WO1992013701A1 - Method of controlling motor driven injection molding machine - Google Patents

Method of controlling motor driven injection molding machine Download PDF

Info

Publication number
WO1992013701A1
WO1992013701A1 PCT/JP1992/000102 JP9200102W WO9213701A1 WO 1992013701 A1 WO1992013701 A1 WO 1992013701A1 JP 9200102 W JP9200102 W JP 9200102W WO 9213701 A1 WO9213701 A1 WO 9213701A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
injection
screw
holding
control
Prior art date
Application number
PCT/JP1992/000102
Other languages
English (en)
French (fr)
Inventor
Masao Kamiguchi
Minoru Kobayashi
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12429440&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1992013701(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to US07/934,517 priority Critical patent/US5342559A/en
Priority to EP92904231A priority patent/EP0528040B1/en
Priority to DE69219032T priority patent/DE69219032T2/de
Priority to KR1019920702464A priority patent/KR970008251B1/ko
Publication of WO1992013701A1 publication Critical patent/WO1992013701A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Definitions

  • a screw In an electric injection molding machine, a screw is generally driven in the axial direction by the drive of a servomotor to control injection, holding pressure and back pressure.
  • multi-stage control of the injection speed is generally performed, in which the screw stroke is divided into a plurality of sections and the injection speed of the slew is set in each section.
  • the pressure-holding process conventionally, a command to move to the tip of the cylinder is issued to the injection servomotor, and the injection servomotor is set so that its output torque is maintained at the set pressure. Therefore, the dwell pressure control is performed by driving with the set dwell speed command.
  • the screw is rotated by setting the force torque to the set back pressure, and in the process, the resin melts and the resin pressure rises, and when the resin pressure becomes larger than the torque output by the servo motor for injection, the screw is rotated.
  • a back pressure control method in which the resin is retracted and eventually a set back pressure is applied to the resin.
  • a back pressure control method is known in which the screw is retracted by a predetermined amount each time the resin pressure exceeds a set back pressure, and a set back pressure is applied to the resin.
  • the present invention relates to an electric injection molding machine in which a screw is driven in an axial direction by a servomotor to control injection, holding pressure, and back pressure.
  • This pressure is detected, the difference between the set holding pressure and the detected pressure is determined, and a movement command corresponding to the difference is output to a servo circuit that drives and controls the servo motor, thereby setting and holding the pressure applied to the resin.
  • Pressure Feedback control is performed to achieve pressure.
  • the pressure-holding process is divided into a plurality of stages, the pressure-holding time and the pressure-holding time of each stage are set, and when the pressure-holding process is started, the set pressure-holding stages from the first stage are set. Until the dwell time elapses, the pressure is switched to the set dwell pressure in each stage, and the position of the screw is fed back so that the detected resin pressure matches the set dwell pressure.
  • the speed of the servomotor is controlled so as to reach the set injection speed, and in the pressure holding step, the pressure applied to the resin is detected, and the difference between the set pressure and the detected pressure is detected. Then, by outputting a movement command according to the difference to a servo circuit for driving and controlling the servo motor, feedback control is performed so that the pressure applied to the resin becomes the set pressure. Detect the pressure, find the difference between the set back pressure and the detected pressure, and output a movement command according to the difference to the servo circuit that drives and controls the servo motor so that the back pressure becomes the set back pressure. Perform feedback control.
  • the injection process, pressure-holding process, and weighing process are each divided into multiple stages.
  • the injection speed of each stage and the position of the screw for switching to the next stage are set.
  • Injection speed is switched, and in the pressure-holding process, the pressure is switched to the next-stage set pressure-holding time based on the set pressure-holding time in each stage.
  • the screw position is feedback controlled so that the set injection speed of each stage, the set pressure holding of each stage, and the set back pressure of each stage.
  • the detected pressure applied to the resin is compared with the set pressure-holding pressure, and a movement command is issued in accordance with the difference. Move to the target position accordingly. For example, if the detected pressure does not reach the set holding pressure and a pressure deviation occurs, a movement command to advance the screw is output according to the deviation, and the screw moves forward, and as a result, the resin This pressure gradually increases and approaches the set holding pressure. If the pressure deviation is reduced in this way, the amount of movement of the screw is also reduced, and eventually the pressure applied to the resin is maintained at the set holding pressure.
  • the pressure deviation becomes a negative value (that is, the resin pressure is larger than the target value). Is issued, and the skew retreats.
  • the screw retracts more than the movement command due to the pressure of the resin, the sign of the position deviation is reversed, and the screw is given the movement command to move forward, and eventually holds the position where the movement command was issued. . In this way, the screw moves to the position instructed by the movement command, and this movement lowers the resin pressure.
  • the force approaches the set holding pressure, and feedback control is performed so that the pressure deviation becomes “0”.
  • the screw moves forward to the target position with a large torque, so that the screw reaches the target position quickly. Then, the screw position is controlled so that the pressure deviation becomes “0”.
  • the dwell pressure control was controlled by the screw position, when the dwell pressure was switched, the screw was pushed out by the resin pressure, causing a large retreat, and a delay in reaching the set pressure. Disappears.
  • the servomotor operates to maintain the commanded position, so if there is a deviation between the commanded position and the actual position, the output torque is adjusted to eliminate the deviation.
  • the resin pressure is detected, and the deviation between the resin pressure and the set back pressure is obtained. Based on this deviation, a movement command is output to the injection servomotor to determine the screw position. Feedback control is performed to control the back pressure to the set back pressure.
  • the injection, holding pressure, and weighing processes are controlled by screw position control, so there is no need to switch from position control to pressure control on the way, and position control is consistent. Since there is no problem at the time of control switching, just start the injection axis. Thus, since everything is automatically performed from the start of injection to the end of metering, the control interface can be simplified. Also, since the above-mentioned consistent control can be performed not by the NC program but by the sequence program, the processing speed can be increased.
  • FIG. 1 is a flowchart of a main process of an injection shaft according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a process of an injection process in the embodiment.
  • FIG. 4 is a processing flowchart of the measuring process in the embodiment
  • FIG. 5 is a block diagram of a main part of an electric injection molding machine and a main part of a control device for implementing the embodiment
  • FIG. 7 is an explanatory view of a table for storing molding conditions in the pressure holding step in the embodiment
  • FIG. 8 is an explanatory diagram of a table for storing molding conditions in the measuring step in the embodiment.
  • FIG. 5 is a block diagram of a main part of an electric injection molding machine embodying the present invention, showing only an injection shaft, and omitting other shafts, such as a mold clamping shaft, a screw rotation shaft, and an ejector shaft.
  • an electric injection molding machine includes a numerical control device 20 as a control device, a screw 1, an injection servo-moder 2 for driving the screw 1 in the glaze direction, and an injection servo motor 2 It consists of a pulse coder 3, a heating cylinder 4, a mold 5, a pressure sensor 6, an analog Z digital converter (hereinafter referred to as AZD converter) 7, etc.
  • AZD converter analog Z digital converter
  • the pressure sensor 6 includes a load cell mounted on a part of an injection mechanism (not shown) driven by the injection servomotor 2, and detects a pressure applied to the resin. Further, an analog / digital converter (hereinafter referred to as an AZD converter) 7 for converting the analog output into a digital signal is connected to the pressure sensor 6.
  • a numerical controller (hereinafter, referred to as an NC device) 20 for controlling the injection molding machine includes an NC microprocessor (hereinafter, referred to as a CPU) 21 and a CPU 22 for a programmable machine controller (hereinafter, referred to as a PMC).
  • the PMC CPU 22 has a ROM 28 storing a sequence program for controlling the sequence operation of the injection molding machine, etc., and receives and stores the detected pressure from the pressure sensor 6 via the AZD converter 7. And a RAM 30 used for temporarily storing data.
  • the NC CPU 21 has a ROM 24 that stores a management program for controlling the entire injection molding machine, and a servo circuit that drives and controls the servo motors of each axis for injection, clamping, screw rotation, and ejector. Connected via servo interface 26.
  • FIG. 5 shows only the servo circuit 27 for the injection servomotor 2 among these servo circuits.
  • a non-volatile shared RAM M31 composed of bubble memory and CMOS memory stores a memory section that stores NC programs and the like that control each operation of the injection molding machine, and stores various set values, parameters, and macro variables. And a setting memory unit.
  • Bus Arbiter Controller (hereinafter referred to as BAC) 23 Each bus 36 of the CPU 21 for C and the CPU 22 for PMC, the shared RAM 31, the input circuit 32, and the output circuit 33 is connected, and the bus 36 used is controlled by the BAC 23.
  • a manual data input device with a CRT display device (hereinafter referred to as CRTZMD I) 35 is connected to the BAC 23 via an operator panel controller 34, and can operate various operation keys such as a soft key and a numeric keypad. This allows various commands and setting data to be input.
  • the RAM 25 bus-connected to the NC CPU 21 is used for temporary storage of data and the like.
  • Fig. 5 only the injection shaft, that is, the injection servo motor 2 for driving the screw 1 to perform injection and the servo motor 2 for injection, and the rotation of the servo motor is detected to detect the rotation of the servo motor. Only the pulse coder 3 for detecting the position is shown, and other glazes, such as those relating to a mold clamping shaft, a single screw rotation shaft, and an editor glaze, are omitted. Also, the servo circuit of the NC device 20 is only that of the injection servomotor, and the servo circuits of the other axes are omitted.
  • the NC device 20 controls the sequence based on the sequence program stored in the ROM 28 by the CPU 22 for PMC, and executes the CPU control for the NC based on the control program set and stored in the shared RAM 31.
  • 21 distributes pulses to the servo circuits of each servomotor and drives the injection molding machine.
  • the resin pressure detected by the pressure sensor 6 is converted into a digital signal by the AZD converter 7, written into the RAM 29 at predetermined intervals, and sequentially rewritten as the current resin pressure. Further, the PMC CPU 22 reads the resin pressure written in the RAM 29 at predetermined intervals, and stores the read resin pressure value in the BAC The data is sequentially written to the shared RAM 31 via 23. Since the resin pressure value detected by the pressure sensor 6 only needs to be stored in the present value, it may be written in the register.
  • 6 to 8 are explanatory diagrams of the condition tables TB1 to TB3 provided in the shared RAM 31 for storing the operating conditions (molding conditions) of the injection, dwelling, and weighing steps. Operate to change the CRT screen to each molding condition setting screen, and then input and set the molding conditions for each process.
  • step 1121 it is determined whether or not the flag F 0 indicating that the mold closing process is completed and the injection glaze is operating is “1” (step S 1).
  • the PMC CPU 22 sets the flag F 0 indicating the operation of the injection axis provided to the shared RAM 31 via the BAC 23 to “1”. Therefore, if the flag F 0 is “0”, this processing ends immediately without doing anything.
  • step S2 It is determined whether the flag FP indicating that the pressure holding process is in progress and the flag Fs indicating that the injection process is in progress are "1" (steps S2 to S5). In the processing of the first cycle when the flag F0 is set to “1”, these flags Fm, Fd, F, and Fs are all "0", and therefore, the process proceeds from step S5 to step S6. Then, after the flag Fs indicating that the injection process is being performed is set to “1”, the process of the injection process shown in FIG. 2 is started (step S7).
  • step 1121 it is determined whether or not the mode is switched from injection to holding pressure (step S8). Switching from injection to holding pressure is controlled by the screw position, the pressure applied to the resin or the time from the start of injection, etc.
  • the PMC CPU 22 detects these screw positions, resin pressure or time, and reaches the switching point. Then, the flag provided in the shared RAM 31 and indicating the switching from injection to holding pressure is set to “1”.
  • the NC CPU determines whether or not to switch to pressure holding depending on whether this flag is “1” or not. When switching If not, the process of the cycle ends.
  • step S8 if the flag indicating the switching to the holding pressure is “1” in step S8, that is, if the switching to the holding pressure is being performed, the flag Fs indicating that the injection process is being performed and the flag Fs indicating that the injection process will be described later are performed.
  • the flag Cs indicating the process of each stage is set to "0", and the pointer i indicating each stage of the injection process is set to "0" (step S9).
  • step S9 The flag Fp shown is set to "1" (step S10), and the process of the pressure-holding step shown in FIG. 3 is started (step S11).
  • the flag Fp force is set to “1”, so the processes in steps S1 to S4 are performed until the process of the pressure-holding process is completed, and then the process proceeds to step S11.
  • the process proceeds to execute the pressure holding processing.
  • the process of the pressure holding step will be described later with reference to the flowchart of FIG.
  • step S12 When the pressure-holding process is completed, the dwell flag Fd is set to "1" (step S12), and the set dwell time is set in the timer and started (step S13). .
  • the injection axis is stopped, and the processes in steps S1 to S3 and step S14 are performed thereafter in each cycle until the timer expires.
  • step S14 the dwell flag Fd is set to "0" (step S15), and the weighing process flag Fm is set to "1”. Then (step S16), the operation of the weighing process is started (step S17).
  • the processing of this measuring step will be described later with reference to the flowchart of FIG.
  • FIG. 2 is a flowchart showing the process of the injection process in step S7.
  • the injection process is started, it is determined whether or not the flag Cs is "0" (step S100).
  • step S101 the pointer i stored in the table TB1 in the shared RAM 31 (this pointer i is As shown, the injection speed V i corresponding to the first to I-th injection stages is given 0 to I-11, respectively, and the injection command, that is, pulse distribution is started at this injection speed (step S101, S102).
  • a movement command is output to the servo circuit 27 via the servo interface 26, so that the injection servomotor 2 starts driving and advances the screw 1 at the set injection speed V i ( (Left direction in Fig. 5).
  • the pointer i is initially set to "0" in the initial setting and the processing in step S9.
  • the NC CPU 21 determines whether or not the flag Cs is “0 J” (step S103). Since the flag Cs is “0” at the beginning, the switching corresponding to the pointer i from the table TB1 is performed. The position P i is read (step S104), the switching position P i is set in the register XP (step S105), and the flag Cs is set to “1” (step S106). It returns to step S8 of the flowchart of FIG. 1 which is the main processing.
  • step S7 that is, step S100 in the flowchart of FIG.
  • the flow shifts from step S100 to step S107, and the current value of SCREW1 and the corresponding injection set in the register XP are set.
  • step S107 the current value of SCREW1 and the corresponding injection set in the register XP are set.
  • step S107 the current value of SCREW1 and the corresponding injection set in the register XP are set.
  • step S107 the current value of SCREW1 and the corresponding injection set in the register XP are set.
  • the current position of the screw 1 is obtained by multiplying the pulse distributed by the CPU 21 for NC into the current value register provided in the shared RAM 31. The position is read, and it is determined whether or not this value is equal to or less than the set value stored in the register XP.
  • the origin of the coordinate system of the screw 1 is set at the tip of the cylinder 4, and the direction in which the screw 1 moves forward (that is, the direction toward the die, and the left direction in FIG. 1) is defined as a negative direction. Therefore, if the current position of screw 1 is larger than the value stored in register XP, it means that the screw has not reached the switching position from the current stage to the next stage. At this time, the process shifts from step S107 to step S101, and the above-described processing is returned. In this case, since the flag Cs has already been set to “1”, the process returns from step S103 to the main process of the flowchart in FIG. 1 without performing the processes of steps S104 to S106 and rewriting the register XP. There is no.
  • step S8 the process does not reach the switching position to the holding pressure at first, so that the process ends as it is (step S8). Thereafter, the processing of steps S1 to S5, S100, S107, and S101 to S103 described above is repeated for each cycle, and the injection of the corresponding stage is performed until the screw position reaches the position set in the register XP. At speed the screw will be moved.
  • step S107 when the current position of the screw 1 becomes equal to or less than the switching position set in the register XP, the process proceeds from step S107 to step S108, in which the point i is incremented by “1”, and the flag Cs is set to “0”. If the pointer i has not reached the set injection stage number I (step S110), the process proceeds to step S101, where the pointer is read from the table TB I. 4. The injection speed V i corresponding to i is read out, and the servomotor 2 is driven so as to drive the screw at this injection speed (step S102).
  • step S110 the pointer i is decremented by "1" (step S111), and the processing from step S101 is performed.
  • step S10 a command to switch from injection to holding pressure is issued, flag F is set to "1" (step S10), and when the holding process is in progress, the CPU 21 for NC is turned on as shown in Fig. 3. The processing shown in the flowchart is started.
  • the NC CPU 21 first determines whether or not the flag Cp is "0" (step S200).
  • the flag Cp is set to “0” by default.
  • the pointer j is sent from the table TB2 in the shared RAM 31 (this pointer j is connected to the first to Jth pressure holding stages as shown in FIG. 7).
  • the corresponding holding pressure P rj is read, and the actual resin pressure, which is the current resin pressure stored in the shared RAM 31, is read out (step S 201).
  • the actual pressure is subtracted from the set holding pressure Prj to obtain a pressure deviation £ P (step S202).
  • Proportional, integral and differential control (PID control) is performed based on this pressure deviation ⁇ .
  • the value obtained by multiplying the difference by the differential constant is added to perform the PID calculation process, and the sign of the obtained value is converted (steps S203 and S204).
  • This code conversion is performed because the tip of the cylinder is at the origin “0” and the direction in which the screw moves toward the origin is the negative direction. That is, when the actual pressure does not reach the set holding pressure, the pressure deviation ⁇ ⁇ is positive, but the screw must be moved forward (toward the origin), so the sign conversion is performed.
  • step S 204 if the pressure deviation ⁇ ⁇ is determined as “actual pressure—P rj”, the processing in step S 204 is not necessary.
  • a pulse amount to be output as a movement command is calculated based on the value obtained by performing code conversion on the value obtained by the PID calculation processing (step S205). Since the pressure deviation ⁇ ⁇ is proportional to the screw position, the pulse amount to be output is obtained by multiplying a value obtained by code conversion of the value obtained by the PID calculation process by a predetermined proportional constant. Then, the already output pulse amount is added to the obtained output pulse amount, and it is determined whether or not the screw can be moved (step S206).
  • the screw / cylinder may be damaged. If, move command is not output. On the other hand, if it is possible to move, the calculated pulse amount is output to the servo circuit 27 via the servo interface 26 (step S207).
  • the screw If the pressure deviation ⁇ ⁇ is large and the output pulse amount is too large to exceed the range in which the screw can move, the screw usually follows the movement command with a delay.
  • the torque deviation is sequentially increased by the integrator of the speed loop control of the servo circuit 27 due to the position deviation, and as a result, the output torque of the servo motor increases. Therefore, the calculation is performed in step S205. Even if the set pulse amount is not output, the resin pressure will approach the set holding pressure.
  • step S208 it is determined whether or not the flag Cp is "0" (step S208). If the flag Cp is "0" (initial value is set to "0"), the data indicated by the pointer j in the table TB2 is stored. The pressure time Tj is read, the pressure retention time Tj is set in the timer TE, the pressure retention is started, and then the flag Cp is set to “1” (steps S209 to S2). 11) Return to the main process shown in the flowchart in Fig. 1. 7 The processing of the cycle ends without performing When the flag Cp is “1” in step S208, the process in the cycle ends without performing the processes in steps S209 to S211.
  • step S215 the pointer j and the flag Fp are set to "0" (step S216), and the pressure-holding process is performed. And returns to the main processing shown in the flowchart of FIG. 1, sets the flag Fd indicating that the dwell is in progress to "1" (step S12), and starts the timer in which the set dwell time is set.
  • step S13 the processes of steps S1 to S3 and step S14 are performed for each processing cycle, and the process waits until the timer for the dwell time-ups.
  • the screw position is controlled so that the set holding pressure of each stage is maintained, so even when the holding pressure is switched from a large set holding pressure to a small set holding pressure, the screw retains the resin pressure. There is no situation in which they will be thrown away and fall back greatly. That is, when the set holding pressure changes from a large value to a small value, the pressure deviation ⁇ ⁇ calculated in step S 202 becomes a negative value, and the result of the PID calculation process also becomes a negative value. The sign is converted to a positive value, and the pulse amount that moves the screw in the backward direction is output.
  • the screw since the torque is not limited to the servo motor, the screw may move backward more than the above output pulse amount, but in such a case, a negative position deviation occurs and the screw position becomes the output pulse.
  • the servomotor outputs the output torque and positions the screw so as to reach the position corresponding to the amount, so that the screw does not retreat greatly.
  • step S14 when the timer times out and the dwell processing is completed (step S14), the dwell flag Fd is set to “0”, and the flag Fm indicating that the weighing process is being performed is set to “1” ( Steps S15 and S16), the processing of the weighing process shown in the flowchart of FIG. 4 is started.
  • the screw rotation servomotor In the weighing process, to rotate the screw, the screw rotation servomotor is driven and controlled at the set rotation speed Ni of each measurement team. Therefore, the description is omitted.
  • the back pressure control in the weighing process performs the same processing as the above-mentioned pressure holding control. That is, 1 ⁇ (: use? 1121 determines whether or not the flag Cm is “0” (step S300)
  • the flag Cm is initially set to “0”.
  • the pointer k is read from the table TB3 in the shared RAM 31 (this pointer k is set to 0 for each of the first to kth pressure holding stages as shown in FIG. 8).
  • Kk_l is given), the actual pressure, which is the current resin pressure stored in the shared RAM 31, is read out (step S301), and the actual pressure is obtained from the set holding pressure Pbk.
  • Step S302 Based on this pressure deviation ⁇ , proportional, integral, and differential control (PID control) is performed in the same manner as the pressure-holding control.
  • the sign of the value is converted (steps S303 and S304).
  • the pulse amount to be output is obtained by multiplying the value obtained by sign conversion by a predetermined proportionality constant (step S305), and the pulse amount already output is added to the obtained output pulse amount.
  • Step S306 To determine whether the screen is movable. Step S306). If it exceeds the movable range, no move command is output. On the other hand, if it is possible to move, the calculated pulse amount is output to the servo circuit 27 via the support interface 26 (step S307).
  • step S308 it is determined whether or not the flag Cm force ⁇ "0" (step S308). If “0" (initial value is set to “0"), the switching position indicated by pointer k from table TB3 Reads Pk, sets it in register PE, sets flag Cm to "1" (steps S309 to S311), and returns to the main routine shown in the flowchart of FIG. Ends. If the flag Cm is “1” in step S308, the process in the cycle ends without performing the processes in steps S309 to S311.
  • step S 3 the process proceeds to step S312, where the current position of the screw stored in the current value register is compared with the switching position P k stored in the register PE, and the current position is determined. If the flag Cm is not smaller than the switching position and the flag Cm is "1", the processing of the above-described steps S301 to S308 is performed and the processing of the cycle ends. Hereinafter, the above processing is performed for each cycle.
  • step S312 When the current screw position is equal to or greater than the switching position P k stored in the register PE (step S312), the pointer k is incremented by “1” (step S313), and the flag Cm is set to “0”. (Step S314).
  • step S315 if the pointer k has not reached the set measurement stage number K (step S315), the above-described processing of step S301 and thereafter is executed. In this case, since the pointer k is incremented by “1”, in step S301, the next row Since the set back pressure P bk is read and the flag Cm is set to “0”, the switching position P k of the next stage is set in the register PE in steps S309 and S310. . Thereafter, the back pressure is controlled to the set back pressure Pb k until the screw reaches the switching position P k.
  • step S315 the pointer k and the flag Fm are set to “0” (step S316), and the weighing process is terminated.
  • the process returns to the main process shown in the figure, sets the flag F0 indicating that the injection axis is operating to "0" (step S18), and moves to the next process, the mold clamping process. Thereafter, since the flag F 0 is set to “0”, the process of each cycle of the control of the injection axis is performed only in step S 1.
  • each control of injection, holding pressure, and back pressure is controlled by the screw position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

明 細 書
電動射出成形機の制御方法
技 術 分 野
本発明は、 電動式射出成形機の制御方法に関し、 特に、 射出, 保圧及び 背圧制御に関する。
背 景 技 術
電動式射出成形機では、 一般にサーボモータの駆動によってスクリュー を軸方向に駆動して射出, 保圧, 背圧を制御している。 そのうち、 射出ェ 程では、 スクリューストロークを複数の区間に分け、 そのそれぞれの区間 におけるスリューの射出速度を設定するという、 射出速度の多段制御が一 般に行われている。 また、 保圧工程では、 従来、 射出用のサーボモータに 対してシリ ンダーの先端位置までの移動指令を出し、 かつ、 この射出用サ ーボモータを、 その出力トルクを設定された保圧になるように制限したう えで、 設定保圧速度指令でもって駆動して保圧制御を行なっている。 その 結果、 このように射出用サーボモータの出力トルクを制限して該サーボモ 一夕を駆動してスクリユーを射出方向に駆動しても、 樹脂が金型内に充填 されているため、 スクリュー移動量は小さく、 したがって指令位置との位 置偏差が経時的に増大して行く ことになる。 しかし、 位置偏差が増大して も、 サーボモータの出力トルクは設定値に制限されているため、 サーボモ 一夕からは設定値以上のトルクが発生せず、 結局、 樹脂にはトルク制限値 に対応する設定保圧が加わることになる。 このように従来の電動式射出成 形機は射出用のサーボモータの出力トルクを制限することによって保圧を 制御している。
さらに、 計量工程における背圧制御では、 上記射出用サーボモータの出 力トルクを設定背圧になるように設定して、 スクリューを回転させ、 その 過程で樹脂が溶融し樹脂圧力が上昇し、 射出用サーボモータが出力する 卜 ルクよりも大きい樹脂圧力になるとスクリューが後退し、 結局、 樹脂に設 定背圧が加えられる背圧制御方式が知られている。 また、 、 樹脂圧力が設 定背圧を越える毎にスクリユーを所定量後退させ、 樹脂に設定背圧を与え る背圧制御方式が知られている。
上述したように、 従来の電動式射出成形機においては、 射出工程 (射出 速度制御工程) から保圧工程に切換える時、 スク リューの位置の制御 (速 度制御) から圧力制御に切換えられる。 また、 保圧工程から計量工程に切 換える時で、 計量時の背圧制御をスクリュー位置で制御する場合には、 圧 力制御から位置制御に切換えねばならない。
さらに、 保圧制街において、 保圧圧力を数段に分けて制御することが一 般に行われている。 そのため、 上述した射出用のサーボモータの出力トル クを制限して保圧制御を行なう場合には、 サーボモータが出力する トルク と樹脂の圧力がバランスして保圧を行なっている鬨係上、 保圧圧力が大き な値から小さな値に変化した場合は、 そのバランスが崩れ、 樹脂圧力がサ —ボモータの上記制限された出力トルクに対応する圧力よりも遥かに大き くなつて、 スクリューは突き放され、 大きく後退するような現象が起こる こともあり、 適正な保圧制御ができないという問題がある。
一方、 保圧圧力を小さい値から大きい値に変更する場合でも、 サ一ボモ 一夕の出力トルクはその切り換えに対応して上昇するが、 スクリューは保 圧速度指令に応じて所定の速度でしか移動せず、 新しい設定保圧圧力に達 するには時間遅れが生じ、 したがって応答性の悪い保圧制御しかできない という短所がある。 発 明 の 開 示
本発明の目的は、 、 電動式射出成形機において、 保圧制御をスクリュー 位置の制御によって行う射出成形機の制御方法を提供することにある。 本発明の別の目的は、 電動式射出成形機において、 射出, 保圧, 背圧制 御を全てスクリユーの位置制御によって行なう射出成形機の制御方法を提 供することにめる o
上記目的を達成するため、 本発明は、 スクリューをサーボモータによつ て軸方向に駆動し、 射出, 保圧, 背圧制御を行う電動式射出成形機におい て、 保圧工程では、 樹脂にかかる圧力を検出し、 設定保圧圧力と検出され た圧力との差を求め、 上記サーボモータを駆動制御するサーボ回路に上記 差に応じた移動指令を出力することによって樹脂にかかる圧力を設定保圧 圧力になるようにフィードバック制御する。 好ましくは、 保圧工程を複数 の段に分割し、 各段の保圧及び保圧時間を設定し、 保圧工程に入ると、 設 定された保圧第 1段から 1 次各段の設定保圧時間が経過するまで各段の設 定された保圧圧力に切り換えて該設定保圧力に検出樹脂圧力が一致するよ うにスクリユーの位置をフィ一ドバック制御する。
さらに、 本発明は、 射出工程では、 設定射出速度になるようにサーボモ 一夕を速度制御し、 保圧工程では、 樹脂にかかる圧力を検出し、 設定保圧 と検出された圧力との差を求め、 上記サーボモータを駆動制御するサーボ 回路に上記差に応じた移動指令を出力することによつて樹脂にかかる圧力 を設定圧力になるようにフィードバック制御し、 さらに計量工程では、 樹 脂にかかる圧力を検出し、 設定背圧と検出された圧力との差を求め、 上記 サーボモータを駆動制御するサーボ回路に上記差に応じた移動指令を出力 し、 背圧を設定背圧になるようにフィ一ドバック制御する。 この場合も、 射出工程, 保圧工程, 計量工程を夫々複数の段に分割し、 射出工程は各段 の射出速度と次段への切換スクリュー位置を設定し、 保圧工程は各段の保 圧圧力及び保圧時間を設定し、 計量工程は各段のスク リユー回転数, 背圧 及び次段への切換スクリュー位置を設定し、 射出工程では次段への切換ス クリュー位置に達する毎に次段の設定射出速度に切換え、 保圧工程では、 各段の設定保圧時間に基づいて次段の設定保圧に切換え、 計量工程では、 次段へのスクリュ一位置に達する毎に次段の設定背圧に切換え、 各工程に おいて、 各段の設定射出速度, 各段の設定保圧, 各段の設定背圧になるよ うに、 スクリュー位置をフィ ードバック制御する。
上述のように、 本発明によれば、 保圧工程において、 検出された樹脂に かかる圧力と設定保圧圧力が比校され、 その差に応じて移動指令が出され、 スクリューはその移動指令に応じて目標位置に移動する。 例えば、 検出圧 力が設定保圧圧力に達しないため圧力偏差が生じれば、 その偏差に応じた、 スクリューを前進させる移動指令が出力されて、 スク リューは前進し、 そ の結果、 樹脂にかかる圧力は徐々に増大して設定保圧力に近付く。 こうし て圧力偏差が小さくなれば、 それに伴いスクリユーの移動量も小さくなり、 結局、 樹脂にかかる圧力は設定保圧力に保持されるようになる。 また、 設 定保圧力が大きな値から小さな値へと切り換つた場合でも、 上記圧力偏差 は負の値 (すなわち、 樹脂圧力が目標値より大) となることから、 スクリ ュ一を後退するように移動指令が出され、 スクリユーは後退する。 この場 合、 樹脂の圧力でスクリューが移動指令以上に後退すれば、 位置偏差の符 号が逆転し、 スクリユーは前進する移動指令が与えられて、 結局移動指令 された位置を保持することになる。 こうして、 スクリューは移動指令で指 令された位置に移動し、 この移動で樹脂圧力が低下することから、 樹脂圧 力は設定保圧力に近付き、 圧力偏差が 「0」 になるようにフィードバック 制御されることになる。 この場合、 スクリューを駆動する射出用サーボモ 一夕の出力トルクは制限されていないので、 スクリューは、 目標位置まで 大きなトルクを出して前進するので、 目標位置まで速やかに達する。 そし て、 圧力偏差が 「0」 になるようにスク リ ュー位置が制御される。 その結 果、 保圧制御をスク リューの位置によって制御したので、 保圧圧力の切換 時にスクリューが樹脂圧力で突き放され、 大きく後退するようなことや、 設定圧力に達することが大きく遅れるということがなくなる。 すなわち、 サーボモータは指令された位置を保持するように作動するから、 指令位置 と実際の位置とに偏差が生じると、 その偏差をなくすように、 出力トルク
(必要ならば最大トルクまで) を出力し、 指令位置を保持する。 また、 樹 脂に実際にかかる圧力と設定圧力とに圧力偏差が生じ、 その圧力偏差に応 じた移動指令が、 射出用サーボモータに出力される'ので、 その指令位置に スクリユーが達するようにサーボモータは駆動され、 結局設定圧力を保持 するようにスク リュー位置は制御され、 適切な保圧制御ができる。
また、 射出工程においては、 従来と同様に、 スクリユー位置に応じて設 定された射出速度になるように速度制御が行なわれる。
さらに、 計量工程においても、 樹脂圧力が検出されて、 この樹脂圧力と 設定背圧との偏差が求められ、 この偏差に応じて射出用サーボモータに移 動指令が出力されてスク リューの位置をフィードバック制御し、 背圧が設 定背圧になるよう制御される。 その結果、 射出, 保圧, 計量の各工程をス クリュー位置の制御で各工程が制御されることにので、 途中で位置の制御 から圧力の制御に切換える必要がなく、 一貫して位置の制御で行なえるか ら、 制御切換え時の諸問題起こらないと共に、 射出軸に起動をかけるだけ で、 射出開始から計量終了まで全て自動的に行われるので、 制御インタ一 フェースの簡略化が図れる。 また、 N Cプログラムではなく、 シーケンス プログラムによつて上記一貫した制御ができるので、 処理速度の高速化が 図れる。
図面の簡単な説明
第 1図は本発明の一実施例の射出軸のメインの処理フローチヤ一ト、 第 2図は同実施例における射出工程の処理フ口一チャー ト、
第 3図は同実施例における保圧工程の処理フローチャート、
第 4図は同実施例における計量工程の処理フローチヤ一ト、
第 5図は同実施例を実施する電動式射出成形機の要部と制御装置の要部 のブロック図、
第 6図は同実施例における射出工程の成形条件を記憶するテーブルの説 明図、
第 7図は同実施例における保圧工程の成形条件を記億するテーブルの説 明図、
第 8図は同実施例における計量工程の成形条件を記憶するテーブルの説 明図である。
発明を実施するための最良の形態
以下、 本発明の一実施例を図面に基づいて説明する。
第 5図は本発明を実施する電動式射出成形機の要部ブロック図で、 射出 軸についてのみ図示し、 他の軸、 例えば型締め軸、 スクリユー回転軸、 ェ ジェクタ軸等に関するものは省略している。 同図において、 電動式射出成 形機は、 制御装置としての数値制御装置 2 0、 スクリュー 1、 該スクリュ — 1を釉方向に駆動する射出用サーボモーダ 2、 該射出用サ一ボモータ 2 に取り付けられたパルスコーダ 3、 加熱シリンダ 4、 金型 5、 圧力センサ 6、 アナログ Zディ ジタル変換器 (以下 AZD変換器という) 7などから 成る。 この内、 上記圧力センサ 6は、 射出用サーポモータ 2によって駆動 される射出機構 (図示せず) の一部に取り付けられているロードセル等か ら成るものであって、 樹脂に加わる圧力を検出する。 さらに、 この圧力セ ンサ 6にはそのアナログ出力をディ ジタル信号に変換するためのアナログ /ディ ジタル変換器 (以下 AZD変換器という) 7が接続されている。 また、 射出成形機を制御するための数値制御装置 (以下、 NC装置とい う) 20は、 N C用のマイクロプロセッサ (以下、 CPUという) 21と プログラマブルマシンコントローラ (以下、 PMCという) 用の CPU2 2を有しており、 この PMC用の CPU22には射出成形機のシーケンス 動作を制御するシーケンスプログラム等を記憶した ROM 28、 圧力セン サ 6からの検出圧力を AZD変換器 7を介して受信し記憶する RAM 29、 及びデータの一時記憶に用いられる RAM 30が接続されている。
NC用 CPU21には射出成形機を全体的に制御する管理プログラムを 記憶した ROM24、 及び射出用, クランプ用, スクリユー回転用, ェジ ヱクタ用等の各軸のサーボモータを駆動制御するサーボ回路がサーボイン タフヱイス 26を介して接続されている。 なお、 この第 5図では、 これら サーボ回路の内、 射出用サーボモータ 2用のサーボ回路 27のみ図示して いる。
また、 バブルメモリゃ CMO Sメモリで構成される不揮発性の共有 R A M31は、 射出成形機の各動作を制御する NCプログラム等を記憶するメ モリ部と各種設定値, パラメータ, マクロ変数を記憶する設定メモリ部と を有する。 バスアービタコン トローラ (以下、 B ACという) 23には ' C用 CPU21及び PMC用 CPU22, 共有 RAM31, 入力回路 32, 出力回路 33の各バス 36が接続され、 上記 BAC23によって使用する バス 36が制御されるるようになっている。 また、 CRT表示装置付手動 データ入力装置 (以下、 CRTZMD Iという) 35は、 オペレータパネ ルコントローラ 34を介して BAC 23に接続されていて、 ソフトキーや テンキ一等の各種操作キーを操作することにより様々な指令及び設定デー 夕の入力ができるようになっている。 なお、 NC用 C PU 21にバス接続 された RAM 25は、 データの一時記憶等に利用されるものである。
第 5図では、 射出軸に関するものだけ、 すなわち、 スクリュー 1を駆動 して射出させるための射出用サ一ボモータ 2、 及びその射出用サーボモー 夕 2に取付けられ、 該サーボモータの回転を検出しスクリュー位置を検出 するパルスコーダ 3だけを示しており、 他の釉、 例えば型締軸, スクリュ 一回転軸, ェジヱクタ釉などに関するものは省略している。 また、 NC装 置 20のサーボ回路も射出用サーボモータのものだけを示し、 他の軸のサ ーボ回路は省略している。
以上の構成によって、 NC装置 20は PMC用 C PU 22によって、 R OM28に記憶されたシーケンスプログラムに基づいてシーケンス制御を 行うと共に、 共有 RAM31に設定記憶されている制御プログラムに基づ いて N C用 C P U 21が各サーボモータのサーボ回路にパルス分配を行い 射出成形機を駆動する。
圧力センサ 6で検出した樹脂圧力は、 AZD変換器 7でディ ジタル信号 に変換され、 RAM29に所定周期毎書き込まれ現在の樹脂圧力として逐 次書換えられている。 また、 PMC用 CPU22は、 所定周期毎該 RAM 29に書き込まれた樹脂圧力を読出し、 その読出した樹脂圧力値を B AC 23を介して共有 RAM 31に逐次書き込んでいる。 なお、 圧力センサ 6 で検出した樹脂圧力値は現在値のみ記憶されば足りるものであるから、 レ ジス夕に書き込むようにしてもよい。
次に本実施例の動作について第 1図〜第 4図に示すフローチヤ一トを参 照しながら説明する。 まず、 成形条件設定を行なうときに射出工程, 保圧 工程, 計量工程における条件をも設定しておく。
第 6図〜第 8図は共有 RAM 31に設けられた射出, 保圧, 計量の各ェ 程の動作条件 (成形条件) を記憶する条件テーブル TB 1〜TB 3の説明 図で、 CRTZMD I 35を操作して CRT画面を各成形条件設定画面に したうえで、 各工程の成形条件を入力し設定する。
射出工程に関しては、 第 6図に示すように、 射出段数 I, 各射出段の射 出速度 V i ( i =0〜I— l) , その切換え位置 P iを設定して、 共有 R AM 31に設けられたテーブル TB 1に記憶させる。
保圧工程に関しては、 第図 7に示すように、 保圧段数 J、 各保圧段の保 圧力 P r j ( j = 0〜: I— 1) , 及びその段の保圧時間 T jをそれぞれ設 定して、 共有 RAM31に設けられたテーブル TB 2に記憶させる。
計量工程に関しては、 第 8図に示すように、 計量段数 K, 各計量段の背 圧 Pb k (k = 0〜K一 1) , スクリューの回転数 Nk, 及びその切換え 位置 P kをそれぞれ設定し、 共有 R AM31に設けられたテーブル B 3に 記憶させる。
なお、 第 6図〜第 8図でテーブル T B 1〜T B 3にポインタ i , j, k を記載したが、 これは説明の都合上記載したものに過ぎない。
第 1図は、 本発明の実施に使用される電動式射出成形機の射出軸が作動 中の処理を示すフローチヤ一卜であって、 NC用 C PU 21は所定周期毎 0 一 この処理を実施している。
まず、 〇用じ?1121は、 型締工程が終了して射出釉作動中を示すフ ラグ F 0力 「1」 であるか否かを判断する (ステップ S 1) 。 型締工程が 終了して射出制御工程に入ると、 PMC用 CPU22は BAC 23を介し て共有 RAM31に設けられた射出軸作動中を示すフラグ F 0を 「1」 に セッ 卜する。 したがって、 フラグ F 0が 「0」 であれば本処理は実質的に 何もせず直ちに終了することになる。
フラグ F 0が 「1」 であると判断すると、 共有 RAM31内に設けられ た計量工程中を示すフラグ F m, 保圧工程から計量工程へ移行するときの 休止期間であるドゥエル中を示すフラグ F d, 保圧工程中を示すフラグ F P, 射出工程中を示すフラグ F sが 「1」 であるか否かそれぞれ判断する (ステップ S 2〜S 5) 。 フラグ F 0が 「1」 にセッ 卜された始めの周期 の処理においては、 これらのフラグ Fm, F d, F , F sはすべて 「0」 であり、 したがってステップ S 5からステップ S 6に移行し、 射出工程中 を示すフラグ F sを 「1」 にセッ トした後、 第 2図に示す射出工程の処理 を開始する (ステップ S 7)。
射出工程の処理は第 2図のフローチヤ一を参照して後述するが、 射出ェ 程の当該周期の処理を終了すると、 じ用〇?1121は射出から保圧への 切換えか否か判断する (ステップ S 8) 。 射出から保圧への切換えは、 ス クリュー位置, 樹脂にかかる圧力または射出開始からの時間等によって制 御され、 PMC用 CPU22がこれらのスクリユー位置, 樹脂圧力または 時間を検出し、 切換え時点に達すると共有 RAM 31内に設けられた射出 から保圧への切換えを示すフラグを 「1」 にする。 このフラグが 「1」 力、 否かによって N C用 C P Uは保圧への切換えか否かを判断する。 切換え時 点でなければ、 当該周期の処理を終了する。
一方、 ステップ S 8で保圧への切換えを示すフラグが 「1」 であると、 すなわち、 保圧への切換え時点であれば、 射出工程中を示すフラグ F s及 び後述する射出工程中の各段の工程中を示すフラグ C sを 「0」 にセッ ト し、 また、 射出工程の各段を示すポインタ iを 「0」 にセッ トし (ステツ プ S 9 ) 、 保圧工程中を示すフラグ F pを 「1」 にセッ 卜し (ステップ S 1 0 ) 、 第 3図に示す保圧工程の処理を開始する (ステップ S 1 1 )。
以後の各周期では、 フラグ F p力 「1」 にセッ 卜されているから、 保圧 工程の処理が終了するまで、 ステップ S 1〜S 4の処理を行なった後、 ス テツプ S 1 1に移行し保圧処理を実行する。 なお、 保圧工程の処理は、 第 3図のフローチヤ一を参照して後述する。
保圧工程が終了すると、 ドゥエル中を示すフラグ F dを 「1」 にセッ ト し (ステップ S 1 2 ) 、 設定されたドゥエル時間をタイマにセッ トしスタ 一卜させる (ステップ S 1 3 ) 。 このドゥエル工程は、 射出軸を停止状態 にするもので、 上記タイマがタイムアツプするまで、 以後ステップ S 1〜 S 3、 及びステップ S 1 4の処理を各周期毎行なう。 このタイマがタイム アップすると (ステップ S 1 4 ) 、 ドゥエル中を示すフラグ F dを 「0」 にセッ トし (ステップ S 1 5 ) 、 計量工程中を示すフラグ F mを 「1」 に セッ トし (ステップ S 1 6 ) 、 計量工程をの動作を開始する (ステップ S 1 7 ) 。 なお、 この計量工程の処理は第 4図のフローチヤ一を参照して後 述する。 そして、 以後の各周期では、 計量工程の処理が終了するまで、 ス テツプ S I , S 2 S 1 7の処理を実施する。 そして、 計量工程が終了すれ ば、 射出軸制御中を示す前記フラグフラグ F 0を 「0」 にセッ 卜して (ス テツプ S 1 8 ) 、 当該処理周期の処理を終了する。 第 2図は上記ステップ S 7の射出工程の処理を示すフローチヤ一卜で、 射出工程になると、 フラグ C sが 「 0」 か否か判断し (ステップ S 100) 、 始めは初期設定及び後述するステップ S 109の処理によって 「 0」 に セッ 卜されているので、 ステップ S 100からステップ S 101に移行し、 共有 RAM31内のテーブル TB 1に記憶するポインタ i (このポインタ iは、 第 6図に示すように、 第 1〜第 I射出段に対してそれぞれ 0〜 I一 1が与えらる) に対応する射出速度 V iを読み出し、 この射出速度 で 射出指令、 すなわちパルス分配を開始する (ステップ S 101, S 102) 。 これにより、 サーボインタフヱース 26を介してサーボ回路 27に移動 指令が出力されるから、 射出用サ一ボモータ 2は駆動を開始し、 設定され た射出速度 V iで、 スクリュー 1を前進 (第 5図で左方向) させることに なる。 なお、 ポインタ iは初期設定及びステップ S 9の処理で始めは 「0」 にセッ トされている。
次に、 NC用 CPU 21は、 フラグ C sが 「0 J か否か判靳し (ステツ プ S 103) 、 始めは 「0」 であるので、 上記テーブル TB 1よりポイン 夕 iに対応する切換え位置 P iを読み出し (ステップ S 104) 、 レジス 夕 XPにこの切換え位置 P iをセッ トし (ステップ S 105) 、 次にフラ グ C sを 「1」 にセッ 卜し (ステップ S 106) 、 メイン処理である第 1 図フローチャートのステップ S 8に戻る。
その次の周期では、 ステップ S 1〜S 5の処理を行なって、 ステップ S
5からステップ S 7、 すなわち、 第 2図フローチヤ一卜のステップ S 10 0に移行する。 この場合フラグ C sが前の周期のステップ S 106で 「1」 にセッ 卜されているので、 ステップ S 100からステップ S 107に移行 し、 スクリユー 1の現在値とレジスタ XPに設定された当該射出段から次 段への切換え位置との比較を行う。 ところでスクリュ一1の現在位置は、 NC用 C PU 21が分配するパルスを共有 RAM 31内に設けられた現在 値レジスタに積算することにより求められるので、 上記比較に当たっては、 この現在値レジスタから現在位置を読み取つて、 この値がレジスタ X Pに 記憶する設定値以下であるか否かを判断する。 また、 スクリュー 1の座標 系の原点を本実施例ではシリンダ 4の先端にとり、 スクリユー 1が前進す る方向 (すなわち、 金型に向かう方向で、 第 1図で左方向) を負の方向と しているので、 スクリユー 1の現在位置がレジスタ XPに記憶する値より 大きいことは、 スクリユーが当該段から次段への切換え位置に達していな いことを意味する。 この時は、 ステップ S 107からステップ S 101に 移行し、 前述した処理を橾返す。 この場合フラグ C sが既に 「1」 にセッ 卜されているから、 ステップ S 103からそのまま第 1図フローチャート のメインの処理に戻り、 ステップ S 104〜S 106の処理は行われず、 レジスタ XPの書き換えはない。 また、 メイン処理に戻っても、 始めは保 圧への切換え位置に達していないので、 当該処理はそのまま終わる (ステ ップ S 8) 。 以下上述したステップ S 1〜S 5, S 100, S 107, S 101〜S 103の処理を各周期毎繰返し、 スク リュ一位置がレジスタ X Pに設定されている位置に達するまで、 当該段の射出速度でスクリューは |g動されることになる。
そして、 スクリュー 1の現在位置がレジスタ XPに設定された切換え位 置以下になると、 ステップ S 107からステップ S 108に進み、 ポイン 夕 iを 「1」 インクリメントし、 フラグ C sを 「0」 にセッ トし (ステツ プ S 109) 、 ポインタ iが設定射出段数 Iに達していなければ (ステツ プ S 110) 、 ステップ S 101に進み、 テーブル TB Iより、 ポインタ 4 一 iに対応する射出速度 V iを読みだしこの射出速度でスクリユーを駆動す るようにサーボモータ 2を駆動する (ステップ S 102) 。 そして、 フラ グ C sが 「0」 にセッ 卜されているから、 前述したようにポインタ iに対 応する切換え位置 P iをテーブル TB 1より読み出してレジスタ XPにセ ッ トし、 フラグ C sを 「1」 にセッ トして (ステップ S 104〜S 106) 、 メイン処理に戻る。 これにより、 スクリューは次段の射出速度で駆動さ れることになる。
以後は前述した処理を繰返し行ない、 設定された各段の射出速度 V iで それぞれ設定された切換え位置 P iまでスクリユーを駆動することになる。 そして、 ポインタ iが設定射出段数 Iに達すると (ステップ S 110) 、 該ポィンタ iを 「1」 デイクリメントし (ステップ S 111) 、 ステップ S 101以下の処理を行なう。
射出から保圧への切換えをスクリュー位置で行なう場合には、 設定射出 段数 Iの最終切換え位置以下にスクリュー 1がなつたとき、 射出から保圧 への切換え指令が PMC用 CPU 22から出力され、 共有 RAM 31内の フラグが 「1」 にセッ 卜されるので、 メイン処理のステップ S 8でこのフ ラグが 「1」 であることが判断され、 ステップ S 9に移行し、 フラグ F s, C sが 「0」 に、 ボインタ iが 「0」 にセヅ トされ、 さらにフラグ F p力 < 「1」 にセッ トされて (ステップ S 9, S 10) 、 保圧処理が開始される。 また、 射出から保圧への切換えを時間もしくは樹脂圧力で行なうときには、 スクリュー 1が最終段の切換え位置に達しても、 設定された時間もしくは 樹脂圧力に達せず、 保圧への切換え指令が PMC用 CPU22から出力さ れない場合があるので、 ステップ S 111からステップ S 101〜S 10 6の処理によって、 保圧への切換え指令が出力されるまで、 最終段の射出 速度でスクリュ一 1を駆動することになる。
いずれにしても、 射出から保圧への切換え指令が出され、 フラグ F が 「1」 にセッ 卜され (ステップ S 1 0) 、 保圧工程にいると、 N C用 C P U 2 1は第 3図フローチャートに示す処理を開始する。
N C用 C P U 2 1は、 まずフラグ C pが 「0」 か否か判断する (ステツ プ S 2 0 0) 。 なお、 該フラグ C pは初期設定では 「0」 に設定されてい る。 そしてフラグ C p力く 「0」 であると、 共有 RAM 3 1内の上記テープ ル T B 2よりポインタ j (このポインタ j は、 第 7図に示すように、 第 1 〜第 J保圧段に対してそれぞれ 0〜 J — 1が与えられる) に対応する設定 保圧力 P r jを読み出すと共に、 共有 RAM3 1に記憶されている現在の 樹脂圧力である実圧力を読み出し (ステップ S 2 0 1) 、 設定保圧力 P r jから実圧力を減じて圧力偏差 £ Pを求める (ステップ S 2 0 2) 。 この 圧力偏差 ε ρに基づいて比例, 積分, 微分制御 (P I D制御) を行なう。 すなわち、 上記圧力偏差 ε ρに比例定数を乗じた値, 各周期ごとに検出さ れた圧力偏差 ε ρを積算した値に積分定数を乗じた値, 及び当該周期と前 周期の圧力偏差 ε ρの差に微分定数を乗じた値を加算して P I D演算処理 を行ない、 且つ得られた値の符号を変換する (ステップ S 2 0 3, S 2 0 4) 。 この符号変換は、 シリンダの先端位置を原点 「0」 としスク リ ユー がこの原点方向に移動する方向を負の方向としているために行なうもので ある。 つまり、 実圧力が設定保圧力に達しないときには圧力偏差 ε ρは正 になるが、 スクリユーは前進 (原点方向) させなければならないというこ とから、 符号変換を行なうものである。 これに対し、 圧力偏差 ε ρを 「実 圧力— P r j」 として求めておけば、 このステップ S 2 0 4の処理は必要 がない。 次に、 P I D演算処理によって得られた値を符号変換した値に基づいて、 移動指令として出力するパルス量の計算を行なう (ステップ S 2 0 5 ) 。 圧力偏差 ε ρとスクリユー位置とは比例関係にあるので、 P I D演算処理 によって得られた値を符号変換した値に所定の比例定数を乗じることによ つて出力すべきパルス量を求める。 そして求められた出力パルス量にすで に出力されたパルス量を加算して、 スクリューが移動可能か否か判断する (ステップ S 2 0 6 ) 。 すなわち、 スク リユーの移動可能範囲 (シリンダ 一の先端位置からスクリユー最大後退位置) を越えてまで移動するような ものであれば、 スク リューゃシリンダを破損させる恐れがあるので、 この 範囲を越えるようであれば、 移動指令を出力しない。 これに対して、 移動 可能であれば、 上記算出されたパルス量をサ一ボインタフヱース 2 6を介 してサーボ回路 2 7に出力する (ステップ S 2 0 7 ) 。
なお、 圧力偏差 ε ρが大きく、 その結果出力パルス量も多くなつて、 ス クリユーの移動可能範囲を越えるような場合では、 スクリューは移動指令 に遅れて追従するのが普通であり、 したがって位置偏差が生じ、 この位置 偏差によってサーボ回路 2 7の速度ループ制御の積分器によつて順次トル ク指令が増大し、 その結果サーボモ一夕の出力トルクが増大するので、 ス テツプ S 2 0 5で算出されたパルス量を出力しなくても、 樹脂圧力は設定 保圧力に近付くことになる。
次にフラグ C pが 「0」 か否か判断し (ステップ S 2 0 8 ) 、 「0」 な らば (始めは 「0」 に設定されている) テーブル T B 2よりボインタ jで 示される保圧時間 T jを読取り、 タイマ T Eにその保圧時間 T jをセッ ト し、 保圧をスター卜させ、 次いでフラグ C pを 「1」 にセッ 卜し (ステツ プ S 2 0 9〜 S 2 1 1 ) 、 第 1図フローチヤ一卜に示すメィンの処理に戻 7 ることなく当該周期の処理を終わる。 なお、 上記ステップ S 208でフラ グ Cpが 「1」 であるときはステップ S 209〜S 211の処理を行なわ ずに当該周期の処理を終了する。
次の周期では、 ステップ S 1〜S 4の処理を行なった後、 ステップ S 2 00に移行する。 ここではフラグ C pは 「1」 に設定されているから、 ス テツプ S 212に移行し、 タイマ TEがタイムアップしたか否か判断し、 タイムアップしてなければ、 フラグ C p力 「1」 であるから前述したステ ップ S 201〜S 208の処理を行なって (ステップ S 209〜 211の 処理は行わず) 当該周期の処理を終了する。 以下上記処理を各周期毎行な うことになる。 これにより、 ポインタ jに対応する保圧段においては、 設 定された保圧時間 T jだけ設定された保圧力 P r jが与えられるように、 スクリユーの位置が制御されることになる。
こうして、 タイマ TEがタイムアップすると (ステップ S 212) 、 ポ インタ jを 「1」 インクリメントし (ステップ S 213) フラグ C pを 「0」 にセッ 卜する (ステップ S 214) 。 次にポインタ jが設定保圧段 数 Jに達してなければ (ステップ S 215) 、 前述したステップ S 201 以下の処理を実行する。 この場合、 ポインタ j力 「1」 インク リメ ン トさ れているから、 ステップ S 201では次の段の設定保圧力 P r jが読み出 され、 また、 フラグ Cpが 「0」 にセッ トされているからステップ S 20 9 , S 210でタイマ TEには次の段の保圧時間 T jがセッ トされる。 以 後各周期毎タイマ T Eがタイムアツプするまで、 設定保圧力 P r jになる ようにスクリユー位置が制御されることになる。
そして、 タイマ TEがタイムアップすると、 前述したようにポインタ j がィンクリメン トされ、 順次各段の設定保圧力になるように各段に設定さ れた保圧時間だけ、 スクリュー位置が制御されることになる。 そして、 ポ インタ jの値が設定保圧段数 Jに達すると (ステップ S 2 1 5 ) 、 ポイン 夕 j , フラグ F pを 「0」 にセッ 卜し (ステップ S 2 1 6 ) 、 保圧処理を 終了し、 第 1図フローチヱ一卜に示すメインの処理に戻り、 ドゥエル中を 示すフラグ F dを 「1」 にセッ 卜し (ステップ S 1 2 ) 、 設定ドゥエル時 間が設定されたタイマをスタートさせ (ステップ S 1 3 ) 、 以後各処理周 期毎ステップ S 1〜 S 3及びステップ S 1 4の処理を行ないドゥエル用の タイマがタイムアツプするまで待つことになる。
以上のように、 各段の設定保圧力になるようにスクリユー位置が制御さ れるので、 保圧段の切換時に大きい設定保圧力から小さい設定保圧力に切 り換つた時でも、 スクリューが樹脂圧力によって突き放されて大きく後退 するような事態は生じない。 すなわち、 設定保圧力が大きい値から小さい 値に変化したとき、 ステップ S 2 0 2で算出される圧力偏差 ε ρは負の値 に成り、 P I D演算処理の結果も負の値になるが、 これが正の値に符号変 換されて、 スクリューを後退する方向へ移動させるパルス量が出力される。 この場合、 サーボモータにはトルク制限がされてないので、 上記出力パル ス量よりもさらにスクリューが後退することもあるが、 そのようなときに は負の位置偏差が生じてスクリュー位置は出力パルス量に応じた位置に達 するようにサ一ボモータは出力トルクを出力しスクリユーを位置決めする ので、 スクリューが大きく後退してしまうことはない。
また、 設定保圧力が小さな値から大きな値に切り換る時でも、 正の圧力 偏差 ε ρが生じ、 この圧力偏差 ε ρに応じたパルス量が出力される。 この 場合、 サーボモータにはトルク制限がされていないので、 大きな出力トル クを出すことが可能であるから、 スクリューは、 樹脂圧力が設定保圧力に 直ちになるよう前進させられて、 目標とするスクリユー位置に位置決め制 御されることになる。
そしてタイマがタイムアップしてドゥエル処理が終了すると (ステップ S 14) 、 ドゥエル用のフラグ F dを 「0」 にセッ トし、 計量工程中を示 すフラグ Fmを 「1」 にセッ トし (ステップ S 15, S 16) 、 第 4図フ ローチヱ—卜に示す計量工程の処理を開始する。 なお、 計量工程では、 ス クリユーを回転させるために、 スクリユー回転用のサーボモータを各計量 団の設定回転数 N iで駆動制御することになるが、 このスクリュー回転数 制御に関しては本願発明の要旨ではないので説明を省略する。
計量工程での背圧制御は上述した保圧制御と同様の処理を行なう。 即ち、 1^(:用じ?1121は、 フラグ Cmが 「0」 か否か判断する (ステップ S 3 00) 。 なお、 該フラグ Cmは初期設定では 「0」 に設定されている。 そ してフラグ Cmが 「0」 であると、 共有 RAM 31内の上記テーブル TB 3よりポインタ k (このポインタ kは、 第 8図に示すように、 第 1〜第 k 保圧段に対してそれぞれ 0〜k_ lが与えられる) に対応する設定背圧 P b kを読み出すと共に、 共有 RAM31に記憶されている現在の樹脂圧力 である実圧力を読み出し (ステップ S 301) 、 設定保圧力 Pb kから実 圧力を減じて圧力偏差 ε ρを求める (ステップ S 302) 。 この圧力偏差 ε ρに基づいて保圧制御と同じようにに比例, 積分, 微分制御 (P I D制 御) を行なう。 そして、 得られた値の符号を変換する (ステップ S 303, S 304) 。 次に、 P I D演算処理によって得られた値を符号変換した値 に基づいて、 所定の比例定数を乗じることによって出力すべきパルス量を 求める (ステップ S 305) 。 そして求められた出力パルス量にすでに出 力されたパルス量を加算して、 スクリユーが移動可能か否か判断する (ス テツプ S 306) 。 移動可能範囲を越えるようであれば、 移動指令を出力 しない。 これに対して、 移動可能であれば、 上記算出されたパルス量をサ —ポインタフェース 26を介してサーボ回路 27に出力する (ステップ S 307) o
次にフラグ C m力《 「 0」 か否か判断し (ステップ S 308) 、 「0」 な らば (始めは 「0」 に設定されている) テーブル TB 3よりポインタ kで 示される切換位置 P kを読取り、 レジスタ P Eにセッ トし、 フラグ Cmを 「1」 にセッ 卜し (ステップ S 309〜S 311) 、 第 1図フローチヤ一 卜に示すメインの処理に戻ることなく当該周期の処理を終わる。 なお、 上 記ステップ S 308でフラグ Cmが 「1」 であるときはステップ S 309 〜S 311の処理を行なわずに当該周期の処理を終了する。
次の周期では、 ステップ S I, S 2の処理を行なった後、 ステップ S 3 ひ 0に移行する。 ここではフラグ Cmは 「1」 に設定されているから、 ス テツプ S 312に移行し、 現在値レジスタ記憶されているスクリユー現在 位置とレジスタ P Eに記憶された切換位置 P kを比較し、 現在位置が小さ く切換位置に到達していなければ、 フラグ Cmが 「1」 であるから前述し たステップ S 301〜S 308の処理を行なって当該周期の処理を終了す る。 以下上記処理を各周期毎行なうことになる。
スクリュー現在位置がレジスタ P Eに記憶された切換位置 P k以上にな ると (ステップ S 312) 、 ポインタ kを 「1」 インクリメントし (ステ ップ S 313) フラグ Cmを 「0」 にセッ トする (ステップ S 314) 。 次にポインタ kが設定計量段数 Kに達してなければ (ステップ S 315) 、 前述したステップ S 301以下の処理を実行する。 この場合、 ポインタ k が 「1」 インクリメン卜されているから、 ステップ S 301では次の段の 設定背圧 P b kが読み出され、 また、 フラグ Cmが 「0」 にセッ トされて いるからステップ S 309, S 310でレジスタ P Eには次の段の切換位 置 P kがセッ 卜される。 以後、 スクリユーがこの切換位置 P kに達するま で、 設定背圧 Pb kに制御される。
そして、 レジスタ P Eにセッ 卜された切換位置にスクリユー現在位置が 達すると、 前述したようにポインタ kがインクリメントされ、 順次、 以後、 各段に設定された切換位置 P kに応じて各段の背圧が設定背圧 P b kにな るようにフィ一ドバック制御される。 そして、 ポインタ kの値が設定計量 段数 Kに達すると (ステップ S 315) 、 ポインタ k, フラグ Fmを 「0」 にセッ トし (ステップ S 316) 、 計量処理を終了し、 第 1図フローチェ 一卜に示すメイン処理に復帰し、 射出軸の動作中を示すフラグ F 0を 「0」 にセッ トし (ステップ S 18) 、 次の工程である型締工程に移行する。 そ して、 これより後はフラグ F 0が 「0」 にセッ トされているから、 射出軸 の制御の各周期の処理はステップ S 1のみとなる。
以上のように、 射出, 保圧, 背圧の各制御がスクリュー位置によって制 御されることになる。

Claims

請 求 の 範 囲
' 1 . スクリューをサーボモータによって釉方向に駆動し、 射出, 保圧, 背 圧制御を行う電動式射出成形機において、 保圧工程では、 樹脂にかかる 圧力を検出し、 設定保圧と検出された圧力との差を求め、 上記サーボモ 一タを駆動制御するサ一ボ回路に上記差に応じた移動指令を出力するこ とによって樹脂にかかる圧力を設定圧力になるようにフィードバック制 御することを特徵とする電動射出成形機の制御方法。
2. 保圧工程を複数の段に分割し、 各段の保圧圧力及び保圧時間を設定し、 保圧工程に入ると、 設定された保圧第 1段から順次各段の設定保圧時間 が経過するまで各段の設定された保圧圧力に切り換えて保圧制御をを行 う請求項第 1項記載の電動射出成形機の制御方法。
3. スクリューをサーボモータによって軸方向に駆動し、 射出, 保圧, 背 圧制御を行う電動式射出成形機において、 射出工程では、 設定射出速度 になるようにサ一ポモータを速度制御し、 また保圧工程では、 樹脂にか かる圧力を検出し、 設定保圧と検出された圧力との差を求め、 上記サー ポモータを駆動制御するサ一ボ回路に上記差に応じた移動指令を出力す ることによつて樹脂にかかる圧力を設定圧力になるようにフィードバッ ク制御し、 さらに計量工程では、 樹脂にかかる圧力を検出し、 設定背圧 と検出された圧力との差を求め、 上記サーポモータを駆動制御するサー ボ回路に上記差に応じた移動指令を出力し、 背圧を設定背圧になるよう にフィードバック制御することを特徵とする電動射出成形機の制御方法。
4. 射出工程, 保圧工程, 計量工程を夫々複数の段に分割し、 射出工程は 各段の射出速度と次段への切換スクリュー位置を設定し、 保圧工程は各 段の保圧圧力及び保圧時間を設定し、 計量工程は各段のスクリユー回転 数, 背圧及び次段への切換スク リ ュー位置を設定し、 射出工程では次段 への切換スクリュー位置に達する毎に次段の設定射出速度に切換え、 保 圧工程では、 各段の設定保圧時間に基づいて次段の設定保圧に切換え、 計量工程では、 次段へのスク リ ュー位置に達するごとに次段の設定背圧 に切換える請求項 3記載の電動射出成形機の制御方法。
PCT/JP1992/000102 1991-02-06 1992-02-03 Method of controlling motor driven injection molding machine WO1992013701A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/934,517 US5342559A (en) 1991-02-06 1992-02-03 Method of controlling electrically operated injection molding machine
EP92904231A EP0528040B1 (en) 1991-02-06 1992-02-03 Method of controlling motor driven injection molding machine
DE69219032T DE69219032T2 (de) 1991-02-06 1992-02-03 Verfahren zum steuern einer motorgetriebenen spritzgiessmaschine
KR1019920702464A KR970008251B1 (ko) 1991-02-06 1992-02-03 전동사출 성형기의 제어방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/34985 1991-02-06
JP3034985A JP2652275B2 (ja) 1991-02-06 1991-02-06 電動射出成形機における射出,保圧,背圧制御方法

Publications (1)

Publication Number Publication Date
WO1992013701A1 true WO1992013701A1 (en) 1992-08-20

Family

ID=12429440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000102 WO1992013701A1 (en) 1991-02-06 1992-02-03 Method of controlling motor driven injection molding machine

Country Status (6)

Country Link
US (1) US5342559A (ja)
EP (1) EP0528040B1 (ja)
JP (1) JP2652275B2 (ja)
KR (1) KR970008251B1 (ja)
DE (1) DE69219032T2 (ja)
WO (1) WO1992013701A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308826A (en) * 1996-01-02 1997-07-09 Thermold Partners Lp Process and apparatus for applying an oscillating force to molten material in a mould

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792483A (en) * 1993-04-05 1998-08-11 Vickers, Inc. Injection molding machine with an electric drive
WO1994022655A1 (de) * 1993-04-05 1994-10-13 Procontrol Ag Spritzgiessmaschine mit elektrischem antrieb sowie verfahren zur führung derselben
JP3670302B2 (ja) * 1993-07-23 2005-07-13 ファナック株式会社 射出成形機における可塑化の管理方法
JP3280789B2 (ja) * 1993-12-28 2002-05-13 ファナック株式会社 射出成形機における射出制御方式切換制御方法
US5585053A (en) * 1994-04-15 1996-12-17 Nissei Plastic Industrial Co., Ltd. Method of controlling a movable member in a molding machine
JP2805189B2 (ja) * 1994-11-10 1998-09-30 日精樹脂工業株式会社 射出成形機
DE19525141C1 (de) * 1995-07-11 1996-11-28 Karl Hehl Verfahren zur Regelung oder Steuerung einer Kunststoff-Spritzgießmaschine
JP3002811B2 (ja) * 1995-10-20 2000-01-24 日精樹脂工業株式会社 射出成形機の制御方法及び装置
US6334765B1 (en) 1998-10-21 2002-01-01 Engel Maschinenbau Gesellschaft M.B.H. Injection molding machine having a C-form frame
DE10104109A1 (de) * 2001-01-31 2002-09-05 Mannesmann Rexroth Ag Regelverfahren für die hydraulische Unterstützung eines elektrischen Antriebs
US6682332B2 (en) 2001-08-14 2004-01-27 Alcoa Inc. Dual isolated mode controller for injection molding machine
DE60109964T2 (de) * 2001-08-14 2006-02-16 Alcoa Inc. Isolierte dualmodesteuerung für spritzgiessmaschine
JP4168036B2 (ja) * 2005-02-25 2008-10-22 ファナック株式会社 射出成形機の圧力異常検出装置
JP4174533B2 (ja) * 2006-06-30 2008-11-05 ファナック株式会社 射出成形機のエジェクタ制御装置
EP2472344A1 (de) * 2010-12-28 2012-07-04 Siemens Aktiengesellschaft Steuerungssystem
BE1021675B1 (de) * 2013-04-26 2016-01-05 Gb Boucherie Nv Spritzgiessvorrichtung
CN106232320B (zh) * 2014-04-16 2020-08-04 沙特基础工业全球技术有限公司 长玻璃纤维填充材料中的发泡技术

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198426A (ja) * 1986-02-26 1987-09-02 Sumitomo Heavy Ind Ltd 電動射出成形機の保圧制御方式
JPH02130117A (ja) * 1988-11-10 1990-05-18 Niigata Eng Co Ltd 電動式射出成形機の背圧制御方法および装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131221A (ja) * 1984-07-24 1986-02-13 Nissei Plastics Ind Co 射出成形機における背圧力制御方法
JPS61217227A (ja) * 1985-03-25 1986-09-26 Toyo Kikai Kinzoku Kk 射出成形機の背圧制御方法
JPS61195818A (ja) * 1985-02-26 1986-08-30 Niigata Eng Co Ltd 射出成形機における背圧制御装置
JPS61258722A (ja) * 1985-05-14 1986-11-17 Nissei Plastics Ind Co 射出成形機における背圧力制御方法及び装置
JPS6218234A (ja) * 1985-07-17 1987-01-27 Mitsubishi Heavy Ind Ltd 射出成形方法
JPS6297818A (ja) * 1985-10-25 1987-05-07 Fanuc Ltd 射出成形機における樹脂圧力制御装置
JPS62151314A (ja) * 1985-12-25 1987-07-06 Nissei Plastics Ind Co 射出成形機の射出制御装置
JPS62178317A (ja) * 1986-01-31 1987-08-05 Nissei Plastics Ind Co 電動式射出装置の射出制御装置
JPS62198425A (ja) * 1986-02-26 1987-09-02 Sumitomo Heavy Ind Ltd 電動射出成形機の保圧制御方式
JPS62264924A (ja) * 1986-05-13 1987-11-17 Toshiba Mach Co Ltd 電動駆動射出成形機の計量背圧力制御装置
JPS62299320A (ja) * 1986-06-19 1987-12-26 Fanuc Ltd 射出成形機の自動原点調整方式
JPS6330227A (ja) * 1986-07-24 1988-02-08 Fanuc Ltd 計量終了時におけるスクリュ−停止制御方式
JPS6330226A (ja) * 1986-07-24 1988-02-08 Fanuc Ltd 保圧から計量への切換制御方法
JPH01280522A (ja) * 1988-05-02 1989-11-10 Nissei Plastics Ind Co 電動式射出成形機の背圧制御装置
JPH01280523A (ja) * 1988-05-02 1989-11-10 Nissei Plastics Ind Co 電動式射出成形機の背圧制御方法
JP2544657B2 (ja) * 1988-10-31 1996-10-16 ファナック株式会社 電動式射出成形機における背圧制御方法
US5182716A (en) * 1990-06-15 1993-01-26 Allen-Bradley Company, Inc. Injection molding controller with controlled variable learning
US5200126A (en) * 1990-11-29 1993-04-06 Eastman Kodak Company Method and apparatus for monitoring the stability of the injection molding process by measurement of screw return time

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198426A (ja) * 1986-02-26 1987-09-02 Sumitomo Heavy Ind Ltd 電動射出成形機の保圧制御方式
JPH02130117A (ja) * 1988-11-10 1990-05-18 Niigata Eng Co Ltd 電動式射出成形機の背圧制御方法および装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308826A (en) * 1996-01-02 1997-07-09 Thermold Partners Lp Process and apparatus for applying an oscillating force to molten material in a mould
US5770131A (en) * 1996-01-02 1998-06-23 Thermold Partners, L.P. Method and apparatus for applying an oscillating force on a molten material
GB2308826B (en) * 1996-01-02 2000-03-29 Thermold Partners Lp Method and apparatus for applying an oscillating force to molten material in a mold

Also Published As

Publication number Publication date
KR970008251B1 (ko) 1997-05-22
EP0528040A4 (en) 1993-09-08
EP0528040A1 (en) 1993-02-24
US5342559A (en) 1994-08-30
JP2652275B2 (ja) 1997-09-10
DE69219032T2 (de) 1997-07-24
DE69219032D1 (de) 1997-05-22
JPH04249129A (ja) 1992-09-04
EP0528040B1 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
WO1992013701A1 (en) Method of controlling motor driven injection molding machine
US7344664B2 (en) Pressure waveform setting method for injection pressure control and an injection molding machine
JPS62218118A (ja) 射出成形機の射出制御装置
JP2608784B2 (ja) 電動式射出成形機
JPS631517A (ja) 計量・型開き同時動作制御方式
EP0396770B1 (en) Back pressure control method and apparatus for electric injection molding machine
KR960015297B1 (ko) 사출 성형기에 있어의 소프트웨어서어보 제어장치
WO1992011995A1 (en) Method of monitoring position of resin in cavity of metallic mold
JPH085107B2 (ja) 電動式射出成形機における位置決め方式
EP0788042A1 (en) Cnc acceleration/deceleration controller and method
JP3366921B2 (ja) 圧縮成形制御方法
JPH0473687B2 (ja)
JP2640680B2 (ja) 保圧速度の多段制御方法
JPH082574B2 (ja) 電動式射出成形機における圧縮成形制御方法
JP2652274B2 (ja) 電動射出成形機における保圧制御方法
JP2668428B2 (ja) パージ終了検出方法
JP2660570B2 (ja) 電動式射出成形機における手動計量方法
JPH0752210A (ja) 射出成形機の射出制御装置
JPH01272431A (ja) 射出成形機の成形制御方法
JP2601680B2 (ja) 射出成形機の射出速度・圧力制御方式
JPH09174642A (ja) 射出成形機における加減速制御方法
JPH03213320A (ja) 電動式射出成形機の射出装置
JP2525727B2 (ja) 射出成形方法
JP2640693B2 (ja) 射出成形機の手動スクリュー制御方法
JP2632434B2 (ja) 射出成形機の樹脂パージ方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992904231

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992904231

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992904231

Country of ref document: EP