TWI391969B - Capacitor and manufacturing method thereof - Google Patents

Capacitor and manufacturing method thereof Download PDF

Info

Publication number
TWI391969B
TWI391969B TW095149509A TW95149509A TWI391969B TW I391969 B TWI391969 B TW I391969B TW 095149509 A TW095149509 A TW 095149509A TW 95149509 A TW95149509 A TW 95149509A TW I391969 B TWI391969 B TW I391969B
Authority
TW
Taiwan
Prior art keywords
oxide film
capacitor
solution
metal
dissolved
Prior art date
Application number
TW095149509A
Other languages
English (en)
Other versions
TW200746203A (en
Inventor
Hideki Oohata
Akihiko Shirakawa
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200746203A publication Critical patent/TW200746203A/zh
Application granted granted Critical
Publication of TWI391969B publication Critical patent/TWI391969B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

電容器及其製造方法
本發明係關於一種電容器及其製造方法。更詳而言之,係關於一種具有大容量、於高頻率數的ESR(等價串聯電阻)低且漏電流低的電容器及其製造方法。
近年來,伴隨電子機器的小型化、數位化及高頻率化所代表之高性能化,對於電子零件,特別是電容器,亦逐漸要求更大容量、於高頻率數的ESR(等價串聯電阻)低且漏電流低等方式。
由於靜電容量比與介電常數的比例與介電常數的厚度為反比例,希望可均勻地製膜薄且具有高介電常數的介電體層。
介電體層的製膜方法而言,有乾式製膜法及濕式製膜法。乾式製膜法而言,例示有濺鍍法、CVD法、真空蒸鍍法等成膜方法。乾式製膜法中,高真空的維持或高價成膜裝置的導入等,需考慮設備成本增高。再者,對於具有複雜形狀之多孔質上的物體,由於凹凸部的存在等,難以均勻地成膜,被指摘其膜厚控制或組成控制有困難。
另一方面,濕式製膜法而言,日本專利特開昭60-116119號公報(專利文獻1)及日本專利特開昭61-30678號公報(專利文獻2)中,揭示於含有鋇離子之強鹼性水溶液中,以化成處理金屬鈦基材,而形成鈦酸鋇薄膜的技術。日本專利特開平5-124817號公報(專利文獻3;相關申請案US 5328718)中,揭示以烷氧金屬鹽(alkoxide)法於基材上形成鈦酸鋇薄膜的技術。
日本特開2003-206135號公報(專利文獻4;相關申請案EP 1445348)中,揭示將金屬鈦基體於鹼金屬的水溶液中處理,於基體表面形成鹼金屬之鈦酸鹽後,以含有鍶、鈣等金屬離子之水溶液處理,使鹼金屬置換為鍶、鈣等金屬而形成複合鈦氧化被膜的技術。再者,日本專利特開平11-172489號公報(專利文獻5)中,揭示以電化學的手法於基板上形成鈦氧化物被膜,該被膜於鋇水溶液中以陽極氧化而製造鈦酸鋇被膜的方法。
[專利文獻1]特開昭60-116119號公報[專利文獻2]特開昭61-30678號公報[專利文獻3]特開平5-124817號公報[專利文獻4]特開2003-206135號公報[專利文獻5]特開平11-172489號公報
本發明之目的係提供具有大容量、於高頻率數的ESR(等價串聯電阻)低且漏電流低的電容器及其製造方法,以及使用該等之電子機器等。
有鑑於上述課題致力研究的結果,本發明者們發現,使用將閥作用金屬材料電解氧化所製得氧化被膜作為原料,製得複合氧化物膜,可實現小型之具有大電容、於高頻率數範圍的ESR(等價串聯電阻)低且漏電流低的電容器,根據此發現完成本發明。
亦即,本發明如下述者。
[1]一種電容器,其係具備複合氧化物膜,該複合氧化物膜係將含有閥作用金屬元素之基體表面電解氧化製得氧化物被膜,使經溶解有金屬離子以及有機鹼之溶液,於該氧化物被膜上反應所製得者。
[2]一種電容器,其係具備複合氧化物膜,該複合氧化物膜係將含有閥作用金屬元素之基體表面電解氧化製得氧化物被膜,使經溶解有金屬離子以及有機鹼之溶液,於該氧化物被膜上反應,接著進行煅燒所製得者。
[3]一種固體電解電容器,具備含有閥作用金屬元素之基體;使經溶解有金屬離子以及有機鹼之溶液,於將該基體表面電解氧化製得之氧化物被膜上反應所製得之複合氧化物膜;層合於該複合氧化物膜上之固體電解質層;以及層合於該固體電解質層上之導體層。
[4]如上述[1]至[3]中任一項之電容器,其中,該氧化物被膜與經溶解有金屬離子以及有機鹼之溶液的反應,係利用非電場下的化學反應。
[5]如上述[1]至[4]中任一項之電容器,其中,該經溶解有金屬離子以及有機鹼之溶液的pH為11以上。
[6]如上述[1]至[5]中任一項之電容器,其中,該複合氧化物膜的介電常數為80至15000。
[7]如上述[1]至[6]中任一項之電容器,其中,該複合氧化物膜的厚度為1nm至4000nm。
[8]如上述[1]至[7]中任一項之電容器,其中,該閥作用金屬元素為鈦元素。
[9]如上述[1]至[8]中任一項之電容器,其中,該金屬離子為鋇離子。
[10]一種電子構件,係使用上述[1]至[9]中任一項之電容器。
[11]一種印刷基板,係使用上述[1]至[9]中任一項之電容器。
[12]一種電子機器,係使用上述[1]至[9]中任一項之電容器。
[13]一種電容器之製造方法,至少含有藉由閥作用金屬元素之電解氧化而形成氧化物被膜的步驟;以及使經溶解有金屬離子以及有機鹼之溶液與所形成之氧化物被膜反應的步驟。
[14]一種電容器之製造方法,至少含有藉由閥作用金屬元素之電解氧化而形成氧化物被膜的步驟;使經溶解有金屬離子以及有機鹼之溶液與所形成之氧化物被膜反應的步驟;以及煅燒步驟。
[15]一種固體電解電容器之製造方法,至少含有藉由閥作用金屬元素之電解氧化而形成氧化物被膜的步驟;使經溶解有金屬離子以及有機鹼之溶液與所形成之氧化物被膜反應的步驟;於該複合氧化物膜上層合固體電解質層的步驟;以及於該固體電解質層上層合導體層的步驟。
根據本發明,將閥作用金屬材料電解氧化所製得之氧化被膜與溶解有金屬離子及有機鹼的溶液反應,製得高介電常數的複合氧化物膜,使用該複合氧化物膜,可製得小型大容量、低ESR且低漏電流的電容器。
本發明之電容器係具備將含有閥作用金屬元素所成之基體表面電解氧化所製得之氧化物被膜,與溶解有金屬離子及有機鹼之溶液反應,所製得之複合氧化物膜者。
閥作用金屬元素為顯示形成安定的氧化被膜的閥作用之金屬元素。閥作用金屬元素已知有鋁、鉭、鈮、鈦、鉿、鋯、鋅、鎢、鉍、銻等。其等之中,較佳為鋁、鉭、鈦、鈮,特佳為鈦。
含有閥作用金屬元所成基體,只要為含有閥作用金屬元者即可,例如可列舉閥作用金屬單體或含有閥作用金屬之合金等所形成者。該基體只要為可電解氧化者即可,其形狀無特別限制,較佳為作成板狀、箔狀、棒狀者,特佳為作成箔狀者。箔狀的基體較佳之箔厚度為5至150 μm。再者,大小亦根據使用目的有所不同,作為平板形零件單位,較佳以寬約1至50mm且長約1至50mm,更較佳以寬2至20mm且長2至20mm,再較佳以寬2至5mm且長2至6mm的矩形者適合使用。
基體亦可為燒結體。燒結體係將含有閥作用金屬元素之粉體,以既定的形狀加壓成形製得之成形體,此成形體例如可於500至2000℃加熱燒結而製得。成形時,鉭、鈮、鋁等閥作用金屬為主成分之金屬線(或金屬箔)的一部份埋設於成形體中,經由與成形體同時燒結,由燒結體突出部分金屬線(或金屬箔),可設計作為燒結體的陽極引出線(箔的情況中亦略稱為引出線。後文中亦相同)。再者,燒結後之上述金屬線(或金屬箔)經由溶接等,亦可連接陽極引出線。此方式之金屬線的線徑,通常為1mm以下,於金屬箔情況的厚度通常為1mm以下。再者,亦可於鋁、鉭、鈮等閥作用金屬箔上附著含有閥作用金屬元素之粉體,經由燒結,使該閥作用金屬箔的一部分為陽極引出部而作為燒結體。
基體亦可於電解氧化前以蝕刻處理等公知方法等清淨化其表面,較佳以多孔質等公知方法等使表面積大的處理。
電解氧化處理係將含有閥作用金屬元素所成之基體的既定區域,浸漬於化成液,以既定電壓電流密度進行化成。此時,為使化成液的浸漬液面程度安定化,冀望於既定位置塗佈遮罩材而實施化成。遮罩材的材料並無限定。遮罩材,例如可使用一般的耐熱性樹脂,較佳為於溶劑中可溶或可膨潤之耐熱性樹脂或其前驅物、無機質微粉與纖維素系樹脂所成之組成物(日本專利特開平11-80596號公報)等。遮罩材所使用材料之更具體例,可列舉聚苯碸(PPS)、聚醚碸(PES)、氰酸酯樹脂、氟樹脂(四氟乙烯、四氟乙烯-全氟烷基乙烯醚共聚物)、聚醯胺及其等之衍生物等。該等可溶解或分散於有機溶劑,容易地調製適合塗佈操作之任意固形分濃度(從而之黏度)之溶液或分散液。
化成液為酸及/或其鹽之溶液,例如可列舉含有磷酸、硫酸、草酸、硼酸、己二酸及其鹽之至少一種之溶液。化成液的濃度通常為0.1至30質量%,較佳為1至20質量%。化成液的溫度通常為0至90℃,較佳為20至80℃。
基體於化成液浸漬後,通常先進行定電流化成,到達既定電壓後,進行定電壓化成。定電流化成及定電壓化成,通常以電流密度0.1至1000mA/cm2 、電壓2至400V、時間1毫秒至400分鐘的條件,較佳以電流密度1至400mA/cm2 、電壓5至70V、時間1秒至300分鐘的條件進行。
經由此電解氧化於基體表面形成氧化物被膜。此氧化物被膜的厚度只要為下一步驟中複合氧化物膜可形成之厚度即可,並無限定,較佳為1至4000nm的範圍,更佳為5至2000的範圍。
經由上述電話氧化步驟所形成之氧化物被膜,與溶解有金屬離子及有機鹼的溶液反應而變化為複合氧化物膜。
溶解有金屬離子及有機鹼的溶液中所使用的溶劑,雖可列舉水,或醇、酮等有機溶劑,或該等之混合溶劑,本發明中較佳為水。
溶解於該溶液之金屬離子,只要為與閥金屬反應,可得高介電常數之複合氧化物膜者即可,並無特別限定。較佳為與閥金屬組合而可得強介電體膜之離子。較佳例可列舉鈣、鍶、鋇等鹼土族金屬或鉛。該等之中較佳為鋇。
溶解於上述溶液之金屬化合物,較佳為水溶性者,具體而言可列舉氯化鈣、硝酸鈣、醋酸鈣、氯化鍶、硝酸鍶、醋酸鍶、氫氧化鋇、氯化鋇、硝酸鋇、醋酸鋇、硝酸鉛、醋酸鉛等,該等金屬化合物可1種單獨或2種以上以任意比率混合使用。再者,亦可將含有由Sn、Zr、La、Ce、Mg、Bi、Ni、Al、Si、Zn、B、Nb、W、Mn、Fe、Cu及Dy所成組群中選出至少一種元素之化合物,以反應後的複合氧化物膜中,該等元素含量未達5莫耳%的方式添加。
所添加之有機鹼雖無特別限制,但以於後述之乾燥或煅燒時的溫度以下,且於大氣壓下或減壓下,以蒸發、昇華及/或熱分解中至少一種手段而成為氣體之有機鹼較佳,例如可列舉TMHA(氫氧化四甲基銨)、氫氧化四乙基銨、膽鹼等有機鹼。上述溶解有金屬離子及有機鹼之溶液,其pH為11以上,較佳為13以上,特佳為14以上。提高pH可製造結晶性高的複合氧化物膜。此乃因期望結晶性越高,膜的介電常數越高。
用於調製溶液pH的pH調整劑,可使用上述之有機鹼。由於添加氫氧化鋰、氫氧化鈉、氫氧化鉀等鹼金屬氫氧化物(無機鹼),所製得之複合氧化物膜中有鹼金屬的殘存,作為製品時的介電材料、壓電材料等機能性材料的特性有變差的可能性,較佳為添加氫氧化四甲基銨等有機鹼。
此方式所調整之溶解有金屬離子及有機鹼之溶液,於攪拌之同時於常壓中,通常加熱保持於40℃至溶液沸點,較佳為80℃至溶液沸點的範圍的溫度,與上述閥金屬的氧化物被膜接觸而反應。反應時間通常為10分鐘以上,較佳為1小時以上。又,該反應較佳於非電場下進行。其詳細機制雖不甚清楚,但亦建議於有機鹼存在下反應的條件,轉化為複合氧化物膜於非電場下為良好。
上述反應後,必要時可使用相應之電透析、離子交換、水洗、滲透膜等方法,由反應部位去除雜質離子,接著進行乾燥。乾燥通常於室溫至150℃進行1至24小時。乾燥的環境並無特別限制,可於大氣中或減壓中進行。
氧化物被膜可實質上全部轉化為複合氧化物膜,亦可部份轉化即停止。
根據上述方法,形成複合氧化物膜,為使此複合氧化物膜的介電常數更為提高,較佳係進行煅燒。煅燒條件為只要可提高複合氧化物膜的介電常數的任何溫度、時間皆可,其條件係根據煅燒複合氧化物之實驗性的決定,雖可一概性地加以決定,但較佳為介電常數比煅燒前更為提升10倍以上的溫度時間為較佳。
煅燒後的複合氧化物膜,因煅燒環境產生氧缺陷,有成為半導體狀態之情況。此情況下,較佳係於氧化環境下導入退火(anneal)步驟。退火的條件為只要可消解複合氧化物膜的半導體狀態而絕緣化之時間及溫度即可之任何條件皆為可能。其條件係根據退火複合氧化物而個別實驗性地加以決定,雖可一概性地加以決定,但較佳係以複合氧化物膜可使用作為電容器的程度為止,只要可降低因氧缺陷所致之漏電流值降低之任何條件皆可。因此,構成本發明電容器之複合氧化物膜以介電常數為80至15000為較佳。
本發明之電容器具備上述之複合氧化物膜,亦具備用以形成電容器零件之電極。電極為一般於電容器所使用之以電極材料形成者。電極材料使用氧化錳;導電性高分子;鎳、銀、銅所代表之金屬等。通常,形成於基體表面之複合氧化物膜上,附著碳糊料(carbon paste),再附著銀糊料與外部導線(lead)導通。由此,可形成由基體-複合氧化物膜-電極所成之電容器。又,氧化物被膜部分地轉化為複合氧化物膜的構造亦包含於本發明。
本發明之固體電解電容器係具備含閥作用金屬所成之基體,將該基體表面電解氧化之氧化物被膜,與溶解有金屬離子及有機鹼之溶液反應而製得複合氧化膜,於該複合氧化物膜上層合固體電解質層,急於該固體電解質層上層合導體層。基體作用為電容器的陽極,固體電解質層及導體層作用為電容器的陰極。
本發明電容器中用以形成固體電介質層者可列舉導電性聚合物。導電性聚合物可列舉具有噻吩骨架之化合物、具有喹喏啉骨架之化合物、具有吡咯骨架之化合物、具有呋喃骨架之化合物、具有苯胺骨架之化合物等所例示構造作為重複單元者。又,形成固體電解質層之導電性聚合物不以該等為限。
為得導電性聚合物所使用之具有噻吩骨架之化合物,可列舉3-甲基噻吩、3-乙基噻吩、3-丙基噻吩、3-丁基噻吩、3-戊基噻吩、3-己基噻吩、3-庚基噻吩、3-辛基噻吩、3-壬基噻吩、3-癸基噻吩、3-氟噻吩、3-氯噻吩、3-溴噻吩、3-氰基噻吩、3,4-二甲基噻吩、3,4-二乙基噻吩、3,4-伸丁基噻吩、3,4-亞甲基二氧基噻吩、3,4-伸乙二氧基噻吩、及其等之衍生物。該等化合物可為一般市售化合物或以公知方法(例如Synthetic Metals雜誌,1986年,15卷,169頁)準備者,但本發明不以該等為限。
其他之具有噻吩骨架之化合物,可列舉苯環或萘環等環與噻吩環縮合者,具體而言可列舉具有1,3-二氫苯幷[c]噻吩骨架之化合物、具有1,3-二氫蒽幷[2,3-c]噻吩骨架之化合物、具有1,3-二氫萘幷[2,3-c]噻吩骨架之化合物、具有1,3-二氫苯幷[a]蒽幷[7,8-c]噻吩骨架之化合物、具有1,3-二氫萘幷[1,2-c]噻吩骨架之化合物、具有1,3-二氫菲幷[2,3-c]噻吩骨架之化合物、具有1,3-二氫三聯苯幷[2,3-c]噻吩骨架之化合物等,亦可根據公知的方法,例如日本專利特開平8-3156號公報所揭示之方法,加以準備。
具有喹喏啉骨架之化合物,可列舉1,3-二氫噻吩[3,4-b]喹喏啉、1,3-二氫噻吩[3,4-b]喹喏啉-4-氧化物、1,3-二氫噻吩[3,4-b]喹喏啉-4,9-二氧化物等。具有吡咯骨架之化合物,可列舉3-甲基吡咯、3-乙基吡咯、3-丙基吡咯、3-丁基吡咯、3-戊基吡咯、3-己基吡咯、3-庚基吡咯、3-辛基吡咯、3-壬基吡咯、3-癸基吡咯、3-氟吡咯、3-氯吡咯、3-溴吡咯、3-氰基吡咯、3,4-二甲基吡咯、3,4-二乙基吡咯、3,4-伸丁基吡咯、3,4-亞甲基二氧基吡咯、3,4-伸乙二氧基吡咯、及其等之衍生物。該等化合物可為一般市售化合物或以公知方法準備,但本發明不以該等為限。
具有呋喃骨架之化合物,可列舉3-甲基呋喃、3-乙基呋喃、3-丙基呋喃、3-丁基呋喃、3-戊基呋喃、3-己基呋喃、3-庚基呋喃、3-辛基呋喃、3-壬基呋喃、3-癸基呋喃、3-氟呋喃、3-氯呋喃、3-溴呋喃、3-氰基呋喃、3,4-二甲基呋喃、3,4-二乙基呋喃、3,4-伸丁基呋喃、3,4-亞甲基二氧基呋喃、3,4-伸乙二氧基呋喃、及其等之衍生物。該等化合物可為一般市售化合物或以公知方法準備,但本發明不以該等為限。
具有苯胺骨架之化合物,可列舉2-甲基苯胺、2-乙基苯胺、2-丙基苯胺、2-丁基苯胺、2-戊基苯胺、2-己基苯胺、2-庚基苯胺、2-辛基苯胺、2-壬基苯胺、2-癸基苯胺、2-氟苯胺、2-氯苯胺、2-溴苯胺、2-氰基苯胺、2,5-二甲基苯胺、2,5-二乙基苯胺、3,4-伸丁基苯胺、3,4-亞甲基二氧基苯胺、3,4-伸乙二氧基苯胺、及其等之衍生物。該等化合物可為一般市售化合物或以公知方法準備,但本發明不以該等為限。
又,亦可併用由上述化合物群選出之化合物,使用作為多元系共聚物。此時為聚合性單體的組成比等聚合條件等依存者,較佳組成比、聚合條件可以簡單的測試加以確認。
導電性聚合物可經由化學氧化聚合法或電解氧化聚合物製得。使用於該氧化聚合物法之氧化劑,較佳為工業上低價,且製造上操作容易的化合物。例如可列舉FeCl3 、FeClO4 、Fe(有機酸陰離子)鹽等Fe(III)系化合物;無水氯化銨/氯化亞銅;鹼金屬過硫酸鹽;過硫酸銨鹽類;過氧化物類;過錳酸鉀等錳酸類;2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)、四氯-1,4-苯醌、四氰基-1,4-苯醌等醌類;碘、溴等鹵素類;過酸(peracid);硫酸、發煙硫酸、三氧化硫、氯硫酸、氟硫酸、醯胺硫酸、磺酸、臭氧等。該等氧化劑可單獨或2種以上組合使用。
其中,形成上述Fe(有機陰離子)鹽之有機陰離子的基本化合物,可列舉有機磺酸或有機羧酸、有機磷酸、有機硼酸;高分子電解質陰離子。有機磺酸可列舉苯磺酸或對甲苯磺酸、甲磺酸、乙磺酸、α-磺酸基-萘、β-磺酸基-萘、萘二磺酸、烷基萘磺酸(烷基為丁基、三異丙基、二-第三丁基等)等。有機羧酸可列舉醋酸、丙酸、安息香酸、草酸等。再者,高分子電解質陰離子可列舉聚丙烯酸、聚甲基丙烯酸、聚苯乙烯磺酸、聚乙烯基磺酸、聚乙烯基硫酸、聚-α-甲基磺酸、聚伸乙基磺酸、聚磷酸等。但不以該等有機酸陰離子為限。
再者,上述陰離子的相反陽離子(counter cation)可列舉H ;Na 、K 等鹼金屬離子;四甲基、四乙基、四丁基、四苯基等所取代之銨離子等,但本發明不特別以該等為限。
本發明中,上述之氧化劑中,特別以3價之Fe系化合物、氯化亞銅、過硫酸鹼金屬鹽類、過硫酸銨鹽類、錳酸類、醌類為適合。
本發明中所使用之固體電解質層亦可為具摻雜物(dopant)能的相反陰離子共存者。具摻雜物(dopant)能的相反陰離子可列舉具有由上述氧化劑所產生氧化劑陰離子(氧化劑的還原體)之相反離子之電解質化合物或其他陰離子系電解質。具體而言,可列舉PF6 、SbF6 、AsF6 等5B族元素之鹵化陰離子;BF4 等3B族元素之鹵化陰離子;I (I3 )、Br 、Cl 等鹵素陰離子;ClO4 等鹵酸陰離子;AlCl4 或FeCl4 、SnCl4 等路易士酸陰離子;NO3 、SO4 2- 等無機酸陰離子;對甲苯磺酸或萘磺酸、碳數1至5之烷基取代之磺酸、CH3 SO3 、CF3 SO3 等有機磺酸陰離子;CF3 COO 、C6 H5 COO 等羧酸陰離子等質子酸陰離子。再者同樣地,可列舉聚丙烯酸、聚甲基丙烯酸、聚苯乙烯磺酸、聚乙烯基磺酸、聚乙烯基硫酸、聚-α-甲基磺酸、聚伸乙基磺酸、聚磷酸等高分子電解質陰離子等,但不以該等為限定。
該等具有摻雜物能之相反陰離子中,較佳為高分子系或低分子系有機酸化合物,或聚磷酸,特佳為芳基磺酸鹽系摻雜物。芳基磺酸鹽系摻雜物,例如可列舉苯磺酸、甲苯磺酸、萘磺酸、蒽磺酸、蒽醌磺酸及其衍生物等之鹽。
製造導電性聚合物時之單體濃度,可根據作為單體之化合物中的取代基種類或溶劑等種類而不同,但一般而言期望為10-3 至10莫耳/公升的範圍,較佳為10-2 至5莫耳/公升的範圍。反應溫度雖因個別之反應方法而定而無特別限定,一般而言,係於-70℃至250℃的溫度範圍選擇。期望於-30至150℃,更期望於-10至30℃地溫度範圍進行。
製造導電性聚合物時所使用之反應溶劑,只要為可將單體、氧化劑、具摻雜物能之相反陰離子為同時,或分別單獨溶解即可,可列舉四氫呋喃、二噁烷、乙醚等醚類,或二甲基甲醯胺、乙腈、苯甲腈、N-甲基吡咯碇酮、二甲亞碸等非質子性極性溶劑;醋酸乙酯或醋酸丁酯等酯類;氯仿或二氯甲烷等非芳香族性氯系溶劑;硝基甲烷、硝基乙烷、硝基苯等硝基化合物;甲醇、乙醇、丙醇等醇類;蟻酸、醋酸、丙酸等有機酸或該有機酸之酸酐(例如醋酸酐等);酮類;水等,亦可將該等混合使用。
導電性聚合物製造中,亦可使用於反應溶劑中溶解有單體、氧化劑、及/或具摻雜物能之相反陰離子全體之一溶液;亦可使用於反應溶劑中溶解有氧化劑及/或具摻雜物能之相反陰離子者,以及於反應溶劑中溶解有單體之二溶液;或者亦可使用分別於反應溶劑中溶解有氧化劑、具摻雜物能之相反陰離子、及單體之三溶液。該等溶液塗佈於複合氧化物膜上,經氧化聚合而於複合氧化物膜上形成固體電解質層。本發明中所使用之固體電解質層,其導電度較佳為1S/cm以上,更佳為5S/cm以上,特佳為10S/cm以上。
於固體電解質層上層合之導體層,只要可成為電容器之電極者即可,並無特別限制。例如可列舉經濺鍍等物理性成膜,或經塗佈含有金屬之糊料等糊料類所製得之金屬薄膜所成者。又,亦可為碳糊料層與含有金屬粉之導電性層所成者。含有金屬粉之導電性層係經由碳糊料層,與固體電解質層密接,作用為電容器之陰極之同時,成為用於接合最終電容器製品之陰極導線端子之接著層。含有金屬之導電性層雖無限定,一般而言1~100 μm左右,較佳為5至50 μm左右。
依以上方式所得之電容器元件之各電極,可根據公知方法等經由導線架(lead frame;導線端子)行程或接續,以環氧樹脂等電絕緣性樹脂密封製得電容器。導線架之材料,只要為一般所使用者即可雖無特別限制,但較佳為以銅系(例如Cu-Ni系、Cu-Ag系、Cu-Su系、Cu-Fe系、Cu-Ni-Ag系、Cu-Ni-Sn系、Cu-Co-P系、Cu-Zn-Mg系、Cu-Sn-Ni-P系合金等)材料或表面施用銅系材料電鍍的材料所構成者,可得就導線架之取用作業性而言為良好等效果。
本發明之電容器可使用於電子零件或電子機器。又,經由內藏於印刷基板,亦即以內建方式(build-up)基板方式之實裝於多層基板之電容器元件機能,可得高密度多機能的電路基板。本發明之電容器由於具有低ESR、低漏電流之特性,亦可回應IC晶片等之高速化、高積體化。
以下,列舉實施例詳細說明本發明。本發明不以該等實施例為限定。
(實施例1)
將厚度20 μm之純度99.9%的鈦箔(Thank-Metal公司製造)切斷為3.3mm寬、切取各長度為13mm,將該薄片的一方的短邊部溶接固定於金屬製導向器。距上述鈦箔之未固定側之端為7mm處,以聚醯亞胺樹脂溶液(宇部興產公司製造)描繪0.8mm寬的線,於約180℃乾燥30分鐘後,加以遮罩。
上述鈦箔之未固定側之端至遮罩部分為止的部份,浸漬於5質量%之磷酸水溶液,以電流密度30mA/cm2 、化成電壓15V、溫度40℃、電解氧化處理120分鐘,接著由磷酸水溶液取出,水洗、乾燥,於鈦箔表面形成氧化鈦層。
接著以成為20mM的方式將氫氧化鋇溶解於20%氫氧化四甲基銨水溶液製得溶液。該溶液之pH為14。將上述形成有氧化鈦層之箔於該溶液中於125℃浸漬4小時而反應,使氧化鈦變換為鈦酸鋇(複合氧化物)。此鈦酸鋇膜厚度為38nm,介電常數為330。
將施用上述處理之箔水洗乾燥,以距上述箔的前端為5mm的部份作為中心,以寬度為0.8mm,於複合氧化物膜層上塗佈線狀的聚醯亞胺樹脂,於180℃乾燥1小時候遮罩。
距前端為4.6mm的部份(陰極部:寬3.5mm×長4.6mm)的一面,滴下5 μ l之含聚苯乙烯磺酸(作為摻雜物)之3,4-伸乙二氧基噻吩聚合物之水分散液,拉伸陰極部全體且自然乾燥1小時,接著於125℃乾燥30分鐘,形成固體電解質層。於該固體電解質層上,依序塗佈碳糊料及銀糊料而完成電容器元件。
將該電容器元件置於導線架上,使電容器元件之固體電解質層部分,以Ag糊料接合於陰極導線端子,鈦箔暴露部份溶接於陽極導線端子,接著將電容器元件與導線架全體以環氧樹脂密封,製作30個晶片型電容器。
該30個晶片型電容器中,起始特性於120Hz中測定容量與損失係數(tan δ),於100kHz測定等價串聯電阻(以下稱為ESR),於100kHz測定漏電流。再者,漏電流係將電壓2V施加1分鐘後測定。測定結果如下。
容量(平均值):2.5 μ F tan δ(平均值):5.0% ESR(平均值):20m Ω漏電流(平均值):50 μ A
(實施例2)
將厚度20 μm之純度99.9%的鈦箔(Thank-Metal公司製造)切斷為3.3mm寬、切取各長度為13mm,將該薄片的一方的短邊部溶接固定於金屬製導向器。距上述鈦箔之未固定側之端為7mm處,以聚醯亞胺樹脂溶液(宇部興產公司製造)描繪0.8mm寬的線,於約180℃乾燥30分鐘後,加以遮罩。
上述鈦箔之未固定側之端至遮罩部分為止的部份,浸漬於5質量%之磷酸水溶液,以電流密度30mA/cm2 、化成電壓15V、溫度40℃、階段性氧化處理120分鐘,接著由磷酸水溶液取出,水洗、乾燥,於鈦箔表面形成氧化鈦層。
接著以成為20mM的方式將氫氧化鋇溶解於20%氫氧化四甲基銨水溶液製得溶液。該溶液之pH為14。將上述形成有氧化鈦層之箔於該溶液中於125℃浸漬4小時而反應,使氧化鈦變換為鈦酸鋇(複合氧化物)。此鈦酸鋇膜厚度為38nm,介電常數為12000。接著將上述箔水洗乾燥,真空下,於800℃煅燒,再於大氣中,於300℃退火2小時。
將施用上述處理之箔,以距上述箔的前端為5mm的部份作為中心,以寬度為0.8mm,於複合氧化物膜層上塗佈線狀的聚醯亞胺樹脂,於180℃乾燥1小時候遮罩。
距前端為4.6mm的部份(陰極部:寬3.5mm×長4.6mm)的一面,滴下5 μ l之含聚苯乙烯磺酸(作為摻雜物)之3,4-伸乙二氧基噻吩聚合物之水分散液,拉伸陰極部全體且自然乾燥1小時,接著於125℃乾燥30分鐘,形成固體電解質層。於該固體電解質層上,依序塗佈碳糊料及銀糊料而完成電容器元件。
將該電容器元件置於導線架上,使電容器元件之固體電解質層部分,以Ag糊料接合於陰極導線端子,鈦箔暴露部份溶接於陽極導線端子,接著將電容器元件與導線架全體以環氧樹脂密封,製作30個晶片型電容器。
該30個電容器中,起始特性於120Hz中測定容量與損失係數(tan δ),於100kHz測定等價串聯電阻(以下稱為ESR),於100kHz測定漏電流。再者,漏電流係將電壓2V施加1分鐘後測定。測定結果如下。
容量(平均值):87 μ F tan δ(平均值):5.8% ESR(平均值):13m Ω漏電流(平均值):200 μ A
(比較例1)
將厚度20 μm之純度99.9%的鈦箔(Thank-Metal公司製造)切斷為3.3mm寬、切取各長度為13mm,以濺鍍法於3.3mm×4.6mm的部份,以1 μm的厚度成膜鈦酸鋇膜作為陰極部。該鈦酸鋇膜之介電常數為220。於成膜面滴下5 μ l之含聚苯乙烯磺酸(作為摻雜物)之3,4-伸乙二氧基噻吩聚合物之水分散液,拉伸陰極部全體且自然乾燥1小時,接著於125℃乾燥30分鐘,形成固體電解質層。於該固體電解質層上,依序塗佈碳糊料及銀糊料而完成電容器元件。
將該電容器元件置於導線架上,使電容器元件之固體電解質層部分,以Ag糊料接合於陰極導線端子,鈦箔暴露部份溶接於陽極導線端子,接著將電容器元件與導線架全體以環氧樹脂密封,製作30個晶片型電容器。
該30個電容器中,起始特性於120Hz中測定容量與損失係數(tan δ),於100kHz測定等價串聯電阻(以下稱為ESR),於100kHz測定漏電流。再者,漏電流係將電壓2V施加1分鐘後測定。測定結果如下。
容量(平均值):0.03 μ F tan δ(平均值):15% ESR(平均值)60m Ω漏電流(平均值):400 μ A

Claims (15)

  1. 一種電容器,其係具備複合氧化物膜,該複合氧化物膜係將含有閥作用金屬元素之基體表面電解氧化製得氧化物被膜,使經溶解有金屬離子以及有機鹼之溶液,於該氧化物被膜上反應所製得者。
  2. 一種電容器,其係具備複合氧化物膜,該複合氧化物膜係將含有閥作用金屬元素之基體表面電解氧化製得氧化物被膜,使經溶解有金屬離子以及有機鹼之溶液,於該氧化物被膜上反應,接著進行煅燒所製得者。
  3. 一種固體電解電容器,具備含有閥作用金屬元素之基體;使經溶解有金屬離子以及有機鹼之溶液,於將該基體表面電解氧化製得之氧化物被膜上反應所製得之複合氧化物膜;層合於該複合氧化物膜上之固體電解質層;以及層合於該固體電解質層上之導體層。
  4. 如申請專利範圍第1至3項中任一項之電容器,其中,該氧化物被膜與經溶解有金屬離子以及有機鹼之溶液的反應,係利用非電場下的化學反應。
  5. 如申請專利範圍第1至3項中任一項之電容器,其中,該經溶解有金屬離子以及有機鹼之溶液的pH為11以上。
  6. 如申請專利範圍第1至3項中任一項之電容器,其中,該複合氧化物膜的介電常數為80至15000。
  7. 如申請專利範圍第1至3項中任一項之電容器,其中,該複合氧化物膜的厚度為1nm至4000nm。
  8. 如申請專利範圍第1至3項中任一項之電容器,其中,該閥作用金屬元素為鈦元素。
  9. 如申請專利範圍第1至3項中任一項之電容器,其中,該金屬離子為鋇離子。
  10. 一種電子構件,係使用申請專利範圍第1至9項中任一項之電容器。
  11. 一種印刷基板,係使用申請專利範圍第1至9項中任一項之電容器。
  12. 一種電子機器,係使用申請專利範圍第1至9項中任一項之電容器。
  13. 一種電容器之製造方法,至少含有藉由閥作用金屬元素之電解氧化而形成氧化物被膜的步驟;以及使經溶解有金屬離子以及有機鹼之溶液與所形成之氧化物被膜反應的步驟。
  14. 一種電容器之製造方法,至少含有藉由閥作用金屬元素之電解氧化而形成氧化物被膜的步驟;使經溶解有金屬離子以及有機鹼之溶液與所形成之氧化物被膜反應的步驟;以及煅燒步驟。
  15. 一種固體電解電容器之製造方法,至少含有藉由閥作用金屬元素之電解氧化而形成氧化物被膜的步驟;使經溶解有金屬離子以及有機鹼之溶液與所形成之氧化物被膜反應的步驟;於該複合氧化物膜上層合固體電解質層的步驟;以及於該固體電解質層上層合導體層的步驟。
TW095149509A 2005-12-28 2006-12-28 Capacitor and manufacturing method thereof TWI391969B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377040 2005-12-28

Publications (2)

Publication Number Publication Date
TW200746203A TW200746203A (en) 2007-12-16
TWI391969B true TWI391969B (zh) 2013-04-01

Family

ID=38228238

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095149509A TWI391969B (zh) 2005-12-28 2006-12-28 Capacitor and manufacturing method thereof

Country Status (6)

Country Link
US (1) US7697267B2 (zh)
EP (1) EP1978533B1 (zh)
JP (1) JP4036466B2 (zh)
CN (1) CN101351857B (zh)
TW (1) TWI391969B (zh)
WO (1) WO2007077883A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931776B2 (ja) * 2007-11-21 2012-05-16 三洋電機株式会社 固体電解コンデンサ
JP2009209259A (ja) 2008-03-04 2009-09-17 Nec Tokin Corp 導電性高分子およびそれを用いた固体電解コンデンサ
EP2312597A4 (en) * 2008-07-29 2018-04-04 Showa Denko K.K. Method for manufacturing niobium solid electrolytic capacitor
JP5716163B2 (ja) * 2011-03-29 2015-05-13 パナソニックIpマネジメント株式会社 固体電解コンデンサ及びその製造方法
JP5872872B2 (ja) * 2011-12-12 2016-03-01 Necトーキン株式会社 導電性高分子組成物の製造方法、導電性高分子材料の製造方法、導電性基材の製造方法、電極の製造方法および固体電解コンデンサの製造方法
JP5952551B2 (ja) 2011-12-12 2016-07-13 Necトーキン株式会社 導電性高分子組成物およびその製造方法、導電性高分子材料の製造方法、導電性基材の製造方法、電極の製造方法、電子デバイスの製造方法並びに固体電解コンデンサの製造方法
CN105023752B (zh) * 2014-04-28 2017-07-28 中国科学院理化技术研究所 一种印刷式柔性电解电容及其制作方法
CN104810163B (zh) * 2014-07-18 2017-08-08 纳米新能源(唐山)有限责任公司 石墨烯超级电容器的制备方法、石墨烯超级电容器及储能系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146659A (ja) * 2001-11-12 2003-05-21 Toho Titanium Co Ltd 複合チタン酸化被膜の形成方法およびチタン電解コンデンサ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578751A (en) * 1982-06-25 1986-03-25 At&T Technologies, Inc. System for simultaneously programming a number of EPROMs
JPH0649950B2 (ja) 1984-07-19 1994-06-29 ソニー株式会社 Ti金属層とBa1−xSrxTiO3被膜よりなる複合体及びその製造方法
JPS60116119A (ja) 1983-11-29 1985-06-22 ソニー株式会社 Ti金属層とBaTiO↓3被膜よりなる複合体及びその製造方法
US4590541A (en) * 1984-04-06 1986-05-20 Matsushita Electric Industrial Co., Ltd. Organic semiconductor compositions and solid electrolytic capacitor using the same
JPS6164112A (ja) * 1984-09-05 1986-04-02 日本電気株式会社 コンデンサの製造方法
JPH0713879B2 (ja) * 1985-06-21 1995-02-15 三菱電機株式会社 半導体記憶装置
JPH0827626B2 (ja) 1988-01-13 1996-03-21 ヤマハ株式会社 自動演奏装置
JPH04111408A (ja) * 1990-08-31 1992-04-13 Hitachi Aic Inc コンデンサ
JP3233365B2 (ja) * 1991-02-22 2001-11-26 日本カーリット株式会社 固体電解コンデンサ
JP3235145B2 (ja) 1991-11-01 2001-12-04 株式会社村田製作所 チタン酸バリウム薄膜の形成方法
JPH05315197A (ja) * 1992-05-14 1993-11-26 Matsushita Electric Ind Co Ltd 電解コンデンサ用アルミニウム電極の製造方法
JP3541429B2 (ja) 1993-05-31 2004-07-14 昭和電工株式会社 スルホン酸基を有する縮合ヘテロ環式化合物及びその製造方法
JP3157748B2 (ja) * 1997-07-30 2001-04-16 富山日本電気株式会社 導電性高分子を用いた固体電解コンデンサ及びその製造方法
JP3228323B2 (ja) * 1997-09-10 2001-11-12 日本電気株式会社 固体電解コンデンサおよびその製造方法
JP3065286B2 (ja) * 1997-09-24 2000-07-17 日本電気株式会社 固体電解コンデンサおよびその製造方法
JPH11172489A (ja) 1997-12-09 1999-06-29 Murata Mfg Co Ltd チタン酸バリウム被膜の製造方法
US6552896B1 (en) * 1999-10-28 2003-04-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP3933444B2 (ja) 2001-11-07 2007-06-20 古河電気工業株式会社 光ファイバ連続ねじり装置
TW200302296A (en) * 2001-11-12 2003-08-01 Toho Titanium Co Ltd Composite titanium oxide film and method for formation thereof and titanium electrolytic capacitor
JP4197119B2 (ja) 2001-11-12 2008-12-17 東邦チタニウム株式会社 複合チタン酸化被膜の製造方法およびチタン電解コンデンサの製造方法
DE10219908A1 (de) * 2002-05-03 2003-11-27 Epcos Ag Elektrode und ein Verfahren zu deren Herstellung
US7256982B2 (en) * 2003-05-30 2007-08-14 Philip Michael Lessner Electrolytic capacitor
JP4450378B2 (ja) * 2004-10-27 2010-04-14 Necトーキン株式会社 表面実装型コンデンサ及びその製造方法
JP4519679B2 (ja) * 2005-02-21 2010-08-04 Necトーキン株式会社 導電性高分子組成物およびそれを用いた固体電解コンデンサ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146659A (ja) * 2001-11-12 2003-05-21 Toho Titanium Co Ltd 複合チタン酸化被膜の形成方法およびチタン電解コンデンサ

Also Published As

Publication number Publication date
CN101351857A (zh) 2009-01-21
WO2007077883A1 (ja) 2007-07-12
EP1978533B1 (en) 2016-11-16
JP4036466B2 (ja) 2008-01-23
CN101351857B (zh) 2011-10-19
EP1978533A1 (en) 2008-10-08
US20080316681A1 (en) 2008-12-25
US7697267B2 (en) 2010-04-13
JPWO2007077883A1 (ja) 2009-06-11
EP1978533A4 (en) 2013-07-31
TW200746203A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
TWI391969B (zh) Capacitor and manufacturing method thereof
KR101638993B1 (ko) 고분자 중간층을 갖는 전해 캐패시터의 제조 방법
TWI408710B (zh) 固體電解電容器,其製法,及固體電解電容器用基材
KR101305900B1 (ko) 중합체 외층을 갖는 전해 커패시터 및 이의 제조 방법
KR100334918B1 (ko) 도전성폴리머를이용한고체전해커패시터및그제조방법
TWI425541B (zh) Solid electrolytic capacitor and manufacturing method thereof
CN102122583A (zh) 固体电解电容器元件及其制造方法
KR100279098B1 (ko) 고체전해콘덴서의제조방법
JP2000012394A (ja) 固体電解コンデンサ及びその製造方法
JP3228323B2 (ja) 固体電解コンデンサおよびその製造方法
JP5088634B2 (ja) 固体電解コンデンサ用基材それを用いたコンデンサおよびその製造方法
CN100578701C (zh) 电容器的制造方法
JPH0494110A (ja) 固体電解コンデンサの製造方法
WO2007020969A1 (ja) 弁作用金属材料の化成処理方法
CN101243212A (zh) 阀作用金属材料的化学转换处理方法
JP2001006983A (ja) 固体電解コンデンサ及びその製造方法
JP2792394B2 (ja) 固体電解コンデンサおよびその製造方法
JPH05217808A (ja) 固体電解コンデンサ及びその製造方法
JP4730654B2 (ja) 固体電解質層形成方法及びこの方法を用いて製造される複合材料
JP2010037466A (ja) 導電性高分子形成用電解重合液、導電性高分子、それを用いた固体電解コンデンサ及びその製造方法
KR0148613B1 (ko) 고체 전해 커패시터 및 그의 제조방법
JPH05304056A (ja) 固体電解コンデンサの製造方法
JPH0494108A (ja) 固体電解コンデンサの製造方法
JPH10303080A (ja) 固体電解コンデンサの製造方法
JP2010143996A (ja) 導電性高分子とそれを用い固体電解コンデンサ及びその製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees