TWI727334B - 濺射靶以及用於製造濺射靶的粉體 - Google Patents

濺射靶以及用於製造濺射靶的粉體 Download PDF

Info

Publication number
TWI727334B
TWI727334B TW108119331A TW108119331A TWI727334B TW I727334 B TWI727334 B TW I727334B TW 108119331 A TW108119331 A TW 108119331A TW 108119331 A TW108119331 A TW 108119331A TW I727334 B TWI727334 B TW I727334B
Authority
TW
Taiwan
Prior art keywords
sputtering target
composite oxide
powder
boron
melting point
Prior art date
Application number
TW108119331A
Other languages
English (en)
Other versions
TW202012666A (zh
Inventor
岩淵靖幸
佐藤敦
下宿彰
清水正義
Original Assignee
日商Jx金屬股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Jx金屬股份有限公司 filed Critical 日商Jx金屬股份有限公司
Publication of TW202012666A publication Critical patent/TW202012666A/zh
Application granted granted Critical
Publication of TWI727334B publication Critical patent/TWI727334B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本發明提供一種含Ru以及硼的濺射靶。該濺射靶的主要成分是Ru,含有熔點比B2 O3 高且含硼的複合氧化物。

Description

濺射靶以及用於製造濺射靶的粉體
本發明涉及一種濺射靶以及用於製造濺射靶的粉體。更具體地,涉及一種含Ru的濺射靶以及用於製造該濺射靶的粉體。
在以硬碟驅動器為代表的磁記錄的領域,作為負責記錄的磁性薄膜的材料,使用以強磁性金屬Co、Fe、或Ni為基材的材料。例如,在採用平面內磁記錄方式的硬碟的記錄層中,使用以Co為主要成分的Co-Cr系、Co-Cr-Pt系的強磁性合金。
近年硬碟驅動器等的磁記錄高容量化正在發展。為了實現該高容量化,提高磁記錄層中的晶粒的分離性,由此,降低晶粒之間的相互作用很重要。
在專利文獻1中,公開了Ru-xCoO合金的基底層。另外,在專利文獻1中公開了,在第二基底層150b中形成氧化物的晶界,促進粒子之間的分離性,並且還有提高構成基底層150的Ru以及主記錄層160的晶體取向性的作用。
在專利文獻2中,公開了具備非磁性中間層和磁性層的垂直磁記錄介質。另外,在專利文獻2中,公開了第1非磁性中間層採用Ru,以及第2非磁性中間層採用CoCr合金。
在專利文獻3中,公開了在非磁性基板上隔著基底層具備垂直磁性層的垂直磁記錄介質,該垂直磁性層由至少交錯層疊第1磁性層和第2磁性層構成。另外,在專利文獻3中,公開了基底層由含有氧的Ru構成。
專利文獻4中公開了一種濺射靶,其能夠形成對插頭、阻擋金屬之類的基底的密合力高,且用作電極時電阻率小的Ru膜或Ru氧化物的薄膜。
現有技術文獻
專利文獻
專利文獻1:日本特開2012-009086號公報
專利文獻2:日本特開2009-134804號公報
專利文獻3:日本特開2005-243093號公報
專利文獻4:日本特開2002-167668號公報
為了提高分離性,存在於磁記錄層之下的中間層發揮了重要的作用。如果中間層中存在Ru晶粒,則磁記錄層的晶粒會以Ru晶粒為起點生長。另外,如果將Ru氧化物和Ru-B用作中間層,則可改善磁記錄特性。基於這樣的知識,本發明人,對Ru與硼氧化物的組合進行了研究。其目的在於,得到在Ru晶粒的周圍配置有硼氧化物的結構。因此,雖然也考慮了共同濺射Ru與硼氧化物的方法,但是濺射含有這兩者的單個濺射靶,在製造步驟方面更有利。
因此,本發明人,首先對製造含Ru和硼氧化物的濺射靶進行了研究。結果發現以下幾點。為了製造濺射靶,必須對材料實施熱壓(HP)和/或熱等靜壓加壓(HIP)等處理。此時,材料處於高溫中。本發明人發現,在使用B2 O3 作為硼氧化物時,由於B2 O3 的熔點低,因此經過HP和/或HIP處理B2 O3 會從材料中流失。結果是,燒結體中殘留的氧化硼的量顯著降低。因此,在製造含Ru和硼氧化物的濺射靶時,無法利用B2 O3 。鑒於以上的事由,本發明的目的在於,提供含Ru以及硼氧化物的濺射靶。
緣以達成上述目的,本發明提供的一種濺射靶以及用於製造濺射靶的粉體,本發明人,進行進一步的研究,結果發現,若代替B2 O3 使用特定的複合硼氧化物,則燒結體中會殘留硼。可認為殘留的理由是,由於使用熔點比B2 O3 更高的硼氧化物,因此在HP和/或HIP處理時能夠降低流失的量。
本發明,基於上述知識而完成,在一方面,包含以下的發明。
(發明1)
一種濺射靶,其主要成分是Ru,含有熔點比B2 O3 高且含硼的複合氧化物。
(發明2)
如發明1所述的濺射靶,其中,B的含量為0.01wt%以上。
(發明3)
如發明1或2所述的濺射靶,其中,相對密度為90%以上。
(發明4)
如發明1~3中任一項所述的濺射靶,其中,除了Ru、B、O以外,還含有從Co、Cr、Mn以及Ti中選擇的1種以上作為構成元素。
(發明5)
如發明1~4中任一項所述的濺射靶,其中,所述複合氧化物的熔點為750℃以上。
(發明6)
如發明1~5中任一項所述的濺射靶,其中,所述複合氧化物是選自由Co2 B2 O5 、CrBO3 、TiBO3 以及Mn3 B2 O6 構成的群組的1種以上。
(發明7)
一種用於濺射靶的製造的複合氧化物的粉體,所述複合氧化物是熔點比B2 O3 更高且含硼的複合氧化物。
(發明8)
如發明7所述的粉體,其中,所述複合氧化物的熔點為750℃以上。
(發明9)
如發明7或8所述的粉體,其中,所述複合氧化物是選自由Co2 B2 O5 、CrBO3 、TiBO3 以及Mn3 B2 O6 構成的群組的1種以上。
(發明10)
如發明7~9中任一項所述的粉體,其中,比表面積為0.5~80m2 /g,粒徑為0.3~15μm和/或雜質的濃度為10000wtppm以下。
本發明之效果在於,在一個方面,本公開的濺射靶,含Ru和B。由此,無需同時濺射,在製造步驟方面有優勢。
以下,說明用於實施本公開的發明的具體實施方式。以下的說明,只是為了幫助理解本公開的發明。即,不意在限定本發明的範圍。
1. 濺射靶
在一實施方式中,本公開,涉及一種濺射靶。
1-1. 濺射靶的組成
在一實施方式中,濺射靶,至少含有Ru和複合氧化物。而且,Ru是濺射靶的主要成分。
這裡,主要成分是指,金屬元素之中含量(at%)最大的元素。典型地,主要成分意味著含有50at%以上。
另外,上述複合氧化物,含有硼,並且是熔點比B2 O3 高的化合物。由此,與使用B2 O3 製造濺射靶的情況相比,能夠使得B更多地殘留在燒結體中。因此,可提高濺射後的Ru的晶體分離性。
在一實施方式中,Ru的含量可以是80.0~99.8wt%。通過為80.0wt%以上,在成膜後的中間層,能夠充分保證記錄層的晶粒生長所需要的Ru晶粒。通過為99.8at%以下,在成膜後的中間層,能夠充分確保用於使得Ru的晶粒分離的B的含量。Ru的含量的下限值,優選為90.0wt%以上,更優選為95wt%以上。Ru的含量的上限值,優選為99.5wt%以下,更優選為99.0wt%以下。
在一實施方式中,B的含量為0.01wt%以上。通過為0.01wt%以上,在成膜後的中間層,能夠充分確保用於使得Ru的晶粒分離的B的含量。B的含量的上限值,沒有特別限定,基於維持Ru的特性的觀點,典型地,可以是3.0wt%以下。B的含量的下限值,優選為0.05wt%以上,更優選為0.15wt%以上。
在一實施方式中,除了上述的Ru、B以及O以外,濺射靶能夠含有從Co、Cr、Mn以及Ti中選擇的1種以上。這些元素,能夠與B形成複合氧化物。而且,該複合氧化物,與B2 O3 相比,具有更高的熔點。因此,在製造時的熱處理(例如,HIP、HP等)中熔解並損耗的可能性低。
從Co、Cr、Mn以及Ti中選擇的1種以上的元素的含量,沒有特別限定,優選根據與B形成複合氧化物的計量比確定含量。
同樣地,關於O的含量,也沒有特別限定,優選根據與B形成複合氧化物的計量比確定含量。
例如,在複合氧化物為Co2 B2 O5 的情況下,在將複合氧化物整體的重量記做100%時,Co為53.70wt%,B為9.85wt%,O為36.45wt%。因此,在假設濺射靶整體的重量為100%,且占濺射靶整體的B的含量為0.01wt%以上的情況下,Co為0.054wt%以上,O為0.036wt%以上。
在一實施方式中,濺射靶,可以由以下的元素構成:
Ru;
B;
從Co、Cr、Mn以及Ti中選擇的1種以上;以及
O。
在一實施方式中,濺射靶除了上述的元素以外,可以含有不可避免的雜質。不可避免的雜質的含量,為10000wtppm以下,優選為5000wtppm以下(全部的不可避免的雜質元素的合計量)。
濺射靶的元素分析(以及定量),能夠通過本領域公知的方法進行。例如,能夠通過以下的方法進行。例如,能夠將濺射靶自身,或者燒結體的邊角料(加工成濺射靶形狀時剩下的碎片)用作試料。首先,從盡可能靠近濺射靶中心的部位採取5g左右的試料並進行粉末化。關於O、N、C,能夠將粉末加熱並氣化後,使用遠紅外吸光法(LECO公司製造的TC600)進行測量。關於硼以及金屬元素,用酸等溶解粉末,使用ICP發射光譜分析裝置(日立高科技公司製造的SPS3100HV)進行分析。或者,可以通過EDS(日立高科技公司製造的S-3700N)、或EMPA(日本電子公司製造的JXA-8500F)分析構成元素。
1-2. 濺射靶中的含硼複合氧化物
在一實施方式中,含硼的複合氧化物,包含由B和O與金屬元素形成的複合氧化物。使用這樣的複合氧化物的理由是,熔點比上述的B2 O3 高,經過熱處理而損耗的可能性低。更優選地,含硼的複合氧化物的熔點為750℃以上(優選為1000℃以上)。上限值沒有特別限定,典型地,為1300℃以下。
作為構成含硼的複合氧化物的金屬元素,優選可列舉從Co、Cr、Mn以及Ti中選擇的1種以上,但不限於此。優選這些金屬元素的理由是,給Ru的結晶性帶來負面影響的可能性較低。例如,Co與Ru相同地為hcp晶體結構,因此不會影響Ru的結晶性。Cr、Ti、Mn,在富含Ru的情況下也不會與Ru反應,因此不會影響Ru的結晶性。
作為含硼的複合氧化物的具體例,可列舉選自由Co2 B2 O5 、CrBO3 、TiBO3 以及Mn3 B2 O6 構成的群組的1種以上,但不限於此。
需要說明的是,上述的含硼的複合氧化物的是否存在,能夠通過EDS或EPMA進行確認。
1-3. 濺射靶的相對密度
在一實施方式中,濺射靶的相對密度,可以是90%以上,優選為98%以上。由此,可以進一步減少電弧的產生。需要說明的是,本說明書中所提及的相對密度是指,實測密度與理論密度之比。實測密度是指,以純水為溶劑使用阿基米德法進行測量得到的值。理論密度,如下所述,將原料的單質密度分別乘以混合品質比,並對得到的值求和。
理論密度=Σ{(成分n的理論密度×混合質量比)}
為了製造相對密度高的濺射靶,如下文所述需要在高溫下施加壓力。但是,在材料中含有像B2 O3 之類的低熔點的B化合物的情況下,B2 O3 會伴隨熱處理而熔解,受到損耗。另一方面,如果降低壓力,則相對密度會降低,無法達到產品的要求標準。因此,能夠獲得含B並且相對密度高的濺射靶,是非常有意義的。
2. 濺射靶的粉體
2-1. 粉體的特性
在一實施方式中,本公開涉及一種用於製造濺射靶的粉體,以及該粉體的使用。所述粉體的成分,是含硼的複合氧化物。優選地,含硼的複合氧化物的熔點為750℃以上(更優選為1000℃以上)。上限值沒有特別限定,典型地為1300℃以下。作為構成粉體的含硼的複合氧化物的金屬元素,優選可列舉從Co、Cr、Mn以及Ti中選擇的1種以上,但不限於此。另外,作為含硼的複合氧化物的具體例,可列舉選自由Co2 B2 O5 、CrBO3 、TiBO3 以及Mn3 B2 O6 構成的群組的1種以上,但不限於此。
在一實施方式中,粉體的粒徑D50為0.3~15μm。通過採用這些尺寸,能夠製造優質的濺射靶。D50的下限值,優選為0.8μm以上,更優選為1.0μm以上。D50的上限值,優選為10μm以下,更優選為5μm以下。
需要說明的是,粉體的粒徑是指,在通過鐳射衍射・散射法求出的細微性分佈中,以體積值為基準時累積值為50%(D50)處的粒徑。例如,粒徑,能夠使用HORIBA公司製造的型號LA-920的細微性分佈測量裝置,將粉末分散在乙醇的溶劑中進行測量。
在一實施方式中,粉體的雜質濃度低。其理由是,雜質會給製造後的濺射靶帶來惡劣影響。例如,作為雜質,可列舉Ti(僅限於Co、Cr或Mn的複合氧化物的情況)、Al、N、C等。它們的合計濃度為10000wtppm以下,優選為5000wtppm以下。雜質濃度的分析,能夠使用上述的紅外吸光法、ICP發射光譜分析裝置,以及GDMS(輝光放電質譜分析)等。
在一實施方式中,粉體的比表面積為0.5~80m2 /g。通過得到這樣的比表面積,能夠製造優質的濺射靶。比表面積的下限值,優選為0.8m2 /g以上,更優選為1.5m2 /g以上。比表面積的上限值,優選為50m2 /g以下,更優選為35m2 /g以下。
需要說明的是,本說明書中的比表面積是指按照以下的步驟測量的值:
・將對象物質在200℃下脫氣2小時
・在Quantachrome公司製造的Monosorb,作為吸附氣體使用He70at%-N230at%混合氣體,通過BET法(1點法)進行測量。
2-2. 含硼的複合氧化物粉體的製造方法
首先,準備含有Co、Cr、Ti以及Mn中的至少一種的氧化物和含B的氧化物的粉體。這些粉體可以使用市售品。將這些粉末混合後在熔點以下進行熱處理,由此製作。另外,為了形成適於製造濺射靶的粉體,能夠在合成後增加粉碎步驟。
混合、粉碎的方法,沒有特別限定,可使用研缽混合、球磨等公知的方法。
進行熱處理的步驟也可以使用公知的方法。
3. 濺射靶的製造方法
在一實施方式中,本公開涉及一種濺射靶的製造方法。所述方法,至少包括以下的步驟。
・將Ru粉體與含硼的複合氧化物的粉體進行混合的步驟
・對混合的粉末進行加壓燒結的步驟
3-1. 混合
首先,準備Ru粉體和含硼的複合氧化物的粉體。Ru粉體,可使用市售品。優選地,使用適於製造濺射靶的粉體(例如,低雜質等)。另一方面,含硼的複合氧化物的粉體,如上文所述,可使用熔點為750℃以上(優選為1000℃以上)的含硼的複合氧化物。
將兩者混合的方法,沒有特別限定,可使用研缽混合、球磨等公知的方法。
3-2. 加壓燒結
上述的混合粉末,能夠填充到模具等中進行燒結。燒結時的加壓方法,可列舉熱壓(HP)和/或熱等靜壓加壓(HIP)等。
熱壓時的處理溫度,可以為750~1200℃。處理溫度的下限值,優選為900℃以上。處理溫度的上限值,優選為1100℃以下。燒結時的保持壓力,優選在150kgf/cm2 以上的壓力範圍內。
熱等靜壓加壓時的處理溫度,可以為750~1200℃。處理溫度的下限值,優選為900℃以上。處理溫度的上限值,優選為1100℃以下。燒結時的保持壓力,優選在1000kgf/cm2 以上的壓力範圍內。
3-3. 其他
經過上述混合以及燒結後,進一步進行機械加工,最終形成所需的形狀。
4. 濺射靶的使用
4-1. 成膜
能夠使用通過上述步驟得到的濺射靶,進行成膜。濺射的條件,可採用本技術領域公知的條件,典型地,如以下條件。
濺射條件
濺射裝置:Canon Anelva公司製造 C3010
輸入功率 100~1kW(例如,1kW),
Ar氣壓 1~10Pa(例如,1.7Pa),
預濺射 0.5~2kWhr(例如,2kWhr)
4-2. 磁記錄介質
按照上述條件進行濺射,能夠形成用於磁記錄層的中間層。通過應用該層,能夠製造磁記錄介質。
例如,能夠按照以下的步驟進行製造。首先,準備基板。在基板上,形成成分為NiW或NiFeW的層。接著,在NiW層或NiFeW層之上,形成純Ru層。之後,通過使用上述的濺射靶進行濺射,能夠形成由含Ru和含硼的複合氧化物構成的層作為中間層。然後,在中間層之上形成磁記錄層。磁記錄層之上,能夠設置保護層、以及潤滑層等本技術領域公知的層。另外,在NiW的層之下,能夠設置以CrTi、NiTa為主要成分的密合層,以FeCoTa、FeCoNb、FeCoMo等為主要成分的軟磁性層,在軟磁性層的中間促進反鐵磁耦合的Ru層等本技術領域公知的層。
在通過上述方法得到的垂直磁記錄介質中,Ru與記錄層介面的凹凸比較少並且記錄層的磁性粒子之間的磁性分離良好,並且能夠提高磁性粒子的磁各向異性,因此能夠提高使用該介質的HDD的記錄密度。
〔實施例〕
5. 實施例
5-1. 濺射靶的製造
準備釕粉末(純度99.9wt%),和含硼的複合氧化物粉末(純度99wt%)。關於含硼的複合氧化物,準備Co2 B2 O5 、CrBO3 、TiBO3 以及Mn3 B2 O6 這4種(實施例1~4),和B2 O3 (比較例)。以含硼的複合氧化物的含量成為表1所述的「B目標群組成值wt%」的方式,混合釕粉末與含硼的複合氧化物粉末。接著,將混合物填充到碳制的模具中,進行熱壓。熱壓條件是,Ar氣氛,燒結溫度1000℃,燒結壓力300kg/cm2 ,燒結時間2小時。對從熱壓的模具中取出的燒結體實施熱等靜壓燒結(HIP)。熱等靜壓燒結的條件是,保溫溫度1100℃,保溫時間2小時,從升溫開始時逐漸提高Ar氣的氣壓,在1100℃保溫中以1500kgf/cm2 進行加壓。將得到的燒結體切削加工成所需的尺寸,得到圓盤狀的濺射靶。
另外,僅使用釕粉末(純度99.9wt%),按照與上文同樣的條件進行製造,得到濺射靶(參考例)。
在熱壓之後,以及在熱等靜壓燒結之後,立即測量燒結體的密度,算出相對密度。
另外,使用ICP發射光譜分析裝置(日立高科技公司製造的SPS3100HV)分析硼的量。
結果在表1中示出。
Figure 108119331-A0304-0001
〔表1〕
在實施例1中,進行混合以使得B量為0.55wt%,並製造濺射靶。作為成品的濺射靶中的B含量為0.49wt%。因此示出,在經過熱壓以及熱等靜壓燒結之後,有B殘存。實施例2~4也示出了相同的傾向。
5-2. 含硼的複合氧化物的存在
實施例1~4,通過SEM觀察濺射靶組織(圖1)。另外,對於觀察的氧化物的一部分(圖1的方框部分),使用EDS(日立高科技公司製造的S-3700N)實施定量分析。結果在表2中示出。
Figure 108119331-A0304-0002
〔表2〕
在實施例1中,在同一區域中檢測出了Co、B以及O。因此,示出存在Co2 B2 O5 的複合氧化物。以下同樣地,在實施例2~4中,示出存在所需的複合氧化物(CrBO3 ,TiBO3 以及Mn3 B2 O6 )。
以上,說明了本發明的具體的實施方式。上述實施方式,僅僅是本發明的具體例,本發明不限於上述實施方式。例如,在上述的實施方式之一中公開的技術特徵,也能夠適用於其他的實施方式。另外,除非有特別說明,對於特定的方法,能夠將一部分的步驟替換成其他的步驟的順序,能夠在特定的2個步驟之間增加更多的步驟。本發明的範圍,由權利要求書的範圍進行限定。
圖1為在一實施方式中,使用Ru粉末和Co2 B2 O5 粉末製造的靶的SEM照片。圖中方框的部分,表示通過EDS進行分析的氧化物的一部分。

Claims (8)

  1. 一種濺射靶,其主要成份是Ru,包含熔點比B2O3高且含硼的複合氧化物,其中該複合氧化物是選自由CO2B2O5、CrBO3、TiBO3以及Mn3B2O6構成的群組的1種以上。
  2. 如請求項1所述之濺射靶,其中B的含量為0.01wt%以上。
  3. 如請求項1或2所述之濺射靶,其中靶的相對密度為90%以上。
  4. 如請求項1或2所述之濺射靶,其中除了Ru、B和O以外,還含有從Co、Cr、Mn以及Ti中選擇的1種以上作為構成元素。
  5. 如請求項1或2所述之濺射靶,其中該複合氧化物的熔點為750℃以上。
  6. 一種用於製造濺射靶的複合氧化物的粉體,其中該複合氧化物是熔點比B2O3高且含硼的複合氧化物,其中該複合氧化物是選自由Co2B2O5、CrBO3、TiBO3以及Mn3B2O6構成的群組的1種以上。
  7. 如請求項6所述之粉體,其中該複合氧化物的熔點為750℃以上。
  8. 如請求項6或7所述之粉體,其中比表面積為0.5~80m2/g、粒徑為0.3~15μm,和/或雜質的濃度為10000wtppm以下。
TW108119331A 2018-09-25 2019-06-04 濺射靶以及用於製造濺射靶的粉體 TWI727334B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018178381 2018-09-25
JP2018-178381 2018-09-25

Publications (2)

Publication Number Publication Date
TW202012666A TW202012666A (zh) 2020-04-01
TWI727334B true TWI727334B (zh) 2021-05-11

Family

ID=69953061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108119331A TWI727334B (zh) 2018-09-25 2019-06-04 濺射靶以及用於製造濺射靶的粉體

Country Status (6)

Country Link
JP (1) JP7072664B2 (zh)
CN (1) CN112739846A (zh)
MY (1) MY197929A (zh)
SG (1) SG11202102759VA (zh)
TW (1) TWI727334B (zh)
WO (1) WO2020066114A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200702462A (en) * 2005-06-16 2007-01-16 Nippon Mining Co Ruthenium-alloy sputtering target
TW201636444A (zh) * 2015-04-01 2016-10-16 光洋應用材料科技股份有限公司 釕基靶材及用於磁記錄媒體的中間膜
TWI615479B (zh) * 2013-04-30 2018-02-21 Jx Nippon Mining & Metals Corp 燒結體、由該燒結體構成之磁記錄膜形成用濺鍍靶

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7186471B2 (en) * 2002-02-28 2007-03-06 Seagate Technology Llc Chemically ordered, cobalt-three platinum alloys for magnetic recording
JP2006283054A (ja) * 2005-03-31 2006-10-19 Hoya Corp スパッタリングターゲット、多層反射膜付き基板の製造方法、及び反射型マスクブランクの製造方法、並びに反射型マスクの製造方法
JP2008101246A (ja) * 2006-10-19 2008-05-01 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランクを製造する際に使用されるスパッタリングターゲット
US7871563B2 (en) * 2007-07-17 2011-01-18 Williams Advanced Materials, Inc. Process for the refurbishing of a sputtering target
JP6005767B2 (ja) * 2014-01-17 2016-10-12 Jx金属株式会社 磁性記録媒体用スパッタリングターゲット
WO2016013334A1 (ja) * 2014-07-25 2016-01-28 Jx日鉱日石金属株式会社 磁性体薄膜形成用スパッタリングターゲット
WO2016035415A1 (ja) * 2014-09-04 2016-03-10 Jx金属株式会社 スパッタリングターゲット
CN108026631B (zh) * 2015-02-19 2020-02-28 捷客斯金属株式会社 磁性体薄膜形成用溅射靶
MY191374A (en) * 2016-12-28 2022-06-21 Jx Nippon Mining & Metals Corp Magnetic material sputtering target and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200702462A (en) * 2005-06-16 2007-01-16 Nippon Mining Co Ruthenium-alloy sputtering target
TWI615479B (zh) * 2013-04-30 2018-02-21 Jx Nippon Mining & Metals Corp 燒結體、由該燒結體構成之磁記錄膜形成用濺鍍靶
TW201636444A (zh) * 2015-04-01 2016-10-16 光洋應用材料科技股份有限公司 釕基靶材及用於磁記錄媒體的中間膜

Also Published As

Publication number Publication date
MY197929A (en) 2023-07-25
WO2020066114A1 (ja) 2020-04-02
JP7072664B2 (ja) 2022-05-20
TW202012666A (zh) 2020-04-01
JPWO2020066114A1 (ja) 2021-10-21
SG11202102759VA (en) 2021-04-29
CN112739846A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
TWI547581B (zh) Sintered body sputtering target
TWI568871B (zh) Magnetic sputtering target for magnetic recording film
US10090012B2 (en) Fe-bases magnetic material sintered compact
TWI564416B (zh) Magnetic sputtering target for magnetic recording film
TWI685581B (zh) 磁性材濺鍍靶及其製造方法
JP5705993B2 (ja) C粒子が分散したFe−Pt−Ag−C系スパッタリングターゲット及びその製造方法
WO2012029498A1 (ja) Fe-Pt系強磁性材スパッタリングターゲット
JP3973857B2 (ja) マンガン合金スパッタリングターゲットの製造方法
TW201428119A (zh) Fe-Pt系燒結體濺鍍靶及其製造方法
JP2009074127A (ja) 焼結スパッタリングターゲット材およびその製造方法
TWI727334B (zh) 濺射靶以及用於製造濺射靶的粉體
TWI753073B (zh) 磁性材濺鍍靶及其製造方法
WO2014175392A1 (ja) 磁気記録膜用スパッタリングターゲット及びその製造に用いる炭素原料
TWI605143B (zh) Magnetic recording media sputtering target
TWI727322B (zh) 濺鍍靶及磁性膜
TWI663264B (zh) 含釕錸濺鍍靶材、含釕錸層及其製法
WO2010098290A1 (ja) スパッタリングターゲット材およびその製造方法、ならびにそれらを用いて製造された薄膜
JP2005097657A (ja) パーティクル発生の少ない磁性層形成用スパッタリングターゲット
TWI761264B (zh) 鐵鉑銀基靶材及其製法
WO2017141558A1 (ja) 磁気記録媒体用スパッタリングターゲット及び磁性薄膜
JP6876115B2 (ja) Co−Pt−Re系スパッタリングターゲット、その製造方法及び磁気記録層
JP6845069B2 (ja) スパッタリングターゲット
TWI429777B (zh) 含氧化鈷及非磁性氧化物之鈷鉻鉑基合金濺鍍靶材及其製造方法
JP7014541B2 (ja) スパッタリングターゲット、スパッタリングターゲットの製造方法及び磁気媒体の製造方法
WO2020053972A1 (ja) スパッタリングターゲット、磁性膜および、磁性膜の製造方法