WO2007020969A1 - 弁作用金属材料の化成処理方法 - Google Patents

弁作用金属材料の化成処理方法 Download PDF

Info

Publication number
WO2007020969A1
WO2007020969A1 PCT/JP2006/316155 JP2006316155W WO2007020969A1 WO 2007020969 A1 WO2007020969 A1 WO 2007020969A1 JP 2006316155 W JP2006316155 W JP 2006316155W WO 2007020969 A1 WO2007020969 A1 WO 2007020969A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical conversion
metal material
acid
conversion treatment
valve action
Prior art date
Application number
PCT/JP2006/316155
Other languages
English (en)
French (fr)
Inventor
Hideki Oohata
Kenki Kobayashi
Original Assignee
Showa Denko K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K. K. filed Critical Showa Denko K. K.
Priority to JP2007531021A priority Critical patent/JPWO2007020969A1/ja
Publication of WO2007020969A1 publication Critical patent/WO2007020969A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Definitions

  • the present invention relates to a chemical conversion treatment method for a valve metal material, a method for producing a solid electrolytic capacitor using the same, and a solid electrolytic capacitor. More specifically, in a method of forming a dielectric film on a surface by chemical conversion treatment of a valve action metal material having micropores, there are few defects !, a method of forming a dielectric film, and a defect using this method.
  • the present invention relates to a method of manufacturing a solid electrolytic capacitor including a dielectric film and a solid electrolytic capacitor excellent in reliability manufactured as described above.
  • a solid electrolytic capacitor generally has a surface area by roughening the surface of an anode body having a valve action metal force such as aluminum, tantalum, niobium, titanium and alloys thereof by etching to form micron-order micropores.
  • a dielectric oxide film is formed thereon by a chemical conversion process, and further impregnated with a solid electrolyte through a separator between the anode part and a cathode conductive material comprising a carbon paste and a metal-containing conductive paste. After the layer is formed, it is constructed by welding to a lead frame that becomes an external electrode to form an exterior part such as epoxy resin.
  • a solid electrolytic capacitor using a conductive polymer as a solid electrolyte can reduce an equivalent series resistance and a leakage current compared with a solid electrolytic capacitor using a solid electrolyte such as a mangan dioxide, and thus has a high electronic device.
  • Many manufacturing methods have been proposed because it is useful as a capacitor that can cope with performance and miniaturization.
  • a conductive polymer is formed, particularly when a defect exists in the oxide film formed on the valve action metal foil. Due to direct contact with the valve metal, and due to differences in the thermal stress of the materials constituting the element during reflow in the mounting process, the oxide film is damaged, resulting in defects. The stability of the oxide film, such as causing a short circuit, is an important factor that affects the performance of the capacitor element.
  • Patent Document 1 As a chemical conversion method for improving the stability of the acid-aluminum film, for example, in Japanese Patent Application Laid-Open No. 11-150041 (Patent Document 1), a valve action metal is subjected to chemical conversion treatment to form an oxide film, and then Thus, in the method of manufacturing a solid electrolytic capacitor for forming a solid electrolyte layer, a step of heat treatment at a temperature higher than 150 ° C. after forming an oxide film by the first chemical conversion treatment, and a second chemical conversion treatment after this step. The formation of cracks is suppressed even when heat treatment such as firing is performed when forming the solid electrolyte, and cracks are also generated in the oxide film by heat treatment when mounted on a printed wiring board or the like. By making it difficult to generate the leakage current, it is possible to reduce the leakage current and the breakdown voltage.
  • JP 2000-68159 Patent Document 2 (1 ⁇ 6243256)
  • a foil-formed foil in which a barrier film is formed as a dielectric on a roughened aluminum foil surface.
  • a porous film having a thickness of 5 to 100 times the thickness of the Noria film is formed on the cut portion. It is assumed that it is possible to form a voltage-resistant and heat-resistant film only at the cut portion without reducing the above.
  • a valve metal surface having a dielectric film is at least partially made of an oxide composed of silicon, a valve metal and oxygen. Covering increases the coating area of the solid electrolyte (conductive polymer) on the dielectric film, increasing the capacitance, adhesion, etc., and increasing the capacitance of the capacitor, and variations in the capacitance of individual capacitors It has been proposed to reduce the leakage current value!
  • Patent Document 1 Japanese Patent Laid-Open No. 11-150041
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-68159
  • Patent Document 2 is one of chemical conversion methods for improving the shape of the spire of the aluminum conversion foil cut portion, and the entire surface of the aluminum anode foil is modified.
  • the combination of oxalic acid, heat treatment, and adipic acid is only exemplified, and the chemical treatment by the same chemical species is repeated or the acid is introduced by further chemical introduction. There is no mention of the stability of the film.
  • Patent Document 3 Further improvement has been demanded for Japanese Patent Laid-Open No. 2003-158044 (Patent Document 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 150041
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-68159
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-158044
  • the present invention provides a chemical conversion treatment method for solving the above-described problems of the prior art and forming an oxide film with improved stability, thereby stabilizing the quality of the solid electrolytic capacitor.
  • An object of the present invention is to provide a method for producing a solid electrolytic capacitor capable of improving productivity.
  • the present inventors have performed heat treatment and at least once each of the chemical conversion treatment in the electrolyte containing adipate before and after the heat treatment, It has been found that the stability of the acid film is improved, and further, if this method is applied to the anode foil for a solid electrolytic capacitor and used for the production of a solid electrolytic capacitor, various characteristics of the capacitor are improved.
  • the invention has been completed. That is, the present invention provides the following chemical conversion treatment method for a valve metal material, a method for producing a solid electrolytic capacitor using the same, and a solid electrolytic capacitor.
  • a method of forming a dielectric film on a surface by chemical conversion treatment of a valve action metal material having fine pores which includes a heat treatment step, and is formed in an electrolyte containing an adipate before and after the heat treatment step.
  • a method for chemical conversion treatment of a valve metal material characterized in that each of the steps includes at least one step. 2.
  • the method for chemical conversion treatment of a valve action metal material according to the above item which includes at least one step of chemical conversion in an electrolytic solution containing oxalic acid before the heat treatment step.
  • At least one step of forming in an electrolyte solution comprising at least one component selected from the group consisting of GO succinic acid, nitric acid, sulfuric acid, adipic acid, phosphoric acid, caic acid and salts thereof;
  • valve action metal material according to 4 above, wherein the chemical conversion foil cross section is formed in an electrolytic solution containing at least one component selected from the group consisting of oxalic acid, sulfuric acid, adipic acid, phosphoric acid and salts thereof Chemical conversion method.
  • valve metal material includes at least one metal selected from aluminum, tantalum, niobium, titanium, and zirconium.
  • Each chemical conversion temperature is 10 ° C or higher and 85 ° C or lower.
  • the formation voltage in the electrolyte containing adipate is 0.75 to 1 of the formation voltage of the formation foil.
  • a method for producing a solid electrolytic capacitor in which fine holes are formed on the surface of an anode substrate made of a valve metal material, a dielectric oxide film is formed thereon by a chemical conversion process, and a solid electrolyte layer is further formed.
  • a method for producing a solid electrolytic capacitor, wherein the chemical conversion treatment of the anode substrate is performed using the method described in any one of 1 to 12 above.
  • a solid electrolytic capacitor comprising a valve action metal material that has been subjected to chemical conversion treatment using the method according to any one of 1 to 12 above.
  • the stability of the acid film is improved. For this reason, if the chemical conversion treatment method of the present invention is applied to a method of manufacturing a solid electrolytic capacitor, the stability of the oxide film functioning as a dielectric of the solid electrolytic capacitor is increased, and deterioration of leakage current characteristics is prevented. Yield and reliability are improved.
  • the chemical conversion treatment method of the present invention is a method for chemical conversion treatment of a valve action metal material having fine pores to form a dielectric film on the surface, including a heat treatment step, and before and after the heat treatment step. It is characterized by including at least one step of chemical conversion in an electrolyte containing an acid salt. Further, before the heat treatment step, a step of forming in an electrolyte containing oxalic acid and a step of forming in an electrolyte containing Z or a silicate may be included one or more times.
  • the target to which the chemical conversion treatment method of the present invention is applied is a valve metal material having fine holes.
  • the valve action metal is selected from aluminum, tantalum, niobium, titanium, zirconium, or an alloy containing one or more of these, and more specific materials include these metal plates, foils, rods, wires, or these as a main component.
  • the sintered body is selected. These metals are preliminarily etched to form fine holes on the surface.
  • the method of the present invention can be generally applied to the chemical conversion treatment of the valve action metal, but is particularly useful as a chemical conversion treatment method for producing a solid electrolytic capacitor or the like from a chemical conversion foil.
  • a metal material having a valve action is roughened (porosified) and then subjected to a known method.
  • a product obtained by forming a dielectric oxide film by chemical conversion treatment is commercially available and used in solid electrolytic capacitors and the like (hereinafter, unless otherwise specified, “i-formed foil” is used in this application to refer to such a commercial sale.
  • a material obtained by cutting the material into a size matching a product shape is used.
  • a foil having a thickness of about 40 to 150 m is generally used.
  • a rectangular metal foil with a width of about 1 to 50 mm and a length of about 1 to 50 mm is preferred as a flat element unit, and more preferably about 2 to 20 mm in width and about a length. It is 2 to 20 mm, more preferably about 2 to 5 mm in width and about 2 to 6 mm in length.
  • a treatment for re-forming the chemical film by modifying the shape of the steeple of the portion where the valve metal has been cut (hereinafter referred to as ⁇ cutting chemical conversion '').
  • ⁇ cutting chemical conversion '' a treatment for re-forming the chemical film by modifying the shape of the steeple of the portion where the valve metal has been cut
  • an electrolytic solution of acid and Z or a salt thereof for example, an electrolytic solution containing at least one of phosphoric acid, sulfuric acid, oxalic acid, adipic acid and the like is used. Of these, oxalic acid is preferred.
  • the cut surface conversion is preferably performed under the conditions that the electrolyte concentration is 0.1 mass% to 30 mass%, the temperature is 0 ° C to 90 ° C, the current density is 0.1 lmAZcm 2 to 1000 mAZcm 2 and the time is within 100 minutes.
  • Ii) Perform constant current formation with the core of the substrate as the anode, and perform constant voltage formation after the specified voltage is reached. More preferably, the electrolyte concentration is 1% to 20% by mass, the temperature is 20 ° C to 80 ° C, the current density is lmAZcm 2 to 400mAZcm 2 and the time is within 60 minutes.
  • a predetermined region of the foil is immersed in the chemical conversion solution and formed at a predetermined voltage and current density.
  • Predetermined it is desirable to apply a chemical by applying a masking material to the position of U.
  • the masking material those described later can be used as a masking material for separating the positive and negative electrodes.
  • adipate chlorination is performed at least once before heat treatment to be described later.
  • the electrolyte concentration is 0.1 mass% to 30 mass%
  • the temperature is 0 ° C. to 90 ° C.
  • the current density is 0.1 lmAZcm 2 to 1000 mAZcm 2
  • the time is Perform constant current formation with the core of the substrate formed as an anode under conditions within 100 minutes, and after achieving the specified voltage, perform constant voltage formation.
  • the electrolyte concentration is 1% to 20% by mass
  • the temperature is 20 ° C to 80 ° C
  • the current density is lmAZcm 2 to 400mAZcm 2
  • the time is within 60 minutes.
  • the adipate is preferably ammonium adipate, sodium adipate, potassium adipate or the like.
  • chemical conversion may be performed using another electrolytic solution.
  • oxalic acid and Z or a salt thereof, nitric acid and Z or a salt thereof, sulfuric acid and Z or a salt thereof, adipic acid and Z or a salt thereof, phosphoric acid and Z or a salt thereof, an aqueous solution of an alkali silicate, and the like are preferable.
  • Caustic alkalis are hydroxides or alkali carbonates and silicates (salts composed of SiO and metal oxides, general formula xM O -ySi
  • valve metal 2 2 o can be melted to obtain water-soluble ones, valve metal and valve metal
  • the conditions for this chemical conversion are preferably that the electrolyte concentration is 0.1 mass% to 30 mass%, the temperature is 0 ° C to 90 ° C, the current density is 0.1 lmAZcm 2 to 1000 mAZcm 2 and the time is 100. Perform constant current formation with the core of the chemical conversion substrate as the anode under the conditions within minutes, and perform constant voltage formation after achieving the specified voltage. More preferably, the electrolyte concentration concentration ⁇ mass% to 20 mass%, temperature force S20 ° C to 50 ° C, current density lmAZcm 2 to 400mAZcm 2 and time within 60 minutes should be selected.
  • the heat treatment step is preferably performed at a temperature of 250 ° C to 400 ° C. More preferably, it is 270 ° C or more and 390 ° C or less, and further preferably 340 ° C or more and 380 ° C or less. If the temperature is too low, the effect of the present invention cannot be obtained. In addition, if the temperature is too high, the damage of the acid ⁇ coating is rejected. You may be invited.
  • the heat treatment time can be set to an arbitrary time within a range where the stability of the oxide film can be expected or within a range where the dielectric film is not damaged more than necessary.
  • the formation voltage is preferably in the range where the repair and stability of the acid film can be expected, and is preferably from 0.75 to L 2 times the formation foil formation voltage, more preferably 0. 80 ⁇ : L is 15 times. More preferably, from 0.85 to L is 10 times. 0. If it is 80 times or less, the repair of the formed film damaged at the time of cutting or the like is not enough. 1. If it is 1 time or more, the already formed chemical film is further grown, It will affect the characteristics of the capacitor, such as causing a decrease in capacitance. Note that the present invention is effective regardless of the withstand voltage of the product. Particularly, it is effective in a high withstand voltage product of 10 V or more, in which it has been difficult to form a stable acid film by the conventional method.
  • At least one or more adipate conversion is performed after the heat treatment.
  • the electrolyte concentration is preferably 0.1% by mass to 30% by mass
  • the temperature is 0 ° C to 90 ° C
  • the current density is 0.1 lmAZcm 2 to 1000 mAZcm 2
  • the time is 100 minutes.
  • the conditions are such that the electrolyte concentration is 1% by mass to 20% by mass, the temperature is 20 ° C. to 80 ° C., the current density is lmAZcm 2 to 400 mAZcm 2 , and the time is within 60 minutes.
  • the adipate is preferably ammonium adipate.
  • the thickness of the oxide film layer formed by the chemical conversion treatment of the present invention is not particularly limited as long as the oxide film can be stabilized and the capacitor characteristics can be improved. It is in the range of 1000 nm, and more preferably in the range of 20 nm to 500 nm.
  • At least one step of forming in an electrolyte solution comprising at least one component selected from the group consisting of GO succinic acid, nitric acid, sulfuric acid, adipic acid, phosphoric acid, kaic acid and salts thereof;
  • a multi-stage chemical conversion treatment method is provided.
  • the cycle of (i) to (iv) may be repeated, and the chemical conversion treatment method for the valve action metal material in which these cycles are repeated two or more times is also included in the scope of the present invention.
  • the chemical conversion treatment method of the present invention is useful as a method for producing a solid electrolytic capacitor. Specific manufacturing methods are listed below. However, this is an exemplification, and the present invention is not limited to the following description.
  • a composition comprising a general heat-resistant resin, preferably a heat-resistant resin that is soluble or swellable in a solvent or a precursor thereof, an inorganic fine powder, and a cellulosic resin (Japanese Patent Laid-Open No. 11-1999). 80596) can be used, but the material is not limited. Specific examples include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, fluorine resin (tetrafluoroethylene, tetrafluoroethylene 'perfluoroalkylalkyl ether copolymer). , Polyimide and derivatives thereof.
  • Polyimide polyethersulfone, fluorine resin and their precursors are preferred. Especially, it has sufficient adhesion and filling properties to valve metals, and has excellent insulation that can withstand high temperature processing up to about 450 ° C.
  • Polyimide is preferred. As polyimide, it can be cured by heat treatment at a low temperature of 200 ° C or less, preferably 100 to 200 ° C, and the dielectric layer on the surface of the anode foil is damaged by heat. However, polyimide can be preferably used. The preferred average molecular weight of the polyimide is about 1000 to 100000, more preferably about 2000 to 200000.
  • the polyimide solution As a specific example of the polyimide solution, a low molecular weight polyimide that is cured by heat treatment after coating is dissolved in a solvent having a low hygroscopic property such as 2-methoxyethyl ether or triethylene glycol dimethyl ether (for example, Ube Industries, Ltd.). ) Power is also sold as Upicoat TM FS-100L). ), Or a solution in which the polyimide resin represented by the above formula (5) is dissolved in NMP (N-methyl 2-pyrrolidone) or DMAc (dimethylacetamide) (for example, Shin-Rika Co., Ltd. (Trademark) ”) is preferred.
  • the shielding material layer formed by the shielding material solution may be subjected to treatment such as drying, heating, and light irradiation as necessary after application of the shielding material solution.
  • the solid electrolyte has a structure represented by a compound having a thiophene skeleton, a compound having a polycyclic sulfide skeleton, a compound having a pyrrole skeleton, a compound having a furan skeleton, a compound having a furin skeleton, and the like.
  • the conductive polymer containing as a repeating unit is mentioned, the conductive polymer which forms a solid electrolyte is not restricted to this.
  • the compounds having a thiophene skeleton include 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene, 3-pentylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3- Octylthiophene, 3-nonylthiophene, 3-decylthiophene, 3-fluorothiophene, 3-chlorothiophene, 3-bromothiophene, 3-sianotthiophene, 3,4-dimethylthiophene, 3,4-jetylthiophene 3, 4-butylenethione, 3,4-methylenedioxythiophene, 3,4 ethylenedioxythiophene and the like.
  • These compounds are generally commercially available compounds or powers that can be prepared by known methods (for example, Synthetic Metals, 1986, 15 pages, 169 pages), but are not limited to these in the present invention.
  • a compound having a polycyclic sulfide skeleton specifically, 1, 3-
  • a compound having a dihydropolycyclic sulfide (also known as a 1,3 dihydrobenz [c] thiophene) skeleton or a compound having a 1,3 dihydronaphtho [2,3-c] thiophene skeleton can be used.
  • a compound having a 1,3 dihydroanthra [2,3-c] thiophene skeleton and a compound having a 1,3-dihydronaphthaseno [2,3-c] thiophene skeleton can be mentioned, and a known method, for example, It can be prepared by the method described in JP-A-8-3156 (US5530139).
  • the condensed ring may optionally contain nitrogen or N-oxide, such as 1, 3 dihydrothieno [3, 4-b] quinoxaline or 1, 3 dihydroceno [3, 4-b] quinoxaline-4- Examples thereof include, but are not limited to, oxide, 1,3 dihydroceno [3,4-b] quinoxaline 4,9 dioxide, and the like.
  • nitrogen or N-oxide such as 1, 3 dihydrothieno [3, 4-b] quinoxaline or 1, 3 dihydroceno [3, 4-b] quinoxaline-4- Examples thereof include, but are not limited to, oxide, 1,3 dihydroceno [3,4-b] quinoxaline 4,9 dioxide, and the like.
  • Examples of the compound having a pyrrole skeleton include 3-methylpyrrole, 3-ethylpyrrole, 3-propylpyrrole, 3-butylpyrrole, 3-pentylpyrrole, 3-hexylpyrrole, 3-heptylpyrrole, 3 —Octylpyrrole, 3—norrubirol, 3 —decylpyrrole, 3 —fluoropyrrole, 3 —chloropyrrole, 3 —bromopyrrole, 3 —cyanobilol, 3, 4—dimethylpyrrole, 3, 4—jetylpyrrole, 3, 4— Derivatives such as butylene pyrrole, 3,4-methylenedioxypyrrole and 3,4-ethylenedioxypyrrole can be mentioned. These compounds can be prepared commercially or by known methods, but are not limited to these in the present invention.
  • the compounds having a furan skeleton include 3-methylfuran, 3 ethylfuran, 3-propylfuran, 3-butylfuran, 3-pentylfuran, 3-hexylfuran, 3-heptylfuran, and 3-octylfuran.
  • Examples of the compound having a skeleton include 2-methylaline, 2-ethylaline, 2-propylaniline, 2-butylaniline, 2-pentylaniline, 2-hexylaniline, and 2- Ptyllarin, 2-octyllaline, 2-norlurin, 2-decyllaline, 2-fluoroarine, 2-chloroarine, 2-bromoarine, 2-cyanoaline, 2 , 5-Dimethylaline, 2,5-Diethylaline, 3,4-Butylenealine, 3,4-Methylenedioxylin, 3,4-Ethylenedioxylin, etc. I can list them.
  • These compounds can be prepared commercially or by known methods, but are not limited to the present invention! /.
  • a compound selected from the above compound group may be used in combination and used as a ternary copolymer.
  • the composition ratio of the polymerizable monomer depends on the polymerization conditions and the like. The preferred composition ratio and polymerization conditions can be confirmed by a simple test.
  • the oxidizing agent used for the production of the conductive polymer used as the solid electrolyte may be any oxidizing agent capable of sufficiently performing the dehydrogenative four-electron oxidation reaction.
  • a compound that is industrially inexpensive and easy to handle in production is preferred.
  • Fe (III) compounds such as FeCl, FeCIO, Fe (organic acid ion) salts,
  • anhydrous salt ⁇ aluminum Z salt cuprous, alkali metal persulfates, ammonium persulfate salts, peroxides, manganese such as potassium permanganate, 2, 3-dichloro-5, 6-Dicyanose 1,4-benzoquinone (DDQ), tetrachloro 1,4-benzoquinone, tetracyan 1,4 monobenzoquinone and other quinones, iodine, bromine and other halogens, peracid, sulfuric acid, fuming sulfuric acid Sulphonic acid such as sulfur trioxide, chlorosulfuric acid, fluorosulfuric acid, amidosulfuric acid, ozone and the like, and combinations of these oxidizing agents.
  • DDQ 6-Dicyanose 1,4-benzoquinone
  • tetrachloro 1,4-benzoquinone tetracyan 1,4 monobenzoquinone and other quinones
  • examples of the basic compound of the organic acid ion that forms the Fe (organic acid ion) salt include organic sulfonic acid, organic carboxylic acid, organic phosphoric acid, and organic boric acid.
  • organic sulfonic acids include benzene sulfonic acid, p-toluene sulfonic acid, methans norephonic acid, ethanesnorephonic acid, ⁇ -snorephonaphthalene, j8-senoreonaphthalene, naphthalenedisulfonic acid, alkylnaphthalene sulphonic acid (alkyl As the group, butyl, triisopropyl, di-t-butyl, etc.) are used.
  • organic carboxylic acid examples include acetic acid, propionic acid, benzoic acid, succinic acid and the like.
  • polyelectrolyte ions such as polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polybulusulfonic acid, polybulusulfuric acid, poly ⁇ -methylsulfonic acid, polyethylene sulfonic acid, polyphosphoric acid are also used.
  • the examples of these organic sulfonic acids or organic carboxylic acids are merely examples and are not limited thereto.
  • the counter cation of the cation is an alkali metal ion such as H +, Na +, K +, or an ammonium ion substituted with a hydrogen atom such as a tetramethyl group, a tetraethyl group, a tetrabutyl group, or a tetraphenyl group.
  • the invention is not particularly limited.
  • an anti-anion having a dopant ability coexisting as necessary is an acid-containing agent (on oxidation) produced from the oxidizing agent.
  • an electrolyte compound having a counter-ion (reduced form of the agent) or other ion-based electrolytes is a counter-ion (reduced form of the agent) or other ion-based electrolytes.
  • PF-, SbF-, AsF- PF-, SbF-, AsF-
  • Group 5B element halides such as BF—, Group 3B element halides such as I— (
  • halogen ions such as Br— and C1—
  • halogen acid ions such as CIO—, A1C1 "
  • proton acid ions such as carboxylic acid ions such as CF COO_, C H COO—
  • polyelectrolytes such as polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polybutyl sulfonic acid, polybulu sulfuric acid, poly ⁇ -methyl sulfonic acid, polyethylene sulfonic acid, polyphosphoric acid, etc. Yes, but not necessarily limited.
  • a high molecular or low molecular weight organic sulfonic acid compound or polyphosphoric acid is used, and an aryl sulfonate dopant is preferably used.
  • an aryl sulfonate dopant is preferably used.
  • benzene sulfonic acid, toluene sulfonic acid, naphthalene sulfonic acid It is possible to use salts such as nthracene sulfonic acid, anthraquinone sulfonic acid and their derivatives.
  • the concentration of the monomer that forms the conductive polymer used in the solid electrolyte used in the present invention varies depending on the type of substituent of the compound and the type of solvent, but generally 10_3 to 10 mol Z range range of desired sigma was 10 _2 to 5 moles Z l l is preferred to further.
  • the reaction temperature is determined by the reaction method and is not particularly limited, but is generally selected in the temperature range of -70 ° C to 250 ° C. Desirably, it is ⁇ 30 ° C. to 150 ° C., and further, it is desirably performed in a temperature range of ⁇ 10 ° C. to 30 ° C.
  • the reaction solvent used may be a monomer, an oxidant, a counterion having a dopant ability, or a solvent capable of dissolving each of them alone.
  • a solvent capable of dissolving each of them alone for example, tetrahydrofuran, dioxane, Ethers such as jetyl ether, or aprotic polar solvents such as dimethylformamide acetonitrile, benzonitrile, N-methylpyrrolidone and dimethyl sulfoxide, esters such as ethyl acetate and butyl acetate, chloroform and methylene chloride
  • Non-aromatic chlorinated solvents nitro compounds such as nitromethane, -troethane and nitrobenzene
  • alcohols such as methanol, ethanol and propanol
  • organic acids such as formic acid, acetic acid and propionic acid, or acids of the organic acids
  • Anhydrides eg acetic anhydride
  • the electric conductivity of the solid electrolyte produced in this manner is 5SZcm or more, more preferably lOSZcm or more, under the desired conditions of force of 1SZcm or more.
  • Sarako a carbon paste layer and a metal powder-containing conductive layer are provided on the surface of the solid electrolyte layer to form the cathode portion of the capacitor.
  • the metal powder-containing conductive layer is intimately bonded to the solid electrolyte layer and acts as a cathode, and at the same time serves as an adhesive layer for bonding the cathode lead terminal of the final capacitor product.
  • the thickness of the metal-containing conductive layer is Although not limited, generally 1 to: about LOO ⁇ m, preferably about 5 to 50 ⁇ m.
  • the lead terminal is joined to the lead frame joined to the anode part, the lead wire is joined to the cathode part made of the solid electrolyte layer, the carbon paste layer and the metal powder-containing conductive layer, and the whole is further joined. It is obtained by sealing with an insulating resin such as epoxy resin.
  • the capacitor anode foil of the present invention is usually used as a multilayer capacitor element.
  • a multilayer solid electrolytic capacitor can be formed, for example, by laminating capacitor elements on a lead frame.
  • a 110 m thick conversion aluminum foil (63.4 V chemical product) cut to 3.3 mm width is cut into 13 mm lengths, and one short side of this foil piece is fixed to a metal guide by welding. did.
  • a polyimide resin solution manufactured by Ube Industries
  • Ube Industries was drawn in a line of 0.8 mm width at a position 7 mm from the unfixed end and dried at about 180 ° C. for 30 minutes.
  • the part up to the polyimide resin coated with the tip force of the unfixed aluminum foil is the first chemical conversion (cutting chemical conversion) in 5% by weight oxalic acid aqueous solution, current density 10mAZcm 2 , chemical conversion voltage 63.4 V, temperature 25 After chemical conversion treatment at ° C for 10 minutes, it was washed with water and dried.
  • a chemical conversion treatment was carried out in a 9% by mass ammonium adipate aqueous solution at a current density of 5 mAZcm 2 , a chemical conversion voltage of 65 V, and a temperature of 65 ° C. for 10 minutes, followed by washing and drying in the same manner.
  • a polyimide resin separating the anode part and the cathode part was applied linearly to a width of 0.8 mm centering on a 5 mm part from the tip of the aluminum foil, and dried at 180 ° C. for 1 hour.
  • the solid electrolyte as the cathode layer was formed as follows.
  • the cathode part (3.5 mm X 4.6 mm) contains 3,4-ethylenedioxythiophene.
  • the sample was immersed in an isopropanol solution (solution 1), pulled up and left standing. Next, it was immersed in an aqueous solution (solution 2) containing ammonium persulfate, dried, and then subjected to acid-polymerization. The operation of immersing in solution 1 and then immersing in solution 2 and conducting acid-sodium polymerization was repeated. Next, it was washed with hot water at 50 ° C and then dried at 100 ° C to form a solid electrolyte layer. Further, an electrode was formed on the cathode portion with a single bond paste and silver paste to complete a capacitor element.
  • the part containing the applied masking material is stacked on the lead frame with Ag paste while being joined, and the anode lead terminal is connected to the part without solid electrolyte by welding, and the whole is sealed with epoxy resin
  • a total of 30 chip-type solid electrolytic capacitors were manufactured by applying a voltage of 28V at 135 ° C and aging.
  • the defective rate is 10% when a leakage current of 0.8 ⁇ ⁇ (0.005 CV) or higher is regarded as defective.
  • the reflow test (also referred to as “no, heat resistance test”) was evaluated by the following method. That is, 20 capacitor elements were prepared, the elements were passed for 10 seconds at a temperature of 255 ° C, this operation was repeated three times, the leakage current was measured 1 minute after the rated voltage was applied, and An element with a value of 16 A (0.1 CV) or more was regarded as a defective product.
  • the product was left in a high temperature and high humidity environment of 60 ° C and 90% RH for 500 hours, and a leakage current value of 48 A (0.3 CV) or higher after 1 minute of application of the rated voltage was regarded as a defective product.
  • a capacitor was prepared and evaluated in the same manner as in Example 1 except that the chemical conversion treatment was performed for 10 minutes at a current density of 5 mAZcm 2 , a conversion voltage of 63.4 V, and a temperature of 25 ° C in a 5% by weight oxalic acid aqueous solution as the first conversion. It was.
  • a capacitor was prepared and evaluated in the same manner as in Example 1 except that the heat treatment performed after the third chemical conversion was 300 ° C.
  • the present invention provides a chemical conversion treatment method for forming an oxide film with improved stability. Therefore, it is a useful force in various oxide film formation processes.In particular, by applying it to a method for manufacturing a solid electrolytic capacitor, the stability of the oxide film functioning as a dielectric of the solid electrolytic capacitor is increased. This is useful because it prevents deterioration of leakage current characteristics and contributes to improvement in yield and reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 本発明は、微細孔を有する弁作用金属材料を化成処理して表面に誘電体皮膜を形成する方法であって、熱処理工程を含み、前記熱処理工程の前及び後にアジピン酸塩を含む電解液中で化成する工程をそれぞれ1回以上含むことを特徴とする固体電解コンデンサ及びその製造方法に関する。これにより、固体電解コンデンサの誘電体として機能する酸化皮膜の安定性を増加させ、漏れ電流特性の悪化を防ぎ、収率及び信頼性を改善する。

Description

明 細 書
弁作用金属材料の化成処理方法
関連出願との関係
[0001] この出願は、米国法典第 35卷第 111条 (b)項の規定に従い、 2005年 8月 25日に 提出した米国仮出願第 60Z710, 880の出願日の利益を同第 119条 (e)項(1)によ り主張する同第 111条 (a)項の規定に基づく出願である。
技術分野
[0002] 本発明は、弁作用金属材料の化成処理方法並びにこれを用いた固体電解コンデ ンサの製造方法及び固体電解コンデンサに関する。さらに詳しく言えば、微細孔を有 する弁作用金属材料を化成処理して表面に誘電体皮膜を形成する方法において、 欠陥の少な!、誘電体皮膜を形成する方法、並びにこの方法を用いて欠陥の少な 、 誘電体皮膜を含む固体電解コンデンサを製造する方法及びそのようにして製造され る信頼性に優れた固体電解コンデンサに関する。
背景技術
[0003] 固体電解コンデンサは、一般的にアルミニウム、タンタル、ニオブ、チタン及びその 合金などの弁作用金属力 なる陽極体の表面をエッチングにより粗面化してミクロン オーダーの微細孔を形成して表面積を拡大し、その上に化成工程によって誘電体酸 化皮膜を形成し、さらに陽極部との間にセパレータを介して固体電解質を含浸させ、 その上にカーボンペースト、金属含有導電性ペーストからなる陰極導電層を形成した 後に、外部電極となるリードフレームに溶接し、エポキシ榭脂等の外装部を形成して 構成される。
[0004] 特に、固体電解質として導電性重合物を用いた固体電解コンデンサは、二酸化マ ンガンなどを固体電解質とする固体電解コンデンサに比べて等価直列抵抗及び漏 れ電流を小さくでき、電子機器の高性能化、小型化に対応できるコンデンサとして有 用であるため、多くの製造方法が提案されている。
[0005] 導電性重合物を用いて高性能の固体電解コンデンサを製造する際、特に弁作用 金属箔上に形成される酸化皮膜に欠陥部が存在すると、形成される導電性高分子 が直接弁金属に触れてしまうことによるショートが発生し、また実装工程でのリフロー 時に素子を構成する材料の熱応力の違い等から、酸ィ匕皮膜がダメージを受けて欠陥 が生じてしまい、ショートの原因となるなど、酸化皮膜の安定性はコンデンサ素子の 性能を左右する重要な因子である。
[0006] 酸ィ匕皮膜の安定性を高める化成の手法としては、例えば特開平 11— 150041号 公報 (特許文献 1)においては、弁作用金属を化成処理して酸化皮膜を形成し、次い で、固体電解質層を形成する固体電解コンデンサの製造方法において、第 1の化成 処理により酸化皮膜を形成した後に 150°Cより高い温度で熱処理する工程と、このェ 程後に第 2の化成処理をする工程とを行なうことにより、固体電解質を形成する際に 焼成等の熱処理を行ってもクラックの発生が抑えられ、また、プリント配線板等に実装 する際の熱処理によっても酸ィ匕皮膜にクラックを生じ難くすることによって漏れ電流不 良や耐圧不良を低下できるとして 、る。
[0007] 特開2000— 68159号公報(特許文献2 (1^6243256) )にぉぃては、粗面化したァ ルミ-ゥム箔表面に誘電体としてバリア皮膜を形成したィヒ成箔を切断した後、その切 口部に多孔質酸ィ匕皮膜であって厚さが前記ノリア皮膜の厚みの 5〜100倍の範囲と されたポーラス皮膜を形成することにより、電極箔の有効面積を減少させることなぐ 切口部のみに耐電圧性及び耐熱性の皮膜を形成させることが可能となるとして 、る。
[0008] 特開 2003— 158044号公報(特許文献 3 (WO02/103727) )においては、誘電体 皮膜を有する弁作用金属表面を珪素と弁作用金属及び酸素からなる酸化物で少な くとも一部被覆して、固体電解質 (導電性重合体)の誘電体皮膜への被覆面積が増 カロ、密着性等が向上してコンデンサの静電容量が増大し、また個々のコンデンサの 静電容量のばらつきや漏れ電流値を低減する、などが提案されて!、る。
[0009] しかし、特開平 11— 150041号公報 (特許文献 1)においては、第 1の化成処理も 第 2の化成処理も主として無機酸による化成処理が想定されており、実施例としては 「リン酸による化成処理 = >熱処理 = >リン酸による化成処理」からなるプロセスが記 載されているのみである。また、熱処理による改善効果は十分なものではない。さら に異なる化成手法の導入や化成液組成の限定による酸化皮膜の安定化には言及が ない。 [0010] 特開 2000— 68159号公報 (特許文献 2)に記載の技術は、アルミニウム化成箔切 断部の尖塔形状を改善するための化成手法の一つであり、アルミ陽極箔全面の改質 を狙ったものではなぐまた好ましい実施形態では、蓚酸—熱処理—アジピン酸とい う組み合わせを例示しているのみであり、同じィ匕学種による化成処理の繰り返し、ある いは更なる化成導入による酸ィ匕皮膜の安定ィ匕には言及がな 、。
特開 2003— 158044号公報 (特許文献 3)に関してもさらなる改善が求められてい た。
[0011] 特許文献 1 :特開平 11 150041号公報
特許文献 2:特開 2000 - 68159号公報
特許文献 3 :特開 2003— 158044号公報
発明の開示
発明が解決しょうとする課題
[0012] 従って本発明は、上記従来技術の問題点を解決し、安定性の改善された酸化皮膜 を形成する化成処理方法を提供し、これにより、固体電解コンデンサの品質を安定 ィ匕させて生産性を向上できる固体電解コンデンサの製造方法を提供することを目的 とする。
課題を解決するための手段
[0013] 上記課題に鑑み鋭意検討した結果、本発明者らは、熱処理を行なうとともに、前記 熱処理の前及び後にアジピン酸塩を含む電解液中で化成する処理をそれぞれ 1回 以上行なうことにより、酸ィ匕皮膜の安定性が改善されること、さらに、この方法を固体 電解コンデンサ用陽極箔に適用して固体電解コンデンサの製造に用 ヽればコンデン サ諸特性が改善されることを見出し本発明を完成するに至った。すなわち、本発明は 以下の弁作用金属材料の化成処理方法並びにこれを用いた固体電解コンデンサの 製造方法及び固体電解コンデンサを提供する。
1.微細孔を有する弁作用金属材料を化成処理して表面に誘電体皮膜を形成する 方法であって、熱処理工程を含み、前記熱処理工程の前及び後にアジピン酸塩を 含む電解液中で化成する工程をそれぞれ 1回以上含むことを特徴とする弁作用金属 材料の化成処理方法。 2.前記熱処理工程の前に蓚酸を含む電解液中で化成する工程を 1回以上含む前 記 1に記載の弁作用金属材料の化成処理方法。
3.前記熱処理工程の前にケィ酸塩を含む電解液中で化成する工程を 1回以上含む 前記 1または 2に記載の弁作用金属材料の化成処理方法。
4.裁断された化成箔の化成において、裁断面の化成後、
(0アジピン酸塩を含む電解液中でィ匕成する工程、
GO蓚酸、硝酸、硫酸、アジピン酸、リン酸、ケィ酸及びこれらの塩からなる群から選択 される少なくとも 1つの成分を含む電解液中で化成する少なくとも 1回の工程、
(iii)熱処理工程及び
(iv)アジピン酸塩を含む電解液中でィ匕成する工程
の G)〜Gv)を 1サイクル以上行なう前記 1に記載の弁作用金属材料の化成処理方法。
5.化成箔裁断面の化成を、蓚酸、硫酸、アジピン酸、リン酸及びこれらの塩からなる 群から選択される少なくとも 1の成分を含む電解液中で行なう前記 4に記載の弁作用 金属材料の化成処理方法。
6.アジピン酸塩がアジピン酸アンモ-ゥムである前記 1〜5のいずれかに記載の弁 作用金属材料の化成処理方法。
7.ケィ酸塩がケィ酸ナトリウムである前記 1〜6のいずれかに記載の弁作用金属材 料の化成処理方法。
8.弁作用金属材料が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウムのうち 少なくとも一種の金属を含む前記 1〜7のいずれかに記載の弁作用金属材料の化成 処理方法。
9.表面の誘電体皮膜の厚みが lnm〜1000nmの範囲である前記 1〜8のいずれか に記載の弁作用金属材料の化成処理方法。
10.熱処理工程における熱処理温度が 250°C以上 400°C以下である前記 1〜9の いずれかに記載の弁作用金属材料の化成処理方法。
11.各化成温度が 10°C以上 85°C以下である前記 1〜: LOの 、ずれかに記載の弁作 用金属材料の化成処理方法。
12.アジピン酸塩を含む電解液中での化成電圧が、化成箔形成時電圧の 0. 75〜1 . 2倍であることを特徴とする前記 1〜11のいずれかに記載の弁作用金属材料の化 成処理方法。
13.弁作用金属材料からなる陽極基体の表面に微細孔を形成し、その上に化成ェ 程によって誘電体酸化皮膜を形成し、さらに固体電解質層を形成する固体電解コン デンサの製造方法にお!、て、前記 1〜12の 、ずれかに記載の方法を用いて陽極基 体の化成処理を行なうことを特徴とする固体電解コンデンサの製造方法。
14.前記 1〜 12の 、ずれかに記載の方法を用 、て化成処理された弁作用金属材料 を含む固体電解コンデンサ。
発明の効果
[0014] 本発明の化成処理方法によれば、酸ィ匕皮膜の安定性が改善される。このため、本 発明の化成処理方法を固体電解コンデンサの製造方法に適用すれば、固体電解コ ンデンサの誘電体として機能する酸化皮膜の安定性が増し、漏れ電流特性の劣化 が防止されるとともに、収率及び信頼性が向上する。
発明を実施するための最良の形態
[0015] 本発明の化成処理方法は、微細孔を有する弁作用金属材料を化成処理して表面 に誘電体皮膜を形成する方法であって、熱処理工程を含み、前記熱処理工程の前 及び後にアジピン酸塩を含む電解液中で化成する工程をそれぞれ 1回以上含むこと を特徴とする。また、前記熱処理工程の前に蓚酸を含む電解液中で化成する工程及 び Zまたはケィ酸塩を含む電解液中でィ匕成する工程を 1回以上含んでもよい。
[0016] 以下、本発明の方法を構成する各要素及び工程について説明する。
本発明の化成処理方法が適用される対象は、微細孔を有する弁作用金属材料で ある。弁作用金属はアルミニウム、タンタル、ニオブ、チタン、ジルコニウムまたはこれ らの 1種以上を含む合金から選択され、より具体的な材料にはこれらの金属板、箔、 棒、線あるいはこれらを主成分とする焼結体等から選ばれる。これらの金属は予め公 知の方法によりエッチング処理等をして表面に微細孔を形成する。
[0017] 本発明の方法は、上記弁作用金属の化成処理一般に適用できるが、特に化成箔 から固体電解コンデンサ等を製造する際の化成処理方法として有用である。すなわ ち、弁作用を有する金属材料は、その粗面化 (多孔質化)後、公知の方法に従って 化成処理して誘電体酸化皮膜を形成したものが市販され、固体電解コンデンサ等に 用いられているが(以下、特に断らない限り、本願において「ィ匕成箔」とはこのような巿 販の化成基板または市販の条件に準じて化成を施した化成基板を指す。)、これらの 材料も、実際に使用する際には適当な形状に裁断しなければならず、この際、化成 層を含まない裁断面が露出する。また、裁断部付近の誘電体皮膜が損傷ないし破壊 されることがある。
[0018] 例えば、固体電解コンデンサの製造プロセスでは、前記材料を製品形状に合わせ た寸法に裁断したものを使用する。使用目的によって厚さが変わるが、一般的に厚 みが約 40〜 150 mの箔が使用される。また、大きさ及び形状も用途により異なるが 、平板形素子単位として幅約 l〜50mm、長さ約 l〜50mmの矩形の金属箔が好ま しぐより好ましくは幅約 2〜20mm、長さ約 2〜20mm、さらに好ましくは幅約 2〜5m m、長さ約 2〜6mmである。
[0019] 従って、市販の化成箔を用いる場合でも、裁断後には弁作用金属が露出した部分 を含め、化成を行なう必要がある。本発明の方法は、このような化成処理に適してい る。
本発明の方法を裁断後の化成箔に適用するには、はじめに、裁断されて弁作用金 属が露出した部分の尖塔形状を修正して化成皮膜を再形成する処理 (以下、「切口 化成」と言う)を行なうことが好ま 、。
[0020] 切口化成には、酸及び Zまたはその塩の電解液、例えばリン酸、硫酸、蓚酸、アジ ピン酸等の少なくとも一種を含む電解液を用いる。これらの中では蓚酸が好ま Uヽ。 切口化成は、好ましくは電解液濃度が 0. 1質量%〜30質量%、温度が 0°C〜90°C 、電流密度が 0. lmAZcm2〜1000mAZcm2で、時間が 100分以内の条件でィ匕 成基板の芯部を陽極として定電流化成を行ない、規定電圧に達した後には定電圧 化成を行なう。さらに好ましくは電解液濃度が 1質量%〜20質量%、温度が 20°C〜 80°C、電流密度が lmAZcm2〜400mAZcm2で、時間が 60分以内の条件を選定 する。
[0021] なお、切口化成では、箔の所定の領域を化成液に浸漬して所定の電圧電流密度 で化成を行なうが、その際、化成液の浸漬液面レベルを安定ィ匕させるために、所定 の位置にマスキング材を塗布して化成を施すことが望ま U、。マスキング材としては 陰陽両極を分離するマスキング材として後述するものを使用することができる。
[0022] 本発明では、切口化成の終了後、後述する熱処理前に少なくとも 1回以上のアジピ ン酸塩化成を行なう。この化成条件としては、好ましくは、その電解液濃度が 0. 1質 量%〜30質量%、温度が 0°C〜90°C、電流密度が 0. lmAZcm2〜1000mAZc m2で、時間が 100分以内の条件でィ匕成基板の芯部を陽極として定電流化成を行な い、規定電圧に達成した後には定電圧化成を行なう。さらに好ましくは電解液濃度が 1質量%〜20質量%、温度が 20°C〜80°C、電流密度が lmAZcm2〜400mAZc m2で、時間が 60分以内の条件を選定する。なお、アジピン酸塩としては、アジピン酸 アンモ-ゥム、アジピン酸ナトリウム、アジピン酸カリウム等が好ましい。
[0023] 熱処理前のアジピン酸塩化成を実施した後に、さらに他の電解液を用いて化成を してもよい。具体的には蓚酸及び Zまたはその塩、硝酸及び Zまたはその塩、硫酸 及び Zまたはその塩、アジピン酸及び Zまたはその塩、リン酸及び Zまたはその塩、 ケィ酸アルカリの水溶液等が好適に使用できる。ケィ酸アルカリは、水酸ィ匕アルカリあ るいは炭酸アルカリとケィ酸塩 (SiOと金属酸化物とからなる塩、一般式 xM O -ySi
2 2 o )とを融解して、水に可溶性のものを得ることができ、弁作用金属及び弁作用金属
2
の表面に形成された酸化皮膜を溶解する特性を有するものであれば良ぐケィ酸カリ ゥム、ケィ酸ナトリウム、ケィ酸カルシウム、ケィ酸リチウム等が使用できる。この化成の 条件としては、好ましくは、その電解液濃度が 0. 1質量%〜30質量%、温度が 0°C 〜90°C、電流密度が 0. lmAZcm2〜1000mAZcm2で、時間が 100分以内の条 件で化成基板の芯部を陽極として定電流化成を行ない、規定電圧に達成した後に は定電圧化成を行なう。さらに好ましくは電解液濃度力 ^質量%〜20質量%、温度 力 S20°C〜50°C、電流密度が lmAZcm2〜400mAZcm2で、時間が 60分以内の 条件を選定する。
[0024] 次いで、熱処理を行なう。
熱処理工程は、 250°C〜400°Cの温度で行なうことが好ましい。より好ましくは 270 °C以上 390°C以下、さらに好ましくは 340°C以上 380°C以下である。温度が低すぎる と本発明の効果が得られない。なお、温度が高すぎると却って酸ィ匕皮膜のダメージを 招くことがある。熱処理時間は、酸ィ匕皮膜の安定性が期待できる範囲で、あるいは誘 電体皮膜に必要以上に損傷を与えない範囲で任意の時間に設定できる。
[0025] 化成電圧は、酸ィ匕皮膜の修復及び安定ィ匕が期待できる範囲であれば良ぐ好まし くは、化成箔形成時電圧の 0. 75〜: L 2倍、より好ましくは 0. 80〜: L 15倍である。 さらに好ましくは、 0. 85〜: L 10倍である。 0. 80倍以下であると、裁断時等にダメー ジを受けたィ匕成皮膜の修復が十分ではなぐまた 1. 1倍以上であると、既に形成され ていた化成皮膜をさらに成長させ、容量の低下を引き起こすなど、コンデンサとして の特性に影響を与えてしまう。なお、本発明は製品の耐電圧に関わらず有効である 力 特に従来法では安定した酸ィ匕皮膜の形成が困難であった 10V以上の高耐電圧 品において有効である。
[0026] 熱処理後に少なくとも 1回以上のアジピン酸塩化成を行なう。この化成条件としては 、好ましくは、その電解液濃度が 0. 1質量%〜30質量%、温度が 0°C〜90°C、電流 密度が 0. lmAZcm2〜1000mAZcm2で、時間が 100分以内の条件で化成基板 の芯部を陽極として定電流化成を行ない、規定電圧に達成した後には定電圧化成 を行なう。さらに好ましくは電解液濃度が 1質量%〜20質量%、温度が 20°C〜80°C 、電流密度が lmAZcm2〜400mAZcm2で、時間が 60分以内の条件を選定する 。なお、アジピン酸塩としては、アジピン酸アンモ-ゥムが好ましい。
[0027] 本発明の化成処理による酸化皮膜層の厚さは、酸化皮膜が安定化され、コンデン サ特性を向上させ得る酸ィ匕皮膜の厚みであれば特に限定はないが、好ましくは lnm 〜1000nmの範囲であり、さらに好ましくは、 20nm〜500nmの範囲である。
[0028] なお、上記の化成処理の条件は工業的方法として好適なものではある力 弁作用 金属材料表面に既に形成されて ヽる誘電体酸化皮膜を破壊または劣化させない限 り、また、本発明で必須の工程であるアジピン酸塩処理を上述した熱処理の前後に 含む限りにおいて、電解液の種類、電解液濃度、化成温度、電流密度、化成時間、 酸ィ匕皮膜層の厚さ等の諸条件は任意に選定することができる。
[0029] 以上に述べてきたように、本発明の好ましい実施態様によれば、裁断された化成箔 の化成において
(0)化成箔裁断面の化成 (切口化成)工程、 (0アジピン酸塩を含む電解液中でィ匕成する工程、
GO蓚酸、硝酸、硫酸、アジピン酸、リン酸、ケィ酸及びこれらの塩からなる群から選択 される少なくとも 1の成分を含む電解液中で化成する少なくとも 1回の工程、
(iii)熱処理工程及び
(iv)アジピン酸塩を含む電解液中でィ匕成する工程
を含む多段階の化成処理方法が提供される。ここで、(i)〜(iv)のサイクルは繰り返し 行なってもよぐこれらのサイクルを 2サイクル以上行なう弁作用金属材料の化成処理 方法も本発明の範囲に含まれる。
[0030] 本発明の化成処理方法は、固体電解コンデンサの製造方法として有用である。以 下に具体的な製造方法を挙げる。但し、これは例示であって本発明は以下の記載に 限定されるものではない。
[0031] 上述の通り、化成処理において、固体電解コンデンサの陽極となる部分と固体電解 質(陰極部分)との絶縁を確実とするために、マスキング材を塗布することが好ましい
[0032] マスキング材としては一般的な耐熱性榭脂、好ましくは溶剤に可溶あるいは膨潤し うる耐熱性榭脂またはその前駆体、無機質微粉とセルロース系榭脂からなる組成物( 特開平 11— 80596号公報)などが使用できるが、材料には限定されない。具体例と してはポリフエ-ルスルホン(PPS)、ポリエーテルスルホン(PES)、シアン酸エステル 榭脂、フッ素榭脂 (テトラフルォロエチレン、テトラフルォロエチレン 'パーフルォロア ルキルビュルエーテル共重合体)、ポリイミド及びそれらの誘導体などが挙げられる。 ポリイミド、ポリエーテルスルホン、フッ素榭脂及びそれらの前駆体が好ましぐ特に弁 作用金属に十分な密着力、充填性を有し、約 450°Cまでの高温処理に耐えられる絶 縁性に優れたポリイミドが好ましい。ポリイミドとしては、 200°C以下、好ましくは 100〜 200°Cの低温度での熱処理により硬化が十分可能であり、陽極箔の表面上の誘電 体層の熱による破損 '破壊などの外的衝撃が少な 、ポリイミドが好適に使用できる。 ポリイミドの好ましい平均分子量としては約 1000〜1000000であり、より好ましくは 約 2000〜200000である。
[0033] これらは、有機溶剤に溶解あるいは分散可能であり、塗布操作に適した任意の固 形分濃度 (従って粘度)の溶液ある 、は分散液を容易に調製することができる。好ま しい濃度としては、約 10〜60質量%、より好ましい濃度としては約 15〜40質量%で ある。低濃度側では遮蔽材の線がにじみ、高濃度側では糸引き等が起こり、線幅が 不安定になる。
[0034] ポリイミド溶液の具体例としては、塗布後の熱処理により硬化する低分子ポリイミドを 2—メトキシェチルエーテルやトリエチレングリコールジメチルエーテルなどの吸湿性 の少な 、溶剤に溶した (例えば宇部興産 (株)力もュピコート(商標) FS - 100L)とし て販売されている。)、あるいは前記式(5)で示されるポリイミド榭脂を NMP (N—メチ ルー 2—ピロリドン)や DMAc (ジメチルァセトアミド)に溶解した溶液 (例えば、新日本 理化 (株)から「リカコート(商標)」として販売されている。)が好ましく使用できる。遮蔽 材溶液によって形成される遮蔽材層は、遮蔽材溶液の塗布後、必要に応じて乾燥、 加熱、光照射などの処理を行っても良い。
[0035] また、化成処理後、陰極部には固体電解質層が形成される。
本発明において、固体電解質としてはチォフェン骨格を有する化合物、多環状ス ルフイド骨格を有する化合物、ピロール骨格を有する化合物、フラン骨格を有する化 合物、ァ-リン骨格を有する化合物等で示される構造を繰り返し単位として含む導電 性重合物が挙げられるが、固体電解質を形成する導電性重合物はこれに限られるも のではない。
[0036] チォフェン骨格を有する化合物としては、 3—メチルチオフェン、 3 ェチルチオフ ェン、 3—プロピルチオフェン、 3—ブチルチオフェン、 3—ペンチルチオフェン、 3— へキシルチオフェン、 3—へプチルチオフェン、 3—ォクチルチオフェン、 3—ノニルチ ォフェン、 3—デシルチオフェン、 3—フルォロチォフェン、 3—クロロチォフェン、 3— ブロモチォフェン、 3—シァノチォフェン、 3, 4—ジメチルチオフェン、 3, 4—ジェチ ルチオフェン、 3, 4—ブチレンチオフ ン、 3, 4—メチレンジォキシチオフ ン、 3, 4 エチレンジォキシチォフェン等の誘導体を挙げることができる。これらの化合物は、 一般には市販されている化合物または公知の方法(例えば Synthetic Metals誌, 1986 年, 15卷, 169頁)で準備できる力 本発明においてはこれらに限るものではない。
[0037] また、例えば、多環状スルフイド骨格を有する化合物としては、具体的には 1, 3 - ジヒドロ多環状スルフイド (別名、 1, 3 ジヒドロべンゾ [c]チォフェン)骨格を有する 化合物、 1, 3 ジヒドロナフト [2, 3— c]チォフェン骨格を有する化合物が使用でき る。さらには 1, 3 ジヒドロアントラ [2, 3— c]チォフェン骨格を有する化合物、 1, 3 -ジヒドロナフタセノ [2, 3— c]チォフェン骨格を有する化合物を挙げることができ、 公知の方法、例えば特開平 8— 3156号公報 (US5530139)記載の方法により準備す ることがでさる。
[0038] また、例えば、 1 , 3 ジヒドロナフト[1, 2— c]チォフェン骨格を有する化合物力 1 , 3 ジヒドロフエナントラ [2, 3— c]チォフェン誘導体や、 1, 3 ジヒドロトリフエ-口 [
2, 3— c]チォフェン骨格を有する化合物力 1, 3 ジヒドロべンゾ [a]アントラセノ [7 , 8— c]チォフェン誘導体なども使用できる。
[0039] 縮合環に窒素または N—ォキシドを任意に含んでいる場合もあり、 1, 3 ジヒドロチ エノ [3, 4—b]キノキサリンや、 1, 3 ジヒドロチェノ [3, 4—b]キノキサリンー4ーォ キシド、 1 , 3 ジヒドロチェノ [3, 4—b]キノキサリン 4, 9 ジォキシド等を挙げるこ とができるがこれらに限定されるものではない。
[0040] また、ピロール骨格を有する化合物としては、 3—メチルビロール、 3 ェチルピロ ール、 3—プロピルピロール、 3—ブチルピロール、 3—ペンチルピロール、 3—へキ シルピロール、 3—へプチルピロール、 3—ォクチルピロール、 3—ノ-ルビロール、 3 —デシルピロール、 3—フルォロピロール、 3—クロロピロール、 3—ブロモピロール、 3—シァノビロール、 3, 4—ジメチルビロール、 3, 4—ジェチルビロール、 3, 4—ブチ レンピロール、 3, 4ーメチレンジォキシピロール、 3, 4—エチレンジォキシピロール等 の誘導体を挙げることができる。これらの化合物は、市販品または公知の方法で準備 できるが、本発明においてはこれらに限るものではない。
[0041] また、フラン骨格を有する化合物としては、 3—メチルフラン、 3 ェチルフラン、 3— プロピルフラン、 3—ブチルフラン、 3—ペンチルフラン、 3—へキシルフラン、 3—へ プチルフラン、 3—ォクチルフラン、 3—ノ-ルフラン、 3—デシルフラン、 3—フルォロ フラン、 3—クロ口フラン、 3—ブロモフラン、 3—シァノフラン、 3, 4—ジメチルフラン、
3, 4 ジェチルフラン、 3, 4—ブチレンフラン、 3, 4—メチレンジォキシフラン、 3, 4 エチレンジォキシフラン等の誘導体を挙げることができる。これらの化合物は巿販 品または公知の方法で準備できる力 本発明にお ヽてはこれらに限るものではな 、。
[0042] また、ァ-リン骨格を有する化合物としては、 2—メチルァ-リン、 2—ェチルァ-リン 、 2—プロピルァニリン、 2—ブチルァニリン、 2—ペンチルァニリン、 2—へキシルァニ リン、 2—へプチルァ-リン、 2—ォクチルァ-リン、 2—ノ-ルァ-リン、 2—デシルァ -リン、 2—フルォロア-リン、 2—クロロア-リン、 2—ブロモア-リン、 2—シァノア-リ ン、 2, 5—ジメチルァ-リン、 2, 5—ジェチルァ-リン、 3, 4—ブチレンァ-リン、 3, 4 ーメチレンジォキシァ-リン、 3, 4—エチレンジォキシァ-リン等の誘導体を挙げるこ とができる。これらの化合物は、市販品または公知の方法で準備できるが、本発明に お!、てはこれらに限るものではな!/、。
[0043] また、上記化合物群から選ばれる化合物を併用し、 3元系共重合体として用いても 良い。その際重合性単量体の組成比などは重合条件等に依存するものであり、好ま L ヽ組成比、重合条件は簡単なテストにより確認できる。
[0044] 本発明にお ヽて、固体電解質として用いる導電性重合物の製造に用いられる酸ィ匕 剤は脱水素的 4電子酸化反応の酸化反応を十分行わせ得る酸化剤であれば良い。 詳しくは、工業的に安価であり、製造上取り扱いが容易である化合物が好まれる。具 体的には例えば、 FeCl 、 FeCIO 、 Fe (有機酸ァ-オン)塩等の Fe (III)系化合物、
3 4
または無水塩ィ匕アルミニウム Z塩ィ匕第一銅、アルカリ金属過硫酸塩類、過硫酸アン モ -ゥム塩類、過酸化物類、過マンガン酸カリウム等のマンガン類、 2, 3—ジクロロー 5, 6—ジシァノー 1, 4—ベンゾキノン(DDQ)、テトラクロ口一 1, 4—ベンゾキノン、テ トラシァノー 1, 4一べンゾキノン等のキノン類、沃素、臭素等のハロゲン類、過酸、硫 酸、発煙硫酸、三酸化硫黄、クロ口硫酸、フルォロ硫酸、アミド硫酸等のスルホン酸、 オゾン等及びこれら複数の酸化剤の組み合わせが挙げられる。
[0045] この中で、前記 Fe (有機酸ァ-オン)塩を形成する有機酸ァ-オンの基本化合物と しては、有機スルホン酸または有機カルボン酸、有機燐酸、有機硼酸が挙げられる。 有機スルホン酸の具体例としては、ベンゼンスルホン酸や p—トルエンスルホン酸、メ タンスノレホン酸、エタンスノレホン酸、 α—スノレホーナフタレン、 j8—スノレホーナフタレ ン、ナフタレンジスルホン酸、アルキルナフタレンスルホン酸(アルキル基としてはブ チル、トリイソプロピル、ジ— t—ブチル等)等が使用される。 [0046] 一方、有機カルボン酸の具体例としては、酢酸、プロピオン酸、安息香酸、蓚酸等 が挙げられる。さらに本発明においては、ポリアクリル酸、ポリメタクリル酸、ポリスチレ ンスルホン酸、ポリビュルスルホン酸、ポリビュル硫酸、ポリ α—メチルスルホン酸、 ポリエチレンスルホン酸、ポリリン酸等の高分子電解質ァ-オンも使用される力 これ ら有機スルホン酸または有機カルボン酸の例は単なる例示であってこの限りではない 。また、前記ァ-オンの対カチオンは H+、 Na+、 K+等のアルカリ金属イオン、または 水素原子ゃテトラメチル基、テトラエチル基、テトラブチル基、テトラフエニル基等で置 換されたアンモ-ゥムイオンである力 本発明においては特に限定を受けない。前記 記載の酸化剤のうち、特に好ましくは 3価の Fe系化合物、または塩ィ匕第一銅系、過 硫酸アルカリ塩類、過硫酸アンモ-ゥム塩類、マンガン酸類、キノン類を含む酸化剤 が好適に使用できる。
[0047] 本発明において、固体電解質として用いる導電性重合物の製造において、必要に 応じて共存されるドーパント能を有する対ァニオンは、前記酸化剤から産生される酸 ィ匕剤ァ-オン (酸化剤の還元体)を対イオンに持つ電解質化合物または他のァ-ォ ン系電解質を挙げることができる。具体的には例えば、 PF―、 SbF―、 AsF—の如き
6 6 6
5B族元素のハロゲン化ァ-オン、 BF—の如き 3B族元素のハロゲン化ァ-オン、 I— (
4
I _)、 Br―、 C1—の如きハロゲンァ-オン、 CIO—の如きハロゲン酸ァ-オン、 A1C1 "
3 4 4 や FeCl―、 SnCl—等の如きルイス酸ァ-オン、あるいは NO―、 SO 2_の如き無機
4 5 3 4 酸ァ-オン、または p—トルエンスルホン酸やナフタレンスルホン酸、炭素数 1乃至 5 のアルキル置換スルホン酸、 CH SO _、 CF SO—の如き有機スルホン酸ァ-オン、
3 3 3 3
または CF COO_、 C H COO—の如きカルボン酸ァ-オン等のプロトン酸ァ-オン
3 6 5
を挙げることができる。また同じぐポリアクリル酸、ポリメタクリル酸、ポリスチレンスル ホン酸、ポリビュルスルホン酸、ポリビュル硫酸、ポリ α—メチルスルホン酸、ポリエ チレンスルホン酸、ポリリン酸等の高分子電解質ァ-オン等をあげることができるが、 必ずしも限定されるものではな 、。
[0048] し力しながら好ましくは高分子系または低分子系の有機スルホン酸ィ匕合物、あるい はポリリン酸が挙げられ、望ましくはァリールスルホン酸塩系ドーパントが好適に使用 される。例えば、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、ァ ントラセンスルホン酸、アントラキノンスルホン酸及びそれらの誘導体などの塩を用い ることがでさる。
[0049] 本発明に用いられる固体電解質に使用する導電性重合物を形成するモノマーの 濃度はその化合物の置換基の種類や溶媒等の種類によって異なるが、一般的には 10_3〜10モル Zリットルの範囲が望ましぐまた 10_2〜5モル Zリットルの範囲がさら に好まし 、。また反応温度はそれぞれ反応方法によって定められるもので特に限定 できるものではないが、一般的には— 70°Cから 250°Cの温度範囲で選ばれる。望ま しくは— 30°C〜150°Cであり、さらに— 10°C〜30°Cの温度範囲で行なわれることが 望ましい。
[0050] 本発明において、用いられる反応溶媒は単量体あるいは酸化剤、ドーパント能を有 する対ァ-オンを共に、またはそれぞれ単独に溶解可能な溶媒であれば良ぐ例え ばテトラヒドロフランやジォキサン、ジェチルエーテル等のエーテル類、あるいはジメ チルホルムアミドゃァセトニトリル、ベンゾニトリル、 N—メチルピロリドン、ジメチルスル ホキシド等の非プロトン性極性溶媒、酢酸ェチルや酢酸ブチル等のエステル類、クロ 口ホルムや塩化メチレン等の非芳香族性の塩素系溶媒、ニトロメタンや-トロェタン、 ニトロベンゼン等の-トロ化合物、あるいはメタノールやエタノール、プロパノール等 のアルコール類、または蟻酸や酢酸、プロピオン酸等の有機酸または該有機酸の酸 無水物(例、無水酢酸等)、水、アルコール類またはケトン類あるいはこれらの混合溶 媒を用いることができる。また前記酸化剤または Z及びドーパント能を有する対ァ- オン及び単量体はそれぞれ単独に溶解した溶媒系、すなわち二液系、もしくは三液 系で取り扱っても良い。
[0051] このようにして製造された固体電解質の電導度は、 lSZcm以上である力 望まし い条件では 5SZcm以上、さらに好ましくは lOSZcm以上である。
[0052] さら〖こ、固体電解質層の表面にカーボンペースト層と金属粉含有導電性層を設け てコンデンサの陰極部が形成される。金属粉含有導電性層は固体電解質層と密着 接合し、陰極として作用すると同時に最終コンデンサ製品の陰極リード端子を接合す るための接着層となるものであり、金属含有導電性層の厚さは限定されないが、一般 には 1〜: LOO μ m程度、好ましくは 5〜50 μ m程度である。 [0053] 固体電解コンデンサは陽極部に接合したリードフレームにリード端子を接合し、固 体電解質層、カーボンペースト層及び金属粉含有導電性層からなる陰極部にリード 線を接合し、さらに全体をエポキシ榭脂等の絶縁性榭脂で封止して得られる。
[0054] 本発明のコンデンサ用陽極箔は、通常、積層型のコンデンサ素子として用いられる 。積層型固体電解コンデンサは、例えば、リードフレーム上にコンデンサ素子を積層 すること〖こより形成できる。
実施例
[0055] 以下、実施例を挙げて本発明を詳しく説明するが、本発明はこれらの実施例には 限定されない。
(実施例 1)
厚み 110 mの化成アルミ箔(63. 4V化成品)を 3. 3mm幅に切断したものを 13m mずつの長さに切り取り、この箔片の一方の短辺部を金属製ガイドに溶接により固定 した。切口化成するために、固定していない端から 7mmの箇所にポリイミド榭脂溶液 (宇部興産製)を 0. 8mm幅に線状に描き、約 180°Cで 30分乾燥させた。固定してい ないアルミ箔の先端力も塗布されたポリイミド榭脂までの部分を、第 1の化成 (切口化 成)として 5質量%蓚酸水溶液中、電流密度 10mAZcm2、化成電圧 63. 4V、温度 25°Cで 10分間化成処理した後、水洗、乾燥した。次に第 2の化成工程として 9質量 %アジピン酸アンモニゥム水溶液中、電流密度 5mAZcm2、化成電圧 65V、温度 6 5°Cで 10分間化成処理して同様に水洗、乾燥した。次に第 3の化成として 1質量%の ケィ酸ナトリウム水溶液中、電流密度 5mAZcm2、化成電圧 65V、温度 65。Cで 10 分間化成を行って同様に水洗、乾燥した。その後、 350°Cの熱処理を 30分行なった 。さらに第 4の化成として、 9質量0 /0アジピン酸アンモ-ゥム水溶液中、電流密度 5m A/cm2,化成電圧 65V、温度 65°Cで 10分間化成処理を行ない、同様に水洗、乾 燥を行なった。
次に陽極部と陰極部を分離するポリイミド榭脂を、アルミ箔の先端から 5mmの部分 を中心として 0. 8mm幅に線状に塗布し、 180°Cで 1時間乾燥させた。陰極層である 固体電解質は以下のように固体電解質を形成した。
[0056] すなわち、陰極部(3. 5mm X 4. 6mm)を 3, 4—エチレンジォキシチォフェンを含 むイソプロパノール溶液 (溶液 1)に浸漬し、引き上げて放置した。次に過硫酸アンモ -ゥムを含む水溶液 (溶液 2)に浸漬し、これを乾燥し、酸ィ匕重合を行なった。溶液 1 に浸漬してから溶液 2に浸漬し、酸ィ匕重合を行なう操作を繰り返した。次に 50°Cの温 水で洗浄した後、 100°Cで乾燥させ、固体電解質層を形成した。さらに、陰極部に力 一ボンペースト、銀ペーストで電極を形成し、コンデンサ素子を完成させた。
[0057] 塗布したマスキング材を含む部分をリードフレーム上に Agペーストで接合しながら 3枚重ね、固体電解質のついていない部分に陽極リード端子を溶接により接続し、全 体をエポキシ榭脂で封止し、 135°Cで 28Vの電圧を印加してエージングして合計 30 個のチップ型固体電解コンデンサを作製した。
[0058] これら 30個のコンデンサについて、初期特性として 120Hzにおける容量と損失係 数 (tan δ )、 100kHzにおける等価直列抵抗 (以下 ESRとする。 )、それに漏れ電流 を測定した。尚、漏れ電流は定格電圧 16Vを印加して 1分後に測定した。測定結果 は以下の通りであった。
容量 (平均値) :10. O /z F
tan δ (平均値) : 0. 81%
ESR (平均値) : 31m Q
漏れ電流(平均値) :0.
また 0. 8 ^ Α (0. 005CV)以上の漏れ電流を不良品とした時の不良率は 10%であ つた ο
[0059] さらにリフロー試験及びこれに続いて行なった耐湿試験での結果を示した。リフロー 試験 (ノ、ンダ耐熱性試験とも言う。)は次の方法で評価した。すなわち 20個のコンデ ンサ素子を準備し、該素子を 255°Cの温度下に 10秒間通過させ、この作業を 3回繰 り返し、定格電圧印加 1分後の漏れ電流を測定し、そしてその値が 16 A (0. 1CV) 以上の素子を不良品とした。また、耐湿試験は 60°C、 90%RHの高温高湿下に 500 時間放置し、定格電圧印加 1分後漏れ電流値が 48 A (0. 3CV)以上を不良品とし た。
リフロー試験後の漏れ電流 :6.
耐湿試験後の漏れ電流 :5. V、ずれも不良率 0であった。
これらの結果を他の例示とともに表 1〜3に示す。
[0060] (実施例 2)
第 1の化成として 5質量%蓚酸水溶液中、電流密度 5mAZcm2、化成電圧 63. 4V 、温度 25°Cで 10分間化成処理した以外は実施例 1と同様にコンデンサを作成し、評 価を行なった。
[0061] (実施例 3)
第 3の化成として 9質量0 /0アジピン酸アンモ-ゥム水溶液中、電流密度 5mAZcm2 、化成電圧 65V、温度 65°Cで 10分間化成処理した以外は実施例 1と同様にコンデ ンサを作成し、評価を行なった。
[0062] (実施例 4)
第 3の化成後に行なう熱処理を 300°Cとした以外は、実施例 1と同様にコンデンサ を作成し、評価を行なった。
[0063] (比較例 1)
第 2の化成として 9質量0 /0アジピン酸アンモ-ゥム水溶液での化成を行わない以外 は、実施例 1と同様にコンデンサを作成し、評価を行なった。
[0064] (比較例 2)
第 4の化成として 9質量0 /0アジピン酸アンモ-ゥム水溶液での化成を行わない以外 は、実施例 1と同様にコンデンサを作成し、評価を行なった。
[0065] [表 1]
表 1 . 化成条件
Figure imgf000019_0001
X:実施せず
[0066] [表 2]
表 2. 'サ初期特性
Figure imgf000019_0002
[0067] [表 3] 表 3 . コンデンサ信頼性試験結果
Figure imgf000020_0001
産業上の利用可能性
本発明は、安定性の改善された酸化皮膜を形成する化成処理方法を提供する。従 つて、種々の酸ィ匕皮膜形成工程において有用である力 特に、固体電解コンデンサ の製造方法に適用することにより、固体電解コンデンサの誘電体として機能する酸化 皮膜の安定性を増カ卩させ、漏れ電流特性の悪化を防ぎ、収率及び信頼性の向上に 寄与し、有用である。

Claims

請求の範囲
[1] 微細孔を有する弁作用金属材料を化成処理して表面に誘電体皮膜を形成する方 法であって、熱処理工程を含み、前記熱処理工程の前及び後にアジピン酸塩を含 む電解液中で化成する工程をそれぞれ 1回以上含むことを特徴とする弁作用金属材 料の化成処理方法。
[2] 前記熱処理工程の前に蓚酸を含む電解液中でィ匕成する工程を 1回以上含む請求 項 1に記載の弁作用金属材料の化成処理方法。
[3] 前記熱処理工程の前にケィ酸塩を含む電解液中で化成する工程を 1回以上含む 請求項 1または 2に記載の弁作用金属材料の化成処理方法。
[4] 裁断された化成箔の化成において、裁断面の化成後、
(0アジピン酸塩を含む電解液中でィ匕成する工程、
GO蓚酸、硝酸、硫酸、アジピン酸、リン酸、ケィ酸及びこれらの塩からなる群から選択 される少なくとも 1つの成分を含む電解液中で化成する少なくとも 1回の工程、
(iii)熱処理工程及び
(iv)アジピン酸塩を含む電解液中でィ匕成する工程
の G)〜Gv)を 1サイクル以上行なう請求項 1に記載の弁作用金属材料の化成処理方 法。
[5] 化成箔裁断面の化成を、蓚酸、硫酸、アジピン酸、リン酸及びこれらの塩からなる群 から選択される少なくとも 1の成分を含む電解液中で行なう請求項 4に記載の弁作用 金属材料の化成処理方法。
[6] アジピン酸塩がアジピン酸アンモ-ゥムである請求項 1〜5のいずれかに記載の弁 作用金属材料の化成処理方法。
[7] ケィ酸塩がケィ酸ナトリウムである請求項 1〜6のいずれかに記載の弁作用金属材 料の化成処理方法。
[8] 弁作用金属材料が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウムのうち少 なくとも一種の金属を含む請求項 1〜7のいずれかに記載の弁作用金属材料の化成 処理方法。
[9] 表面の誘電体皮膜の厚みが lnm〜1000nmの範囲である請求項 1〜8のいずれ かに記載の弁作用金属材料の化成処理方法。
[10] 熱処理工程における熱処理温度が 250°C以上 400°C以下である請求項 1〜9のい ずれかに記載の弁作用金属材料の化成処理方法。
[11] 各化成温度が 10°C以上 85°C以下である請求項 1〜10のいずれかに記載の弁作 用金属材料の化成処理方法。
[12] アジピン酸塩を含む電解液中での化成電圧が、化成箔形成時電圧の 0. 75〜: L 2 倍であることを特徴とする請求項 1〜11のいずれかに記載の弁作用金属材料の化 成処理方法。
[13] 弁作用金属材料力 なる陽極基体の表面に微細孔を形成し、その上に化成工程 によって誘電体酸化皮膜を形成し、さらに固体電解質層を形成する固体電解コンデ ンサの製造方法にぉ 、て、請求項 1〜12の 、ずれかに記載の方法を用いて陽極基 体の化成処理を行なうことを特徴とする固体電解コンデンサの製造方法。
[14] 請求項 1〜12のいずれかに記載の方法を用いて化成処理された弁作用金属材料 を含む固体電解コンデンサ。
PCT/JP2006/316155 2005-08-18 2006-08-17 弁作用金属材料の化成処理方法 WO2007020969A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007531021A JPWO2007020969A1 (ja) 2005-08-18 2006-08-17 弁作用金属材料の化成処理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005237590 2005-08-18
JP2005-237590 2005-08-18
US71088005P 2005-08-25 2005-08-25
US60/710,880 2005-08-25

Publications (1)

Publication Number Publication Date
WO2007020969A1 true WO2007020969A1 (ja) 2007-02-22

Family

ID=37757626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316155 WO2007020969A1 (ja) 2005-08-18 2006-08-17 弁作用金属材料の化成処理方法

Country Status (1)

Country Link
WO (1) WO2007020969A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013701A1 (ja) * 2008-07-29 2010-02-04 昭和電工株式会社 ニオブ固体電解コンデンサの製造方法
WO2011013375A1 (ja) 2009-07-29 2011-02-03 昭和電工株式会社 固体電解コンデンサの製造方法
JP2016082126A (ja) * 2014-10-20 2016-05-16 Necトーキン株式会社 固体電解コンデンサ
WO2022181667A1 (ja) * 2021-02-26 2022-09-01 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250723A (ja) * 1990-02-28 1991-11-08 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JPH09246111A (ja) * 1996-03-14 1997-09-19 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ用電極箔の化成方法
JP2000068159A (ja) * 1998-06-09 2000-03-03 Showa Denko Kk 固体電解コンデンサ用電極箔、その製造方法及び固体電解コンデンサ
JP2000348984A (ja) * 1999-06-08 2000-12-15 Nichicon Corp アルミニウム電解コンデンサ用電極箔の製造方法
JP2003124068A (ja) * 2001-10-10 2003-04-25 Showa Denko Kk コンデンサ用陽極箔、該陽極箔の製造方法及び該陽極箔を用いた固体電解コンデンサ
JP2003158044A (ja) * 2001-06-15 2003-05-30 Showa Denko Kk 固体電解コンデンサ用化成基板、その製造方法及び固体電解コンデンサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250723A (ja) * 1990-02-28 1991-11-08 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JPH09246111A (ja) * 1996-03-14 1997-09-19 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ用電極箔の化成方法
JP2000068159A (ja) * 1998-06-09 2000-03-03 Showa Denko Kk 固体電解コンデンサ用電極箔、その製造方法及び固体電解コンデンサ
JP2000348984A (ja) * 1999-06-08 2000-12-15 Nichicon Corp アルミニウム電解コンデンサ用電極箔の製造方法
JP2003158044A (ja) * 2001-06-15 2003-05-30 Showa Denko Kk 固体電解コンデンサ用化成基板、その製造方法及び固体電解コンデンサ
JP2003124068A (ja) * 2001-10-10 2003-04-25 Showa Denko Kk コンデンサ用陽極箔、該陽極箔の製造方法及び該陽極箔を用いた固体電解コンデンサ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013701A1 (ja) * 2008-07-29 2010-02-04 昭和電工株式会社 ニオブ固体電解コンデンサの製造方法
JP4719823B2 (ja) * 2008-07-29 2011-07-06 昭和電工株式会社 ニオブ固体電解コンデンサの製造方法
US8257449B2 (en) 2008-07-29 2012-09-04 Showa Denko K.K. Method for manufacturing niobium solid electrolytic capacitor
WO2011013375A1 (ja) 2009-07-29 2011-02-03 昭和電工株式会社 固体電解コンデンサの製造方法
US8512423B2 (en) 2009-07-29 2013-08-20 Showa Denko K.K. Method for producing solid electrolytic capacitor
JP2016082126A (ja) * 2014-10-20 2016-05-16 Necトーキン株式会社 固体電解コンデンサ
WO2022181667A1 (ja) * 2021-02-26 2022-09-01 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法

Similar Documents

Publication Publication Date Title
JP4905358B2 (ja) 固体電解コンデンサ、その製法、および固体電解コンデンサ用基材
JP5257796B2 (ja) 固体電解コンデンサ素子及びその製造方法
WO2006137482A1 (ja) 固体電解コンデンサ及びその製造方法
JP4899438B2 (ja) 固体電解コンデンサ及びその製造方法
JP3187380B2 (ja) 固体電解コンデンサ及びその製造方法
US6867088B2 (en) Solid electrolytic capacitor and method for producing the same
US7697267B2 (en) Capacitor and method for manufacturing same
WO2007020969A1 (ja) 弁作用金属材料の化成処理方法
WO2013088845A1 (ja) 固体電解コンデンサ
KR101381191B1 (ko) 고체 전해 콘덴서용 기재, 그것을 사용한 콘덴서 및 그 제조방법
JP2007095934A (ja) 弁作用金属材料の化成処理方法
JPWO2007020969A1 (ja) 弁作用金属材料の化成処理方法
JP4877229B2 (ja) 固体電解コンデンサ及びその製造方法
JP2001006983A (ja) 固体電解コンデンサ及びその製造方法
JP4925144B2 (ja) 固体電解コンデンサの製造方法
JP5029937B2 (ja) 固体電解コンデンサ及びその製造方法
WO2007074869A1 (ja) 固体電解コンデンサおよびその製造方法
JP2008045190A (ja) 弁作用金属材料の酸化皮膜形成方法
JP4811708B2 (ja) 導電性重合体層の形成方法
JP2007157875A (ja) 固体電解コンデンサおよびその製造方法
JP5717051B2 (ja) 固体電解コンデンサとその製造方法
JP2010143996A (ja) 導電性高分子とそれを用い固体電解コンデンサ及びその製造方法
JPWO2007074869A1 (ja) 固体電解コンデンサおよびその製造方法
JP2010080724A (ja) 固体電解コンデンサの製造方法
JP2007095815A (ja) 固体電解コンデンサ素子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680030165.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007531021

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782768

Country of ref document: EP

Kind code of ref document: A1