TWI596099B - 用於含鉬薄膜之沉積之雙(烷基亞胺基)-雙(烷基醯胺基)鉬分子 - Google Patents

用於含鉬薄膜之沉積之雙(烷基亞胺基)-雙(烷基醯胺基)鉬分子 Download PDF

Info

Publication number
TWI596099B
TWI596099B TW103107187A TW103107187A TWI596099B TW I596099 B TWI596099 B TW I596099B TW 103107187 A TW103107187 A TW 103107187A TW 103107187 A TW103107187 A TW 103107187A TW I596099 B TWI596099 B TW I596099B
Authority
TW
Taiwan
Prior art keywords
molybdenum
containing precursor
precursor
nhtbu
ntbu
Prior art date
Application number
TW103107187A
Other languages
English (en)
Other versions
TW201504247A (zh
Inventor
朱利安 伽蒂諾
高昌熙
橫田二郎
馬特拉斯 克雷門 蘭薩洛
Original Assignee
液態空氣喬治斯克勞帝方法研究開發股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 液態空氣喬治斯克勞帝方法研究開發股份有限公司 filed Critical 液態空氣喬治斯克勞帝方法研究開發股份有限公司
Publication of TW201504247A publication Critical patent/TW201504247A/zh
Application granted granted Critical
Publication of TWI596099B publication Critical patent/TWI596099B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Description

用於含鉬薄膜之沉積之雙(烷基亞胺基)-雙(烷基醯胺基)鉬分子 【相關申請案之交叉引用】
本申請案主張於2013年3月15日申請之PCT申請案第PCT/lB2013/001038號之優先權,其全部內容以引用之方式併入本文中。
本發明揭示雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物,其合成,及其於含鉬薄膜之沉積中的用途。
全世界許多半導體團隊之目標之一為能夠以低電阻率沉積MoN薄膜。在Thin Solid Films(166(1988)149-154)中Hiltunen等人在500℃下以MOCl5及NH3作為前驅體來沉積氮化鉬薄膜。隨後在J.Electrochem.Soc.(Juppo等人,147(2000)3377-3381)中在400℃及500℃下研究相同的MOCl5-NH3製程。由Juppo等人在500℃下所獲得之結果與Hiltunen等人在早期研究中所獲得之結果極其類似。所沉積之薄膜具有極低電阻率(100μΩ cm)及氯含量(1at.%)。此外,在400℃下所沉積之薄膜的品質不佳,沉積速率僅為0.02Å/循環,氯含量為10at.%,且薄層電阻不可量測。使用此等鹵化物-氨系統,活性鹵化氫作為副產物釋放。
已引入具有通式Mo(NR)2(NR'2)2之無鹵化物亞胺基-醯胺基 金屬-有機前驅體用於氮化鉬或碳氮化物沉積。Chiu等人,J.Mat Res.9(7),1994,1622-1624;Sun等人之美國專利第6,114,242號;Crane等人,J.Phys.Chem.B 2001,105,3549-3556;Miikkulainen等人,Chem Mater.(2007),19,263-269;Miikkulainen等人,Chem.Vap.Deposition(2008)14,71-77。
同上Miikkulainen等人在Chem.Mater.(2007)及Chem.Vap.Deposition(2008)中揭示使用Mo(NR)2(NR'2)2前驅體之ALD沉積。在比MOCl5之情況更低的溫度下觀察ALD飽和模式,且避免排放腐蝕性副產物。同上Miikkulainen等人報導了異丙基衍生物(亦即Mo(NtBu)2(NiPr2)2)為熱不穩定的。同上Miikkulainen等人報導了乙基衍生物可適於作為ALD前驅體,其中ALD窗為285℃至300℃。
同上Chiu等人在J.Mat.Res.中揭示使用Mo(NtBu)2(NHtBu)2之MoN之CVD沉積。
另一目標為能夠沉積具有較高κ值及低洩漏電流之MoO薄膜。
仍需要適合用於商業上適合之MoN或MoO薄膜之沉積的鉬前驅體。
符號及命名法
在以下描述及申請專利範圍通篇中使用某些縮寫、符號及術語,且其包括:如本文所用,不定冠詞「一(a/an)」意謂一或多個。
如本文所用,術語「獨立地(independently)」當用於描述R 基團之情形時應理解為指示對象R基團不僅相對於帶有相同或不同下標或上標之其他R基團獨立地選擇,而且相對於任何其他種類之彼相同R基團獨立地選擇。舉例而言,在式Mo(NR)2(NHR')2中,兩個亞胺基R基團可(但不必)彼此相同。
如本文所用,術語「烷基(alkyl group)」指排他性地含有碳及氫原子之飽和官能基。另外,術語「烷基(alkyl group)」指直鏈、分支鏈或環狀烷基。直鏈烷基之實例包括(但不限於)甲基、乙基、丙基、丁基等。分支鏈烷基之實例包括(但不限於)第三丁基。環狀烷基之實例包括(但不限於)環丙基、環戊基、環己基等。
如本文所用,術語「烴(hydrocarbon)」意謂排他性地含有氫及碳原子之官能基。該官能基可為飽和的(僅含有單鍵)或不飽和的(含有雙或參鍵)。
如本文所用,縮寫「Me」指甲基;縮寫「Et」指乙基;縮寫「Pr」指正丙基;縮寫「iPr」指異丙基;縮寫「Bu」指正丁基;縮寫「tBu」指第三丁基;縮寫「sBu」指第二丁基;縮寫「iBu」指異丁基;;及縮寫「tAmyl」指第三戊基(亦稱為戊基或C5H11)。
本文使用來自元素週期表之元素的標準縮寫。應瞭解元素可藉由此等縮寫提及(例如Mo指鉬,N指氮,H指氫等)。
請注意:含Mo薄膜(諸如MoN、MoCN、MoSi、MoSiN及MoO)列於本說明書及申請專利範圍之通篇中而不用提及其適當化學計量。由製程產生之含鉬層可包括純鉬(Mo)、氮化鉬(MokNl)、碳化鉬(MokCl)、碳氮化鉬(MokClNm)、矽化鉬(MonSim)或氧化鉬(MonOm)薄膜, 其中k、l、m及n在1(包括1)至6(包括6)範圍內。較佳地,氮化鉬及碳化鉬為MOkNl或MokCl,其中k及l各在0.5至1.5範圍內。更佳地,氮化鉬為MolNl且碳化鉬為MolCl。較佳地,氧化鉬及矽化鉬為MonOm及MonSim,其中n在0.5至1.5範圍內且m在1.5至3.5範圍內。更佳地,氧化鉬為MoO2或MoO3且矽化鉬為MoSi2
本發明揭示用於在基板上形成含鉬薄膜之氣相沉積方法。向含基板之氣相沉積腔室中引入含鉬前驅體。使含鉬前驅體之一部分或全部沉積在該基板上以形成含鉬薄膜。含鉬前驅體具有式Mo(NR)2(NHR')2,其中R及R'獨立地選自由C1-C4烷基、C1-C4全氟烷基及烷基矽烷基組成之群。所揭示之方法可包括以下態樣中之一或多者:‧含鉬前驅體為Mo(NMe)2(NHMe)2;‧含鉬前驅體為Mo(NMe)2(NHEt)2;‧含鉬前驅體為Mo(NMe)2(NHPr)2;‧含鉬前驅體為Mo(NMe)2(NHiPr)2;‧含鉬前驅體為Mo(NMe)2(NHBu)2;‧含鉬前驅體為Mo(NMe)2(NHiBu)2;‧含鉬前驅體為Mo(NMe)2(NHsBu)2;‧含鉬前驅體為Mo(NMe)2(NHtBu)2;‧含鉬前驅體為Mo(NEt)2(NHMe)2;‧含鉬前驅體為Mo(NEt)2(NHEt)2;‧含鉬前驅體為Mo(NEt)2(NHPr)2;‧含鉬前驅體為Mo(NEt)2(NHiPr)2; ‧含鉬前驅體為Mo(NEt)2(NHBu)2;‧含鉬前驅體為Mo(NEt)2(NHiBu)2;‧含鉬前驅體為Mo(NEt)2(NHsBu)2;‧含鉬前驅體為Mo(NEt)2(NHtBu)2;‧含鉬前驅體為Mo(NPr)2(NHMe)2;‧含鉬前驅體為Mo(NPr)2(NHEt)2;‧含鉬前驅體為Mo(NPr)2(NHPr)2;‧含鉬前驅體為Mo(NPr)2(NHiPr)2;‧含鉬前驅體為Mo(NPr)2(NHBu)2;‧含鉬前驅體為Mo(NPr)2(NHiBu)2;‧含鉬前驅體為Mo(NPr)2(NHsBu)2;‧含鉬前驅體為Mo(NPr)2(NHtBu)2;‧含鉬前驅體為Mo(NiPr)2(NHMe)2;‧含鉬前驅體為Mo(NiPr)2(NHEt)2;‧含鉬前驅體為Mo(NiPr)2(NHPr)2;‧含鉬前驅體為Mo(NiPr)2(NHiPr)2;‧含鉬前驅體為Mo(NiPr)2(NHBu)2;‧含鉬前驅體為Mo(NiPr)2(NHiBu)2;‧含鉬前驅體為Mo(NiPr)2(NHsBu)2;‧含鉬前驅體為Mo(NiPr)2(NHtBu)2;‧含鉬前驅體為Mo(NBu)2(NHMe)2;‧含鉬前驅體為Mo(NBu)2(NHEt)2; ‧含鉬前驅體為Mo(NBu)2(NHPr)2;‧含鉬前驅體為Mo(NBu)2(NHiPr)2;‧含鉬前驅體為Mo(NBu)2(NHBu)2;‧含鉬前驅體為Mo(NBu)2(NHiBu)2;‧含鉬前驅體為Mo(NBu)2(NHsBu)2;‧含鉬前驅體為Mo(NBu)2(NHtBu)2;‧含鉬前驅體為Mo(NiBu)2(NHMe)2;‧含鉬前驅體為Mo(NiBu)2(NHEt)2;‧含鉬前驅體為Mo(NiBu)2(NHPr)2;‧含鉬前驅體為Mo(NiBu)2(NHiPr)2;‧含鉬前驅體為Mo(NiBu)2(NHBu)2;‧含鉬前驅體為Mo(NiBu)2(NHiBu)2;‧含鉬前驅體為Mo(NiBu)2(NHsBu)2;‧含鉬前驅體為Mo(NiBu)2(NHtBu)2;‧含鉬前驅體為Mo(NsBu)2(NHMe)2;‧含鉬前驅體為Mo(NsBu)2(NHEt)2;‧含鉬前驅體為Mo(NsBu)2(NHPr)2;‧含鉬前驅體為Mo(NsBu)2(NHiPr)2;‧含鉬前驅體為Mo(NsBu)2(NHBu)2;‧含鉬前驅體為Mo(NsBu)2(NHiBu)2;‧含鉬前驅體為Mo(NsBu)2(NHsBu)2;‧含鉬前驅體為Mo(NsBu)2(NHtBu)2; ‧含鉬前驅體為Mo(NtBu)2(NHMe)2;‧含鉬前驅體為Mo(NtBu)2(NHEt)2;‧含鉬前驅體為Mo(NtBu)2(NHPr)2;‧含鉬前驅體為Mo(NtBu)2(NHiPr)2;‧含鉬前驅體為Mo(NtBu)2(NHBu)2;‧含鉬前驅體為Mo(NtBu)2(NHiBu)2;‧含鉬前驅體為Mo(NtBu)2(NHsBu)2;‧含鉬前驅體為Mo(NtBu)2(NHtBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHMe)2;‧含鉬前驅體為Mo(NSiMe3)2(NHEt)2;‧含鉬前驅體為Mo(NSiMe3)2(NHPr)2;‧含鉬前驅體為Mo(NSiMe3)2(NHiPr)2;‧含鉬前驅體為Mo(NSiMe3)2(NHBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHiBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHsBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHtBu)2;‧含鉬前驅體為Mo(NCF3)2(NHMe)2;‧含鉬前驅體為Mo(NCF3)2(NHEt)2;‧含鉬前驅體為Mo(NCF3)2(NHPr)2;‧含鉬前驅體為Mo(NCF3)2(NHiPr)2;‧含鉬前驅體為Mo(NCF3)2(NHBu)2;‧含鉬前驅體為Mo(NCF3)2(NHiBu)2; ‧含鉬前驅體為Mo(NCF3)2(NHsBu)2;‧含鉬前驅體為Mo(NCF3)2(NHtBu)2;‧含鉬前驅體為Mo(NMe)2(NHSiMe3)2;‧含鉬前驅體為Mo(NEt)2(NHSiMe3)2;‧含鉬前驅體為Mo(NPr)2(NHSiMe3)2;‧含鉬前驅體為Mo(NtBu)2(NHSiMe3)2;‧含鉬前驅體為Mo(NtAmyl)2(NHMe)2;‧含鉬前驅體為Mo(NtAmyl)2(NHEt)2;‧含鉬前驅體為Mo(NtAmyl)2(NHPr)2;‧含鉬前驅體為Mo(NtAmyl)2(NHiPr)2;‧含鉬前驅體為Mo(NtAmyl)2(NHBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHiBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHsBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHtBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHSiMe3)2;‧含鉬前驅體為Mo(NtBu)(NtAmyl)(NHtBu)2;‧氣相沉積方法為ALD;‧氣相沉積方法為PE-ALD;‧氣相沉積方法為空間ALD;‧氣相沉積方法為CVD;‧氣相沉積方法為PE-CVD;‧藉由電漿增強型原子層沉積使含鉬前驅體中之至少一部分沉積在 基板上;‧電漿功率介於約30W與約600W之間;‧電漿功率介於約100W與約500W之間;‧使含鉬前驅體與還原劑反應;‧該還原劑選自由N2、H2、NH3、N2H4及任何基於肼之化合物、SiH4、Si2H6、其自由基物質及其組合組成之群;‧使含鉬前驅體中之至少一部分與氧化劑反應;‧該氧化劑選自由O2、H2O、O3、H2O2、N2O、NO、乙酸、其自由基物質及其組合組成之群;‧在介於約0.01Pa與約1×105Pa之間的壓力下進行該方法;‧在介於約0.1Pa與約1×104Pa之間的壓力下進行該方法;‧在介於約20℃與約500℃之間的溫度下進行該方法;‧在介於約330℃與約500℃之間的溫度下進行該方法;‧含鉬薄膜為Mo;‧之含鉬薄膜為MoO;‧含鉬薄膜為MoN;‧含鉬薄膜為MoSi;‧含鉬薄膜為MoSiN;及‧含鉬薄膜為MoCN。
本發明亦揭示用於在基板上形成氧化鉬薄膜之化學氣相沉積方法。向含基板之氣相沉積腔室中引入含鉬前驅體。含鉬前驅體中之至少一部分在該基板之表面上與氧化劑反應以形成氧化鉬薄膜。含鉬前驅體 具有式Mo(NR)2(NHR')2,其中R及R'獨立地選自由C1-C4烷基、C1-C4全氟烷基及烷基矽烷基組成之群。所揭示之方法可包括以下態樣中之一或多者:‧含鉬前驅體為Mo(NMe)2(NHMe)2;‧含鉬前驅體為Mo(NMe)2(NHEt)2;‧含鉬前驅體為Mo(NMe)2(NHPr)2;‧含鉬前驅體為Mo(NMe)2(NHiPr)2;‧含鉬前驅體為Mo(NMe)2(NHBu)2;‧含鉬前驅體為Mo(NMe)2(NHiBu)2;‧含鉬前驅體為Mo(NMe)2(NHsBu)2;‧含鉬前驅體為Mo(NMe)2(NHtBu)2;‧含鉬前驅體為Mo(NEt)2(NHMe)2;‧含鉬前驅體為Mo(NEt)2(NHEt)2;‧含鉬前驅體為Mo(NEt)2(NHPr)2;‧含鉬前驅體為Mo(NEt)2(NHiPr)2;‧含鉬前驅體為Mo(NEt)2(NHBu)2;‧含鉬前驅體為Mo(NEt)2(NHiBu)2;‧含鉬前驅體為Mo(NEt)2(NHsBu)2;‧含鉬前驅體為Mo(NEt)2(NHtBu)2;‧含鉬前驅體為Mo(NPr)2(NHMe)2;‧含鉬前驅體為Mo(NPr)2(NHEt)2;‧含鉬前驅體為Mo(NPr)2(NHPr)2;‧含鉬前驅體為Mo(NPr)2(NHiPr)2; ‧含鉬前驅體為Mo(NPr)2(NHBu)2;‧含鉬前驅體為Mo(NPr)2(NHiBu)2;‧含鉬前驅體為Mo(NPr)2(NHsBu)2;‧含鉬前驅體為Mo(NPr)2(NHtBu)2;‧含鉬前驅體為Mo(NiPr)2(NHMe)2;‧含鉬前驅體為Mo(NiPr)2(NHEt)2;‧含鉬前驅體為Mo(NiPr)2(NHPr)2;‧含鉬前驅體為Mo(NiPr)2(NHiPr)2;‧含鉬前驅體為Mo(NiPr)2(NHBu)2;‧含鉬前驅體為Mo(NiPr)2(NHiBu)2;‧含鉬前驅體為Mo(NiPr)2(NHsBu)2;‧含鉬前驅體為Mo(NiPr)2(NHtBu)2;‧含鉬前驅體為Mo(NBu)2(NHMe)2;‧含鉬前驅體為Mo(NBu)2(NHEt)2;‧含鉬前驅體為Mo(NBu)2(NHPr)2;‧含鉬前驅體為Mo(NBu)2(NHiPr)2;‧含鉬前驅體為Mo(NBu)2(NHBu)2;‧含鉬前驅體為Mo(NBu)2(NHiBu)2;‧含鉬前驅體為Mo(NBu)2(NHsBu)2;‧含鉬前驅體為Mo(NBu)2(NHtBu)2;‧含鉬前驅體為Mo(NiBu)2(NHMe)2;‧含鉬前驅體為Mo(NiBu)2(NHEt)2; ‧含鉬前驅體為Mo(NiBu)2(NHPr)2;‧含鉬前驅體為Mo(NiBu)2(NHiPr)2;‧含鉬前驅體為Mo(NiBu)2(NHBu)2;‧含鉬前驅體為Mo(NiBu)2(NHiBu)2;‧含鉬前驅體為Mo(NiBu)2(NHsBu)2;‧含鉬前驅體為Mo(NiBu)2(NHtBu)2;‧含鉬前驅體為Mo(NsBu)2(NHMe)2;‧含鉬前驅體為Mo(NsBu)2(NHEt)2;‧含鉬前驅體為Mo(NsBu)2(NHPr)2;‧含鉬前驅體為Mo(NsBu)2(NHiPr)2;‧含鉬前驅體為Mo(NsBu)2(NHBu)2;‧含鉬前驅體為Mo(NsBu)2(NHiBu)2;‧含鉬前驅體為Mo(NsBu)2(NHsBu)2;‧含鉬前驅體為Mo(NsBu)2(NHtBu)2;‧含鉬前驅體為Mo(NtBu)2(NHMe)2;‧含鉬前驅體為Mo(NtBu)2(NHEt)2;‧含鉬前驅體為Mo(NtBu)2(NHPr)2;‧含鉬前驅體為Mo(NtBu)2(NHiPr)2;‧含鉬前驅體為Mo(NtBu)2(NHBu)2;‧含鉬前驅體為Mo(NtBu)2(NHiBu)2;‧含鉬前驅體為Mo(NtBu)2(NHsBu)2;‧含鉬前驅體為Mo(NtBu)2(NHtBu)2; ‧含鉬前驅體為Mo(NSiMe3)2(NHMe)2;‧含鉬前驅體為Mo(NSiMe3)2(NHEt)2;‧含鉬前驅體為Mo(NSiMe3)2(NHPr)2;‧含鉬前驅體為Mo(NSiMe3)2(NHiPr)2;‧含鉬前驅體為Mo(NSiMe3)2(NHBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHiBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHsBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHtBu)2;含鉬前驅體為Mo(NCF3)2(NHMe)2;‧含鉬前驅體為Mo(NCF3)2(NHEt)2;‧含鉬前驅體為Mo(NCF3)2(NHPr)2;‧含鉬前驅體為Mo(NCF3)2(NHiPr)2;‧含鉬前驅體為Mo(NCF3)2(NHBu)2;‧含鉬前驅體為Mo(NCF3)2(NHiBu)2;‧含鉬前驅體為Mo(NCF3)2(NHsBu)2;‧含鉬前驅體為Mo(NCF3)2(NHtBu)2;‧含鉬前驅體為Mo(NMe)2(NHSiMe3)2;‧含鉬前驅體為Mo(NEt)2(NHSiMe3)2;‧含鉬前驅體為Mo(NPr)2(NHSiMe3)2;‧含鉬前驅體為Mo(NtBu)2(NHSiMe3)2;‧含鉬前驅體為Mo(NtAmyl)2(NHMe)2;‧含鉬前驅體為Mo(NtAmyl)2(NHEt)2; ‧含鉬前驅體為Mo(NtAmyl)2(NHPr)2;‧含鉬前驅體為Mo(NtAmyl)2(NHiPr)2;‧含鉬前驅體為Mo(NtAmyl)2(NHBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHiBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHsBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHtBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHSiMe3)2;‧含鉬前驅體為Mo(NtBu)(NtAmyl)(NHtBu)2;‧化學氣相沉積方法為電漿增強型化學氣相沉積;‧電漿功率介於約30W與約600W之間;‧電漿功率介於約100W與約500W之間;‧該氧化劑選自由O2、H2O、O3、H2O2、N2O、NO、乙酸、其自由基物質及其組合組成之群;‧在介於約0.01Pa與約1×105Pa之間的壓力下進行該方法;‧在介於約0.1Pa與約1×104Pa之間的壓力下進行該方法;‧在介於約20℃與約500℃之間的溫度下進行該方法;且‧在介於約330℃與約500℃之間的溫度下進行該方法。
亦揭示用於在基板上形成含鉬薄膜之原子層沉積方法。向含基板之氣相沉積腔室中引入含鉬前驅體。藉由原子層沉積使含鉬前驅體之一部分或全部沉積在該基板上以形成含鉬薄膜。含鉬前驅體具有式Mo(NR)2(NHR')2,其中R及R'獨立地選自由C1-C4烷基、C1-C4全氟烷基及烷基矽烷基組成之群。所揭示之方法可包括以下態樣中之一或多者: ‧含鉬前驅體為Mo(NMe)2(NHMe)2;‧含鉬前驅體為Mo(NMe)2(NHEt)2;‧含鉬前驅體為Mo(NMe)2(NHPr)2;‧含鉬前驅體為Mo(NMe)2(NHiPr)2;‧含鉬前驅體為Mo(NMe)2(NHBu)2;‧含鉬前驅體為Mo(NMe)2(NHiBu)2;‧含鉬前驅體為Mo(NMe)2(NHsBu)2;‧含鉬前驅體為Mo(NMe)2(NHtBu)2;‧含鉬前驅體為Mo(NEt)2(NHMe)2;‧含鉬前驅體為Mo(NEt)2(NHEt)2;‧含鉬前驅體為Mo(NEt)2(NHPr)2;‧含鉬前驅體為Mo(NEt)2(NHiPr)2;‧含鉬前驅體為Mo(NEt)2(NHBu)2;‧含鉬前驅體為Mo(NEt)2(NHiBu)2;‧含鉬前驅體為Mo(NEt)2(NHsBu)2;‧含鉬前驅體為Mo(NEt)2(NHtBu)2;‧含鉬前驅體為Mo(NPr)2(NHMe)2;‧含鉬前驅體為Mo(NPr)2(NHEt)2;‧含鉬前驅體為Mo(NPr)2(NHPr)2;‧含鉬前驅體為Mo(NPr)2(NHiPr)2;‧含鉬前驅體為Mo(NPr)2(NHBu)2;‧含鉬前驅體為Mo(NPr)2(NHiBu)2; ‧含鉬前驅體為Mo(NPr)2(NHsBu)2;‧含鉬前驅體為Mo(NPr)2(NHtBu)2;‧含鉬前驅體為Mo(NiPr)2(NHMe)2;‧含鉬前驅體為Mo(NiPr)2(NHEt)2;‧含鉬前驅體為Mo(NiPr)2(NHPr)2;‧含鉬前驅體為Mo(NiPr)2(NHiPr)2;‧含鉬前驅體為Mo(NiPr)2(NHBu)2;‧含鉬前驅體為Mo(NiPr)2(NHiBu)2;‧含鉬前驅體為Mo(NiPr)2(NHsBu)2;‧含鉬前驅體為Mo(NiPr)2(NHtBu)2;‧含鉬前驅體為Mo(NBu)2(NHMe)2;‧含鉬前驅體為Mo(NBu)2(NHEt)2;‧含鉬前驅體為Mo(NBu)2(NHPr)2;‧含鉬前驅體為Mo(NBu)2(NHiPr)2;‧含鉬前驅體為Mo(NBu)2(NHBu)2;‧含鉬前驅體為Mo(NBu)2(NHiBu)2;‧含鉬前驅體為Mo(NBu)2(NHsBu)2;‧含鉬前驅體為Mo(NBu)2(NHtBu)2;‧含鉬前驅體為Mo(NiBu)2(NHMe)2;‧含鉬前驅體為Mo(NiBu)2(NHEt)2;‧含鉬前驅體為Mo(NiBu)2(NHPr)2;‧含鉬前驅體為Mo(NiBu)2(NHiPr)2; ‧含鉬前驅體為Mo(NiBu)2(NHBu)2;‧含鉬前驅體為Mo(NiBu)2(NHiBu)2;‧含鉬前驅體為Mo(NiBu)2(NHsBu)2;‧含鉬前驅體為Mo(NiBu)2(NHtBu)2;‧含鉬前驅體為Mo(NsBu)2(NHMe)2;‧含鉬前驅體為Mo(NsBu)2(NHEt)2;‧含鉬前驅體為Mo(NsBu)2(NHPr)2;‧含鉬前驅體為Mo(NsBu)2(NHiPr)2;‧含鉬前驅體為Mo(NsBu)2(NHBu)2;‧含鉬前驅體為Mo(NsBu)2(NHiBu)2;‧含鉬前驅體為Mo(NsBu)2(NHsBu)2;‧含鉬前驅體為Mo(NsBu)2(NHtBu)2;‧含鉬前驅體為Mo(NtBu)2(NHMe)2;‧含鉬前驅體為Mo(NtBu)2(NHEt)2;‧含鉬前驅體為Mo(NtBu)2(NHPr)2;‧含鉬前驅體為Mo(NtBu)2(NHiPr)2;‧含鉬前驅體為Mo(NtBu)2(NHBu)2;‧含鉬前驅體為Mo(NtBu)2(NHiBu)2;‧含鉬前驅體為Mo(NtBu)2(NHsBu)2;‧含鉬前驅體為Mo(NtBu)2(NHtBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHMe)2;‧含鉬前驅體為Mo(NSiMe3)2(NHEt)2; ‧含鉬前驅體為Mo(NSiMe3)2(NHPr)2;‧含鉬前驅體為Mo(NSiMe3)2(NHiPr)2;‧含鉬前驅體為Mo(NSiMe3)2(NHBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHiBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHsBu)2;‧含鉬前驅體為Mo(NSiMe3)2(NHtBu)2;‧含鉬前驅體為Mo(NCF3)2(NHMe)2;‧含鉬前驅體為Mo(NCF3)2(NHEt)2;‧含鉬前驅體為Mo(NCF3)2(NHPr)2;‧含鉬前驅體為Mo(NCF3)2(NHiPr)2;‧含鉬前驅體為Mo(NCF3)2(NHBu)2;‧含鉬前驅體為Mo(NCF3)2(NHiBu)2;‧含鉬前驅體為Mo(NCF3)2(NHsBu)2;‧含鉬前驅體為Mo(NCF3)2(NHtBu)2;‧含鉬前驅體為Mo(NMe)2(NHSiMe3)2;‧含鉬前驅體為Mo(NEt)2(NHSiMe3)2;‧含鉬前驅體為Mo(NPr)2(NHSiMe3)2;‧含鉬前驅體為Mo(NtBu)2(NHSiMe3)2;‧含鉬前驅體為Mo(NtAmyl)2(NHMe)2;‧含鉬前驅體為Mo(NtAmyl)2(NHEt)2;‧含鉬前驅體為Mo(NtAmyl)2(NHPr)2;‧含鉬前驅體為Mo(NtAmyl)2(NHiPr)2; ‧含鉬前驅體為Mo(NtAmyl)2(NHBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHiBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHsBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHtBu)2;‧含鉬前驅體為Mo(NtAmyl)2(NHSiMe3)2;‧含鉬前驅體為Mo(NtBu)(NtAmyl)(NHtBu)2;‧藉由電漿增強型原子層沉積使含鉬前驅體中之至少一部分沉積在基板上;‧電漿功率介於約30W與約600W之間;‧電漿功率介於約100W與約500W之間;‧使含鉬前驅體與還原劑反應;‧該還原劑選自由N2、H2、NH3、N2H4及任何基於肼之化合物、SiH4、Si2H6、其自由基物質及其組合組成之群;‧使含鉬前驅體中之至少一部分與氧化劑反應;‧該氧化劑選自由O2、H2O、O3、H2O2、N2O、NO、乙酸、其自由基物質及其組合組成之群;‧在介於約0.01Pa與約1×105Pa之間的壓力下進行該方法;‧在介於約0.1Pa與約1×104Pa之間的壓力下進行該方法;‧在介於約20℃與約500℃之間的溫度下進行該方法;‧在介於約330℃與約500℃之間的溫度下進行該方法;‧含鉬薄膜為Mo;‧含鉬薄膜為MoO; ‧含鉬薄膜為MoN;‧含鉬薄膜為MoSi;‧含鉬薄膜為MoSiN;及‧含鉬薄膜為MoCN。
為進一步理解本發明之性質及目標,應結合附圖參考以下【實施方式】,且其中:圖1為說明在所揭示之鉬化合物之NHR'醯胺基配位體中包括H的益處之圖。
圖2為說明每個循環氮化鉬薄膜生長隨SiO2基板上之沉積溫度而變之圖表。鉬前驅體及氨之脈衝長度分別固定為2秒及5秒。
圖3為說明每個循環氮化鉬薄膜生長隨SiO2基板上之鉬前驅體脈衝時間而變之圖表。氨之脈衝長度固定為5秒。
圖4為說明在400℃下所沉積之氮化鉬薄膜厚度隨SiO2基板上之沉積循環而變之圖表。鉬前驅體及氨之脈衝長度分別固定為2秒及5秒。
圖5為在400℃下在TEOS圖案化晶圓上所沉積之氮化鉬薄膜的掃描電子顯微鏡(scanning electron microscope,SEM)橫截面。鉬前驅體及氨之脈衝長度分別固定為2秒及5秒。
圖6為說明在400℃下在SiO2基板上所沉積之氮化鉬薄膜的X射線光電子光譜學(X-ray Photoelectron Spectroscopy,XPS)深度特徵之圖表。
圖7為說明氮化鉬薄膜電阻率值隨SiO2基板上之沉積溫度而變之圖表。鉬前驅體及氨之脈衝長度分別固定為2秒及5秒。
圖8為說明每個循環氮化鉬薄膜生長隨使用電漿源在SiO2基板上之沉積溫度而變之圖表。鉬前驅體及氨之脈衝長度分別固定為2秒及5秒。
圖9為說明使用電漿源在400℃下在SiO2基板上所沉積之氮化鉬薄膜之XPS深度特徵的圖表。
圖10為說明氮化鉬薄膜電阻率值隨使用電漿源在SiO2基板上之沉積溫度而變之圖表。鉬前驅體及氨之脈衝長度分別固定為2秒及5秒。
揭示雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物。該雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物具有式Mo(NR)2(NHR')2,其中R及R'獨立地選自由C1-C4烷基、C1-C4全氟烷基及烷基矽烷基組成之群。
例示性雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物包括Mo(NMe)2(NHMe)2、Mo(NMe)2(NHEt)2、Mo(NMe)2(NHPr)2、Mo(NMe)2(NHiPr)2、Mo(NMe)2(NHBu)2、Mo(NMe)2(NHiBu)2、Mo(NMe)2(NHsBu)2、Mo(NMe)2(NHtBu)2)、Mo(NEt)2(NHMe)2、Mo(NEt)2(NHEt)2、Mo(NEt)2(NHPr)2、Mo(NEt)2(NHiPr)2、Mo(NEt)2(NHBu)2、Mo(NEt)2(NHiBu)2、Mo(NEt)2(NHsBu)2、Mo(NEt)2(NHtBu)2、Mo(NPr)2(NHMe)2、Mo(NPr)2(NHEt)2、Mo(NPr)2(NHPr)2、Mo(NPr)2(NHiPr)2、Mo(NPr)2(NHBu)2、Mo(NPr)2(NHiBu)2、Mo(NPr)2(NHsBu)2、Mo(NPr)2(NHtBu)2、Mo(NiPr)2(NHMe)2、Mo(NiPr)2(NHEt)2、Mo(NiPr)2(NHPr)2、Mo(NiPr)2(NHiPr)2、Mo(NiPr)2(NHBu)2、Mo(NiPr)2(NHiBu)2、Mo(NiPr)2(NHsBu)2、Mo(NiPr)2(NHtBu)2)、Mo(NBu)2(NHMe)2、Mo(NBu)2(NHEt)2、Mo(NBu)2(NHPr)2、Mo(NBu)2(NHiPr)2、Mo(NBu)2(NHBu)2、Mo(NBu)2(NHiBu)2、Mo(NBu)2(NHsBu)2、Mo(NBu)2(NHtBu)2、Mo(NiBu)2(NHMe)2、Mo(NiBu)2(NHEt)2、Mo(NiBu)2(NHPr)2、 Mo(NiBu)2(NHiPr)2、Mo(NiBu)2(NHBu)2、Mo(NiBu)2(NHiBu)2、Mo(NiBu)2(NHsBu)2、Mo(NiBu)2(NHtBu)2、Mo(NsBu)2(NHMe)2、Mo(NsBu)2(NHEt)2、Mo(NsBu)2(NHPr)2、Mo(NsBu)2(NHiPr)2、Mo(NsBu)2(NHBu)2、Mo(NsBu)2(NHiBu)2、Mo(NsBu)2(NHsBu)2、Mo(NsBu)2(NHtBu)2、Mo(NtBu)2(NHMe)2、Mo(NtBu)2(NHEt)2、Mo(NtBu)2(NHPr)2、Mo(NtBu)2(NHiPr)2、Mo(NtBu)2(NHBu)2、Mo(NtBu)2(NHiBu)2、Mo(NtBu)2(NHsBu)2、Mo(NtBu)2(NHtBu)2、Mo(NSiMe3)2(NHMe)2、Mo(NSiMe3)2(NHEt)2、Mo(NSiMe3)2(NHPr)2、Mo(NSiMe3)2(NHiPr)2、Mo(NSiMe3)2(NHBu)2、Mo(NSiMe3)2(NHiBu)2、Mo(NSiMe3)2(NHsBu)2、Mo(NSiMe3)2(NHtBu)2、Mo(NCF3)2(NHMe)2、Mo(NCF3)2(NHEt)2、Mo(NCF3)2(NHPr)2、Mo(NCF3)2(NHiPr)2、Mo(NCF3)2(NHBu)2、Mo(NCF3)2(NHiBu)2、Mo(NCF3)2(NHsBu)2、Mo(NCF3)2(NHtBu)2、Mo(NMe)2(NHSiMe3)2、Mo(NEt)2(NHSiMe3)2、Mo(NPr)2(NHSiMe3)2、Mo(NtBu)2(NHSiMe3)2、Mo(NtAmyl)2(NHMe)2、Mo(NtAmyl)2(NHEt)2、Mo(NtAmyl)2(NHPr)2、Mo(NtAmyl)2(NHiPr)2、Mo(NtAmyl)2(NHBu)2、Mo(NtAmyl)2(NHiBu)2、Mo(NtAmyl)2(NHsBu)2、Mo(NtAmyl)2(NHtBu)2、Mo(NtAmyI)2(NHSiMe3)2及Mo(NtBu)(NtAmyl)(NHtBu)2,較佳為Mo(NtBu)2(NHiPr)2、Mo(NtBu)2(NHtBu)2、Mo(NtAmyl)2(NHiPr)2或Mo(NtAmyl)2(NHtBu)2
對於一般技術者顯而易見,雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物可藉由R.L.Harlow,Inorganic Chemistry,1980,19,777及W.A.Nugent,Inorganic Chemistry,1983,22,965所述之方法,在進行少量修改(例如 MoO2Cl2→加合之Mo(NR)2Cl2→Mo(NR)2(NHR')2)下合成。可與過量LiNHR'反應來製備最終產物。含全氟烷基及烷基矽烷基之雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物亦可使用相同合成途徑製備。
雙(烷基亞胺基)-雙(烷基醯胺基)鉬前驅體之純度較佳高於99.9% w/w。雙(烷基亞胺基)-雙(烷基醯胺基)鉬前驅體可含有以下雜質中之任一者:烷基胺、二烷基胺、二甲氧基乙烷(DME)、MoO2Cl2、Mo(NR)2Cl2(DME)(其中R如上文所定義)及二烷基胺基鋰。此等雜質之總量較佳低於0.1% w/w。
雙(烷基亞胺基)-雙(烷基醯胺基)鉬前驅體亦可包括ppbw(每十億重量份之份數)含量之金屬雜質。此等金屬雜質包括(但不限於):鋁(Al)、砷(As)、鋇(Ba)、鈹(Be)、鉍(Bi)、鎘(Cd)、鈣(Ca)、鉻(Cr)、鈷(Co)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉿(Hf)、銦(In)、鐵(Fe)、鉛(Pb)、鋰(Li)、鎂(Mg)、錳(Mn)、鎢(W)、鎳(Ni)、鉀(K)、鈉(Na)、鍶(Sr)、釷(Th)、錫(Sn)、鈦(Ti)、鈾(U)、釩(V)及鋅(Zn)。
此等純度水準可藉由在室溫或在介於-50℃至10℃之間範圍內的低溫下在溶劑中使最終產物再結晶而達成。該溶劑可為戊烷、己烷、四氫呋喃(tetrahydrofuran,THF)、乙醚、甲苯或其混合物。其他或另外,此等純度水準可藉由蒸餾(對於液體前驅體)及昇華(對於固體前驅體)最終或再結晶產物而達成。
亦揭示由雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物沉積含鉬薄膜之氣相沉積方法。將雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物引入其中安置有基板之反應器中。使雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物中之 至少一部分沉積在該基板上以形成含鉬薄膜。
如實施例中部分說明,申請者出人意料地發現,當與藉由類似二烷基醯胺基(亦即NR2)所沉積之薄膜相比時,在醯胺基(亦即NHR')中包括氫提供快的ALD生長速率、更高的ALD溫度窗及所得薄膜中更低的雜質濃度。更快的生長速率為關鍵優點,因為其使工業沉積工具得到更高產量(例如每小時加工更多晶圓),其限制條件為所得層具有類似或較好的電效能。
ALD溫度窗與雜質濃度在一定程度上相關。當與類似二烷基醯胺基之熱穩定性及ALD溫度窗相比時,所揭示之分子較高的熱穩定性允許在較高溫度下以ALD模式沉積。在更高溫度下沉積可增加還原劑之活性,從而產生較好的薄膜密度且對於MoN薄膜產生較低的C及O濃度以及對於MoO薄膜產生較低的C及N濃度。較高的MoN薄膜密度將增加薄膜之障壁特性。對於MoO薄膜之沉積,較高的ALD溫度窗允許提供較高κ值之較好結晶相之沉積。
MoN薄膜之電阻率受薄膜中之任何雜質(諸如C或O)之濃度影響。較高的C濃度可暗示雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物之分解(亦即化合物之熱不穩定性)。MoN薄膜之電阻率及障壁特性對晶片效率(RC延遲、電遷移、可靠性)具有直接影響。MoO薄膜中之較高的C及N濃度可增加薄膜之洩漏電流。因此,申請者出人意料地發現一種將所揭示之前驅體用於MoN薄膜之改良的ALD沉積製程。更出人意料的是相比於使用類似二烷基化合物所獲得之結果,由使用Mo(NtBu)2(NHtBu)2所得之薄膜之特性得到顯著改善。出於上文所述之原因,一般技術者將預期在 純鉬、矽化鉬(MoSi)、氮矽化鉬(MoSiN)薄膜及氧化鉬(MoO)薄膜之沉積中使用所揭示之前驅體來獲得類似改良之結果。
申請者相信在醯胺基(亦即NHR')中包括氫對於化學吸附性物質之穩定性至關重要。申請者進一步相信龐大的tBu醯胺基藉由以與tBu亞胺基對稱之方式完全佔據金屬周圍之空間而提供極大優勢。此可為醯胺基與亞胺基之間的雙鍵非定域化之結果。如Correla-Anacleto等人所報導,ALD機制可經由亞胺基(亦即NR)進行(8th Int'l Conference on Atomic Layer Deposition-ALD 2008,WedM2b-8)。申請者相信在醯胺基中包括H使醯胺基配位體之酸性高於類似二烷基醯胺基。NHR'基之酸性可使醯胺基對還原劑或氧化劑具有更高之活性。NHR'基之酸性可另外使醯胺基對基板表面具有更低之活性。因此,化學吸附性鉬物質仍與基板接觸較長一段時間,允許該等物質經由配位體交換進行反應,該配位體交換藉由α-H活化作用及還原劑之轉胺作用或氧化劑之氧化作用進行。參見圖1。申請者相信此等反應皆產生較快的ALD生長速率及較高的ALD溫度窗。因此,使用所揭示之分子類別進行ALD沉積將提供與類似二烷基化合物相比更好的薄膜。
所揭示之雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物中之至少一部分可藉由化學氣相沉積(chemical vapor deposition,CVD)、原子層沉積(atomic layer deposition,ALD)或與氣相塗佈相關之其他類型的沉積而沉積至基板上以形成含鉬薄膜,其他類型的沉積諸如電漿增強型CVD(PECVD)、電漿增強型ALD(PEALD)、脈衝CVD(PCVD)、低壓CVD(LPCVD)、低於大氣壓CVD(SACVD)或大氣壓CVD(APCVD)、熱線CVD(HWCVD,亦稱為cat-CVD,其中熱線用作沉積製程之能源)、空間ALD、 熱線ALD(HWALD)、自由基結合沉積及超臨界流體沉積或其組合。為了提供適合之階梯覆蓋及薄膜厚度控制,沉積方法較佳為ALD、PE-ALD或空間ALD。
所揭示之方法可適用於製造半導體、光伏打裝置、LCD-TFT或平板型裝置。該方法包括將以上所揭示之至少一種雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物之蒸氣引入其中安置有至少一個基板之反應器中,及使用氣相沉積製程使雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物中之至少一部分沉積於至少一個基板上以形成含鉬層。反應器中之溫度及壓力以及基板之溫度保持在適合於在基板之至少一個表面上形成含鉬層之條件下。反應氣體亦可用於促進含Mo層之形成。
所揭示之方法亦可用於使用氣相沉積製程在基板上形成兩個含金屬層,且更特定言之用於MoMOx層之沉積,其中M為第二元素且選自由以下組成之群:2族、3族、4族、5族、13族、14族、過渡金屬、鑭系元素及其組合,且更佳來自Mg、Ca、Sr、Ba、Hf、Nb、Ta、Al、Si、Ge、Y或鑭系元素。該方法包括:將以上所揭示之至少一種雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物引入其中安置有至少一個基板之反應器中,將第二前驅體引入該反應器中,及使用氣相沉積製程使雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物中之至少一部分及第二前驅體中之至少一部分沉積於至少一個基板上以形成兩個含元素層。
該反應器可為其中進行沉積方法之裝置的任何殼體或腔室,諸如(但不限於)平行板型反應器、冷壁型反應器、熱壁型反應器、單晶圓反應器、多晶圓反應器或其他該等類型之沉積系統。所有此等例示 性反應器能夠用作ALD或CVD反應器。反應器可維持在約0.01Pa至約1×105Pa、較佳約0.1Pa至約1×104Pa範圍內之壓力下。另外,反應器中之溫度可在約室溫(20℃)至約500℃、較佳約330℃至約500℃範圍內。一般技術者將認識到可僅僅經由實驗使溫度最佳化以達成所需結果。
反應器之溫度可藉由控制基板固持器(稱為冷壁反應器)之溫度或控制反應器壁(稱為熱壁反應器)之溫度或兩種方法之組合來控制。用於加熱基板之裝置為此項技術中已知。
可將反應器壁加熱至足夠溫度以獲得處於足夠生長速率下且具有所需物理狀態及組成之所需薄膜。反應器壁可加熱達到的非限制性例示性溫度範圍包括約20℃至約500℃。當採用電漿沉積製程時,沉積溫度可在約20℃至約500℃範圍內。或者,當進行熱製程時,沉積溫度可在約100℃至約500℃範圍內。
或者,可將基板加熱至足夠溫度以獲得處於足夠生長速率下且具有所需物理狀態及組成之所需含鉬層。基板可加熱達到的非限制性例示性溫度範圍包括100℃至500℃。較佳地,基板溫度保持低於或等於500℃。
上面將沉積含鉬層之基板類型將視所欲最終用途而不同。在一些具體實例中,基板可選自在MIM、DRAM或FeRam技術中用作介電材料之氧化物(例如基於ZrO2之材料、基於HfO2之材料、基於TiO2之材料、基於稀土氧化物之材料、基於三元氧化物(ternary oxide)之材料等)或選自用作銅與低k層之間的氧障壁之基於氮化物之層(例如TaN)。其他基板可用於製造半導體、光伏打裝置、LCD-TFT或平板裝置。該等基板之實例包括(但不限於)固體基板(諸如銅及基於銅之合金,如CuMn)、含金屬 氮化物之基板(例如TaN、TiN、WN、TaCN、TiCN、TaSiN及TiSiN);絕緣體(例如SiO2、Si3N4、SiON、HfO2、Ta2O5、ZrO2、TiO2、Al2O3及鈦酸鋇鈦酸鍶);或包括任何數目之此等材料之組合的其他基板。亦可使用塑膠基板,諸如聚(3,4-伸乙二氧基噻吩)聚(苯乙烯磺酸酯)[PEDOT:PSS]。所使用之實際基板亦可視所使用之特定化合物具體實例而定。但在許多情況下,所使用之較佳基板將選自Si及SiO2基板。
所揭示之雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物可以純的形式或以與適合之溶劑(諸如乙苯、二甲苯、均三甲苯、癸烷、十二烷)摻合的形式供應,以形成前驅體混合物。所揭示之化合物可以不同濃度存在於溶劑中。
藉由習知方法(諸如管道及/或流量計)將純的化合物或前驅體混合物中之一或多者以蒸氣形式引入反應器中。純的化合物或前驅體混合物之蒸氣形式可藉由經由諸如直接汽化、蒸餾之習知汽化步驟使純的化合物或前驅體混合物汽化,藉由鼓泡,或藉由使用昇華器(諸如Xu等人之PCT公開案WO2009/087609中所揭示者)來產生。純的化合物或前驅體混合物可以液體狀態饋送至汽化器,其中在將其引入反應器之前使其汽化。或者,純的化合物或前驅體混合物可藉由使載氣通入含有純的化合物或前驅體混合物之容器中或藉由使載氣鼓泡至純的化合物或前驅體混合物中來汽化。該載氣可包括(但不限於)Ar、He、N2及其混合物。載氣及化合物隨後以蒸氣形式引入反應器中。
若需要,可將純的化合物或前驅體混合物之容器加熱至准許純的化合物或前驅體混合物呈其液相且具有足夠蒸氣壓之溫度。容器可維 持在例如約0℃至約200℃範圍內之溫度下。熟習此項技術者認識到可以已知方式調節容器溫度以控制經汽化之前驅體的量。
在引入反應器中之前,除視情況使雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物與溶劑、第二前驅體及穩定劑混合之外,可將雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物與反應器內部之反應氣體混合。例示性反應氣體包括(但不限於)第二前驅體,諸如含過渡金屬前驅體(例如鈮)、含稀土前驅體、含鍶前驅體、含鋇前驅體、含鋁前驅體(諸如TMA)及其任何組合。此等或其他第二前驅體可作為摻雜劑或作為所得層中之第二或第三金屬(諸如MoMOx)少量併入所得層中。
反應氣體可包括還原劑,其選自(但不限於)N2、H2、NH3、SiH4、Si2H6、Si3H8、(Me)2SiH2、(C2H5)2SiH2、(CH3)3SiH、(C2H5)3SiH、[N(C2H5)2]2SiH2、N(CH3)3、N(C2H5)3、(SiMe3)2NH、(CH3)HNNH2、(CH3)2NNH2、苯肼、B2H6、(SiH3)3N、此等還原劑之自由基物質及此等還原劑之混合物。較佳地,當進行ALD製程時,還原劑為H2
當所需含鉬層亦含氧(諸如(例如且不限於)MoOx及MoMOx)時,反應氣體可包括氧化劑,其選自(但不限於)O2、O3、H2O、H2O2、乙酸、福馬林(formalin)、對甲醛、此等氧化劑之自由基物質及此等氧化劑之混合物。較佳地,當進行ALD製程時,氧化劑為H2O。
反應氣體可經電漿處理,以便使反應氣體分解成其自由基形式。電漿可產生或存在於反應腔室自身內。或者,電漿可通常位於自反應腔室移出之位置(例如在遠程定位電漿系統中)。熟習此項技術者應瞭解適用於該電漿處理之方法及設備。
舉例而言,可將反應氣體引入在反應腔室中產生電漿之直接電漿反應器中,從而在反應腔室中產生經電漿處理之反應氣體。例示性直接電漿反應器包括由Trion Technologies生產之TitanTM PECVD系統。在電漿加工之前可引入反應氣體且保持在反應腔室中。或者,電漿加工可與反應氣體之引入同步進行。原位電漿典型地為13.56MHz RF電容耦合電漿,其在噴淋頭與基板固持器之間產生。視是否發生正離子碰撞而定,基板或噴淋頭可為供電電極。在原位電漿產生器中典型的施加功率為約30W至約1000W。較佳地,在所揭示之方法中使用約30W至約600W之功率。更佳地,功率在約100W至約500W範圍內。使用原位電漿之反應氣體分解典型地小於對於相同功率輸入使用遠程電漿源所達成之反應氣體分解,且因此在反應氣體分解方面不如遠程電漿系統有效,對於易受電漿破壞之含鉬薄膜在基板上之沉積而言此可為有益的。
或者,經電漿處理之反應氣體可在反應腔室外部產生。在通入反應腔室之前,可使用MKS Instruments之ASTRONi®反應氣體產生器來處理反應氣體。在2.45GHz、7kW電漿功率及約3托至約10托範圍內之壓力下操作,反應氣體O2可分解成兩個O自由基。較佳地,可在約1kW至約10kW、更佳約2.5kW至約7.5kW範圍內之功率下產生遠程電漿。
當所需含鉬層亦含有另一元素(諸如(例如且不限於)Nb、Sr、Ba、Al、Ta、Hf、Nb、Mg、Y、Ca、As、Sb、Bi、Sn、Pb、Mn、鑭系元素(諸如Er)或其組合)時,反應氣體可包括第二前驅體,其選自(但不限於)金屬烷基(諸如(Me)3Al)、金屬胺(諸如Nb(Cp)(NtBu)(NMe2)3)及其任何組合。
雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物及一或多種反應氣體可同時(化學氣相沉積)、依序(原子層沉積)或以其他組合方式引入反應器中。舉例而言,雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物可在一個脈衝中引入且兩種其他前驅體可在另一脈衝中一起引入[經改良之原子層沉積]。或者,在引入雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物之前反應器可已含有反應氣體。或者,在藉由脈衝引入其他反應氣體(脈衝化學氣相沉積)的同時,雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物可連續引入反應器中。反應氣體可通過局部的或反應器遠處的電漿系統,而分解成自由基。在各實施例中,可在脈衝之後進行淨化或抽空步驟以移除所引入之過量組分。在各實施例中,脈衝可持續約0.01s至約30s、或者約0.3s至約3s、或者約0.5s至約2s範圍內之時間段。在另一替代方案中,雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物及一或多種反應氣體可同時自噴淋頭噴灑,在該噴淋頭下方使固持若干晶圓之晶座旋轉(空間ALD)。
在一個非限制性例示性原子層沉積型製程中,將氣相雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物引入反應器中,在其中使其與適合之基板接觸。過量雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物可隨後藉由淨化及/或抽空反應器而自反應器移除。將氧化劑引入反應器中,在其中其以自限制方式與所吸附之雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物反應。任何過量氧化劑藉由淨化及/或抽空反應器而自反應器移除。若所需層為氧化鉬層,則此兩步製程可提供所需層厚度或可重複進行直至獲得具有所需厚度之層。
氧化鉬薄層(MoOx)可在還原氛圍(諸如與氮氣(N2)混 合之氫氣(H2))下,在300℃至1000℃範圍內之溫度下進一步退火,以形成可適於用作DRAM電容器電極之導電二氧化鉬層(MoO2)。選擇氧化劑濃度及脈衝時間以使得所吸附之鉬前驅體不完全氧化。此確保最終材料組成物將為MoO2之次氧化物。或者,純Mo金屬層(亦即非氧化脈衝)可散佈在多個MoO2層中以確保退火之後最終材料組成物將為MoO2之次氧化物。
或者,若所需MoO層含有第二元素(亦即MoMOx),則在以上兩步製程之後可將第二前驅體之蒸氣引入反應器中。將基於所沉積之MoMOx層之性質選擇第二前驅體。在引入反應器之後,使第二前驅體與基板接觸。任何過量第二前驅體藉由淨化及/或抽空反應器而自反應器移除。可再次將氧化劑引入反應器中以使其與第二前驅體反應。過量氧化劑藉由淨化及/或抽空反應器而自反應器移除。若已達成所需層厚度,則可終止製程。然而,若需要更厚之層,則可重複整個四步驟製程。藉由交替提供雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物、第二前驅體及氧化劑,可沉積所需組成及厚度之MoMOx層。
舉例而言,可以ALD模式在MoO2基板上製備磊晶金紅石氧化鈦(TiO2)薄層。可將鈦前驅體(諸如三甲氧基環戊二烯基五甲基鈦(TiCp*(OMe)3))之蒸氣引入反應器中,接著淨化、引入氧化劑蒸氣及淨化。或者,可以ALD模式在MoO2基板上製備氧化鋯(ZrO2)薄層。可將鋯前驅體(諸如參-二甲基胺基環戊二烯基鋯(ZrCp(NMe2)3))之蒸氣引入反應器中,接著淨化、引入氧化劑氣相及淨化。MoO2上所沉積之ZrO2的生長速率可高於TiN上所沉積之ZrO2的生長速率。
另外,藉由改變脈衝次數,可獲得具有所需化學計量M:Mo 比之層。舉例而言,MoMO2層可藉由具有一個雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物脈衝及一個第二前驅體脈衝,且在各脈衝之後為氧化劑脈衝來獲得。然而,一般技術者應認識到獲得所需層所需之脈衝次數可能與所得層之化學計量比不一致。
由以上所揭示之製程所產生之含鉬層可包括純鉬(Mo)、氮化鉬(MokNl)、碳化鉬(MokCl)、碳氮化鉬(MokClNm)、矽化鉬(MonSim)或氧化鉬(MonOm)薄膜,其中k、l、m及n在1(包括1)至6(包括6)範圍內。較佳地,氮化鉬及碳化鉬為MOkNl或MokCl,其中k及l各在0.5至1.5範圍內。更佳地,氮化鉬為MolNl且碳化鉬為MolCl。較佳地,氧化鉬及矽化鉬為MonOm及MonSim,其中n在0.5至1.5範圍內且m在1.5至3.5範圍內。更佳地,氧化鉬為MoO2或MoO3且矽化鉬為MoSi2
一般技術者應認識到藉由正確地選擇適當之雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物及反應氣體,可獲得所需含Mo層組成物。
Mo或MoN薄膜將具有50至5000μΩ.cm-1、較佳50至1000μΩ.cm-1範圍內之電阻率。Mo或MoN薄膜中之C含量對於藉由熱ALD所沉積之薄膜而言將在約0.01原子%至約10原子%範圍內,且對於藉由PEALD所沉積之薄膜而言將在約0.01原子%至約4原子%範圍內。MoO薄膜中之C含量將在約0.01原子%至約2原子%範圍內。
當獲得所需薄膜厚度時,薄膜可經受進一步加工,諸如熱退火、爐退火、快速熱退火、UV或e電子束固化及/或電漿氣體曝露。熟習此項技術者瞭解用於進行此等其他加工步驟之系統及方法。舉例而言,可在惰性氛圍、含H氛圍、含N氛圍、含O氛圍或其組合下使含鉬薄膜曝露於 約200℃至約1000℃範圍內之溫度,持續約0.1秒至約7200秒範圍內之時間。最佳地,在含H氛圍下,溫度為400℃,持續3600秒。所得薄膜可含有較少雜質且因此可具有產生改良之洩漏電流的改良之密度。可在進行沉積製程之同一反應腔室中進行退火步驟。或者,可自反應腔室移出基板,且在另一設備中進行退火/急驟退火製程。預期以上後處理方法中之任一者(但尤其為熱退火)有效減少含鉬薄膜之任何碳及氮污染。隨後預期此可改善薄膜之電阻率。在後處理之後MoN薄膜之電阻率可在約50至約1000μΩ.cm-1範圍內。
在另一替代方案中,所揭示之雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物可用作摻雜劑或植入劑。所揭示之雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物之一部分可沉積在待摻雜之薄膜(諸如氧化銦(In2O3)薄膜、二氧化釩(VO2)薄膜、氧化鈦薄膜、氧化銅薄膜或二氧化錫(SnO2)薄膜)上。鉬隨後在退火步驟期間擴散至薄膜中以形成摻鉬薄膜{(Mo)In2O3、(Mo)VO2、(Mo)TiO、(Mo)CuO或(Mo)SnO2}。參見例如Lavoie等人之US2008/0241575,其中之摻雜方法以全文引用的方式併入本文中。或者,可使用採用可變能量射頻四極植入機之高能量離子植入來將雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物之鉬摻入薄膜中。參見例如Kensuke等人,JVSTA 16(2)1998年3月/4月,其中之植入方法以全文引用的方式併入本文中。在另一替代方案中,可使用所揭示之雙(烷基亞胺基)-雙(烷基醯胺基)鉬化合物來進行電漿摻雜、脈衝電漿摻雜或電漿浸沒離子植入。參見例如Felch等人,Plasma doping for the fabrication of ultra-shallow junctions Surface Coatings Technology,156(1-3)2002,第229至236頁,其中之摻雜方法以全文引用的 方式併入本文中。
實施例
提供以下非限制性實施例以進一步說明本發明之具體實例。然而,該等實施例並不意欲全部為包含性的且並不意欲限制本文所述之發明範疇。
實施例1:使用Mo(NtBu)2(NHtBu)2及氨之MoN薄膜沉積
將Mo(NtBu)2(NHtBu)2用於使用氨作為共反應物以ALD模式沉積MoN薄膜。將鉬分子儲存在罐中,在80℃下加熱,且藉由N2或Ar鼓泡法將蒸氣提供至反應爐。在100℃下加熱管線以防止反應物冷凝。傳遞裝置使鉬前驅體及氨之蒸氣能夠交替引入。在425℃下以約1.3Å/循環之沉積速率獲得氮化鉬薄膜(圖2)。高於此溫度,沉積速率大幅增加,其可證明Mo(NtBu)2(NHtBu)2在此溫度以上進行熱自身分解。
在350℃及400℃下獲得ALD之飽和模式特徵,由於前驅體之脈衝時間之增加不會影響MoN薄膜之生長速率,其保持恆定(圖3)。在400℃下,獲得隨循環次數而變之薄膜生長之良好線性(R2=0.9998)(圖4)。400℃下之高度保形薄膜生長藉由掃描電子顯微術(SEM)來表徵,其表明分子之高穩定性有利於良好的階梯覆蓋(圖5)。薄膜之組成物藉由XPS分析(圖6)。薄膜為化學計量MoN。C之濃度為約10at.%。O之濃度為約8原子%。此等低濃度指示薄膜之良好品質。薄膜之良好品質進一步藉由MoN薄膜之低電阻率來確認。MoN薄膜之電阻率經由大沉積溫度窗來量測(圖7)。觀察到沉積溫度愈高,薄膜之電阻率則愈低。此結果證明藉由使用此文件中所述之穩定分子家族能夠實現之高溫ALD製程的益處。
來自文獻之反例:Miikkulainen等人在Chem.Vap.Deposition((2008)14,71-77)中揭示用Mo(NtBu)2(NMe2)2或Mo(NtBu)2(NEt2)2自NH3進行MoN之ALD沉積的結果。Miikkulainen等人揭示ALD由於其熱不穩定性而並不適合使用Mo(NtBu)2(NiPr2)2。同上在第72頁。Miikkulainen等人報導Mo(NtBu)2(NEt2)2之沉積測試結果類似於先前關於Mo(NtBu)2(NMe2)2所報導的結果,二者皆展現300℃之最高生長溫度及0.5Å/循環之生長速率。同上在第73頁。另外,藉由Mo(NtBu)2(NMe2)2及Mo(NtBu)2(NEt2)2之沉積所產生的MoN薄膜具有類似的元素組成:Mo,37%;N,41%;C,8%;O,14%。同上在第74至75頁。
實施例1中所描述之Mo(NtBu)2(NHtBu)2化合物之ALD溫度窗為約100℃,高於Mo(NtBu)2(NMe2)2及Mo(NtBu)2(NEt2)2之ALD溫度窗。使用Mo(NtBu)2(NMe2)2及Mo(NtBu)2(NEt2)2之生長速率小於實施例1中所描述之使用Mo(NtBu)2(NHtBu)2化合物所獲得之一半。由Mo(NtBu)2(NMe2)2及Mo(NtBu)2(NEt2)2產生之MoN薄膜中的O濃度幾乎為由實施例1之Mo(NtBu)2(NHtBu)2化合物產生之MoN薄膜中的濃度的兩倍。
就溫度窗、生長速率及O濃度而言,使用Mo(NtBu)2(NHtBu)2之製程所提供的結果意外地優於使用Mo(NtBu)2(NMe2)2及Mo(NtBu)2(NEt2)2之製程。
實施例2:MoO沉積
將使用與實施例1相同之前驅體,但NH3將由臭氧(O3)替代。將使用相同的ALD引入方案。預期在400℃下達到飽和。預期組成分 析證實所獲得之薄膜為MoO2、MoO3或MoxOy,其中x及y選自1至5且薄膜中之碳含量為低的(0至2原子%)。在H2/N2混合氛圍下在500℃下退火10分鐘之後,預期氧化鉬層為MoO2
實施例3:PEALD MoN沉積
在ALD模式方案中,將使用與實施例1中相同之前驅體及NH3且提供至反應腔室。在此情況下,在NH3脈衝期間接通200W之直接電漿源。以約1.0Å/循環之沉積速率在高達450℃下獲得氮化鉬薄膜(圖8)。電漿源之使用使得碳及氧雜質之濃度降低至約<2%(圖9)。MoN薄膜之電阻率經由大沉積溫度窗來量測(圖10)且由於薄膜中之雜質含量低,故電阻率亦降低為612μΩ.cm。
雖然已展示及描述本發明之具體實例,但熟習此項技術者可在不脫離本發明之精神或教示之情況下對其進行修改。本文所述之具體實例僅為例示性且不具限制性。組成物及方法之許多變化及修改為可能存在的且在本發明之範疇內。因此,保護範疇不限於本文所述之具體實例,而僅受隨後之申請專利範圍限制,其範疇應包括申請專利範圍之標的物的所有等效物。

Claims (10)

  1. 一種用於在基板上形成含鉬薄膜之原子層沉積方法,該方法包含:將含鉬前驅體引入含有基板之氣相沉積腔室中,該含鉬前驅體具有式Mo(NR)2(NHR')2,其中R及R'獨立地選自由C1-C5烷基、C1-C4全氟烷基及烷基矽烷基組成之群;及藉由原子層沉積使該含鉬前驅體中之至少一部分沉積在該基板上以形成該含鉬薄膜。
  2. 如申請專利範圍第1項之原子層沉積方法,其中該含鉬前驅體選自由以下組成之群:Mo(NMe)2(NHMe)2、Mo(NMe)2(NHEt)2、Mo(NMe)2(NHPr)2、Mo(NMe)2(NHiPr)2、Mo(NMe)2(NHBu)2、Mo(NMe)2(NHiBu)2、Mo(NMe)2(NHsBu)2、Mo(NMe)2(NHtBu)2、Mo(NEt)2(NHMe)2、Mo(NEt)2(NHEt)2、Mo(NEt)2(NHPr)2、Mo(NEt)2(NHiPr)2、Mo(NEt)2(NHBu)2、Mo(NEt)2(NHiBu)2、Mo(NEt)2(NHsBu)2、Mo(NEt)2(NHtBu)2、Mo(NPr)2(NHMe)2、Mo(NPr)2(NHEt)2、Mo(NPr)2(NHPr)2、Mo(NPr)2(NHiPr)2、Mo(NPr)2(NHBu)2、Mo(NPr)2(NHiBu)2、Mo(NPr)2(NHsBu)2、Mo(NPr)2(NHtBu)2、Mo(NiPr)2(NHMe)2、Mo(NiPr)2(NHEt)2、Mo(NiPr)2(NHPr)2、Mo(NiPr)2(NHiPr)2、Mo(NiPr)2(NHBu)2、Mo(NiPr)2(NHiBu)2、Mo(NiPr)2(NHsBu)2、Mo(NiPr)2(NHtBu)2、Mo(NBu)2(NHMe)2、Mo(NBu)2(NHEt)2、Mo(NBu)2(NHPr)2、Mo(NBu)2(NHiPr)2、Mo(NBu)2(NHBu)2、Mo(NBu)2(NHiBu)2、Mo(NBu)2(NHsBu)2、Mo(NBu)2(NHtBu)2、Mo(NiBu)2(NHMe)2、Mo(NiBu)2(NHEt)2、Mo(NiBu)2(NHPr)2、Mo(NiBu)2(NHiPr)2、 Mo(NiBu)2(NHBu)2、Mo(NiBu)2(NHiBu)2、Mo(NiBu)2(NHsBu)2、Mo(NiBu)2(NHtBu)2、Mo(NsBu)2(NHMe)2、Mo(NsBu)2(NHEt)2、Mo(NsBu)2(NHPr)2、Mo(NsBu)2(NHiPr)2、Mo(NsBu)2(NHBu)2、Mo(NsBu)2(NHiBu)2、Mo(NsBu)2(NHsBu)2、Mo(NsBu)2(NHtBu)2、Mo(NtBu)2(NHMe)2、Mo(NtBu)2(NHEt)2、Mo(NtBu)2(NHPr)2、Mo(NtBu)2(NHiPr)2、Mo(NtBu)2(NHBu)2、Mo(NtBu)2(NHiBu)2、Mo(NtBu)2(NHsBu)2、Mo(NtBu)2(NHtBu)2、Mo(NSiMe3)2(NHMe)2、Mo(NSiMe3)2(NHEt)2、Mo(NSiMe3)2(NHPr)2、Mo(NSiMe3)2(NHiPr)2、Mo(NSiMe3)2(NHBu)2、Mo(NSiMe3)2(NHiBu)2、Mo(NSiMe3)2(NHsBu)2、Mo(NSiMe3)2(NHtBu)2、Mo(NCF3)2(NHMe)2、Mo(NCF3)2(NHEt)2、Mo(NCF3)2(NHPr)2、Mo(NCF3)2(NHiPr)2、Mo(NCF3)2(NHBu)2、Mo(NCF3)2(NHiBu)2、Mo(NCF3)2(NHsBu)2、Mo(NCF3)2(NHtBu)2、Mo(NMe)2(NHSiMe3)2、Mo(NEt)2(NHSiMe3)2、Mo(NPr)2(NHSiMe3)2、Mo(NtBu)2(NHSiMe3)2、Mo(NtAmyl)2(NHMe)2、Mo(NtAmyl)2(NHEt)2、Mo(NtAmyl)2(NHPr)2、Mo(NtAmyl)2(NHiPr)2、Mo(NtAmyl)2(NHBu)2、Mo(NtAmyl)2(NHiBu)2、Mo(NtAmyl)2(NHsBu)2、Mo(NtAmyl)2(NHtBu)2、Mo(NtAmyl)2(NHSiMe3)2及Mo(NtBu)(NtAmyl)(NHtBu)2
  3. 如申請專利範圍第2項之原子層沉積方法,其中該含鉬前驅體中之該至少一部分藉由電漿增強型原子層沉積而沉積在該基板上。
  4. 如申請專利範圍第3項之原子層沉積方法,其中電漿功率介於約30W與約600W之間。
  5. 如申請專利範圍第1項至第4項中任一項之原子層沉積方法,其進一 步包含使該含鉬前驅體中之該至少一部分與還原劑反應。
  6. 如申請專利範圍第5項之原子層沉積方法,其中該還原劑選自由N2、H2、NH3、N2H4及任何基於肼之化合物、SiH4、Si2H6、其自由基物質及其組合組成之群。
  7. 如申請專利範圍第1項至第4項中任一項之原子層沉積方法,其進一步包含使該含鉬前驅體中之該至少一部分與氧化劑反應。
  8. 如申請專利範圍第7項之原子層沉積方法,其中該氧化劑選自由O2、H2O、O3、H2O2、N2O、NO、乙酸、其自由基物質及其組合組成之群。
  9. 如申請專利範圍第1項至第4項中任一項之原子層沉積方法,其中該方法在介於約0.01Pa與約1×105Pa之間的壓力下進行。
  10. 如申請專利範圍第1項至第4項中任一項之原子層沉積方法,其中該方法在介於約20℃與約500℃之間的溫度下進行。
TW103107187A 2013-03-15 2014-03-04 用於含鉬薄膜之沉積之雙(烷基亞胺基)-雙(烷基醯胺基)鉬分子 TWI596099B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2013/001038 WO2014140672A1 (en) 2013-03-15 2013-03-15 Bis(alkylimido)-bis(alkylamido)molybdenum molecules for deposition of molybdenum-containing films

Publications (2)

Publication Number Publication Date
TW201504247A TW201504247A (zh) 2015-02-01
TWI596099B true TWI596099B (zh) 2017-08-21

Family

ID=51535926

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103107187A TWI596099B (zh) 2013-03-15 2014-03-04 用於含鉬薄膜之沉積之雙(烷基亞胺基)-雙(烷基醯胺基)鉬分子

Country Status (6)

Country Link
US (2) US20160040289A1 (zh)
JP (2) JP2016516892A (zh)
KR (1) KR101627988B1 (zh)
SG (1) SG11201507672QA (zh)
TW (1) TWI596099B (zh)
WO (2) WO2014140672A1 (zh)

Families Citing this family (289)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
KR102101644B1 (ko) * 2014-05-12 2020-04-17 엘지디스플레이 주식회사 유기발광소자 및 이의 제조방법
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
US10453744B2 (en) 2016-11-23 2019-10-22 Entegris, Inc. Low temperature molybdenum film deposition utilizing boron nucleation layers
US20180142345A1 (en) * 2016-11-23 2018-05-24 Entegris, Inc. Low temperature molybdenum film deposition utilizing boron nucleation layers
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (ko) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
USD876504S1 (en) 2017-04-03 2020-02-25 Asm Ip Holding B.V. Exhaust flow control ring for semiconductor deposition apparatus
US10510590B2 (en) * 2017-04-10 2019-12-17 Lam Research Corporation Low resistivity films containing molybdenum
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (ko) * 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
TWI784036B (zh) * 2017-08-30 2022-11-21 荷蘭商Asm智慧財產控股公司 層形成方法
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US20190067095A1 (en) * 2017-08-30 2019-02-28 Asm Ip Holding B.V. Layer forming method
US11056344B2 (en) * 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR102401446B1 (ko) 2017-08-31 2022-05-24 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
KR102443047B1 (ko) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 방법 및 그에 의해 제조된 장치
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
CN111316417B (zh) 2017-11-27 2023-12-22 阿斯莫Ip控股公司 与批式炉偕同使用的用于储存晶圆匣的储存装置
JP7206265B2 (ja) 2017-11-27 2023-01-17 エーエスエム アイピー ホールディング ビー.ブイ. クリーン・ミニエンバイロメントを備える装置
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11560625B2 (en) * 2018-01-19 2023-01-24 Entegris, Inc. Vapor deposition of molybdenum using a bis(alkyl-arene) molybdenum precursor
CN111630203A (zh) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 通过等离子体辅助沉积来沉积间隙填充层的方法
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
KR20200140391A (ko) 2018-05-03 2020-12-15 램 리써치 코포레이션 3d nand 구조체들에 텅스텐 및 다른 금속들을 증착하는 방법
KR20190128558A (ko) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. 기판 상에 산화물 막을 주기적 증착 공정에 의해 증착하기 위한 방법 및 관련 소자 구조
KR20190129718A (ko) 2018-05-11 2019-11-20 에이에스엠 아이피 홀딩 비.브이. 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11021793B2 (en) * 2018-05-31 2021-06-01 L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Group 6 transition metal-containing compositions for vapor deposition of group 6 transition metal-containing films
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR20210024462A (ko) 2018-06-27 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 금속 함유 재료를 형성하기 위한 주기적 증착 방법 및 금속 함유 재료를 포함하는 필름 및 구조체
WO2020003000A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
KR20200002519A (ko) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (ko) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (zh) 2018-10-01 2020-04-07 Asm Ip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
US20200131628A1 (en) * 2018-10-24 2020-04-30 Entegris, Inc. Method for forming molybdenum films on a substrate
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
KR102355507B1 (ko) 2018-11-14 2022-01-27 (주)디엔에프 몰리브덴 함유 박막의 제조방법 및 이로부터 제조된 몰리브덴함유 박막
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (ja) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN113366144B (zh) 2019-01-28 2023-07-07 朗姆研究公司 金属膜的沉积
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
KR20200102357A (ko) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법
TW202104632A (zh) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
JP2020136678A (ja) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための方法および装置
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
JP2020133004A (ja) 2019-02-22 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材を処理するための基材処理装置および方法
KR20200108248A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOCN 층을 포함한 구조체 및 이의 형성 방법
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
KR20210127262A (ko) 2019-03-11 2021-10-21 램 리써치 코포레이션 몰리브덴-함유 막들의 증착을 위한 전구체들
KR20200116033A (ko) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. 도어 개방기 및 이를 구비한 기판 처리 장치
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188254A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 가스 감지기를 포함하는 기상 반응기 시스템
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP2021015791A (ja) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (zh) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
CN112309843A (zh) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 实现高掺杂剂掺入的选择性沉积方法
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (zh) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 用于化学源容器的液位传感器
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
JP2021052034A (ja) * 2019-09-20 2021-04-01 東京エレクトロン株式会社 金属酸化物膜の形成方法及び成膜装置
JP2021052033A (ja) * 2019-09-20 2021-04-01 東京エレクトロン株式会社 金属酸化物膜の形成方法及び成膜装置
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TW202129060A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 基板處理裝置、及基板處理方法
TW202115273A (zh) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
KR20210045930A (ko) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물의 토폴로지-선택적 막의 형성 방법
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
KR20210065848A (ko) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP2021090042A (ja) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210078405A (ko) 2019-12-17 2021-06-28 에이에스엠 아이피 홀딩 비.브이. 바나듐 나이트라이드 층을 형성하는 방법 및 바나듐 나이트라이드 층을 포함하는 구조
KR20210080214A (ko) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
JP2021109175A (ja) 2020-01-06 2021-08-02 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR20210095050A (ko) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
TW202146882A (zh) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (zh) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 專用於零件清潔的系統
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
KR20210117157A (ko) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법
KR20210119809A (ko) 2020-03-25 2021-10-06 삼성전자주식회사 몰리브덴 화합물과 이를 이용한 집적회로 소자의 제조 방법
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
TW202140831A (zh) 2020-04-24 2021-11-01 荷蘭商Asm Ip私人控股有限公司 形成含氮化釩層及包含該層的結構之方法
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
JP7433132B2 (ja) * 2020-05-19 2024-02-19 東京エレクトロン株式会社 成膜方法及び成膜装置
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
TW202200837A (zh) 2020-05-22 2022-01-01 荷蘭商Asm Ip私人控股有限公司 用於在基材上形成薄膜之反應系統
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
US11562904B2 (en) * 2020-07-21 2023-01-24 Applied Materials, Inc. Deposition of semiconductor integration films
US11886120B2 (en) * 2020-07-21 2024-01-30 Applied Materials, Inc. Deposition of semiconductor integration films
TW202212623A (zh) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法、半導體結構、及系統
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
KR20220053482A (ko) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
US11390638B1 (en) 2021-01-12 2022-07-19 Applied Materials, Inc. Molybdenum(VI) precursors for deposition of molybdenum films
US11459347B2 (en) 2021-01-12 2022-10-04 Applied Materials, Inc. Molybdenum(IV) and molybdenum(III) precursors for deposition of molybdenum films
US11434254B2 (en) 2021-01-12 2022-09-06 Applied Materials, Inc. Dinuclear molybdenum precursors for deposition of molybdenum-containing films
US11854813B2 (en) 2021-02-24 2023-12-26 Applied Materials, Inc. Low temperature deposition of pure molybenum films
US11760768B2 (en) 2021-04-21 2023-09-19 Applied Materials, Inc. Molybdenum(0) precursors for deposition of molybdenum films
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US20220372053A1 (en) * 2021-05-21 2022-11-24 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Stable bis(alkyl-arene) transition metal complexes and methods of film deposition using the same
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
WO2023054066A1 (ja) 2021-10-01 2023-04-06 株式会社Adeka 薄膜形成用原料、薄膜の製造方法、薄膜及びモリブデン化合物
KR20240063021A (ko) * 2022-10-31 2024-05-09 주식회사 유피케미칼 몰리브데늄 전구체 화합물, 이의 제조방법, 및 이를 이용한 몰리브데늄-함유 박막의 증착 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114386A1 (en) * 2009-03-30 2010-10-07 Universitetet I Oslo Thin films containing molybdenum oxide
TW201219405A (en) * 2010-08-27 2012-05-16 Sigma Aldrich Co Llc Molybdenum (IV) amide precursors and use thereof in atomic layer deposition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064686A (en) * 1990-10-29 1991-11-12 Olin Corporation Sub-valent molybdenum, tungsten, and chromium amides as sources for thermal chemical vapor deposition of metal-containing films
US6114242A (en) * 1997-12-05 2000-09-05 Taiwan Semiconductor Manufacturing Company MOCVD molybdenum nitride diffusion barrier for Cu metallization
US6835671B2 (en) 2002-08-16 2004-12-28 Freescale Semiconductor, Inc. Method of making an integrated circuit using an EUV mask formed by atomic layer deposition
US20040198069A1 (en) * 2003-04-04 2004-10-07 Applied Materials, Inc. Method for hafnium nitride deposition
EP2029790A1 (en) * 2006-06-02 2009-03-04 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
US20090275198A1 (en) * 2008-05-01 2009-11-05 Smuruthi Kamepalli Vapor Phase Methods for Forming Electrodes in Phase Change Memory Devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114386A1 (en) * 2009-03-30 2010-10-07 Universitetet I Oslo Thin films containing molybdenum oxide
TW201219405A (en) * 2010-08-27 2012-05-16 Sigma Aldrich Co Llc Molybdenum (IV) amide precursors and use thereof in atomic layer deposition

Also Published As

Publication number Publication date
JP2016516892A (ja) 2016-06-09
WO2014140672A1 (en) 2014-09-18
JP2018150627A (ja) 2018-09-27
WO2014140863A3 (en) 2015-01-29
SG11201507672QA (en) 2015-10-29
TW201504247A (zh) 2015-02-01
US20160002786A1 (en) 2016-01-07
KR20150126857A (ko) 2015-11-13
WO2014140863A2 (en) 2014-09-18
US20160040289A1 (en) 2016-02-11
KR101627988B1 (ko) 2016-06-07

Similar Documents

Publication Publication Date Title
TWI596099B (zh) 用於含鉬薄膜之沉積之雙(烷基亞胺基)-雙(烷基醯胺基)鉬分子
KR102536435B1 (ko) 6족 전이 금속-함유 막의 증착용 6족 막 형성 조성물
JP6337116B2 (ja) 第5族遷移金属含有膜を蒸着させるための第5族遷移金属含有化合物
US9543144B2 (en) Vapor deposition of chalcogenide-containing films
EP2556181A2 (en) Titanium-containing precursors for vapor deposition
US10309010B2 (en) Cobalt-containing compounds, their synthesis, and use in cobalt-containing film deposition
WO2022246140A1 (en) Stable bis (alkyl-arene) transition metal complexes and methods of film deposition using the same
TW201335417A (zh) 用於ald沈積金屬矽酸鹽膜之含矽化合物
TWI756959B (zh) 膜或塗層之方法
US9087690B2 (en) Hafnium-containing and zirconium-containing precursors for vapor deposition
WO2014118751A1 (en) Manganese-containing compounds, their synthesis, and use in manganese-containing film deposition
US20160032454A1 (en) Bis(alkylimido)-bis(alkylamido)tungsten molecules for deposition of tungsten-containing films
US9790247B2 (en) Cobalt-containing compounds, their synthesis, and use in cobalt-containing film deposition
WO2014118750A1 (en) Manganese-containing compounds, their synthesis, and use in manganese-containing film deposition