28 2004-07-29 Robert Bosch Gmbh Injektor für ein einen Hochdrucksammelraum umfassendes Einspritzsystem
DE10050599B4 (de) * 2000-10-12 2006-11-02 Siemens Ag Einspritzventil mit einem Pumpkolben
DE10051548A1 (de) 2000-10-18 2002-04-25 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE10053903A1 (de) * 2000-10-31 2002-05-29 Bosch Gmbh Robert Hub-/ und Druckgesteuerter Injektor mit Doppelschieber
DE10054202A1 (de) * 2000-11-02 2002-05-29 Siemens Ag Injektor zum Einspritzen von Kraftstoff in einen Brennraum
DE10054991A1 (de) 2000-11-07 2002-05-29 Bosch Gmbh Robert Druckgesteuerter Injektor zum Einspritzen von Kraftstoff mit Doppelventil
DE10055267B4 (de) 2000-11-08 2004-07-29 Robert Bosch Gmbh Druckgesteuerter Injektor für Hocheinspritzung mit Schieberdrosseln
DE10055268A1 (de) * 2000-11-08 2002-05-23 Bosch Gmbh Robert Druckgesteuerter Injektor eines Hochdruckspeichereinspritzsystems
DE10055272A1 (de) * 2000-11-08 2002-05-23 Bosch Gmbh Robert Druckgesteuerter Injektor mit in Reihe geschalteten Steuerventilen
DE10055651A1 (de) 2000-11-10 2002-05-23 Bosch Gmbh Robert Druckgesteuerter Injektor mit optimierten Einspritzverlauf über den Hubweg
DE10056165C2 (de) * 2000-11-13 2003-06-12 Bosch Gmbh Robert Sammelraumbeaufschlagter Injektor mit kaskadenförmiger Steuerungsanordnung
DE10056166A1 (de) 2000-11-13 2002-05-23 Bosch Gmbh Robert Hochdrucksammelraum mit integriertem Druckübersetzungselement
DE10058760C2 (de) 2000-11-27 2003-05-28 Bosch Gmbh Robert Geteilter Steuerventilkörper für Injektorsteuerventile
DE10059124B4 (de) 2000-11-29 2005-09-15 Robert Bosch Gmbh Druckgesteuerter Injektor für Einspritzsysteme mit Hochdrucksammelraum
DE10060811A1 (de) * 2000-12-07 2002-06-13 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE10103089A1 (de) * 2001-01-24 2002-08-08 Bosch Gmbh Robert 3/2-Wegeventil
DE10108719A1 (de) * 2001-02-23 2002-09-05 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen
EP1239147A3 (de) 2001-03-09 2008-02-20 Robert Bosch Gmbh Düsenhalterbefestigung
DE10111929A1 (de) * 2001-03-13 2002-10-02 Bosch Gmbh Robert Sitz/Schieber-Ventil mit Druckausgleichsstift
DE10113028A1 (de) * 2001-03-17 2002-09-26 Bosch Gmbh Robert 3/2-Wegeventil
DE10117861A1 (de) 2001-04-10 2002-10-24 Bosch Gmbh Robert Injektordüse mit Drosselverhalten
DE10120804A1 (de) * 2001-04-27 2002-11-07 Bosch Gmbh Robert Injektor zum Einspritzen von Kraftstoff mit sequentiellem Aufbau
DE10122245A1 (de) * 2001-05-08 2002-12-12 Bosch Gmbh Robert Leckagereduzierter druckgesteuerter Kraftstoffinjektor
DE10122246A1 (de) * 2001-05-08 2002-11-21 Bosch Gmbh Robert Injektor zum Einspritzen von Kraftstoff mit in Reihe geschalteten Steuerventilgliedern
DE10132248C2 (de) * 2001-07-04 2003-05-28 Bosch Gmbh Robert Kraftstoffinjektor mit 2-Wege-Ventilsteuerung
DE10148824A1 (de) 2001-10-04 2003-04-10 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10157411A1 (de) * 2001-11-23 2003-06-26 Bosch Gmbh Robert Injektor zur Hochdruckeinspritzung von Kraftstoff
DE10161002A1 (de) 2001-12-12 2003-07-03 Bosch Gmbh Robert Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
DE10164395A1 (de) * 2001-12-28 2003-07-17 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10205749A1 (de) * 2002-02-12 2003-08-21 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10209527A1 (de) 2002-03-04 2003-09-25 Bosch Gmbh Robert Einrichtung zur druckmodulierten Formung des Einspritzverlaufes
DE10218219A1 (de) * 2002-04-24 2003-11-06 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
US7278593B2 (en) * 2002-09-25 2007-10-09 Caterpillar Inc. Common rail fuel injector
DE10241445A1 (de) * 2002-09-06 2004-03-18 Daimlerchrysler Ag 3/2-Wegeventil zur Steuerung einer Common-Rail-Einspritzdüse
DE10250130A1 (de) * 2002-10-28 2004-03-04 Robert Bosch Gmbh Hochdruckeinspritzeinrichtung mit Druck- und Hubsteuerung
SE525208C2 (sv) * 2003-05-27 2004-12-28 Scania Cv Ab Bränsleinsprutare
US7111614B1 (en) 2005-08-29 2006-09-26 Caterpillar Inc. Single fluid injector with rate shaping capability
DE102007006083B4 (de) * 2006-12-18 2009-04-30 Continental Automotive Gmbh Kraftstoffinjektor
WO2011149372A1 (ru) * 2010-05-25 2011-12-01 Zuev Boris Konstantinovich Электроуправляемая форсунка
JP5760095B2 (ja) * 2010-12-28 2015-08-05 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッドHyundai Heavy Industries Co., Ltd. 電子制御燃料噴射弁
RU2558179C1 (ru) * 2011-07-14 2015-07-27 Борис Константинович Зуев Электрогидравлическая форсунка
RU2519538C1 (ru) * 2012-10-29 2014-06-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Электрогидравлическая форсунка для дизеля

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2759255A1 (de) * 1977-12-31 1979-07-12 Bosch Gmbh Robert Kraftstoffeinspritzventil fuer brennkraftmaschinen
EP0657642A2 (de) 1993-12-07 1995-06-14 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19512270A1 (de) * 1995-04-01 1996-09-26 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzanlage für Brennkraftmaschine
DE19612738A1 (de) * 1995-04-05 1996-10-10 Avl Verbrennungskraft Messtech Speichereinspritzsystem für Brennkraftmaschinen
DE19621583A1 (de) * 1995-06-06 1997-01-02 Avl Verbrennungskraft Messtech Speichereinspritzsystem für Dieselbrennkraftmaschine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2759187A1 (de) 1977-12-31 1979-07-12 Bosch Gmbh Robert Kraftstoffeinspritzanlage mit mindestens einem kraftstoffeinspritzventil, insbesondere fuer grossmotoren
IT1261149B (it) * 1993-12-30 1996-05-09 Elasis Sistema Ricerca Fiat Valvola di dosaggio per il comando dell'otturatore di un iniettore di combustibile
GB9616521D0 (en) 1996-08-06 1996-09-25 Lucas Ind Plc Injector
FI101739B1 (fi) 1996-08-16 1998-08-14 Waertsila Nsd Oy Ab Ruiskutusventtiilijärjestely
DE19706467C1 (de) 1997-02-19 1998-03-26 Daimler Benz Ag Speichereinspritzsystem für eine mehrzylindrige Brennkraftmaschine
DE19744723A1 (de) 1997-10-10 1999-04-15 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
IT1296143B1 (it) 1997-11-18 1999-06-09 Elasis Sistema Ricerca Fiat Dispositivo di comando di un iniettore di combustibile per motori a combustione interna.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2759255A1 (de) * 1977-12-31 1979-07-12 Bosch Gmbh Robert Kraftstoffeinspritzventil fuer brennkraftmaschinen
EP0657642A2 (de) 1993-12-07 1995-06-14 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19512270A1 (de) * 1995-04-01 1996-09-26 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzanlage für Brennkraftmaschine
DE19612738A1 (de) * 1995-04-05 1996-10-10 Avl Verbrennungskraft Messtech Speichereinspritzsystem für Brennkraftmaschinen
DE19621583A1 (de) * 1995-06-06 1997-01-02 Avl Verbrennungskraft Messtech Speichereinspritzsystem für Dieselbrennkraftmaschine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512565A (ja) * 1999-10-21 2003-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 液圧式に制御される制御スプールを備えた高圧燃料インジェクタ
JP2003513197A (ja) * 1999-10-26 2003-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 貫流制限機能を組み込まれた燃料インジェクタ
US6745952B1 (en) * 1999-10-26 2004-06-08 Robert Bosch Gmbh Fuel injector with integrated flow restrictor
FR2811026A1 (fr) * 2000-06-29 2002-01-04 Bosch Gmbh Robert Injecteur a haute pression a fuite reduite
WO2002093000A1 (de) 2001-05-17 2002-11-21 Robert Bosch Gmbh Kraftstoffeinspritzsystem

Also Published As

Publication number Publication date
JP2000507327A (ja) 2000-06-13
DE19701879A1 (de) 1998-07-23
DE59712768D1 (de) 2007-01-04
EP0898650B1 (de) 2006-11-22
EP0898650A1 (de) 1999-03-03
US6431148B1 (en) 2002-08-13
JP3980069B2 (ja) 2007-09-19

Similar Documents

Publication Publication Date Title
EP0898650B1 (de) Kraftstoffeinspritzeinrichtung für brennkraftmaschinen
EP0657642B1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP1831537B1 (de) Injektor eines kraftstoffeinspritzsystems einer brennkraftmaschine
DE4311627A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP0657643B1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19946827C1 (de) Ventil zum Steuern von Flüssigkeiten
EP1190169A2 (de) Steuerventil für einen injektor eines kraftstoffeinspritzsystems für brennkraftmaschinen mit druckerhöhung im steuerraum
EP0959243A1 (de) Steuerventil für Kraftstoffeinspritzventil
WO2002084106A1 (de) Ventil zum steuern von flüssigkeiten
EP1144857A1 (de) Doppelschaltendes steuerventil mit hydraulischer verstärkung des aktors
AT501914A4 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP1952011B1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine mit kraftstoff-direkteinspritzung
WO2008061844A1 (de) Kraftstoffinjektor
WO1999018349A1 (de) Direktgesteuertes einspritzventil, insbesondere kraftstoffeinspritzventil
WO2005015002A1 (de) Schaltventil für einen kraftstoffinjektor mit druckübersetzer
EP1925812B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10100390A1 (de) Einspritzventil
DE19716226C2 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1651855B1 (de) Kraftstoffeinspritzvorrichtung
DE10141221B4 (de) Druck-Hub-gesteuerter Injektor für Kraftstoffeinspritzsysteme
DE10123995A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2001031191A2 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10031570C2 (de) Leckage reduzierter Hochdruckinjektor
DE10160264A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE69923499T2 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1997943768

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09155113

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997943768

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997943768

Country of ref document: EP