US20080119476A1 - Cetp Inhibitors - Google Patents

Cetp Inhibitors Download PDF

Info

Publication number
US20080119476A1
US20080119476A1 US11/631,821 US63182105A US2008119476A1 US 20080119476 A1 US20080119476 A1 US 20080119476A1 US 63182105 A US63182105 A US 63182105A US 2008119476 A1 US2008119476 A1 US 2008119476A1
Authority
US
United States
Prior art keywords
alkyl
group
optionally substituted
phenyl
trifluoromethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/631,821
Other languages
English (en)
Inventor
Amjad Ali
Joann M. Napolitano
Qiaolin Deng
Zhijian Lu
Peter J. Sinclair
Gayle E. Taylor
Christopher F. Thompson
Nazia Quraishi
Cameron J. Smith
Julianne A. Hunt
Adrian A. Dowst
Yi-Heng Chen
Hong Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/631,821 priority Critical patent/US20080119476A1/en
Publication of US20080119476A1 publication Critical patent/US20080119476A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4015Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41661,3-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. phenytoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41681,3-Diazoles having a nitrogen attached in position 2, e.g. clonidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/4211,3-Oxazoles, e.g. pemoline, trimethadione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/433Thidiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/501Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/272-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with substituted hydrocarbon radicals directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/30Oxygen or sulfur atoms
    • C07D233/32One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/30Oxygen or sulfur atoms
    • C07D233/32One oxygen atom
    • C07D233/38One oxygen atom with acyl radicals or hetero atoms directly attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/44Nitrogen atoms not forming part of a nitro radical
    • C07D233/50Nitrogen atoms not forming part of a nitro radical with carbocyclic radicals directly attached to said nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/44Nitrogen atoms not forming part of a nitro radical
    • C07D233/52Nitrogen atoms not forming part of a nitro radical with hetero atoms directly attached to said nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/22Oxygen atoms attached in position 2 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/24Oxygen atoms attached in position 2 with hydrocarbon radicals, substituted by oxygen atoms, attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/26Oxygen atoms attached in position 2 with hetero atoms or acyl radicals directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/04Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
    • C07D285/061,2,3-Thiadiazoles; Hydrogenated 1,2,3-thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/04Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
    • C07D285/101,2,5-Thiadiazoles; Hydrogenated 1,2,5-thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/04Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members

Definitions

  • This invention relates to a class of chemical compounds that inhibit cholesterol ester transfer protein (CETP) and therefore may have utility in the treatment and prevention of atherosclerosis.
  • CETP cholesterol ester transfer protein
  • CHD coronary heart disease
  • stroke and peripheral vascular disease represent a truly enormous burden to the health care systems of the industrialized world.
  • CHD coronary heart disease
  • stroke and peripheral vascular disease represent a truly enormous burden to the health care systems of the industrialized world.
  • CHD coronary heart disease
  • stroke and peripheral vascular disease represent a truly enormous burden to the health care systems of the industrialized world.
  • CHD coronary heart disease
  • stroke and peripheral vascular disease represent a truly enormous burden to the health care systems of the industrialized world.
  • CHD coronary heart disease
  • HMG-CoA Reductase inhibitors especially the statins
  • LDL-C Low Density Lipoprotein cholesterol
  • epidemiologic studies have demonstrated an inverse relationship between High Density Lipoprotein cholesterol (HDL-C) levels and atherosclerosis, leading to the conclusion that low serum HDL-C levels are associated with an increased risk for CHD.
  • cholesteryl ester transfer protein a plasma glycoprotein that catalyzes the movement of cholesteryl esters from HDL to the apoB containing lipoproteins, especially VLDL (see Hesler, C. B., et. al. (1987) Purification and characterization of human plasma cholesteryl ester transfer protein. J. Biol. Chem. 262(5), 2275-2282)).
  • CETP cholesteryl ester transfer protein
  • VLDL cholesteryl ester transfer protein
  • CETP plays a role in reverse cholesterol transport, the process whereby cholesterol is returned to the liver from peripheral tissues.
  • many animals do not possess CETP, including animals that have high HDL levels and are known to be resistant to coronary heart disease, such as rodents (see Guyard-Dangremont, V., et. al., (1998) Phospholipid and cholesteryl ester transfer activities in plasma from 14 vertebrate species. Relation to atherogenesis susceptibility, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 120(3), 517-525).
  • statins such as simvastatin (ZOCOR®) represent
  • statins only achieve a risk reduction of approximately one-third in the treatment and prevention of atherosclerosis and ensuing atherosclerotic disease events.
  • few pharmacologic therapies are available that favorably raise circulating levels of HDL-C.
  • Certain statins and some fibrates offer modest HDL-C gains.
  • Niacin which provides the most effective therapy for raising HDL-C that has been clinically documented, suffers from patient compliance issues, due in part to side effects such as flushing.
  • An agent that safely and effectively raises HDL cholesterol levels can answer a significant, but as yet unmet medical need by offering a means of pharmacologic therapy that can significantly improve circulating lipid profiles through a mechanism that is complementary to existing therapies.
  • Compounds having Formula I including pharmaceutically acceptable salts of the compounds, are CETP inhibitors, having the utilities described below:
  • Y is selected from —C( ⁇ O)— and —(CRR 1 )—;
  • X is selected from —O—, —NH—, —N(C 1 -C 5 alkyl)-, and —(CRR 6 )—;
  • Z is selected from —C( ⁇ O)—, —S(O) 2 —, and —C( ⁇ N—R 9 )—, wherein R 9 is selected from the group consisting of H, —CN, and —C 1 -C 5 alkyl optionally substituted with 1-11 halogens;
  • Each R is independently selected from the group consisting of H, —C 1 -C 5 alkyl, and halogen, wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens;
  • a 1 has the structure:
  • R 1 and R 6 are each independently selected from H, —C 1 -C 5 alkyl, halogen, and —(C(R) 2 ) n A 2 , wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens;
  • R 2 is selected from the group consisting of H, —C 1 -C 5 alkyl, halogen, A 1 , and —(C(R) 2 ) n A 2 , wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens;
  • one of B and R 2 is A 1 ; and one of B, R 1 , R 2 , and R 6 is A 2 or —(C(R) 2 ) n A 2 ; so that the compound of Formula I comprises one group A 1 and one group A 2 ;
  • a 3 is selected from the group consisting of:
  • a 2 is selected from the group consisting of:
  • a 3 and A 2 are each optionally substituted with 1-5 substituent groups independently selected from R a ;
  • Each R a is independently selected from the group consisting of —C 1 -C 6 alkyl, —C 2 -C 6 alkenyl, —C 2 -C 6 alkynyl, —C 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —OC 1 -C 6 alkyl, —OC 2 -C 6 alkenyl, —OC 2 -C 6 alkynyl, —OC 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —C( ⁇ O)C 1 -C 6 alkyl, —C( ⁇ O)C 3 -C 8 cycloalkyl, —C( ⁇ O)H, —CO 2 H, —CO 2 C 1 -C 6 alkyl, —C( ⁇ O)SC 1 -C 6 alkyl, —OH, —NR 3 R 4 , —C( ⁇ O)NR 3 R 4 , —NR 3 C( ⁇ O)OC 1
  • R a is selected from the group consisting of —C 1 -C 6 alkyl, —C 2 -C 6 alkenyl, —C 2 -C 6 alkynyl, —C 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —OC 1 -C 6 alkyl, —OC 2 -C 6 alkenyl, —OC 2 -C 6 alkynyl, —OC 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —C( ⁇ O)C 1 -C 6 alkyl, —C( ⁇ O)C 3 -C 8 cycloalkyl, —CO 2 C 1 -C 6 alkyl, —C( ⁇ O)SC 1 -C 6 alkyl, —NR 3 C( ⁇ O)OC 1 -C 6 alkyl, and —S(O) x C 1 -C 6 alkyl, R a is optionally substituted with 1
  • R 2 is phenyl which has a substituent R a in the 4-position, wherein R a is —OC 1 -C 6 alkyl which is optionally substituted as described above, then there are no other R a substitutents on R 2 in which R a is selected from —OH, —OC 1 -C 6 alkyl, —OC 2 -C 6 alkenyl, —OC 2 -C 6 alkynyl, and —OC 3 -C 8 cycloalkyl optionally having 1-3 double bonds, all of which are optionally substituted as described above.
  • n 0 or 1
  • p is an integer from 0-4;
  • x 0, 1, or 2;
  • y is 1 or 2;
  • R 3 and R 4 are each independently selected from H, —C 1 -C 5 alkyl, —C( ⁇ O)C 1 -C 5 alkyl and —S(O) y C 1 -C 5 alkyl, wherein —C 1 -C 5 alkyl in all instances is optionally substituted with 1-11 halogens; and
  • R 5 is selected from the group consisting of H, —OH, —C 1 -C 5 alkyl, and halogen, wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens.
  • alkyl, alkenyl, and alkynyl groups can be either linear or branched, unless otherwise stated.
  • Still other compounds of the invention have a structure in accordance with Formula Id, or a pharmaceutically acceptable salt thereof:
  • Each R a is independently selected from the group consisting of —C 1 -C 6 alkyl, —C 2 -C 6 alkenyl, —C 2 -C 6 alkynyl, —C 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —OC 1 -C 6 alkyl, —OC 2 -C 6 alkenyl, —OC 2 -C 6 alkynyl, —OC 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —C( ⁇ O)C 1 -C 6 alkyl, —C( ⁇ O)C 3 -C 8 cycloalkyl, —C( ⁇ O)H, —CO 2 H, —CO 2 C 1 -C 6 alkyl, —C( ⁇ O)SC 1 -C 6 alkyl, —NR 3 R 4 , —C( ⁇ O)NR 3 R 4 , —NR 3 C( ⁇ O)OC 1 -C 6
  • R a is selected from the group consisting of —C 1 -C 6 alkyl, —C 2 -C 6 alkenyl, —C 2 -C 6 alkynyl, —C 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —OC 1 -C 6 alkyl, —OC 2 -C 6 alkenyl, —OC 2 -C 6 alkynyl, —OC 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —C( ⁇ O)C 1 -C 6 alkyl, —C( ⁇ O)C 3 -C 8 cycloalkyl, —CO 2 C 1 -C 6 alkyl, —C( ⁇ O)SC 1 -C 6 alkyl, —NR 3 C( ⁇ O)OC 1 -C 6 alkyl, and —S(O) x C 1 -C 6 alkyl, then R a is optionally substituted with
  • R 2 is phenyl which has a substituent R a in the 4-position, wherein R a is —OC 1 -C 6 alkyl which is optionally substituted with 1-11 halogens, then there are no other R a substitutents on R 2 in which R a is selected from —OC 1 -C 6 alkyl, —OC 2 -C 6 alkenyl, —OC 2 -C 6 alkynyl, and —OC 3 -C 8 cycloalkyl optionally having 1-3 double bonds, all of which are optionally substituted as described above.
  • a 3 is phenyl, which is optionally substituted with 1-4 substituent groups R a , wherein R a is independently selected from —C 1 -C 5 alkyl, —OC 1 -C 3 alkyl, —CO 2 C 1 -C 3 alkyl, —CO 2 H, halogen, —NR 3 R 4 , —C( ⁇ O)C 1 -C 3 alkyl, —C( ⁇ O)H, —C( ⁇ O)NR 3 R 4 , —SC 1 -C 3 alkyl, —C 2 -C 3 alkenyl, —CN, —NO 2 , and 1,2,4-oxadiazolyl, wherein —C 1 -C 3 alkyl and —C 1 -C 5 alkyl in all occurrences is optionally substituted with 1-6 substituents independently selected from 1-5 halogens and one —OH group; and —C 2 -C 3 alkenyl is optionally substituted with 1-3
  • a 2 is selected from the group consisting of phenyl, cyclohexyl, and a heterocyclic 5-6 membered ring comprising 1-2 heteroatoms independently selected from O, N, S, and —N(O)— and optionally also comprising 1-3 double bonds, wherein A 2 is optionally substituted with 1-2 substituent groups independently selected from —C 1 -C 4 alkyl, —OC 1 -C 3 alkyl, —NO 2 , —CN, —S(O) x C 1 -C 3 alkyl, —NHS(O) 2 C 1 -C 3 alkyl, —NR 3 R 4 , —NR 3 C( ⁇ O)R 4 , —C 2 -C 3 alkenyl, —C( ⁇ O)NR 3 R 4 , halogen, and pyridyl, wherein C 1 -C 3 alkyl, CIC 4 alkyl, and C 2 -C 3 alkenyl in all instances is optionally
  • R 3 and R 4 are each independently selected from H and —C 1 -C 3 alkyl.
  • p is 0-2.
  • R 7 and R 8 are each independently selected from the group consisting of H, halogen, —NR 3 R 4 , —C 1 -C 3 alkyl, —OC 1 -C 3 alkyl, —CN, —NO 2 , and pyridyl, wherein C 1 -C 3 alkyl in all instances is optionally substituted with 1-3 halogens.
  • a 2 is selected from the group consisting of phenyl, pyridyl, and cyclohexyl, wherein A 2 is optionally substituted with 1-2 substituents independently selected from —C 1 -C 4 alkyl, —OC 1 -C 4 alkyl, —NO 2 , —CN, and halogen, wherein C 1 -C 4 alkyl in all uses is optionally substituted with 1-3 halogens, with the proviso that for compounds of formula I, when B is A1, and X and Y are CH 2 , and Z is —(C ⁇ O)—, and R 2 is phenyl, then the number of R a groups on R 2 that are selected from —OC 1 -C 4 alkyl optionally substituted with 1-3 halogens is 0 or 1.
  • a 2 is optionally substituted with 1-2 substituent groups independently selected from halogen, —C 1 -C 4 alkyl, and —CN, wherein —C 1 -C 4 alkyl is optionally substituted with 1-3 halogens.
  • R 7 is selected from H, halogen, —NR 3 R 4 , —C 1 -C 3 alkyl, —OC 1 -C 3 alkyl, —CN, —NO 2 , and pyridyl, wherein C 1 -C 3 alkyl in all instances is optionally substituted with 1-3 halogens; and
  • R 8 is selected from the group consisting of H, halogen, —CH 3 , —CF 3 , —OCH 3 , and —OCF 3 .
  • a 3 is phenyl, which is substituted with 1-3 substituents independently selected from C 1 -C 4 alkyl, OC 1 -C 4 alkyl, —CN, Cl, F, —C( ⁇ O)CH 3 , —CH ⁇ CH 2 , —CO 2 H, —CO 2 CH 3 , —S—CH 3 , —S(O)CH 3 , —S(O) 2 CH 3 , and —C( ⁇ O)NR 3 R 4 , wherein C 1 -C 4 alkyl and —OC 1 -C 4 alkyl are optionally substituted with 1-5 F substituents and optionally also substituted with one group —OH.
  • A3 is phenyl which is optionally substituted with 1-3 substituents independently selected from the group consisting of Cl, F, —C 1 -C 4 alkyl, and —OC 1 -C 4 alkyl, wherein —C 1 -C 4 alkyl and —OC 1 -C 4 alkyl are optionally substituted with 1-5 F.
  • a preferred value of Y is —(CRR 1 )—.
  • R and R 6 are each independently selected from the group consisting of H and —C 1 -C 5 alkyl, wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens.
  • R 1 is selected from the group consisting of H, —C 1 -C 5 alkyl, and —(C(R) 2 ) n A 2 , wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens.
  • one of B and R 2 is A 1 ; and one of B, R 1 , and R 2 is A 2 or —(C(R) 2 ) n A 2 ; so that the compound of Formula I comprises one group A 1 and one group A 2 .
  • a 3 is selected from the group consisting of:
  • a 2 is selected from the group consisting of:
  • a 3 and A 2 are each optionally substituted with 1-4 substituent groups independently selected from R a .
  • a subgroup of R a comprises substituents that are independently selected from the group consisting of —C 1 -C 6 alkyl, —C 2 -C 6 alkenyl, —C 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —OC 1 -C 6 alkyl, —C( ⁇ O)C 1 -C 6 alkyl, —C( ⁇ O)H, —CO 2 H, —CO 2 C 1 -C 6 alkyl, —OH, —NR 3 R 4 , —NR 3 C( ⁇ O)OC 1 -C 6 alkyl, —S(O) x C 1 -C 6 alkyl, halogen, —CN, —NO 2 , and a 5-6-membered heterocyclic ring having 1-4 heteroatoms independently selected from N, S, and O, said heterocyclic ring optionally also comprising a carbonyl group and optionally also comprising 1-3 double bonds, wherein the point of attachment of
  • R a is selected from the group consisting of —C 1 -C 6 alkyl, —C 2 -C 6 alkenyl, —C 3 -C 8 cycloalkyl optionally having 1-3 double bonds, —OC 1 -C 6 alkyl, —C( ⁇ O)C 1 -C 6 alkyl, —CO 2 C 1 -C 6 alkyl, —NR 3 C( ⁇ O)OC 1 -C 6 alkyl, and —S(O) x C 1 -C 6 alkyl, R a is optionally substituted with 1-15 halogens and is optionally also substituted with one substituent group selected from (a) —OH, (b) —NR 3 R 4 , (c) —OC 1 -C 4 alkyl optionally substituted with 1-9 halogens and optionally also substituted with 1-2 substituent groups independently selected from —OC 1 -C 2 alkyl and phenyl, and (d) phen
  • R 2 is phenyl which has a substituent R a in the 4-position, wherein R a is —OC 1 -C 6 alkyl which is optionally substituted as described above, then there are no other R a substitutents on R 2 in which R a is —OH or —OC 1 -C 6 alkyl which is optionally substituted as described above.
  • n is an integer from 0-2. In other subgroups, n is 1 or 2.
  • R 3 and R 4 are each independently selected from H and —C 1 -C 5 alkyl, wherein —C 1 -C 8 alkyl in all instances is optionally substituted with 1-11 halogens. In other independent subgroups, R 3 and R 4 each independently selected from H and —C 1 -C 3 alkyl, or from H and —C 1 -C 2 alkyl.
  • Z is selected from the group consisting of —C( ⁇ O)—, —S(O) 2 —, and —C( ⁇ N—R 9 )—, where R 9 is selected from the group consisting of H, —CN, and CH 3 .
  • R 9 is selected from the group consisting of H, —CN, and CH 3 .
  • a preferred value of Z is —C( ⁇ O)—.
  • R 5 is selected from the group consisting of H, —OH, and —C 1 -C 5 alkyl, wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens. In other subgroups, R 5 is selected from H and —C 1 -C 3 alkyl, or from H and —C 1 -C 2 alkyl.
  • each R is independently selected from the group consisting of H and C 1 -C 3 alkyl. In other groups, R is selected from H and C 1 -C 2 alkyl. In other groups, R is H or CH 3 In some subgroups, R 6 is selected from the group consisting of H and —C 1 -C 3 alkyl,
  • C 1 -C 3 alkyl is optionally substituted with 1-5 halogens.
  • R 6 is selected from H and C 1 -C 2 alkyl. In other groups, R 6 is H or CH 3 ,
  • R 1 is selected from the group consisting of H, —C 1 -C 3 alkyl, and —(C(R) 2 ) n A 2 , wherein —C 1 -C 3 alkyl is optionally substituted with 1-5 halogens; and R 2 is selected from the group consisting of H, —C 1 -C 3 alkyl, A 1 , and —(C(R) 2 ) n A 2 , wherein —C 1 -C 3 alkyl is optionally substituted with 1-5 halogens, and R 6 is H or alkyl.
  • one of B and R 2 is A 1 ; and one of B, R 1 , and R 2 is A 2 or —(C(R) 2 ) n A 2 ; so that the compound of Formula I comprises one group A 1 and one group A 2 .
  • a 3 is selected from the group consisting of:
  • a 2 is selected from:
  • a 3 and A 2 are each optionally substituted with 1-4 substituent groups independently selected from R a .
  • a 3 is optionally substituted with 1-3 substituents R a , or with 2-3 substituents R a .
  • a 2 is optionally substituted with 1-3 substituents R a , or with 1-2 substituents R a .
  • a 2 is substituted with 2 substituents R a , or with 2-3 substituents R a .
  • a 3 is selected from the group consisting of phenyl, thienyl, imidazolyl, pyrrolyl, pyrazolyl, pyridyl, N-oxido-pyridyl, thiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, benzothienyl, benzothienyl-S-oxide, and benzothienyl-S-dioxide.
  • a 2 is selected from the group consisting of phenyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, pyrazolyl, 1,2,4-triazolyl, tetrazolyl, benzodioxolyl, pyridyl, N-oxidopyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, cyclopentyl, cyclohexyl, and tetrahydropyranyl.
  • R a is selected from the group consisting of —C 1 -C 4 alkyl, —C 2 -C 4 alkenyl, cyclopropyl, —OC 1 -C 2 alkyl, —C( ⁇ O)C 1 -C 2 alkyl, —C( ⁇ O)H, —CO 2 C 1 -C 4 alkyl, —OH, —NR 3 R 4 , —NR 3 C( ⁇ O)OC 1 -C 4 alkyl, —S(O) x C 1 -C 2 alkyl, halogen, —CN, —NO 2 , and a 5-6-membered heterocyclic ring having 1-2 heteroatoms independently selected from N, S, and O, wherein the point of attachment of said heterocyclic ring to the ring to which R a is attached ring is a carbon atom, wherein said heterocyclic ring is optionally substituted with 1-5 substituent groups independently selected from halogen;
  • R a is selected from the group consisting of —C 1 -C 4 alkyl, —C 2 -C 4 alkenyl, —OC 1 -C 2 alkyl, —C( ⁇ O)C 1 -C 2 alkyl, —CO 2 C 1 -C 4 alkyl, —NR 3 C( ⁇ O)OC 1 -C 4 alkyl, and —S(O) x C 1 -C 2 alkyl
  • the alkyl group of R a is optionally substituted with 1-5 halogens and is optionally also substituted with one substituent group selected from (a) —OH, (b) —NR 3 R 4 , (c) —OCH 3 optionally substituted with 1-3 fluorine atoms and optionally also substituted with one phenyl group, and
  • phenyl which is optionally substituted with 1-3 groups independently selected from halogen, —CH 3 , —CF 3 , —OCH 3 , and —OCF 3 ;
  • R 2 is phenyl which has a substituent R a in the 4-position, wherein R a is —OC 1 -C 2 alkyl which is optionally substituted as described above, then there are no other R a substitutents on R 2 in which R a is selected from —OH or —OC 1 -C 2 alkyl which is optionally substituted as described above.
  • X is selected from the group consisting of —O—, —NH—, and —N(C 1 -C 3 alkyl)-. X may also be selected from the group consisting of —O—, —NH—, and —N(CH 3 ). In highly preferred subsets, X is O.
  • Z is —C( ⁇ O)—.
  • a preferred subgroup of compounds has Formula Ie, including pharmaceutically acceptable salts thereof
  • X is selected from the group consisting of —O—, —NH—, —N(C 1 -C 5 alkyl)- and —(CH 2 )—;
  • Z is selected from the group consisting of —C( ⁇ O)—, —S(O) 2 —, and —C( ⁇ N—R 9 )—, wherein
  • R 9 is selected from the group consisting of H, —CN, and C 1 -C 5 alkyl optionally substituted with 1-11 halogens;
  • Each R is independently selected from the group consisting of H and —CH 3 ;
  • a 1 has the structure:
  • R 1 is selected from the group consisting of H, —C 1 -C 5 alkyl, and —(C(R) 2 ) n A 2 , wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens;
  • R 2 is selected from the group consisting of H, —C 1 -C 5 alkyl, A 1 , and —(C(R) 2 ) n A 2 , wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens;
  • one of B and R 2 is A 1 ; and one of B, R 1 , and R 2 is A 2 or —(C(R) 2 ) n A 2 ; so that the compound of Formula Ie comprises one group A 1 and one group A 2 ;
  • a 2 is selected from the group consisting of phenyl, cyclohexyl, and pyridyl, wherein A 2 is optionally substituted with 1-2 substituent groups independently selected from halogen, —C 1 -C 4 alkyl, and —CN, wherein —C 1 -C 4 alkyl is optionally substituted with 1-3 halogens;
  • Each R a is independently selected from the group consisting of —C 1 -C 3 alkyl and halogen, wherein —C 1 -C 3 alkyl is optionally substituted with 1-3 halogens;
  • Each R b is independently selected from the group consisting of Cl, F, —C 1 -C 4 alkyl, and —OC 1 -C 4 alkyl, wherein —C 1 -C 4 alkyl and —OC 1 -C 4 alkyl are optionally substituted with 1-5 F;
  • n 0 or 1
  • p is an integer from 0-2;
  • q is an integer from 0-3.
  • Subsets of compounds having formula Ie include compounds of formula If, Ig, and Ih, and pharmaceutically acceptable salts thereof:
  • R 1 and R 2 are each independently selected from H and —C 1 -C 5 alkyl, wherein —C 1 -C 5 alkyl is optionally substituted with 1-11 halogens.
  • Other groups are as defined previously.
  • a 2 may be selected from the group consisting of phenyl, cyclohexyl, and pyridyl, wherein A 2 is optionally substituted with 1-2 substituent groups independently selected from halogen, —CH 3 —CF 3 , and —CN.
  • each R a independently is selected from the group consisting of —CF 3 and Cl.
  • each R b is independently selected from the group consisting of —C 1 -C 3 alkyl, —OCH 3 , and F.
  • R 1 and R 2 are each independently selected from the group consisting of H and —C 1 -C 2 alkyl.
  • X is selected from —O—, —NH—, —N(CH 3 )—, and —CH 2 —.
  • Z is selected from the group consisting of —C(—O)—, —S(O) 2 —, and —C( ⁇ N—CN)—.
  • q is 2 or 3.
  • a subset of compounds defined previously comprises compounds having formula Ii, and pharmaceutically acceptable salts thereof:
  • R 7 is selected from the group consisting of Cl and —CF 3 ;
  • R c is selected from the group consisting of halogen, —CH 3 —CF 3 , and —CN;
  • t is an integer from 0-2.
  • Other groups are as defined previously.
  • a subset of compounds defined previously comprises compounds having formula Ij, or a pharmaceutically acceptable acceptable salt thereof:
  • R 7 is selected from the group consisting of Cl and —CF 3
  • R c is selected from the group consisting of halogen, —CH 3 —CF 3 , and —CN;
  • t is an integer from 0-2.
  • Other groups are as defined previously.
  • Alkyl means saturated carbon chains which may be linear or branched or combinations thereof, unless the carbon chain is defined otherwise.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec- and tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, and the like.
  • Alkylene groups are alkyl groups that are difunctional rather than monofunctional. For example, methyl is an alkyl group and methylene (—CH 2 —) is the corresponding alkylene group.
  • Alkenyl means carbon chains which contain at least one carbon-carbon double bond, and which may be linear or branched or combinations thereof. Examples of alkenyl include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, and the like.
  • Alkynyl means carbon chains which contain at least one carbon-carbon triple bond, and which may be linear or branched or combinations thereof. Examples of alkynyl include ethynyl, propargyl, 3-methyl-1-pentynyl, 2-heptynyl and the like.
  • Cycloalkyl means a saturated carbocyclic ring having from 3 to 8 carbon atoms, unless otherwise stated (e.g., cycloalkyl may be defined as having one or more double bonds). The term also includes a cycloalkyl ring fused to an aryl group. Examples of cycloalkyl include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like. “Cycloalkenyl” means a non-aromatic carbocyclic ring having one or more double binds.
  • Aryl when used to describe a substituent or group in a structure means a monocyclic or bicyclic compound in which the rings are aromatic and which contains only carbon ring atoms.
  • aryl can also refer to an aryl group that is fused to a cycloalkyl or heterocycle.
  • Preferred “aryls” are phenyl and naphthyl. Phenyl is generally the most preferred aryl group.
  • EDC is 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide.
  • Heterocyclyl “heterocycle,” and “heterocyclic” means a fully or partially saturated or aromatic 5-6 membered ring containing 1-4 heteroatoms independently selected from N, S and O, unless otherwise stated.
  • “Benzoheterocycle” represents a phenyl ring fused to a 5-6-membered heterocyclic ring having 1-2 heteroatoms, each of which is O, N, or S, where the heterocyclic ring may be saturated or unsaturated. Examples include indole, benzofuran, 2,3-dihydrobenzofuran and quinoline.
  • DIPEA is diisopropylethylamine.
  • Halogen includes fluorine, chlorine, bromine and iodine.
  • HOBT is 1-Hydroxybenzotriazole.
  • Weight amine is N,O-dimethylhydroxylamine.
  • composition as in pharmaceutical composition, is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.
  • pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier.
  • tetrazole means a 2H-tetrazol-5-yl substituent group and tautomers thereof.
  • Compounds of Formula I may contain one or more asymmetric centers and can thus occur as racemates, racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers.
  • the present invention is meant to include all such isomeric forms of the compounds of Formula I and all mixtures of the compounds.
  • structures are shown with a stereochemical representation, other stereochemical structures are also included individually and collectively, such as enantiomers, diastereoisomers (where diastereomers are possible), and mixtures of the enantiomers and/or diastereomers, including racemic mixtures.
  • Some of the compounds described herein may contain olefinic double bonds, and unless specified otherwise, are meant to include both E and Z geometric isomers.
  • keto-enol tautomers Some of the compounds described herein may exist as tautomers.
  • An example is a ketone and its enol form, known as keto-enol tautomers.
  • keto-enol tautomers The individual tautomers as well as mixtures thereof are encompassed with compounds of Formula I.
  • enantiomers and other compounds with chiral centers may be synthesized by stereospecific synthesis using optically pure starting materials and/or reagents of known configuration.
  • biphenyl and biaryl compounds herein are observed as mixtures of atropisomers (rotamers) in the NMR spectra.
  • the individual atropisomers as well as mixtures thereof are encompassed with the compounds of this invention.
  • salts refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids.
  • Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts in the solid form may exist in more than one crystal structure, and may also be in the form of hydrates.
  • Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.
  • basic ion exchange resins such as
  • salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids.
  • acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like.
  • Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
  • Therapeutically active metabolites where the metabolites themselves fall within the scope of the claimed invention, are also compounds of the current invention.
  • Prodrugs which are compounds that are converted to the claimed compounds as they are being administered to a patient or after they have been administered to a patient, are also compounds of this invention.
  • Compounds of the current invention are potent inhibitors of CETP. They are therefore useful in treating diseases and conditions that are treated by inhibitors of CETP.
  • One aspect of the present invention provides a method for treating or reducing the risk of developing a disease or condition that may be treated or prevented by inhibition of CETP by administering a therapeutically effective amount of a compound of this invention to a patient in need of treatment.
  • a patient is a human or mammal, and is most often a human.
  • a “therapeutically effective amount” is the amount of compound that is effective in obtaining a desired clinical outcome in the treatment of a specific disease.
  • Diseases or conditions that may be treated with compounds of this invention, or which the patient may have a reduced risk of developing as a result of being treated with the compounds of this invention include: atherosclerosis, peripheral vascular disease, dyslipidemia, hyperbetalipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial-hypercholesterolemia, cardiovascular disorders, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, obesity, endotoxemia, and metabolic syndrome.
  • the compounds of this invention are expected to be particularly effective in raising HDL-C and/or increasing the ratio of HDL-C to LDL-C. These changes in HDL-C and LDL-C may be beneficial in treating atherosclerosis, reducing or reversing the development of atherosclerosis, reducing the risk of developing atherosclerosis, or preventing atherosclerosis.
  • Any suitable route of administration may be employed for providing a mammal, especially a human, with an effective dose of a compound of the present invention.
  • oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed.
  • Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like.
  • compounds of Formula I are administered orally.
  • the effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration, the condition being treated and the severity of the condition being treated. Such dosage may be ascertained readily by a person skilled in the art.
  • the compounds of the present invention are administered at a daily dosage of from about 0.01 milligram to about 100 milligram per kilogram of animal or human body weight, preferably given as a single daily dose or in divided doses two to six times a day, or in sustained release form.
  • the total daily dose will generally be from about 0.5 milligram to about 500 milligrams.
  • the dosage for an adult human may be as low as 0.1 mg. The dosage regimen may be adjusted within this range or even outside of this range to provide the optimal therapeutic response.
  • Oral administration will usually be carried out using tablets.
  • Examples of doses in tablets are 0.5 mg, 1 mg, 2 mg, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg, 250 mg, and 500 mg.
  • Other oral forms can also have the same dosages (e.g. capsules).
  • compositions which comprise a compound of Formula I and a pharmaceutically acceptable carrier.
  • the pharmaceutical compositions of the present invention comprise a compound of Formula I or a pharmaceutically acceptable salt as an active ingredient, as well as a pharmaceutically acceptable carrier and optionally other therapeutic ingredients.
  • pharmaceutically acceptable salts refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic bases or acids and organic bases or acids.
  • a pharmaceutical composition may also comprise a prodrug, or a pharmaceutically acceptable salt thereof, if a prodrug is administered.
  • Pharmaceutical compositions may also consist essentially of a compound of Formula I and a pharmaceutically acceptable carrier without other therapeutic ingredients.
  • the compounds of Formula I can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
  • the carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous).
  • any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, hard and soft capsules and tablets, with the solid oral preparations being preferred over the liquid preparations.
  • oral liquid preparations such as, for example, suspensions, elixirs and solutions
  • carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, hard and soft capsules and tablets, with the solid oral preparations being preferred over the liquid preparation
  • tablets and capsules represent the most advantageous oral dosage unit form in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be coated by standard aqueous or nonaqueous techniques. Such compositions and preparations should contain at least 0.1 percent of active compound. The percentage of active compound in these compositions may, of course, be varied and may conveniently be between about 2 percent to about 60 percent of the weight of the unit. The amount of active compound in such therapeutically useful compositions is such that an effective dosage will be obtained.
  • the active compounds can also be administered intranasally as, for example, liquid drops or spray.
  • the tablets, pills, capsules, and the like may also contain a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin.
  • a dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as a fatty oil.
  • tablets may be coated with shellac, sugar or both.
  • a syrup or elixir may contain, in addition to the active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavoring such as cherry or orange flavor.
  • Compounds of formula I may also be administered parenterally. Solutions or suspensions of these active compounds can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
  • the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
  • the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g. glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.
  • Compounds of the invention may be used in combination with other drugs that may also be useful in the treatment or amelioration of the diseases or conditions for which compounds of Formula I are useful.
  • Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of Formula I.
  • a pharmaceutical composition in unit dosage form containing such other drugs and the compound of Formula I is preferred.
  • the combination therapy also includes therapies in which the compound of Formula I and one or more other drugs are administered on different schedules.
  • the drugs When oral formulations are used, the drugs may be combined into a single combination tablet or other oral dosage form, or the drugs may be packaged together as separate tablets or other oral dosage forms. It is also contemplated that when used in combination with one or more other active ingredients, the compound of the present invention and the other active ingredients may be used in lower doses than when each is used singly. Accordingly, the pharmaceutical compositions of the present invention include those that contain one or more other active ingredients, in addition to a compound of Formula I.
  • HMG-CoA reductase inhibitors which are generally statins, including lovastatin, simvastatin, rosuvastatin, pravastatin, fluvastatin, atorvastatin, rivastatin, itavastatin, pitavastatin, and other statins
  • bile acid sequestrants cholesterolestyramine, colestipol, dialkylaminoalkyl derivatives of a cross-linked dextran, Colestid®, LoCholest®
  • niacin and related compounds such as nicotinyl alcohol, nicotinamide, and nicotinic acid or a salt thereof,
  • PPAR ⁇ agonists which are generally statins, including lovastatin, simvastatin, rosuvastatin, pravastatin, fluvastatin, atorvastatin, rivastatin, itavastatin, pitavastatin, and other statins
  • bile acid sequestrants cholesterol
  • Preferred classes of therapeutic compounds that can be used with the compounds of this invention for use in improving a patient's lipid profile include one or both of statins and cholesterol absorption inhibitors.
  • Particularly preferred are combinations of compounds of this invention with simvastatin, ezetimibe, or both simvastatin and ezetimibe.
  • Also preferred are combinations of compounds of this invention with statins other than simvastatin, such as lovastatin, rosuvastatin, pravastatin, fluvastatin, atorvastatin, rivastatin, itavastatin, and ZD-4522.
  • compounds of this invention can be used with compounds that are useful for treating other diseases, such as diabetes, hypertension and obesity, as well as other anti-atherosclerotic compounds.
  • Such combinations may be used to treat one or more of such diseases as diabetes, obesity, atherosclerosis, and dyslipidemia, or more than one of the diseases associated with metabolic syndrome.
  • the combinations may exhibit synergistic activity in treating these disease, allowing for the possibility of administering reduced doses of active ingredients, such as doses that otherwise might be sub-therapeutic.
  • Examples of other active ingredients that may be administered in combination with a compound of this invention include, but are not limited to, compounds that are primarily anti-diabetic compounds, including:
  • dipeptidyl peptidase IV (DP-IV) inhibitors including vildagliptin, sitagliptin, and saxagliptin;
  • insulin or insulin mimetics such as for example insulin lispro, insulin glargine, insulin zinc suspension, and inhaled insulin formulations;
  • sulfonylureas such as tolbutamide, glipizide, glimepiride, acetohexamide, chlorpropamide, glibenclamide, and related materials;
  • ⁇ -glucosidase inhibitors such as acarbose, adiposine; camiglibose; emiglitate; miglitol; voglibose; pradimicin-Q; and salbostatin;
  • PPAR ⁇ / ⁇ dual agonists such as muraglitazar, tesaglitazar, farglitazar, and naveglitazar;
  • GLP-1 GLP-1; GLP-1 derivatives; GLP-1 analogs, such as exendins, such as for example exenatide (Byetta); and non-peptidyl GLP-1 receptor agonists;
  • Non-sulfonylurea insulin secretagogues such as the meglitinides (e.g. nateglinide and rapeglinide).
  • antiobesity compounds including 5-HT (serotonin) inhibitors, neuropeptide Y5 (NPY5) inhibitors, melanocortin 4 receptor (Mc4r) agonists, cannabinoid receptor 1 (CB-1) antagonists/inverse agonists, and ⁇ 3 adrenergic receptor agonists. These are listed in more detail later in this section.
  • active ingredients also include active ingredients that are used to treat inflammatory conditions, such as aspirin, non-steroidal anti-inflammatory drugs, glucocorticoids, azulfidine, and selective cyclooxygenase-2 (COX-2) inhibitors, including etoricoxib, celecoxib, rofecoxib, and Bextra.
  • active ingredients that are used to treat inflammatory conditions, such as aspirin, non-steroidal anti-inflammatory drugs, glucocorticoids, azulfidine, and selective cyclooxygenase-2 (COX-2) inhibitors, including etoricoxib, celecoxib, rofecoxib, and Bextra.
  • COX-2 selective cyclooxygenase-2
  • Antihypertensive compounds may also be used advantageously in combination therapy with the compounds of this invention.
  • antihypertensive compounds include (1) angiotensin II antagonists, such as losartan; (2) angiotensin converting enzyme inhibitors (ACE inhibitors), such as enalapril and captopril; (3) calcium channel blockers such as nifedipine and diltiazam; and (4) endothelian antagonists.
  • Anti-obesity compounds may be administered in combination with the compounds of this invention, including: (1) growth hormone secretagogues and growth hormone secretagogue receptor agonists/antagonists, such as NN 7 O 3 , hexarelin, and MK-0677; (2) protein tyrosine phosphatase-1B (PTP-1B) inhibitors; (3) cannabinoid receptor ligands, such as cannabinoid CB 1 receptor antagonists or inverse agonists, such as rimonabant (Sanofi Synthelabo), AMT-251, and SR-14778 and SR 141716A (Sanofi Synthelabo), SLV-319 (Solvay), BAY 65-2520 (Bayer); (4) anti-obesity serotonergic agents, such as fenfluramine, dexfenfluramine, phentermine, and sibutramine; (5) ⁇ 3-adrenoreceptor agonists, such as AD9677/TAK
  • a patient having metabolic syndrome is characterized as having three or more symptoms selected from the following group of five symptoms: (1) abdominal obesity; (2) hypertriglyceridemia; (3) low high-density lipoprotein cholesterol (HDL); (4) high blood pressure; and (5) elevated fasting glucose, which may be in the range characteristic of Type 2 diabetes if the patient is also diabetic.
  • Each of these symptoms is defined clinically in the recently released Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III, or ATP III), National Institutes of Health, 2001, NIH Publication No.
  • Patients with metabolic syndrome have an increased risk of developing the macrovascular and microvascular complications that are listed above, including atherosclerosis and coronary heart disease.
  • the combinations described above may ameliorate more than one symptom of metabolic syndrome concurrently (e.g. two symptoms, three symptoms, four symptoms, or all five of the symptoms).
  • Particles used in the assay were created from the following sources: Synthetic donor HDL particles containing DOPC (Dioleoyl Phosphatidyl Choline), BODIPY®-CE (Molecular Probes C-3927), triolein (a triglyceride), and apoHDL were essentially created by probe sonication as described by Epps et al, but with the addition of a non-diffusable quencher molecule, dabcyl dicetylamide, in order to reduce background fluorescence. Dabcyl dicetylamide was made by heating dabcyl n-succinimide with dicetylamine in DMF at 95° C. overnight in the presence of diisopropylamine catalyst.
  • DOPC Dioleoyl Phosphatidyl Choline
  • BODIPY®-CE Molecular Probes C-3927
  • triolein a triglyceride
  • apoHDL apoHDL
  • Native lipoproteins from human blood were used as acceptor particles. Particles having a density less than 1.063 g/ml were collected by ultracentrifugation. These particles include VLDL, IDL, and LDL. Particle concentrations were expressed in terms of protein concentration as determined by BCA assay (Pierce, USA). Particles were stored at 4° C. until use.
  • Assays were performed in Dynex Microfluor 2 U-bottom black 96-well plates (Cat #7205).
  • An assay cocktail containing CETP, 1 ⁇ CETP buffer (50 mM Tris, pH 7.4, 100 mM NaCl, 1 mM EDTA), and half the final concentration of acceptor particles was prepared, and 100 ⁇ L of the assay cocktail was added to each well of the plate.
  • Test compounds in DMSO were added in a volume of 3 ⁇ L. The plate was mixed on a plate shaker and then incubated at 25° C. for 1 hour.
  • a second assay cocktail containing donor particles, the remaining acceptor particles and 1 ⁇ CETP buffer was prepared. 47 ⁇ L of the second assay cocktail was added to the reaction wells to start the assay.
  • Assays were performed at 25° C. in a final volume of 150 ⁇ L. Final concentrations of materials were: 5 ng/ ⁇ L donor particles, 30 ng/ ⁇ L acceptor particles (each expressed by protein content), 1 ⁇ CETP buffer, 0.8 nM recombinant human CETP (expressed in CHO cells and partially purified), and up to 2% DMSO when testing compounds.
  • Iodides 1-3 are prepared by treatment of 1-2 with isoamylnitrite, n-pentylnitrite, t-butyl nitrite or the like in the presence of diiodomethane (see for example: Smith et al., J. Org. Chem. 55, 2543, (1990) and references cited therein) either neat or in a solvent such as THF or acetonitrile.
  • the iodide can be prepared first by diazonium formation using isoamylnitrite, n-pentylnitrite, t-butyl nitrite, sodium nitrite, nitrous acid or the like followed by heating in the presence of iodine or an iodide salt such as copper iodide, sodium iodide, potassium iodide, tetrabutylammonium iodide or the like.
  • Reduction of 1-3 with DIBAL in dichloromethane affords aldehyde 1-4.
  • Reduction of aldehyde 1-4 with sodium borohydride or the like in methanol or ethanol or the like gives alcohol 1-5.
  • nitrile 2-2 Reduction of nitrile 2-2 is accomplished with lithium aluminum hydride in diethyl ether to afford 2-aminomethyl aniline 2-3.
  • the nitrile can be reduced with palladium on carbon or Raney nickel under hydrogen atmosphere in methanol, ethanol or the like.
  • Other methods for reduction of a nitrile to an aminomethyl group can be found in Smith, M. B. and March, J. “March's Advanced Organic Chemistry”, 5 th Ed., John Wiley and Sons, New York, pp. 1204 (2001) and references therein.
  • the reaction may be run with or without a base such as triethylamine, diisopropylethylamine, N-methylmorpholine, or the like.
  • a base such as triethylamine, diisopropylethylamine, N-methylmorpholine, or the like.
  • Reduction of the ester functionality of 3-2 affords amino alcohol 3-3.
  • the preferred reducing reagent is LiAlH 4 , in a solvent such as ether, tetrahydrofuran, dimethoxyethane, dioxane, or the like.
  • Other methods for reduction of an ester can be found in “March's Advanced Organic Chemistry” 5 th Ed., John Wiley and Sons, New York, pp 1551.
  • Enantiopure products may be obtained via chiral chromotography.
  • the epoxide may be made from epoxidation of an olefin, cyclization of a halohydrin or 1,2-diol, or other methods described in “March's Advanced Organic Chemistry” 5 th Ed., John Wiley and Sons, New York, pp 1051.
  • the preferred solvent for this reaction is isopropanol.
  • the epoxide opening may be carried out in a solvent such as acetonitrile or the like with the aid of a Lewis Acid catalyst such as Yb(OTf) 3 or the like.
  • a solvent such as dichloromethane, dichloroethane, tetrahydrofuran, dimethoxyethane, or the like and
  • aminoalcohol 4-2 can be converted to an appropriate carbamate by treatment with reagents such as dibenzyl dicarbonate or benzyl chloroformate in the presence of bases such as triethylamine, diisopropylethylamine or the like in solvents such as dichloromethane, dichloroethane, tetrahydrofuran, dimethoxyethane or the like.
  • bases such as triethylamine, diisopropylethylamine or the like in solvents such as dichloromethane, dichloroethane, tetrahydrofuran, dimethoxyethane or the like.
  • the carbamates can then be converted into oxazolidinones 4-3 by treating with bases like lithium-, sodium- or potassium hexamethyldisilazide in solvents like tetrahydrofuran, dimethoxyethane or the like.
  • Enantiopure products may be obtained via chiral chromatography
  • Protection of the nitrogen with a BOC or Cbz group can be carried out by reaction of 5-1 with di-t-butyldicarbonate or dibenzyldicarbonate in an appropriate solvent such as dichloromethane, dichloroethane, tetrahydrofuran, dimethoxyethane, or the like.
  • Alcohol 5-2 can be converted to azide 5-3 by reaction with methanesulfonyl chloride in dichloromethane, dichloroethane, tetrahydrofuran, dimethoxyethane, or the like in the presence of an appropriate base such as triethylamine, diisopropylethylamine, N-methylmorpholine, or the like.
  • the alcohol may be converted to an alternative leaving group, such as tosylate, iodide, bromide, or the like.
  • the mesylate is then displaced by an azide source, such as NaN 3 , LiN 3 , Bu 4 NN 3 or the like in an appropriate solvent, such as DMF, DMPU, or the like.
  • Azide 5-3 can also be prepared by treatment of alcohol 5-2 with diphenylphosphoryl azide, diethylazodicarboxylate and triphenylphosphine in THF.
  • Azide 5-3 can be reduced by hydrogenation over a metal catalyst such as PtO 2 or Pd/C or the like in an appropriate solvent, such as EtOAc, THF, EtOH, or the like.
  • a phosgene equivalent such as triphosgene (Y ⁇ OCCl 3 ) or carbonyldiimidazole (Y-imidazole) or the like
  • a solvent such as dichloromethane, dichloroethane, tetrahydrofuran, dimethoxyethane, or the like
  • a base such
  • a solvent such as dichloromethane, dichloroethane, tetrahydrofuran, dimethoxyethane, or the like
  • the alcohol may be converted to an alternative leaving group, such as tosylate, iodide, bromide, or the like.
  • the mesylate is then displaced by an azide source, such as NaN 3 , LiN 3 , Bu 4 NN 3 or the like in an appropriate solvent, such as DMF, DMPU, or the like.
  • Azide 7-3 can also be prepared by treatment of alcohol 5-2 with diphenylphosphoryl azide, diethylazodicarboxylate and triphenylphosphine in THF.
  • Azide 7-3 can be reduced to amine 7-4 with H 2 over PtO 2 with THF as a solvent when R 4 is benzyl.
  • Cyclization of 7-4 to imidazolidinones 7-5 is accomplished through the use of an appropriate base, such as lithium diisopropylamide or lithium-, sodium-, or potassium bis(trimethylsilyl)amide or the like in an appropriate solvent, such as THF, dimethoxyethane, DMF, DMA, or the like.
  • an appropriate base such as lithium diisopropylamide or lithium-, sodium-, or potassium bis(trimethylsilyl)amide or the like
  • an appropriate solvent such as THF, dimethoxyethane, DMF, DMA, or the like.
  • Enantiopure products may be obtained via chiral chromatography.
  • Compound 8-1 (prepared as described in Schemes 5, 6, and 7) wherein R, R a , A 2 , A 3 , p, and n are as defined in the claims can be converted to 8-2 by treatment with an appropriate alkylating agent such as an alkyl halide, alkyl tosylate, alkyl mesylate, or the like (for example methyl iodide) in an appropriate solvent such as THF, dimethoxyethane, DMF, DMA, or the like, in the presence of an appropriate base, such as lithium diisopropylamide or lithium-, sodium-, or potassium bis(trimethylsilyl)amide or the like.
  • an appropriate alkylating agent such as an alkyl halide, alkyl tosylate, alkyl mesylate, or the like (for example methyl iodide) in an appropriate solvent such as THF, dimethoxyethane, DMF, DMA, or the like
  • an appropriate base such as lithium diiso
  • Benzoic acids 9-2 can be reduced to benzyl alcohols 9-3 with reducing agents such as borane in solvents such as tetrahydrofuran or the like (See: Smith, M. B. and March, J. “March's Advanced Organic Chemistry”, 5 th Ed., John Wiley and Sons, New York, pp. 1549 (2001) and references therein).
  • 9-2 can be esterified by known methods including treatment with trimethylsilyldiazomethane and the resulting ester reduced to alcohol 9-3 with LiAlH 4 or the like.
  • Intermediates 9-3 can be transformed into benzyl bromides 9-4 using reagents such as triphenylphosphine and carbon tetrabromide in solvents such as dichloromethane, dichloroethane or the like (See: Smith, M. B. and March, J. “March's Advanced Organic Chemistry”, 5 th Ed., John Wiley and Sons, New York, pp. 518-519 (2001) and references therein).
  • solvents such as dichloromethane, dichloroethane or the like
  • Nitroalcohols 10-2 can be reduced to aminoalcohols 10-3 with reductants such as Raney nickel, palladium on activated carbon or platinum oxide in the presence of hydrogen gas and aqueous acid in alcoholic solvents such as methanol, ethanol or the like (See: Langer, O., et al., Bioorg. Med. Chem., 2001, 9, 677-694).
  • reductants such as Raney nickel, palladium on activated carbon or platinum oxide
  • bases such as triethylamine, diisopropylethylamine or the like in solvents like dichloromethane, dichloroethane, tetrahydrofuran, dimethoxyethane or the like.
  • Compounds 13-4 are then prepared via a Suzuki or Stille reaction or variation thereof employing palladium catalyzed cross coupling of iodide 13-3 with an appropriately substituted aryl- or heteroaryl-boronic acid, -boronate ester or -trialkyl tin as described in Miyaua et al., Chem. Rev. 95, 2457 (1995) and references cited within and as described in Smith, M. B. and March, J. “March's Advanced Organic Chemistry”, 5 th Ed., John Wiley and Sons, New York, pp. 868-869 (2001) and references cited therein.
  • 2-Amino-1-phenylethanols 14-3 can be prepared from 14-2 via the corresponding silylated cyanohydrin by treatment with trimethylsilyl cyanide and catalytic zinc iodide followed by reduction with lithium aluminum hydride or the like reducing agent.
  • 2-amino-1-phenylethanols 14-3 can be prepared from 14-2 via the corresponding cyanohydrin by treatment with potassium cyanide followed by reduction.
  • Oxazolidinones 14-4 can be alkylated with alkyl, heteroalkyl, aryl, or heteroaryl bromides using bases such as sodium hexamethyldisiliazide or sodium hydride in solvents like tetrahydrofuran, dimethoxyethane, diethyl ether or the like to afford products 14-5.
  • Enantiopure products may be obtained via chiral chromatography.
  • Nitroalcohols 15-2 can be reduced to aminoalcohols 15-3 with reductants such as Raney nickel, palladium on activated carbon, or platinum oxide in the presence of hydrogen gas and aqueous acid in alcoholic solvents such as methanol, ethanol or the like (See: Langer, O., et al., Bioorg. Med. Chem., 2001, 9, 677-694).
  • reductants such as Raney nickel, palladium on activated carbon, or platinum oxide
  • Oxazolidinones 15-5 are prepared via a Suzuki or Stille reaction or variation thereof employing palladium catalyzed cross coupling of iodides 15-4 with appropriately substituted aryl- or heteroaryl-boronic acids, -boronate esters or -trialkyl tin compounds, as described in Miyaura et al., Chem. Rev. 95, 2457 (1995) and references cited within, and as described in Smith, M. B. and March, J. “March's Advanced Organic Chemistry”, 5 th Ed., John Wiley and Sons, New York, pp. 868-869 (2001) and references cited therein.
  • Oxazolidinones 15-5 can be alkylated with alkyl, heteroalkyl, aryl, or heteroaryl bromides using bases such as sodium hexamethyldisiliazide or sodium hydride in solvents like tetrahydrofuran, dimethoxyethane, diethyl ether or the like to afford products 15-6.
  • Enantiopure products may be obtained via chiral chromatography.
  • Compounds 16-2 can be hydrolyzed to the corresponding acids and then treated with diphenylphosphorazidate and a trialkylamine base to effect a Curtius rearrangement, affording chiral oxazolidinones 16-3.
  • Oxazolidinones 16-4 are prepared via a Suzuki or Stille reaction or variation thereof employing palladium catalyzed cross coupling of iodides 16-3 with appropriately substituted aryl- or heteroaryl-boronic acids, -boronate esters or -trialkyl tin compounds, as described in Miyaura et al., Chem. Rev. 95, 2457 (1995) and references cited within, and as described in Smith, M. B. and March, J.
  • Oxazolidinones 16-4 can be alkylated with alkyl, heteroalkyl, aryl, or heteroaryl bromides using bases such as sodium hexamethyldisiliazide or sodium hydride in solvents like tetrahydrofuran, dimethoxyethane, diethyl ether or the like to afford products 16-5.
  • oxazolidinones 16-3 are alkylated with the appropriate bromides to afford compounds 16-6, which are subjected to a Suzuki or Stille reaction or variation thereof with appropriately substituted aryl- or heteroaryl-boronic acids, -boronate esters or -trialkyl tin compounds to afford products 16-5.
  • a 2-liter flask was charged with 100 g (0.348 mol) of 4-amino-3-iodobenzotrifluoride, 40 g of CuCN and 750 mL of DMF. The mixture was heated to and then maintained at reflux for 1 hour. The reaction was cooled and poured into 3 L of water containing 300 mL of concentrated ammonium hydroxide. To the mixture was added 1 L CH 2 Cl 2 . The mixture was then filtered through celite. The layers were separated and the aqueous layer was back extracted with CH 2 Cl 2 . The organic extracts were combined and the solvent removed under reduced pressure.
  • the wattage was set for 200 W until the temperature reached 150° C. and then the temperature was held at 150° C. for ten minutes.
  • Step A methyl [3,5-bis(trifluoromethyl)phenyl](hydroxy)acetate
  • Step B methyl [3,5-bis(trifluoromethyl)phenyl](bromo)acetate
  • Step C methyl[3,5-bis(trifluoromethyl)phenyl]( ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ amino)acetate
  • Step D 2-[3,5-bis(trifluoromethyl)phenyl]-2-( ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ amino)ethanol
  • Step E 4-[3,5-bis(trifluoromethyl)phenyl]-3- ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ -1,3-oxazolidin-2-one
  • Step B 1-[3,5-bis(trifluoromethyl)phenyl]-2-( ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoroethyl)biphenyl-2-yl]methyl ⁇ amino)ethanol
  • Step C 5-[3,5-bis(trifluoromethyl)phenyl]-3- ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ -1,3-oxazolidin-2-one
  • Step A 2-( ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ amino)-1-pyridin-2-ylethanol
  • Step B Benzyl (2-hydroxy-2-pyridin-2-ylethyl) ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ carbamate
  • Step C 3- ⁇ [5′-Isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ -5-pyridin-2-yl-1,3-oxazolidin-2-one
  • the organic extract was dried (Na 2 SO 4 ) and concentrated in vacuo to afford 5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-carboxamide.
  • the aqueous layer was acidified with concentrated HCl and extracted with EtOAc (3 ⁇ 50 mL).
  • the combined organic extracts were dried (Na 2 SO 4 ) and concentrated in vacuo to give 5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-carboxylic acid as a colorless solid.
  • aqueous slurry was adjusted to pH 9-10 with 28% aq NH 4 OH, diluted with water (20 mL) and extracted with EtOAc (3 ⁇ 20 mL). The combined extracts were washed with brine (10 mL), dried (Na 2 SO 4 ) and concentrated in vacuo to afford a mixture of threo- and erythro-2-amino-1-[3,5-bis(trifluoromethyl)phenyl]propan-1-ol as colorless solid.
  • This compound was separated into its two enantiomers (4S,5R)-5-[3,5-bis(trifluoromethyl)phenyl]-4-methyl-1,3-oxazolidin-2-one and (4R,5S)-5-[3,5-bistrifluoromethyl)phenyl]-4-methyl-1,3-oxazolidin-2-one using chiral HPLC (AS column, 20 ⁇ 250 mm, 15% i-PrOH in heptane).
  • This intermediate can be made directly from the chiral starting material CBZ-L-alanine by the 3-step route shown below.
  • the compound (4R,5S)-5-[3,5-bis(trifluoromethyl)phenyl]-4-methyl-1,3-oxazolidin-2-one can be made by an analogous route starting from CBZ-D-alanine.
  • the organic layer is washed once with HCl (13 L) and twice with 8% NaHCO 3 (13 L) (CAUTION:FOAMING). The organic layer is then concentrated under vacuum to about 15 L at 50° C. The clear solution is cooled slowly to room temperature, allowing the product to crystallize. Heptane ( ⁇ 70 L) is then added slowly. The slurry is filtered, washed with heptane (18 L), and dried at room temperature on the filter pot. Product is obtained with >99.9% ee measured by chiral HPLC.
  • the Weinreb amide from Step 1 (6 kg, 22.5 mol) and 3,5-bis(trifluoromethyl)bromobenzene (4.85 L, 28.1 mol) are dissolved in anhydrous THF (24 L).
  • the solution is purged with nitrogen to remove oxygen.
  • the water content should be ⁇ 500 ppm at this point.
  • Atmospheric distillation can be carried out to azeotropically remove water if necessary.
  • the solution is cooled to ⁇ 10° C. and iso-PrMgCl in THF (56.4 mol) is slowly added (2 hours) to the reaction via addition funnel, maintaining a reaction temperature ⁇ 5° C.
  • the solution is allowed to warn to 20° C.
  • the organic layer is vacuum transferred through a 1-micron in-line PTFE filter into a distillation flask and is then concentrated to ⁇ 12 L under vacuum (internal temperature ⁇ 40° C.) to a minimum agitated volume.
  • the solution is then azeotropically dried with toluene and taken to a minimum agitated volume again. The solution is used directly in the next step.
  • heptane is added to the organic layer after it has been concentrated to a minimum agitated volume.
  • the distillation is continued under vacuum at 40°-55° C. until the final volume is 40 L.
  • the solution is cooled to 35°-37° C., seeded ( ⁇ 0.5%, 30 gms) and then aged for 30 min to allow for a full seed bed to grow.
  • the slurry is cooled to 10° C. over 2-3 hrs.
  • the slurry is then filtered, washed with 5° C. heptane (18 L), and allowed to dry fully on the filter pot using a vacuum/nitrogen sweep overnight.
  • the dried solid is obtained with >99.9 ee %.
  • the amide can be recrystallized from straight heptane if the optical purity is not sufficient.
  • TFA (9 L) is added to a 100 L Buchi reactor under an inert atmosphere and is cooled to ⁇ 5° C.
  • the ketone product from Step 2 (5.50 kg, 13.1 mol) is added as a solid followed by a TFA rinse (2 L).
  • the solution is cooled to ⁇ 5° C. and is stirred until all the solid dissolves.
  • the silane (2.18 kg, 15.7 mol) is added slowly over ⁇ 1 h (in two portions) while keeping the temperature at ⁇ 0° C.
  • the reaction is aged at ⁇ 2 to ⁇ 6° C. for 15-20 h, at which time LC reveals ⁇ 2% of the ketone remains.
  • a 50 w/w % KOH solution is prepared by adding 13.6 kg of KOH pellets (87 w %) slowly to 10 L water while keeping the highly exothermic dissolution at ⁇ 30° C.
  • the solution is stored in a refrigerator.
  • the reaction is quenched with ⁇ 2 L of the 50 w/w % KOH solution with vigorous stirring and cooling, keeping temp at ⁇ 20° C.
  • Cold THF (16.5 L, previously stored in freezer) is added, followed by slow addition of the remainder of the KOH solution ( ⁇ 13.7 L), followed by a 2 L water rinse while keeping temp ⁇ 20° C.
  • the reaction is aged at room temperature.
  • the reaction is quenched after 3 h with 27.5 L IPAC and 20 L 20% w/v aq NaCl.
  • the aqueous and organic layers are separated.
  • the organic layer is washed with 26 L of 20% w/v aq NaCl, then with 36 L water, then with 31 L 0.5 NHCl, and finally with 32 L of water.
  • the organic layer is concentrated to ⁇ 10 L.
  • Heptane (20 L) is added, yielding crystals.
  • the organic layer is concentrated to ⁇ 10 L.
  • Heptane (20 L) is added again, and the organic layer is concentrated to ⁇ 10 L.
  • Heptane (22 L) is added and the slurry is aged at rt.
  • the solid is filtered and washed with 24 L heptane.
  • a solid product is obtained (98.8% purity, >99.95% ee, by LC).
  • the solid is then re-dissolved in 12.5 L MeOH (endothermic). At rt, 3 L water is added, and the mixture is aged to initiate crystallization. Water (9.5 L) is added over ⁇ 60 min at rt. After aging for 60 min, the slurry is filtered and the solid is washed with 5 L MeOH/water (1/1.5), 5 L MeOH/water (1/4) and then 4 L water. The solid product is dried at 50° C. under vacuum (99.9% pure by LC, >99.95% ee).
  • the reaction in Step 3 can also be carried out using Al(O-i-Pr) 3 as the reducing agent.
  • the ketone (6 kg) is heated at 50° C. with 0.3 eq of Al(O-i-Pr) 3 (790 g) in 12 L IPA and 18 L of toluene for 15.5 hours.
  • the solution is cooled to ambient temperature, and solid KOH pellets (1.35 kg) are added slowly with vigorous stirring, while keeping the temperature at ⁇ 25° C.
  • HPLC shows >99.5% cyclization
  • 33 L of 1N HCl solution is added to quench the reaction, which is kept at ⁇ 25° C.
  • a rag layer of solids forms, it should be filtered off to upgrade the enantiomeric excess.
  • the organic layer is then washed first with 36 L of 0.5N HCl, then with 6 L IPA combined with 45 L water, and finally with 6 L IPA combined with 36 L water.
  • the organic layer is transferred via an inline filter.
  • the solvent is switched to heptane (target volume is ⁇ 42 L) at ⁇ 40° C. until ⁇ 2 v % toluene is left. Aging at rt for 2 h gives the solid product.
  • Step A tert-butyl ⁇ 2-[3,5-bis(trifluoromethyl)phenyl]-2-hydroxyethyl ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ carbamate
  • Step B 1-[3,5-bis(trifluoromethyl)phenyl]-2-((tert-butoxycarbonyl) ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ amino)ethyl methanesulfonate
  • Step C tert-butyl ⁇ 2-azido-2-[3,5-bis(trifluoromethyl)phenyl]ethyl ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ carbamate
  • Step D mixture of tert-butyl ⁇ 2-amino-2-[3,5-bis(trifluoromethyl)phenyl]ethyl ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ carbamate and tert-butyl[1-[3,5-bis(trifluoromethyl)phenyl]-2-( ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ amino)ethyl]carbamate
  • Step E 1-[3,5-bis(trifluoromethyl)phenyl]-N 2 - ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ ethane-1,2-diamine
  • Step F 4-[3,5-bis(trifluoromethyl)phenyl]-1- ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2 yl]methyl ⁇ imidazolidin-2-one
  • the two enantiomers of this compound could be separated using an AD chiral column with 5% IPA/heptanes.
  • Step A tert-butyl [(1R)-2-hydroxy-1-phenylethyl]carbamate
  • Step C tert-butyl[(1R)-2-( ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ amino)-1-phenylethyl]carbamate
  • Step D (1R)-N 2 - ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ -1-phenylethane-1,2-diamine
  • Step E (4R)-1- ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ -4-phenylimidazolidin-2-one
  • Step A 1-(4-chlorophenyl)-2-( ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ amino)ethanol
  • Step B benzyl [2-(4-chlorophenyl)-2-hydroxyethyl] ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ carbamate
  • Step C benzyl [2-azido-2-(4-chlorophenyl)ethyl] ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ carbamate
  • Step D benzyl [2-amino-2-(4-chlorophenyl)ethyl] ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ carbamate
  • Step E 4-(4-chlorophenyl)-1- ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ imidazolidin-2-one
  • the residue was purified by flash chromatography on a Biotage Horizon 40S column, eluting with 1 CV of 95% hexanes-5% of a mixture of 5% formic acid in acetone, followed by a linear gradient of the acetone mixture in hexanes from 5 to 100% over 10 CV.
  • the resulting white solid was dissolved in 10 mL of 9:1 benzene-MeOH and excess TMSCH 2 N 2 was added. The mixture was stirred for 10 min at room temperature, then quenched with trifluoroacetic acid and concentrated.
  • the residue was dissolved in 15 mL of Et 2 O and cooled to 0° C. A 1-M solution of LiAlH 4 in Et 2 O (5.4 mL) was added dropwise via addition funnel.
  • Step B 5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-carbaldehyde
  • Step C 2-amino-1-[5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]ethanol
  • Step D 5-[5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]-1,3-oxazolidin-2-one
  • Step B (4S)-4-benzyl-3- ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ -1,3-oxazolidin-2-one
  • the material is chromatographed on SiO 2 using a step gradient of 1:3 CH 2 Cl 2 /hexanes, then 1:1 CH 2 Cl 2 /hexanes, then 100% CH 2 Cl 2 to afford [2-iodo-5-(trifluoromethyl)phenyl]methanol as a white solid.
  • Carbon tetrabromide (1.86 g; 5.6 mmol) and triphenylphosphine (1.47 g; 5.6 mmol) were added successively to a stirred solution of [2-iodo-5-(trifluoromethyl)phenyl]methanol (1.13 g; 3.74 mmol) in CH 2 Cl 2 (25 mL) at 0° C. under N 2 .
  • the reaction was stirred at room temperature for 48 h.
  • a second equivalent of carbon tetrabromide (1.2 g; 3.74 mmol) and triphenylphosphine (0.98 g; 3.74 mmol) was added and the reaction was stirred an additional 14 h.
  • the racemic material was separated by chiral HPLC using 15% IPA/heptane and an OD column into its two enantiomers.
  • Step 2 (4S,5R)-5-[3,5-bis(trifluoromethyl)phenyl]-3- ⁇ [4′-fluoro-5′isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ -4-methyl-1,3-oxazolidin-2-one
  • Step A (4S,5S)-5-[3,5-bis(trifluoromethyl)phenyl]-3- ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ -1-methyl-1,3-oxazolidin-2-one
  • Step B (1S,2S)-1-[3,5-bis(trifluoromethyl)phenyl]-2-( ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ amino)propan-1-ol
  • Step C tert-butyl ⁇ (1S,2S)-2-[3,5-bis(trifluoromethyl)phenyl]-2-hydroxy-1-methylethyl ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ carbamate
  • Step D tert-butyl ⁇ (1S,2R)-2-azido-2-[3,5-bis(trifluoromethyl)phenyl]-1-methylethyl ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ carbamate
  • Step E (1R,2S)-1-azido-1-[3,5-bis(trifluoromethyl)phenyl]-N- ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)bi phenyl-2-yl]methyl ⁇ propan-2-amine
  • Step F (1R,2S)-1-[3,5-bis(trifluoromethyl)phenyl]-N 2 - ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ propane-1,2-diamine
  • Step G (4R,5S)-4-[3,5-bis(trifluoromethyl)phenyl]-1- ⁇ [5′-isopropyl-2′-methoxy-4-(trifluoromethyl)biphenyl-2-yl]methyl ⁇ -5-methylimidazolidin-2-one
  • Reaction mixture was allowed to warm to room temperature for one hour, quenched with acetic acid ( ⁇ 80 ml) where color change was observed from yellow to off white and stirred for 30 minutes (pH ⁇ 7)(slight exotherm noted).
  • the mixture was concentrated to a slush, diluted with 7:2 hexane:ethyl acetate, and was allowed to sit overnight. Solids were removed by filtration and the filtrate was concentrated to yellow oil.
  • the title compound was obtained after flash column using 9:1 hexane:ethyl as the eluant.
  • the boronic acid intermediate can also be made by the following 4-step process:
  • THF 24 L
  • CeCl 3 2.75 kg
  • the resultant slurry was aged at room temperature for 1.5 hours.
  • a sample was then examined under a microscope to confirm that the desired form change had occurred.
  • the slurry was cooled to 9° C. and MeMgCl was added. The rate of addition was adjusted to maintain internal temperature below 19° C.
  • the mixture was cooled to ⁇ 11° C., and a solution of acetophenone 1 (4.0 kg diluted to 10 L with THF) was added dropwise, maintaining the internal temperature below 0° C.
  • the reaction mixture was then aged at a temperature below 0° C. for an hour.
  • the reaction was quenched with 5.7 L of 3N HCl in a dropwise fashion, maintaining the internal temperature below 15° C.
  • the quenched reaction mixture was then aged at 5-10° C. for 1.5 hours and was filtered through a plug of Solka Floc.
  • the THF solution of 2 was solvent switched into ethanol ( ⁇ 18 L volume), and 1.9 L HCl was added, followed by 190 gm of 10% Pd/C (50% water). The mixture was placed under 15 psi hydrogen at 40° C. until the reaction was complete based on HPLC analysis. The mixture was cooled to room temperature. The catalyst was removed by filtration using Solka-Flok as a filter aid. The anisole product in ethanol was then solvent switched into acetonitrile for the next step.
  • Anisole 3 is diluted in acetonitrile (1.72 L, 4 mL MeCN/mMol 3). This mixture is warmed to 35° C., and NBS (1.1 eq, 84 g) is added in a single solid addition. The reaction is complete in 2-4 hours. The solution is concentrated to 400 mL total volume and diluted with 1 L of toluene. The solution is then washed with sodium thiosulfate and water to remove the succinimide by-product. The organic layer is then concentrated and solvent switched to toluene.
  • a 75 L glass reaction vessel was charged with 1.87 kg of aryl bromide 4 (7.6 Mol), which was added as 6.4 kg of a 29.1 wt % solution of 4 in toluene. This solution was diluted with 5.6 L of THF. The vessel was flushed with nitrogen, and tri-isopropylborate (1.35 eq, 2.35 L, 10.3 Mol) was added. The mixture was cooled to ⁇ 70° C. Then 5.9 L of 1.6 M n-BuLi in hexanes (9.5 Mol) was added slowly over 4 hours, maintaining a temperature of ⁇ 55° C. Thirty minutes after completion of the n-BuLi addition, the reaction was complete by LC analysis.
  • the reaction was warmed to ⁇ 35° C. and quenched into 3.0 M H 2 SO 4 solution (5.6 L).
  • the aqueous phase after the quench should be acidic (pH ⁇ 2).
  • MTBE 7.5 L was added to the mixture to dilute the organic layer.
  • the mixture was stirred (15 min) and the aqueous layer was cut away.
  • the organic layer was washed with another 5.6 L of a 3.0 M H 2 SO 4 solution (15 min).
  • the organic MTBE/Toluene layer was extracted twice with 1 M KOH (15.1 L first and then 7.6 L). The two KOH extractions were combined, diluted with 2-propanol (6.4 L), and cooled to 15° C.
  • Step B (4S,5R)-5-[3,5-bis(trifluoromethyl)phenyl]-3-(2-bromo-5-chlorobenzyl)-4-methyl-1,3-oxazolidin-2-one
  • Step B 5-[2-iodo-5-(trifluoromethyl)phenyl]-1,3-oxazolidin-2-one
  • Step A (4S)-4-benzyl-3- ⁇ (2R,3S)-3-hydroxy-3-[2-iodo-5-(trifluoromethyl)phenyl]-2-methylpropanoyl ⁇ -1,3-oxazolidin-2-one
  • Step A (4R)-4-benzyl-3- ⁇ (2S,3R)-3-hydroxy-3-[2-iodo-5-(trifluoromethyl)phenyl]-2-methylpropanoyl ⁇ -1,3-oxazolidin-2-one
  • Step B (4S,5S)-5-[2-iodo-5-(trifluoromethyl)phenyl]-4-methyl-1,3-oxazolidin-2-one
  • Step A benzyl [(1S)-2-(3,5-difluorophenyl)-1-methyl-2-oxoethyl]carbamate
  • Step B benzyl [(1S,2S)-2-(3,5-difluorophenyl)-2-hydroxy-1-methylethyl]carbamate
  • Step A 4-( ⁇ [tert-butyl(dimethyl)silyl]oxy ⁇ methyl)-1,3-thiazole
  • Step B 4-( ⁇ [tert-butyl(dimethyl)silyl]oxy ⁇ methyl)-2-iodo-1,3-thiazole
  • the mixture was degassed with N 2 , and then heated at 80° C. for 16 hours.
  • the reaction was then cooled to room temperature, diluted with EtOAc (200 mL), and washed with saturated NaHCO 3 and brine (80 mL each).
  • the organic layer was dried over Na 2 SO 4 , filtered through a plug of silica, and concentrated.
  • Step B (4S,5R)-5-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(6-isopropenylpyridin-2-yl)-5-(trifluoromethyl)benzyl]-4-methyl-1,3-oxazolidin-2-one
  • Step A 4-bromo-2-isopropenyl-1,3-thiazole
  • Step B (4S,5R)-5-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(2-isopropenyl-1,3-thiazol-4-yl)-5-(trifluoromethyl)benzyl]-4-methyl-1,3-oxazolidin-2-one
  • the mixture was degassed with N 2 .
  • the tube was sealed and heated at 100° C. for 1.5 hours.
  • the reaction was then cooled to room temperature, diluted with EtOAc (50 mL), and washed with water and brine (15 mL each).
  • the organic layer was dried over Na 2 SO 4 , filtered, and concentrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Vascular Medicine (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pyrrole Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Cephalosporin Compounds (AREA)
  • Enzymes And Modification Thereof (AREA)
US11/631,821 2004-07-02 2005-07-01 Cetp Inhibitors Abandoned US20080119476A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/631,821 US20080119476A1 (en) 2004-07-02 2005-07-01 Cetp Inhibitors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US58527404P 2004-07-02 2004-07-02
US64610305P 2005-01-21 2005-01-21
PCT/US2005/023775 WO2006014413A1 (en) 2004-07-02 2005-07-01 Cetp inhibitors
US11/631,821 US20080119476A1 (en) 2004-07-02 2005-07-01 Cetp Inhibitors

Publications (1)

Publication Number Publication Date
US20080119476A1 true US20080119476A1 (en) 2008-05-22

Family

ID=35045145

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/173,295 Active 2027-10-19 US7652049B2 (en) 2004-07-02 2005-07-01 CETP inhibitors
US11/631,821 Abandoned US20080119476A1 (en) 2004-07-02 2005-07-01 Cetp Inhibitors
US12/625,783 Active 2027-07-27 US8735435B2 (en) 2004-07-02 2009-11-25 CETP inhibitors
US14/252,256 Abandoned US20140221383A1 (en) 2004-07-02 2014-04-14 Cetp inhibitors
US14/875,438 Abandoned US20160075724A1 (en) 2004-07-02 2015-10-05 CETP Inhibitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/173,295 Active 2027-10-19 US7652049B2 (en) 2004-07-02 2005-07-01 CETP inhibitors

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/625,783 Active 2027-07-27 US8735435B2 (en) 2004-07-02 2009-11-25 CETP inhibitors
US14/252,256 Abandoned US20140221383A1 (en) 2004-07-02 2014-04-14 Cetp inhibitors
US14/875,438 Abandoned US20160075724A1 (en) 2004-07-02 2015-10-05 CETP Inhibitors

Country Status (37)

Country Link
US (5) US7652049B2 (uk)
EP (2) EP1765793B1 (uk)
JP (3) JP4695139B2 (uk)
KR (1) KR101204336B1 (uk)
CN (4) CN102304096B (uk)
AR (2) AR049956A1 (uk)
AU (1) AU2005270058B2 (uk)
BR (1) BRPI0512910A (uk)
CA (1) CA2570717C (uk)
CR (1) CR8808A (uk)
CY (1) CY1117930T1 (uk)
DK (1) DK1765793T3 (uk)
DO (1) DOP2005000123A (uk)
EA (1) EA011130B1 (uk)
EC (1) ECSP067124A (uk)
EG (1) EG27138A (uk)
ES (1) ES2393721T3 (uk)
GE (1) GEP20094694B (uk)
GT (1) GT200500175A (uk)
HR (1) HRP20120993T1 (uk)
IL (2) IL180432A (uk)
JO (1) JO2994B1 (uk)
MA (1) MA28780B1 (uk)
MX (1) MX2007000035A (uk)
MY (1) MY167430A (uk)
NI (1) NI200600322A (uk)
NO (1) NO339808B1 (uk)
NZ (1) NZ552061A (uk)
PA (1) PA8638101A1 (uk)
PE (1) PE20060525A1 (uk)
PL (1) PL1765793T3 (uk)
PT (1) PT1765793E (uk)
RS (1) RS52563B (uk)
SI (1) SI1765793T1 (uk)
SV (1) SV2007002160A (uk)
TW (1) TWI299991B (uk)
WO (2) WO2006014413A1 (uk)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039474A1 (en) * 2008-10-01 2010-04-08 Merck Sharp & Dohme Corp. Prodrugs of oxazolidinone cetp inhibitors
US20100099716A1 (en) * 2004-07-02 2010-04-22 Amjad Ali Cetp inhibitors
CN104230835A (zh) * 2014-09-01 2014-12-24 福建师范大学 一种合成n-苯乙烯基恶唑烷-2-酮衍生物的方法

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7270971B2 (en) * 2003-10-16 2007-09-18 Merck & Co., Inc. Fluorescence assay for measuring the rate of cholesterol ester transfer
JP5112307B2 (ja) * 2005-07-01 2013-01-09 メルク・シャープ・エンド・ドーム・コーポレイション Cetp阻害剤を合成するための方法
ATE516016T1 (de) * 2005-12-05 2011-07-15 Merck Sharp & Dohme Selbstemulgierende formulierungen von cetp- hemmern
TW200732313A (en) * 2005-12-15 2007-09-01 Astrazeneca Ab Oxazolidinone compounds and their use as metabotropic glutamate receptor potentiators
WO2007081569A2 (en) * 2005-12-30 2007-07-19 Merck & Co., Inc. Cetp inhibitors
BRPI0620752A2 (pt) * 2005-12-30 2011-11-22 Merck & Co Inc composto ou sal farmaceuticamente aceitável do mesmo, composição farmacêutica, e, uso do composto ou um sal farmaceuticamente aceitável do mesmo
US8865707B2 (en) * 2005-12-30 2014-10-21 Merck Sharp & Dohme Corp. Cholesteryl ester transfer protein inhibitors
CA2635010A1 (en) * 2005-12-30 2007-07-19 Amjad Ali Oxazolidinone derivatives as cetp inhibitors
CN101378731B (zh) 2006-02-09 2014-03-05 默沙东公司 Cetp抑制剂的聚合物制剂
US8383660B2 (en) * 2006-03-10 2013-02-26 Pfizer Inc. Dibenzyl amine compounds and derivatives
US7919506B2 (en) * 2006-03-10 2011-04-05 Pfizer Inc. Dibenzyl amine compounds and derivatives
WO2007136672A2 (en) * 2006-05-19 2007-11-29 Merck & Co., Inc. Synthesis of a biaryl synthetic intermediate
WO2008082567A1 (en) * 2006-12-29 2008-07-10 Merck & Co., Inc. Process for synthesizing a cetp inhibitor
ES2547386T3 (es) 2007-01-26 2015-10-05 Kaneq Pharma Inc. Inhibidores de la PTP-1B aromáticos condensados
US8835426B2 (en) 2007-02-26 2014-09-16 Vitae Pharmaceuticals, Inc. Cyclic urea and carbamate inhibitors of 11β-hydroxysteroid dehydrogenase 1
CA2681628C (en) 2007-03-16 2016-10-18 Concert Pharmaceuticals, Inc. Inhibitors of cholesterol ester transfer protein
WO2008137105A1 (en) 2007-05-07 2008-11-13 Merck & Co., Inc. Method of treatment using fused aromatic compounds having anti-diabetic activity
ES2601856T3 (es) 2007-06-08 2017-02-16 Mannkind Corporation Inhibidores de la IRE-1A
JP2010530416A (ja) * 2007-06-20 2010-09-09 メルク・シャープ・エンド・ドーム・コーポレイション ベンゾオキサゾールアリールアミドから誘導されたcetp阻害剤
AU2008266957A1 (en) * 2007-06-20 2008-12-24 Merck Sharp & Dohme Corp. CETP inhibitors derived from benzoxazole arylamides
EP2170059B1 (en) * 2007-06-20 2014-11-19 Merck Sharp & Dohme Corp. Cetp inhibitors derived from benzoxazole arylamides
RU2010103104A (ru) 2007-07-02 2011-08-10 Ф.Хоффманн-Ля Рош Аг (Ch) Производные имидазола в качестве антагонистов рецептора ccr2
JP5451611B2 (ja) * 2007-07-26 2014-03-26 ヴァイティー ファーマシューティカルズ,インコーポレイテッド 11β−ヒドロキシステロイドデヒドロゲナーゼ1のサイクリックインヒビター
AR069207A1 (es) 2007-11-07 2010-01-06 Vitae Pharmaceuticals Inc Ureas ciclicas como inhibidores de la 11 beta - hidroxi-esteroide deshidrogenasa 1
EP2229368A1 (en) 2007-12-11 2010-09-22 Vitae Pharmaceuticals, Inc. Cyclic urea inhibitors of 11beta-hydroxysteroid dehydrogenase 1
TW200934490A (en) * 2008-01-07 2009-08-16 Vitae Pharmaceuticals Inc Lactam inhibitors of 11 &abgr;-hydroxysteroid dehydrogenase 1
US8592409B2 (en) * 2008-01-24 2013-11-26 Vitae Pharmaceuticals, Inc. Cyclic carbazate and semicarbazide inhibitors of 11β-hydroxysteroid dehydrogenase 1
UA98839C2 (en) * 2008-02-01 2012-06-25 Панмира Фармасьютикалз, Ллк. N,n-disubstituted aminoalkylbiphenyl antagonists of prostaglandin d2 receptors
US8067445B2 (en) * 2008-02-01 2011-11-29 Panmira Pharmaceuticals, Llc N,N-disubstituted aminoalkylbiphenyl antagonists of prostaglandin D2 receptors
EP2252598A2 (en) * 2008-02-11 2010-11-24 Vitae Pharmaceuticals, Inc. 1,3-oxazepan-2-one and 1,3-diazepan-2-one inhibitors of 11beta-hydroxysteroid dehydrogenase 1
WO2009102893A2 (en) 2008-02-14 2009-08-20 Amira Pharmaceuticals, Inc. CYCLIC DIARYL ETHER COMPOUNDS AS ANTAGONISTS OF PROSTAGLANDIN D2 receptors
JP5730021B2 (ja) * 2008-02-15 2015-06-03 ヴァイティー ファーマシューティカルズ,インコーポレイテッド 11β−ヒドロキシステロイドデヒドロゲナーゼ1の阻害剤としてのシクロアルキルラクタム誘導体
US8497381B2 (en) * 2008-02-25 2013-07-30 Panmira Pharmaceuticals, Llc Antagonists of prostaglandin D2 receptors
US20110105504A1 (en) * 2008-03-18 2011-05-05 Vitae Pharmaceuticals ,Inc. Inhibitors Of 11beta-Hydroxysteroid Dehydrogenase Type 1
WO2009145989A2 (en) 2008-04-02 2009-12-03 Amira Pharmaceuticals, Inc. Aminoalkylphenyl antagonists of prostaglandin d2 receptors
JP5301563B2 (ja) 2008-05-01 2013-09-25 ヴァイティー ファーマシューティカルズ,インコーポレイテッド 11β−ヒドロキシステロイドデヒドロゲナーゼ1の環状インヒビター
EP2291370B1 (en) 2008-05-01 2013-11-27 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8569292B2 (en) 2008-05-01 2013-10-29 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8063088B2 (en) * 2008-06-11 2011-11-22 Hoffmann-La Roche Inc. Imidazolidine derivatives
US8114868B2 (en) 2008-07-25 2012-02-14 Boehringer Ingelheim International Gmbh Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
CN102105454A (zh) 2008-07-25 2011-06-22 贝林格尔.英格海姆国际有限公司 合成1型11β-羟基类固醇脱氢酶的抑制剂
WO2010010157A2 (en) 2008-07-25 2010-01-28 Boehringer Ingelheim International Gmbh INHIBITORS OF 11beta-HYDROXYSTEROID DEHYDROGENASE 1
GB2463788B (en) 2008-09-29 2010-12-15 Amira Pharmaceuticals Inc Heteroaryl antagonists of prostaglandin D2 receptors
DE102008049675A1 (de) 2008-09-30 2010-04-01 Markus Dr. Heinrich Verfahren zur Herstellung von 3-Aminobiphenylen
WO2010039977A2 (en) 2008-10-01 2010-04-08 Amira Pharmaceuticals, Inc. Heteroaryl antagonists of prostaglandin d2 receptors
US8524748B2 (en) 2008-10-08 2013-09-03 Panmira Pharmaceuticals, Llc Heteroalkyl biphenyl antagonists of prostaglandin D2 receptors
US8410284B2 (en) 2008-10-22 2013-04-02 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
EP2362731B1 (en) 2008-10-31 2016-04-06 Merck Sharp & Dohme Corp. Novel cyclic benzimidazole derivatives useful anti-diabetic agents
US8383654B2 (en) 2008-11-17 2013-02-26 Panmira Pharmaceuticals, Llc Heterocyclic antagonists of prostaglandin D2 receptors
TW201028414A (en) 2009-01-16 2010-08-01 Merck Sharp & Dohme Oxadiazole beta carboline derivatives as antidiabetic compounds
WO2010085528A1 (en) 2009-01-23 2010-07-29 Schering Corporation Bridged and fused antidiabetic compounds
AU2010206786A1 (en) 2009-01-23 2011-07-28 Merck Sharp & Dohme Corp. Bridged and fused heterocyclic antidiabetic compounds
EP2393807B1 (en) 2009-02-04 2013-08-14 Boehringer Ingelheim International GmbH Cyclic inhibitors of 11 -hydroxysteroid dehydrogenase 1
AR075051A1 (es) 2009-02-05 2011-03-02 Schering Corp Compuestos antidiabeticos que contienen ftalazina
US8680093B2 (en) 2009-04-30 2014-03-25 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
EP2440537A1 (en) 2009-06-11 2012-04-18 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1 based on the 1,3 -oxazinan- 2 -one structure
JP5749263B2 (ja) 2009-07-01 2015-07-15 ヴァイティー ファーマシューティカルズ,インコーポレイテッド 11β−ヒドロキシステロイドデヒドロゲナーゼ1の環状インヒビター
MX2012001542A (es) * 2009-08-05 2012-06-19 Panmira Pharmaceuticals Llc Antagonista dp2 y usos del mismo.
JP2011057661A (ja) 2009-08-14 2011-03-24 Bayer Cropscience Ag 殺虫性カルボキサミド類
EP2496589B1 (en) 2009-11-05 2014-03-05 Boehringer Ingelheim International GmbH Novel chiral phosphorus ligands
WO2011088025A1 (en) 2010-01-15 2011-07-21 Merck Sharp & Dohme Corp. Oxadiazole beta carboline derivatives as antidiabetic compounds
AU2011218830B2 (en) 2010-02-25 2014-07-24 Merck Sharp & Dohme Corp. Novel cyclic benzimidazole derivatives useful anti-diabetic agents
WO2012046681A1 (ja) 2010-10-04 2012-04-12 興和株式会社 脂質代謝関連mRNAの発現抑制剤
EP2576570A1 (en) 2010-05-26 2013-04-10 Boehringer Ingelheim International GmbH 2-oxo-1,2-dihydropyridin-4-ylboronic acid derivatives
EP2397473A1 (en) 2010-06-14 2011-12-21 LEK Pharmaceuticals d.d. A stable highly crystalline anacetrapib
JP5860042B2 (ja) 2010-06-16 2016-02-16 ヴァイティー ファーマシューティカルズ,インコーポレイテッド 置換5、6及び7員複素環、そのような化合物を含有する医薬及びそれらの使用
JP5813106B2 (ja) 2010-06-25 2015-11-17 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 代謝障害の処置のための11−β−HSD1のインヒビターとしてのアザスピロヘキサノン
JP5852662B2 (ja) * 2010-10-29 2016-02-03 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. 環状アミン置換されたオキサゾリジノン系cetp阻害薬
KR20130137628A (ko) 2010-11-02 2013-12-17 베링거 인겔하임 인터내셔날 게엠베하 대사 장애를 치료하기 위한 약제학적 병용물
EP2468735A1 (en) * 2010-12-23 2012-06-27 LEK Pharmaceuticals d.d. Synthesis of intermediates for preparing anacetrapib and derivates thereof
EP2468736A1 (en) 2010-12-23 2012-06-27 LEK Pharmaceuticals d.d. Synthesis of intermediates for preparing anacetrapib and derivates thereof
WO2012101142A1 (en) 2011-01-26 2012-08-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for assessing a subject's risk of having a cardiovascular disease.
ES2652662T3 (es) 2011-02-25 2018-02-05 Merck Sharp & Dohme Corp. Novedosos derivados de azabencimidazol cíclicos útiles como agentes antidiabéticos
MX342104B (es) * 2011-04-12 2016-09-13 Chong Kun Dang Pharmaceutical Corp Derivados de cicloalquenil arilo para inhibidor de cetp.
KR20140074268A (ko) * 2011-07-07 2014-06-17 모찌다 세이야쿠 가부시끼가이샤 고순도 epa를 함유하는 항비만제
WO2013008164A2 (en) 2011-07-08 2013-01-17 Novartis Ag Method of treating atherosclerosis in high triglyceride subjects
JO3210B1 (ar) 2011-10-28 2018-03-08 Merck Sharp & Dohme مثبط منصهر لبروتين نقل الكوليسترليستير اوكسازوليدينون ثمائي الحلقة
US9145348B2 (en) 2011-10-31 2015-09-29 Merck Sharpe & Dohme Corp. Process for synthesizing a CETP inhibitor
WO2013064188A1 (en) 2011-11-03 2013-05-10 Lek Pharmaceuticals D.D. A stable highly crystalline anacetrapib
US20140303198A1 (en) 2011-11-29 2014-10-09 Kowa Company, Ltd. Agent for inhibiting expression of npc1l1 and/or lipg mrna and agent for preventing and/or treating obesity
EP2785343A4 (en) 2011-11-30 2015-04-15 Dae Woong Pharma PHARMACEUTICAL COMPOSITION FOR PREVENTING OR TREATING HYPERLIPIDEMIA
WO2013091696A1 (en) * 2011-12-21 2013-06-27 Lek Pharmaceuticals D.D. Synthesis of intermediates for preparing anacetrapib and derivatives thereof
US9353101B2 (en) 2012-05-02 2016-05-31 Merck Sharp & Dohme Corp. Cyclic amine substituted heterocyclic CETP inhibitors
MX347400B (es) 2012-06-29 2017-04-18 Univ Nac Autónoma De México Vacuna de aplicacion nasal contra el desarrollo de la enfermedad aterosclerotica y el higado graso.
WO2014012428A1 (zh) * 2012-07-19 2014-01-23 上海恒瑞医药有限公司 噁唑烷酮类衍生物、其制备方法及其在医药上的应用
EP2888006B1 (en) 2012-08-22 2019-04-24 Merck Sharp & Dohme Corp. Novel azabenzimidazole tetrahydropyran derivatives useful as ampk activators
US9717714B2 (en) 2012-12-19 2017-08-01 Merck Sharp & Dohme Corp. Spirocyclic CETP inhibitors
US9376408B2 (en) 2012-12-20 2016-06-28 Merck Sharp & Dohme Corp. Therapeutic thiazolidinone compounds
WO2014111953A1 (en) * 2013-01-17 2014-07-24 Glenmark Pharmaceuticals Limited; Glenmark Generics Limited Process for preparation of anacetrapib and intermediates thereof
RU2627361C2 (ru) 2013-01-31 2017-08-07 Чонг Кун Данг Фармасьютикал Корп. Биарил- или гетероциклические биарилзамещенные производные циклогексена в качестве ингибиторов сетр
EP2970119B1 (en) 2013-03-14 2021-11-03 Merck Sharp & Dohme Corp. Novel indole derivatives useful as anti-diabetic agents
WO2015017302A2 (en) 2013-07-30 2015-02-05 Merck Sharp & Dohme Corp. Bicyclic ureas and thiadiazolidine-1,1-dioxides as cetp inhibitors
EP3054945B1 (en) 2013-10-10 2018-08-15 Merck Sharp & Dohme Corp. 3,3'-disubstituted indolines as inhibitors of cholesterol ester transfer protein
WO2015094932A1 (en) 2013-12-17 2015-06-25 Merck Sharp & Dohme Corp. Fused bicyclic isoxazolines as inhibitors of cholesterol ester transfer protein
WO2015106674A1 (zh) * 2014-01-14 2015-07-23 杭州普晒医药科技有限公司 一种安塞曲匹的晶型及其制备方法、其药物组合物和用途
CN103923030B (zh) * 2014-03-27 2015-07-22 汕头经济特区鮀滨制药厂 一种安塞曲匹的关键中间体的合成方法
CN103923031A (zh) * 2014-04-01 2014-07-16 汕头经济特区鮀滨制药厂 一种安塞曲匹的中间体的合成方法
US10011572B2 (en) 2014-07-29 2018-07-03 Merck Sharp & Dohme Corp. Monocyclic isoxazolines as inhibitors of cholesterol ester transfer protein
JP6854752B2 (ja) 2014-07-30 2021-04-07 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Hdl上昇剤又はhdl模倣剤を用いた治療に対する応答性を予測するための遺伝マーカー
WO2016067194A1 (en) * 2014-10-27 2016-05-06 Sun Pharmaceutical Industries Limited Process for the preparation of anacetrapib and an intermediate thereof
CN106032362B (zh) * 2015-03-10 2018-06-19 湖南千金湘江药业股份有限公司 安塞曲匹的制备方法
MX2018015872A (es) 2016-06-29 2019-04-22 Orion Corp Derivados de benzodioxano y su uso farmaceutico.
KR101902002B1 (ko) * 2016-07-19 2018-09-27 재단법인 대구경북첨단의료산업진흥재단 Cetp 억제제로서의 옥사졸리딘온 유도체 화합물
JP6945619B2 (ja) * 2016-08-17 2021-10-06 ノバルティス アーゲー Nep阻害剤合成のための新規な方法および中間体
CN106496211A (zh) * 2016-10-18 2017-03-15 湖南德魅信息技术有限公司 二氟甲基取代的噁唑烷酮化合物及其用途
CN106496154A (zh) * 2016-10-18 2017-03-15 湖南德魅信息技术有限公司 安塞曲匹的制备方法
CN106749075A (zh) * 2016-11-24 2017-05-31 山东新华制药股份有限公司 阿那曲波的恶唑烷酮中间体的晶型及其制备方法
WO2019043018A1 (en) 2017-08-29 2019-03-07 Dalcor Pharma Uk Ltd., Stockport Zug Branch METHODS OF TREATING OR PREVENTING CARDIOVASCULAR DISORDERS AND REDUCING THE RISK OF CARDIOVASCULAR EVENTS
JOP20180092A1 (ar) 2017-10-13 2019-04-13 Gilead Sciences Inc مثبطات hiv بروتياز
AU2019319089A1 (en) 2018-08-09 2021-02-25 Dalcor Pharma Uk Ltd., Leatherhead, Zug Branch Methods for delaying occurrence of new-onset type 2 diabetes and for slowing progression of and treating type 2 diabetes
CA3126323A1 (en) 2019-03-07 2020-09-10 Jean-Claude Tardif Methods for treating or preventing heart failure and reducing risk of heart failure
TW202104210A (zh) 2019-04-17 2021-02-01 美商基利科學股份有限公司 Hiv蛋白酶抑制劑
WO2021013795A2 (en) 2019-07-19 2021-01-28 Biosynth Ag Method of making nicotinamide ribofuranoside salts, nicotinamide ribofuranoside salts as such, and uses thereof
KR102651062B1 (ko) * 2020-10-08 2024-03-25 재단법인 대구경북첨단의료산업진흥재단 Pcsk9 억제제로서 아미노알콜 유도체 및 이를 함유하는 고콜레스테롤 혈증의 예방 또는 치료용 약학적 조성물
EP4362933A1 (en) * 2021-06-30 2024-05-08 Apellis Pharmaceuticals, Inc. Complement inhibition

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179442A (en) * 1975-08-29 1979-12-18 York Hartleben 4-(Alpha-hydroxy-isopropyl)-5-phenyl-oxazolidin-2-one
US4186129A (en) * 1976-12-03 1980-01-29 Schering Aktiengesellschaft 5-(Substituted phenyl)-oxazolidinones and their sulfur analogs
US4968707A (en) * 1987-06-10 1990-11-06 Pfizer Inc. Oxazolidin-2-one derivatives as hypoglycemic agents
US5482971A (en) * 1993-10-01 1996-01-09 American Cyanamid Company Beta3 -adrenergic agents and their use in pharmaceutical compositions
US5817826A (en) * 1993-10-15 1998-10-06 Shionogi & Co., Ltd. Oxazolinone derivatives having cytosolic phospholipase A2 inhibitory activity
US5846990A (en) * 1995-07-24 1998-12-08 Bristol-Myers Squibb Co. Substituted biphenyl isoxazole sulfonamides
US6057352A (en) * 1995-05-17 2000-05-02 E. I. Du Pont De Nemours And Company Fungicidal cyclic amides
US6242637B1 (en) * 1995-01-30 2001-06-05 Sanofi-Synthelabo Substituted heterocylic compounds, method of preparing them and pharmaceutical compositions in which they are present
US6255327B1 (en) * 1998-02-01 2001-07-03 Boehringer Ingelheim Pharma Kg Diphenyl-substituted heterocycles, processes for preparing them and their use as pharmaceutical compositions
US6310095B1 (en) * 1995-11-06 2001-10-30 University Of Pittsburgh Inhibitors of protein isoprenyl transferases
US6313142B1 (en) * 1999-11-30 2001-11-06 Pfizer Inc. Method for making 4-carboxyamino-2-substituted-1,2,3,4-tetrahydroquinoline
US20030139406A1 (en) * 2001-10-16 2003-07-24 Memory Pharmaceuticals Corp. Phosphodiesterase 4 inhibitors
US20040220148A1 (en) * 1996-11-15 2004-11-04 Aventis Pharma Deutschland Gmbh 5-Membered ring heterocycles as inhibitors of leucocyte adhesion and as VLA-4 antagonists
US20060040999A1 (en) * 2004-07-02 2006-02-23 Amjad Ali CETP inhibitors
US7091196B2 (en) * 2002-09-26 2006-08-15 Rib-X Pharmaceuticals, Inc. Bifunctional heterocyclic compounds and methods of making and using same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851423A (en) 1986-12-10 1989-07-25 Schering Corporation Pharmaceutically active compounds
EP0605729B1 (en) * 1992-04-30 2000-07-26 Taiho Pharmaceutical Co., Ltd. Oxazolidine derivative and pharmaceutically acceptable salt thereof
DK0758233T3 (da) * 1994-04-21 2004-03-22 Schering Ag PDE IV-inhibitorer til behandling af multipel sklerose
AU706159B2 (en) * 1995-02-10 1999-06-10 Schering Aktiengesellschaft Pharmaceutical preparations for TNF inhibition
US5612363A (en) 1995-06-02 1997-03-18 Berlex Laboratories, Inc. N,N-di(aryl) cyclic urea derivatives as anti-coagulants
NZ310884A (en) 1995-06-20 1999-04-29 Du Pont Arthropodicidal and fungicidal cyclic amides
AU1856997A (en) 1996-02-02 1997-08-22 Merck & Co., Inc. Method for raising hdl cholesterol levels
WO1998023155A1 (en) 1996-11-26 1998-06-04 E.I. Du Pont De Nemours And Company Arthropodicidal and fungicidal cyclic amides
DE19704243A1 (de) * 1997-02-05 1998-08-06 Bayer Ag Neue 2-Amino-substituierte Pyridine
DK0966447T3 (da) * 1997-03-03 2003-06-23 Boehringer Ingelheim Pharma Anvendelige små molekyler til behandling af betændelsessygdomme
JP2002518985A (ja) 1997-05-07 2002-06-25 ユニバーシティー・オブ・ピッツバーグ タンパク質イソプレニルトランスフェラーゼの阻害剤
DE19741400A1 (de) * 1997-09-19 1999-03-25 Bayer Ag Benzyl-biphenyle
US6239152B1 (en) 1998-01-23 2001-05-29 Pharmacia & Upjohn Company Oxazolidinone combinatorial libraries, compositions and methods of preparation
GT199900147A (es) 1998-09-17 1999-09-06 1, 2, 3, 4- tetrahidroquinolinas 2-sustituidas 4-amino sustituidas.
CA2385592C (en) 1999-09-17 2011-01-11 Bing-Yan Zhu Benzamides and related inhibitors of factor xa
US6462063B1 (en) 2000-02-04 2002-10-08 Fibrogen, Inc. C-proteinase inhibitors
AU4456601A (en) 2000-03-28 2001-10-08 Nippon Soda Co., Ltd. Oxa(thia)zolidine derivative and anti-inflammatory drug
DK1345895T3 (da) * 2000-12-21 2007-05-07 Sanofi Aventis Deutschland Hidtil ukendt diphenylazetidioner, fremgangsmåde til deres fremstilling, lægemidler indeholdende disse forbindelser og deres anvendelse til behandling af lipidstofskifteforstyrrelser
ATE299502T1 (de) 2001-09-11 2005-07-15 Astrazeneca Ab Oxazolidinon- und/oder isoxazolinderivate als antibakterielle mittel
DK1603553T3 (da) 2003-03-17 2012-01-30 Japan Tobacco Inc Farmaceutiske præparater af CETP-inhibitorer
UA90269C2 (uk) 2004-04-02 2010-04-26 Мицубиси Танабе Фарма Корпорейшн Тетрагідрохінолінові похідні і спосіб їх одержання
KR101353030B1 (ko) 2005-03-31 2014-01-17 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 항-감염성 약물과의 배합을 위한 방향족 치환된 펜타디엔산아미드
WO2007081569A2 (en) 2005-12-30 2007-07-19 Merck & Co., Inc. Cetp inhibitors
BRPI0620752A2 (pt) * 2005-12-30 2011-11-22 Merck & Co Inc composto ou sal farmaceuticamente aceitável do mesmo, composição farmacêutica, e, uso do composto ou um sal farmaceuticamente aceitável do mesmo
CA2635010A1 (en) 2005-12-30 2007-07-19 Amjad Ali Oxazolidinone derivatives as cetp inhibitors

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179442A (en) * 1975-08-29 1979-12-18 York Hartleben 4-(Alpha-hydroxy-isopropyl)-5-phenyl-oxazolidin-2-one
US4186129A (en) * 1976-12-03 1980-01-29 Schering Aktiengesellschaft 5-(Substituted phenyl)-oxazolidinones and their sulfur analogs
US4968707A (en) * 1987-06-10 1990-11-06 Pfizer Inc. Oxazolidin-2-one derivatives as hypoglycemic agents
US5482971A (en) * 1993-10-01 1996-01-09 American Cyanamid Company Beta3 -adrenergic agents and their use in pharmaceutical compositions
US5817826A (en) * 1993-10-15 1998-10-06 Shionogi & Co., Ltd. Oxazolinone derivatives having cytosolic phospholipase A2 inhibitory activity
US6242637B1 (en) * 1995-01-30 2001-06-05 Sanofi-Synthelabo Substituted heterocylic compounds, method of preparing them and pharmaceutical compositions in which they are present
US6057352A (en) * 1995-05-17 2000-05-02 E. I. Du Pont De Nemours And Company Fungicidal cyclic amides
US5846990A (en) * 1995-07-24 1998-12-08 Bristol-Myers Squibb Co. Substituted biphenyl isoxazole sulfonamides
US6310095B1 (en) * 1995-11-06 2001-10-30 University Of Pittsburgh Inhibitors of protein isoprenyl transferases
US20040220148A1 (en) * 1996-11-15 2004-11-04 Aventis Pharma Deutschland Gmbh 5-Membered ring heterocycles as inhibitors of leucocyte adhesion and as VLA-4 antagonists
US6255327B1 (en) * 1998-02-01 2001-07-03 Boehringer Ingelheim Pharma Kg Diphenyl-substituted heterocycles, processes for preparing them and their use as pharmaceutical compositions
US6313142B1 (en) * 1999-11-30 2001-11-06 Pfizer Inc. Method for making 4-carboxyamino-2-substituted-1,2,3,4-tetrahydroquinoline
US20030139406A1 (en) * 2001-10-16 2003-07-24 Memory Pharmaceuticals Corp. Phosphodiesterase 4 inhibitors
US7091196B2 (en) * 2002-09-26 2006-08-15 Rib-X Pharmaceuticals, Inc. Bifunctional heterocyclic compounds and methods of making and using same
US20060040999A1 (en) * 2004-07-02 2006-02-23 Amjad Ali CETP inhibitors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100099716A1 (en) * 2004-07-02 2010-04-22 Amjad Ali Cetp inhibitors
US8735435B2 (en) 2004-07-02 2014-05-27 Merck Sharp & Dohme Corp. CETP inhibitors
WO2010039474A1 (en) * 2008-10-01 2010-04-08 Merck Sharp & Dohme Corp. Prodrugs of oxazolidinone cetp inhibitors
US20110218177A1 (en) * 2008-10-01 2011-09-08 Mills Sander G Prodrugs of oxazolidinone cetp inhibitors
US8354454B2 (en) 2008-10-01 2013-01-15 Merck Sharp & Dohme Corp. Prodrugs of oxazolidinone CETP inhibitors
CN104230835A (zh) * 2014-09-01 2014-12-24 福建师范大学 一种合成n-苯乙烯基恶唑烷-2-酮衍生物的方法

Also Published As

Publication number Publication date
AU2005270058B2 (en) 2009-04-23
CN102304096A (zh) 2012-01-04
EP2415759A1 (en) 2012-02-08
RS52563B (en) 2013-04-30
SI1765793T1 (sl) 2013-05-31
EA011130B1 (ru) 2008-12-30
AR087382A2 (es) 2014-03-19
CN104557757A (zh) 2015-04-29
ECSP067124A (es) 2007-01-26
JO2994B1 (ar) 2016-09-05
AR049956A1 (es) 2006-09-20
EA200700259A1 (ru) 2007-08-31
CA2570717A1 (en) 2006-02-09
PT1765793E (pt) 2012-12-06
NZ552061A (en) 2010-09-30
TWI299991B (en) 2008-08-21
CN102304096B (zh) 2014-12-03
CA2570717C (en) 2011-09-13
GEP20094694B (en) 2009-05-25
CN102311401B (zh) 2014-12-03
JP2010150269A (ja) 2010-07-08
US20100099716A1 (en) 2010-04-22
US20060040999A1 (en) 2006-02-23
PL1765793T3 (pl) 2013-03-29
GT200500175A (es) 2006-03-14
IL180432A (en) 2012-02-29
WO2006014357A1 (en) 2006-02-09
EP1765793A1 (en) 2007-03-28
MY167430A (en) 2018-08-28
PE20060525A1 (es) 2006-07-13
US20160075724A1 (en) 2016-03-17
BRPI0512910A (pt) 2008-04-15
NI200600322A (es) 2007-08-07
US20140221383A1 (en) 2014-08-07
JP2011137006A (ja) 2011-07-14
IL217530A0 (en) 2012-02-29
KR20070039523A (ko) 2007-04-12
NO20070607L (no) 2007-04-02
EG27138A (en) 2015-08-09
PA8638101A1 (es) 2006-03-24
DK1765793T3 (da) 2013-01-14
KR101204336B1 (ko) 2012-11-27
SV2007002160A (es) 2007-03-20
CY1117930T1 (el) 2017-05-17
US8735435B2 (en) 2014-05-27
US7652049B2 (en) 2010-01-26
MA28780B1 (fr) 2007-08-01
ES2393721T3 (es) 2012-12-27
WO2006014413A1 (en) 2006-02-09
CR8808A (es) 2007-08-28
TW200605884A (en) 2006-02-16
CN102311401A (zh) 2012-01-11
JP4491062B1 (ja) 2010-06-30
CN104447603A (zh) 2015-03-25
JP2008505120A (ja) 2008-02-21
EP1765793B1 (en) 2012-09-26
NO339808B1 (no) 2017-02-06
HRP20120993T1 (hr) 2012-12-31
JP4695139B2 (ja) 2011-06-08
IL180432A0 (en) 2007-06-03
JP5543932B2 (ja) 2014-07-09
MX2007000035A (es) 2007-03-07
DOP2005000123A (es) 2011-07-15
AU2005270058A1 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
US7652049B2 (en) CETP inhibitors
US7915271B2 (en) 1,3-oxazolidin-2-one derivatives useful as CETP inhibitors
US7781426B2 (en) CETP inhibitors
EP1971595B1 (en) Cetp inhibitors
US8865707B2 (en) Cholesteryl ester transfer protein inhibitors
US9221834B2 (en) Cyclic amine substituted oxazolidinone CETP inhibitor
US8293721B2 (en) CETP inhibitors derived from benzoxazole arylamides
US9353101B2 (en) Cyclic amine substituted heterocyclic CETP inhibitors

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION