US20120276392A1 - Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate - Google Patents

Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate Download PDF

Info

Publication number
US20120276392A1
US20120276392A1 US13/518,578 US201013518578A US2012276392A1 US 20120276392 A1 US20120276392 A1 US 20120276392A1 US 201013518578 A US201013518578 A US 201013518578A US 2012276392 A1 US2012276392 A1 US 2012276392A1
Authority
US
United States
Prior art keywords
resin composition
resin
dispersing
thermosetting resin
varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/518,578
Other languages
English (en)
Inventor
Yoshihiro Takahashi
Yasuo Kamigata
Hikari Murai
Masahiro AOSHIMA
Shinji Tsuchikawa
Masato Miyatake
Tomohiko Kotake
Hiroyuki Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009296058A external-priority patent/JP5682110B2/ja
Priority claimed from JP2010160979A external-priority patent/JP5556466B2/ja
Priority claimed from JP2010165556A external-priority patent/JP5593915B2/ja
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Assigned to HITACHI CHEMICAL COMPANY, LTD. reassignment HITACHI CHEMICAL COMPANY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AOSHIMA, MASAHIRO, IZUMI, HIROYUKI, KAMIGATA, YASUO, KOTAKE, TOMOHIKO, MIYATAKE, MASATO, MURAI, HIKARI, TAKAHASHI, YOSHIHIRO, TSUCHIKAWA, SHINJI
Publication of US20120276392A1 publication Critical patent/US20120276392A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2255Oxides; Hydroxides of metals of molybdenum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a thermosetting resin composition which is especially low in thermal expansion properties and excellent in drilling processability and heat resistance and which is suitably used for electronic components, etc.; a prepreg and a laminate plate each using the same; a laminate plate for wiring boards requiring a drilling processing treatment at a manufacturing stage for wiring board; a manufacturing method of a resin composition varnish; and a prepreg and a laminate plate fabricated utilizing the subject manufacturing method, each of which is suitable for semiconductor packages and printed wiring boards.
  • interposer In a wiring board to be used for semiconductor packages (hereinafter referred to as “interposer”), it is general to perform a large number of drilling processing for interlayer connection of wirings. In consequence, a laminate plate for interposers is required to have high drilling processability.
  • the present inventors investigated additives which even when an inorganic filler is filled in high density, can inhibit the deterioration of the drilling processability and then found that a molybdenum compound has an excellent effect.
  • the molybdenum compound has a large specific gravity, when added directly to a resin composition varnish to be used for the fabrication of a laminate plate, it easily precipitates to cause defective manufacture. For that reason, it is recommended to use a particle having a molybdenum compound supported on talc or the like (for example, KEMIGARD 911C, manufactured by Sherwin-Williams Company) (see, for example, Patent Document 5).
  • a particle having a molybdenum compound supported on talc or the like for example, KEMIGARD 911C, manufactured by Sherwin-Williams Company
  • Patent Document 1 JP-A-3-52773
  • Patent Document 2 Japanese Patent No. 4132703
  • Patent Document 3 JP-A-2005-162787
  • Patent Document 4 JP-T-2002-527538
  • Patent Document 5 JP-A-2000-264986
  • a first object of the present invention is to provide a thermoplastic resin composition which is especially low in thermal expansion properties and excellent in drilling processability and heat resistance and which is suitably used for electronic components, etc., and a prepreg and a laminate plate each using the same; and a second object thereof is to provide a laminate plate for wiring boards, which is very excellent in drilling processability at the time of fabricating a wiring board and which also has favorable electrical insulating properties and low thermal expansion properties.
  • a third object of the present invention is to provide a method for manufacturing a resin composition varnish, in which precipitation or aggregation of a molybdenum compound hardly occurs, and a prepreg and a laminate plate each having a low coefficient of thermal expansion and high drilling processability.
  • the foregoing first object can be achieved by a thermosetting resin composition containing an unsaturated maleimide compound having an acidic substituent composed of a specified chemical formula, a thermosetting resin, an inorganic filler, and a molybdenum compound
  • the foregoing second object can be achieved by forming a laminate plate by using a thermosetting resin composition containing a thermosetting resin, a specified amount of silica, and a specified molybdenum compound
  • the foregoing third object can be achieved by manufacturing a resin composition varnish by a method in which after a molybdenum compound is dispersed and mixed in a slurry having a specified silica particle dispersed therein, this slurry is added to a varnish containing a thermosetting resin, and thereafter, an inorganic filler is blended therewith.
  • the present invention has been accomplished on the basis of such knowledge.
  • the present invention provides the following.
  • thermosetting resin composition comprising (A) a maleimide compound containing an unsaturated maleimide compound having an acidic substituent, as represented by the following general formula (I) or (II), (B) a thermosetting resin, (C) an inorganic filler, and (D) a molybdenum compound:
  • R 1 represents a hydroxyl group, a carboxyl group, or a sulfonic acid group, each of which is the acidic substituent; each of R 2 , R 3 , R 4 , and R 5 independently represents a hydrogen atom, an aliphatic hydrocarbon group having a carbon number of from 1 to 5, or a halogen atom; A represents an alkylene group, an alkylidene group, an ether group, a sulfonyl group, or a group represented by the following formula (III); x represents an integer of from 1 to 5; y represents an integer of from 0 to 4; and a sum of x and y is 5.
  • thermosetting resin composition as set forth above in (1), wherein the molybdenum compound (D) is at least one member selected from a molybdenum oxide and a molybdic acid compound, and a content of the molybdenum compound is from 0.02 to 20% by volume of the whole of the resin composition.
  • the molybdenum compound (D) is at least one member selected from a molybdenum oxide and a molybdic acid compound, and a content of the molybdenum compound is from 0.02 to 20% by volume of the whole of the resin composition.
  • thermosetting resin composition as set forth above in (1) or (2), wherein the thermosetting resin (B) is an epoxy resin; a total sum content of the component (A) and the component (B) is from 30 to 80% by volume of the whole of the resin composition; and a mass ratio of the component (A) and the component (B) is from 20 to 90 parts by mass in terms of the component (A) based on 100 parts by mass of the total sum content of the component (A) and the component (B).
  • thermosetting resin composition as set forth above in any one of (1) to (3), wherein the inorganic filler (C) is fused spherical silica, and a content of the inorganic filler is from 10 to 60% by volume of the whole of the resin composition.
  • a laminate plate for wiring boards obtained by coating a thermosetting resin composition containing (E) a thermosetting resin, (F) silica, and (G) at least one molybdenum compound selected from zinc molybdate, calcium molybdate, and magnesium molybdate, with a content of the silica (F) being 20% by volume or more and not more than 60% by volume, on a base material in a film form or fiber form, then performing semi-curing to form a prepreg, and laminating and molding the prepreg.
  • a thermosetting resin composition containing (E) a thermosetting resin, (F) silica, and (G) at least one molybdenum compound selected from zinc molybdate, calcium molybdate, and magnesium molybdate, with a content of the silica (F) being 20% by volume or more and not more than 60% by volume, on a base material in a film form or fiber form, then performing semi-curing to form a prepreg, and laminating and molding the prep
  • a first dispersing and mixing step of dispersing and mixing (I) a molybdenum compound in (H) a slurry containing a silica particle having an average particle size of 0.01 ⁇ m or more and not more than 0.1 ⁇ m and a specific surface area of 30 m 2 /g or more and not more than 270 m 2 /g,
  • a third dispersing and mixing step of dispersing and mixing K an inorganic filler exclusive of the silica particle and the molybdenum compound in the varnish having gone through the second dispersing and mixing step.
  • a prepreg comprising a base material impregnated and coated with a resin composition varnish obtained through a first dispersing and mixing step of dispersing and mixing (I) a molybdenum compound in (H) a slurry containing a silica particle having an average particle size of 0.01 ⁇ m or more and not more than 0.1 ⁇ m and a specific surface area of 30 m 2 /g or more and not more than 270 m 2 /g; a second dispersing and mixing step of dispersing and mixing the slurry having gone through the first dispersing and mixing step in a varnish containing (J) a thermosetting resin; and a third dispersing and mixing step of dispersing and mixing (K) an inorganic filler in the varnish having gone through the second dispersing and mixing step.
  • a laminate plate obtained by laminating and molding the prepreg as set forth above in (15).
  • thermosetting resin composition of the present invention is especially low in thermal expansion properties and excellent in drilling processability and heat resistance and is suitably used for electronic components, etc.
  • thermosetting resin composition a prepreg and a laminate plate each having an excellent performance, and so on can be provided by using the subject thermosetting resin composition.
  • a laminate plate for wiring boards which is very excellent in drilling processability at the time of fabricating a wiring board and which also has favorable electrical insulating properties and low thermal expansion properties, can be provided.
  • an interposer is manufactured by using the laminate plate for wiring boards of the present invention, a semi-conductor package which is less in a warp at low costs can be obtained.
  • a method for manufacturing a resin composition varnish, in which precipitation or aggregation of a molybdenum compound hardly occurs, and a prepreg and a laminate plate each having a low coefficient of thermal expansion and high drilling processability can be provided.
  • thermosetting resin composition of the present invention is described.
  • thermosetting resin composition of the present invention is a resin composition containing, as essential components, (A) a maleimide compound containing an unsaturated maleimide compound having an acidic substituent, as represented by the following general formula (I) or (II), (B) a thermosetting resin, (C) an inorganic filler, and (D) a molybdenum compound.
  • R 1 represents a hydroxyl group, a carboxyl group, or a sulfonic acid group, each of which is the acidic substituent; each of R 2 , R 3 , R 4 , and R 5 independently represents a hydrogen atom, an aliphatic hydrocarbon group having a carbon number of from 1 to 5, or a halogen atom, R 2 to R 5 may be the same as or different from each other;
  • A represents an alkylene group, an alkylidene group, an ether group, a sulfonyl group, or a group represented by the following formula (III); x represents an integer of from 1 to 5; y represents an integer of from 0 to 4; and a sum of x and y is 5.
  • the unsaturated maleimide compound having an acidic substituent as represented by the general formula (I) or (II), which is the component (A)
  • each R 1 independently represents a hydroxyl group, a carboxyl group, or a sulfonic acid group, which is the acidic substituent; each R 2 independently represents a hydrogen atom, an aliphatic hydrocarbon group having a carbon number of from 1 to 5, or a halogen atom; x represents an integer of from 1 to 5; y represents an integer of from 0 to 4; and a sum of x and y is 5.
  • maleimide compound having at least two N-substituted maleimide groups in one molecule thereof examples include bis(4-maleimidophenyl)methane, bis(4-maleimidophenyl)ether, bis(4-maleimidophenyl)sulfone, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide, 2,2-bis-(4-(4-maleimidophenoxy)phenyl)propane, and so on.
  • bis(4-maleimidophenyl)methane, m-phenylene bismaleimide, and bis(4-maleimidophenyl)sulfone are preferable because these compounds have high reactivity and are able to realize higher heat resistance; m-phenylene bismaleimide and bis(4-maleimidophenyl)methane are more preferable from the standpoint of inexpensiveness; and bis(4-maleimidephenyl)methane is especially preferable from the standpoint of solubility in a solvent.
  • Examples of the amine compound having an acidic substituent represented by the general formula (IV) include m-aminophenol, p-aminophenol, o-aminophenol, p-aminobenzoic acid, m-aminobenzoic acid, o-aminobenzoic acid, o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline, and so on.
  • m-aminophenol, p-aminophenol, p-aminobenzoic acid, m-aminobenzoic acid, and 3,5-dihydroxyaniline are preferable from the standpoints of solubility and synthetic yield; and m-aminophenol and p-aminophenol are more preferable from the standpoint of heat resistance.
  • the organic solvent which is used for this reaction is not particularly limited, examples thereof include an alcohol based solvent such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, etc.; a ketone based solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.; an ether based solvent such as tetrahydrofuran, etc.; an aromatic solvent such as toluene, xylene, mesitylene, etc.; a nitrogen atom-containing solvent such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.; a sulfur atom-containing solvent such as dimethyl sulfoxide, etc.; and so on. These can be used singly or in admixture of two or more kinds thereof.
  • cyclohexanone, propylene glycol monomethyl ether, and methyl cellosolve are preferable from the standpoint of solubility; cyclohexanone and propylene glycol monomethyl ether are more preferable from the standpoint of low toxicity; and propylene glycol monomethyl ether is especially preferable in view of the fact that it is high in the volatility and hardly remains as a residual solvent at the time of manufacturing a prepreg.
  • a use amount of the organic solvent is preferably from 10 to 1,000 parts by mass, more preferably from 100 to 500 parts by mass, and especially preferably from 200 to 500 parts by mass based on 100 parts by mass of a total sum of the maleimide compound having at least two N-substituted maleimide groups in one molecule thereof and the amine compound having an acidic substituent represented by the general formula (IV).
  • the use amount of the organic solvent is 10 parts by mass or more, the solubility is sufficient, whereas when it is not more than 1,000 parts by mass, the reaction time is not excessively long.
  • an equivalent ratio of a maleimide group equivalent of the maleimide compound and an equivalent of the amine compound as reduced into an —NH 2 group is preferably in the range represented by the following expression.
  • the subject equivalent ratio is more preferably in the range of from 2.0 to 10.0.
  • a reaction temperature is in the range of from 50 to 200° C.
  • a reaction time is in the range of from 0.1 to 10 hours; and more preferably, the reaction temperature is in the range of from 100 to 160° C., and the reaction time is in the range of from 1 to 8 hours.
  • reaction accelerator can be used in this reaction, as the need arises.
  • the reaction accelerator include an amine such as triethylamine, pyridine, tributylamine, etc.; an imidazole such as methyl imidazole, phenyl imidazole, etc.; and an organic phosphorus based compound such as triphenyl phosphine, etc. These can be used singly or in admixture of two or more kinds thereof.
  • thermosetting resin composition of the present invention By allowing the thermosetting resin composition of the present invention to contain the unsaturated maleimide compound having an acidic substituent represented by the foregoing general formula (I) or (II) as the component (A), low thermal expansion properties and excellent heat resistance are revealed.
  • the component (A) may contain other maleimide compound, it is preferable that the component (A) contains 60% by mass or more of the unsaturated maleimide compound having an acidic substituent represented by the general formula (I) or (II).
  • thermosetting resin as the component (B) examples include an epoxy resin, a phenol resin, an unsaturated imide resin, a cyanate resin, an isocyanate resin, a benzoxazine resin, an oxetane resin, an amino resin, an unsaturated polyester resin, an allyl resin, a dicyclopentadiene resin, a silicone resin, a triazine resin, a melamine resin, and so on. These can be used singly or in admixture of two or more kinds thereof.
  • an epoxy resin is preferable from the standpoints of moldability and electrical insulating properties.
  • examples of such an epoxy resin include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a bisphenol A novolak type epoxy resin, a bisphenol F novolak type epoxy resin, a biphenyl type epoxy resin, a xylylene type epoxy resin, a biphenyl aralkyl type epoxy resin, a naphthalene type epoxy resin, a dicyclopentadiene type epoxy resin, an alicyclic epoxy resin, a diglycidyl ether compound of a polyfunctional phenol or a polycyclic aromatic compound such as anthracene, etc., and so on. These can be used singly or in admixture of two or more kinds thereof.
  • a curing agent or a curing accelerator of the epoxy resin can be used, as the need arises.
  • the curing agent include a polyfunctional phenol compound such as phenol novolak, cresol novolak, etc.; an amine compound such as dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, etc.; an acid anhydride such as phthalic anhydride, pyromellitic anhydride, maleic anhydride, a maleic anhydride copolymer, etc.; and so on. These can be used singly or in admixture of two or more kinds thereof.
  • examples of the curing accelerator include an imidazole and a derivative thereof, an organic phosphorus based compound, a secondary amine, a tertiary amine, a quaternary ammonium salt, and so on. These can be used singly or in admixture of two or more kinds thereof.
  • a mass ratio of the component (A) and the component (B) is preferably from 20 to 90 parts by mass, and more preferably from 30 to 80 parts by mass in terms of the component (A) based on 100 parts by mass of the total sum content of the component (A) and the component (B).
  • Examples of the inorganic filler as the component (C) include silica, alumina, talc, mica, kaolin, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide, titanium oxide, boron nitride, calcium carbonate, barium sulfate, aluminum borate, potassium titanate, a glass powder of E-glass, S-glass, D-glass, etc., a hollow glass bead, and so on. These can be used singly or in admixture of two or more kinds thereof.
  • silica is preferable from the standpoint of low thermal expansion properties.
  • examples of the silica include precipitated silica which is manufactured by a wet process and which has a high water content; and dry process silica which is manufactured by a dry process and which does not substantially contain bonding water, etc.
  • the dry process silica includes crushed silica, fumed silica, and fused spherical silica depending upon a difference of the manufacturing method. Of these, from the standpoints of low thermal expansion properties and high fluidity upon being filled in the resin, fused spherical silica is preferable.
  • fused spherical silica as the inorganic filler as the component (C)
  • its average particle size is preferably from 0.1 to 10 ⁇ m, and more preferably from 0.3 to 8 ⁇ m.
  • the average particle size of the fused spherical silica is controlled to 0.1 ⁇ m or more, the fluidity at the time of filling the fused spherical silica in a high density in the resin composition can be kept favorable, whereas when it is controlled to not more than 10 ⁇ m, a probability of incorporation of coarse particles is reduced, thereby enabling one to suppress the generation of failure to be caused due to the coarse particles.
  • the average particle size as referred to herein means a particle size corresponding to just 50% of the volume, and it can be measured by a particle size distribution analyzer adopting a laser diffraction scattering method, or the like.
  • a content of the inorganic filler as the component (C) is preferably from 10 to 60% by volume, and more preferably from 20 to 50% by volume of the whole of the resin composition.
  • Examples of the molybdenum compound as the component (D) include a molybdenum oxide and a molybdic acid compound such as molybdenum trioxide, zinc molybdate, ammonium molybdate, magnesium molybdate, calcium molybdate, barium molybdate, sodium molybdate, potassium molybdate, phosphomolybdic acid, ammonium phosphomolybdate, sodium phosphomolybdate, silicomolybdic acid, etc.; and an inorganic molybdenum compound such as molybdenum boride, molybdenum disilicate, molybdenum nitride, molybdenum carbide, etc. These can be used singly or in admixture of two or more kinds thereof.
  • a molybdenum oxide and a molybdic acid compound such as molybdenum trioxide, zinc molybdate, ammonium molybdate, magnesium molybdate, calcium molybdate,
  • a molybdenum oxide and a molybdic acid compound are preferable from the standpoint that the effect for preventing a lowering of the drilling processability is favorable; and furthermore, zinc molybdate, calcium molybdate, and magnesium molybdate are especially preferable from the standpoints of low water solubility and toxicity and high electrical insulating properties.
  • the component (D) in the case where zinc molybdate, calcium molybdate, or magnesium molybdate is used as the component (D), by supporting such a molybdenum compound on talc, silica, zinc oxide, calcium carbonate, magnesium hydroxide, or the like and using it, it is possible to contrive to prevent precipitation and enhance dispersibility at the time of dissolving the resin composition in an organic solvent to form a varnish.
  • a molybdenum compound include KEMGARD 911C, manufactured by Sherwin-Williams Company, which is one having zinc molybdate supported on talc.
  • a content of the molybdenum compound as the component (D) is preferably from 0.02 to 20% by volume, and more preferably from 0.1 to 15% by volume of the whole of the resin composition.
  • thermosetting resin composition of the present invention can arbitrarily contain known thermoplastic resin, elastomer, organic filler, flame retarder, ultraviolet ray absorber, antioxidant, and adhesion enhancer, and the like to an extent such that thermosetting properties as the resin composition are not impaired.
  • thermoplastic resin examples include polyethylene, polypropylene, polystyrene, a polyphenylene ether resin, a phenoxy resin, a polycarbonate resin, a polyester resin, a polyamide resin, a polyamide-imide resin, a polyimide resin, a xylene resin, a polyphenylene sulfide resin, a polyether imide resin, a polyetheretherketone resin, a polyether imide resin, a silicone resin, a tetrafluoroethylene resin, and so on.
  • Examples of the elastomer include polybutadiene, polyacrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, carboxy-modified polyacrylonitrile, and so on.
  • the organic filler examples include a resin filler having a homogeneous structure, which is composed of polyethylene, polypropylene, polystyrene, a polyphenylene ether resin, a silicone resin, a tetrafluoroethylene resin, or the like; a resin filler of a core-shell structure having a core layer in a rubber state, which is composed of an acrylic acid ester based resin, a methacrylic acid ester based resin, a conjugated diene based resin, or the like, and a shell layer in a vitreous state, which is composed of an acrylic acid ester based resin, a methacrylic acid ester based resin, an aromatic vinyl based resin, a vinyl cyanide based resin, or the like; and so on.
  • a resin filler having a homogeneous structure which is composed of polyethylene, polypropylene, polystyrene, a polyphenylene ether resin, a silicone resin, a tetraflu
  • the flame retarder examples include a halogen-containing flame retarder containing bromine or chlorine; a phosphorus based flame retarder such as triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, red phosphorus, etc.; a nitrogen based flame retarder such as guanidine sulfamate, melamine sulfate, melamine polyphosphate, melamine cyanurate, etc.; a phosphazene based flame retarder such as cyclophosphazene, polyphosphazene, etc.; an inorganic flame retarder such as antimony trioxide, etc.; and so on.
  • a halogen-containing flame retarder containing bromine or chlorine examples include a halogen-containing flame retarder containing bromine or chlorine; a phosphorus based flame retarder such as triphenyl phosphate, tricresyl phosphate, trisdichloropropyl
  • Examples of the ultraviolet ray absorber include a benzotriazole based ultraviolet ray absorber and so on.
  • antioxidant examples include a hindered phenol based or hindered amine based antioxidant.
  • adhesion enhancer include a coupling agent such as a silane series, a titanate series, an aluminate series, etc.; and so on.
  • organic solvent examples include an alcohol based solvent such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, etc.; a ketone based solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.; an ester based solvent such as butyl acetate, propylene glycol monomethyl ether acetate, etc.; an ether based solvent such as tetrahydrofuran, etc.; an aromatic solvent such as toluene, xylene, mesitylene, etc.; a nitrogen atom-containing solvent such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.; a sulfur atom-containing solvent such as dimethyl sulfoxide, etc.; and so on.
  • alcohol based solvent such as methanol, ethanol, propano
  • methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl cellosolve, and propylene glycol monomethyl ether are preferable; and from the standpoint of low toxicity, methyl isobutyl ketone, cyclohexanone, and propylene glycol monomethyl ether are more preferable.
  • the inorganic filler it is preferable to subject the inorganic filler to a pre-treatment with a surface treating agent such as a coupling agent, e.g., a silane series, a titanate series, etc., a silicone oligomer, or the like, or to an integral blend treatment.
  • a surface treating agent such as a coupling agent, e.g., a silane series, a titanate series, etc., a silicone oligomer, or the like, or to an integral blend treatment.
  • a content of the resin composition in the finally obtained varnish is preferably from 40 to 90% by mass, and more preferably from 50 to 80% by mass of the whole of the varnish.
  • the prepreg of the present invention is one obtained by impregnating or coating a base material with the thermosetting resin composition of the present invention and then performing B-staging. That is, the prepreg of the present invention is manufactured by impregnating or coating a base material with the thermosetting resin composition of the present invention and then performing semi-curing (B-staging) by heating or the like.
  • the prepreg of the present invention is hereunder described in detail.
  • Such a base material has a form of, for example, a woven fabric, a nonwoven fabric, a roving, a chopped strand mat, a surfacing mat, etc.
  • the material and the shape are selected depending on an application or a performance of the target molded article, and the material and the shape can be employed solely or in combination of two or more kinds thereof, as the need arises.
  • the base material is not particularly limited with respect to its thickness, for example, those having a thickness of from about 0.01 to 0.2 mm can be used. Those having been subjected to a surface treatment with a silane coupling agent, etc., or those having been subjected to a mechanical opening treatment are suitable from the standpoints of heat resistance, moisture resistance, and processability.
  • the prepreg of the present invention can be obtained by impregnating or coating the base material with the resin composition in such a manner that an attachment amount thereof relative to the base material is from 20 to 90% by mass in terms of a resin content of the prepreg after drying, and then heating for drying usually at a temperature of from 100 to 200° C. for from 1 to 30 minutes to achieve semi-curing (B-staging).
  • the laminate plate of the present invention is one obtained by laminating and molding the prepreg of the present invention. That is, the laminate plate is, for example, one obtained by lamination and molding in a configuration in which from 1 to 20 sheets of the prepreg of the present invention are superimposed, and a metal foil such as copper, aluminum, etc. is disposed on one surface or both surfaces thereof.
  • a molding condition for example, techniques for a laminate plate or multi-layered board for electrical insulating materials can be applied.
  • the molding can be performed within the range at a temperature of from 100 to 250° C.
  • a multi-layered board can be manufactured by combining the prepreg of the present invention with a wiring board for internal layer and laminating and molding the combination.
  • the laminate plate for wiring boards of the present invention is one obtained by coating a thermosetting resin composition containing (E) a thermosetting resin, (F) silica, and (G) at least one molybdenum compound selected from zinc molybdate, calcium molybdate, and magnesium molybdate, with a content of the silica (F) being 20% by volume or more and not more than 60% by volume, on a base material in a film form or fiber form and then performing semi-curing to form a prepreg, and laminating and molding the prepreg.
  • a thermosetting resin composition containing (E) a thermosetting resin, (F) silica, and (G) at least one molybdenum compound selected from zinc molybdate, calcium molybdate, and magnesium molybdate, with a content of the silica (F) being 20% by volume or more and not more than 60% by volume
  • thermosetting resin as the component (E) examples include an epoxy resin, a phenol resin, an unsaturated imide resin, a cyanate resin, an isocyanate resin, a benzoxazine resin, an oxetane resin, an amino resin, an unsaturated polyester resin, an allyl resin, a dicyclopentadiene resin, a silicone resin, a triazine resin, a melamine resin, and so on. These can be used singly or in admixture of two or more kinds thereof.
  • thermosetting resin a curing agent or a curing accelerator of the epoxy resin can be used, as the need arises.
  • the curing agent examples include a polyfunctional phenol compound such as phenol novolak, cresol novolak, etc.; an amine compound such as dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, etc.; an acid anhydride such as phthalic anhydride, pyromellitic anhydride, maleic anhydride, a maleic anhydride copolymer, etc.; and so on. These can be used singly or in admixture of two or more kinds thereof.
  • examples of the curing accelerator include an imidazole and a derivative thereof, an organic phosphorus based compound, a secondary amine, a tertiary amine, a quaternary ammonium salt, and so on. These can be used singly or in admixture of two or more kinds thereof.
  • Examples of the silica as the component (F) include precipitated silica which is manufactured by a wet process and which has a high water content; and dry process silica which is manufactured by a dry process and which does not substantially contain bonding water, etc.
  • the dry process silica includes crushed silica, fumed silica, and fused spherical silica depending upon a difference of the manufacturing method. Of these, from the standpoints of low thermal expansion properties and high fluidity upon being blended in the resin, fused spherical silica is preferable.
  • its average particle size is preferably from 0.1 ⁇ m or more and not more than 1 ⁇ m.
  • the average particle size of the fused spherical silica is controlled to 0.1 ⁇ m or more, the fluidity at the time of blending in the resin can be kept favorable, whereas when it is controlled to not more than 1 ⁇ m, the wear of a drill blade at the time of drilling processing can be suppressed.
  • the “average particle size” as referred to in this specification means a particle size corresponding to just 50% of the volume, and it can be measured by a particle size distribution analyzer adopting a laser diffraction scattering method, or the like.
  • a content of the silica is 20% by volume or more and not more than 60% by volume of the whole of the resin composition.
  • the content of the silica is preferably 30% by volume or more and not more than 60% by volume, and more preferably 40% by volume or more and not more than 56% by volume.
  • a particle thereof may be used as it is, or such a molybdenum compound may be used upon being supported on a particle of talc, silica, zinc oxide, calcium carbonate, magnesium hydroxide, or the like.
  • an average particle size of such a particle is preferably 0.3 ⁇ m or more and not more than 3 ⁇ M, and more preferably 0.5 ⁇ m or more and not more than 2 ⁇ m.
  • the average particle size is controlled to 0.3 ⁇ m or more, the dispersibility at the time of blending in the resin can be kept favorable, whereas when it is controlled to not more than 3 ⁇ m, the abrupt precipitation in the case of dissolving the resin composition in an organic solvent to form a varnish can be prevented from occurring.
  • a content of the molybdenum compound is preferably 0.1% by volume or more and not more than 10% by volume, and more preferably 0.2% by volume or more and not more than 7% by volume of the whole of the resin composition.
  • the drilling processability of a laminate plate can be kept favorable, whereas when it is controlled to not more than 10% by volume, a lowering of the moldability can be prevented from occurring.
  • thermosetting resin composition in addition to the foregoing, known thermoplastic resin, elastomer, inorganic filler, organic filler, flame retarder, ultraviolet ray absorber, antioxidant, and adhesion enhancer, and the like can be arbitrarily used.
  • thermoplastic resin examples include polyethylene, polypropylene, polystyrene, a polyphenylene ether resin, a phenoxy resin, a polycarbonate resin, a polyester resin, a polyamide resin, a polyamide-imide resin, a polyimide resin, a xylene resin, a polyphenylene sulfide resin, a polyether imide resin, a polyetheretherketone resin, a polyether imide resin, a silicone resin, a tetrafluoroethylene resin, and so on.
  • Examples of the elastomer include polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, carboxy-modified acrylonitrile, and so on.
  • the inorganic filler examples include alumina, talc, mica, kaolin, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide, titanium oxide, boron nitride, calcium carbonate, barium sulfate, aluminum borate, potassium titanate, a glass powder of E-glass, S-glass, D-glass, etc., a hollow glass bead, and so on.
  • the organic filler examples include a resin particle having a homogeneous structure, which is composed of polyethylene, polypropylene, polystyrene, a polyphenylene ether resin, a silicone resin, a tetrafluoroethylene resin, or the like; a resin particle of a core-shell structure having a core layer in a rubber state, which is composed of an acrylic acid ester based resin, a methacrylic acid ester based resin, a conjugated diene based resin, or the like, and a shell layer in a vitreous state, which is composed of an acrylic acid ester based resin, a methacrylic acid ester based resin, an aromatic vinyl based resin, a vinyl cyanide based resin, or the like; and so on.
  • a resin particle having a homogeneous structure which is composed of polyethylene, polypropylene, polystyrene, a polyphenylene ether resin, a silicone resin, a tetrafluoroethylene
  • the flame retarder examples include a halogen-containing flame retarder containing bromine or chlorine; a phosphorus based flame retarder such as triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, red phosphorus, etc.; a nitrogen based flame retarder such as guanidine sulfamate, melamine sulfate, melamine polyphosphate, melamine cyanurate, etc.; a phosphazene based flame retarder such as cyclophosphazene, polyphosphazene, etc.; an inorganic flame retarder such as antimony trioxide, etc.; and so on.
  • a halogen-containing flame retarder containing bromine or chlorine examples include a halogen-containing flame retarder containing bromine or chlorine; a phosphorus based flame retarder such as triphenyl phosphate, tricresyl phosphate, trisdichloropropyl
  • Examples of the ultraviolet ray absorber include a benzotriazole based ultraviolet ray absorber and so on;
  • examples of the antioxidant include a hindered phenol based or hindered amine based antioxidant;
  • examples of the adhesion enhancer include a coupling agent such as a silane series, a titanate series, and an aluminate series, and so on.
  • the laminate plate for wiring boards of the present invention can be obtained by laminating and molding a material obtained by coating the thermoplastic resin composition using the foregoing components according to the present invention on a base material in a film form or fiber form, followed by semi-curing.
  • a material obtained by coating the thermoplastic resin composition using the foregoing components according to the present invention on a base material in a film form or fiber form, followed by semi-curing.
  • a laminate plate which is homogenous and less in a defect such as a void, etc. can be obtained.
  • Examples of the organic solvent which is used at the time of varnishing the thermosetting resin composition include an alcohol based solvent such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, etc.; a ketone based solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.; an ester based solvent such as butyl acetate, propylene glycol monomethyl ether acetate, etc.; an ether based solvent such as tetrahydrofuran, etc.; an aromatic solvent such as toluene, xylene, mesitylene, etc.; a nitrogen atom-containing solvent such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.; a sulfur atom-containing solvent such as dimethyl sulfoxide, etc.; and so on.
  • methyl cellosolve propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are preferable; and from the standpoint of low toxicity, propylene glycol monomethyl ether, methyl isobutyl ketone, and cyclohexanone are more preferable.
  • a proportion of the resin composition in the varnish is preferably 50% by mass or more and not more than 80% by mass of the whole of the varnish.
  • examples of the base material in a film form include a metal foil made of copper, aluminum, etc.; and an organic film made of polyethylene terephthalate, polyimide, etc.
  • examples of the base material in a fiber form include fibers of an inorganic material such as E-glass, D-glass, S-glass, Q-glass, etc.; fibers of an organic material such as aramid, polyester, polytetrafluoroethylene, etc.; and mixtures thereof such as a woven fabric, a nonwoven fabric, a roving mat, a chopped strand mat, and a surfacing mat.
  • a woven fabric of fibers of an inorganic material such as E-glass, S-glass, D-glass, Q-glass, etc., namely a glass cloth.
  • those having been subjected to a mechanical opening treatment, or those having been subjected to a surface treatment with a coupling agent, etc. can be used in a thickness of from 0.01 mm to 0.2 mm.
  • thermoplastic resin composition varnish on a glass cloth and semi-curing it
  • the laminate plate of the present invention by laminating and molding the thus obtained prepreg, for example, there can be adopted a method in which from 1 to 20 sheets of the prepreg are superimposed so as to have a required thickness, a metal foil such as copper, aluminum, etc. is disposed on one surface or both surfaces thereof, and heat pressure molding is performed under a condition at a temperature of from about 100 to 250° C. under a pressure of from about 0.2 to 10 MPa for from about 0.1 to 5 hours by using a multi-stage press, a multi-stage vacuum press, a continuous molding machine, an autoclave molding machine, etc., or the like.
  • the manufacturing method of the resin composition varnish of the present invention includes a first dispersing and mixing step of dispersing and mixing (I) a molybdenum compound in (H) a slurry containing a prescribed silica particle, a second dispersing and mixing step of dispersing and mixing the slurry having gone through the first dispersing and mixing step in a varnish containing (J) a thermosetting resin, and a third dispersing and mixing step of dispersing and mixing (K) an inorganic filler in the varnish having gone through the second dispersing and mixing step.
  • the silica particle in the slurry (H) in the first dispersing and mixing step is required to have an average particle size of 0.01 ⁇ m or more and not more than 0.1 ⁇ m and a specific surface area of 30 m 2 /g or more and not more than 270 m 2 /g.
  • the molybdenum compound can be stably kept in a finely dispersed state such that it does not precipitate over a long period of time.
  • the “average particle size” as referred to in this specification means a particle size corresponding to just 50% of the volume, and it can be measured by a particle size distribution analyzer adopting a laser diffraction scattering method, or the like.
  • the “specific surface area” refers to a total sum of surface areas of the whole of particles contained in the powder per unit mass, and it can be measured by a specific surface area analyzer adopting the BET method, or the like.
  • Examples of the organic solvent in the slurry include an alcohol such as methanol, ethanol, propanol, butanol, etc.; a glycol ether such as methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, etc.; and a ketone such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • an alcohol such as methanol, ethanol, propanol, butanol, etc.
  • a glycol ether such as methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, etc.
  • a ketone such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • an organic solvent the same as the organic solvent which is used for the varnish containing (J) a thermosetting resin is preferable.
  • a blending amount of the silica particle in the slurry is preferably 10% by mass or more and not more than 50% by mass, and more preferably 20% by mass or more and not more than 40% by mass.
  • the blending amount is 10% by mass or more and not more than 50% by mass, the dispersibility of the silica particle in the slurry is excellent, and the dispersibility and stability of the molybdenum compound are favorable.
  • silica slurry satisfying the foregoing requirements for example, there can be exemplified ADMANANO, manufactured by Admatechs Company Limited.
  • Examples of the molybdenum compound (I) include molybdenum trioxide, zinc molybdate, ammonium molybdate, magnesium molybdate, calcium molybdate, barium molybdate, sodium molybdate, potassium molybdate, phosphomolybdic acid, ammonium phosphomolybdate, sodium phosphomolybdate, silicomolybdic acid, molybdenum disulfide, molybdenum diselenide, molybdenum ditelluride, molybdenum boride, molybdenum disilicide, molybdenum nitride, molybdenum carbide, and so on. These can be used singly or in admixture of two or more kinds thereof.
  • a blending amount of the molybdenum compound in the silica slurry is preferably 0.2 or more and not more than 5, and more preferably 0.3 or more and not more than 4 in terms of a volume ratio (Mo compound/SiO 2 ).
  • the volume ratio is 0.2 or more and not more than 5, at the time of dispersing and mixing the molybdenum compound in the slurry, the dispersibility and stability are favorable.
  • Examples of a method for dispersing and mixing the molybdenum compound in the silica slurry in the first dispersing and mixing step include a method in which the molybdenum compound is first gradually added and well mixed while stirring the slurry, and the mixture is subsequently subjected to a dispersion treatment by a media mill such as a bead mill, a ball mill, etc., a high-speed disperser such as a dissolver, etc., a high-pressure homogenizer such as a nanomizer, etc., a colloid mill, an ultrasonic processor, or the like.
  • a media mill such as a bead mill, a ball mill, etc.
  • a high-speed disperser such as a dissolver, etc.
  • a high-pressure homogenizer such as a nanomizer, etc.
  • a colloid mill an ultrasonic processor, or the like.
  • a method for performing the treatment by a high-speed homogenizer is preferable because incorporation of impurities is small, and the dispersion can be efficiently achieved.
  • a coupling agent such as a silane series, a titanate series, an aluminate series, etc., a modified silicone such as polyether-modified polysiloxane, etc., a polycarboxylic acid, a polymer dispersant such as a urethane series, an acrylate series, etc., or the like can also be added as a dispersant at the time of dispersing and mixing.
  • thermosetting resin (J) in the step of the second dispersing and mixing step examples include an epoxy resin, a phenol resin, an unsaturated imide resin, a cyanate resin, an isocyanate resin, a benzoxazine resin, an oxetane resin, an amino resin, an unsaturated polyester resin, an allyl resin, a dicyclopentadiene resin, a silicone resin, a triazine resin, a melamine resin, and so on. These can be used singly or in admixture of two or more kinds thereof.
  • an epoxy resin is preferable from the standpoints of moldability and electrical insulating properties.
  • thermosetting resin a curing agent of the epoxy resin can be used, as the need arises.
  • the curing agent examples include a polyfunctional phenol compound such as phenol novolak, cresol novolak, etc.; an amine compound such as dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, etc.; an acid anhydride such as phthalic anhydride, pyromellitic anhydride, maleic anhydride, a maleic anhydride copolymer, etc.; and so on. These can be used singly or in admixture of two or more kinds thereof.
  • Examples of the organic solvent which is used for the varnish containing a thermosetting resin include an alcohol based solvent such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, etc.; a ketone based solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.; an ester based solvent such as butyl acetate, propylene glycol monomethyl ether acetate, etc.; an ether based solvent such as tetrahydrofuran, etc.; an aromatic solvent such as toluene, xylene, mesitylene, etc.; a nitrogen atom-containing solvent such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.; a sulfur atom-containing solvent such as dimethyl sulfoxide, etc.; and so on. These can be
  • methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and propylene glycol monomethyl ether are preferable.
  • a solid content concentration of the varnish containing a thermosetting resin is preferably 40% by mass or more and not more than 90% by mass, and more preferably 50% by mass or more and not more than 80% by mass.
  • a blending amount of the slurry having the molybdenum compound dispersed therein into the varnish is preferably 0.1% by volume or more and not more than 10% by volume in terms of an amount of the molybdenum compound.
  • Examples of a method for dispersing and mixing the slurry having the molybdenum compound dispersed therein in the varnish containing a thermosetting resin in the second dispersing and mixing step include a method in which the slurry is gradually added and well mixed while stirring the varnish.
  • the inorganic filler (K) in the third dispersing and mixing step various material exclusive of the silica particle as the already-described component (H) and the molybdenum compound as the already-described component (I) can be used.
  • examples thereof include silica, alumina, talc, mica, kaolin, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide, titanium oxide, boron nitride, calcium carbonate, barium sulfate, aluminum borate, potassium titanate, a glass powder of E-glass, S-glass, D-glass, etc., a hollow glass bead, and so on. These can be used singly or in admixture of two or more kinds thereof.
  • silica is preferable from the standpoint of its low coefficient of thermal expansion.
  • the silica examples include precipitated silica which is manufactured by a wet process and which has a high water content; and dry process silica which is manufactured by a dry process and which does not substantially contain bonding water, etc. Furthermore, the dry process silica includes crushed silica, fumed silica, and fused spherical silica depending upon a difference of the manufacturing method. Of these, from the standpoint of excellent fluidity upon being filled in the resin, fused spherical silica is preferable.
  • fused spherical silica As the inorganic filler, its average particle size is preferably from 0.1 ⁇ m or more and not more than 10 ⁇ m, and more preferably from 0.3 ⁇ m or more and not more than 8 ⁇ m.
  • the average particle size of the fused spherical silica is controlled to 0.1 ⁇ m or more, the fluidity at the time of filling in the resin can be kept favorable, whereas when it is controlled to not more than 10 ⁇ m, a probability of incorporation of coarse particles is reduced, thereby enabling one to suppress the generation of failure.
  • the average particle size is made to be larger than that of the silica particle as the already-described component (H).
  • a blending amount of the inorganic filler into the varnish is preferably 20% by volume or more and not more than 60% by volume, and more preferably 30% by volume or more and not more than 55% by volume.
  • Examples of a method for dispersing and mixing the inorganic filler in the varnish containing the molybdenum compound and the thermosetting resin in the third dispersing and mixing step include a method in which the inorganic filler is added as it is and mixed; and a method in which the inorganic filler is dispersed in the organic solvent in advance to form a slurry, which is then added and mixed.
  • a method in which the inorganic filler is converted into a slurry and then added is preferable.
  • a surface treating agent such as a coupling agent, e.g., a silane series, a titanate series, etc., a silicone oligomer, or the like in advance, or to an integral blend treatment.
  • a curing accelerator in addition to the foregoing components, a curing accelerator, a thermoplastic resin, an elastomer, an organic filler, aflame retarder, an ultraviolet ray absorber, an antioxidant, an adhesion enhancer, and the like can be added and used.
  • the curing accelerator examples include an imidazole and a derivative thereof, an organic phosphorus based compound, a secondary amine, a tertiary amine, a quaternary ammonium salt, and so on. These can be used singly or in admixture of two or more kinds thereof.
  • thermoplastic resin examples include polyethylene, polypropylene, polystyrene, a polyphenylene ether resin, a phenoxy resin, a polycarbonate resin, a polyester resin, a polyamide resin, a polyamide-imide resin, a polyimide resin, a xylene resin, a polyphenylene sulfide resin, a polyether imide resin, a polyetheretherketone resin, a polyether imide resin, a silicone resin, a tetrafluoroethylene resin, and so on.
  • Examples of the elastomer include polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, carboxy-modified acrylonitrile, and so on.
  • the organic filler examples include a resin filler having a homogeneous structure, which is composed of polyethylene, polypropylene, polystyrene, a polyphenylene ether resin, a silicone resin, a tetrafluoroethylene resin, or the like; a resin filler of a core-shell structure having a core layer in a rubber state, which is composed of an acrylic acid ester based resin, a methacrylic acid ester based resin, a conjugated diene based resin, or the like, and a shell layer in a vitreous state, which is composed of an acrylic acid ester based resin, a methacrylic acid ester based resin, an aromatic vinyl based resin, a vinyl cyanide based resin, or the like; and so on.
  • a resin filler having a homogeneous structure which is composed of polyethylene, polypropylene, polystyrene, a polyphenylene ether resin, a silicone resin, a tetraflu
  • the flame retarder examples include a halogen-containing flame retarder containing bromine or chlorine; a phosphorus based flame retarder such as triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, red phosphorus, etc.; a nitrogen based flame retarder such as guanidine sulfamate, melamine sulfate, melamine polyphosphate, melamine cyanurate, etc.; a phosphazene based flame retarder such as cyclophosphazene, polyphosphazene, etc.; an inorganic flame retarder such as antimony trioxide, etc.; and so on.
  • a halogen-containing flame retarder containing bromine or chlorine examples include a halogen-containing flame retarder containing bromine or chlorine; a phosphorus based flame retarder such as triphenyl phosphate, tricresyl phosphate, trisdichloropropyl
  • examples of the ultraviolet ray absorber include a benzotriazole based ultraviolet ray absorber and so on;
  • examples of the antioxidant include a hindered phenol based or hindered amine based antioxidant;
  • examples of the adhesion enhancer include a coupling agent such as a silane series, a titanate series, an aluminate series, etc.
  • a solid content of the finally obtained resin composition varnish is preferably from 40 to 80% by mass, and more preferably from 45 to 75% by mass.
  • the coating properties of the varnish are favorable, and a prepreg having an appropriate attachment amount of the resin composition can be obtained.
  • the prepreg of the present invention is one obtained by impregnating or coating a base material with the resin composition varnish obtained by the already-described method for manufacturing a resin composition varnish of the present invention and then performing semi-curing (B-staging) by heating or the like.
  • Examples of the base material which is used for the prepreg of the present invention include fibers of an inorganic material such as E-glass, D-glass, S-glass, Q-glass, etc.; fibers of an organic material such as an aramid resin, a polyester resin, a tetrafluoroethylene resin, etc.; and mixtures thereof.
  • a base material has a form of, for example, a woven fabric, a nonwoven fabric, a roving, a chopped strand mat, a surfacing mat, etc.
  • the material and the shape are selected depending on an application or a performance of the target laminate plate, and the material and the shape can be employed solely or in combination of two or more kinds thereof, as the need arises.
  • those having been subjected to a surface treatment with a silane coupling agent, etc., or those having been subjected to a mechanical opening treatment are preferable from the standpoints of heat resistance, moisture resistance, and processability.
  • a thickness of the base material for example, those having a thickness of from 0.01 to 0.2 mm can be used.
  • the laminate plate of the present invention is one obtained by lamination and molding by using the prepreg of the present invention.
  • a metal clad laminate plate can be manufactured by performing lamination and molding in a configuration in which from 1 to 20 sheets of the prepreg of the present invention are superimposed, and a metal foil such as copper, aluminum, etc. is disposed on one surface or both surfaces thereof, within the range at a temperature of from about 100 to 250° C. under a pressure of from about 0.2 to 10 MPa for a heating time of from about 0.1 to 5 hours by using a press, a vacuum press, a continuous molding machine, an autoclave molding machine, or the like.
  • the metal foil is not particularly limited so far as it is one to be used for an application of electronic components.
  • a multi-layered board can be manufactured by combining the prepreg of the present invention with a wiring board for internal layer and laminating and molding the combination.
  • Each of the above-described prepreg and laminate plate of the present invention has such characteristic features as a low coefficient of thermal expansion and high drilling processability.
  • the unsaturated maleimide compound (A) having an acidic substituent obtained in Manufacturing Example 1 or 2, and (B) a thermosetting resin and a curing accelerator, (C) an inorganic filler, and (D) a molybdenum compound as described below were dispersed and dissolved in a blending proportion shown in Table 1 in propylene glycol monomethyl ether, thereby obtaining a homogeneous varnish having a content of the resin composition of 70% by mass.
  • This resin composition varnish was impregnated and coated on an E-glass cloth [WEA116E, manufactured by Nitto Boseki Co., Ltd.] having a thickness of 0.1 mm, followed by heating for drying at 150° C.
  • a prepreg having a content of the resin composition of 50% by mass.
  • Four sheets of this prepreg were superimposed, and an 18 ⁇ m-thick electrolytic copper foil was disposed on the top and bottom, followed by vacuum pressing under a pressure of 3.5 MPa at a temperature of 185° C. for 90 minutes, thereby obtaining a copper clad laminate plate.
  • B-1 Biphenyl aralkyl type epoxy resin [NC-3000, manufactured by Nippon Kayaku Co., Ltd.]
  • Curing accelerator 2-Ethyl-4-methyl imidazole [2E4MI, manufactured by Shikoku Chemicals Corporation]
  • C-1 Fused spherical silica slurry [SC2050-KC, manufactured by Admatechs Company Limited, average particle size: 0.5 ⁇ m, solid content: 70% by mass]
  • C-2 Aluminum hydroxide [CL-310, manufactured by Sumitomo Chemical Co., Ltd.]
  • a copper clad laminate plate using a resin composition was obtained in the same manner as that in Example 1, except that the molybdenum compound (D) was not blended.
  • the measurement and evaluation results are shown in Table 1.
  • a copper clad laminate plate using a resin composition was obtained in the same manner as that in Example 1, except that the unsaturated maleimide compound (A) having an acidic substituent was not blended.
  • the measurement and evaluation results are shown in Table 1.
  • a copper clad laminate plate using a resin composition was obtained in the same manner as that in Example 1, except that the inorganic filler (C) was not blended.
  • the measurement and evaluation results are shown in Table 1.
  • a drilling cutting blade portion before and after drilling was observed from the drill central axis by using an inspection microscope [MX50, manufactured by Olympus Corporation], and a wear retreat amount of cutting blade edge was measured and defined as the wear amount of drill cutting blade.
  • a registration deviation amount of holes of the lower side (drill exit side) of the second sheet was measured using a hole registration accuracy analyzer [HT-1AM, manufactured by Hitachi Via Mechanics, Ltd.], and average +3 ⁇ ( ⁇ : standard deviation) of registration deviation amounts of the 4,001st to 6,000th hit holes was calculated and defined as the hole registration accuracy.
  • HT-1AM hole registration accuracy analyzer
  • the resulting laminate plate was cut into a size of 5 mm square, thereby fabricating a specimen.
  • a coefficient of thermal expansion of this specimen in the machine direction (longitudinal direction of the glass cloth) at from 50° C. to 120° C. was measured at a temperature rising rate of 10° C./min by using a TMA test apparatus (TMA2940, manufactured by TA Instruments).
  • the resulting laminate plate was cut into a size of 5 mm square, thereby fabricating a specimen.
  • a temperature-dimension change curve of this specimen in the thickness direction was measured at a temperature rising rate of 10° C./min by using a TMA test apparatus (TMA2940, manufactured by Du Pont) and a temperature of a point of intersection between an approximate straight line of low temperature side and an approximate straight line of high temperature side in the temperature-dimension change curve was determined as a glass transition temperature and evaluated for the heat resistance.
  • the use amount (parts by mass) in Table 1 is a blending amount of each of the components regarding the resin compositions of the Examples and Comparative Examples, as expressed in terms of parts by mass in the case where a total sum blending amount of the unsaturated maleimide compound (A) having an acidic substituent and the thermosetting resin (B) is defined as 100 parts by mass.
  • a total sum blending amount of the unsaturated maleimide compound (A) having an acidic substituent and the thermosetting resin (B) is defined as 100 parts by mass.
  • Comparative Example 2 since the maleimide compound (A) is not blended, the total sum blending amount of the thermosetting resin (B) and the cresol novolak type phenol resin was shown as 100 parts by mass.
  • Comparative Example 1 is low in the coefficient of thermal expansion and excellent in the heat resistance, it is significantly inferior in the drilling processability because the molybdenum compound (D) of the present invention is not contained therein.
  • Comparative Examples 2 and 3 are excellent in the drilling processability, they are high in the coefficient of thermal expansion and inferior in the heat resistance because the unsaturated maleimide compound (A) having an acidic substituent or the inorganic filler (C) of the present invention is not contained therein.
  • thermosetting resin composition varnishes were impregnated and coated on an E-glass cloth (WEA116E, manufactured by Nitto Boseki Co., Ltd.) having a thickness of 0.1 mm, followed by heating for drying at 160° C. for 5 minutes to achieve semi-curing, thereby obtaining a prepreg having a proportion of the resin composition of 48% by mass.
  • WEA116E manufactured by Nitto Boseki Co., Ltd.
  • Copper clad laminate plates were obtained in the same manner as that in Examples 4, 6 and 7 and Comparative Example 4, except that at the time of blending the thermosetting resin composition varnish, after adding the silica slurry (F) and before adding the molybdenum compound (G), an inorganic filler (aluminum hydroxide) was added, and the components were thoroughly stirred and mixed.
  • an inorganic filler aluminum hydroxide
  • Copper clad laminate plates were obtained in the same manner as that in Examples 4, 6 and 7 and Comparative Example 4, except that at the time of blending the thermosetting resin composition varnish, after adding the silica slurry (F), an inorganic filler (burnt talc or molybdenum disulfide) was added; the components were stirred until an aggregated block disappeared; and finally, a curing accelerator was added, and stirring was performed for one hour such that the whole of the varnish became homogenous.
  • silica slurry F
  • an inorganic filler burnt talc or molybdenum disulfide
  • a blending amount of each of the components in Tables 2 and 3 was expressed in terms of parts by mass in the case where a total sum blending amount of the thermosetting resin (E) as defined as 100.
  • a value of % by volume relative to the whole of the resin composition was also expressed in each of the parentheses. Also, the following materials were used as the respective components in Tables 2 and 3.
  • E-1 Phenol novolak type epoxy resin [EPICLON N-770, manufactured by DIC Corporation]
  • E-2 Bisphenol A novolak type epoxy resin [EPICLON N-865, manufactured by DIC Corporation]
  • E-3 Biphenyl aralkyl type epoxy resin [NC-3000, manufactured by Nippon Kayaku Co., Ltd.]
  • Curing agent Cresol novolak type phenol resin [PHENOLITE KA-1165, manufactured by DIC Corporation]
  • Curing accelerator 2-Ethyl-4-methylimidazole [CUREZOL2E4MZ, manufactured by Shikoku Chemicals Corporation]
  • F-1 Fused spherical silica slurry [SC2050-KC, manufactured by Admatechs Company Limited, average particle size: 0.5 ⁇ m, solid content: 70% by mass]
  • F-2 Fused spherical silica slurry [SC4050-KNA, manufactured by Admatechs Company Limited, average particle size: 1.0 ⁇ m, solid content: 70% by mass]
  • G-1 Zinc molybdate [a reagent, manufactured by Strem Chemicals Inc., average particle size: 2 ⁇ m]
  • G-2 Zinc molybdate-supported talc [KEMIGARD 911C, manufactured by Sherwin-Williams Company, average particle size: 3 ⁇ m]
  • G-3 Calcium molybdate [a reagent, manufactured by Strem Chemicals Inc., average particle size: 2 ⁇ m]
  • G-4 Magnesium molybdate [a reagent, manufactured by Mitsuwa Chemicals Co., Ltd., average particle size: 3 ⁇ m]
  • Inorganic filler 1 Burnt talc [BST, manufactured by Nippon Talc Co., Ltd.]
  • Inorganic filler 2 Molybdenum disulfide [A Powder, manufactured by Nichimoly Division, Daizo Corporation]
  • Inorganic filler 3 Aluminum hydroxide [C-303, manufactured by Sumitomo Chemical Co., Ltd.]
  • Organic solvent Cyclo
  • a drilling cutting blade portion of a new product (before drilling) and after drilling was observed from the drill central axis by using a scanning electron microscope [S-4700, manufactured by Hitachi, Ltd.], and a wear retreat amount of cutting blade edge was measured and defined as the wear amount of drill cutting blade.
  • a registration deviation amount of holes of the lower side (drill exit side) of the second sheet was measured using a hole registration accuracy analyzer [HT-1AM, manufactured by Hitachi Via Mechanics, Ltd.], and average +3 ⁇ ( ⁇ : standard deviation) of registration deviation amounts of the 4,001st to 6,000th hit holes was calculated and defined as the hole registration accuracy. So far as the hole registration accuracy is not more than 35 ⁇ m, favorable results are revealed without causing a problem in view of the practical use.
  • the resulting laminate plate was cut into a size of 50 mm square such that the circular portion was located in the center, thereby fabricating a specimen.
  • This specimen was dipped in FLUORINERT [manufactured by Sumitomo 3M Limited] and subjected to a dielectric breakdown test under a condition at a pressure rising rate of 5 kV/10 sec. by using a withstanding voltage meter [PT-1011, manufactured by TOA Electronics Ltd.], thereby measuring a dielectric breakdown voltage. So far as the dielectric breakdown voltage is 6 kV or more, favorable results are revealed without causing a problem in view of the practical use.
  • a copper clad laminate plate having a thickness of 0.4 mm was cut into a size of 5 mm square and cast with a casting resin, and the cut surface was polished to fabricate a specimen for cross section observation.
  • the polished surface of this specimen was subjected to milling by a flat milling apparatus [E-3200, manufactured by Hitachi, Ltd.] and then observed by using a scanning electron microscope [S-4700, manufactured by Hitachi, Ltd.] to examine the presence or absence of a void, thereby evaluating the moldability.
  • Example 4 Example 5
  • Example 6 Example 7 Drilling Wear amount of ⁇ m 11 8 9 10 processability drill cutting blade Hole registration ⁇ m 34 31 30 31 accuracy Coefficient of thermal expansion 10 ⁇ 6 /° C. 10.8 13.1 11.3 13.1 Electrical insulating properties kV 6.9 7.7 7.1 8.0 Moldability (presence or absence — Absent Absent Absent of void)
  • Comparative Example 4 since the content of silica exceeds 60% by volume of the whole of the resin composition, the moldability is significantly inferior and lowered in the drilling processability and electrical insulating properties.
  • Comparative Example 5 since the content of silica is less than 20% by volume of the whole of the resin composition, there is such a problem that the coefficient of thermal expansion is large.
  • Comparative Example 6 since the molybdenum compound of the present invention is not contained, the drilling processability is significantly inferior.
  • Comparative Example 7 since the molybdenum compound of the present invention is not contained, and molybdenum disulfide is contained, the electrical insulating properties are significantly inferior.
  • this molybdenum compound-dispersed silica slurry was gradually added to a resin varnish which had been prepared by dissolving (J) a thermosetting resin and a curing agent in an organic solvent, while stirring, and after the whole amount was completely added, the components were stirred for one hour until the whole became homogenous.
  • a solid content concentration of each of the resin composition varnishes of Examples 8 and 9 and Comparative Examples 8 and 9 was 70% by mass.
  • a solid content concentration of the resin composition varnishes of Comparative Example 10 was 70% by mass.
  • this molybdenum compound-dispersed silica slurry was gradually added to a slurry of (K) an inorganic filler while stirring, and after the whole amount was completely added, the components were stirred for one hour until the whole became homogenous.
  • a solid content concentration of the resin composition varnishes of Comparative Example 11 was 70% by mass.
  • each of the resin composition varnishes manufactured in the foregoing Examples and Comparative Examples was impregnated and coated on an E-glass cloth (WEA116E, manufactured by Nitto Boseki Co., Ltd.) having a thickness of 0.1 mm, followed by heating for drying at 160° C. for 5 minutes, thereby obtaining a prepreg having a content of the resin composition of 48% by mass.
  • Four sheets of this prepreg were superimposed, and an electrolytic copper foil having a thickness of 12 ⁇ m was disposed on the top and bottom, followed by vacuum pressing under a pressure of 3.8 MPa at a temperature of 185° C. for 90 minutes, thereby obtaining a copper clad laminate plate.
  • 500 cm 3 of the resin composition varnish was taken in a glass-made settling tube having a diameter of 5 cm and a length of 35 cm and allowed to stand at room temperature of 25° C., and a time until a precipitate accumulated on the bottom of the settling tube was measured, thereby evaluating the precipitation properties.
  • a drilling cutting blade portion before and after drilling was observed from the drill central axis by using a scanning electron microscope (S-4700, manufactured by Hitachi, Ltd.), and a wear retreat amount of cutting blade edge was measured and defined as the wear amount of drill cutting blade.
  • a registration deviation amount of holes of the lower side (drill exit side) of the second sheet was measured using a hole registration accuracy analyzer (HT-1AM, manufactured by Hitachi Via Mechanics, Ltd.), and average +3 ⁇ ( ⁇ : standard deviation) of registration deviation amounts of the 4,001st to 6,000th hit holes was calculated and defined as the hole registration accuracy.
  • HT-1AM hole registration accuracy analyzer
  • the resulting laminate plate was cut into a size of 5 mm square, thereby fabricating a specimen.
  • a coefficient of thermal expansion of this specimen in the machine direction (longitudinal direction of the glass cloth) at from 50° C. to 120° C. was measured at a temperature rising rate of 10° C./min by using a TMA test apparatus (TMA2940, manufactured by TA Instruments).
  • Example 11 Slurry having H-1 20 20 silica particle H-2 30 dispersed in H-3 12 organic solvent H-4 60 (I) Molybdenum I-1 23.4 23.4 23.4 23.4 compound I-2 23.9 I-3 19.0 (J) Thermosetting resin 100 100 100 100 100 100 100 100 Curing agent 63 63 63 63 63 63 63 63 63 Curing accelerator 1 1 1 1 1 1 1 Organic solvent 69 59 77 29 79 69 (K) Inorganic filler 402 (47) 402 (47) 402 (47) 402 (47) 402 (47) 402 (47) 406 (47.5) 402 (47) Unit: Parts by mass (however, % by volume in the parenthesis)
  • Table 6 shows a blend regarding the resin composition varnish manufactured by the manufacturing method of each of the Examples and Comparative Examples, as expressed in terms of parts by mass in the case where the blending amount of the thermosetting resin (J) is defined as 100 parts by mass.
  • the blending amount including the organic solvent contained therein is shown.
  • a value of % by volume of the inorganic filler in the case where the whole of the resin composition exclusive of the organic solvent contained in the resin composition varnish is defined 100% by volume was also expressed in each of the parentheses.
  • the molybdenum compound (I) in the case of using a particle in which the molybdenum compound is supported by other substance, a blending amount as the supported particle but not the molybdenum compound alone is shown.
  • Silica slurry H-1 Slurry in which silica having an average particle size of 0.05 ⁇ m and a specific surface area of 55 m 2 /g is dispersed in a silica blending amount of 30% by mass in propylene glycol monomethyl ether (ADMANANO, manufactured by
  • silica slurry H-2 Slurry in which silica having an average particle size of 0.025 ⁇ m and a specific surface area of 110 m 2 /g is dispersed in a silica blending amount of 20% by mass in propylene glycol monomethyl ether (ADMANANO, manufactured by Admatechs Company Limited)
  • Silica slurry H-3 Slurry in which silica (SO-25R, manufactured by Admatechs Company Limited) having an average particle size of 0.5 ⁇ m and a specific surface area of 7 m 2 /g is dispersed in a silica blending amount of 50% by mass in propylene glycol monomethyl ether
  • Example 11 Precipitation properties h 72 84 12 84 48 72 Aggregate — No No No Yes Yes Drilling Wear amount of ⁇ m 10 9 12 10 12 10 processabiiity drill cutting blade Hole registration ⁇ m 30 31 30 34 35 31 accuracy Coefficient of thermal expansion 10 ⁇ 6 /° C. 11.5 11.7 11.4 12.0 11.3 11.5
  • the Examples of the present invention are excellent in all of the issues regarding the precipitation properties and presence or absence of an aggregate of the resin composition varnish, and the drilling processability and coefficient of thermal expansion of the copper clad laminate plate.
  • Comparative Example 9 since the silica particle in the slurry (H) is large in the specific surface area, the aggregate remains in the resin composition varnish, and the hole registration accuracy is slightly deteriorated.
  • Comparative Example 10 since the molybdenum compound-supported talc is added directly to the resin varnish, the precipitation properties of the resin composition varnish are inferior, and the aggregate remains. Furthermore, the hole registration accuracy is slightly deteriorated.
  • Comparative Example 11 since the molybdenum compound-dispersed silica slurry is added to the inorganic filler slurry and then added to the resin varnish, the aggregate remains in the resin composition varnish.
  • a resin composition varnish in which the precipitation or aggregation of a molybdenum compound hardly occurs can be manufactured, and by using this, a prepreg and a laminate plate, each of which has a low coefficient of thermal expansion and high drilling processability and which is suitable for semi-conductor packages or printed wiring boards, can be obtained.
  • thermosetting resin composition of the present invention is especially low in thermal expansion properties and excellent in drilling processability and heat resistance, and it is suitably used for electronic components, etc.
  • laminate plate for wiring boards of the present invention it is possible to provide a laminate plate for wiring boards, which is very excellent in drilling processability at the time of fabricating a wiring board and which also has favorable electrical insulating properties and low thermal expansion properties.
  • varnish obtained by the method for manufacturing a resin composition varnish of the present invention it is possible to provide a prepreg and a laminate plate each having high drilling processability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
US13/518,578 2009-12-25 2010-12-24 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate Abandoned US20120276392A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2009296058A JP5682110B2 (ja) 2009-12-25 2009-12-25 熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2009-296058 2009-12-25
JP2010160979A JP5556466B2 (ja) 2010-07-15 2010-07-15 配線板用積層板
JP2010-160979 2010-07-15
JP2010-165556 2010-07-23
JP2010165556A JP5593915B2 (ja) 2010-07-23 2010-07-23 樹脂組成物ワニスの製造方法、プリプレグ、積層板
PCT/JP2010/073376 WO2011078339A1 (fr) 2009-12-25 2010-12-24 Composition de résine thermodurcissable, procédé pour produire un vernis, un préimprégné et un stratifié de composition de résine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073376 A-371-Of-International WO2011078339A1 (fr) 2009-12-25 2010-12-24 Composition de résine thermodurcissable, procédé pour produire un vernis, un préimprégné et un stratifié de composition de résine

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/133,838 Division US20160230037A1 (en) 2009-12-25 2016-04-20 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/133,662 Division US10414943B2 (en) 2009-12-25 2016-04-20 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/831,440 Continuation US20180094162A1 (en) 2009-12-25 2017-12-05 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate

Publications (1)

Publication Number Publication Date
US20120276392A1 true US20120276392A1 (en) 2012-11-01

Family

ID=44195864

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/518,578 Abandoned US20120276392A1 (en) 2009-12-25 2010-12-24 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/133,662 Active US10414943B2 (en) 2009-12-25 2016-04-20 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/133,838 Abandoned US20160230037A1 (en) 2009-12-25 2016-04-20 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/831,440 Abandoned US20180094162A1 (en) 2009-12-25 2017-12-05 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/133,662 Active US10414943B2 (en) 2009-12-25 2016-04-20 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/133,838 Abandoned US20160230037A1 (en) 2009-12-25 2016-04-20 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/831,440 Abandoned US20180094162A1 (en) 2009-12-25 2017-12-05 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate

Country Status (7)

Country Link
US (4) US20120276392A1 (fr)
EP (1) EP2518115B1 (fr)
KR (2) KR102143743B1 (fr)
CN (1) CN102656234B (fr)
HK (1) HK1171777A1 (fr)
TW (4) TWI555733B (fr)
WO (1) WO2011078339A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160230037A1 (en) * 2009-12-25 2016-08-11 Hitachi Chemical Company, Ltd. Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US20160369099A1 (en) * 2013-09-30 2016-12-22 Lg Chem, Ltd. Thermosetting resin composition for semiconductor package and prepreg and metal clad laminate using the same
US20170099731A1 (en) * 2014-04-08 2017-04-06 Panasonic Intellectual Property Management Co., Ltd. Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board
US9944787B2 (en) 2012-03-30 2018-04-17 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and laminate
US20180186647A1 (en) * 2015-06-25 2018-07-05 Zhao, Ziqun Carbon plate and manufacturing process thereof
TWI630102B (zh) * 2013-10-15 2018-07-21 昭和電工包裝股份有限公司 Forming packaging material
US10522493B2 (en) * 2015-12-25 2019-12-31 Panasonic Intellectual Property Management Co., Ltd. Paste thermosetting resin composition, semiconductor component, semiconductor mounted article, method for manufacturing semiconductor component, and method for manufacturing semiconductor mounted article
US10681807B2 (en) * 2017-03-29 2020-06-09 Hitachi Chemical Company, Ltd. Coreless substrate prepreg, coreless substrate, coreless substrate manufacturing method and semiconductor package
US11114354B2 (en) * 2016-09-06 2021-09-07 Panasonic Intellectual Property Management Co., Ltd. Printed wiring board, printed circuit board, prepreg
US11505641B2 (en) * 2018-03-20 2022-11-22 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
US20240092958A1 (en) * 2021-01-06 2024-03-21 Showa Denko Materials Co., Ltd. Thermosetting resin composition, prepreg, laminate, metal-clad laminate, printed wiring board, and high-speed communication compatible module

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101906687B1 (ko) * 2010-03-08 2018-12-05 아지노모토 가부시키가이샤 트렌치형 회로 기판의 제조방법
EP3028851A1 (fr) * 2011-09-22 2016-06-08 Hitachi Chemical Company, Ltd. Utilisation d'un corps stratifié, d'une carte stratifiée ou d'une carte stratifiée multicouche pour preparation d'une carte de câblage imprimé, la carte de câblage imprimé et procédé de production d'une carte stratifiée
ITMI20130452A1 (it) 2013-03-26 2014-09-27 Riem Service S R L Processo per la rigenerazione del gruppo pompante di un compressore volumetrico a vite del tipo "oil-free".
CN105517767B (zh) * 2013-09-09 2018-04-20 三菱瓦斯化学株式会社 预浸料、覆金属箔层叠板及印刷布线板
TWI499627B (zh) * 2013-10-11 2015-09-11 Nanya Plastics Corp A surface-coated inorganic filler molybdenum compound and use thereof
US10208188B2 (en) 2013-10-11 2019-02-19 Shengyi Technology Co., Ltd. Thermosetting resin composition and uses thereof
CN103724943B (zh) * 2013-12-31 2016-09-21 中材金晶玻纤有限公司 缠绕玻纤管用胶液及其制备方法
JP2016079318A (ja) * 2014-10-20 2016-05-16 日立化成株式会社 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、積層板及びプリント配線板
JP2016079317A (ja) * 2014-10-20 2016-05-16 日立化成株式会社 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、積層板及びプリント配線板
US10836904B2 (en) * 2016-10-18 2020-11-17 Ascend Performance Materials Operations Llc Low-halogen flame retardant polyamide compositions resistant to heat aging
CN110662795B (zh) * 2017-03-30 2022-12-06 昭和电工材料株式会社 预浸渍体及其制造方法、层叠板、印刷线路板以及半导体封装体
KR102106117B1 (ko) * 2017-09-11 2020-04-29 주식회사 엘지화학 회로 기판 제조용 연속 시트의 제조 방법 및 이로부터 제조된 회로 기판 제조용 연속 시트
KR102242544B1 (ko) * 2017-12-15 2021-04-19 주식회사 엘지화학 회로 기판 제조용 연속 시트의 제조 방법 및 이로부터 제조된 회로 기판 제조용 연속 시트
JP7420071B2 (ja) * 2018-06-21 2024-01-23 株式会社レゾナック 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び半導体パッケージ並びに熱硬化性樹脂組成物の製造方法
KR20200038814A (ko) * 2018-10-04 2020-04-14 주식회사 엘지화학 회로 기판 제조용 연속 시트의 제조 방법 및 이로부터 제조된 회로 기판 제조용 연속 시트
CN113083338A (zh) * 2021-04-01 2021-07-09 中国科学院广州能源研究所 一种甲醇重整制氢Zn掺杂碳化钼催化剂的制备方法
WO2023145471A1 (fr) * 2022-01-28 2023-08-03 パナソニックIpマネジメント株式会社 Composition de résine, pré-imprégné, film avec résine, feuille de métal avec résine, plaque stratifiée plaquée de métal, et carte de circuit imprimé
WO2024080195A1 (fr) * 2022-10-12 2024-04-18 株式会社レゾナック Préimprégné, plaque stratifiée, carte de circuit imprimé et boîtier de semi-conducteur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298720A (en) * 1979-07-23 1981-11-03 Mitsui Toatsu Chemicals Incorporated Thermosetting resin composition from maleimide compound and alkenyl phenol
JPS62132915A (ja) * 1985-12-04 1987-06-16 Toshiba Chem Corp 成形用耐熱性樹脂組成物
JPH02133440A (ja) * 1988-11-15 1990-05-22 Matsushita Electric Works Ltd 電気用積層板の製造方法
US6361866B1 (en) * 1999-03-18 2002-03-26 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminated board

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251499A (en) * 1975-10-23 1977-04-25 Toshiba Chem Corp Theremosetting resin compositions
JPS5738851A (en) * 1980-08-15 1982-03-03 Toshiba Chem Corp Thermosetting resin composition
JPH0352773A (ja) 1989-07-18 1991-03-06 Babcock Hitachi Kk ホツトワイヤ加熱装置
CN101117275B (zh) 1998-10-13 2012-10-24 Ppg工业俄亥俄公司 玻璃纤维补强的预浸渍片、层压件、电路板以及装配织物的方法
US6291556B1 (en) 1999-03-26 2001-09-18 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
TW538482B (en) 1999-04-26 2003-06-21 Shinetsu Chemical Co Semiconductor encapsulating epoxy resin composition and semiconductor device
JP4348785B2 (ja) * 1999-07-29 2009-10-21 三菱瓦斯化学株式会社 高弾性率ガラス布基材熱硬化性樹脂銅張積層板
US6610406B2 (en) 2000-03-23 2003-08-26 Henkel Locktite Corporation Flame retardant molding compositions
JP2002161151A (ja) * 2000-11-27 2002-06-04 Matsushita Electric Works Ltd プリプレグ及び積層板
MY142518A (en) * 2001-01-10 2010-12-15 Hitachi Chemical Co Ltd Dihydrobenzoxazine ring-containing resin, phenolic-triazine-aldehyde condensate and epoxy resin
JP4132703B2 (ja) 2001-03-26 2008-08-13 住友ベークライト株式会社 銅張積層板用プリプレグ及びそれを用いた銅張積層板
JPWO2003027167A1 (ja) * 2001-09-20 2005-01-06 旭化成ケミカルズ株式会社 官能化ポリフェニレンエーテル
JP2003201332A (ja) * 2002-01-10 2003-07-18 Hitachi Chem Co Ltd 印刷配線板用エポキシ樹脂組成物及びこれを用いた印刷配線板用積層板
JP4400191B2 (ja) 2003-11-28 2010-01-20 住友ベークライト株式会社 樹脂組成物およびそれを用いた基板
KR101262143B1 (ko) * 2005-05-31 2013-05-15 가부시키가이샤 아데카 에폭시수지 경화성 조성물
TW200718725A (en) 2005-11-03 2007-05-16 Elite Material Co Ltd Phosphorus-containing epoxy composition
CN101460539A (zh) * 2006-06-06 2009-06-17 日立化成工业株式会社 具有酸性取代基和不饱和马来酰亚胺基的固化剂的制造方法以及热固化性树脂组合物、预浸料及层叠板
WO2007142140A1 (fr) * 2006-06-06 2007-12-13 Hitachi Chemical Company, Ltd. Procédé servant à produire un durcisseur ayant un substituant acide et un groupe maléimide insaturé, composition de résine thermodurcissable, préimprégné et stratifié
MY154599A (en) * 2006-10-06 2015-06-30 Sumitomo Bakelite Co Resin composition, insulating sheet with base, prepreg, multilayer printed wiring board and semiconductor device
JP2008108791A (ja) * 2006-10-23 2008-05-08 Fujifilm Corp 多層プリント配線基板及び多層プリント配線基板の作製方法
JP5104507B2 (ja) * 2007-04-26 2012-12-19 日立化成工業株式会社 セミipn型複合体の熱硬化性樹脂を含有する樹脂ワニスの製造方法、並びにこれを用いたプリント配線板用樹脂ワニス、プリプレグ及び金属張積層板
JP5024205B2 (ja) * 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 プリプレグ及び積層板
JP2009138075A (ja) * 2007-12-05 2009-06-25 Hitachi Chem Co Ltd 樹脂組成物、それを用いたプリプレグ、および積層板
JP2009155399A (ja) * 2007-12-25 2009-07-16 Hitachi Chem Co Ltd 熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP5515225B2 (ja) 2008-02-28 2014-06-11 住友ベークライト株式会社 多層プリント配線板、及び半導体装置
JP5540494B2 (ja) * 2008-10-30 2014-07-02 日立化成株式会社 熱硬化性樹脂組成物、及びこれを用いたプリプレグ,積層板及びプリント配線板
KR101688828B1 (ko) * 2009-02-25 2017-01-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 프리프레그 및 적층판
KR101733646B1 (ko) * 2009-03-27 2017-05-10 히타치가세이가부시끼가이샤 열경화성 수지 조성물, 및 이를 이용한 프리프레그, 지지체 부착 절연 필름, 적층판 및 인쇄 배선판
US20120276392A1 (en) * 2009-12-25 2012-11-01 Hitachi Chemical Company, Ltd. Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
WO2011118584A1 (fr) 2010-03-26 2011-09-29 パナソニック電工株式会社 Composition de résine époxy pour pré-imprégné, pré-imprégné, et carte de circuit imprimé multicouche
US8505823B2 (en) * 2010-06-30 2013-08-13 International Business Machine Corporation Noise removal from color barcode images
US9101061B2 (en) * 2011-09-22 2015-08-04 Hitachi Chemical Company, Ltd. Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298720A (en) * 1979-07-23 1981-11-03 Mitsui Toatsu Chemicals Incorporated Thermosetting resin composition from maleimide compound and alkenyl phenol
JPS62132915A (ja) * 1985-12-04 1987-06-16 Toshiba Chem Corp 成形用耐熱性樹脂組成物
JPH02133440A (ja) * 1988-11-15 1990-05-22 Matsushita Electric Works Ltd 電気用積層板の製造方法
US6361866B1 (en) * 1999-03-18 2002-03-26 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminated board

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UL 94 Flammability Standard downloaded from http://web.rtpcompany.com/info/ul/ul94v012.htm on June 2, 2017. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160230037A1 (en) * 2009-12-25 2016-08-11 Hitachi Chemical Company, Ltd. Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US9944787B2 (en) 2012-03-30 2018-04-17 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and laminate
US20160369099A1 (en) * 2013-09-30 2016-12-22 Lg Chem, Ltd. Thermosetting resin composition for semiconductor package and prepreg and metal clad laminate using the same
US11535750B2 (en) * 2013-09-30 2022-12-27 Lg Chem, Ltd. Thermosetting resin composition for semiconductor package and prepreg and metal clad laminate using the same
TWI630102B (zh) * 2013-10-15 2018-07-21 昭和電工包裝股份有限公司 Forming packaging material
US9775239B2 (en) * 2014-04-08 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board
US20170099731A1 (en) * 2014-04-08 2017-04-06 Panasonic Intellectual Property Management Co., Ltd. Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board
US20180186647A1 (en) * 2015-06-25 2018-07-05 Zhao, Ziqun Carbon plate and manufacturing process thereof
US10472244B2 (en) * 2015-06-25 2019-11-12 Xingan ZHAO Carbon plate and manufacturing process thereof
US10522493B2 (en) * 2015-12-25 2019-12-31 Panasonic Intellectual Property Management Co., Ltd. Paste thermosetting resin composition, semiconductor component, semiconductor mounted article, method for manufacturing semiconductor component, and method for manufacturing semiconductor mounted article
US11114354B2 (en) * 2016-09-06 2021-09-07 Panasonic Intellectual Property Management Co., Ltd. Printed wiring board, printed circuit board, prepreg
US10681807B2 (en) * 2017-03-29 2020-06-09 Hitachi Chemical Company, Ltd. Coreless substrate prepreg, coreless substrate, coreless substrate manufacturing method and semiconductor package
US11505641B2 (en) * 2018-03-20 2022-11-22 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
US20240092958A1 (en) * 2021-01-06 2024-03-21 Showa Denko Materials Co., Ltd. Thermosetting resin composition, prepreg, laminate, metal-clad laminate, printed wiring board, and high-speed communication compatible module

Also Published As

Publication number Publication date
US20180094162A1 (en) 2018-04-05
TWI531610B (zh) 2016-05-01
TW201531510A (zh) 2015-08-16
US20160234942A1 (en) 2016-08-11
TWI560223B (en) 2016-12-01
TWI529161B (zh) 2016-04-11
HK1171777A1 (en) 2013-04-05
KR20120123031A (ko) 2012-11-07
US10414943B2 (en) 2019-09-17
TW201132625A (en) 2011-10-01
CN102656234B (zh) 2015-06-17
WO2011078339A1 (fr) 2011-06-30
TW201623232A (zh) 2016-07-01
KR20170116251A (ko) 2017-10-18
EP2518115B1 (fr) 2017-10-18
CN102656234A (zh) 2012-09-05
US20160230037A1 (en) 2016-08-11
KR102143743B1 (ko) 2020-08-28
EP2518115A4 (fr) 2014-04-16
EP2518115A1 (fr) 2012-10-31
TW201531517A (zh) 2015-08-16
TWI555733B (zh) 2016-11-01

Similar Documents

Publication Publication Date Title
US10414943B2 (en) Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
JP5614048B2 (ja) 熱硬化性絶縁樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板
US9629239B2 (en) Resin composition, and prepreg as well as laminate using the same
JP6066118B2 (ja) 樹脂組成物、プリプレグ及び積層板
JP6157121B2 (ja) 樹脂組成物、プリプレグ、および積層板
JP5682110B2 (ja) 熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
WO2011108524A1 (fr) Composition de résine, préimprégné et feuille stratifiée
JP6606882B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
TW201940589A (zh) 樹脂組合物、預浸料、層壓板、覆金屬箔層壓板以及印刷電路板
JP6186712B2 (ja) 熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及び多層プリント配線板
JP7276400B2 (ja) 金属張積層板、プリント配線板及び半導体パッケージ
JP2016056094A (ja) 積層板用樹脂組成物、プリプレグ及び積層板
JP5593915B2 (ja) 樹脂組成物ワニスの製造方法、プリプレグ、積層板
JP5862070B2 (ja) 積層板用樹脂組成物、プリプレグ及び積層板
JP2010260955A (ja) 樹脂組成物、樹脂組成物の製造方法、及びそれを用いたプリプレグ、積層板
CN112313281A (zh) 热固化性树脂组合物、预浸渍体、层叠板、印刷线路板、半导体封装体以及热固化性树脂组合物的制造方法
JP5556466B2 (ja) 配線板用積層板
JP2014160875A (ja) 配線板用積層板

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI CHEMICAL COMPANY, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKAHASHI, YOSHIHIRO;KAMIGATA, YASUO;MURAI, HIKARI;AND OTHERS;REEL/FRAME:028427/0024

Effective date: 20120612

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION