US20150152188A1 - AN IL-15 AND IL-15R\alpha SUSHI DOMAIN BASED IMMUNOCYTOKINES - Google Patents

AN IL-15 AND IL-15R\alpha SUSHI DOMAIN BASED IMMUNOCYTOKINES Download PDF

Info

Publication number
US20150152188A1
US20150152188A1 US14/129,188 US201214129188A US2015152188A1 US 20150152188 A1 US20150152188 A1 US 20150152188A1 US 201214129188 A US201214129188 A US 201214129188A US 2015152188 A1 US2015152188 A1 US 2015152188A1
Authority
US
United States
Prior art keywords
amino acid
acid sequence
immunocytokine
antibody
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/129,188
Other languages
English (en)
Inventor
Sebastien Daniel Morisseau
Géraldine Teppaz
Yannick Laurent Joseph Jacques
Bruno Gilbert Marc Robert
Guy Luc Michel De Martynoff
David Bechard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CYTUNE
Institut National de la Sante et de la Recherche Medicale INSERM
Original Assignee
CYTUNE
Institut National de la Sante et de la Recherche Medicale INSERM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CYTUNE, Institut National de la Sante et de la Recherche Medicale INSERM filed Critical CYTUNE
Assigned to CYTUNE, INSERM reassignment CYTUNE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BECHARD, DAVID, JACQUES, YANNICK LAURENT JOSEPH, DE MARTYNOFF, GUY LUC MICHEL, MORISSEAU, SEBASTIEN DANIEL, TEPPAZ, GERALDINE, ROBERT, BRUNO GILBERT MARC
Publication of US20150152188A1 publication Critical patent/US20150152188A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5443IL-15
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2086IL-13 to IL-16
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7155Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3084Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated gangliosides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/31Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/32Fusion polypeptide fusions with soluble part of a cell surface receptor, "decoy receptors"
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor

Definitions

  • the present invention relates to new immunocytokines and to their use as a medicine, in particular for the treatment of cancer.
  • Immunotherapy in medicine, refers to an array of treatment strategies based on the concept of modulating the immune system to achieve a prophylactic and/or therapeutic goal.
  • Monoclonal antibodies can be developed to target almost any epitope. The property of specific recognition and binding to particular cells/molecules has encouraged the development of Mabs as diagnostic and therapeutic reagents for a variety of disease states. Recombinant DNA techniques have been used to produce chimeric or humanized antibodies to adapt their administration to humans. Currently, several monoclonal antibodies are commercialized and available for the treatment of cancers, infectious diseases, immune diseases etc. such as RITUXAN®, HERCEPTIN®, AVASTIN®, . . . .
  • Monoclonal antibodies are targeted molecules and able to localize within a specific zone (cells, tissues . . . ) such as a tumor tissues.
  • This property has also led to the development of Mabs conjugated to various substances (payloads) in an effort to target specific molecules in the tumor sites called tumoral antigens.
  • substances can be toxins, drugs, radionuclides, prodrug compounds . . . .
  • Many of these linkages involve the chemical conjugation of the reactive moiety (payload) with a given preparation of antibody, a process which can be cumbersome and subject to variation (U.S. Pat. No. 4,671,958).
  • immunocytokines are of particular interest.
  • Said immunocytokines correspond to fusion proteins comprising an antibody and a cytokine. These proteins retain both antigen-binding capacity and cytokine activity.
  • the cytokines are a category of signalling proteins and glycoproteins that, like hormones and neurotransmitters, are used extensively in cellular communication. While hormones are secreted by specific organs into the blood, and neurotransmitters are related to neural activity, cytokines urea more diverse class of compounds in terms of origin and purpose. They are produced by a wide variety of hematopoietic and non-hematopoietic cell types and can have effects on both nearby cells or throughout the organism, sometimes strongly depending on the presence of other chemicals.
  • the cytokine family consists mainly of smaller, water-soluble proteins and glycoproteins with a mass of between 8 and 30 kDa. Cytokines are critical to the functioning of both innate and adaptive immune responses.
  • cytokines are also involved in several developmental processes during embryogenesis.
  • interleukin 15 is a cytokine with structural similarity to IL-2 that is secreted by mononuclear phagocytes (and some other cells) following infection by virus(es) or indirect stimulation by cells recognized as non-self or debilitated.
  • This cytokine induces cell proliferation of natural killer cells; cells of the innate immune system whose main role is to kill virally infected cells.
  • the protein encoded by this gene is a cytokine that regulates T and natural killer cell activation and proliferation.
  • immunocytokines on the basis of IL-15 would thus be of) articular interest for the combination of the tumor-targeting assets of tumor-specific antibodies with the immunomodulatory effects of interleukin 15.
  • IL-2 interleukin-2
  • Some examples of these fusion proteins e described in several patent applications (U.S. Pat. No. 5,645,835, EP 0,305,967, WO 86/01533, EP 0,439,095, and WO 85/00974).
  • interleukin 15-based immunocytokine has been produced in HEK-293 cells and is disclosed in International patent application PCT WO 2007/128563 and in KASPAR et al. ( Cancer Research , vol. 67(10), p: 4940-4948, 2007).
  • interleukin 15-based immunocytokines have a very limited interleukin 15 activity, and that their production is very difficult notably in CHO cells with low yield and many protein contaminants.
  • the invention relates to an immunocytokine comprising:
  • conjugate comprises:
  • the invention relates to a nucleic acid encoding for an immunocytokine as described above.
  • the present invention provides a vector comprising a nucleic acid as described above.
  • the present invention relates to a host cell genetically engineered with the polynucleotide or with the vector described previously.
  • the present invention also relates to a method of producing a host cell genetically engineered expressing an immunocytokine according to the invention, said method comprising the steps of: (i) introducing in vitro or ex viva a nucleic acid or a vector as described above into a host cell, (ii) culturing in vitro or ex viva the recombinant host cell genetically engineered obtained and (iii), optionally, selecting the cells which express and/or secrete said immunocytokine.
  • said host cell genetically engineered is an animal cell, and preferably a CHO cell.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the immunocytokine as described above, a nucleic acid encoding thereof, or a nucleic acid vector comprising said nucleic acid, eventually associated with a pharmaceutically acceptable carrier.
  • said composition comprises a further therapeutic agent, which is preferably an anticancer agent.
  • the present invention relates to a pharmaceutical composition as described previously for treating cancer in a subject.
  • the present invention relates to the products containing:
  • an immunocytokine as describe above a nucleic acid sequence coding therefore, or a vector comprising such a nucleic acid sequence
  • a therapeutic agent preferably an anticancer agent
  • the present invention relates to a method for treating cancer a subject comprising the step of administrating to said subject a pharmaceutical composition as described previously.
  • the present invention relates to a method for treating cancer comprising the step of simultaneously, separately, or sequentially administrating to a subject in need thereof a therapeutically effective amount of:
  • an immunocytokine as describe above a nucleic acid sequence coding therefore, or a vector comprising such a nucleic acid sequence
  • a therapeutic agent preferably an anticancer agent
  • FIG. 1 shows the activity of IL15 anti-CD20 immunocytokines as compared to IL15.
  • FIG. 2 shows the activity of IL15 anti-GD2-O-acetylated immunocytokine as compared to IL15.
  • FIG. 3 shows the CD20, GD2-Oacetylated and HER-2 binding activity of IL15 anti-CD20, anti-OD2-O-acetylated and anti-HER2 IL-15 immunocytokines respectively.
  • FIG. 4 shows the IL-15R ⁇ binding activity of IL15 anti-CD20 immunocytokine as compared to anti-CD20 antibody (Rituximab).
  • FIG. 5 shows the CD20, GD2-Oacetylated and HER-2 binding activity of IL15 anti-CD20, anti-GD2-O-acetylated and anti-HER2 RL1 immunocytokines respectively.
  • FIG. 6 show the IL15R ⁇ binding activity of RL1 anti-CD20 and IL15 anti-GD2-O-acetylated immunocytokines.
  • FIG. 7 shows the activity of RL1 anti-CD20 immunocytokines as compared to IL15.
  • FIG. 8 shows the activity of RL1 anti-GD2-O-acetylated immunocytokines as compared to IL15.
  • FIG. 9 shows the anti-metastatic activity of anti-GD2-O acetylated immunocytokine as compared to anti-GD2-O acetylated antibody.
  • FIG. 10 shows the antitumor activity of anti-CD20 immunocytokine in Raji model.
  • FIG. 11 show the activity of IL-15 anti-HER2 immunocytokines as compared to IL15.
  • FIG. 12 shows the activity of RL1 anti-HER2 immunocytokines as compared to IL15.
  • the present invention is based on the discovery by the present inventors that, whereas the production of an immunocytokine comprising interleukin 15 leads to the loss of more than 90% of interleukin 15 activity, the production of RL1-based immunocytokines leads to innovative IL15 immunocytokines presenting a powerful biological activity on ⁇ and ⁇ immune cells that is largely superior to IL-15-based immunocytokines,
  • RL1-based immunocytokines with a full IgG monoclonal antibody present improved biological efficacy on ⁇ immune cells as compared to RL1 alone or to scFv fragment antibody.
  • This surprising gain of activity on ⁇ immune cells could be critical in terms of activation/reactivation of NK cells and T lymphocytes in the immunosuppressive environment.
  • an interleukin 15 immunocytokine necessitates the presence of a linker between the immunoglobulin and the interleukin 15 moieties so as to be active; the immunocytokine of the invention present a similar interleukin 15 activity with or without any linker between its respective immunoglobulin and cytokine parts.
  • This unnecessary presence of a linker region could represent powerful arguments in terms of fusion protein immunogenicity, limiting the hinge regions generating novel antigenic epitope and immunogenicity and in terms of production yield with limited cleaved forms,
  • the immunocytokines of the invention are IL-15 superagonist showing an increased activity (—i.e. 10 to 100 fold) as compared to RL1 alone.
  • the inventors obtained a good yield of production of the immunocytokine of the invention in CHO cells, and this with a yield of more than 90%. This is surprising since the production in the same cells of interleukin 15 immunocytokine in CHO cells was very difficult.
  • the strong activity of the immunocytokine of the invention enables to forecast a realistic therapeutic use for this immunocytokine, which should be administrated by injection at a dose of 2.5-1 mg/kg of subject or less, and even at a dose of 0.1 mg/kg or less.
  • the low activity of interleukin 15 immunocytokines such as the one disclosed in International patent application WO 2007/128563 does not enable any realistic therapeutic use (i.e. obtaining a therapeutic effect required a dose of more than 20 ⁇ g immunocytokine with four daily injections in a mouse tumor model suggesting the need of a dose of more than 5 mg/kg immunocytokine for obtaining some therapeutic effect).
  • an immunocytokine comprising of:
  • conjugate comprises:
  • immunocytokine refers to a molecule comprising an antibody or fragments thereof directly or indirectly linked by covalence to a cytokine or derivates thereof. Said antibody and said cytokine can be linked by a linker peptide.
  • interleukin 15 in its general meaning in the art and refers to a cytokine with structural similarity to IL-2 (GRABSTEIN et al., Science, vol. 264(5161), p: 965-968, 1994).
  • This cytokine is also known as IL-15, IL15 or MGC9721.
  • This cytokine and IL-2 share many biological activities and they were found to bind common hematopoietin receptor subunits. Thus, they may compete for the same receptor, negatively regulating each other's activity. It has been established that IL-15 regulates T and natural killer cells activation and proliferation, and that the number of CD8+ memory cells is shown to be controlled by a balance between this cytokine and IL2.
  • IL-15 activity can be measured by determining its proliferation induction on kit225 cell line (HORI et al., Blood, vol. 70(4), p: 1069-72, 1987), as disclosed in the Examples.
  • Said IL-15 or derivatives thereof have at least 10% of the activity of human interleukin-15 on the proliferation induction of kit225 cell line, preferably at least 25% and more preferably at least 50%.
  • Said interleukin 15 is a mammalian interleukin 15, preferably a primate interleukin 15, and more preferably a human interleukin 15.
  • Mammalian interleukin 15 can be simply identified by the skilled person. As an example, one can cite Interleukin 15 from Sus scroja (Accession number ABF82250), from Rattus norvegicus (Accession number NP — 037261), from Mus musculus (Accession number NP — 032383), from Bos Taurus (Accession number NP — 776515), from Oryctolagus cuniculus (Accession number NP — 001075685), from Ovies aries (Accession number NP — 001009734), from Felis catus (Accession number NP — 001009207), from Macaca fascicularis (Accession number BAA19149), from Homo sapiens (Accession number NP — 000576), from Macaca Mulatta (Accession number NP — 001038196), from Cavia porcellus (Accession number NP — 001166300), or from
  • mammalian interleukin 15 refers to the consensus sequence SEQ ID no 1.
  • Interleukin 15 can be simply identified by the skilled person. As an example, one can cite Interleukin 15 from Sus scrota (Accession number ABF82250), from Oryctolagus cuniculus (Accession number NP — 001075685), from Macaca fascicularis (Accession number BAA19149), from Homo sapiens (Accession number NP — 000576), from Macaca Mulatta (Accession number NP — 001038196), or from Chlorocebus sabaeus (Accession number AC1289).
  • Sus scrota Accession number ABF82250
  • Oryctolagus cuniculus Accession number NP — 001075685
  • Macaca fascicularis Accession number BAA19149
  • Homo sapiens Accession number NP — 000576
  • Macaca Mulatta Accession number NP — 001038196
  • primary interleukin 15 refers to the consensus sequence SEQ ID no 2.
  • Human interleukin 15 can be simply identify by the skilled person and refers to the amino acids sequence SEQ ID no 3
  • the term “interleukin 15 derivatives” refers to an amino acid sequence having a percentage of identity of at least 92.5% (i.e. corresponding to about 10 amino acids substitutions) with an amino acid sequence selected in the group consisting of SEQ ID no: 1, SEQ ID no 2 and SEQ ID no 3, preferably of at least 96% (i.e. corresponding to about 5 amino acids substitutions), and more preferably of at least 98.5% (i.e. corresponding to about 2 amino acids substitutions) or of at least 99% i.e. corresponding to about 1 amino acid substitution).
  • Such derivatives can be simply identified by the skilled person in view of its personal knowledge and of the teaching of the present patent application.
  • percentage of identity between two amino acids sequences, means the percentage of identical amino-acids, between the two sequences to be compared, obtained with the best alignment of said sequences, this percentage being purely statistical and the differences between these two sequences being randomly spread over the amino acids sequences.
  • best alignment or “optimal alignment”, means the alignment for which the determined percentage of identity (see below) is the highest. Sequences comparison between two amino acids sequences are usually realized by comparing these sequences that have been previously aligned according to the best alignment; this comparison is realized on segments of comparison in order to identify and compare the local regions of similarity.
  • the identity percentage between two sequences of amino acids is determined by comparing these two sequences optimally aligned, the amino acids sequences being able to encompass additions or deletions in respect to the reference sequence in order to get the optimal alignment between these two sequences.
  • the percentage of identity is calculated by determining the number of identical position between these two sequences, and dividing this number by the total number of compared positions, and by multiplying the result obtained by 100 to get the percentage of identity between these two sequences.
  • the interleukin 15 derivatives are IL-15 agonist or superagonist.
  • IL-15 agonist or superagonist One skilled in the art can simply identified an IL-15-agonist or -superagonist.
  • IL-15-agonist or -superagonist one can cite the ones disclosed in the International patent application WO 2005/085282 or in ZHU et al. ( J. Immunol ., vol. 183(6), p: 3598-607, 2009),
  • said IL-15 agonist or superagonist is selected in the group comprising/consisting of L45D, L45E, S51D, L52D, N72D, N72E, N72A, N72S, N72Y and N72P (in reference to sequence of human IL-15, SEQ ID no 3).
  • the sushi domain of IL-15R ⁇ has its general meaning in the art and refers to a domain beginning at the first cysteine residue (C1) after the signal peptide of IL-15R ⁇ , and ending at the fourth cysteine residue (C4) after said signal peptide. Said sushi domain corresponding to a portion of the extracellular region of IL-15R ⁇ is necessary for its binding to IL-15 (WEI et al., J. Immunol ., vol. 167(1), p: 277-282, 2001)
  • Said sushi domain of IL-15R ⁇ or derivatives thereof has at least 10% of the binding activity of the sushi domain of human IL-15R ⁇ to human interleukin-15, preferably at least 25% and more preferably at least 50%.
  • Said binding activity can be simply determined by the method disclosed in WEI et al. (abovementioned, 2001).
  • Said sushi domain of the IL-15R ⁇ is the sushi domain of a mammalian IL-15R ⁇ , preferably the sushi domain of a primate IL-15R ⁇ and more preferably the sushi domain of the human IL-15R ⁇ .
  • the sushi domain of a mammalian IL-15R ⁇ can be simply identified by the skilled person.
  • the term “sushi domain of a mammalian IL-15R ⁇ ” refers to the consensus sequence SEQ ID no 4.
  • the polypeptide comprising the amino acid sequence of the sushi domain of a mammalian IL-15R ⁇ refers to the consensus sequence SEQ ID n′5.
  • the sushi domain of a primate IL-15R ⁇ can be simply identified by the skilled person.
  • the term “sushi domain of a primate IL-15R ⁇ ” refers to the consensus sequence SEQ ID no 6.
  • the polypeptide comprising the amino acid sequence of the sushi domain of a primate IL-15R ⁇ refers to the consensus sequence SEQ ID no 7.
  • the sushi domain of human IL-15R ⁇ can be simply identified by the skilled person and refers to the amino acids sequence SEQ ID no 8.
  • polypeptide comprising the amino acid sequence of the sushi domain of human IL-15R ⁇ refers to SEQ ID no 9.
  • the term “derivatives of the sushi domain of the IL-15R ⁇ ,” refers to an amino acid sequence having a percentage of identity of at least 92% (i.e. corresponding to about 5 amino acids substitutions) with an amino acid sequence selected in the group consisting of SEQ ID no: 4, SEQ ID no 5, SEQ ID no 6, SEQ ID no: 7, SEQ ID no 8, and SEQ ID n′9, preferably of at least 96% (i.e. corresponding to about 2 amino acids substitutions), and more preferably of at least 98% (i.e. corresponding to about 1 amino acids substitutions).
  • Such derivatives comprise the four cysteine residues of the sushi domain of L-15R ⁇ and can be simply identified by the skilled person in view of his/her general knowledge and of the teaching of the present patent application. It will also be understood that natural amino acids may be replaced by chemically modified amino acids. Typically, such chemically modified amino acids enable to increase the polypeptide half life.
  • the conjugate comprises (ii) a polypeptide comprising the amino acid sequence of the sushi and hinge domains of IL-15R ⁇ or derivatives thereof.
  • the IL-15R ⁇ hinge domain is defined as the amino acid sequence that begins at the first amino residue after the sushi domain and that ends at the last amino acid residue before the first potential site of glycosylation.
  • the amino acid sequence of the hinge region consists of the fourteen amino acids which are located after the sushi domain of this IL-15Ralpha, in a C-terminal position relative to said sushi domain, i.e., said IL-15Ralpha hinge region begins at the first amino acid after said (C4) cysteine residue, and ends at the fourteenth amino acid (counting in the standard “from N-terminal to C-terminal” orientation).
  • Said sushi and hinge domains of IL-15R ⁇ are the sushi and hinge domains of a mammalian IL-15R ⁇ , preferably the sushi and hinge domains of a primate IL-15R ⁇ and more preferably the sushi and hinge domains of the human IL-15R ⁇ .
  • the amino acid sequence of the sushi and hinge domains of a mammalian IL-15R ⁇ can be simply identified by the skilled person.
  • the term “sushi and hinge domains of a mammalian IL-15R ⁇ ” refers to the consensus sequence SEQ ID no 10.
  • the amino acid sequence of the sushi and hinge domains of a primate IL-15R ⁇ can be simply identified by the skilled person.
  • the term “sushi and hinge domains of a primate IL-15R ⁇ ” refers to the consensus sequence SEQ ID no 11.
  • the amino acid sequence of the sushi and hinge domains of human IL-15R ⁇ can be simply identified by the skilled person.
  • the term “sushi and hinge domains of human IL-15R ⁇ ” refers to the consensus sequence SEQ ID n° 12.
  • the term “derivatives of the sushi and hinge domains of IL-15R ⁇ ” refers to an amino acid sequence having a percentage of identity of at least 93% (i.e. corresponding to about 5 amino acids substitutions) with an amino acid sequence selected in the group consisting of SEQ ID no: 10, SEQ ID no 11, and SEQ ID no 12, preferably of at least 97% (i.e. corresponding to about 2 amino acids substitutions), and more preferably of at least 98% (i.e. corresponding to about 1 amino acids substitution).
  • Such derivatives comprise the four cysteine residues of the sushi domain of L-15R ⁇ and can be simply identified by the skilled person in view of its general knowledge and of the teaching of the present patent application. It will also be understood that natural amino acids may be replaced by chemically modified amino acids. Typically, such chemically modified amino acids enable to increase the polypeptide half life.
  • Both polypeptides i) and ii) of the conjugate may be linked non-covalently such as in the complex disclosed in U.S. Pat. No. 8,124,084 B2.
  • Said conjugate or complex can be simply obtained by providing a suitable amount of the polypeptide i), providing a suitable amount of the polypeptide ii), admixing both polypeptides under suitable pH and ionic conditions for a duration sufficient to allow complex (i.e. conjugate) formation, and optionally concentrating or purifying said complex.
  • the polypeptides of the complex i.e.
  • conjugate can be formed, for example, using a peptide synthesizer according to standard methods; by expressing each polypeptide separately in a cell or cell extract, then isolating and purifying the polypeptide.
  • the therapeutic polypeptide complex of the invention can be formed by expressing both polypeptides i) and ii) in the same cell or cell extract, then isolating and purifying the complexes, for example, using chromatographic techniques, such as affinity chromatography with antibodies to the lymphokine portion, the lymphokine receptor portion, or to the complex.
  • Both polypeptides i) and ii) of the conjugate may be also covalently linked using bifunctional protein coupling agents or in a fusion protein.
  • Bifunctional protein coupling agents are well known from the skilled person such as methods using them, and include, as examples, N-succinimidyl (2-pyridyldithio) propionate (SPDP), succinimidyl (N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis(p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-d
  • fusion protein refers to a protein created through the joining of two or more genes which originally coded for separate proteins. It is also known as a chimeric protein. Translation of this fusion gene results in a single polypeptide with functional properties deriving from each of the original proteins.
  • Recombinant fusion proteins are created artificially by recombinant DNA technology for use in biological research or therapeutics.
  • a recombinant fusion protein is a protein created through genetic engineering of a fusion gene. This typically involves removing the stop codon from a cDNA sequence coding for the first protein, then appending the cDNA sequence of the second protein in frame through ligation or overlap extension PCR. That DNA sequence will then be expressed by a cell as a single protein.
  • the protein can be engineered to include the full sequence of both original proteins, or only a portion of either.
  • the conjugate is a fusion protein.
  • the amino acid sequence of interleukin 15 or derivatives thereof can be in a C-terminal or in an N-terminal position relative to the amino acid sequence of the sushi domain of IL-15R ⁇ or derivatives thereof.
  • the amino acid sequence of the interleukin 15 or derivatives thereof is in a C-terminal position relative to the amino acid sequence of the sushi domain of IL-15R ⁇ or derivatives thereof.
  • the amino acid sequence of interleukin 15 or derivatives thereof and the amino acid sequence of the sushi domain of IL-15R ⁇ or derivatives thereof may be separated by a first “linker” amino acid sequence.
  • Said first “linker” amino acid sequence may be of a length sufficient to ensure that the fusion protein form proper secondary and tertiary structures.
  • the length of the first linker amino acid sequence may vary without significantly affecting the biological activity of the fusion protein.
  • the first linker amino acid sequence comprises at least one, but less than 30 amino acids e.g., a linker of 2-30 amino acids, preferably of 10-30 amino acids, more preferably of 15-30 amino acids, still more preferably of 15-25 amino acids, most preferably of 18-22 amino acids.
  • Preferred linker amino acid sequences are those which allow the conjugate to adopt a proper conformation (i.e., a conformation allowing a proper signal transducing activity through the IL-15Rbeta/gamma signaling pathway).
  • the most suitable first linker amino acid sequences (1) will adopt a flexible extended conformation, (2) will not exhibit a propensity for developing ordered secondary structure which could interact with the functional domains of fusion proteins, and (3) will have minimal hydrophobic or charged character which could promote interaction with the functional protein domains.
  • the first linker amino acid sequence comprises near neutral amino acids selected in the group comprising Gly (G), Asn (N), Ser (S), Thr (T), Ala (A), Leu (L), and Gin (Q), most preferably in the group comprising Gly (G), Asn (N), and Ser (S).
  • linker sequences are described in U.S. Pat. Nos. 5,073,627 and 5,108,910.
  • Illustrative flexible linkers that are more particularly suitable for the present invention include those coded by the sequences of SEQ ID NO: 13 (SGGSGGGGSGGGSGGGGSLQ), SEQ ID no 14 (SGGSGGGGSGGGSGGGGSGG) or SEQ ID no 15 (SGGGSGGGGSGGGGSGGGSLQ).
  • antibody refers to an immunoglobulin molecule corresponding to a tetramer comprising four polypeptide chains, two identical heavy (H) chains (about 50-70 kDa when full length) and two identical light (L) chains (about 25 kDa when full length) inter-connected by disulfide bonds.
  • Light chains are classified as kappa and lambda.
  • Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, and define the antibody's isotype as IgG, IgM, IgA, IgD, and IgE, respectively.
  • Each heavy chain is comprised of a N-term heavy chain variable region (abbreviated herein as HCVR) and a heavy chain constant region.
  • HCVR N-term heavy chain variable region
  • the heavy chain constant region is comprised of three domains (CH1, CH2, and CH3) for IgG, IgD, and IgA; and 4 domains (CH1, CH2, CH3, and CH4) for IgM and IgE.
  • Each light chain is comprised of a N-term light chain variable region (abbreviated herein as LCVR) and a light chain constant region.
  • the light chain constant region is comprised of one domain, CL.
  • the HCVR and LCVR regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDRs), interspersed with regions that are more conserved, termed framework regions (FR).
  • Each HCVR and LCVR is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
  • the assignment of amino acids to each domain is in accordance with well-known conventions.
  • the functional ability of the antibody to bind a particular antigen depends on the variable regions of each light/heavy chain pair, and is largely determined by the CDRs.
  • antibody refers to a monoclonal antibody per se.
  • a monoclonal antibody can be a human antibody, chimeric antibody and/or humanized antibody.
  • the term antibody refers to an IgG, such as IgG1, IgG2 (IgG2a or IgG2b), IgG3 and IgG4.
  • IgG IgG1
  • IgG2 IgG2a or IgG2b
  • IgG3 IgG4
  • IgG4a IgG2a
  • Chimeric antibody means an antibody that is composed of variables regions from a murine immunoglobulin and of constant regions of a human immunoglobulin. This alteration consists simply of substituting the constant region of a human antibody with the murine constant region, thus resulting in a human/murine chimera which may have sufficiently low immunogenicity to be acceptable for pharmaceutical use. A number of methods for producing such chimeric antibodies have yet been reported, thus forming part of the general knowledge of the skilled artisan (See, e.g., U.S. Pat. No. 5,225,539).
  • Humanized antibody means an antibody that is composed partially or fully of amino acid sequences derived from a human antibody germline by altering the sequence of an antibody having non-human complementarity determining regions (CDR).
  • CDR complementarity determining regions
  • a humanized antibody again refers to an antibody comprising a human framework, at least one CDR from a non-human antibody, and in which any constant region present is substantially identical to a human immunoglobulin constant region, i. e., at least about 85 or 90%, preferably at least 95% identical.
  • all parts of a humanized antibody, except possibly the CDRs, are substantially identical to corresponding parts of one or more native human immunoglobulin sequences.
  • a humanized immunoglobulin would typically not encompass a chimeric mouse variable region/human constant region antibody.
  • humanized immunoglobulins may be carried out as follows: when an amino acid falls under the following category, the framework amino acid of a human immunoglobulin to be used (acceptor immunoglobulin) is replaced by a framework amino acid from a CDR-providing non-human immunoglobulin (donor immunoglobulin): (a) the amino acid in the human framework region of the acceptor immunoglobulin Is unusual for human immunoglobulin at that position, whereas the corresponding amino acid in the donor immunoglobulin is typical for human immunoglobulin at that position; (b) the position of the amino acid is immediately adjacent to one of the CDRs; or (c) any side chain atom of a framework amino acid is within about 5-6 angstroms (center-to-center) of any atom of a CDR amino acid in a three dimensional immunoglobulin model (QUEEN et al., Proc.
  • antibody fragment refers to antibody fragment capable of reacting with the same antigen than its antibody counterpart.
  • fragments can be simply identified by the skilled person and comprise, as an example, F ab fragment (e.g., by papain digestion), F ab ′ fragment (e.g., by pepsin digestion and partial reduction), F( ab ′) 2 fragment (e.g., by pepsin digestion), F acb (e.g., by plasmin digestion), F d (e.g., by pepsin digestion, partial reduction and reaggregation), and also scF v (single chain Fv; e.g., by molecular biology techniques) fragment are encompassed by the invention.
  • F ab fragment e.g., by papain digestion
  • F ab ′ fragment e.g., by pepsin digestion and partial reduction
  • F( ab ′) 2 fragment e.g., by pepsin digestion
  • F acb e.g., by plasmin digestion
  • Such fragments can be produced by enzymatic cleavage, synthetic or recombinant techniques, as known in the art and/or as described herein.
  • Antibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons have been introduced upstream of the natural stop site.
  • a combination gene encoding a F( ab ′) 2 heavy chain portion can be designed to include DNA sequences encoding the CH 1 domain and/or hinge region of the heavy chain.
  • the various portions of antibodies can be joined together chemically by conventional techniques, or can be prepared as a contiguous protein using genetic engineering techniques.
  • said antibody fragment is a scFv fragment.
  • said antibody or fragment thereof is directed against an antigen related to tumor neovascularization or to tumor extracellular matrix, or against a tumoral antigen.
  • an “antigen related to tumor neovascularization” refers to an antigen which is expressed by the neo-synthetized blood vessels present in the tumor.
  • a “antigen related to tumor extracellular matrix” refers to an antigen which is expressed in the extracellular matrix present in the tumor.
  • tumoral antigen refers to an antigenic substance produced in tumor cells.
  • Many tumoral antigen are well known from the skilled person and one can cite, as non limiting examples, CD-20, CEA, EGFR, GD2, EPCAM, MUC1, PSMA, CD-19, GD3, GM1, CA1X, GD2-O-acetylated or HER2.
  • CD-20 is a non-glycosylated phosphoprotein expressed during early pre-B cell development and remains until plasma cell differentiation. Specifically, the CD20 molecule may regulate a step in the activation process which is required for cell cycle initiation and differentiation and is usually expressed at very high levels on neoplastic (“tumor”) B cells. CD20, by definition, is present on both “normal” B cells as well as “malignant” B cells. Thus, the CD20 surface antigen has the potential of serving as a candidate for “targeting” of B cell lymphomas.
  • rituximab (“RITUXAN®”) (U.S. Pat. No. 5,736,137); the yttrium-[90]-labeled 2B8 murine antibody designated “Y2B8” or “Ibritumomab Tiuxetan” ZEVALIN® (U.S. Pat. No. 5,736,137); murine IgG2a “B1,” also called “Tositumomab,” optionally labeled with 131 I to generate the “ 131 I-BI” antibody (iodine 131 tositumomab, BEXXAR@) (U.S. Pat. No.
  • CEA carcinomaembryonic antigen glycoprotein
  • the ErbB receptors are expressed in various tissues of epithelial, mesenchymal and neuronal origin. Under normal conditions, activation of the ErbB receptors is controlled by the spatial and temporal expression of their ligands, which are members of the EGF family of growth factors. Ligand binding to ErbB receptors induces the formation of receptor homo- and heterodimers and activation of the intrinsic kinase domain, resulting in phosphorylation on specific tyrosine kinase residues within the cytoplasmic tail. These phosphorylated residues serve as docking sites for various proteins, the recruitment of which leads to the activation of intracellular signaling pathways.
  • EGFR and HER2 are known to play an essential role in regulating cell proliferation and differentiation. They have a strong tendency to assemble with other HER receptors into homo- and/or heterodimers upon extracellular growth factor binding, which results in various forms of signal transduction pathways activation, leading to either apoptosis, survival, or cell proliferation.
  • humanized monoclonal antibody 425 also designated as matuzumab (hMAb 425, U.S. Pat. No. 5,558,864; EP 0531 472)
  • cMAb 225 also designated as cetuximab
  • cetuximab also designated as cetuximab
  • VECTIBIX® fully human anti-EGFR antibody panitumumab
  • cetuximab and panitumumsb were demonstrated to inhibit human colorectal tumors in vivo and both received marked approval.
  • GD2 is a disialoganglioside expressed on tumors of neuroectoderma origin, including neuroblastoma and melanoma.
  • the antibody is directed against CD-20 (e.g. rituximab disclosed in U.S. Pat. No. 5,736,137), GD2-O-acetylated (e.g. the one disclosed in International patent application PCT WO 2008/043777) or HER2 (e.g. trastuzumab or HERCEPTIN® disclosed in U.S. Pat. No. 5,821,337).
  • CD-20 e.g. rituximab disclosed in U.S. Pat. No. 5,736,137
  • GD2-O-acetylated e.g. the one disclosed in International patent application PCT WO 2008/043777
  • HER2 e.g. trastuzumab or HERCEPTIN® disclosed in U.S. Pat. No. 5,821,337.
  • Both conjugate and antibody or fragment thereof may be covalently linked using bifunctional protein coupling agents or in a fusion protein.
  • Bifunctional protein coupling agents methods are well known by the skilled person and have been previously disclosed. As an example, the skilled person can use the method disclosed in TILL el al. ( Proc. Natl. Acad. U.S.A ., vol. 86(6), p: 1987-91, 1989)
  • the immunocytokine is a fusion protein.
  • the immunocytokine is a complex, preferably a complex comprising a conjugate between the polypeptides i) and ii), wherein the polypeptide i) or ii) is fused to an antibody or fragment thereof.
  • polypeptide i), the polypeptide ii), or the conjugate can be in a C-terminal or in an N-terminal position relative to the amino acid sequence of the antibody or fragment thereof.
  • the conjugate is a fusion protein and the amino acid sequence of the conjugate is in a C-terminal position relative to the amino acid sequence of the antibody or fragment thereof, most preferably in a C-terminal position relative to the amino acid sequence of at least one of the heavy chain constant region of the antibody or fragment thereof.
  • amino acid sequence of the conjugate and the amino acid sequence of the antibody or fragment thereof may be separated or not by a second “linker” amino acid sequence.
  • the immunocytokine of the invention is a fusion protein wherein the conjugate and the antibody or fragment thereof are not separated by any linker.
  • the inventors have surprisingly established that the immunocytokine of the invention does not necessitate any linker between the immunoglobulin and cytokine parts so as to be active.
  • said second “linker” amino acid sequence may be of a length sufficient to ensure that the fusion protein form proper secondary and tertiary structures.
  • the length of the first linker amino acid sequence may vary without significantly affecting the biological activity of the fusion protein.
  • the first linker amino acid sequence comprises at least one, but less than 30 amino acids e.g., a linker of 2-30 amino acids, preferably of 10-30 amino acids, more preferably of 15-30 amino acids, most preferably of 15-25 amino acids.
  • the most suitable second linker amino acid sequences (1) will adopt a flexible extended conformation, (2) will not exhibit a propensity for developing ordered secondary structure which could interact with the functional domains of fusion proteins, and (3) will have minimal hydrophobic or charged characteristics which could promote interaction with the functional protein domains.
  • the second linker amino acid sequence comprises near neutral amino acid selected in the group comprising Gly (G), Asn (N), Ser (S), Thr (T), Ala (A), Leu (L), and GIn (Q), most preferably in the group comprising Gly (G), Asn (N), and Ser (S).
  • a second linker amino acid sequence which is suitable for the present invention, one can cite the sequence SEQ ID no 16 (SGGGGSGGGGSGGGGSGGGGSG) or SEQ ID no 17 (AAGGGSGGGSGGGGSGGGGSAA).
  • the present invention relates to a nucleic acid encoding for a immunocytokine as described above, preferably an immunocytokine corresponding to a fusion protein.
  • Said nucleic acid corresponds to RNA or DNA, preferably to DNA.
  • the nucleic acid encoding the immunocytokine of the invention is operatively linked to a gene expression sequence, which directs the expression of the nucleic acid within a prokarotic or an eukaryotic cell, preferably within an eukaryotic cell.
  • the “gene expression sequence” is any regulatory nucleotide sequence, such as a promoter sequence or promoter-enhancer combination, which facilitates the efficient transcription and translation of the immunocytokine nucleic acid to which it is operatively linked.
  • the gene expression sequence may, for example, be a mammalian or viral promoter, such as a constitutive or inducible promoter.
  • Constitutive mammalian promoters include, but are not limited to, the promoters for the following genes: hypoxanthine phosphoribosyl transferase (HPTR), adenosine deaminase, pyruvate kinase, beta.-actin promoter, muscle creatine kinase promoter, human elongation factor promoter and other constitutive promoters.
  • HPTR hypoxanthine phosphoribosyl transferase
  • adenosine deaminase pyruvate kinase
  • beta.-actin promoter beta.-actin promoter
  • muscle creatine kinase promoter muscle creatine kinase promoter
  • human elongation factor promoter and other constitutive promoters.
  • Exemplary viral promoters which function constitutively in eukaryotic cells include, for example, promoters from the simian virus (e.g., SV40), papilloma virus, adenovirus, human immunodeficiency virus (HIV), cytomegalovirus (CMV), Rous sarcoma virus (RSV), hepatitis B virus (HBV), the long terminal repeats (LTR) of Moloney leukemia virus and other retroviruses, and the thymidine kinase promoter of herpes simplex virus.
  • simian virus e.g., SV40
  • papilloma virus e.g., SV40
  • HIV human immunodeficiency virus
  • CMV cytomegalovirus
  • RSV Rous sarcoma virus
  • HBV hepatitis B virus
  • LTR long terminal repeats
  • Other constitutive promoters are known to those of ordinary skill in the art.
  • the promoters useful as gene expression sequences of the invention also include inducible promoters.
  • Inducible promoters are expressed in the presence of an inducing agent.
  • the metallothione in promoter is induced to promote transcription and translation in the presence of certain metal ions.
  • Others inducible promoters are known to those of ordinary skill in the art.
  • the gene expression sequence shall include, as necessary, 5′ non transcribing and 5′ non-translating sequences involved with the initiation of transcription and translation, respectively, such as a TATA box, capping sequence, CAAT sequence, and the like.
  • 5′ non-transcribing sequences will include a promoter region which includes a promoter sequence for transcriptional control of the operationally joined nucleic acid.
  • the gene expression sequences optionally include enhancer sequences or upstream activator sequences as desired.
  • nucleic acid sequence encoding the immunocytokine of the invention and the gene expression sequence are said to be “operationally linked” when they are covalently linked in such a way as to place the expression or transcription and/or translation of the immunocytokine of the invention coding sequence under the influence or control of the gene expression sequence.
  • Two DNA sequences are said to be operationally linked if induction of a promoter in the 5′ gene expression sequence results in the transcription of the immunocytokine of the invention and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the immunocytokine of the invention, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein.
  • a gene expression sequence would be operationally linked to a nucleic acid sequence coding for the immunocytokine of the invention if the gene expression sequence were capable of effecting transcription of that nucleic acid sequence such that the resulting transcript is translated into the desired polypeptide.
  • said nucleic acid sequence comprises an intron, since pre-mRNA molecules has often been demonstrated to improve production yields of recombinant molecules.
  • Any sequences of intron may be sued, and as an example, one can cite tone ones disclosed in ZAGO et al. ( Biotechnol. Appl. Biochem., vol. 52(Pt 3), p: 191-8, 2009) and in CAMPOS-DA-PAZ et al. ( Mol. Biotechnol ., vol. 39(2), p: 155-8, 2008).
  • the nucleic acid coding for the immunocytokine of the invention may be delivered in vivo alone or in association with a vector.
  • the present invention relates to a vector comprising a nucleic acid as described above.
  • a “vector” is any vehicle capable of facilitating the transfer of the nucleic acid coding for the immunocytokine of the invention to the cells.
  • the vector transports the nucleic acid to cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector.
  • the vectors useful in the invention include, but are not limited to, plasmids, cosmids, phagmids, episomes, artificial chromosomes, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the immunocytokine nucleic acid sequences.
  • Plasmid vectors are a preferred type of vector and have been extensively described in the art and are well known to those of skill in the art. See e.g., SANBROOK el al., “Molecular Cloning: A Laboratory Manual,” Second Edition, Cold Spring Harbor Laboratory Press, 1989. Not limiting examples of plasmids include pBR322, pUCI8, pUCI9, pRC/CMV, SV40, and pBlueScript, and other plasmids are well known to those of ordinary skill in the art. Additionally, plasmids may be custom designed using restriction enzymes and ligation reactions to remove and add specific fragments of DNA.
  • the nucleic acid vector can include selectable markers that are active both in bacteria and in mammalian cells.
  • the present invention relates to a host cell genetically engineered with the nucleic acid or with the vector described previously.
  • host cell genetically engineered relates to host cells which have been transduced, transformed or transfected with the nucleic acid or with the vector described previously.
  • bacterial cells such as E. coli
  • fungal cells such as yeast
  • insect cells such as Sf9
  • animal cells such as CHO or COS, plant cells, etc.
  • the selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.
  • the host cell genetically engineered is an animal cell, and most preferably CHO-S cell (INVITROGEN, cat No 11619-012).
  • CHO cells Chinese hamster ovary (CHO) cells are frequently used in the biopharmaceutical industry for the manufacture of biologics such as recombinant proteins, antibodies, peptibodies, and receptor ligands.
  • biologics such as recombinant proteins, antibodies, peptibodies, and receptor ligands.
  • CHO cells have an extensive safety track record for biologics production. This is considered to be a well-characterized cell line and, as a result, the safety testing required may be less rigorous in some respects (e.g., retroviral safety) than that required for other cell types. Nevertheless, the production of interleukin 15 is very difficult, especially in this cell.
  • the inventors established that the immunocytokines of the invention are well produced in this cell, the obtained immunocytokines having further a very good purity and activity.
  • nucleic acid or of the vector described previously into the host cell can be done by methods well known from one of skill in the art such as calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation.
  • the present invention also relates to a method of producing a host cell genetically engineered expressing an immunocytokine according to the invention, said method comprising the steps of: (i) introducing in vitro or ex vivo a nucleic acid or a vector as described above into a host cell, (ii) culturing in vitro or ex vivo the recombinant host cell genetically engineered obtained and (iii), optionally, selecting the cells which express and/or secrete said immunocytokine.
  • Such recombinant host cells can be used for the production of immunocytokine of the invention.
  • composition comprising the Immunocytokine of the Invention
  • a further object of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the immunocytokine as described above, a nucleic acid encoding thereof, or a vector comprising said nucleic acid, eventually associated with a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable refers to molecular entities and compositions that are physiologically tolerable and do not typically produce allergic or similar undesirable reactions, such as gastric upset, dizziness and the like when administered to a human.
  • pharmaceutically acceptable means approvable by a regulatory agency of the Federal or state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
  • carrier refers to a solvent, adjuvant, excipient, or vehicle with which the compound is administered.
  • Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
  • the pharmaceutical composition comprises an “effective amount” of the immunocytokine of the invention, which effective amount is sufficient to inhibit the growth of cancer cells, preferably sufficient to induce the regression of tumor growth.
  • the doses used for the administration can be adapted as a function of various parameters, in particular as a function of the mode of administration used, of the relevant pathology, or alternatively of the desired duration of treatment.
  • the form of the pharmaceutical composition, the route of administration, the dosage and the regimen naturally depend on the condition to be treated, the severity of the illness, the age, weight, and sex of the subject, etc.
  • the ranges of effective doses provided below are not intended to limit the invention and represent preferred dose ranges. However, the preferred dose can be tailored to the individual subject, as is understood and determinable by one of skill in the art, without undue experimentation.
  • the skilled person can plan to use very small doses for treating a subject.
  • the immunocytokine of the invention can be can be administered by injection at a dose of 2.5 mg/kg or 1 mg/kg of subject or less, preferably at a dose of 0.5 mg/kg or less or 0.25 mg/kg or less and most preferably at a dose of 0.1 mg/kg or less.
  • the pharmaceutical compositions of the invention can be formulated for topical, oral, intranasal, intraocular, intravenous, intramuscular or subcutaneous administrations and the like.
  • the pharmaceutical composition contains vehicles which are pharmaceutically acceptable for a formulation intended to be injected.
  • vehicles which are pharmaceutically acceptable for a formulation intended to be injected.
  • These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.
  • Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin.
  • the immunocytokine of the invention nucleic acids coding therefore or nucleic acid vectors may be solubilized in a buffer or water or incorporated in emulsions, microemulsions, hydrogels (e.g. PLGA-PEG-PLGA triblock copolymers-based hydrogels), in microspheres, in nanospheres, in microparticles, in nanoparticles (e.g. poly(lactic-co-glycolic acid) microparticles (e.g. poly lactic acid (PLA); poly (lactide-co-glycolic acid) (PLGA); polyglutamate microspheres, nanospheres, microparticles or nanoparticles), in liposomes, or other galenic formulations.
  • the formulation must be sterile and fluid to the extent of acceptable syringability. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
  • Solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols, mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
  • the immunocytokines according to the invention can be formulated into a composition in a neutral or salt form.
  • Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
  • the carrier can also be a solvent or a dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils.
  • the immunocytokines of the invention may also be modified, by pegylation as an example, so as to increase its biodisponibility.
  • the carrier can also be a vector, such as a virus (e.g. MVA, rAAV, lentivirus, etc.)
  • the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • a coating such as lecithin
  • surfactants for example, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars or sodium chloride.
  • Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate, gelatin, polyols, half-life enhancing covalent and non covalent formulations.
  • agents delaying absorption for example, aluminium monostearate, gelatin, polyols, half-life enhancing covalent and non covalent formulations.
  • Stabilizers may be added to reduce or prevent such problems.
  • Stabilizers include cyclodextrine and derivatives thereof (see U.S. Pat. No. 5,730,969). Suitable preservatives such as sucrose, mannitol, sorbitol, trehalose, dextran and glycerin can also be added to stabilize the final formulation. A stabilizer selected from ionic and non-ionic surfactants, D-glucose, D-galactose, D-xylose, D-galacturonic acid, trehalose, dextrans, hydroxyethyl starches, and mixtures thereof may be added to the formulation. Addition of alkali metal salt or magnesium chloride may stabilize a peptide.
  • the peptide may also be stabilized by contacting it with a saccharide selected from the group consisting of dextran, chondroitin sulphuric acid, starch, glycogen, dextrin, and alginic acid salt.
  • a saccharide selected from the group consisting of dextran, chondroitin sulphuric acid, starch, glycogen, dextrin, and alginic acid salt.
  • Other sugars that can be added include monosaccharides, disaccharides, sugar alcohols, and mixtures thereof (E.g., glucose, mannose, galactose, fructose, sucrose, maltose, lactose, mannitol, xylitol).
  • Polyols may stabilize a peptide, and are water-miscible or water-soluble.
  • Suitable polyols may be polyhydroxy alcohols, monosaccharides and disaccharides including mannitol, glycrol, ethylene glycol, propylene glycol, trimethyl glycol, vinyl pyrrolidone, glucose, fructose, arabinose, mannose, maltose, sucrose, and polymers thereof.
  • Various excipients may also stabilize peptides, including serum albumin, amino acids, heparin, fatty acids and phospholipids, surfactants, metals, polyols, reducing agents, metal chelating agents, polyvinyl pyrrolidone, hydrolysed gelatin, and ammonium sulfate.
  • cytokine therapy does indeed derive from the identification of these novel cytokines but even more fundamentally, the field is greatly benefiting from the ever-expanding amount of preclinical data that convincingly demonstrate synergistic and/or novel biologic effects, which may be achieved through the use of several combinations of cytokines with complementary immune-stimulating capabilities.
  • Potential therapeutic active agent combinations with RLI-based immunocytokines includes by example chemotherapeutic agents, antiangiogenic agents, or immunomodulatory agents.
  • composition of the invention may comprise a further therapeutic active agent, such as chemotherapeutic agents, antiangiogenic agents, or immunomodulatory agents.
  • chemotherapeutic agents it has been demonstrated that their therapeutic effects could be mediated in part by an indirect effect on immune responses, either by inducing an immunogenic cell death, balancing the immunosuppressive environments, debulking the primary large tumor and then facilitating the immune attack or by inducing a transient lymphopenia followed by homeostatic lymphoproliferation.
  • chemotherapeutic agent which can be combined with the immunocytokine of the invention, on can cite fludarabine, gemcitabine, capecitabine, methotrexate, taxol, taxotere, mercaptopurine, thioguanine, hydroxyurea, cytarabine, cyclophosphamide, ifosfamide, nitrosoureas, platinum complexes such as cisplatin, carboplatin and oxaliplatin, mitomycin, dacarbazine, procarbizine, etoposide, teniposide, campathecins, bleomycin, doxorubicin, idarubicin, daunorubicin, dactinomycin, plicamycin, mitoxantrone, L-asparaginase, doxorubicin, epimbicm, 5-fluorouracil, taxanes
  • antiangiogenic agents it has been demonstrated that they have off-target effects on immune system and then could facilitate the tumor immune responses.
  • antiangiogenic agent which can be combined with the immunocytokine of the invention, on can cite drugs targeting the vascular endothelial growth factor receptor (VEGFR) via its tyrosine kinase, such as sorafenib, sunitinib, and pazopanib, or the mammalian target of rapamycin (mTOR), such as temsirolimus and everolimus.
  • VEGFR vascular endothelial growth factor receptor
  • mTOR mammalian target of rapamycin
  • cytokines IL-2, IL-7, IL-1S, IL-12, ILL18, IL-21, GM-CSF, G-CSF, IFN ⁇ , . . .
  • chemokines/antiangiogenic cytokines IP10, Mig, SDF-1, RANTES, . . .
  • TLR agonists immunoregulatory antibodies
  • immunoregulatory antibodies anti-CTLA4, anti-PD1, anti-TGFb, agonist anti-CD40, . . . ).
  • the present invention relates to a pharmaceutical composition as described previously for treating cancer in a subject, preferably of a pharmaceutical composition comprising an immunocytokine as described previously.
  • the term “subject” denotes a mammal, such as a rodent, a feline, a canine or a primate, and most preferably a human.
  • the present invention relates to products containing:
  • an immunocytokine as describe above a nucleic acid sequence coding therefore, or a vector comprising such a nucleic acid sequence
  • a therapeutic agent preferably an anticancer agent
  • the present invention relates to a method for treating cancer in a subject comprising the step of administrating to said subject a pharmaceutical composition as described previously.
  • the present invention relates to a method for treating cancer comprising the step of simultaneously, separately, or sequentially administrating to a subject in need thereof of a therapeutically effective amount of:
  • an immunocytokine as describe above a nucleic acid sequence coding therefore, or a vector comprising such a nucleic acid sequence
  • a therapeutic agent preferably an anticancer agent.
  • treating means reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition.
  • treating cancer means the inhibition of the growth of cancer cells.
  • such treatment also leads to the regression of tumor growth, i.e., the decrease in size of a measurable tumor. Most preferably, such treatment leads to the complete regression of the tumor.
  • the expression plasmids encoding for the anti-CD20 chimeric IgG light chains and anti-GD2-O-acetylated chimeric IgG light chains were kindly provided by Dr WATIER (liable François-Rabelais de Tours, France) and Dr BIRKLE (INSERM, liable de France, U892, France) respectively.
  • the chimeric IgG heavy chain sequences of each antibody were designed to be fused in 3′term with or without a linker of 22 amino-acid (SEQ ID no 16) to IL15S (SEQ ID no 3, wherein the amino acid at position 93 is K). These nucleotide sequences were synthesized and cloned in pcDNA3.1 plasmids by GENEART.
  • the complete sequence of light and heavy chains of the anti-GD2-O-acetylated antibody (8B6) are disclosed in the patent application EP 2,076,542 A1 and in CERATO et al. ( Hybridoma , vol. 16(4), p: 307-16, 1997).
  • the complete sequence of light and heavy chains of the anti-CD20 antibody (2B8) are disclosed in the patent U.S. Pat. No. 5,736,137 (ANDERSON et al. as the antibody called “C2B8”) and in REFF et al. ( Blood, vol. 83(2), p: 435-45, 1994).
  • a 40 kDa linear PEI was obtained from POLYSCIENCE.
  • a 1 mg/mL stock solution was prepared by dissolving the PEI in water with heating, neutralizing by NaOH, and sterilizing by filtration through a 0.22 m filter. The solution stock was aliquoted and stored at ⁇ 20° C.
  • Plasmids DNA for transfections were purified using the plasmid purification kits following the manufacturer's protocol (MACHEREY-NAGEL) and sterilizing by filtration through a 0.22 ⁇ m filter.
  • CHO-S Routinely maintained CHO-S (INVITROGEN) cells were seeded at a density of 1 ⁇ 10 6 cells/mL in PowerCHO2 Medium (LONZA) and cultured overnight at 37° C. in a shaking incubator (100 rpm) with 5% CO 2 . For transfection, cells were then diluted to 2 ⁇ 10 6 cells/mL in CD-CHO medium (INVITROGEN). The transfection complexes were prepared in 10% of the culture volume using NaCl 150 mM.
  • DNA (2.5 mg/L of culture volume, using a 1:2 ration of plasmid encoding heavy chain to plasmid encoding light chain) were mixed with PEI diluted in NaCl (10 mg/L of final culture volume) and incubated for 10 min at room temperature before adding to the culture.
  • Cells were cultured in a shaking incubator (130 rpm) at 37° C. for 5 h before doubling the culture volume with PowerCHO2 medium. Supernatant were collected 5 days postransfection.
  • CHO-K1 cells (ATCC no CCL-61) were grown in DMEM supplemented with1-glutamine, 10% FCS and penicillin (100 units/ml)/streptomycin (100 ⁇ g/ml) and transfected with each vector using lipofectamine 2000 reagent (INVITROGEN), as recommended by the manufacturer.
  • Clones were selected by limit dilution with medium containing geneticin and hygromycin (0.5 mg/ml) or blasticin and hygromycin (51 g/mL and 100 ⁇ g/mL) for the anti-GD2O-acylated ICK and anti-CD20 ICK, respectively.
  • Culture supernatant of each clone was assayed for bifunctional proteins production by ELISA.
  • ICK selected clones were amplified in 25% DMEM medium and 75% AIM medium (INVITROGEN). Cells were then maintained in 100% of AIM, and supernatant were collected and replaced every 2 days, for 10 days.
  • biotinylated anti-IL15 antibody BAM 247 (R&D SYSTEM) diluted to 200 ng/mL was added and incubated for 1 h30 min at 37° C. The plate was washed 3 times and peroxidase conjugated streptavidin was added dilution 1:1000.
  • TMB substrate (INTERCHIM) was used to determine protein levels and plates were read at 450 nm.
  • IL-15 (PEPROTECH) was used to generate a standard curve on plate.
  • the obtained preparation of immunocytokines comprises many protein contaminants (i.e. equal or superior to 25%). So as to reduce these protein contaminations, the two anti-GD2-O-acetylated/interleukin 15 immunocytokines have been subjected to another round of protein A sepharose purification.
  • the purity of the ICK c8B6-122-IL15 and c8B6-IL15 was respectively of 70 and 90%.
  • the interleukin-15 proliferation activity of the obtained immunocytokines was tested.
  • the proliferative responses of Kit 225 and 32D ⁇ cells to ICK were measured by [ 3 H] thymidine incorporation.
  • Cells were maintained in culture medium for 3 days, washed twice, and starved in medium without cytokine for 24 h or 4 h for Kit 225 and 32D ⁇ , respectively. They were then seeded in multiwell plates at 10 4 cells/well in 100 ⁇ l and cultured for 48 h in medium supplemented with increasing concentration of sample. Human rIL-15 and RLI were used as calibrator. Cells were pulsed for 16 h with 0.5 ⁇ Ci/well of [ 3 H] thymidine, harvested onto glass fiber filters, and cell-associated radioactivity was measured.
  • FIG. 1 shows [ 3 H]Thymidine incorporation by Kit 225 and 32D ⁇ cells cultured with increasing concentrations of rIL-15 ( ⁇ ), c8B6-IL15 ( ⁇ ), and c8B6-122-IL15 ( ⁇ ).
  • FIG. 2 shows [ 3 H]Thymidine incorporation by Kit 225 and 32D ⁇ cells cultured with increasing concentrations of rIL-15 and c2B8-122-IL15 ( ⁇ ).
  • the specific binding of the anti-CD20 and anti-GD2 O-acetylated ICK were was assessed by flow cytometry on tumors cells Raji and IMR32 respectively.
  • the capacity of ICK to bind IL-15 receptor on effector cells were tested on Kit225.
  • ICK coated on targeted cells were revealed with a PE-conjugated goat anti-human IgG mAb (PN IM0550, BECKMAN COULTER), or with a biotinylated mouse anti-IL15 antibody (BAM247, R&D SYSTEM) coupled to PE-streptavidin (SIGMA-ALDRICH) Targeted cells (1 ⁇ 10 5 ) were incubated with each ICK for 1 h at 4° C., washed and then incubated with a PE-conjugate for 1 h at 4° C. Washed cells were finally analyzed on a FACSCALIBUR (BECTON DICKINSON).
  • FIG. 3 shows flow cytometry evaluation of the ICK anti-CD20 (c2B8-122-IL15) and anti-GD2O-acetylated (c8B6-IL15 and c8B6-122-IL15) on CD20 expressing Raji cells and GD2O-acetylated expressing IMR32 cells.
  • Cells were first incubated with ICK. then with a PE-conjugated goat anti-human IgG mAb for anti-CD20 or with biotinylated anti-IL15+PE-conjugated streptavidin for anti-CD20 and anti-GD2, respectively. Finally sample were analysed on a FACSCALIBUR.
  • ICK were compared on Raji cells to the anti-CD20 Mab Rituximab (MABTHERA, ROCHE).
  • FIG. 4 shows flow cytometry evaluation of the ICK anti-CD20 (c2B8-122-IL15 and anti-GD2O-acetylated (c8B6-IL 15 and c8B6-122-IL15) on IL 15R expressing Kit 225 cells.
  • Cells were first incubated with ICK, then with a PE-conjugated goat anti-human IgG mAb. Finally sample were analysed on a FACSCALIBUR.
  • ICK were compared to the anti-CD20 Mab Rituximab (MABTHERA, ROCHE).
  • the anti-CD20 and anti-GD2-O-acetylated immunocytokines were constructed as previously excepted that the IL15 Homo sapiens sequence was replaced by RLI2 sequence (SEQ ID no 17).
  • immunocytokines were done as previously disclosed except that these immunocytokines were obtained with good yields and good purity (i.e. greater than 90%) after only one round of protein A sepharose purification.
  • ICK RLI The specific binding of the anti-CD20 and anti-GD2 O-acetylated ICK RLI were was assessed by flow cytometry on tumors cells Raji, WM266.4 and IMR32. The capacity of ICK RLI to bind IL-15 receptor on effector cells were tested on Kit225. ICK RLI coated on targeted cells were revealed cells with a PE-conjugated goat anti-human IgG mAb (PN IM0550 BECKMAN COULTER), or with a biotinylated mouse anti-IL15 antibody (BAM247, R&D SYSTEM) coupled to PE-streptavidin (SIGMA-ALDRICH).
  • PE-conjugated goat anti-human IgG mAb PN IM0550 BECKMAN COULTER
  • BAM247, R&D SYSTEM biotinylated mouse anti-IL15 antibody
  • SIGMA-ALDRICH PE-streptavidin
  • Targeted cells (1 ⁇ 10 5 ) were incubated with each ICK for 1 h at 4° C., washed and then incubated with a PE-conjugate for 1 h at 4° C. Washed cells were finally analyzed on a FACSCALIBUR (BECTON DICKINSON).
  • FIG. 5 shows flow cytometry evaluation of the ICK c2B8-RLI, c8B6-RLI and c8B6-122-RLI on CD20 expressing Raji cells and GD2O-acetylated expressing WM266.4 and IMR32 cells.
  • Cells were first incubated with ICK RLI, then with a PE-conjugated goat anti-human IgG mAb for anti-CD20 or with biotinylated anti-IL15+PE-conjugated streptavidin for anti-CD20 and anti-GD2O-acetylated, respectively. Finally, samples were analysed on a FACSCALIBUR. ICK RLI were compared on Raji cells to the anti-CD20 Mab Rituximab (MABTHERA, ROCHE).
  • FIG. 6 shows flow cytometry evaluation of the ICK RLI anti-CD20 (c2B8-RLI) and anti-GD2O-acetylated (c8B6-RLI and c8B6-122-RLI) on IL15R ⁇ expressing Kit 225 cells.
  • Cells were first incubated with ICK RLI, then with a PE-conjugated goat anti-human IgG mAb. Finally, sample were analysed on a FACSCALIBUR.
  • the results show that the immunocytokines of the invention bind to the IL-15 receptor and also to their respective tumor antigen target.
  • the interleukin-15 proliferation activity of the newly obtained immunocytokines was tested.
  • FIG. 7 shows [ 3 H]Thymidine incorporation by Kit 225 and 32D ⁇ cells cultured with increasing concentrations of RLI ( ⁇ ), rIL-15 ( ⁇ ) c8B6-RLI ( ⁇ ), and c8B6-122-RLI ( ⁇ ).
  • FIG. 8 shows [ 3 H]Thymidine incorporation by 32D ⁇ cells cultured with increasing concentrations of RLI ( ⁇ ), rIL-15 ( ⁇ ) and c2B8-RLI ( ⁇ ).
  • the murine NXS2 neuroblatomas cell line was propagated in DMEM (10% FCS) under standard tissue culture conditions (37° C., 5% CO2).
  • the NXS2 NB cell line expressing GD2-O-Ac was developed and characterized by LODE et al. ( J. Natl. Cancer Inst ., vol. 89(21), p: 1586-94, 1997).
  • mice aged of 8 weeks, were purchased from HARLAN laboratories. Mice were housed at the animal facility of Inserm U892, which is approved by the French Association for Accreditation of Animal Care Laboratories and is maintained in accordance with the regulations and standards of Inserm Institute and the French Department of Agriculture.
  • FIG. 9 shows the efficacy of c8B6-RL12 on NXS2 liver metastasis.
  • c8B6 (12 ⁇ g) or c8B6-RLI (16 ⁇ g) was administered i.p. on days 1, 4, 7, and 11.
  • Left: Graph represents mean of each group (n 5); bars, SEM.
  • mice which have received ICK remain liver metastasis free.
  • ICK can eradicate the development of NXS2 liver metastasis, meaning that RLI conjugation to a monoclonal antibody dramatically enhances its antitumor capabilities.
  • the human Raji B cells were cultured in RPM11640 medium supplemented with 10% fetal calf serum, 2 mM 1-glutamine.
  • SCID CB-17 mice were purchased from the CHARLES RIVER Breeding Laboratories. Mice were kept under specific pathogen-free conditions in a separate facility using autoclaved cages of micro-isolator units and fed with irradiated solid food and sterilised water.
  • Raji cells were harvested in their log-phase, washed and re-suspended at 2.5 ⁇ 10 5 cells/0.1 ml in phosphate-buffered saline (PBS) before being injected intravenously into the mice followed by ip treatment with immunocytokines 3 times a week (beginning on day 5) for 3 week after implantation.
  • Mice received treatment in equimolar quantity except for the groups “immunocytokine” and “rituximab+RLI” which received a half dose. The mice were monitored daily for the presence of hind-leg paralysis and in that case sacrificed and scored as dead.
  • sequence encoding for the anti-HER2 murine 4D5 IgG light chains, anti-HER2 murine IgG 4D5 heavy chains and anti-HER2 scFv were kindly provided by Dr DONDA (Biochemistry Institute Lausanne, switzerland).
  • the anti-HER2Neu IL15- and RLI-immunocytokines were constructed as previously on the basis of the anti HER2Neu light (SEQ ID no 18) and heavy (SEQ ID no 19) chains of the anti-HER2Neu antibody.
  • sequence encoding the leader sequence of beta2 microglobulin in frame with sequence encoding chimeric IgG heavy chain sequences were designed to be fused in 3′term with or without a linker of 22 amino-acid (SEQ ID no 16) to IL15 (SEQ ID no 20 and 21 respectively) and to RLI (SEQ ID no 22 and 23 respectively).
  • a 40 kDa linear PEI was obtained from POLYSCIENCE.
  • a 1 mg/mL stock solution was prepared by dissolving the PEI in water with heating, neutralizing by NaOH, and sterilizing by filtration through a 0.22 ⁇ m filter. The solution stock was aliquoted and stored at ⁇ 20° C.
  • Plasmids DNA for transfections were purified using the plasmid purification kits following the manufacturer's protocol (MACHEREY-NAGEL) and sterilizing by filtration through a 0.22 ⁇ m filter.
  • HEK293T cells kindly provided by Dr. SCHNEIDER (Biochemistry Institute Lausanne, switzerland) were seeded in T175 cm2 flask in DMEM-Glutamax 10% SVF at 37° C. and 5% CO 2 .
  • the day of transfection a complex of DNA plasmid and PEI were prepared in sterile NaCl 150 mM. Plasmid DNA diluted in NaCl (1.25 mg/L of culture volume) were mixed with PEI diluted in NaCl (12.5 mg/L of culture volume) and incubated for 10 min at room temperature before adding to the cell culture.
  • the specific binding of the anti-HER2 IgG-ICK or scFv-ICK was assessed by flow cytometry on HER2 positive cells SK-BR-3 using anti-IL15 antibody.
  • the capacity of ICK to bind IL-15 receptor on effector cells were tested on Kit225.
  • ICK coated on targeted cells were revealed with a FITC-conjugated goat anti-murine IgG mAb (SIGMA-ANDRICH) or with a FITC-conjugated mouse anti-IL15 antibody (R&D SYSTEM).
  • Targeted cells (1 ⁇ 10 5 ) were incubated with each ICK for 1 h at 4° C., washed and then incubated with a FITC-conjugate for 1 h at 4° C. Washed cells were finally analyzed on a FACSCALIBUR (BECTON DICKINSON).
  • FIG. 3 shows flow cytometry evaluation of anti-HER2 (trastuzumab-IL15 and trastuzumab-l22-IL15) on HER2 expressing SKBR3 cells.
  • FIG. 5 shows flow cytometry evaluation of the ICK Trastuzumab-RLI on HER2 expressing SKBR3 cells.
  • Anti-HER2 ICK was compared on SKBR3 cells to the Trastuzumab (Herceptin®, Genentech)
  • interleukin-15 proliferation activity of the fusion of IL-15 and Trastuzumab or anti-HER2 scFv fragments was tested on Kit 225 and 32D ⁇ cells by measuring [ 3 H]thymidine incorporation according to the method described previously.
  • FIG. 11 shows [ 3 H]Thymidine incorporation by Kit 225 and 32D ⁇ cells cultured with increasing concentrations of Trastuzumab-l22-IL-15 ( ⁇ ), Trastuzumab-IL-15( ⁇ ), and rIL-15 ( ⁇ ).
  • FIG. 12 shows [ 3 H]Thymidine incorporation by Kit 225 and 32D ⁇ cells cultured with increasing concentrations of Trastuzumab-RL1 ( ⁇ ), RLI ( ⁇ ), and rIL-15 ( ⁇ ).
  • the results show that the RLI-derived trastuzumab immunocytokines present a significant gain of biological activity as compared to free IL-15 in the ⁇ context (about 10 to 100 fold increase).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US14/129,188 2011-06-24 2012-06-22 AN IL-15 AND IL-15R\alpha SUSHI DOMAIN BASED IMMUNOCYTOKINES Abandoned US20150152188A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11358005A EP2537933A1 (fr) 2011-06-24 2011-06-24 Immunocytokines basées sur le domaine IL-15 et IL-15Ralpha sushi
EP11358005.4 2011-06-24
PCT/EP2012/002650 WO2012175222A1 (fr) 2011-06-24 2012-06-22 Immunocytokines à base d'il-15 et domaine sushi d'il-15rα

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/002650 A-371-Of-International WO2012175222A1 (fr) 2011-06-24 2012-06-22 Immunocytokines à base d'il-15 et domaine sushi d'il-15rα

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/214,032 Continuation US10626155B2 (en) 2011-06-24 2016-07-19 IL-15 and IL-15R\alpha sushi domain based immunocytokines

Publications (1)

Publication Number Publication Date
US20150152188A1 true US20150152188A1 (en) 2015-06-04

Family

ID=46456485

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/129,188 Abandoned US20150152188A1 (en) 2011-06-24 2012-06-22 AN IL-15 AND IL-15R\alpha SUSHI DOMAIN BASED IMMUNOCYTOKINES
US15/214,032 Active 2032-10-23 US10626155B2 (en) 2011-06-24 2016-07-19 IL-15 and IL-15R\alpha sushi domain based immunocytokines
US16/012,174 Active US10899816B2 (en) 2011-06-24 2018-06-19 IL-15 and IL-15Rα sushi domain based immunocytokines
US17/068,628 Active 2033-01-25 US11753454B2 (en) 2011-06-24 2020-10-12 IL-15 and IL-15R\alpha sushi domain based immunocytokines
US18/352,998 Pending US20240083963A1 (en) 2011-06-24 2023-07-14 Il-15 and il-15r\alpha sushi domain based immunocytokines

Family Applications After (4)

Application Number Title Priority Date Filing Date
US15/214,032 Active 2032-10-23 US10626155B2 (en) 2011-06-24 2016-07-19 IL-15 and IL-15R\alpha sushi domain based immunocytokines
US16/012,174 Active US10899816B2 (en) 2011-06-24 2018-06-19 IL-15 and IL-15Rα sushi domain based immunocytokines
US17/068,628 Active 2033-01-25 US11753454B2 (en) 2011-06-24 2020-10-12 IL-15 and IL-15R\alpha sushi domain based immunocytokines
US18/352,998 Pending US20240083963A1 (en) 2011-06-24 2023-07-14 Il-15 and il-15r\alpha sushi domain based immunocytokines

Country Status (19)

Country Link
US (5) US20150152188A1 (fr)
EP (3) EP2537933A1 (fr)
JP (4) JP6151687B2 (fr)
KR (4) KR20190051080A (fr)
CN (3) CN114805606A (fr)
AU (3) AU2012272138B2 (fr)
BR (1) BR112013033350B1 (fr)
CA (1) CA2840113C (fr)
DK (1) DK2723869T3 (fr)
ES (1) ES2727806T3 (fr)
HR (1) HRP20190799T1 (fr)
HU (1) HUE043442T2 (fr)
MX (1) MX354923B (fr)
PL (1) PL2723869T3 (fr)
PT (1) PT2723869T (fr)
RU (2) RU2644671C2 (fr)
SI (1) SI2723869T1 (fr)
TR (1) TR201907397T4 (fr)
WO (1) WO2012175222A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018075989A1 (fr) * 2016-10-21 2018-04-26 Altor Bioscience Corporation Molécules multimériques à base d'il-15
US10251922B2 (en) 2013-03-14 2019-04-09 Icahn School Of Medicine At Mount Sinai Newcastle disease viruses and uses thereof
US10308913B2 (en) 2005-12-02 2019-06-04 Icahn School Of Medicine At Mount Sinai Chimeric viruses presenting non-native surface proteins and uses thereof
CN112585161A (zh) * 2018-05-04 2021-03-30 免疫靶向有限公司 白介素15融合蛋白及其组合物和治疗方法
US11173191B2 (en) 2014-06-30 2021-11-16 Altor BioScience, LLC. IL-15-based molecules and methods of use thereof
US11365231B2 (en) 2007-05-11 2022-06-21 Altor Bioscience, Llc Interleukin 15 (IL-15) variants
US11389495B2 (en) 2014-02-27 2022-07-19 Merck Sharp & Dohme Llc Combination method for treatment of cancer
US11472856B2 (en) 2016-06-13 2022-10-18 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
US11524033B2 (en) 2017-09-05 2022-12-13 Torque Therapeutics, Inc. Therapeutic protein compositions and methods of making and using the same

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2367891T3 (es) 2000-09-29 2011-11-10 Schering Corporation Interleucina-10 pegilada.
MX2007014474A (es) 2005-05-17 2008-02-07 Univ Connecticut Composiciones y metodos para inmunomodulacion en un organismo.
NZ569541A (en) 2006-01-13 2012-05-25 Us Gov Health & Human Serv Codon optimized IL-15 and IL-15R-alpha genes for expression in mammalian cells
EP2468293B1 (fr) 2006-09-28 2014-10-22 Merck Sharp & Dohme Corp. Utilisation de il-10 pegylé pour prévenir les métastases du cancer du poumon
NZ599338A (en) 2007-06-27 2013-11-29 Marinepolymer Tech Inc Complexes of il-15 and il-15ralpha and uses thereof
KR20140020228A (ko) 2010-09-21 2014-02-18 알토 바이오사이언스 코포레이션 다량체성 아이엘 15 용해성 융합 분자 및 그의 제조 및 사용 방법
US11053299B2 (en) 2010-09-21 2021-07-06 Immunity Bio, Inc. Superkine
US9133244B2 (en) 2011-01-18 2015-09-15 Bioniz, Llc Compositions and methods for modulating gamma-c-cytokine activity
EP2537933A1 (fr) 2011-06-24 2012-12-26 Institut National de la Santé et de la Recherche Médicale (INSERM) Immunocytokines basées sur le domaine IL-15 et IL-15Ralpha sushi
RU2679889C2 (ru) 2013-04-18 2019-02-14 Армо Байосайенсиз, Инк. Способы применения интерлейкина-10 для лечения заболеваний и расстройств
DK2986312T3 (da) * 2013-04-19 2022-02-14 Cytune Pharma Cytokinafledt behandling med reduceret vaskulært lækagesyndrom
CA2914837A1 (fr) 2013-06-17 2014-12-24 Armo Biosciences, Inc. Methode d'evaluation de l'identite et de la stabilite d'une proteine
KR102457731B1 (ko) * 2013-08-08 2022-10-21 싸이튠 파마 병용 약학 조성물
US11273204B2 (en) 2013-08-08 2022-03-15 Cytune Pharma IL-15 and IL-15RAPLHA sushi domain based immunocytokines
WO2015070060A1 (fr) 2013-11-11 2015-05-14 Armo Biosciences, Inc. Méthodes d'utilisation de l'interleukine-10 pour le traitement de maladies et de troubles
US9959384B2 (en) 2013-12-10 2018-05-01 Bioniz, Llc Methods of developing selective peptide antagonists
JP2017509319A (ja) 2014-01-15 2017-04-06 カドモン コーポレイション,リミティド ライアビリティ カンパニー 免疫調節剤
EP2915569A1 (fr) * 2014-03-03 2015-09-09 Cytune Pharma Procédé de purification de conjugués à base Il -15/IL-15Ralpha
CN106573072A (zh) 2014-06-02 2017-04-19 阿尔莫生物科技股份有限公司 降低血清胆固醇的方法
EP3206713A4 (fr) * 2014-10-14 2018-06-27 Armo Biosciences, Inc. Compositions d'interleukine-15 et leurs utilisations
CN107106655A (zh) 2014-10-22 2017-08-29 阿尔莫生物科技股份有限公司 使用白细胞介素‑10治疗疾病和病症的方法
CN106459219B (zh) * 2014-12-19 2019-01-08 江苏恒瑞医药股份有限公司 白细胞介素15蛋白复合物及其用途
WO2016126615A1 (fr) 2015-02-03 2016-08-11 Armo Biosciences, Inc. Procédés d'utilisation de l'interleukine-10 pour le traitement de maladies et de troubles
JP6730705B2 (ja) * 2015-02-12 2020-07-29 国立大学法人岩手大学 哺乳動物細胞に対する外来遺伝子の導入効率の向上剤
EP3302547A1 (fr) 2015-05-28 2018-04-11 Armo Biosciences, Inc. Interleukine 10 pégylée utilisée pour le traitement du cancer
WO2016200881A1 (fr) * 2015-06-10 2016-12-15 Emory University Compositions et conjugués comprenant une interleukine et des polypeptides qui se lient de manière spécifique au tgf-bêta
CN106380521B (zh) * 2015-07-02 2020-12-29 博际生物医药科技(杭州)有限公司 用于肿瘤靶向治疗的白细胞介素-15融合蛋白
AU2016312510A1 (en) 2015-08-25 2018-03-08 Armo Biosciences, Inc. Methods of using Interleukin-10 for treating diseases and disorders
WO2017046200A1 (fr) * 2015-09-16 2017-03-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Polypeptide antagoniste spécifique de l'interleukine-15 (il-15) et ses utilisations pour le traitement de maladies inflammatoires et auto-immunes
WO2017062604A1 (fr) 2015-10-06 2017-04-13 Regents Of The University Of Minnesota Composés thérapeutiques et procédés
CN108350032A (zh) * 2015-10-09 2018-07-31 比奥尼斯有限责任公司 调节γC-细胞因子活性
EP3443001A4 (fr) 2016-04-11 2020-04-29 Obsidian Therapeutics, Inc. Systèmes de biocircuits régulés
CA3024509A1 (fr) 2016-05-18 2017-11-23 Modernatx, Inc. Polytherapie a base d'arnm pour le traitement du cancer
CN110214148A (zh) 2016-10-14 2019-09-06 Xencor股份有限公司 含有IL-15/IL-15Rα Fc融合蛋白和PD-1抗体片段的双特异性异源二聚体融合蛋白
CN110114072A (zh) * 2016-11-02 2019-08-09 纳米珀特伊根公司 聚合物纳米颗粒
CN108250301A (zh) * 2016-12-29 2018-07-06 天津天锐生物科技有限公司 一种多靶点嵌合抗原受体
AR111651A1 (es) 2017-04-28 2019-08-07 Novartis Ag Conjugados de anticuerpos que comprenden agonistas del receptor de tipo toll y terapias de combinación
US20200172628A1 (en) 2017-06-22 2020-06-04 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018235056A1 (fr) 2017-06-22 2018-12-27 Novartis Ag Anticorps se liant à il-1beta destinés à être utilisés dans le traitement du cancer
WO2018234879A1 (fr) 2017-06-22 2018-12-27 Novartis Ag UTILISATION D'ANTICORPS DE LIAISON IL-1β DANS LE TRAITEMENT DU CANCER
WO2018237157A1 (fr) 2017-06-22 2018-12-27 Novartis Ag Molécules d'anticorps se liant à cd73 et leurs utilisations
CA3066747A1 (fr) 2017-06-27 2019-01-03 Novartis Ag Regimes posologiques pour anticorps anti-tim3 et leurs utilisations
MA49517A (fr) 2017-06-30 2020-05-06 Xencor Inc Protéines de fusion fc hétérodimères ciblées contenant il-15/il-15ra et domaines de liaison à l'antigène
CN111163798A (zh) 2017-07-20 2020-05-15 诺华股份有限公司 用于抗lag-3抗体的给药方案及其用途
CA3081602A1 (fr) 2017-11-16 2019-05-23 Novartis Ag Polytherapies
EP3717907A1 (fr) 2017-11-30 2020-10-07 Novartis AG Récepteur d'antigène chimérique ciblant le bcma et ses utilisations
US20210015859A1 (en) * 2017-12-08 2021-01-21 Fate Therapeutics, Inc. IMMUNOTHERAPIES USING ENHANCED iPSC DERIVED EFFECTOR CELLS
CU24545B1 (es) * 2017-12-29 2021-09-07 Ct Ingenieria Genetica Biotecnologia Péptido antagonista de la actividad de la interleucina-15
EP3752203A1 (fr) 2018-02-13 2020-12-23 Novartis AG Thérapie par récepteur antigénique chimérique en combinaison avec il-15 r et il15
CN112004547A (zh) 2018-02-26 2020-11-27 新索思股份有限公司 Il-15缀合物及其用途
PE20201342A1 (es) 2018-02-28 2020-11-25 Pfizer Variantes de il-15 y usos de las mismas
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
EP3781599A1 (fr) 2018-04-18 2021-02-24 Xencor, Inc. Protéines de fusion hétérodimères ciblant pd-1 contenant des protéines de fusion fc d'il-15/il-15ra, domaines de liaison à l'antigène pd-1 et utilisations associées
CN112437777A (zh) 2018-04-18 2021-03-02 Xencor股份有限公司 包含IL-15/IL-15RA Fc融合蛋白和TIM-3抗原结合结构域的靶向TIM-3的异源二聚体融合蛋白
EP3561053A1 (fr) * 2018-04-26 2019-10-30 Baylor College of Medicine Cellules effectrices immunes et adaptateurs moléculaires avec un complexe antigène cytokine pour immunothérapie anticancéreuse efficace
AR126019A1 (es) 2018-05-30 2023-09-06 Novartis Ag Anticuerpos frente a entpd2, terapias de combinación y métodos de uso de los anticuerpos y las terapias de combinación
WO2019232244A2 (fr) 2018-05-31 2019-12-05 Novartis Ag Molécules d'anticorps anti-cd73 et leurs utilisations
CA3098420A1 (fr) 2018-06-01 2019-12-05 Novartis Ag Molecules de liaison dirigees contre bcma et leurs utilisations
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
WO2020021465A1 (fr) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Procédé de traitement de tumeurs neuroendocrines
WO2020047299A1 (fr) 2018-08-30 2020-03-05 HCW Biologics, Inc. Polypeptides chimères à chaînes multiples et leurs utilisations
CN113365663A (zh) 2018-08-30 2021-09-07 Hcw生物科技公司 单链嵌合多肽和其用途
US11672826B2 (en) 2018-08-30 2023-06-13 HCW Biologics, Inc. Methods of treating aging-related disorders
MX2021004059A (es) 2018-10-12 2021-09-23 Xencor Inc Proteínas de fusión de il-15/il-15ralfa-fc dirigidas a pd-1 y usos de las mismas en terapias combinadas.
CN113438961A (zh) 2018-12-20 2021-09-24 Xencor股份有限公司 含有IL-15/IL-15Rα和NKG2D抗原结合结构域的靶向异二聚体Fc融合蛋白
JP2022514315A (ja) 2018-12-20 2022-02-10 ノバルティス アーゲー 3-(1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体を含む投与計画及び薬剤組み合わせ
WO2020128637A1 (fr) 2018-12-21 2020-06-25 Novartis Ag UTILISATION D'ANTICORPS DE LIAISON À IL-1β DANS LE TRAITEMENT D'UN CANCER MSI-H
WO2020128620A1 (fr) 2018-12-21 2020-06-25 Novartis Ag Utilisation d'anticorps se liant à il-1bêta
AU2019406840A1 (en) 2018-12-21 2021-06-03 Novartis Ag Use of IL-1 beta antibodies in the treatment or prevention of myelodysplastic syndrome
EP3897613A1 (fr) 2018-12-21 2021-10-27 Novartis AG Utilisation d'anticorps de liaison à il-1bêta
WO2020165374A1 (fr) 2019-02-14 2020-08-20 Ose Immunotherapeutics Molécule bifonctionnelle comprenant il-15ra
KR20210129672A (ko) 2019-02-15 2021-10-28 노파르티스 아게 치환된 3-(1-옥소이소인돌린-2-일)피페리딘-2,6-디온 유도체 및 이의 용도
CA3124935A1 (fr) 2019-02-15 2020-08-20 Novartis Ag Derives de 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione et leurs utilisations
MX2021014189A (es) 2019-05-20 2022-01-06 Cytune Pharma Regimenes de dosificacion de agonistas de la il-2/il-15r?y para el tratamiento del cancer o enfermedades infecciosas.
WO2020249757A1 (fr) 2019-06-14 2020-12-17 Philogen S.P.A Immunoconjugués comprenant un dianticorps à chaîne unique et de l'interleukine-15 ou l'interleukine-15 et un domaine sushi du récepteur alpha de l'interleukine-15
CN114269903A (zh) 2019-06-21 2022-04-01 Hcw生物科技公司 多链嵌合多肽和其用途
AU2020345943A1 (en) 2019-09-10 2022-03-31 Obsidian Therapeutics, Inc. CA2-IL15 fusion proteins for tunable regulation
EP4031578A1 (fr) 2019-09-18 2022-07-27 Novartis AG Anticorps d'entpd2, polythérapies, et procédés d'utilisation des anticorps et des polythérapies
RU2753282C2 (ru) * 2019-09-19 2021-08-12 Закрытое Акционерное Общество "Биокад" ИММУНОЦИТОКИН, ВКЛЮЧАЮЩИЙ ГЕТЕРОДИМЕРНЫЙ БЕЛКОВЫЙ КОМПЛЕКС НА ОСНОВЕ IL-15/IL-15Rα, И ЕГО ПРИМЕНЕНИЕ
TW202128757A (zh) 2019-10-11 2021-08-01 美商建南德克公司 具有改善之特性的 PD-1 標靶 IL-15/IL-15Rα FC 融合蛋白
BR112022007179A2 (pt) 2019-10-21 2022-08-23 Novartis Ag Inibidores de tim-3 e usos dos mesmos
KR20220103947A (ko) 2019-10-21 2022-07-25 노파르티스 아게 베네토클락스 및 tim-3 억제제를 사용한 조합 요법
CA3158893A1 (fr) * 2019-10-24 2021-04-29 Minotaur Therapeutics, Inc. Anticorps chimeriques modifies par des cytokines et leurs methodes d'utilisation
CN111690068B (zh) * 2019-11-13 2022-04-19 中国科学技术大学 一种IL-15/SuIL-15Rα-dFc-γ4复合体蛋白及其构造方法、应用
KR20220131895A (ko) 2019-11-21 2022-09-29 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 항-pd-1/il-15 면역사이토카인을 이용하여 pd-1을 표적으로 하는 신규한 면역요법
CN113135996A (zh) * 2019-12-09 2021-07-20 启愈生物技术(上海)有限公司 一种双特异抗体及其应用
CN115052662A (zh) 2019-12-20 2022-09-13 诺华股份有限公司 抗TGFβ抗体和检查点抑制剂用于治疗增殖性疾病的用途
MX2022008763A (es) 2020-01-17 2022-07-27 Novartis Ag Combinacion que comprende un inhibidor de tim-3 y un agente hipometilante para usarse en el tratamiento del sindrome mielodisplasico o leucemia mielomonocitica cronica.
EP3889183A1 (fr) * 2020-04-01 2021-10-06 Pierre Fabre Medicament Complexe de protéine comprenant une immunocytokine
JP2023531676A (ja) 2020-06-23 2023-07-25 ノバルティス アーゲー 3-(1-オキソイソインドリン-2-イル)ピぺリジン-2,6-ジオン誘導体を含む投与レジメン
CN116134027A (zh) 2020-08-03 2023-05-16 诺华股份有限公司 杂芳基取代的3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途
EP4204020A1 (fr) 2020-08-31 2023-07-05 Advanced Accelerator Applications International S.A. Méthode de traitement de cancers exprimant le psma
WO2022043557A1 (fr) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Méthode de traitement de cancers exprimant le psma
EP4232068A1 (fr) 2020-10-26 2023-08-30 Cytune Pharma Agoniste d'il-2/il-15r?? pour le traitement du cancer de la peau non mélanome
EP4232069A1 (fr) 2020-10-26 2023-08-30 Cytune Pharma Agoniste il-2/il-15r?? pour traiter le carcinome malpighien
KR20230104651A (ko) 2020-11-06 2023-07-10 노파르티스 아게 Cd19 결합 분자 및 이의 용도
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
JP2024514802A (ja) * 2021-04-22 2024-04-03 広東菲鵬制▲薬▼股▲ふん▼有限公司 二重特異性多機能性融合ポリペプチド
AR125874A1 (es) 2021-05-18 2023-08-23 Novartis Ag Terapias de combinación
KR20240024241A (ko) 2021-06-23 2024-02-23 싸이튠 파마 인터루킨 15 변이체
KR20240043797A (ko) 2021-08-13 2024-04-03 싸이튠 파마 암 치료용 IL-2/IL-15Rβγ 작용제와 항체-약물 접합체 조합
WO2023083379A1 (fr) * 2021-11-15 2023-05-19 中国科学院生物物理研究所 Construction de protéine de fusion prenant en tant que principe actif l'interleukine 15 et utilisation associée
WO2023214325A1 (fr) 2022-05-05 2023-11-09 Novartis Ag Dérivés de pyrazolopyrimidine et leurs utilisations en tant qu'inhibiteurs de tet2
CN116854821A (zh) * 2022-08-15 2023-10-10 海徕科(北京)生物技术有限公司 IL-15突变体-Fc/IL-15Rα亚基-Fc异源二聚体及其用途

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US576A (en) * 1838-01-20 Ftjbnace of stoves fob bubning anthracite
US4671958A (en) 1982-03-09 1987-06-09 Cytogen Corporation Antibody conjugates for the delivery of compounds to target sites
GB2148299B (en) 1983-09-01 1988-01-06 Hybritech Inc Antibody compositions of therapeutic agents having an extended serum half-life
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
DE3880766D1 (de) 1987-09-02 1993-06-09 Ciba Geigy Ag Konjugate von interferon alpha mit immunglobulinen.
JP3040121B2 (ja) 1988-01-12 2000-05-08 ジェネンテク,インコーポレイテッド 増殖因子レセプターの機能を阻害することにより腫瘍細胞を処置する方法
US5997856A (en) 1988-10-05 1999-12-07 Chiron Corporation Method and compositions for solubilization and stabilization of polypeptides, especially proteins
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5108910A (en) 1989-08-22 1992-04-28 Immunex Corporation DNA sequences encoding fusion proteins comprising GM-CSF and IL-3
US5073627A (en) 1989-08-22 1991-12-17 Immunex Corporation Fusion proteins comprising GM-CSF and IL-3
US5314995A (en) 1990-01-22 1994-05-24 Oncogen Therapeutic interleukin-2-antibody based fusion proteins
CZ282603B6 (cs) 1991-03-06 1997-08-13 Merck Patent Gesellschaft Mit Beschränkter Haftun G Humanizované a chimerické monoklonální protilátky
JP4124480B2 (ja) 1991-06-14 2008-07-23 ジェネンテック・インコーポレーテッド 免疫グロブリン変異体
EP0752248B1 (fr) * 1992-11-13 2000-09-27 Idec Pharmaceuticals Corporation Application thérapeutique d'anticorps chimériques et radio-marqués contre l'antigène à differentiation restreinte des lymphocytes B humains pour le traitement du lymphome des cellules B
US5736137A (en) 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5595721A (en) 1993-09-16 1997-01-21 Coulter Pharmaceutical, Inc. Radioimmunotherapy of lymphoma using anti-CD20
CA2186747C (fr) 1994-04-06 2009-01-27 Kenneth H. Grabstein Interleukine-15
US6287865B1 (en) 1995-03-31 2001-09-11 Plant Bioscience Limited Cf-2 plant pathogen resistance genes
US7060808B1 (en) 1995-06-07 2006-06-13 Imclone Systems Incorporated Humanized anti-EGF receptor monoclonal antibody
US6235883B1 (en) 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
DK1156823T3 (da) * 1999-02-12 2009-01-19 Scripps Research Inst Fremgangsmåder til behandling af tumorer og metastaser ved anvendelse af en kombination af anti-angiogene terapier og immunoterapier
US6319796B1 (en) 1999-08-18 2001-11-20 Vlsi Technology, Inc. Manufacture of an integrated circuit isolation structure
US6936704B1 (en) 1999-08-23 2005-08-30 Dana-Farber Cancer Institute, Inc. Nucleic acids encoding costimulatory molecule B7-4
PT1210428E (pt) 1999-08-23 2015-07-21 Genetics Inst Llc Pd-1, um recetor para b7-4 e suas utilizações
US6803192B1 (en) 1999-11-30 2004-10-12 Mayo Foundation For Medical Education And Research B7-H1, a novel immunoregulatory molecule
CA3016482A1 (fr) 1999-11-30 2001-06-07 Mayo Foundation For Medical Education And Research Nouvelle molecule immunoregulatrice b7-h1,
EP1252192B1 (fr) 2000-02-11 2006-08-16 MERCK PATENT GmbH Amelioration de la demi-vie circulante de proteines de fusion a base d'anticorps
JP4254051B2 (ja) 2000-11-15 2009-04-15 日本精工株式会社 トロイダル型無段変速機
DK1366067T3 (da) 2001-03-07 2012-10-22 Merck Patent Gmbh Ekspressionsteknologi for proteiner indeholdende en hybrid isotype-antistof-enhed
PT1454138E (pt) * 2001-12-04 2012-03-28 Merck Patent Gmbh Imunocitoquinas com seletividade modulada
DE10212442A1 (de) 2002-03-20 2003-10-09 Michael Hesse Süßwasseraufbereitungsanlage und Verfahren zur Trinkwassergewinnung
US7906118B2 (en) 2005-04-06 2011-03-15 Ibc Pharmaceuticals, Inc. Modular method to prepare tetrameric cytokines with improved pharmacokinetics by the dock-and-lock (DNL) technology
EP2330130B1 (fr) 2002-10-17 2014-08-27 Genmab A/S Anticorps monoclonaux humains contre le CD20
JP5744369B2 (ja) 2004-02-27 2015-07-08 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル IL15−Rα用IL−15結合部位およびアゴニスト/アンタゴニスト活性を有する特異的IL−15突然変異体
US20060025885A1 (en) 2004-08-02 2006-02-02 The Form House, Inc. Apparatus and method for loading data storage devices into carriers
MX2007014474A (es) * 2005-05-17 2008-02-07 Univ Connecticut Composiciones y metodos para inmunomodulacion en un organismo.
EP1777294A1 (fr) * 2005-10-20 2007-04-25 Institut National De La Sante Et De La Recherche Medicale (Inserm) Le domaine sushi de IL-15Ralpha comme enhancer sélectif et efficace de l'action de f IL-15 grâce à IL-15Rbeta/gamma, et l' hyperagoniste (IL15Ralpha sushi -IL15) comme protéine fusion
NZ569541A (en) 2006-01-13 2012-05-25 Us Gov Health & Human Serv Codon optimized IL-15 and IL-15R-alpha genes for expression in mammalian cells
ES2606490T3 (es) 2006-05-08 2017-03-24 Philogen S.P.A. Citocinas dirigidas por anticuerpos para terapia
FR2906808B1 (fr) 2006-10-10 2012-10-05 Univ Nantes Utilisation d'anticorps monoclonaux specifiques de la forme o-acetylee du ganglioside gd2 dans le traitement de certains cancers
CA2690825C (fr) * 2007-05-11 2019-02-12 Altor Bioscience Corporation Molecules de fusion et variants d'il-15
NZ599338A (en) * 2007-06-27 2013-11-29 Marinepolymer Tech Inc Complexes of il-15 and il-15ralpha and uses thereof
US8067548B2 (en) 2007-07-26 2011-11-29 Novagen Holding Corporation Fusion proteins having mutated immunoglobulin hinge region
AU2009228158B2 (en) 2008-03-27 2014-02-27 Zymogenetics, Inc. Compositions and methods for inhibiting PDGFRbeta and VEGF-A
WO2009135031A1 (fr) 2008-04-30 2009-11-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic Il-15 substitué
CA2774260C (fr) 2009-09-16 2018-10-09 Immunomedics, Inc. Anticorps anti-cea de classe i et leurs utilisations
AU2010329805B2 (en) * 2009-12-11 2016-07-14 Proyecto De Biomedicina Cima S.L. New conjugates and compositions for immunotherapy and anti-tumoral treatment
EA201892619A1 (ru) 2011-04-29 2019-04-30 Роше Гликарт Аг Иммуноконъюгаты, содержащие мутантные полипептиды интерлейкина-2
WO2012178137A1 (fr) 2011-06-24 2012-12-27 Gillies Stephen D Protéines hybrides d'immunoglobuline à chaîne légère et leurs procédés d'utilisation
EP2537933A1 (fr) 2011-06-24 2012-12-26 Institut National de la Santé et de la Recherche Médicale (INSERM) Immunocytokines basées sur le domaine IL-15 et IL-15Ralpha sushi
LT2785375T (lt) 2011-11-28 2020-11-10 Merck Patent Gmbh Anti-pd-l1 antikūnai ir jų panaudojimas
AU2013334610B2 (en) 2012-10-24 2018-09-13 Novartis Ag IL-15R alpha forms, cells expressing IL-15R alpha forms, and therapeutic uses of IL-15R alpha and IL-15/IL-15R alpha complexes

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Bowie et al. (Science, 1990, 247:1306-1310) *
Brown et al. (J Immunol. 1996 May;156(9):3285-91 *
Burgess et al. (J. Cell Biol. 111:2129-2138, 1990) *
Lazar et al. (Mol. Cell. Biol., 8:1247-1252, 1988) *
NCBI database entry for IL-15 accession number NP_000576.1, downloaded 2/7/15 from http://www.ncbi.nlm.nih.gov/protein/NP_000576.1) *
Vajdos et al. (J Mol Biol. 2002 Jul 5;320(2):415-28 at 416) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308913B2 (en) 2005-12-02 2019-06-04 Icahn School Of Medicine At Mount Sinai Chimeric viruses presenting non-native surface proteins and uses thereof
US11365231B2 (en) 2007-05-11 2022-06-21 Altor Bioscience, Llc Interleukin 15 (IL-15) variants
US11673932B2 (en) 2007-05-11 2023-06-13 Altor BioScience, LLC. Fusion molecules and IL-15 variants
US11498950B1 (en) 2007-05-11 2022-11-15 Altor Bioscience, Llc Fusion molecules and IL-15 variants
US10251922B2 (en) 2013-03-14 2019-04-09 Icahn School Of Medicine At Mount Sinai Newcastle disease viruses and uses thereof
US11389495B2 (en) 2014-02-27 2022-07-19 Merck Sharp & Dohme Llc Combination method for treatment of cancer
US11173191B2 (en) 2014-06-30 2021-11-16 Altor BioScience, LLC. IL-15-based molecules and methods of use thereof
US11471511B2 (en) 2014-06-30 2022-10-18 Altor Bioscience, Llc IL-15-based molecules and methods of use thereof
US11679144B2 (en) 2014-06-30 2023-06-20 Altor BioScience, LLC. IL-15-based molecules and methods of use thereof
US11890323B2 (en) 2014-06-30 2024-02-06 Altor Bioscience, Llc Method of treating cancer with composition comprising IL-15-based molecules and BCG
US11925676B2 (en) 2014-06-30 2024-03-12 Altor BioScience, LLC. Method for treating neoplasia with an anti-CD38 antibody and an IL-15:IL-15R complex
US11472856B2 (en) 2016-06-13 2022-10-18 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
US11369679B2 (en) 2016-10-21 2022-06-28 Altor Bioscience, Llc Multimeric IL-15-based molecules
US11318201B2 (en) 2016-10-21 2022-05-03 Altor BioScience, LLC. Multimeric IL-15-based molecules
WO2018075989A1 (fr) * 2016-10-21 2018-04-26 Altor Bioscience Corporation Molécules multimériques à base d'il-15
US11524033B2 (en) 2017-09-05 2022-12-13 Torque Therapeutics, Inc. Therapeutic protein compositions and methods of making and using the same
CN112585161A (zh) * 2018-05-04 2021-03-30 免疫靶向有限公司 白介素15融合蛋白及其组合物和治疗方法

Also Published As

Publication number Publication date
JP7296999B2 (ja) 2023-06-23
EP2537933A1 (fr) 2012-12-26
CA2840113C (fr) 2024-02-27
HRP20190799T1 (hr) 2019-08-23
BR112013033350B1 (pt) 2023-10-31
KR102658284B1 (ko) 2024-04-18
US20240083963A1 (en) 2024-03-14
SI2723869T1 (sl) 2019-08-30
PL2723869T3 (pl) 2019-09-30
JP6151687B2 (ja) 2017-06-21
RU2017144606A3 (fr) 2021-02-10
AU2012272138A1 (en) 2014-01-16
WO2012175222A1 (fr) 2012-12-27
EP3406723A1 (fr) 2018-11-28
BR112013033350A2 (pt) 2017-01-31
CN114805606A (zh) 2022-07-29
HUE043442T2 (hu) 2019-08-28
KR20210016072A (ko) 2021-02-10
RU2763298C2 (ru) 2021-12-28
US20180312560A1 (en) 2018-11-01
ES2727806T3 (es) 2019-10-18
TR201907397T4 (tr) 2019-06-21
US10899816B2 (en) 2021-01-26
JP2014524737A (ja) 2014-09-25
KR20220150407A (ko) 2022-11-10
US20210147503A1 (en) 2021-05-20
RU2017144606A (ru) 2019-03-04
RU2644671C2 (ru) 2018-02-13
AU2019240556B2 (en) 2022-01-13
EP2723869B1 (fr) 2019-02-27
RU2014100350A (ru) 2015-07-27
US10626155B2 (en) 2020-04-21
WO2012175222A8 (fr) 2018-08-23
JP6452175B2 (ja) 2019-01-16
KR101977312B1 (ko) 2019-05-13
CN108341884A (zh) 2018-07-31
KR20190051080A (ko) 2019-05-14
JP2017184750A (ja) 2017-10-12
CA2840113A1 (fr) 2012-12-27
MX2013015393A (es) 2015-04-08
JP6913073B2 (ja) 2021-08-04
JP2021098698A (ja) 2021-07-01
AU2017245360A1 (en) 2017-11-02
MX354923B (es) 2018-03-26
EP2723869A1 (fr) 2014-04-30
US11753454B2 (en) 2023-09-12
JP2019054816A (ja) 2019-04-11
AU2017245360B2 (en) 2019-07-18
KR20140062030A (ko) 2014-05-22
DK2723869T3 (da) 2019-05-20
AU2019240556A1 (en) 2019-10-17
AU2012272138B2 (en) 2017-07-20
PT2723869T (pt) 2019-06-04
US20160318986A1 (en) 2016-11-03
CN104093841A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
US11753454B2 (en) IL-15 and IL-15R\alpha sushi domain based immunocytokines
US20220193199A1 (en) Il-15 and il-15ralpha sushi domain based modulokines
EP3156421B1 (fr) Composition d'anticorps pan-her
US9155802B2 (en) Pan-HER antibody composition
KR20180030856A (ko) 인간 cd3 결합 항체

Legal Events

Date Code Title Description
AS Assignment

Owner name: CYTUNE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORISSEAU, SEBASTIEN DANIEL;TEPPAZ, GERALDINE;JACQUES, YANNICK LAURENT JOSEPH;AND OTHERS;SIGNING DATES FROM 20140518 TO 20140618;REEL/FRAME:033237/0266

Owner name: INSERM, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORISSEAU, SEBASTIEN DANIEL;TEPPAZ, GERALDINE;JACQUES, YANNICK LAURENT JOSEPH;AND OTHERS;SIGNING DATES FROM 20140518 TO 20140618;REEL/FRAME:033237/0266

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION