US20100283064A1 - Nanostructured led array with collimating reflectors - Google Patents

Nanostructured led array with collimating reflectors Download PDF

Info

Publication number
US20100283064A1
US20100283064A1 US12/451,911 US45191107A US2010283064A1 US 20100283064 A1 US20100283064 A1 US 20100283064A1 US 45191107 A US45191107 A US 45191107A US 2010283064 A1 US2010283064 A1 US 2010283064A1
Authority
US
United States
Prior art keywords
nanostructured
leds
led
layer
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/451,911
Other languages
English (en)
Inventor
Lars Ivar Samuelson
Bo Pedersen
Bjorn Jonas Ohlsson
Yourii Martynov
Steven L. KONSEK
Peter Jesper Hanberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QuNano AB
Original Assignee
QuNano AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/812,225 external-priority patent/US8183587B2/en
Application filed by QuNano AB filed Critical QuNano AB
Priority to US12/451,911 priority Critical patent/US20100283064A1/en
Assigned to QUNANO AB reassignment QUNANO AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PEDERSEN, BO, SAMUELSON, LARS IVAR, HANBERG, PETER JESPER, KONSEK, STEVEN L., OHLSSON, BJORN JONAS, MARTYNOV, YOURII
Publication of US20100283064A1 publication Critical patent/US20100283064A1/en
Priority to US14/664,158 priority patent/US10263149B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to light emitting diodes, LEDs.
  • the invention relates to a nanostructured LED device comprising arrays of nanostructures.
  • the today dominating type of light emitting diodes are built on planar technology.
  • the PN junction is constructed as a plurality of layers on a substrate giving a device with an essentially horizontal orientation.
  • the light-producing re-combination takes place in a subset of these layers.
  • the semiconductor layers have refractive indexes that are substantially higher than the refractive index of the air, a substantial portion of generated light will be reflected in the layers and not contribute to the effective luminescence of the device.
  • the layers will act as a waveguide in the horizontal plane of the LED. Measures have been suggested to mitigate the effects of the light of LED being trapped in the device and to efficiently extract the light out of the semiconductor layers.
  • Such measures include modifying the surface in order to provide portions with varying angles to the horizontal plane.
  • a similar approach is suggested in EP1369935, wherein nanosized particles are provided in the LED device to scatter light or alternatively absorb light and generate light of a different wavelength.
  • the planar technology imposes constrains in terms of miniaturization and choices of suitable materials, which will be further described below.
  • nanowires for example InP can be grown on InAs or Si without defects.
  • InAs or Si without defects.
  • US 20040075464 by Samuelson et at a plurality of devices based on nanowire structures are disclosed, for example nanowire LEDs. These LEDs have an internal heterostructure giving quantum confinement effects.
  • US20030168964 teaches an assembly of a plurality of nanowires acting as LEDs mounted in groups between a conductive transparent substrates at the lower end of the nanowires and a transparent cover substrate at the top end, each individual nanowire having a structure of P-type, N-type and light emitting layer.
  • the nanowires are said to be arranged to emit light through the conductive transparent substrate.
  • Nanowire LED have previously been reported. Hiruma et al. fabricated vertical GaAs nanowire pn LEDs. The nanowires were embedded in an SOG and covered with an Au/Ge/Ni top contact described in “ GaAs p - n junction formed in quantum crystals ” by Haraguchi et al., Appl. Phys. Lett. 60 (6) 1992. These devices showed room temperature electro luminescence. GaN based nanowire LEDs have also been fabricated as described in “ Core/Multishell Nanowire Heterostructure as Multicolor, High - Efficiency Light - Emitting Diodes ” by Quian et al., Nanoletters.
  • the object of the present invention is to provide a nanostructured LED device and a method of producing such overcoming the drawbacks of the prior art devices and methods. This is achieved by the device as defined in claim 1 and the method as defined in claim 23 .
  • the nanostructured LED device comprises an array of a plurality of individual nanostructured LEDs. Each of the nanostructured LEDs has an active region wherein light is produced.
  • the nanostructured device further comprise a plurality of reflectors, each associated to one individual nanostructured LED, or a group of nanostructured LEDs.
  • the individual reflectors has a concave surface facing the active region of the respective individual nanostructured LED or active regions of group of nanostructured LEDs.
  • the nanostructured LED device can be seen as comprising a LED array layer and a reflector layer.
  • the plurality of nanostructured LEDs forms the LED array layer, with a corresponding plurality of active regions arranged in the layer
  • the reflector layer is arranged in a plane parallel to the LED array layer and comprises a plurality of reflectors each having a concave surface facing one or a group of active regions and arranged to, direct light through the LED array.
  • the periodicity of reflectors of the reflector layer may relate to the periodicity of the nanostructured LEDs, or their associated active regions.
  • each reflector covers the upper surface, and optionally a part of the side surface, of an elongated nanostructured LED, typically a LED form from a nanowire.
  • the nanostructured LEDs are of pyramidal shape and the reflector covers essentially all sides of the nanostructured LED except for the side facing the substrate.
  • the individual reflectors may be joined to form a continuous reflecting layer.
  • the continuous reflecting layer covers both the upper surface of the nanostructured LEDs and a filler layer that has been provided to fill the space in between the nanostructures.
  • the reflectors or the continuous reflecting layer may be provided directly on the nanostructured LEDs. Alternatively a spacer material is provided there between to define the shape of the reflectors. A contact or contact layer may also be provided between the reflectors and the nanostructured LEDs. One alternative is to use the continuous reflecting layer also as a upper contact to the nanostructured LEDs.
  • One advantage of the present invention is that the efficiency of nanostructured LED devices can be sufficiently increased.
  • a further advantage is that the nanostructured LED devices can be fabricated with established methods.
  • nanostructured LED according to the invention is that the fabrication can be adapted to cost efficient industrial production.
  • FIG. 1 a illustrates schematically a nanostructured LED device according to the invention and b - e ) upstanding individual nanostructured LEDs utilised in the nanostructured LED device according invention;
  • FIG. 2 a - f illustrates schematically the reflector according to the invention
  • FIG. 3 a - b illustrates schematically different embodiments of the a nanostructured LED device comprising reflectors according to the invention
  • FIG. 4 a - b illustrates schematically embodiments of a nanostructured LED comprised in a nanostructured LED device according to the invention
  • FIG. 5 a - c illustrates schematically embodiments of a nanostructured LED device according to the invention
  • FIG. 6 illustrates the basic production steps in the method according to the invention.
  • FIG. 7 schematically illustrates a LED nanostructure
  • FIG. 8 a is a SEM-image of a nanostructure LED according to FIGS. 7
  • 8 b is is an image of an active LED nanostructure
  • FIG. 9 is a SEM image of nanowire structures of the invention after the first MOVPE step.
  • FIGS. 10 a - c are photoluminescence graphs of nanowires and LED nanostructure according to FIG. 7 and FIG. 9 ;
  • FIGS. 11 shows a) Power dependence of Electroluminescence of GaAs LEDs grown on GaP and Si, b) EL spectra at 80 mA from GaP and Si based LED nanostructures;
  • FIGS. 12 a - c shows SEM images of differently shaped selectively grown nanostructures
  • FIGS. 13 a - b shows SEM images of two alternative shapes of LED structures.
  • a nanostructured light emitting diode, LED, device comprises an upstanding nanostructured LEDs.
  • the individual nanostructured LED are for example formed by the use of nanowires.
  • the nanowires are either utilised as an active element in the LED or as a building block for nanostructures, wherein the nanowire makes it possible to fabricate the nanostructures with materials that otherwise would not match the materials of a substrate, for example.
  • Suitable methods for growing nanowires on semiconductor substrates are described in US 2003010244. Methods of providing epitaxally grown nanowires with heterostructures are to be found in US 20040075464.
  • Nanostructured LEDs may also be formed by other means, for examples as InGaN/GaN hexagonal pyramid structures on a GaN substrate as indicated in “Spatial control of InGaN luminescence by MOCVD selective epitaxy” by D. Kapolnek et al., J. of Crystal Growth 189/190 (1998) 83-86.
  • an upstanding nanowire should be interpreted as a nanowire protruding from the substrate at some angle, the upstanding nanowire for example grown epitaxially from the substrate.
  • the angle with the substrate will typically be a result of the materials in the substrate and the nanowire, the surface of the substrate and growth conditions.
  • nanowires pointing in only one direction for example vertical, or in a limited set of directions.
  • nanowires and substrates of zinc-blende and diamond semiconductors composed of elements from columns III, V and IV of the periodic table such nanowires can be grown in the [111] directions and then be grown in the normal direction to any ⁇ 111 ⁇ substrate surface.
  • nanowires define one, or a limited set, of directions.
  • a nanostructured LED device 101 according to the invention is schematically illustrated in FIG. 1 a and comprises at least one array of nanostructured LEDs 100 , each with an individual active region 120 wherein light is produced.
  • the nanostructured LEDs have during fabrication been grown from a substrate 105 .
  • the nanostructured LED device 101 according to the invention is designed as that is commonly referred to as a “flip-chip” configuration, and the light is extracted through the substrate 105 .
  • the substrate has been removed during fabrication and the light is emitted directly from the nanostructures LEDs 100 , or through a buffer layer or protective layer (not shown) covering the lower surface of the nanostructured LEDs 100 .
  • the produced light is directed at least partly by means of a reflectors 135 positioned in proximity to the opposite end of the nanostructured LEDs compared to the end of the nanostructured LEDs there the light leaves the device, i.e. close to the top end.
  • the reflectors 135 collimates or focus the light emitted from the active region in the direction towards the substrate.
  • the collimation of the light towards the normal direction of the nanostructured LED array and substrate plane is advantageous for light extraction of the device as it decrease internal reflection. Highly directional light emission is also advantageous for several LED applications.
  • the light is collimated as the reflectors 135 has an essential concave surface facing the active region 120 . Concave surface should here be given a very broad interpretation, as illustrated in FIG.
  • a continues curve (a), an open rectangle (b), an open rectangle with smooth corners (c), a plurality of straight parts joined with varying angles (d), two legs of a triangle (e), or a plurality of continues curves (f). Collimating should also be interpreted broadly, indicating that the light leaving the LED device has a generally preferred direction, not necessarily strictly parallel.
  • the reflector may be deposited as a highly reflective metal layer on top of the structure formed during growth and/or subsequent processing.
  • Typical materials for the reflector include but is not limited to Ag, Al (for LEDs in green and blue color range with the wavelength ⁇ 500 nm), same and Au for LEDs in infrared, red, orange and amber color range.
  • multilayered structure comprising repeated layers of AlGaAs/GaAs or GaN/AlGaN, for example, may be used as reflectors.
  • the deposition methods for the reflector include but are not limited to evaporation, sputtering, electrochemical or electroless plating.
  • an additional protective dielectric layer may be formed, for example from SiO 2 , Si 3 N 4 or similar material. In this layer openings may be structured to provide electrical contact to the reflector.
  • each individual reflector in a nanostructured LED device will vary greatly depending on the implementation, not at least on the size and shape of the individual nanostructured LEDs. Typical diameters and heights range from tenth of nanometers to several micrometers in the widest parts.
  • the inner concave surface of each individual reflector 135 is defined by the contour of a at least the upper surface of respective individual nanostructured LED. A part or all of the side surfaces of the nanostructured LED may also define parts of the reflector.
  • the nanostructured LED device 101 may be seen as a vertically layered device with a LED array layer 180 comprising a plurality of nanostrucured LEDs 100 with a corresponding plurality of active regions 120 arranged within the LED array layer 180 .
  • a reflector layer 181 comprising the plurality of reflectors 135 having a concave surface facing one or a group of active regions and arranged to direct light through the LED array 180 .
  • the periodicity of the individual reflectors 135 of the reflector layer 181 is related to the periodicity of the individual nanostructured LEDs.
  • the reflector layer 181 has a random configuration or a periodicity which is not correlated to the periodicity of the LED array layer 180 .
  • the close positioning relative the nanostructure array and the irregular shape of the reflector gives further advantages; the layer can have multiple usage. It can function as a heat conductor with a higher efficiency than in traditional planar LEDs due to the close proximity to the active area and a higher relative surface junction area of the joint semiconductor and reflector material in comparison to the area of the active region. It is also advantageous as an electrical contact to the LED array, also due to close proximity and high relative surface area of the junction.
  • This multipurpose layer may in this way facilitate device design for LED efficiency.
  • Devices based on nanostructured LEDs do fundamentally differ from traditional planar LEDs as light is emitted from a number of individual light sources instead of one continuous plane. Any array design can be realized by lithographic means.
  • the pitch and pattern of such arrays of LEDs may vary.
  • This use of a photonic crystal design in the active array is essentially different from the use of photonic crystal patterns positioned outside the active region and in the proximity of the interface where the light is aimed to be extracted from the semiconductor, as the suggested use of the photonic crystal properties is aimed to align light towards both mirror and the final light extraction interface from the semiconductor.
  • the pitch of such array can be said to roughly range within 0.1-4 ⁇ m.
  • the specific size of the individual LEDs may often be limited by the choice of array pitch.
  • FIG. 1 b illustrates a nanostructured LED formed of a nanowire 110 and comprises a substrate 105 , wherein the nanowire 110 has been epitaxially grown from the substrate 105 .
  • a portion of the nanowire 110 is enclosed by a volume element 115 .
  • the volume element 115 is preferably epitaxially connected to the nanowire 110 .
  • a pn-junction necessary for the diode functionality is formed in the volume element 115 or alternatively in the nanowire 110 .
  • a top contact is provided on the volume element 115 , for example on top, or in a wrapping configuration on the circumferential outer surface.
  • the nanostructured LED 100 may be contacted in the other end for example via the substrate, forming a common bottom contact, through a dedicated contacting layer close to the substrate, or by a wrap contact at the lower end of the nanowire 110 .
  • a wrap contact may be L-shaped or the length of the contact to the nanowire defined by the thickness of a contacting layer.
  • the nanowire 110 typically has a diameter in the order of 50 nm to 500 nm, and the volume element a diameter in the order of 500 nm to 10 ⁇ m.
  • the length of the portion of the nanowire not covered by the volume element may vary from 10 nm to several ⁇ m depending on the application.
  • the length of the volume element is typically and preferably in the order of 1 to 5 ⁇ m.
  • the volume element 115 may have different shape and the volume element and nanowire in combination designed to give different position and shape of the active region giving the recombination conditions required for the light production.
  • the volume element 115 may further provide a high degree of doping and the charge carriers are injected into the nanowire.
  • the nanostructured LEDs are designed to direct the light out of the device through the substrate 105 , or alternatively through a support structure if the substrate has been removed, i.e. referring to the figures, the light is directed in a downwards direction.
  • the produced light is directed at least partly by means of a reflector 135 positioned in proximity to the opposite end of the nanowire compared to the end of the nanowire there the light leaves the device, i.e. close to the top end of the nanowire 110 .
  • the depicted reflector 135 has a cross section which follows from the cut-off pyramid top part of the volume element 115 , which is a shape that can be made with known methods.
  • the shape of the reflector follows the shape of the volume element 115 , which from a production viewpoint represents a preferred embodiment.
  • many different shapes can be envisaged and fabricated, and the depicted shape and that the shape is given by the volume element is to be considered as a non limiting example.
  • FIG. 1 c illustrates another design wherein the volume element 115 comprises a plurality of layers 116 , 117 in a shell-like structure.
  • a doping layer 117 provides the p or n region and the well layer 116 comprises the active region 120 under operation.
  • the well can be made out of a plurality of sub-layers.
  • the structure may comprises other layers (not shown) for enhancing doping properties, improve contacting etc.
  • the active region 120 will primarily be outside of the nanowire 110 .
  • the reflector 135 does in this embodiment enclose the shell-like structure.
  • the volume element/shell-structure is here depicted with a pointed upper end, which represents one possible and technical achievable implementation.
  • the nanostructured LEDs ( 100 ) of the embodiments schematically illustrated in FIG. 1 a - c can be described as elongated structures with an upper part, which is pointed. Pointed should in this case be understood to include also shapes with a the outermost top cut-off as illustrated.
  • the nanostructured LED further has an elongated cylindrical part with a vertical surface. The term vertical surface is to include also the surface of an elongated cone.
  • FIG. 1 d A further embodiment is illustrated in FIG. 1 d, wherein the nanowire 110 is enclosed by a pyramidal overgrowth forming the volume element 115 .
  • the active region 120 may in this case be formed in the nanowire, or if a shell-like structure is provided as depicted, in the volume element.
  • the reflector 135 follows the pyramidal shape and forms a corresponding pyramid, i.e. the depicted cross section will be triangular.
  • a contact 137 is provided in between the volume element 115 and the reflector 135 .
  • FIG. 1 e Illustrated schematically in FIG. 1 e is a nanostructured LED formed without the aid of a nanowire.
  • a pyramid 160 of a first semiconductor material is formed on the substrate 105 and by growing subsequent semiconductor layers 161 , 162 a pn junction may be formed, giving an active region 120 .
  • a structure of this type can be provided with a reflector 135 according to the present invention.
  • FIGS. 1 a - e represent possible reflecting paths of the light emitted from the active regions, and illustrates the collimating effect towards the substrate 105 .
  • the contacting means are required on the volume element forming a top contact.
  • the top contact may be positioned between the volume element and the reflector, and if so, preferably is of a transparent or semi transparent material.
  • a transparent contacting layer 125 covering the volume element and a reflector 135 in the form of a layer on top of the contacting layer 125 .
  • the reflector 135 for example in the form of a layer, serves as both contact and reflector.
  • the substrate 105 and part of the upstanding structure may be covered by a cover layer 107 , for example as a thin film or as material filling the space surrounding the nanostructured LED, as illustrated in FIG. 1 b.
  • a reflector 135 can be associated to each nanostructure LED 100 , as illustrated in FIG. 3 a , wherein a device comprising a plurality of nanowires is depicted.
  • the reflector covers only one nanostructure LED, but as indicated by the thin arrows representing light paths, may contribute in collimating light emitted from other active regions 120 .
  • a reflector 135 is associated with a plurality of nanostructure LEDs. If seen in the direction of the nanowires and towards the substrate the reflector 135 covers the active regions 120 of the plurality of nanostructure LEDs.
  • a spacing material 136 with suitable optical properties is provided between the nanostructure LEDs and the reflector 135 .
  • the spacing material 136 may facilitate the forming of the concave reflector.
  • the spacing material should be transparent for the light of the emitted wavelength. It may be a dielectric, for example SiO 2 , Al 2 O 3 , or Si 3 N 4 deposited using methods like sputtering, evaporation or CVD. Alternatively, it may be a semiconductor material deposited during epitaxial growth under conditions different from individual nanostructured LED growth. It can be made electrically conductive to facilitate contacting through the reflector.
  • FIG. 3 c A further alternative is schematically illustrated in FIG. 3 c , wherein the cross section of the reflector 135 is substantially smaller than the diameter of the nanostructure LEDs, and a plurality of reflectors can be associated to each nanostructure 100 .
  • the upper surface of the individual nanostructured LEDs may be structured using etching or laser texturing methods.
  • the nanowire of the nanostructured LED is used as a waveguide directing at least a portion of the light produced by the nanostructured LED in a direction given by the upstanding nanowire.
  • the ideal waveguiding nanowire LED structure includes a high refractive index core with one or more surrounding cladding with refractive indexes less than that of the core.
  • the structure is either circular symmetrical or close to being circular symmetrical.
  • Light generation waveguiding in circular symmetrical structures are well know for fiber-optic applications and many parallels can be made to the area of rare-earth-doped fiber amplifiers and lasers. However, one difference is that fiber amplifier are optically pumped while the described nanowire LED structure can be seen as electrically pumped.
  • One well know figure of merit is the so called Numerical
  • the NA determined the angle of light captured by the waveguide.
  • the NA and angle of captured light is an important parameter in the optimization of a new LED structure.
  • Typical values for III-V semiconductor core material is refractive indexes in the range from 2.5 to 3.5.
  • the angle of capture can be as high as 65 degrees.
  • An angle of capture of 65 degrees yield that up to 75% of the light generated can be captured and guided by the structure (both directions).
  • NA vary along the nanowire structure to optimize light extraction from the structure.
  • closer to the exit end of the structure the NA can be made smaller since light generated will radiate in random directions and most of the radiate light will hit the top and side of the top part of the structure and exit.
  • Having a lower NA in the top part of the structure also minimizes the light captures and guide back down through the structure which may not be ideal unless a reflector is inserted in the bottom of the structure.
  • a low NA can be obtained by surrounding the III-V nanowire core with another III-V cladding of different composition with slightly less refractive index.
  • the nanowire 110 is arranged to form a waveguide 116 directing at least a portion of the produced light in a general direction given by the elongated direction of the nanowire.
  • This functionality of the nanowire is in the figure illustrated with thin arrows.
  • the pn-junction results in an active region 120 arranged in the nanowire, or in the vicinity of the nanowire, wherein the light is produced. It should be noted that the position of active region 120 in FIG. 4 ais a non-limiting example.
  • the materials of the different members of the nanostructured LED are chosen so that the nanowire will have good waveguiding properties vis-à-vis the surrounding materials, i.e.
  • the refractive index of the material in the vaweguide 116 should be larger than the refractive indices of the surrounding materials. If the nanowire 110 or waveguide 116 has a first refracting index, n W , the material surrounding the nanowire in wave guide portion 116 , typically the cover layer 107 , a second refractive index, n C , and the volume element a third refractive n VE , n W >n C and n W >n VE .
  • Typical values for the nanostructured LED are n W ⁇ 3, n C ⁇ 1.5 and n VE ⁇ 3.
  • the waveguide 116 may be provided with one or more cladding layers.
  • a first cladding layer 112 may be introduced to improve the surface properties of the nanowire, fore example if a GaAs nanowire is utilized it has been shown that the properties are improved by adding a cladding layer 112 of GaInP.
  • Further cladding layers for example an optical cladding layer 113 may be introduced specifically to improve the waveguiding properties of the waveguide 116 , in manners similar to what is well established in the area of fiber optics.
  • the optical cladding layer 113 typically has a refractive index in between the refractive index of the nanowire and the surrounding material. Alternatively the cladding layer 113 has a graded refractive index, which has been shown to improve light transmission in certain cases. If an optical cladding layer 113 is utilised the refractive index of the nanowire, n W , should define an effective refractive index for both the nanowire and the cladding layers.
  • the ability to grow nanowires with well defined diameters is in one embodiment of the invention utilised to optimise the waveguiding properties of the nanowire 110 , or at least the waveguide 116 . with regards to the wavelength of the light produced by the nanostructured LED 100 .
  • the diameter of the nanowire 110 is chosen so as to have a favourable correspondence to the wavelength of the produced light.
  • the dimensions of the nanowire 111 are such that an uniform optical cavity, optimised for the specific wavelength of the produced light, is provided along the nanowire.
  • the core nanowire must be sufficiently wide to capture the light. A rule of thumb would be that diameter must be larger than ⁇ /2n w , wherein ⁇ is the wavelength of the produced light and n w is the refractive index of the nanowire 110 .
  • the diameter of the waveguiding portion of the nanowire should preferably be larger than 80 nm in order for the nanowire to be an effective waveguide. In the infra-red and near infra-red a diameter above 110 nm would be sufficient. An approximate preferred upper limit for the diameter of the nanowire is given by the growth constrains, and is in the order of 500 nm.
  • the length of the nanowire 110 is typically and preferably in the order of 1-10 ⁇ m, providing enough volume for the active region 120 , and at the same time not unnecessarily long to cause internal absorption.
  • the waveguiding properties of the nanowire 110 are combined with the collimating effects of the reflector 135 to further enhance the extraction of light through the substrate 105 .
  • a substantial portion of the light generated in the active region 120 will be led in the downward direction by the nanowire.
  • a portion of the light will be emitted in directions not “captured” by the waveguide 116 .
  • This portion of the light can be reflected by the reflector 135 in a direction towards the substrate, either via the waveguide 116 or via other parts of the nanostructure.
  • light is generated in an active region 120 essentially located radially outside of the nanowire 110 , i.e. corresponding to the embodiment with a shell-like structure described with reference to FIG. 1 b.
  • the volume element is provided with a cladding layer 440 to give the volume element waveguiding properties.
  • the reflector 135 on top of the volume element 115 provides for downward reflection of at least a portion of the light emitted in upward directions.
  • the substrate may have been removed, or provided with cut out 130 as illustrated in FIG. 4 a , to facilitate the emission of light.
  • Other layers such as a buffer layer, for example of GaN, for enhancing the nucleation of nanowires, or protective layers, for example of SiO 2. may be present adjacent to the nanowires.
  • the substrate may be removed using lapping and etching methods whereby the substrate material is machined or etched away. Alternatively, a lift-off process may be used to separate the epitaxially grown structure from the substrate.
  • the individual reflectors 135 in a nanostructured LED device 101 comprising a plurality of nanostructured LEDs 100 may conveniently be formed as a continuous reflecting layer 535 covering the plurality of nanostructured LEDs 100 , as schematically illustrated in FIG. 5 a .
  • the continuous reflecting layer 535 should be regarded as a plurality of individual reflectors. As seen in the figure, the continuous reflecting layer 535 does in this embodiment cover a major portion of the surface of each individual nanostructure LED.
  • the continuous reflecting layer 535 may, as depicted fill the space between the individual nanostructured LEDs 100 . Alternatively, as illustrated in FIG.
  • a fill layer 507 for example of SiO 2 is provided to the nanostructured LED device covering a portion of the height of the nanostructured LEDs.
  • the continuous reflecting layer 535 can in this embodiment be described as a plurality of individual reflectors 135 of essentially concave surfaces covering the nanostructured LEDs joined with essentially flat surfaces 536 covering the fill layer 507 .
  • This solution will introduce more reflections before light is guided out, i.e. between the joining flat surfaces and the plan of a substrate or a buffer layer. This gives a trade-off between the height of the nanostructures, generating more light, and higher absorption loss from repeated reflections. Wave guiding properties of the nanostructures will however limit this effect as the emission of light with an low angle relative the elongated direction on the nanostructure will be guided so that the first reflection of a high fraction of light will be on a concave parts of the reflector.
  • FIG. 5 c Another realization of the current invention is depicted in FIG. 5 c .
  • Individual nanostructured LEDs are provided with an electrically conducting transparent layer 540 covering the entire cylindrical surface of the nanostructured LEDs.
  • Transparent conductive oxides for example ITO
  • deposited by sputtering deposition may be used to form such a layer.
  • the space between the nanostructured LEDs is filled with a transparent dielectric material 507 , for example SiO 2 , Si 3 N 4 , Al 2 O 3 leaving the tips of the LEDs exposed.
  • the reflector 535 comprising in fact a plurality of individual reflectors 135 is formed.
  • the reflector layer forms electrical contact with transparent contact layer 540 of each nanostructured LED. This structure allows good current injection into the whole junction area while utilizing the optical properties of the reflector.
  • the choice of design of the nanostructured LED device for a certain application may be dependent on many parameters.
  • a pyramidal structure as descried with references to FIG. 1 d can be expected to be close to optimal since a high percentage of the emitted light will be directed downwards already at first reflection.
  • the design requires a high utilization of surface area and therefore the production cost may be higher than a more elongated structure such as those depicted in FIG. 1 b - d.
  • Elongated pyramidal structures, as shown in FIG. 13 a represents a functional compromise between these parameters.
  • a method of fabricating nanostructured LED is to first grow a nanowire, according to the above referred processes. Part of the nanowire is then masked and the volume element is re-grown selectively. The method is illustrated in FIG. 6 .
  • the volume element grows both axially and radially, hence, when the nanowire is masked partly, the nanowire becomes enclosed in the volume element.
  • Appropriate masking materials are e.g. silicon nitride, silicon oxide etc.
  • nanowire growth is locally enhanced by a substance, as VLS grown nanowires
  • the ability to alter between radial and axial growth by altering growth conditions enables the procedure (nanowire growth, mask formation, and subsequent selective growth) can be repeated to form nanowire/3D-sequences of higher order.
  • nanowire growth and selective growth are not distinguished by separate growth conditions it may be better to first grow the nanowire along the length and by different selective growth steps grow different types of 3D regions or volume elements.
  • a method of fabricating a nanostructured LED device according to the invention comprises the basic steps of:
  • the method may comprise a step to be taken after the step of growing of nanostructured LEDs and prior to the step of depositing a reflector material, of forming the upper parts of the nanostructured LEDs to define the shape of the inner surface of the reflectors covering the nanostructured LEDs.
  • a reflector material e.g., silicon dioxide
  • Various etching or ablation methods can be utilised.
  • Suitable materials for the substrate include, but is not limited to: Si, GaAs, GaP, GaP:Zn, GaAs, InAs, InP, GaN, Al 2 O 3 , SiC, Ge, GaSb, ZnO, InSb, SOI (silicon-on-insulator), CdS, ZnSe, CdTe.
  • Suitable materials for the nanowire 110 and the volume element 115 include, but is not limited to: GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, BN, InP, InAsP, GaInP, InGaP:Si, InGaP:Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb, Si.
  • Possible donor dopants for e.g. GaP are Si, Sn, Te, Se, S, etc, and acceptor dopants for the same material are Zn, Fe, Mg, Be, Cd, etc.
  • the nanowire technology makes it possible to use nitrides such as GaN, InN and AlN, which gives facilitates fabrication of LEDs emitting light in wavelength regions not easily accessible by conventional technique.
  • nitrides such as GaN, InN and AlN
  • Other combinations of particular commercial interest include, but is not limited to GaAs, GaInP, GaAIInP, GaP systems.
  • Typical doping levels range from 10 18 to 10 20 .
  • a person skilled in the art is though familiar with these and other materials and realizes that other materials and material combinations are possible.
  • low resistivity contact materials are dependent on the material to be deposited on, but metal, metal alloys as well as non-metal compounds like Al, Al—Si, TiSi 2 , TiN, W, MoSi 2 , PtSi, CoSi 2 , WSi 2 , In, AuGa, AuSb, AuGe, PdGe, Ti/Pt/Au, Ti/Al/Ti/Au, Pd/Au, ITO (InSnO), etc. and combinations of e.g. metal and ITO can be used.
  • a fabrication method according to the present invention in order to fabricate a light emitting pn-diode/array with active nanowire region(s) formed of GaAs and InGaP, illustrated in FIG. 6 comprises the steps of:
  • the growth process can be varied in known ways to for example include heterostructures in the nanowires, provide reflective layers etc.
  • the stem 113 utilized in some embodiment can be provided by first growing a thin nanowire (step 2), depositing a reflective layer or a selective growth mask covering the lower part, and radial growing of cladding layer or the nanowire to increase the nanowire thickness.
  • nanostructured LED utilised in the nanostructured LED device according to the present invention will be given as GaAs nanowires epitaxially grown on GaP and Si substrates.
  • the LED functionality has been established on both kinds of substrates.
  • the structures are evaluated in terms of temperature-dependent photoluminescence, electroluminescence, and radiation pattern.
  • a LED device comprises arrays of III-V light emitting nanowire diodes, grown and integrated on Si. Each device is built around a GaAs nanowire core, directly grown on either GaP or Si. A portion of each diode acts as the active region in these individual nanosized p-i-n light emitting structures.
  • the LED device 701 shown in FIG. 7 , comprises of p-i-n diode structures 700 .
  • the substrate 705 is an integral part of the device, as it functions as a common p-layer.
  • Each nanostructured LED 700 structure comprise a nanowire 710 , a cladding 730 enclosing at least a portion of the nanowire, a cap or bulb 715 and a top contact.
  • the sequence of p-doped, n-doped and intrinsic semiconductor materials will depend on the substrate material.
  • the structure is: p-GaP (substrate) 705 , i-GaP 711 /i-GaAs (nanowire) 710 , i-InGaP (cladding) 730 , n-InGaP (bulb) 715 .
  • the structure is: p-Si (substrate) 705 , i-GaP/i-GaAs (nanowire) 710 , i-InGaP (cladding) 730 /n-InGaP (bulb) 715 .
  • the i-GaP 711 (nanowire) layer in the nanowire base is approximately 60 nm thick in both the devices and serves the dual purposes of a nucleation segment for improved growth quality and electron barrier.
  • One important difference between the Si and the GaP device is the heterostructure sequence in the base of the nanowire, on GaP substrate being p-GaP (substrate)/i-GaP (nanowire)/i-GaAs (nanowire), while on Si substrate being p-Si (substrate)/i-GaP (nanowire)/i-GaAs (nanowire), and both hole injection conditions and internal resistance and should be expected to be appreciably different between the two structures.
  • FIG. 9 depicts nanowire structures after the first MOVPE step. Depicted are GaAs nanowires with a thin InGaP cladding layer, a GaP nucleation segment in the base of the nanowires, and with the Au based seed particle still attached to the top. Such structures were also transferred to neutral substrates for PL characterization. As shown in FIG. 9 the yield is essentially 100 percent on both GaP and Si substrates.
  • the fabrication of the nanostructured LEDs on Si is refined to the degree that the nanowires are uniformly aligned the (111) direction normal to the substrates and essentially no nanowires are grown in the three declined (111) directions that also extends out from the substrate. This in contrast to prior art methods of III-V nanowire growth on Si(111).
  • the well aligned growth of III-V nanowires in predefined array structures on Si substrates, as seen in FIG. 9 is a prerequisite for successful large scale fabrication of optical devices, as well as most other applications.
  • LED functionality can be indicated by Photoluminescence (PL) measurements.
  • the measurements here presented were carried out at room temperature and at a temperature of 10 K. The result is illustrate in the graphs of FIGS. 10 a - c and FIG. 8 b.
  • a laser emitting at 473 nm was used as an excitation source.
  • the PL was collected by an optical microscope, dispersed through a spectrometer and detected by a liquid N 2 cooled CCD camera.
  • the PL spectra, as shown in FIG. 10 a acquired at 10 K from the as-grown nanowires were similar for nanowires grown from a Si substrate and the nanowires grown from a Si substrate (Si) and the nanowires grown from a GaP substrate (GaP).
  • the dashed lines are the spectra from (a large number of) nanowires still standing on the substrate.
  • the spectra from individual nanowires showed larger differences, with the nanowires grown from a GaP substrate being more structured.
  • the average PL intensity for the nanowires grown from Si was about a factor of 20 lower than for the corresponding nanowires grown from GaP. This is in fair agreement with the 10-30 times lower electro-luminence seen for the Si-LED as compared to the GaP-LED. At room temperature the spectra are broad and featureless and there is very little spectral difference between nanowires from the two samples.
  • the spectral peak of the light is in fair agreement with the GaAs bandgap energy.
  • the light power/current dependence is shown for the Si based (Si) and GaP based (GaP) LEDs.
  • the LED on GaP lights up at half the current load (20 mA) of the Si (40 mA) and at 60 mA the power output is approximately 30 times higher on the GaP substrate. However, at 100 mA the power ratio has decreased to 10 times the Si based LED.
  • the EL spectral peak is shown for 80 mA load for both devices.
  • the Si LED peak show a slight red shift and tail with a possible extra peak around 1.35 eV as compared to the GaP substrate device. The shift in peaks can be explained by the different In and Ga diffusion on GaP and Si leading to different InGaP composition.
  • LED devices built on III-Nitrides as GaN nanowires and nanostructures, are of high commercial interest due to their ability to produce light of wavelengths not accessible with other material combinations.
  • a layer of SiN x (30 nm in thickness) was deposited by PECVD.
  • arrays of dot-patterned GaN openings (around 100 nm in diameter) were made by epitaxial beam lithography, EBL, and reactive ion etching, RIE.
  • the pitch between the openings was ranged as 1.0 ⁇ 3.2 ⁇ m.
  • FIGS. 12 a - c and FIG. 13 a - b Various shapes can be formed as shown in the SEM images of FIG. 12 a - c and FIG. 13 a - b.
  • Pyramidal structures can be formed as shown in FIGS. 12 a and b.
  • FIGS. 12 c and 13 b it is illustrated that nanowires with an pyramidal ending can be formed, which is advantageous for forming an effective reflector according tot the invention.
  • Vertical sidewalls are usually six (1101) planes. Pyramids are usually delimited by six equivalent (1101) planes but as shown in FIG. 13 a higher index planes can be formed and separate index planes can be accommodated in one nanostructured LED.
US12/451,911 2006-12-22 2007-12-27 Nanostructured led array with collimating reflectors Abandoned US20100283064A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/451,911 US20100283064A1 (en) 2006-12-22 2007-12-27 Nanostructured led array with collimating reflectors
US14/664,158 US10263149B2 (en) 2006-12-22 2015-03-20 Nanostructured LED array with collimating reflectors

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
SE0602841 2006-12-22
SE06028419 2006-12-22
SE0700102 2007-01-12
SE07001027 2007-01-12
US11812225 2007-06-15
US11/812,225 US8183587B2 (en) 2006-12-22 2007-06-15 LED with upstanding nanowire structure and method of producing such
SE07024045 2007-10-26
SE0702404 2007-10-26
US12/451,911 US20100283064A1 (en) 2006-12-22 2007-12-27 Nanostructured led array with collimating reflectors
PCT/SE2007/001174 WO2008079079A1 (en) 2006-12-22 2007-12-27 Nanostructured led array with collimating reflectors

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US11/812,225 Continuation-In-Part US8183587B2 (en) 2006-12-22 2007-06-15 LED with upstanding nanowire structure and method of producing such
PCT/SE2007/001174 A-371-Of-International WO2008079079A1 (en) 2006-12-22 2007-12-27 Nanostructured led array with collimating reflectors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/664,158 Division US10263149B2 (en) 2006-12-22 2015-03-20 Nanostructured LED array with collimating reflectors

Publications (1)

Publication Number Publication Date
US20100283064A1 true US20100283064A1 (en) 2010-11-11

Family

ID=40902739

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/451,911 Abandoned US20100283064A1 (en) 2006-12-22 2007-12-27 Nanostructured led array with collimating reflectors
US14/664,158 Active 2028-10-14 US10263149B2 (en) 2006-12-22 2015-03-20 Nanostructured LED array with collimating reflectors

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/664,158 Active 2028-10-14 US10263149B2 (en) 2006-12-22 2015-03-20 Nanostructured LED array with collimating reflectors

Country Status (7)

Country Link
US (2) US20100283064A1 (ja)
EP (2) EP2126986B1 (ja)
JP (2) JP5453105B2 (ja)
KR (1) KR20090096704A (ja)
CN (3) CN102255018B (ja)
HK (2) HK1142170A1 (ja)
WO (2) WO2008079076A1 (ja)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079034A1 (en) * 2007-09-26 2009-03-26 Wang Nang Wang Non-polar iii-v nitride semiconductor and growth method
US20090174038A1 (en) * 2007-01-19 2009-07-09 Wang Nang Wang Production of single-crystal semiconductor material using a nanostructure template
US20090243043A1 (en) * 2006-03-23 2009-10-01 Wang Nang Wang Growth method using nanostructure compliant layers and hvpe for producing high quality compound semiconductor materials
US20100148149A1 (en) * 2006-12-22 2010-06-17 Qunano Ab Elevated led and method of producing such
US20110240959A1 (en) * 2008-12-19 2011-10-06 Glo Ab Nanostructured device
US20120061646A1 (en) * 2009-05-22 2012-03-15 Sun R&Db Foundation Light emission device and manufacturing method thereof
US8350251B1 (en) * 2011-09-26 2013-01-08 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
US20130203242A1 (en) * 2009-12-22 2013-08-08 Qunano Ab Method for manufacturing a nanowire structure
US20130207133A1 (en) * 2010-07-07 2013-08-15 Osram Opto Semiconductors Gmbh Light-emitting diode
US20130313583A1 (en) * 2012-05-22 2013-11-28 Samsung Electronics Co., Ltd. Light-emitting device and method of manufacturing the same
US20130313514A1 (en) * 2012-05-23 2013-11-28 Samsung Electronics Co., Ltd. Semiconductor light emitting device
US20140097401A1 (en) * 2011-06-01 2014-04-10 Commissariat A L'energie Atomique Et Aux Ene Alt Semiconductor structure for emitting light, and method for manufacturing such a structure
US8710526B2 (en) 2011-08-30 2014-04-29 Abl Ip Holding Llc Thermal conductivity and phase transition heat transfer mechanism including optical element to be cooled by heat transfer of the mechanism
WO2014066379A1 (en) * 2012-10-26 2014-05-01 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
US20140124732A1 (en) * 2012-11-05 2014-05-08 Samsung Electronics Co., Ltd. Nano-structured light-emitting device and methods for manufacturing the same
US8723205B2 (en) 2011-08-30 2014-05-13 Abl Ip Holding Llc Phosphor incorporated in a thermal conductivity and phase transition heat transfer mechanism
US8759843B2 (en) 2011-08-30 2014-06-24 Abl Ip Holding Llc Optical/electrical transducer using semiconductor nanowire wicking structure in a thermal conductivity and phase transition heat transfer mechanism
US20140299837A1 (en) * 2011-11-18 2014-10-09 LuxVue Technology Corporation Micro led display
US20150053916A1 (en) * 2013-08-22 2015-02-26 Nanoco Technologies Ltd. Gas Phase Enhancement of Emission Color Quality in Solid State LEDs
US9076945B2 (en) 2012-10-26 2015-07-07 Glo Ab Nanowire LED structure and method for manufacturing the same
US9082926B2 (en) 2013-06-18 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor optical emitting device with metallized sidewalls
US20150200276A1 (en) * 2014-01-16 2015-07-16 International Business Machines Corporation Local thinning of semiconductor fins
US20150207038A1 (en) * 2014-01-20 2015-07-23 Samsung Electronics Co., Ltd. Semiconductor light-emitting device
US9178106B2 (en) * 2012-10-26 2015-11-03 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
US9184335B2 (en) 2013-01-24 2015-11-10 Samsung Electronics Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
US20160013364A1 (en) * 2014-07-11 2016-01-14 Samsung Electronics Co., Ltd. Method of manufacturing nanostructure semiconductor light emitting device
US20160064608A1 (en) * 2014-08-28 2016-03-03 Samsung Electronics Co., Ltd. Nanostructure semiconductor light emitting device
WO2016146457A1 (de) * 2015-03-19 2016-09-22 Osram Opto Semiconductors Gmbh Optoelektronischer halbleiterkörper und verfahren zur herstellung eines optoelektronischen halbleiterkörpers
US9515220B2 (en) * 2014-11-19 2016-12-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Light emitting diode with doped quantum wells and associated manufacturing method
US9537049B2 (en) 2014-11-03 2017-01-03 Samsung Electronics Co., Ltd. Nanostructure semiconductor light emitting device
US9620478B2 (en) 2011-11-18 2017-04-11 Apple Inc. Method of fabricating a micro device transfer head
US9831383B2 (en) 2011-11-18 2017-11-28 Apple Inc. LED array
US9991342B2 (en) 2012-10-26 2018-06-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electronic device containing nanowire(s), equipped with a transition metal buffer layer, process for growing at least one nanowire, and process for manufacturing a device
US10121864B2 (en) 2011-11-18 2018-11-06 Apple Inc. Micro device transfer head heater assembly and method of transferring a micro device
WO2018222332A1 (en) * 2017-06-01 2018-12-06 Glo Ab Self-Aligned Nanowire-Based Light Emitting Diode Subpixels for a Direct View Display and Method of Making Thereof
US10217911B2 (en) * 2014-09-26 2019-02-26 Glo Ab Monolithic image chip for near-to-eye display
TWI656666B (zh) * 2013-12-19 2019-04-11 法商艾勒迪亞公司 具有改善光提取之電致發光二極體的光電裝置
US10263149B2 (en) 2006-12-22 2019-04-16 Qunano Ab Nanostructured LED array with collimating reflectors
US20200072667A1 (en) * 2017-09-29 2020-03-05 Samsung Electronics Co., Ltd. Spectrometer
US10636653B2 (en) 2012-10-26 2020-04-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for growing at least one nanowire using a transition metal nitride layer obtained in two steps
US10707374B2 (en) 2017-09-15 2020-07-07 Glo Ab Etendue enhancement for light emitting diode subpixels
US20210247029A1 (en) * 2016-08-16 2021-08-12 King Abdullah University Of Science And Technology METHOD OF FABRICATING ORANGE-EMITTING NANOWIRES LEDs
US11500199B2 (en) * 2018-12-20 2022-11-15 Lg Display Co., Ltd. Light path control member and electronic device including the same
US11637219B2 (en) 2019-04-12 2023-04-25 Google Llc Monolithic integration of different light emitting structures on a same substrate
US11695100B2 (en) 2020-01-21 2023-07-04 Nanosys, Inc. Light emitting diode containing a grating and methods of making the same

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE533090C2 (sv) * 2008-07-09 2010-06-22 Qunano Ab Nanostrukturerad ljusdiod
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US8791470B2 (en) * 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US8384007B2 (en) 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
WO2011067872A1 (ja) 2009-12-01 2011-06-09 国立大学法人北海道大学 発光素子およびその製造方法
JP5066164B2 (ja) * 2009-12-07 2012-11-07 シャープ株式会社 半導体素子の製造方法
US8816324B2 (en) 2010-02-25 2014-08-26 National University Corporation Hokkaido University Semiconductor device and method for manufacturing semiconductor device
CN102782892B (zh) 2010-03-12 2015-07-01 夏普株式会社 发光装置的制造方法、发光装置、照明装置、背光灯、液晶面板、显示装置、显示装置的制造方法、显示装置的驱动方法及液晶显示装置
JP2012004535A (ja) * 2010-05-17 2012-01-05 Sharp Corp 発光装置の製造方法
KR101130224B1 (ko) * 2010-04-14 2012-03-26 고려대학교 산학협력단 나노 막대를 이용한 발광 소자 및 그 제조 방법
EP2583317A4 (en) * 2010-06-18 2016-06-15 Glo Ab NANODRAHT LED STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
KR20130093115A (ko) 2010-09-01 2013-08-21 샤프 가부시키가이샤 발광 소자 및 그 제조 방법, 발광 장치의 제조 방법, 조명 장치, 백라이트, 표시 장치 및 다이오드
JP2012064772A (ja) * 2010-09-16 2012-03-29 Sharp Corp ダイオード
FR2975532B1 (fr) * 2011-05-18 2013-05-10 Commissariat Energie Atomique Connexion electrique en serie de nanofils emetteurs de lumiere
FR2964796B1 (fr) * 2010-09-14 2014-03-21 Commissariat Energie Atomique Dispositif optoelectronique a base de nanofils pour l'emission de lumiere
WO2012035243A1 (fr) * 2010-09-14 2012-03-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a base de nanofils pour l'émission de lumière
FR2973936B1 (fr) * 2011-04-05 2014-01-31 Commissariat Energie Atomique Procede de croissance selective sur une structure semiconductrice
US9035278B2 (en) 2011-09-26 2015-05-19 Glo Ab Coalesced nanowire structures with interstitial voids and method for manufacturing the same
US8350249B1 (en) * 2011-09-26 2013-01-08 Glo Ab Coalesced nanowire structures with interstitial voids and method for manufacturing the same
US9653286B2 (en) 2012-02-14 2017-05-16 Hexagem Ab Gallium nitride nanowire based electronics
DE102012101718A1 (de) * 2012-03-01 2013-09-05 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
CN104769732A (zh) 2012-09-18 2015-07-08 Glo公司 纳米角锥体大小的光电子结构及其制造方法
FR3000294B1 (fr) * 2012-12-21 2016-03-04 Aledia Support fonctionnel comprenant des nanofils et des nano-empreintes et procede de fabrication dudit support
JP6205747B2 (ja) * 2013-02-21 2017-10-04 富士通株式会社 光半導体素子及びその製造方法
FR3011383B1 (fr) * 2013-09-30 2017-05-26 Commissariat Energie Atomique Procede de fabrication de dispositifs optoelectroniques a diodes electroluminescentes
TWI621278B (zh) * 2013-12-17 2018-04-11 瑞典商Glo公司 具有應變改質表面活性區域之第三族氮化物奈米線led及其製造方法
KR102188494B1 (ko) * 2014-07-21 2020-12-09 삼성전자주식회사 반도체 발광소자, 반도체 발광소자 제조방법 및 반도체 발광소자 패키지 제조방법
WO2016022824A1 (en) 2014-08-08 2016-02-11 Glo Ab Pixilated display device based upon nanowire leds and method for making the same
KR20170066319A (ko) 2014-08-12 2017-06-14 글로 에이비 스트레인 수정된 표면 활성 영역을 가진 iii-질화물 나노와이어 led 및 이의 제조 방법
KR101783104B1 (ko) * 2015-10-30 2017-09-28 연세대학교 산학협력단 나노와이어 번들 어레이, 광대역의 초고성능 옵티컬 필름 및 그 제조 방법
CN105405745B (zh) * 2015-11-10 2018-06-22 中国科学院半导体研究所 立式iii-v族锑化物半导体单晶薄膜的制备方法
FR3044470B1 (fr) * 2015-11-30 2018-03-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique comportant des structures semiconductrices tridimensionnelles en configuration axiale
FR3053435B1 (fr) * 2016-07-01 2020-07-17 Valeo Vision Dispositif d’eclairage et/ou de signalisation pour vehicule automobile
FR3059788B1 (fr) 2016-12-02 2019-01-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a diode electroluminescente a extraction augmentee
FR3059828B1 (fr) 2016-12-02 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a diode electroluminescente a extraction augmentee
FR3061607B1 (fr) * 2016-12-29 2019-05-31 Aledia Dispositif optoelectronique a diodes electroluminescentes
EP3588704B1 (en) * 2017-02-27 2022-07-13 Kyoto University Surface-emitting laser and method for manufacturing surface-emitting laser
CN108987423B (zh) * 2017-06-05 2023-09-12 三星电子株式会社 显示装置
JP6947386B2 (ja) * 2017-06-29 2021-10-13 学校法人 名城大学 半導体発光素子および半導体発光素子の製造方法
JP6978902B2 (ja) * 2017-11-10 2021-12-08 富士通株式会社 化合物半導体装置、受信機、及び化合物半導体装置の製造方法。
JP7097567B2 (ja) * 2018-02-28 2022-07-08 セイコーエプソン株式会社 発光装置およびその製造方法、ならびにプロジェクター
WO2019199946A1 (en) * 2018-04-11 2019-10-17 Glo Ab Light emitting diodes formed on nanodisk substrates and methods of making the same
CN110534640A (zh) * 2018-05-24 2019-12-03 中国科学院深圳先进技术研究院 一种异质结直流压电纳米发电机及其制备方法
FR3082657B1 (fr) * 2018-06-19 2021-01-29 Aledia Procede de fabrication d’un dispositif optoelectronique a parois de confinement lumineux auto alignes
US10868213B2 (en) * 2018-06-26 2020-12-15 Lumileds Llc LED utilizing internal color conversion with light extraction enhancements
JP7320770B2 (ja) * 2018-09-28 2023-08-04 セイコーエプソン株式会社 発光装置およびプロジェクター
CN109449267B (zh) * 2018-10-30 2020-05-08 广东工业大学 一种紫外发光二极管及其制作方法
CN109616553B (zh) * 2018-11-22 2020-06-30 中南大学 一种新型纤锌矿GaAs核壳纳米线光电探测器的制备方法
US11942571B2 (en) * 2019-04-22 2024-03-26 Lumileds Llc LED with active region disposed within an optical cavity defined by an embedded nanostructured layer and a reflector
US11458447B2 (en) 2019-07-22 2022-10-04 Analytical Sales and Services, Inc. Apparatus for facilitating photochemical reactions
US11211452B1 (en) 2020-06-30 2021-12-28 International Business Machines Corporation Transistor having stacked source/drain regions with formation assistance regions and multi-region wrap-around source/drain contacts
JP7176700B2 (ja) * 2020-07-31 2022-11-22 セイコーエプソン株式会社 発光装置およびプロジェクター
US11094846B1 (en) 2020-08-31 2021-08-17 4233999 Canada Inc. Monolithic nanocolumn structures
JP7320794B2 (ja) 2021-03-15 2023-08-04 セイコーエプソン株式会社 発光装置、プロジェクター、およびディスプレイ
US11799054B1 (en) 2023-02-08 2023-10-24 4233999 Canada Inc. Monochromatic emitters on coalesced selective area growth nanocolumns

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196396A (en) * 1991-07-16 1993-03-23 The President And Fellows Of Harvard College Method of making a superconducting fullerene composition by reacting a fullerene with an alloy containing alkali metal
US5252835A (en) * 1992-07-17 1993-10-12 President And Trustees Of Harvard College Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale
US5332910A (en) * 1991-03-22 1994-07-26 Hitachi, Ltd. Semiconductor optical device with nanowhiskers
US5362972A (en) * 1990-04-20 1994-11-08 Hitachi, Ltd. Semiconductor device using whiskers
US5381753A (en) * 1992-04-30 1995-01-17 Matsushita Electric Industrial Co., Ltd. Fabrication method of fine structures
US5544617A (en) * 1992-05-22 1996-08-13 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing single crystal, and needle-like single crystal
US5606181A (en) * 1994-03-29 1997-02-25 Ricoh Company, Ltd. Edge emitting type light emitting diode array heads
US5840435A (en) * 1993-07-15 1998-11-24 President And Fellows Of Harvard College Covalent carbon nitride material comprising C2 N and formation method
US5858862A (en) * 1996-09-25 1999-01-12 Sony Corporation Process for producing quantum fine wire
US5897945A (en) * 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
US5899734A (en) * 1997-06-04 1999-05-04 Lg Semicon Co., Ltd. Method of fabricating semiconductor device
US5976957A (en) * 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
US5997832A (en) * 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6159742A (en) * 1998-06-05 2000-12-12 President And Fellows Of Harvard College Nanometer-scale microscopy probes
US6190634B1 (en) * 1995-06-07 2001-02-20 President And Fellows Of Harvard College Carbide nanomaterials
US6239434B1 (en) * 1999-02-08 2001-05-29 General Electric Company Solid state optical spectrometer for combustion flame temperature measurement
US6252894B1 (en) * 1998-03-05 2001-06-26 Kabushiki Kaisha Toshiba Semiconductor laser using gallium nitride series compound semiconductor
US6307241B1 (en) * 1995-06-07 2001-10-23 The Regents Of The Unversity Of California Integrable ferromagnets for high density storage
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US20020084462A1 (en) * 2000-09-29 2002-07-04 Shingo Tamai Light emission device
US20020130311A1 (en) * 2000-08-22 2002-09-19 Lieber Charles M. Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
US20020129761A1 (en) * 2001-01-18 2002-09-19 Tomohide Takami Nanofiber and method of manufacturing nanofiber
US6455340B1 (en) * 2001-12-21 2002-09-24 Xerox Corporation Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
US20020172820A1 (en) * 2001-03-30 2002-11-21 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6559468B1 (en) * 1999-03-29 2003-05-06 Hewlett-Packard Development Company Lp Molecular wire transistor (MWT)
US20030089899A1 (en) * 2000-08-22 2003-05-15 Lieber Charles M. Nanoscale wires and related devices
US20030102444A1 (en) * 2000-05-04 2003-06-05 Deppert Knut Wilfried Nanostructures
US6586965B2 (en) * 2001-10-29 2003-07-01 Hewlett Packard Development Company Lp Molecular crossbar latch
US20030121764A1 (en) * 2001-12-27 2003-07-03 The Regents Of The University Of California Nanowire optoelectric switching device and method
US6596377B1 (en) * 2000-03-27 2003-07-22 Science & Technology Corporation @ Unm Thin film product and method of forming
US20030200521A1 (en) * 2002-01-18 2003-10-23 California Institute Of Technology Array-based architecture for molecular electronics
US6693021B1 (en) * 1997-10-30 2004-02-17 Sumitomo Electric Industries, Ltd. GaN single crystal substrate and method of making the same
US6709929B2 (en) * 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US6716409B2 (en) * 2000-09-18 2004-04-06 President And Fellows Of The Harvard College Fabrication of nanotube microscopy tips
US6743408B2 (en) * 2000-09-29 2004-06-01 President And Fellows Of Harvard College Direct growth of nanotubes, and their use in nanotweezers
US20040175844A1 (en) * 2002-12-09 2004-09-09 The Regents Of The University Of California Sacrificial template method of fabricating a nanotube
US20040213307A1 (en) * 2002-07-19 2004-10-28 President And Fellows Of Harvard College Nanoscale coherent optical components
US20040252737A1 (en) * 2003-06-16 2004-12-16 Gyu Chul Yi Zinc oxide based nanorod with quantum well or coaxial quantum structure
US20040262636A1 (en) * 2002-12-09 2004-12-30 The Regents Of The University Of California Fluidic nanotubes and devices
US20050006673A1 (en) * 2003-04-04 2005-01-13 Btg International Limited Nanowhiskers with PN junctions, doped nanowhiskers, and methods for preparing them
US20050011431A1 (en) * 2003-04-04 2005-01-20 Btg International Limited Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them
US20050017171A1 (en) * 2003-07-08 2005-01-27 Btg International Limited Probe structures incorporating nanowhiskers, production methods thereof and methods of forming nanowhiskers
US20050082543A1 (en) * 2003-10-15 2005-04-21 Azar Alizadeh Monolithic light emitting devices based on wide bandgap semiconductor nanostructures and methods for making same
US20050145868A1 (en) * 1999-07-23 2005-07-07 Franz Kummer Phosphor for light sources and associated light source
US20050184951A1 (en) * 2004-02-19 2005-08-25 Hyoung-Joo Kim Light emitting device and display apparatus having the same
US20050199886A1 (en) * 2004-03-10 2005-09-15 Siltron Inc. Nitride semiconductor device and method of manufacturing the same
US20060019470A1 (en) * 2004-02-06 2006-01-26 Btg International Limited Directionally controlled growth of nanowhiskers
US20060057360A1 (en) * 2003-11-26 2006-03-16 Samuelson Lars I Nanostructures formed of branched nanowhiskers and methods of producing the same
US20060073680A1 (en) * 2004-08-20 2006-04-06 Jung Han Epitaxial growth of aligned algainn nanowires by metal-organic chemical vapor deposition
US20060112466A1 (en) * 2002-12-13 2006-05-25 Canon Kabushiki Kaisha Nanostructure, electronic device and method of manufacturing the same
US20060125056A1 (en) * 2004-06-25 2006-06-15 Btg International Limited Formation of nanowhiskers on a substrate of dissimilar material
US20060189018A1 (en) * 2003-06-26 2006-08-24 Gyu-Chul Yi P-n heterojuction structure of zinc oxide-based nanorod and semiconductor thin film, preparation thereof, and nano-device comprising same
US20060223211A1 (en) * 2004-12-02 2006-10-05 The Regents Of The University Of California Semiconductor devices based on coalesced nano-rod arrays
US20070001220A1 (en) * 2004-09-16 2007-01-04 Atomate Corporation Nanotube Transistor and Rectifying Devices
US7161189B2 (en) * 2004-06-04 2007-01-09 Lite-On Technology Corporation LED package including a frame
US20070172183A1 (en) * 2006-01-24 2007-07-26 Shih-Yuan Wang Photonic crystal devices including gain material and methods for using the same
US20070206488A1 (en) * 2006-02-23 2007-09-06 Claes Thelander Data storage nanostructures
US20070257264A1 (en) * 2005-11-10 2007-11-08 Hersee Stephen D CATALYST-FREE GROWTH OF GaN NANOSCALE NEEDLES AND APPLICATION IN InGaN/GaN VISIBLE LEDS
US7303631B2 (en) * 2004-10-29 2007-12-04 Sharp Laboratories Of America, Inc. Selective growth of ZnO nanostructure using a patterned ALD ZnO seed layer
US20070286945A1 (en) * 2006-03-22 2007-12-13 Qimonda Ag Methods for forming an integrated circuit, including openings in a mold layer
US20070284592A1 (en) * 2006-06-12 2007-12-13 Haase Michael A Led device with re-emitting semiconductor construction and reflector
US7309621B2 (en) * 2005-04-26 2007-12-18 Sharp Laboratories Of America, Inc. Method to fabricate a nanowire CHEMFET sensor device using selective nanowire deposition
US20080036038A1 (en) * 2006-03-10 2008-02-14 Hersee Stephen D PULSED GROWTH OF CATALYST-FREE GROWITH OF GaN NANOWIRES AND APPLICATION IN GROUP III NITRIDE SEMICONDUCTOR BULK MATERIAL
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US20080149946A1 (en) * 2006-12-22 2008-06-26 Philips Lumileds Lighting Company, Llc Semiconductor Light Emitting Device Configured To Emit Multiple Wavelengths Of Light
US7445742B2 (en) * 2003-08-15 2008-11-04 Hewlett-Packard Development Company, L.P. Imprinting nanoscale patterns for catalysis and fuel cells
US20100025673A1 (en) * 2005-11-25 2010-02-04 Qiu-Hong Hu Light Emitting Diode and Method for Manufacturing the Same
US7833811B2 (en) * 2005-06-01 2010-11-16 Samsung Led Co., Ltd. Side-emitting LED package and method of manufacturing the same

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287427A (en) * 1977-10-17 1981-09-01 Scifres Donald R Liquid-level monitor
FR2658839B1 (fr) 1990-02-23 1997-06-20 Thomson Csf Procede de croissance controlee de cristaux aciculaires et application a la realisation de microcathodes a pointes.
JP3243303B2 (ja) * 1991-10-28 2002-01-07 ゼロックス・コーポレーション 量子閉じ込め半導体発光素子及びその製造方法
US6036774A (en) 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
JP4362874B2 (ja) 1998-08-24 2009-11-11 ソニー株式会社 量子構造体を有する半導体素子とその製造方法
WO2001003208A1 (en) 1999-07-02 2001-01-11 President And Fellows Of Harvard College Nanoscopic wire-based devices, arrays, and methods of their manufacture
GB0008546D0 (en) 2000-04-06 2000-05-24 Btg Int Ltd Optoelectronic devices
WO2002001648A1 (en) 2000-06-28 2002-01-03 Motorola, Inc. Semiconductor structure, device, circuit, and process
JP4672839B2 (ja) * 2000-09-06 2011-04-20 キヤノン株式会社 発光体、構造体及びその製造方法
WO2002048701A2 (en) 2000-12-11 2002-06-20 President And Fellows Of Harvard College Nanosensors
EP1221722A1 (en) * 2001-01-06 2002-07-10 Interuniversitair Microelektronica Centrum Vzw Highly efficient paraboloid light emitting diode
EP1436841A1 (en) 2001-05-18 2004-07-14 President And Fellows Of Harvard College Nanoscale wires and related devices
US20020176473A1 (en) * 2001-05-23 2002-11-28 Aram Mooradian Wavelength selectable, controlled chirp, semiconductor laser
CA2454272C (en) 2001-07-20 2010-03-30 President And Fellows Of Harvard College Transition metal oxide nanowires, and devices incorporating them
JP4254157B2 (ja) * 2001-08-22 2009-04-15 ソニー株式会社 窒化物半導体素子及び窒化物半導体素子の製造方法
TWI220319B (en) 2002-03-11 2004-08-11 Solidlite Corp Nano-wire light emitting device
JP2004288799A (ja) 2003-03-20 2004-10-14 Sony Corp 半導体発光素子およびその製造方法、集積型半導体発光装置およびその製造方法、画像表示装置およびその製造方法ならびに照明装置およびその製造方法
JP3580311B1 (ja) * 2003-03-28 2004-10-20 住友電気工業株式会社 表裏識別した矩形窒化物半導体基板
KR100601949B1 (ko) * 2004-04-07 2006-07-14 삼성전자주식회사 나노와이어 발광소자
KR100552707B1 (ko) 2004-04-07 2006-02-20 삼성전자주식회사 나노와이어 발광소자 및 그 제조방법
TWI500072B (zh) * 2004-08-31 2015-09-11 Sophia School Corp 發光元件之製造方法
AU2005289311B2 (en) 2004-09-30 2011-03-03 Covalon Technologies Inc. Non-adhesive elastic gelatin matrices
EP1727216B1 (en) * 2005-05-24 2019-04-24 LG Electronics, Inc. Rod type light emitting diode and method for fabricating the same
KR100658938B1 (ko) 2005-05-24 2006-12-15 엘지전자 주식회사 나노 로드를 갖는 발광 소자 및 그의 제조 방법
WO2006130359A2 (en) * 2005-06-02 2006-12-07 Nanosys, Inc. Light emitting nanowires for macroelectronics
US7492803B2 (en) 2005-06-10 2009-02-17 Hewlett-Packard Development Company, L.P. Fiber-coupled single photon source
WO2006135337A1 (en) 2005-06-16 2006-12-21 Qunano Ab Semiconductor nanowire vertical device architecture
US8163575B2 (en) * 2005-06-17 2012-04-24 Philips Lumileds Lighting Company Llc Grown photonic crystals in semiconductor light emitting devices
EP1991499A4 (en) 2006-03-08 2013-06-26 Qunano Ab METHOD FOR THE METAL-FREE SYNTHESIS OF EPITAXIAL SEMICONDUCTOR NANODRONS ON SI
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
KR20090096704A (ko) 2006-12-22 2009-09-14 큐나노 에이비 직립 나노와이어 구조를 갖는 led 및 이를 제조하는 방법
EP2091862B1 (en) 2006-12-22 2019-12-11 QuNano AB Elevated led and method of producing such

Patent Citations (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362972A (en) * 1990-04-20 1994-11-08 Hitachi, Ltd. Semiconductor device using whiskers
US5332910A (en) * 1991-03-22 1994-07-26 Hitachi, Ltd. Semiconductor optical device with nanowhiskers
US5196396A (en) * 1991-07-16 1993-03-23 The President And Fellows Of Harvard College Method of making a superconducting fullerene composition by reacting a fullerene with an alloy containing alkali metal
US5381753A (en) * 1992-04-30 1995-01-17 Matsushita Electric Industrial Co., Ltd. Fabrication method of fine structures
US5544617A (en) * 1992-05-22 1996-08-13 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing single crystal, and needle-like single crystal
US5252835A (en) * 1992-07-17 1993-10-12 President And Trustees Of Harvard College Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale
US5840435A (en) * 1993-07-15 1998-11-24 President And Fellows Of Harvard College Covalent carbon nitride material comprising C2 N and formation method
US5606181A (en) * 1994-03-29 1997-02-25 Ricoh Company, Ltd. Edge emitting type light emitting diode array heads
US6190634B1 (en) * 1995-06-07 2001-02-20 President And Fellows Of Harvard College Carbide nanomaterials
US6307241B1 (en) * 1995-06-07 2001-10-23 The Regents Of The Unversity Of California Integrable ferromagnets for high density storage
US5897945A (en) * 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
US5858862A (en) * 1996-09-25 1999-01-12 Sony Corporation Process for producing quantum fine wire
US6130143A (en) * 1996-10-28 2000-10-10 Sony Corporation Quantum wires formed on a substrate, manufacturing method thereof, and device having quantum wires on a substrate
US6130142A (en) * 1996-10-28 2000-10-10 Sony Corporation Quantum wires formed on a substrate, manufacturing method thereof, and device having quantum wires on a substrate
US5976957A (en) * 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
US5997832A (en) * 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US5899734A (en) * 1997-06-04 1999-05-04 Lg Semicon Co., Ltd. Method of fabricating semiconductor device
US6693021B1 (en) * 1997-10-30 2004-02-17 Sumitomo Electric Industries, Ltd. GaN single crystal substrate and method of making the same
US6252894B1 (en) * 1998-03-05 2001-06-26 Kabushiki Kaisha Toshiba Semiconductor laser using gallium nitride series compound semiconductor
US6159742A (en) * 1998-06-05 2000-12-12 President And Fellows Of Harvard College Nanometer-scale microscopy probes
US6239434B1 (en) * 1999-02-08 2001-05-29 General Electric Company Solid state optical spectrometer for combustion flame temperature measurement
US6559468B1 (en) * 1999-03-29 2003-05-06 Hewlett-Packard Development Company Lp Molecular wire transistor (MWT)
US20050145868A1 (en) * 1999-07-23 2005-07-07 Franz Kummer Phosphor for light sources and associated light source
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US6596377B1 (en) * 2000-03-27 2003-07-22 Science & Technology Corporation @ Unm Thin film product and method of forming
US20030102444A1 (en) * 2000-05-04 2003-06-05 Deppert Knut Wilfried Nanostructures
US20020130311A1 (en) * 2000-08-22 2002-09-19 Lieber Charles M. Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
US20030089899A1 (en) * 2000-08-22 2003-05-15 Lieber Charles M. Nanoscale wires and related devices
US6716409B2 (en) * 2000-09-18 2004-04-06 President And Fellows Of The Harvard College Fabrication of nanotube microscopy tips
US6743408B2 (en) * 2000-09-29 2004-06-01 President And Fellows Of Harvard College Direct growth of nanotubes, and their use in nanotweezers
US20020084462A1 (en) * 2000-09-29 2002-07-04 Shingo Tamai Light emission device
US20020129761A1 (en) * 2001-01-18 2002-09-19 Tomohide Takami Nanofiber and method of manufacturing nanofiber
US20020175408A1 (en) * 2001-03-30 2002-11-28 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US20020172820A1 (en) * 2001-03-30 2002-11-21 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US20050161662A1 (en) * 2001-03-30 2005-07-28 Arun Majumdar Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6709929B2 (en) * 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US6586965B2 (en) * 2001-10-29 2003-07-01 Hewlett Packard Development Company Lp Molecular crossbar latch
US6455340B1 (en) * 2001-12-21 2002-09-24 Xerox Corporation Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
US20030121764A1 (en) * 2001-12-27 2003-07-03 The Regents Of The University Of California Nanowire optoelectric switching device and method
US20030200521A1 (en) * 2002-01-18 2003-10-23 California Institute Of Technology Array-based architecture for molecular electronics
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US20040213307A1 (en) * 2002-07-19 2004-10-28 President And Fellows Of Harvard College Nanoscale coherent optical components
US20040175844A1 (en) * 2002-12-09 2004-09-09 The Regents Of The University Of California Sacrificial template method of fabricating a nanotube
US20040262636A1 (en) * 2002-12-09 2004-12-30 The Regents Of The University Of California Fluidic nanotubes and devices
US20060112466A1 (en) * 2002-12-13 2006-05-25 Canon Kabushiki Kaisha Nanostructure, electronic device and method of manufacturing the same
US20050011431A1 (en) * 2003-04-04 2005-01-20 Btg International Limited Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them
US20050006673A1 (en) * 2003-04-04 2005-01-13 Btg International Limited Nanowhiskers with PN junctions, doped nanowhiskers, and methods for preparing them
US20040252737A1 (en) * 2003-06-16 2004-12-16 Gyu Chul Yi Zinc oxide based nanorod with quantum well or coaxial quantum structure
US20060189018A1 (en) * 2003-06-26 2006-08-24 Gyu-Chul Yi P-n heterojuction structure of zinc oxide-based nanorod and semiconductor thin film, preparation thereof, and nano-device comprising same
US20050017171A1 (en) * 2003-07-08 2005-01-27 Btg International Limited Probe structures incorporating nanowhiskers, production methods thereof and methods of forming nanowhiskers
US7445742B2 (en) * 2003-08-15 2008-11-04 Hewlett-Packard Development Company, L.P. Imprinting nanoscale patterns for catalysis and fuel cells
US20050082543A1 (en) * 2003-10-15 2005-04-21 Azar Alizadeh Monolithic light emitting devices based on wide bandgap semiconductor nanostructures and methods for making same
US20060057360A1 (en) * 2003-11-26 2006-03-16 Samuelson Lars I Nanostructures formed of branched nanowhiskers and methods of producing the same
US20060019470A1 (en) * 2004-02-06 2006-01-26 Btg International Limited Directionally controlled growth of nanowhiskers
US7354850B2 (en) * 2004-02-06 2008-04-08 Qunano Ab Directionally controlled growth of nanowhiskers
US20050184951A1 (en) * 2004-02-19 2005-08-25 Hyoung-Joo Kim Light emitting device and display apparatus having the same
US20050199886A1 (en) * 2004-03-10 2005-09-15 Siltron Inc. Nitride semiconductor device and method of manufacturing the same
US7161189B2 (en) * 2004-06-04 2007-01-09 Lite-On Technology Corporation LED package including a frame
US20060125056A1 (en) * 2004-06-25 2006-06-15 Btg International Limited Formation of nanowhiskers on a substrate of dissimilar material
US20060073680A1 (en) * 2004-08-20 2006-04-06 Jung Han Epitaxial growth of aligned algainn nanowires by metal-organic chemical vapor deposition
US20070001220A1 (en) * 2004-09-16 2007-01-04 Atomate Corporation Nanotube Transistor and Rectifying Devices
US7303631B2 (en) * 2004-10-29 2007-12-04 Sharp Laboratories Of America, Inc. Selective growth of ZnO nanostructure using a patterned ALD ZnO seed layer
US20060223211A1 (en) * 2004-12-02 2006-10-05 The Regents Of The University Of California Semiconductor devices based on coalesced nano-rod arrays
US7309621B2 (en) * 2005-04-26 2007-12-18 Sharp Laboratories Of America, Inc. Method to fabricate a nanowire CHEMFET sensor device using selective nanowire deposition
US7833811B2 (en) * 2005-06-01 2010-11-16 Samsung Led Co., Ltd. Side-emitting LED package and method of manufacturing the same
US20070257264A1 (en) * 2005-11-10 2007-11-08 Hersee Stephen D CATALYST-FREE GROWTH OF GaN NANOSCALE NEEDLES AND APPLICATION IN InGaN/GaN VISIBLE LEDS
US20100025673A1 (en) * 2005-11-25 2010-02-04 Qiu-Hong Hu Light Emitting Diode and Method for Manufacturing the Same
US20070172183A1 (en) * 2006-01-24 2007-07-26 Shih-Yuan Wang Photonic crystal devices including gain material and methods for using the same
US20070206488A1 (en) * 2006-02-23 2007-09-06 Claes Thelander Data storage nanostructures
US20080036038A1 (en) * 2006-03-10 2008-02-14 Hersee Stephen D PULSED GROWTH OF CATALYST-FREE GROWITH OF GaN NANOWIRES AND APPLICATION IN GROUP III NITRIDE SEMICONDUCTOR BULK MATERIAL
US20070286945A1 (en) * 2006-03-22 2007-12-13 Qimonda Ag Methods for forming an integrated circuit, including openings in a mold layer
US20070284592A1 (en) * 2006-06-12 2007-12-13 Haase Michael A Led device with re-emitting semiconductor construction and reflector
US20080149946A1 (en) * 2006-12-22 2008-06-26 Philips Lumileds Lighting Company, Llc Semiconductor Light Emitting Device Configured To Emit Multiple Wavelengths Of Light

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243043A1 (en) * 2006-03-23 2009-10-01 Wang Nang Wang Growth method using nanostructure compliant layers and hvpe for producing high quality compound semiconductor materials
US8227817B2 (en) * 2006-12-22 2012-07-24 Qunano Ab Elevated LED
US20100148149A1 (en) * 2006-12-22 2010-06-17 Qunano Ab Elevated led and method of producing such
US10263149B2 (en) 2006-12-22 2019-04-16 Qunano Ab Nanostructured LED array with collimating reflectors
US20090174038A1 (en) * 2007-01-19 2009-07-09 Wang Nang Wang Production of single-crystal semiconductor material using a nanostructure template
US8828849B2 (en) 2007-01-19 2014-09-09 Nanogan Limited Production of single-crystal semiconductor material using a nanostructure template
US8652947B2 (en) * 2007-09-26 2014-02-18 Wang Nang Wang Non-polar III-V nitride semiconductor and growth method
US20090079034A1 (en) * 2007-09-26 2009-03-26 Wang Nang Wang Non-polar iii-v nitride semiconductor and growth method
US20110240959A1 (en) * 2008-12-19 2011-10-06 Glo Ab Nanostructured device
US9287443B2 (en) 2008-12-19 2016-03-15 Glo Ab Nanostructured device
US8664636B2 (en) * 2008-12-19 2014-03-04 Glo Ab Nanostructured device
US20120061646A1 (en) * 2009-05-22 2012-03-15 Sun R&Db Foundation Light emission device and manufacturing method thereof
US8878231B2 (en) * 2009-05-22 2014-11-04 Snu R&Db Foundation Light emission device and manufacturing method thereof
US9954060B2 (en) 2009-12-22 2018-04-24 Qunano Ab Method for manufacturing a nanowire structure
US9305766B2 (en) * 2009-12-22 2016-04-05 Qunano Ab Method for manufacturing a nanowire structure
US20130203242A1 (en) * 2009-12-22 2013-08-08 Qunano Ab Method for manufacturing a nanowire structure
US20130207133A1 (en) * 2010-07-07 2013-08-15 Osram Opto Semiconductors Gmbh Light-emitting diode
US8890306B2 (en) * 2010-07-07 2014-11-18 Osram Opto Semiconductor Gmbh Light-emitting diode
US9431378B2 (en) * 2010-07-07 2016-08-30 Osram Opto Semiconductors Gmbh Light-emitting diodes
US20150041834A1 (en) * 2010-07-07 2015-02-12 Osram Opto Semiconductors Gmbh Light-emitting diodes
US9130099B2 (en) * 2011-06-01 2015-09-08 Commissariat à l'énergie atomique et aux énergies alternatives Semiconductor structure for emitting light, and method for manufacturing such a structure
US20140097401A1 (en) * 2011-06-01 2014-04-10 Commissariat A L'energie Atomique Et Aux Ene Alt Semiconductor structure for emitting light, and method for manufacturing such a structure
US8759843B2 (en) 2011-08-30 2014-06-24 Abl Ip Holding Llc Optical/electrical transducer using semiconductor nanowire wicking structure in a thermal conductivity and phase transition heat transfer mechanism
US9166135B2 (en) 2011-08-30 2015-10-20 Abl Ip Holding Llc Optical/electrical transducer using semiconductor nanowire wicking structure in a thermal conductivity and phase transition heat transfer mechanism
US8723205B2 (en) 2011-08-30 2014-05-13 Abl Ip Holding Llc Phosphor incorporated in a thermal conductivity and phase transition heat transfer mechanism
US9459000B2 (en) 2011-08-30 2016-10-04 Abl Ip Holding Llc Thermal conductivity and phase transition heat transfer mechanism including optical element to be cooled by heat transfer of the mechanism
US8710526B2 (en) 2011-08-30 2014-04-29 Abl Ip Holding Llc Thermal conductivity and phase transition heat transfer mechanism including optical element to be cooled by heat transfer of the mechanism
EP2761678A4 (en) * 2011-09-26 2015-06-17 Glo Ab OPTOELECTRONIC STRUCTURE OF THE SIZE OF A NANOFIL AND ITS MANUFACTURING METHOD
US8937295B2 (en) 2011-09-26 2015-01-20 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
US8350251B1 (en) * 2011-09-26 2013-01-08 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
US9419183B2 (en) 2011-09-26 2016-08-16 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
WO2013049008A2 (en) 2011-09-26 2013-04-04 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
US9831383B2 (en) 2011-11-18 2017-11-28 Apple Inc. LED array
US10607961B2 (en) 2011-11-18 2020-03-31 Apple Inc. Micro device transfer head heater assembly and method of transferring a micro device
US10297712B2 (en) * 2011-11-18 2019-05-21 Apple Inc. Micro LED display
US11552046B2 (en) 2011-11-18 2023-01-10 Apple Inc. Micro device transfer head assembly
US9620478B2 (en) 2011-11-18 2017-04-11 Apple Inc. Method of fabricating a micro device transfer head
US10121864B2 (en) 2011-11-18 2018-11-06 Apple Inc. Micro device transfer head heater assembly and method of transferring a micro device
US20140299837A1 (en) * 2011-11-18 2014-10-09 LuxVue Technology Corporation Micro led display
US20130313583A1 (en) * 2012-05-22 2013-11-28 Samsung Electronics Co., Ltd. Light-emitting device and method of manufacturing the same
US9054259B2 (en) * 2012-05-22 2015-06-09 Samsung Electronics Co., Ltd. Light-emitting device and method of manufacturing the same
US20130313514A1 (en) * 2012-05-23 2013-11-28 Samsung Electronics Co., Ltd. Semiconductor light emitting device
US10038115B2 (en) 2012-10-26 2018-07-31 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
US9722135B2 (en) 2012-10-26 2017-08-01 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
WO2014066379A1 (en) * 2012-10-26 2014-05-01 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
US9231161B2 (en) 2012-10-26 2016-01-05 Glo Ab Nanowire LED structure and method for manufacturing the same
US10636653B2 (en) 2012-10-26 2020-04-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for growing at least one nanowire using a transition metal nitride layer obtained in two steps
EP2912700A4 (en) * 2012-10-26 2016-04-06 Glo Ab NANODRAHT LED STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
US20160141450A1 (en) * 2012-10-26 2016-05-19 Glo Ab Nanowire Sized Opto-Electronic Structure and Method for Modifying Selected Portions of Same
US9178106B2 (en) * 2012-10-26 2015-11-03 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
US20140138620A1 (en) * 2012-10-26 2014-05-22 Glo Ab Nanowire Sized Opto-Electronic Structure and Method for Modifying Selected Portions of Same
US9166106B2 (en) * 2012-10-26 2015-10-20 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
US9076945B2 (en) 2012-10-26 2015-07-07 Glo Ab Nanowire LED structure and method for manufacturing the same
JP2018137439A (ja) * 2012-10-26 2018-08-30 グロ アーベーGlo Ab ナノワイヤサイズの光電構造及びその選択された部分を改質する方法
US9991342B2 (en) 2012-10-26 2018-06-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electronic device containing nanowire(s), equipped with a transition metal buffer layer, process for growing at least one nanowire, and process for manufacturing a device
US9799796B2 (en) * 2012-10-26 2017-10-24 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
US20140124732A1 (en) * 2012-11-05 2014-05-08 Samsung Electronics Co., Ltd. Nano-structured light-emitting device and methods for manufacturing the same
US9583672B2 (en) 2012-11-05 2017-02-28 Samsung Electronics Co., Ltd. Nano-structured light-emitting device and methods for manufacturing the same
US9159877B2 (en) * 2012-11-05 2015-10-13 Samsung Electronics Co., Ltd. Nano-structured light-emitting device and methods for manufacturing the same
US9184335B2 (en) 2013-01-24 2015-11-10 Samsung Electronics Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
US9082926B2 (en) 2013-06-18 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor optical emitting device with metallized sidewalls
US9574135B2 (en) * 2013-08-22 2017-02-21 Nanoco Technologies Ltd. Gas phase enhancement of emission color quality in solid state LEDs
US20150053916A1 (en) * 2013-08-22 2015-02-26 Nanoco Technologies Ltd. Gas Phase Enhancement of Emission Color Quality in Solid State LEDs
TWI692886B (zh) * 2013-12-19 2020-05-01 法商艾勒迪亞公司 具有改善光提取之電致發光二極體的光電裝置
TWI656666B (zh) * 2013-12-19 2019-04-11 法商艾勒迪亞公司 具有改善光提取之電致發光二極體的光電裝置
TWI761708B (zh) * 2013-12-19 2022-04-21 法商艾勒迪亞公司 具有改善光提取之電致發光二極體的光電裝置
US20150200276A1 (en) * 2014-01-16 2015-07-16 International Business Machines Corporation Local thinning of semiconductor fins
US9431523B2 (en) * 2014-01-16 2016-08-30 Globalfoundries Inc. Local thinning of semiconductor fins
US20150207038A1 (en) * 2014-01-20 2015-07-23 Samsung Electronics Co., Ltd. Semiconductor light-emitting device
US9159882B2 (en) * 2014-01-20 2015-10-13 Samsung Electronics Co., Ltd. Semiconductor light-emitting device
US20160013364A1 (en) * 2014-07-11 2016-01-14 Samsung Electronics Co., Ltd. Method of manufacturing nanostructure semiconductor light emitting device
US9553234B2 (en) * 2014-07-11 2017-01-24 Samsung Electronics Co., Ltd. Method of manufacturing nanostructure semiconductor light emitting device
US20160064608A1 (en) * 2014-08-28 2016-03-03 Samsung Electronics Co., Ltd. Nanostructure semiconductor light emitting device
US9508898B2 (en) * 2014-08-28 2016-11-29 Samsung Electronics Co., Ltd. Nanostructure semiconductor light emitting device
US10217911B2 (en) * 2014-09-26 2019-02-26 Glo Ab Monolithic image chip for near-to-eye display
US9537049B2 (en) 2014-11-03 2017-01-03 Samsung Electronics Co., Ltd. Nanostructure semiconductor light emitting device
US9515220B2 (en) * 2014-11-19 2016-12-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Light emitting diode with doped quantum wells and associated manufacturing method
WO2016146457A1 (de) * 2015-03-19 2016-09-22 Osram Opto Semiconductors Gmbh Optoelektronischer halbleiterkörper und verfahren zur herstellung eines optoelektronischen halbleiterkörpers
US11572984B2 (en) * 2016-08-16 2023-02-07 King Abdullah University Of Science And Technology Orange nanowire light-emitting diodes
US20210247029A1 (en) * 2016-08-16 2021-08-12 King Abdullah University Of Science And Technology METHOD OF FABRICATING ORANGE-EMITTING NANOWIRES LEDs
WO2018222332A1 (en) * 2017-06-01 2018-12-06 Glo Ab Self-Aligned Nanowire-Based Light Emitting Diode Subpixels for a Direct View Display and Method of Making Thereof
US10418499B2 (en) 2017-06-01 2019-09-17 Glo Ab Self-aligned nanowire-based light emitting diode subpixels for a direct view display and method of making thereof
US10707374B2 (en) 2017-09-15 2020-07-07 Glo Ab Etendue enhancement for light emitting diode subpixels
US20200072667A1 (en) * 2017-09-29 2020-03-05 Samsung Electronics Co., Ltd. Spectrometer
US10895499B2 (en) * 2017-09-29 2021-01-19 Samsung Electronics Co., Ltd. Spectrometer
US11500199B2 (en) * 2018-12-20 2022-11-15 Lg Display Co., Ltd. Light path control member and electronic device including the same
US11637219B2 (en) 2019-04-12 2023-04-25 Google Llc Monolithic integration of different light emitting structures on a same substrate
US11695100B2 (en) 2020-01-21 2023-07-04 Nanosys, Inc. Light emitting diode containing a grating and methods of making the same

Also Published As

Publication number Publication date
EP2095425A1 (en) 2009-09-02
EP2126986A4 (en) 2012-10-10
JP2010514207A (ja) 2010-04-30
HK1142170A1 (en) 2010-11-26
WO2008079079A1 (en) 2008-07-03
KR20090096704A (ko) 2009-09-14
CN101669219B (zh) 2011-10-05
EP2095425B1 (en) 2019-04-17
CN101681918A (zh) 2010-03-24
CN102255018B (zh) 2013-06-19
US20150333225A1 (en) 2015-11-19
HK1142718A1 (en) 2010-12-10
EP2126986A1 (en) 2009-12-02
EP2126986B1 (en) 2019-09-18
WO2008079076A1 (en) 2008-07-03
JP5145353B2 (ja) 2013-02-13
EP2095425A4 (en) 2012-10-10
CN101669219A (zh) 2010-03-10
JP2010514206A (ja) 2010-04-30
JP5453105B2 (ja) 2014-03-26
US10263149B2 (en) 2019-04-16
CN101681918B (zh) 2012-08-29
CN102255018A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
US10263149B2 (en) Nanostructured LED array with collimating reflectors
US9318655B2 (en) Elevated LED
US8183587B2 (en) LED with upstanding nanowire structure and method of producing such
US8901534B2 (en) Coalesced nanowire structures with interstitial voids and method for manufacturing the same
US9570651B2 (en) Coalesced nanowire structures with interstitial voids and method for manufacturing the same
KR101524319B1 (ko) 시준 리플렉터를 갖는 나노구조 led 어레이
US10079331B2 (en) High index dielectric film to increase extraction efficiency of nanowire LEDs

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION