US20070183996A1 - Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions - Google Patents

Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions Download PDF

Info

Publication number
US20070183996A1
US20070183996A1 US11/594,440 US59444006A US2007183996A1 US 20070183996 A1 US20070183996 A1 US 20070183996A1 US 59444006 A US59444006 A US 59444006A US 2007183996 A1 US2007183996 A1 US 2007183996A1
Authority
US
United States
Prior art keywords
salified
group
linear
branched
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/594,440
Other languages
English (en)
Inventor
Sabrina Okombi
Delphine Rival
Ahcene Boumendjel
Anne-Marie Mariotte
Eric Perrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Joseph Fourier Grenoble 1
BASF Beauty Care Solutions France SAS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20070183996A1 publication Critical patent/US20070183996A1/en
Assigned to BASF BEAUTY CARE SOLUTIONS FRANCE SAS reassignment BASF BEAUTY CARE SOLUTIONS FRANCE SAS CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ENGELHARD LYON SAS
Assigned to BASF BEAUTY CARE SOLUTIONS FRANCE S.A.S., UNIVERSITE JOSEPH FOURIER-GRENOBLE 1 reassignment BASF BEAUTY CARE SOLUTIONS FRANCE S.A.S. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEOTY-OKOMBI, SABRINA, RIVAL, DELPHINE, PERRIER, ERIC, MARIOTTE, ANNE-MARIE, BOUMENDJEL, AHCENE
Priority to US13/152,718 priority Critical patent/US8481593B2/en
Priority to US13/913,896 priority patent/US9089499B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/55Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/35Ketones, e.g. benzophenone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/34Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/74Biological properties of particular ingredients
    • A61K2800/78Enzyme modulators, e.g. Enzyme agonists
    • A61K2800/782Enzyme inhibitors; Enzyme antagonists
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair

Definitions

  • the present invention relates essentially to the use of at least one pare coumaric (also referred to as “p-coumaric” acid derivative as an active agent for the manufacture of a cosmetic or pharmaceutical, and especially a dermatological or topical composition, with depigmenting activity or with an inhibitory effect on melanogenesis, and/or with antiradical and/or antiinflammatory activity.
  • pare coumaric also referred to as “p-coumaric” acid derivative
  • the invention also covers cosmetic compositions or pharmaceutical and especially dermatological compositions, thus obtained, with depigmenting activity or with an inhibitory effect on melanogenesis, and/or with antiradical and/or antiinflammatory activity.
  • the invention also covers a cosmetic care process or a therapeutic depigmentation treatment process using p-coumaric acid derivatives as depigmenting active agents.
  • the invention also covers a cosmetic care process or a therapeutic treatment process for obtaining an antiradical and/or antiinflammatory effect using the abovementioned p-coumaric acid derivatives.
  • melanocytes To combat solar radiation, the skin has differentiated cells that are particularly suited to this function: the melanocytes.
  • melanogenesis these cells manufacture melanin, a dark pigment which has the effect of protecting the skin structures and of increasing the time required to contract a solar erythema.
  • melanins are protective.
  • melanin there exists one form of melanin, known as phaeomelanin, that is extremely phototoxic.
  • melanins it is capable of reacting with certain forms of free radicals, but it can also cause the formation of free radicals that are even more toxic, and which are liable to cause irreversible damage to the genetic material of keratinocytes.
  • certain disorders associated with dysfunction of the melanization unit are liable to cause hyperpigmentation, which is occasionally particularly unsightly.
  • melanin synthesis inhibitors is particularly advantageous in cosmetology, not only for applications in which true depigmentation is desired, as in the case of the bleaching of highly pigmented skin or the inhibition of hyperpigmentation in certain unaesthetic aspects, for example, but also for applications for lightening the complexion and for giving luminosity to the skin and radiance to the surface tissues.
  • This inhibition of melanin synthesis may also be particularly advantageous in the context of therapeutic treatment for treating a true pathology.
  • para-Coumaric or para-hydroxycinnamic acids have been described as inhibitors of melanin production in numerous studies. However, these substances do not make it possible to obtain significant inhibitory effects on melanin synthesis. This excessively weak activity does not make it possible to obtain strong enough effects and these substances are thus little used in cosmetic or pharmaceutical topical applications for effectively combating unsightly pigmentations.
  • an aim of the present invention is essentially to solve the technical problem that consists in providing a depigmenting agent that is more active than those currently used, such as caffeic acid or ferulic acid.
  • Another aim of the present invention is also to provide compositions using these depigmenting agents, cosmetic care methods and/or pharmaceutical treatment methods using these depigmenting agents, and also the use of these depigmenting agents to exert antiradical and/or antiinflammatory activity.
  • a further aim of the present invention is also to provide compositions whose active compounds are extracted from plants.
  • Yet a further aim of the present invention is also to provide compositions that can be applied topically.
  • An additional aim of the present invention is also to provide depigmenting agents for combating skin hyperpigmentation, especially for aesthetic purposes, mainly when the skin has at least one hyperpigmented localized area.
  • a further aim of the present invention is to solve the technical problems mentioned above in a safe and reliable way and especially while avoiding undesirable side effects, particularly in human beings, for example by reducing the cytotoxicity of the active agents used.
  • the present invention solves the problems mentioned above through the synthesis of novel chemical derivatives of para-coumaric acid, in particular of caffeic acid, ferulic acid, or even hybrid derivatives of these two molecules in certain cases.
  • the inhibitory effect on melanin synthesis of these novel derivative molecules thus described is extremely strong, the toxicological profile of these molecules is perfect for cosmetic and dermopharmaceutical applications, and the incorporation of these substances into cosmetic or pharmaceutical formulations is possible without any major problems being encountered. These substances are thus entirely suitable in the context of cosmetic and pharmaceutical applications.
  • the depigmenting effect of the substances obtained in accordance with the present invention which in one preferred embodiment are pare coumaric acid derivatives grafted onto tyramine, dopamine or tyrosol derivatives, with the effect of compounds derived from para-coumaric acid, such as caffeic acid or ferulic acid as a mixture with tyramine, dopamine or tyrosol, it was unexpectedly found that the activity of the compounds of the present invention is markedly superior with reference to said mixture.
  • the present invention relates to the use of an effective amount of at least one compound derived from para-coumaric acid of general formula (I) below: in which: Z represents an oxygen or an —NH— group; X and Y are identical and each represent a CH group (cis or trans) or CH 2 group; n is a number, preferably an integer, ranging from 1 to 12; Ra and Rb are identical or different, preferably identical, and represent a hydrogen atom, a linear or branched acyl group, preferably of C1-12, a linear or branched, saturated or unsaturated alkyl group, preferably of C1-12; a salified or non-salified sulfonyl group (SO 3 H); or a salified or non-salified phosphonate group (PO 3 H 2 ); ORa and/or ORb possibly being in the presence of a base in dissociated form, for example in a form O—Na+; R 1 , R 2 , R 3 , R 4
  • the compounds used are the trans compounds, although the invention also covers the cis compounds or a cis/trans mixture, which preferably comprises a larger amount of trans compounds.
  • the present invention covers the use of an effective amount of at least one compound derived from para-coumaric acid having the general formula (I) as defined above, as a depigmenting agent, or as an active principle with antiradical or antiinflammatory activity, in a topical composition.
  • topical composition generally further include a dermatologically acceptable carrier.
  • dermatologically acceptable means that the compositions or components thereof, are suitable for use in contact with human skin tissue without undue toxicity, incompatibility, instability, allergic response, and the like.
  • Such carriers may be approved as acceptable for cosmetic uses, pharmaceutical uses, or both, depending upon the intended uses of the topical composition being formulated.
  • Ra and Rb each independently represent a hydrogen atom, a linear or branched C1-12 acyl group, a salified or non-salified sulfonyl group (SO 3 H); a salified or non-salified phosphonate group (PO 3 H 2 ), and preferably a hydrogen atom.
  • preferred derivatives are represented by the chemical formula II, in which the groups R 1 to R 8 , X, Y, Z and n represent the elements cited in the formula I:
  • preferred derivatives are represented by the chemical formula III, in which the groups R 2 , R 3 , R 6 and R 7 , X, Y, Z and n represent the elements cited in the general formula I:
  • the invention covers para-coumaric acid derivatives, known as ferulic acid derivatives, corresponding to the general formula I in which:
  • Ra, Rb, R 1 , R 4 , R 5 and R 8 preferentially represent a hydrogen
  • R 3 preferentially represents a methoxy group, and R 2 is a hydrogen
  • X and Y each represent a CH group and n is equal to 2.
  • the compounds also concerned in this invention are the pare coumaric acid derivatives known as caffeic acid derivatives, corresponding to the general formula I in which: Ra and Rb, R 1 , R 2 , R 4 , R 5 and R 8 preferentially represent a hydrogen, R 3 preferentially represents a hydroxyl, and R 2 is a hydrogen, X and Y each represent a CH and n is equal to 2.
  • These derivatives are represented by the following formulae (Va and Vb) in which R 6 and R 7 represent the elements cited in the general formula In formulae Va and Vb, R 6 and R 7 are preferentially hydrogens, which corresponds to the two derivatives described by formulae Va1 and Vb1 below:
  • the invention also relates to the para-coumaric acid derivatives corresponding to the general formula I in which the substituents Ra, Rb, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 represent a hydrogen and n is preferentially equal to 2.
  • R 1 , R 4 , R 5 , and R 8 represent a hydrogen.
  • the substituents R 2 and R 3 are chosen from a hydroxyl group, optionally in salified form, or methoxy, and a hydrogen atom.
  • the substituents R 6 and R 7 are chosen from a hydroxyl group, optionally in salified form, or methoxy, and a hydrogen atom.
  • n 2.
  • the substituents R 6 and R 7 are chosen from a hydroxyl group, optionally in salified form, and a hydrogen atom.
  • the para-coumaric acid derivatives are ferulic acid derivatives in which Ra, Rb, R 1 , R 2 and R 4 preferentially represent a hydrogen atom; R 3 preferentially represents a methoxy group; X and Y each represent a CH group and n is equal to 2; these derivatives possibly being represented by the following formulae (IIa and IIb): in which R 5 , R 6 , R 7 and R 8 are as defined above.
  • R 5 , R 6 , R 7 and R 8 each represent a hydrogen atom.
  • R 5 , R 6 and R 8 each represent a hydrogen atom and R 7 represents a hydroxyl group, which corresponds to the two derivatives described by the following formulae:
  • the para-coumaric acid derivatives are caffeic acid derivatives in which Ra, Rb, R 1 , R 2 and R 4 preferentially represent a hydrogen atom; R 3 preferentially represents a hydroxyl group; X and Y each represent a CH group and n is equal to 2; these derivatives possibly being represented by the following formulae (IIIa and IIIb): in which: R 5 , R 6 , R 7 and R 8 are as defined above.
  • R 5 , R 6 , R 7 and R 8 each represent a hydrogen atom.
  • R 5 , R 6 , R 8 each represent a hydrogen atom and R 7 represents a hydroxyl group, which corresponds to the two derivatives described by formulae IIIa1 and IIIb2 below:
  • the substituents Ra, Rb, R 1 , R 2 , R 4 , R 5 , R 6 , R 7 and R 8 each represent a hydrogen atom
  • R 3 represents a hydroxyl group
  • n is equal to 2
  • these derivatives possibly being represented by the following formulae (VIa and VIb) in which X and Y are CH or CH 2 groups:
  • the compound is extracted from a plant, said extract preferably comprising a compound chosen from:
  • a solvent preferably a polar solvent, and preferably water, a water/alcohol mixture or polyol, for instance a water/glycol or water/ethanol mixture, or a polyol, or an alcohol, for instance ethanol. Ethyl acetate or acetone, or any mixture of the solvents mentioned above, may also be used.
  • the extract is preferably filtered and then dried. It is also possible to perform the extraction with moderate heating, for instance to 45° C. The extraction is preferably performed with stirring. The extraction processes are well known to those skilled in the art.
  • the part of the plants used may vary as a function of the extract to be obtained.
  • the invention relates in particular to the use of the compounds mentioned above for exerting depigmenting activity or an inhibitory effect on melanogenesis, especially via topical application to at least one area of skin tissue of an individual.
  • the invention relates in particular to the use of the compounds mentioned above for reducing the pigmentation of the said area of skin tissue.
  • the invention also relates to a cosmetic care process, comprising the topical application of a composition as defined above.
  • topical application means to apply or spread the compositions of the present invention onto the surface of skin tissue.
  • Such cosmetic care processes include methods of
  • the cosmetic care makes it possible to reduce the pigmentation of the skin in the area of application.
  • the invention also relates to the formulation of topically applied cosmetic compositions comprising the para-coumaric derivative compounds described herein.
  • These cosmetic compositions generally further comAdditionally, as a large number of cosmetic active ingredients are known in the art to improve the health and/or physical appearance of the skin, the skilled artisan will also recognize that it is useful to formulate cosmetic compositions capable of providing multiple benefits to the skin of an individual, and further, that the compounds described herein may have a synergistic effect when combined with one or more additional cosmetic active ingredients.
  • cosmetic compositions comprising the compounds described herein may further comprise additional cosmetic active ingredients.
  • the additional components should be suitable for application to such tissue, that is, when incorporated into the composition they are suitable for use in contact with human skin tissue without undue toxicity, incompatibility, instability, allergic response, and the like within the scope of sound medical judgment.
  • CTFA Cosmetic Ingredient Handbook, Second Edition (1992) describes a wide variety of non-limiting cosmetic and pharmaceutical ingredients commonly used in the skin care industry, which are suitable for use in the topical compositions of the present invention. Examples of these ingredient classes include, but are not limited to: abrasives, absorbents, aesthetic components such as fragrances, pigments, colorings/colorants, essential oils, skin sensates, astringents, etc.
  • anti-acne agents e.g., clove oil, menthol, camphor, eucalyptus oil, eugenol, menthyl lactate, witch hazel distillate
  • anti-acne agents e.g., clove oil, menthol, camphor, eucalyptus oil, eugenol, menthyl lactate, witch hazel distillate
  • antimicrobial agents e.g., iodopropyl butylcarbamate
  • antioxidants e.g., iodopropyl butylcarbamate
  • binders biological additives, buffering agents, bulking agents, chelating agents, chemical additives, colorants, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, external analgesics, film formers or materials, e.g., polymers, for aiding the film-forming properties and substantivity of the composition (e.g., copolymer of
  • the invention also relates to the use of an effective amount of at least one compound as defined above for the preparation of a pharmaceutical composition for exerting depigmenting activity or an inhibitory effect on melanogenesis, especially via topical application to at least one area of skin tissue of an individual with hyperpigmentation.
  • the invention also relates to the use of an effective amount of at least one compound as defined above for the preparation of a cosmetic or pharmaceutical composition for exerting antiradical and/or antiinflammatory activity.
  • the compounds derived from the invention can reduce the L-dopa molecule so as to stop its oxidation into chromophoric compound.
  • the compounds derived from the invention are anti-inflammatory compounds: specifically, the free radicals generated during a UV stress or the like induce the inflammation cascade. This is why compounds with antiradical properties inhibit the inflammation cascade.
  • the invention relates in particular to the following preferred compounds, which are particularly illustrated.
  • a solution of ferulic acid (300 mg; 1.54 mmol) and of triethylamine (1.5 eq; 2.31 mmol) in DMF (3.5 mL) is cooled to 3 or 4° C. using an ice bath.
  • An amine, 3-hydroxytyramine (dopamine) (1 eq; 1.54 mmol) is added to the medium, followed by addition of a solution of BOP (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophos-phate; (1 eq; 1.54 mmol) in dichloromethane (3.5 mL); the mixture is stirred for about thirty minutes in the ice bath and then for 20 hours at room temperature.
  • Example 2 The protocol derived from Example 1 is applied with ferulic acid and 2-(3,4-dimethoxyphenyl)ethylamine instead of ferulic acid and dopamine; the compound obtained is N-trans-feruloyl-3,4-dimethoxydopamine.
  • Example 2 The protocol derived from Example 1 is applied with ferulic acid and tyramine instead of ferulic acid and dopamine; the compound obtained is N-trans-feruloyltyramine.
  • Example 1 The protocol derived from Example 1 is applied with ferulic acid and 4-hydroxy-3-methoxybenzylamine instead of ferulic acid and dopamine; the compound obtained is N-trans-feruloyl-4-hydroxy-3-methoxyphenylmethylamine.
  • Example 2 The protocol derived from Example 1 is applied with dihydroferulic acid and tyramine instead of ferulic acid and dopamine; the compound obtained is N-dihydroferuloyltyramine.
  • Example 1 The protocol derived from Example 1 is applied with dihydroferulic acid and 3-hydroxytyramine instead of ferulic acid and dopamine; the compound obtained is N-dihydroferuloyldopamine.
  • Ferulic acid (4-hydroxy-3-methoxycinnamic acid, 250 mg, 1.28 mmol) is dissolved in dichloromethane (10 mL) and DMAP (dimethylaminopyridine, 157 mg; 1.28 mmol) is added. After dissolving the two products, tyrosol (353.7 mg; 2.56 mmol) is added, followed by addition of EDCI [1-(3-dimethylaminopropyl)-3-ethylcarbodiimide; 368 mg; 1.92 mmol]. The mixture obtained is stirred for 20 hours at room temperature. The reaction medium is then diluted with ethyl acetate (32 mL) and water (6 mL).
  • the organic phase is separated from the aqueous phase, which is re-extracted with ethyl acetate.
  • the organic phases are combined, dried over magnesium sulfate, washed with saturated NaCl solution and evaporated to dryness.
  • the product is obtained in the form of a white precipitate after chromatography on a column of silica gel, using a 5/5 ethyl acetate/cyclohexane mixture.
  • a solution of caffeic acid (300 mg; 1.66 mmol) and of triethylamine (1.5 eq; 2.49 mmol) in DMF (3.5 mL) is cooled to 4° C. using an ice bath.
  • An amine, tyramine (1 eq; 1.66 mmol) is added to the medium, followed by addition of a solution of BOP (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate; 1 eq; 1.66 mmol) in dichloromethane (3.5 mL); the mixture is stirred for about thirty minutes in the ice bath and then for 20 hours at room temperature.
  • Example 9 The protocol derived from Example 9 is applied with caffeic acid and 3-hydroxytyramine(dopamine) instead of caffeic acid and tyramine; the compound obtained is N-trans-caffeoyldopamine.
  • Example 9 The protocol derived from Example 9 is applied with caffeic acid and 4-hydroxy-3-methoxybenzylamine instead of caffeic acid and tyramine; the compound obtained is N-trans-caffeoyl-4-hydroxy-3-methoxyphenylmethylamine.
  • Example 9 The protocol derived from Example 9 is applied with caffeic acid and 2-(3,4-dimethoxyphenyl)ethylamine instead of caffeic acid and tyramine; the compound obtained is N-trans-caffeoyl-3,4-dimethoxydopamine.
  • Example 9 The protocol derived from Example 9 is applied with 3-(3,4-dihydroxyphenyl)propionic acid and tyramine instead of caffeic acid and tyramine; the compound obtained is dihydrocaffeoyltyramine.
  • Example 7 The protocol derived from Example 7 is applied with caffeic acid and tyrosol instead of ferulic acid and tyrosol; the compound obtained is 2-(4-hydroxyphenylethyl)trans-caffeoate (formula IVb1).
  • the organic phase is successively washed with 100 mL of 1N HCl solution, 100 mL of water and 100 mL of 1M sodium bicarbonate (NaHCO 3 ) solution. It is then dried over sodium sulfate and evaporated to dryness.
  • the product is obtained in the form of a white precipitate after purification by chromatography on a column of silica gel.
  • Example 16 The product of Example 16 (180 mg; 0.63 mmol) and sodium hydride (37.8 mg; 1.57 mmol; 2.5 eq) are dispersed in 4 mL of anhydrous DMF (2 mL) under argon. The mixture obtained is stirred vigorously for 30 minutes at 0° C., and 1 mL of a solution of diethyl phosphate chloride (273 ⁇ L, 3 eq) in DMF (1 mL) is then added. Stirring is continued overnight. The reaction medium is poured into 10 mL of ice-water and extracted with ethyl acetate (2 ⁇ 10 mL). The organic phase is dried over sodium sulfate and evaporated to dryness to give a pale residue.
  • Example 19 The protocol of Example 19 is applied to the product derived from Example 1; the compound obtained is N-trans-3-(3-methoxy-4-phosphatephenyl)propenoyl-2-(4-phosphatephenyl)ethylamine.
  • Example 19 The protocol of Example 19 is applied to the product derived from Example 9; the compound obtained is N-trans-3-(3,4-diphosphatephenyl)propenoyl-2-(4-phosphatephenyl)ethylamine
  • Example 3 To a solution of the product derived from Example 3 (150 mg; 0.455 mmol) in 2 mL of DMF is added a complex of pyridine and of sulfur trioxide (2.73 mmol; 6 eq). The solution obtained is stirred for 20 hours at room temperature and 4 mL of aqueous sodium bicarbonate solution are then added. The product is obtained in the form of a white precipitate after purification by reverse-phase column chromatography (water).
  • Example 22 The protocol of Example 22 is applied to the product derived from Example 1; the compound obtained is N-trans-3-(3-methoxy-4-sulfatephenyl)propenoyl-2(3,4-disulfatephenyl)ethylamine.
  • Example 22 The protocol of Example 22 is applied to the product derived from Example 16; the compound obtained is N-3-(4-sulfatephenyl)propanoyl-2-(4-sulfatephenyl)ethylamine.
  • the Invention Relates to Plant Extracts, Known to Contain One of the Para-Coumaric Acid Derivatives Described in the Above Examples
  • the present invention is advantageously performed using natural extracts, preferably plant extracts.
  • Table 1 describes the natural derivatives identified in plants.
  • Tyrosol derivatives Formula Plant Family Part p-Hydroxyphenylethyl trans-p-coumarate Stefania longa Polygonum orientale Menispermaceae Polygonaceae Aerial parts Fruit p-dihydrocoumaroyltyramine Solanum tuberosum Solanaceae Tuber (periderm) teucrol Teucrium pilosum Lamiaceae Whole plant p-Hydroxyphenylethyl trans-ferulate Stefania longa Polygonum orientale Coptidis Menispermaceae Polygonaceae Renonculaceae Aerial parts Fruit Rhizome N-trans-feruloyltyramine Hibiscus cannabinus Piper Porcelia marcrocarpa Malvaceae Piperaceae Annonaceae
  • a Hibiscus cannabinus extract is prepared from chopped bark at 10% (w/w) in refluxing ethanol. The extraction is performed for 1 hour and the solution is then filtered, the ethanol is removed and the N-trans-feruloyltyramine (product derived from Example 3) obtained is dissolved to 5% (w/w) in a water/glycol mixture and then ultrafiltered through a ceramic filter with different cutoff thresholds, and finally filtered at 0.45 ⁇ m.
  • a Hibiscus cannabinus extract is prepared from chopped bark at 10% (w/w) in ethyl acetate. The extraction is performed for 1 hour and the solution is then filtered, the ethyl acetate is removed and the N-trans-feruloyltyramine (product derived from Example 3) obtained is dissolved at 5% (w/w) in a water/glycol mixture and then ultrafiltered through a ceramic filter with different cutoff thresholds, and finally filtered at 0.45 ⁇ m.
  • a Hibiscus cannabinus extract is prepared from chopped bark at 10% (w/w) in acetone. The extraction is performed for 1 hour and the solution is then filtered, the acetone is removed and the N-trans-feruloyltyramine (product derived from Example 3) obtained is dissolved at 5% (w/w) in a water/glycol mixture and then ultrafiltered through a ceramic filter with different cutoff thresholds, and finally filtered at 0.45 ⁇ m.
  • an extract of Hibiscus cannabinus is prepared from chopped bark at 10% (w/w) in a mixture consisting of 75% water and 25% butylene glycol.
  • the maceration is performed overnight at 45° C. and the N-trans-feruloyltyramine (product derived from Example 3) obtained is then ultrafiltered through a ceramic filter with different cutoff thresholds, and finally filtered at 0.45 ⁇ m.
  • an extract of Lycium chinense is prepared from chopped roots at 10% (w/w) in refluxing ethanol.
  • the extraction is performed for 1 hour and the solution is then filtered, the ethanol is removed and the N-trans-dihydrocaffeoyltyramine (product derived from Example 13) obtained is dissolved at 5% (w/w) in a water/glycol mixture and then ultrafiltered through a ceramic filter with different cutoff thresholds, and finally filtered at 0.45 ⁇ m.
  • a Lycium chinense extract is prepared from chopped bark at 10% (w/w) in ethyl acetate. The extraction is performed for 1 hour and the solution is then filtered, the ethyl acetate is removed and the N-trans-dihydrocaffeoyltyramine (product derived from Example 13) obtained is dissolved at 5% (w/w) in a water/glycol mixture and then ultrafiltered through a ceramic filter with different cutoff thresholds, and finally filtered at 0.45 ⁇ m.
  • a Lycium chinense extract is prepared from chopped bark at 10% (w/w) in acetone. The extraction is performed for 1 hour and the solution is then filtered, the acetone is removed and the N-trans-dihydrocaffeoyltyramine (product derived from Example 13) obtained is dissolved at 5% (w/w) in a water/glycol mixture and then ultrafiltered through a ceramic filter with different cutoff thresholds, and finally filtered at 0.45 ⁇ m.
  • Lycium chinense is prepared from chopped bark at 10% (w/w) in a mixture consisting of 75% water and 25% butylene glycol. The maceration is performed overnight at 45° C. and the N-trans-dihydrocaffeoyltyramine (product derived from Example 13) obtained is then ultrafiltered through a ceramic filter with different cutoff thresholds, and finally filtered at 0.45 ⁇ m.
  • Tyrosinase catalyses the formation of L-dopaquinone and then of dopachrome from L-dopa.
  • dopachrome is a coloured compound that may be quantified by visible spectrophotometry at 490 nm.
  • the use of an active agent capable of modifying the enzymatic activity will be reflected by a variation in the optical density at 490 nm.
  • the ratio of the rates of formation of dopachrome makes it possible to determine precisely the activations or inhibitions obtained with the various test molecules.
  • the sample to be tested is incubated in the presence of fungal tyrosinase (Sigma), for 5 minutes with stirring.
  • L-Dopa (Sigma), a tyrosinase substrate, is incubated for 10 minutes in the absence of light, in the presence or absence of the test molecules.
  • the calculation of the percentage of inhibition is performed by relating the test OD to the OD of the negative control without molecule.
  • L-dopaquinone Human tyrosinase, obtained from melanocyte extracts obtained from healthy donors, catalyses the formation of L-dopaquinone from L-dopa.
  • the L-dopaquinone may be quantified by visible spectrophotometry at 490 nm by means of a chromogen: 3-methyl-2-benzothiazolinone hydrazone (MBTH).
  • MBTH 3-methyl-2-benzothiazolinone hydrazone
  • the melanocyte extract is obtained after lysis of cell membranes of the normal human melanocytes, performed via a thermal shock. The supernatant is recovered and then incubated with MBTH (Sigma) and L-dopa (Sigma). The OD at 490 nm measured after 30 minutes is related, for each active agent tested, to that obtained for the control and the percentage of inhibition is calculated by relating the test OD (test molecule) to the OD for the negative control (without molecule). The positive control used is kojic acid at 0.1% (60% ⁇ 5% inhibition). The results obtained are collated in Table 3. TABLE 3 Inhibition of human tyrosinase with the p-coumaric acid derivatives at 490 nm, results expressed as percentage of inhibition.
  • Normal human melanocytes obtained from abdominal surgery are seeded in 24-well plates at a rate of 80 000 cells per well. They are cultured to confluence and the active agents are applied for 24 hours to the culture media. After 24 hours, the media are removed and the melanocytes are detached via mechanical action. An extraction is performed via a thermal shock and the supernatants are then recovered and incubated with MBTH (Sigma) and L-dopa (Sigma).
  • the OD at 490 nm is measured after 30 minutes, and the tyrosinase inhibition is calculated by relating the OD at 490 nm to the protein content (measured in each culture well) of the test relative to the ratio: OD 490 nm/protein concentration of the negative control (untreated control). A percentage of anti-tyrosinase activity is thus calculated relative to the untreated control.
  • the negative control of the experiment is kojic acid applied at 0.1% to the melanocytes (for a measured inhibition of 20% ⁇ 5%).
  • hydroxylated para-coumaric acid derivatives thus show activity that is particularly unexpected to those skilled in the art and highly significant on the inhibition of hyman tyrosinase, whereas the efficacy is reduced on a less pertinent model using a fungal-based tyrosinase, which is widely used and described in the bibliography.
  • the methyl analogue of dopamine makes it possible to obtain an inhibitory effect on melanin synthesis that is measurable but smaller than that of the non-methyl derivatives.
  • Example 1 The compound derived from Example 1 is tested on cultures of melanocytes obtained from 2 donors of brown phototype and from one donor of black phototype. The protocol applied is that described in Example 29. The results obtained on the 2 donors of brown phototype are described in Tables 6. TABLES 6 Inhibition of tyrosinase obtained with the compound derived from Example 3 on 2 donors of brown phototype.
  • cytotoxicity of the active agents is studied on normal human melanocytes in 24-well plates, via assay with PNPP (P-nitrophenyl phosphate), this substance being converted into p-nitrophenol via the intracellular acid phosphatases of viable cells.
  • PNPP P-nitrophenyl phosphate
  • the absorbance of p-nitrophenol at 405 nm is directly proportional to the number of viable cells.
  • the active agents are tested at 2 different concentrations (10 ⁇ 4 M and 10 ⁇ 5 M) and added to the culture medium and incubated at 37° C. for 24 hours.
  • the assay with PNPP is performed on the cell lawn and the results are expressed as a percentage of viability relative to the negative control (untreated wells).
  • test molecules are non-cytotoxic when they are tested at molar concentrations of 10 ⁇ 4 and 10 ⁇ 5 M since the percentages of viability obtained are greater than 75% viability (tolerated threshold). Only 2 molecules have a threshold lower than 75% when tested at 10 ⁇ 4 M, i.e. the molecules derived from Examples 11 and 12.
  • these molecules will thus need to be tested as a monolayer at concentrations below 10 ⁇ 4 M (for example 10 ⁇ 5 M).
  • Vitamin C tested at 3% and 0.3% shows high levels of inhibition since this molecule has cytotoxic action on melanocytes and is non-specific. Consequently, this molecule cannot be considered as active in our model.
  • the para-coumaric acid derivatives are found to be molecules that are highly effective on normal human tyrosinase.
  • the antiradical activity of the derivatives derived from the syntheses described above was evaluated in an in vitro acellular model using DPPH.
  • 1,1-Diphenyl 2-picrylhydrazyl on account of its paramagnetic structure, can accept an electron or a hydrogen radical to become a stable diamagnetic molecule.
  • This free radical which is purple coloured in ethanol, has a strong absorption band at 520 nm.
  • DPPH is incubated for 30 minutes in the presence of the derivatives described above, tested at a concentration of 10 ⁇ 5 M, or alone for the control. At the end of the incubation, the antiradical activity of the above derivatives is evaluated by measuring the absorbance of the solution at 520 nm.
  • each test product is calculated according to the formula, as a percentage: 100 ⁇ ((OD 520 in the presence of the test compound/OD 520 in the absence of compound) ⁇ 100) TABLE 10
  • Antiradical activity of the compounds derived from the invention Mean SD Compounds 10 ⁇ 5 M 10 ⁇ 5 M Example 4 15.72 2.86 Example 1 60.01 8.03 Example 3 13.73 2.03 Example 11 59.2 2.54 Example 9 41.17 2.60 Example 10 57.45 2.39 Example 2 20.16 0.96 Example 12 44.51 3.45
  • the compounds described above show antiradical activity, at a concentration of 10 ⁇ 5 M.
  • the compounds derived from the invention are antiinflammatory compounds: specifically, the free radicals generated during a UV stress or the like induce the inflammation cascade. This is why compounds with antiradical properties inhibit the inflammation cascade.
  • products of the invention means the compounds corresponding to the general formula I, and also the preferred compounds and especially the compounds described in Examples 1 to 26.
  • Formulation 35a A Water qs 100 Butylene Glycol 2 Glycerol 3 Sodium Dihydroxycetyl Phosphate, 2 Isopropyl Hydroxycetyl Ether B Glycol Stearate SE 14 Triisononaoin 5 Octyl Cocoate 6 C Butylene Glycol, Methylparaben, 2 Ethylparaben, Propylparaben, pH adjusted to 5.5 D Products of the invention 0.01-10%
  • Formulation 35b A Water qs 100 Butylene Glycol 2 Glycerol 3 Polyacrylamide, Isoparaffin, 2.8 Laureth-7 B Butylene Glycol, 2 Methylparaben, Ethylparaben, Propylparaben; Phenoxyethanol, 2 Methylparaben, Propylparaben, Butylparaben, Ethylparaben Butylene Glycol 0.5 D Products of the invention 0.01-10%
  • Formulation 35c A Carbomer 0.50 Propylene Glycol 3 Glycerol 5 Water qs 100 B Octyl Cocoate 5 Bisabolol 0.30 Dimethicone 0.30 C Sodium Hydroxide 1.60 D Phenoxyethanol, 0.50 Methylparaben, Propylparaben, Butylparaben, Ethylparaben E Fragrance 0.30 F Products of the invention 0.01-10%
  • Formulation 41a preparation of tablets A Excipients In g per tablet Lactose 0.359 Sucrose 0.240 B Products of the invention* 0.001-0.1 *The product of the invention is obtained, for example, according to the extraction process described in Example 1 followed by a drying step.
  • Formulation 41b preparation of a pomade A Excipients Low-density polyethylene 5.5 Liquid paraffin qs 100 B Products of the invention* 0.001-0.1 *The product of the invention is obtained, for example, according to the extraction process described in Example 1 followed by a drying step.
  • Formulation 41c preparation of an injectable formula A Excipient Isotonic saline solution 5 ml B Products of the invention* 0.001-0.1 g *The product of the invention is obtained, for example, according to the extraction process described in Example 1 followed by a drying step.
  • the toxicology tests were performed on the compound obtained according to Example 1 incorporated at 10% into a 0.5% xanthan gel, by ocular evaluation on rabbits, by studying the absence of abnormal toxicity via single oral administration to rats, and by studying the sensitizing power on guinea pigs.
  • the preparations described above are applied without dilution at a dose of 0.5 ml to the skin of 3 rabbits according to the method recommended by the OCDE Directive concerning the study of “the acute irritant/corrosive effect on the skin”.
  • the products are classified according to the criteria defined by the decree of Feb. 1, 1982 published in the JORF of Feb. 21, 1982. The results of these tests made it possible to conclude that the products of the invention were classified as non-irritant to the skin.
  • the preparations described were administered in a single portion orally at a dose of 2 g/kg of body weight, to 5 male rats and 5 female rats according to a protocol inspired by the OCDE Directive No. 401 of 24 Feb. 1987 and adapted to cosmetic products.
  • the LD 0 and LD 50 are found to be greater than 2000 mg/kg. The preparations tested are therefore not classified among the preparations hazardous by ingestion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Emergency Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Cosmetics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US11/594,440 2005-11-08 2006-11-08 Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions Abandoned US20070183996A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/152,718 US8481593B2 (en) 2005-11-08 2011-06-03 Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions
US13/913,896 US9089499B2 (en) 2005-11-08 2013-06-10 Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0511364 2005-11-08
FR0511364A FR2892923B1 (fr) 2005-11-08 2005-11-08 Utilisatiion des derives de l'acide para-coumarique ou para- hydroxycinnamique dans des compositions cosmetiques ou dermatologiques.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/152,718 Continuation US8481593B2 (en) 2005-11-08 2011-06-03 Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions

Publications (1)

Publication Number Publication Date
US20070183996A1 true US20070183996A1 (en) 2007-08-09

Family

ID=36950101

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/594,440 Abandoned US20070183996A1 (en) 2005-11-08 2006-11-08 Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions
US13/152,718 Expired - Fee Related US8481593B2 (en) 2005-11-08 2011-06-03 Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions
US13/913,896 Expired - Fee Related US9089499B2 (en) 2005-11-08 2013-06-10 Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/152,718 Expired - Fee Related US8481593B2 (en) 2005-11-08 2011-06-03 Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions
US13/913,896 Expired - Fee Related US9089499B2 (en) 2005-11-08 2013-06-10 Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions

Country Status (7)

Country Link
US (3) US20070183996A1 (ko)
JP (1) JP5562513B2 (ko)
KR (1) KR101390061B1 (ko)
DE (1) DE102006052963A1 (ko)
ES (1) ES2292362B1 (ko)
FR (1) FR2892923B1 (ko)
GB (2) GB2431876B (ko)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141598A1 (es) * 2010-05-11 2011-11-17 Consejo Superior De Investigaciones Científicas (Csic) Compuesto con actividad antioxidante
WO2012000961A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of caftaric acid and derivatives in food supplement for regulating skin pigmentation
WO2012000960A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of chicoric acid and derivatives for regulating skin pigmentation
WO2012000959A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of caftaric acid and lactic bacterium in food or beverages for regulating skin pigmentation
WO2012000957A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of chicoric acid and lactic bacterium for regulating skin pigmentation
WO2013116804A2 (en) * 2012-02-03 2013-08-08 Rutgers, The State Of University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
TWI454462B (zh) * 2011-01-20 2014-10-01 Li Tek Biolog Technology Company 二氫阿魏醯5-甲氧酪胺之製法
KR101570346B1 (ko) * 2013-08-05 2015-11-20 주식회사 내추럴솔루션 N-feruloyltyramine을 함유하는 항산화, 항염증 및 주름 개선용 화장료 및 건강기능식품 조성물
US9295624B2 (en) 2009-03-25 2016-03-29 Ajinomoto Co., Inc. Amide derivative and whitening agent
CN109021035A (zh) * 2018-09-18 2018-12-18 云南中烟工业有限责任公司 一种苯乙酰胺类化合物、其制备方法和用途
US10202490B2 (en) 2009-10-11 2019-02-12 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
CN109475760A (zh) * 2016-07-26 2019-03-15 高露洁-棕榄公司 具有抗菌系统的液体清洁组合物和其制造方法
US10266647B2 (en) 2014-12-23 2019-04-23 Rutgers, The State University Of New Jersey Biocompatible iodinated diphenol monomers and polymers
CN111440068A (zh) * 2020-04-29 2020-07-24 陕西中医药大学 肉桂酸酯衍生物及其作为酪氨酸酶抑制剂和凝胶剂的应用
US10774030B2 (en) 2014-12-23 2020-09-15 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
CN111978199A (zh) * 2020-08-27 2020-11-24 福州美乐莲生物科技有限公司 马齿苋酰胺及其用途
CN112094191A (zh) * 2019-12-11 2020-12-18 陕西科技大学 一种具抗氧化活性的羟基酪醇二氢咖啡酸酯及其合成方法
US10883089B2 (en) 2017-04-04 2021-01-05 Wisconsin Alumni Research Foundation Feruloyl-CoA:monolignol transferases
US10883090B2 (en) 2017-04-18 2021-01-05 Wisconsin Alumni Research Foundation P-coumaroyl-CoA:monolignol transferases
CN112843037A (zh) * 2021-01-15 2021-05-28 江南大学 一种反式4-羟基肉桂酸和阿魏酸联合抑制酪氨酸酶活性的方法
WO2021179711A1 (zh) * 2020-03-11 2021-09-16 中国热带农业科学院热带生物技术研究所 一种从金钗石斛中提取化合物的工艺及应用
US11166941B2 (en) * 2020-01-01 2021-11-09 Celagenex Research (India) Pvt. Ltd. Synergistic nutritional compositions for enhancing ATP efficiency
US11173136B2 (en) 2018-01-10 2021-11-16 Brightseed, Inc. Method for modulating metabolism
CN114539092A (zh) * 2022-03-14 2022-05-27 深圳海创生物科技有限公司 一种燕麦麸酚酰胺生物碱及其制备方法与在制备止痒产品中的应用
US11382880B2 (en) * 2019-07-29 2022-07-12 Brightseed, Inc. Method for improving digestive health
US11472918B2 (en) 2012-02-03 2022-10-18 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US11647776B2 (en) 2019-11-11 2023-05-16 Brightseed, Inc. Extract, consumable product and method for enriching bioactive metabolite in an extract
US11981904B2 (en) 2018-11-09 2024-05-14 Wisconsin Alumni Research Foundation BAHD acyltransferases

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775095B1 (ko) * 2006-11-24 2007-11-08 (주)아모레퍼시픽 타이로졸 유도체를 함유하는 피부 미백용 화장료
KR100907685B1 (ko) * 2007-06-01 2009-07-14 게놈앤메디신(주) 노근으로부터 분리한 페놀성 화합물을 유효성분으로함유하는 피부 미백용 화장료 조성물
KR101221764B1 (ko) * 2010-10-05 2013-01-11 애경산업(주) 신규한 미백용 화합물
FR3000488B1 (fr) 2012-12-27 2015-10-02 Basf Beauty Care Solutions F Nouveaux derives de l'acide sinapique et leurs utilisations cosmetiques ou pharmaceutiques
MX2015012759A (es) * 2013-03-14 2016-06-21 Univ Case Western Reserve Aplicaciones relacionas a la sustitucion de precursores de polimeros del bisfenol.
KR101693034B1 (ko) * 2013-04-17 2017-01-06 충북대학교 산학협력단 카페익산 유도체를 유효성분으로 포함하는 피부미백 조성물
US10959968B2 (en) 2016-01-13 2021-03-30 Board Of Supervisors Of Louisiana State University Methods for treating c-Met-dependent cancers
EP3526225A1 (en) 2016-10-14 2019-08-21 Universidade do Porto Hydroxycinnamic derivatives, methods and uses thereof
EP3737390A4 (en) * 2018-01-10 2021-12-01 Brightseed, Inc. COMPOSITION FOR MODULATING METABOLISM
WO2020146635A1 (en) * 2019-01-11 2020-07-16 Muhammed Majeed Water-soluble mineral ferulates and their method of preparation
WO2024064102A1 (en) * 2022-09-19 2024-03-28 Brightseed, Inc. Compositions and methods for improving gut permeability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152682A1 (en) * 2001-12-27 2003-08-14 Ley Jakob Peter Use of ferulic acid amides as flavor compounds
US20040185023A1 (en) * 2003-03-17 2004-09-23 Schnittger Steven F. Modified heat-generating cosmetic compositions

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020997B2 (ja) 1981-03-06 1985-05-24 日東電工株式会社 固定化酵素の製造方法
JPS57146563A (en) * 1981-03-06 1982-09-10 T Hasegawa Co Ltd Antioxidant for food and drink
JPS59196813A (ja) * 1983-04-25 1984-11-08 Kao Corp メラニン抑制剤
GB2141626B (en) 1983-04-25 1987-01-28 Kao Corp Cinnamic acid derivatives for lightening melanin pigmentation of skin
FR2653336B1 (fr) 1989-10-20 1994-04-08 Oreal Composition pharmaceutique et cosmetiques depigmentantes a base d'acide cafeique.
ES2075437T3 (es) 1991-03-21 1995-10-01 Dior Christian Parfums Nuevo derivado del acido cafeico, el oraposido, composicion cosmetica o farmaceutica, particularmente dermatologica que lo contiene.
US5610185A (en) * 1995-02-17 1997-03-11 The United States Of America As Represented By The Department Of Health And Human Services Method for the treatment of hyperproliferative epithelial skin diseases by topical application of hydroxylated aromatic protein cross-linking compounds
US5773014A (en) * 1996-10-07 1998-06-30 Bioetica, Inc. Compositions and methods for inhibiting the formation of unwanted skin pigmentation
DE19737327A1 (de) * 1997-08-27 1999-03-04 Haarmann & Reimer Gmbh Hydroxyzimtsäureamide hydroxysubstituierter aromatischer Amine
AU1289899A (en) * 1997-10-31 1999-05-24 Arch Development Corporation Methods and compositions for regulation of 5-alpha reductase activity
JP3590924B2 (ja) * 1998-10-27 2004-11-17 日本甜菜製糖株式会社 植物性抗酸化剤、及び、胃粘膜障害抑制剤
JP4540909B2 (ja) 1999-07-26 2010-09-08 ユニリーバー・ナームローゼ・ベンノートシヤープ 化粧品組成物中のフェルラ酸の安定化
US7078407B2 (en) * 2001-11-23 2006-07-18 Korea Research Institute Of Chemical Technology 4-hydroxycinnamamide derivatives as antioxidants and pharmaceutical compositions containing them
SI1511710T1 (sl) * 2002-05-31 2014-04-30 Proteotech, Inc. Spojine, sestavki in postopki za zdravljenje amiloidnih bolezni in sinukleinopatij, kot je Alzheimerjeva bolezen, diabetes tipa 2 in Parkinsova bolezen
FR2841550B1 (fr) 2002-06-26 2007-05-04 Sederma Sa Nouvelles molecules derivees de la tyramine, leur mode de preparation, et leur utilisation seules ou associees dans des compositions cosmetiques ou dermopharmceutiques
ES2535975T3 (es) * 2002-10-03 2015-05-19 Novaremed Ltd. Compuestos para su uso en el tratamiento de enfermedades autoinmunitarias, enfermedades inmunoalérgicas y rechazo de trasplantes de órganos o tejidos
FR2848846B1 (fr) * 2002-12-18 2005-01-28 Oreal Utilisation cosmetique de derives de l'acide ascorbique comme agents blanchissants
JP4212052B2 (ja) * 2003-10-01 2009-01-21 泰啓 満田 色素斑除去及び再発防止用皮膚外用剤
JP2005225872A (ja) * 2004-01-15 2005-08-25 National Institute Of Advanced Industrial & Technology アディポネクチン産生増進剤
KR100589352B1 (ko) * 2004-03-10 2006-06-14 학교법인조선대학교 구기자나무에서 추출한 다이하이드로-ν-카페요일티라민을함유하는 항염증용 조성물
US20070292493A1 (en) * 2006-06-15 2007-12-20 Brierre Barbara T Pharmaceutical composition and method for the transdermal delivery of calcium
JP2009040688A (ja) * 2007-08-06 2009-02-26 Tsuchida Yuzo メラニン生成抑制剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152682A1 (en) * 2001-12-27 2003-08-14 Ley Jakob Peter Use of ferulic acid amides as flavor compounds
US20040185023A1 (en) * 2003-03-17 2004-09-23 Schnittger Steven F. Modified heat-generating cosmetic compositions

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9295624B2 (en) 2009-03-25 2016-03-29 Ajinomoto Co., Inc. Amide derivative and whitening agent
US10202490B2 (en) 2009-10-11 2019-02-12 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
US11118011B2 (en) 2009-10-11 2021-09-14 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
WO2011141598A1 (es) * 2010-05-11 2011-11-17 Consejo Superior De Investigaciones Científicas (Csic) Compuesto con actividad antioxidante
ES2369825A1 (es) * 2010-05-11 2011-12-07 Consejo Superior De Investigaciones Científicas Compuesto con actividad antioxidante.
WO2012000963A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of caftaric acid and lactic bacterium in food supplement for regulating skin pigmentation
WO2012000959A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of caftaric acid and lactic bacterium in food or beverages for regulating skin pigmentation
WO2012000957A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of chicoric acid and lactic bacterium for regulating skin pigmentation
US9492416B2 (en) 2010-06-30 2016-11-15 Nestec S.A. Use of caftaric acid and lactic bacterium in food supplement for regulating skin pigmentation
WO2012000962A3 (en) * 2010-06-30 2012-02-23 Nestec S.A. Use of chicoric acid and lactic bacterium in food supplement for regulating skin pigmentation
WO2012000954A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of chicoric acid and derivatives for regulating skin pigmentation
WO2012000960A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of chicoric acid and derivatives for regulating skin pigmentation
WO2012000955A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of caftaric acid and derivatives in food or beverages for regulating skin pigmentation
US9192554B2 (en) 2010-06-30 2015-11-24 Nestec S.A. Use of chicoric acid and lactic bacterium in food supplement for regulating skin pigmentation
WO2012000961A1 (en) * 2010-06-30 2012-01-05 Nestec S.A. Use of caftaric acid and derivatives in food supplement for regulating skin pigmentation
US9492365B2 (en) 2010-06-30 2016-11-15 Nestec S.A. Use of caftaric acid and derivatives in food supplement for regulating skin pigmentation
US9491962B2 (en) 2010-06-30 2016-11-15 Nestec S.A. Use of chicoric acid and derivatives for regulating skin pigmentation
TWI454462B (zh) * 2011-01-20 2014-10-01 Li Tek Biolog Technology Company 二氫阿魏醯5-甲氧酪胺之製法
US11124603B2 (en) 2012-02-03 2021-09-21 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
WO2013116804A2 (en) * 2012-02-03 2013-08-08 Rutgers, The State Of University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
AU2016203361B2 (en) * 2012-02-03 2017-10-05 Rutgers, The State Of University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
EP3312155A1 (en) * 2012-02-03 2018-04-25 Rutgers, The State University of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
JP2018188661A (ja) * 2012-02-03 2018-11-29 ラトガース,ザ ステート ユニバーシティ オブ ニュー ジャージー フェノール性単量体から誘導された高分子生体材料およびその医療用途
WO2013116804A3 (en) * 2012-02-03 2013-10-03 Rutgers, The State Of University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US11472918B2 (en) 2012-02-03 2022-10-18 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US9416090B2 (en) 2012-02-03 2016-08-16 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
KR101570346B1 (ko) * 2013-08-05 2015-11-20 주식회사 내추럴솔루션 N-feruloyltyramine을 함유하는 항산화, 항염증 및 주름 개선용 화장료 및 건강기능식품 조성물
US10266647B2 (en) 2014-12-23 2019-04-23 Rutgers, The State University Of New Jersey Biocompatible iodinated diphenol monomers and polymers
US10774030B2 (en) 2014-12-23 2020-09-15 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US11649203B2 (en) 2014-12-23 2023-05-16 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
CN109475760A (zh) * 2016-07-26 2019-03-15 高露洁-棕榄公司 具有抗菌系统的液体清洁组合物和其制造方法
US10883089B2 (en) 2017-04-04 2021-01-05 Wisconsin Alumni Research Foundation Feruloyl-CoA:monolignol transferases
US11807875B2 (en) 2017-04-04 2023-11-07 Wisconsin Alumni Research Foundation Feruloyl-CoA:monolignol transferases
US10883090B2 (en) 2017-04-18 2021-01-05 Wisconsin Alumni Research Foundation P-coumaroyl-CoA:monolignol transferases
US11807876B2 (en) 2017-04-18 2023-11-07 Wisconsin Alumni Research Foundation P-coumaroyl-CoA:monolignol transferases
US11642323B2 (en) 2018-01-10 2023-05-09 Brightseed, Inc. Method for modulating metabolism
US11173136B2 (en) 2018-01-10 2021-11-16 Brightseed, Inc. Method for modulating metabolism
CN109021035B (zh) * 2018-09-18 2021-04-06 云南中烟工业有限责任公司 一种苯乙酰胺类化合物、其制备方法和用途
CN109021035A (zh) * 2018-09-18 2018-12-18 云南中烟工业有限责任公司 一种苯乙酰胺类化合物、其制备方法和用途
US11981904B2 (en) 2018-11-09 2024-05-14 Wisconsin Alumni Research Foundation BAHD acyltransferases
US11382880B2 (en) * 2019-07-29 2022-07-12 Brightseed, Inc. Method for improving digestive health
US20220296542A1 (en) * 2019-07-29 2022-09-22 Brightseed, Inc. Method for improving digestive health
US11647776B2 (en) 2019-11-11 2023-05-16 Brightseed, Inc. Extract, consumable product and method for enriching bioactive metabolite in an extract
CN112094191A (zh) * 2019-12-11 2020-12-18 陕西科技大学 一种具抗氧化活性的羟基酪醇二氢咖啡酸酯及其合成方法
US11166941B2 (en) * 2020-01-01 2021-11-09 Celagenex Research (India) Pvt. Ltd. Synergistic nutritional compositions for enhancing ATP efficiency
WO2021179711A1 (zh) * 2020-03-11 2021-09-16 中国热带农业科学院热带生物技术研究所 一种从金钗石斛中提取化合物的工艺及应用
CN111440068A (zh) * 2020-04-29 2020-07-24 陕西中医药大学 肉桂酸酯衍生物及其作为酪氨酸酶抑制剂和凝胶剂的应用
CN111978199A (zh) * 2020-08-27 2020-11-24 福州美乐莲生物科技有限公司 马齿苋酰胺及其用途
CN112843037A (zh) * 2021-01-15 2021-05-28 江南大学 一种反式4-羟基肉桂酸和阿魏酸联合抑制酪氨酸酶活性的方法
CN114539092A (zh) * 2022-03-14 2022-05-27 深圳海创生物科技有限公司 一种燕麦麸酚酰胺生物碱及其制备方法与在制备止痒产品中的应用

Also Published As

Publication number Publication date
GB0622038D0 (en) 2006-12-13
FR2892923B1 (fr) 2009-01-16
DE102006052963A1 (de) 2007-05-16
GB2465703B (en) 2010-12-22
KR20070049582A (ko) 2007-05-11
KR101390061B1 (ko) 2014-04-29
JP2007131622A (ja) 2007-05-31
FR2892923A1 (fr) 2007-05-11
GB2431876B (en) 2010-06-09
GB2431876A (en) 2007-05-09
ES2292362B1 (es) 2009-08-07
GB2465703A (en) 2010-06-02
JP5562513B2 (ja) 2014-07-30
US8481593B2 (en) 2013-07-09
ES2292362A1 (es) 2008-03-01
US9089499B2 (en) 2015-07-28
US20130272983A1 (en) 2013-10-17
GB201002692D0 (en) 2010-04-07
US20110237551A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
US9089499B2 (en) Para-coumaric acid or para-hydroxycinnamic acid derivatives and their use in cosmetic or dermatological compositions
KR100755427B1 (ko) 피부 탄력 증진 효과를 갖는 녹차씨 오일을 함유하는화장료 조성물.
ES2676894T3 (es) Composiciones de alquilamidotiazoles y sustancias de filtro UV
KR20100111066A (ko) 피부 미백용 조성물
KR20120039702A (ko) 피부 외용제, 미백제, 항산화제 및 항노화제
US7189419B2 (en) Use of active extracts to lighten skin, lips, hair, and/or nails
JP2011105666A (ja) ドーパオキシダーゼ活性抑制剤及び美白剤
US20160361372A1 (en) Use of rhodiola crenulata extract via the topical route
KR101436199B1 (ko) 호데닌을 포함하는 피부 상태 개선용 조성물
KR102156731B1 (ko) 염증후 색소과다침착의 치료를 위한 바쿠치올 조성물
US20040126344A1 (en) Compositions having glycolipid to lighten skin and alter post-inflammatory hyperpigmentation
JP2010195732A (ja) ドーパオキシダーゼ活性抑制剤、美白剤および皮膚外用剤
KR20150044817A (ko) 파울로우니아 토멘토사 목재 추출물을 포함하는 조성물 및 이의 용도
JP3233813B2 (ja) チロシナーゼ生合成促進剤及び白髪改善用又は白髪防止用頭髪用化粧料並びに日焼け用化粧料
KR101270929B1 (ko) 섬오갈피 근피 성분인 아칸토산을 이용한 피부 미백제 조성물
US20200253847A1 (en) Bisacurone composition and method of skin whitening
KR101617242B1 (ko) 섬오갈피 근피 성분인 아칸토산을 이용한 피부 미백제 조성물
KR101244653B1 (ko) 진세노사이드 알비3을 유효성분으로 포함하는 피부 상태 개선용 조성물
KR101895202B1 (ko) 관중으로부터 분리한 노르플라바스피딕산 pb 화합물을 포함하는 피부 미백용 조성물
KR20160115901A (ko) 닥나무 속 식물의 캘러스를 함유하는 피부 개선 조성물
WO2023221665A1 (zh) 一种二酚类化合物及其制备方法和应用
ITTO20060790A1 (it) Uso di derivati dell'acido para-cumarico o dell'acido para-idrossicinnamico in composizioni cosmetiche o dermatologiche
KR20090039978A (ko) 반대해 추출물을 함유하는 피부 미백 및 항산화 조성물
JP2011256135A (ja) ドーパオキシダーゼ活性抑制剤、美白剤及び皮膚外用剤、並びにこれらに用いるコクリロ抽出物
MX2007007642A (en) Method and composition for reducing the appearance of wrinkles

Legal Events

Date Code Title Description
AS Assignment

Owner name: BASF BEAUTY CARE SOLUTIONS FRANCE SAS, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:ENGELHARD LYON SAS;REEL/FRAME:022525/0475

Effective date: 20070701

AS Assignment

Owner name: UNIVERSITE JOSEPH FOURIER-GRENOBLE 1, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEOTY-OKOMBI, SABRINA;RIVAL, DELPHINE;BOUMENDJEL, AHCENE;AND OTHERS;REEL/FRAME:022737/0180;SIGNING DATES FROM 20090429 TO 20090520

Owner name: BASF BEAUTY CARE SOLUTIONS FRANCE S.A.S., FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEOTY-OKOMBI, SABRINA;RIVAL, DELPHINE;BOUMENDJEL, AHCENE;AND OTHERS;REEL/FRAME:022737/0180;SIGNING DATES FROM 20090429 TO 20090520

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION