WO2011013375A1 - 固体電解コンデンサの製造方法 - Google Patents

固体電解コンデンサの製造方法 Download PDF

Info

Publication number
WO2011013375A1
WO2011013375A1 PCT/JP2010/004805 JP2010004805W WO2011013375A1 WO 2011013375 A1 WO2011013375 A1 WO 2011013375A1 JP 2010004805 W JP2010004805 W JP 2010004805W WO 2011013375 A1 WO2011013375 A1 WO 2011013375A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode body
electrolytic capacitor
solid electrolytic
chemical
chemical conversion
Prior art date
Application number
PCT/JP2010/004805
Other languages
English (en)
French (fr)
Inventor
中村英則
渋谷義紀
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN2010800335537A priority Critical patent/CN102473528B/zh
Priority to JP2011524663A priority patent/JPWO2011013375A1/ja
Priority to EP10804126.0A priority patent/EP2461337B1/en
Priority to US13/387,859 priority patent/US8512423B2/en
Publication of WO2011013375A1 publication Critical patent/WO2011013375A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Definitions

  • the present invention relates to a chemical conversion treatment method for an anode body for a solid electrolytic capacitor, a solid electrolytic capacitor element, and a method for manufacturing a solid electrolytic capacitor. More specifically, the present invention provides a method for chemical conversion treatment of an anode body for a solid electrolytic capacitor that can increase the stability of a dielectric layer formed on the surface of a niobium anode body and can significantly reduce the leakage current, as well as high reliability. The present invention relates to a solid electrolytic capacitor element having a high yield and a solid electrolytic capacitor device.
  • a solid electrolytic capacitor is a capacitor in which a surface layer of an anode body is formed into an oxide or the like by performing chemical conversion treatment on an anode body containing a metal or the like having a valve action, and this is used as a dielectric layer.
  • Tantalum or aluminum is frequently used for the anode body of commercially available solid electrolytic capacitors.
  • Aluminum electrolytic capacitors have a large capacity and are suitable for smoothing power supply circuits, time constant circuits, and the like. Tantalum electrolytic capacitors are smaller and have better characteristics than aluminum electrolytic capacitors. In particular, it is often used in analog circuits. It is also used for the purpose of removing spike-like currents in digital circuits.
  • niobium metal is known to be similar in physical and chemical properties to tantalum metal. Niobium has more reserves than tantalum, and it can be expected to stabilize the supply of electrolytic capacitors and reduce the price. In addition, since niobium electrolytic capacitors may be able to have a larger capacity than tantalum electrolytic capacitors, it is expected to replace tantalum electrolytic capacitors in the future.
  • the niobium oxide film obtained by forming an anode body made of niobium was more unstable than the tantalum oxide film.
  • the thickness of the niobium oxide film generated per chemical conversion voltage is twice that of the tantalum oxide film, and the strain generated as the film grows is also twice that of the tantalum oxide film. Therefore, the withstand voltage on the basis of the film thickness was half that of the tantalum oxide film in the niobium oxide film.
  • the niobium oxide includes a non-stoichiometric lower oxide not found in tantalum oxide. This is considered to promote the diffusion of oxygen in the dielectric layer, impart semiconductor characteristics to the dielectric layer, and increase the leakage current.
  • a niobium electrolytic capacitor Although it is a niobium oxide film having such unstable characteristics, a niobium electrolytic capacitor has a possibility of exhibiting performance exceeding that of a tantalum electrolytic capacitor, and thus further research has been conducted.
  • an aqueous solution containing at least one acid selected from phosphoric acid, nitric acid, sulfuric acid, adipic acid, boric acid and salts thereof as a solute as a chemical conversion solution is used at about 40 ° C. or less.
  • a method for producing an electrolytic capacitor is described which includes electrolytically forming a sintered body made of niobium at the above temperature.
  • Patent Document 2 discloses that niobium is formed at a low temperature of 15 ° C. using a chemical conversion solution obtained by adding an acidifying material composed of adipic acid to an aqueous solution containing a boric acid salt or an adipic acid salt.
  • a method for producing an electrolytic capacitor is described that includes electrolytically forming an anode body that contains.
  • niobium metal pellets are electrolytically formed in a phosphoric acid aqueous solution adjusted to pH 6 to 11.5, taken out from the chemical conversion treatment solution, and mixed into a mixed solution of phosphoric acid and nitric acid for several minutes to 10-10. Immerse it for about a minute, then heat it for a few minutes to 10 minutes at a temperature of 250-800 ° C, and then slowly cool it down.
  • a method for anodizing niobium for electrolytic capacitors, including forming, is described.
  • Patent Document 4 discloses a solid body including firstly electrolyzing an anode body formed by sintering a valve action metal powder in a phosphoric acid aqueous solution and then electrolyzing in a nitric acid aqueous solution at a voltage of 60 V or less. An electrolytic capacitor manufacturing method is described. However, Patent Document 4 only shows as an example that leakage current can be suppressed when the tantalum sintered body is subjected to chemical conversion treatment.
  • Patent Document 5 includes at least one component selected from the group consisting of a step of forming in an electrolyte containing adipate, oxalic acid, nitric acid, sulfuric acid, adipic acid, phosphoric acid, silicic acid, and salts thereof.
  • a chemical conversion treatment method for a valve action metal material is described in which a step of forming with an electrolytic solution containing, a step of heat-treating at a temperature of 250 to 400 ° C., and a step of forming in an electrolytic solution containing an adipate are performed in this order.
  • Patent Document 5 merely shows as an example that leakage current can be suppressed when a chemical conversion treatment is applied to an aluminum foil.
  • the solid electrolytic capacitors obtained by the conversion treatment methods for niobium anodes described in Patent Documents 1 to 3 have not been sufficiently low in leakage current, and are still low in reliability. Further, even if the niobium sintered body is subjected to chemical conversion treatment under the same conditions as the electrolytic conversion conditions for the tantalum sintered body described in Patent Document 4, the niobium oxide film has low stability and the leakage current is sufficiently low. The reliability was still low. Although the niobium oxide film is slightly improved in stability and lower in leakage current by subjecting the niobium sintered body to chemical conversion treatment under the same conditions as the electrolytic conversion conditions for the aluminum foil described in Patent Document 5, it is still satisfactory. Since it has not reached the range, further improvements were sought.
  • An object of the present invention is to provide a method for chemical conversion treatment of an anode body for a solid electrolytic capacitor capable of increasing the stability of a dielectric layer formed on the surface of a niobium anode body and greatly reducing leakage current, and solid electrolysis having high reliability.
  • the object is to provide a method capable of producing a capacitor element and a solid electrolytic capacitor in high yield.
  • Nitric acid has a high electrical conductivity and is known as an electrolyte for an electrolytic solution. Nitric acid is also known as an excellent oxidizing agent. However, when electrolytic conversion is performed using nitric acid, the nitric acid may be decomposed by high temperature or high voltage to act as an oxidizing agent. For this reason, it has been difficult to control the characteristics of the oxide film to be produced with an electrolytic solution using nitric acid. Moreover, since nitric acid causes a chemical change and a big change with time, it was difficult to use it industrially as an electrolyte for an electrolytic solution.
  • Phosphoric acid having no defects such as nitric acid has been industrially used as an electrolyte for electrolytic solution, but the stability of the niobium oxide film was low in the electrolytic formation of the niobium anode body by the phosphorylating solution.
  • step I of electrolytically forming within a temperature range from 40 ° C. to the boiling point of the chemical conversion solution; the electrolytically formed anode body within a temperature range of 150 to 300 ° C.
  • a chemical conversion treatment method comprising: a step II of heat treatment; and a step III of electrolyzing the heat-treated anode body in a chemical liquid containing nitric acid and phosphoric acid within a temperature range from 40 ° C. to the boiling point of the chemical liquid.
  • Step I of electrolytically forming an anode body containing niobium within a temperature range from 40 ° C. to the boiling point of the chemical conversion solution in a chemical conversion solution containing nitric acid and phosphoric acid;
  • a chemical conversion treatment method for an anode body for a solid electrolytic capacitor In the temperature range of III A chemical conversion treatment method for an anode body for a solid electrolytic capacitor.
  • ⁇ 2> The chemical conversion treatment method for an anode body for a solid electrolytic capacitor as described in ⁇ 1> above, wherein the nitric acid concentration in the chemical conversion solution is 0.01% by mass to a saturated concentration.
  • ⁇ 3> The chemical conversion treatment method for an anode body for a solid electrolytic capacitor according to the above ⁇ 1> or ⁇ 2>, wherein the phosphoric acid concentration in the chemical conversion liquid is a concentration that is 0.1 to 9 times the mass ratio with respect to nitric acid.
  • ⁇ 4> The chemical conversion treatment method for an anode body for a solid electrolytic capacitor according to any one of ⁇ 1> to ⁇ 3>, wherein the phosphoric acid is orthophosphoric acid.
  • ⁇ 5> The chemical conversion treatment method for a solid electrolytic capacitor anode body according to any one of ⁇ 1> to ⁇ 4>, wherein the anode body containing niobium is a niobium porous sintered body.
  • ⁇ 6> The surface layer of the anode body containing niobium is formed into a dielectric layer by the chemical conversion treatment method according to any one of ⁇ 1> to ⁇ 5>; then, a cathode is formed on the dielectric layer.
  • the manufacturing method of a solid electrolytic capacitor element including forming.
  • ⁇ 7> The method for producing a solid electrolytic capacitor element according to ⁇ 6>, wherein the cathode includes a semiconductor layer and a conductor layer.
  • a method for producing a solid electrolytic capacitor comprising: covering a solid electrolytic capacitor element obtained by the production method according to ⁇ 6> or ⁇ 7>.
  • the leakage current value of the solid electrolytic capacitor is reduced and the thermal stability is improved. Further, since it can be formed at a high voltage, a solid electrolytic capacitor having a high withstand voltage can be obtained. Such a remarkable effect is thought to be due to the formation of a stable oxide film that is dense and has few defects on the niobium surface.
  • the anode body used in the present invention contains niobium.
  • niobium for example, an anode body made of niobium metal or a niobium-based alloy can be mentioned.
  • the anode body is preferably a niobium porous sintered body.
  • the niobium porous sintered body can be manufactured, for example, as follows. Add binder to niobium powder and mix. This mixture is press-molded into a predetermined shape. An anode lead wire (usually niobium wire) is buried and planted during the press molding. Next, the molded article is fired at 1000 to 1400 ° C. in a high vacuum (usually 10 ⁇ 4 Pa or less) to sinter the niobium powder, and finally cooled in vacuum.
  • a high vacuum usually 10 ⁇ 4 Pa or less
  • Step I In the chemical conversion treatment method for an anode body for a solid electrolytic capacitor of the present invention, first, the anode body is electrolytically formed in a chemical liquid containing nitric acid and phosphoric acid within a temperature range from 40 ° C. to the boiling point of the chemical liquid (step). I). An oxide film is formed by this electrolytic conversion.
  • the chemical conversion liquid may contain other electrolytes as long as the effects of the present invention are not impaired.
  • other electrolytes include inorganic acids such as sulfuric acid and boric acid; organic acids such as oxalic acid and adipic acid; or alkali metal salts and ammonium salts thereof.
  • Water is usually used as the solvent for the chemical conversion liquid.
  • the chemical conversion liquid may contain an oxygen supply agent such as hydrogen peroxide or ozone as long as the effects of the present invention are not impaired.
  • the concentration of the electrolyte is not particularly limited as long as it can be subjected to electrolytic formation.
  • the concentration of the electrolyte can be appropriately selected from the above viewpoint.
  • the concentration of nitric acid is preferably 0.01% by mass to saturated concentration, more preferably 0.2 to 2% by mass, and still more preferably 0.2 to 1% by mass.
  • the concentration of phosphoric acid is preferably 0.1 to 9 times, more preferably 0.2 to 4 times, by mass ratio with respect to nitric acid. When the phosphoric acid concentration is in this mass ratio range with respect to nitric acid, the decomposition of nitric acid is suppressed and the stability of the niobium oxide film is improved.
  • Electrochemical conversion is performed within a temperature range from 40 ° C. to the boiling point of the chemical conversion solution. At low temperatures, the leakage current tends to increase. If it exceeds about 100 ° C., the capacitance tends to decrease. From such a viewpoint, the temperature at the time of electrolytic formation is preferably 50 to 100 ° C., more preferably 70 to 90 ° C., further preferably 75 to 85 ° C., and particularly preferably about 80 ° C.
  • the voltage and current applied at the time of electrolytic formation can be selected according to the target withstand voltage of the obtained solid electrolytic capacitor.
  • the formation current is usually 0.1 mA / g to 1 A / g.
  • 100 mA is used from the viewpoint of the capacitance.
  • / G to 400 mA / g is preferable, and about 200 mA / g is particularly preferable.
  • the voltage is preferably first increased so that the current value becomes constant, and then maintained at a constant voltage (formation voltage).
  • the end of the formation is desired when the aperture current value becomes as small as possible, and is preferably the time when the current value becomes 1/20 or less of the initial current value at the start of formation, or when several hours have passed since the start of formation.
  • Step II the electrolytically formed anode body is washed with pure water and then heat-treated (Step II).
  • This heat treatment removes moisture and hardens the oxide film.
  • the heat treatment also has an effect of extracting and removing nitrate ions remaining on the oxide film.
  • the heat treatment is performed within a temperature range of 150 ° C. to 300 ° C., preferably 200 to 290 ° C., more preferably 220 to 280 ° C., further preferably 240 to 260 ° C., particularly preferably around 250 ° C. If the temperature is too high, film damage will proceed excessively. If the temperature is too low, removal of nitrate ions will not proceed.
  • Nitrate ions remaining on the oxide film may promote the formation of lower niobium oxide, which may degrade the insulation.
  • the heat treatment time is not particularly limited as long as the stability of the coating can be maintained, and is preferably 10 minutes to 2 hours, more preferably 20 minutes to 30 minutes.
  • Step III After Step II, the heat-treated anode body is subjected to electrolysis within a temperature range from 40 ° C. to the boiling point of the conversion solution in a conversion solution containing nitric acid and phosphoric acid (Step III).
  • electrolytic conversion in step III the portion that was not sufficiently oxidized by the electrolytic formation in Step I and the lattice defect portion that was generated by the extraction of nitrate ions in Step II were reoxidized to stabilize the niobium oxide film. Can be planned.
  • the electrolytic conversion in step III may be referred to as repair conversion.
  • the conversion liquid used for the electrolytic conversion in Step III and the temperature, voltage and current at the time of chemical formation are the same as those listed as the chemical conversion liquid used for the electrolytic formation in Step I and the temperature, voltage and current at the time of chemical formation. be able to.
  • the end of the formation can be made when the aperture current value becomes stable.
  • the time for electrolytic formation in Step III is usually less than 1 hour, preferably 20 to 30 minutes.
  • the anode body that has been subjected to electrolytic formation in step III is washed with pure water and then dried.
  • the drying is not particularly limited as long as it is a temperature and a time at which water attached to the anode body evaporates. However, if the temperature during drying is too high, oxygen in the oxide film is likely to diffuse, which may affect the electrical characteristics. Therefore, for example, it is preferable to dry under conditions such as holding at a temperature of 105 ° C. for 30 minutes.
  • the surface layer of the anode body containing niobium is formed into a dielectric layer (that is, an oxide film) by the above chemical conversion treatment method; then, the cathode is formed on the dielectric layer. It is obtained by the manufacturing method including this.
  • the surface layer of the anode body includes the surface layer of the pore inner wall when the anode body is a porous body.
  • the solid electrolytic capacitor of this invention is obtained by the manufacturing method including covering the solid electrolytic capacitor element obtained above.
  • the cathode used in a conventional solid electrolytic capacitor can be used without limitation.
  • the cathode may be composed of a semiconductor layer, or may be composed of a semiconductor layer and a conductor layer.
  • the semiconductor layer include inorganic semiconductor layers such as molybdenum dioxide layer, tungsten dioxide layer, lead dioxide layer, manganese dioxide layer, tetracyanoquinodimethane (TCNQ) complex salt layer or polypyrrole layer, polythiophene layer, polysulfide layer. , Organic semiconductor layers such as polyfuran layers and polyaniline layers, or conductive polymer layers.
  • the semiconductor layer is preferably an organic semiconductor layer or a conductive polymer layer from the viewpoint of easily forming a cathode on the dielectric layer formed on the surface of the pore inner wall.
  • the conductor layer include a conductive paste layer formed by applying a conductive carbon paste, a silver paste, or the like, or a conductive metal layer that can be formed by metal plating or vapor deposition.
  • the cathode lead is connected to the cathode in a state where electricity can be passed, and the cathode lead is exposed to the outside of the exterior of the solid electrolytic capacitor and becomes a cathode external terminal.
  • the anode lead is connected to the anode body in a state where electricity can be passed, and the anode lead is exposed to the outside of the exterior of the solid electrolytic capacitor and becomes an anode external terminal.
  • a normal lead frame can be used to attach the cathode lead and the anode lead.
  • the exterior can be formed by sealing with a resin or the like to obtain a solid electrolytic capacitor.
  • the solid electrolytic capacitor thus produced can be subjected to an aging treatment as desired.
  • the solid electrolytic capacitor obtained by the production method of the present invention can be used by being mounted on various electric circuits or electronic circuits.
  • the electrical characteristics of the solid electrolytic capacitor element or the solid electrolytic capacitor obtained by the production method of the present invention can be evaluated quickly by measuring the electrical characteristics of the chemical-treated anode body. That is, the chemical conversion-treated anode body is immersed in a 40% by mass sulfuric acid aqueous solution, the anode body is used as an anode, and a platinum black electrode is used as a cathode, and connected to an impedance analyzer and an LC meter, and the electrical characteristics are measured. The effect can be judged.
  • Example 1 22 mg of niobium fine powder having a CV product of 130,000 ⁇ FV / g was molded into a cube. Simultaneously with the formation of the cube, a niobium lead was buried in the center of one side of the cube and planted. This molded body was fired at a temperature of 1210 ° C. for 30 minutes in a firing furnace depressurized to 10 ⁇ 4 Pa or less to obtain a sintered body. An aqueous solution of 0.5% by mass of nitric acid and 0.5% by mass of orthophosphoric acid (mass ratio with respect to nitric acid was 1 time) was prepared and used as a chemical conversion solution.
  • the chemical conversion liquid was heated to 80 ° C.
  • the sintered body was immersed in the chemical conversion solution, and a DC voltage was applied so as to maintain a current of 200 mA / g using the sintered body as an anode. From the time when the applied voltage reached 20V, the electrolytic formation was carried out for 2 hours so as to maintain the voltage of 20V. Thereafter, the electrolytically formed sintered body was washed with water and heat-treated for 20 minutes in a 250 ° C. dryer. A sintered body having the same composition as described above and heat-treated in a chemical conversion solution at 80 ° C. was immersed, and a DC voltage was applied so as to maintain a current of 200 mA / g using the sintered body as an anode. From the point of time when the applied voltage reached 20V, electrolysis was performed for 30 minutes so as to maintain the voltage of 20V.
  • the sintered body subjected to chemical conversion treatment (hereinafter sometimes referred to as element) was washed with water and dried. Subsequently, it was immersed in a 40 mass% sulfuric acid aqueous solution, and the device was connected to an impedance analyzer and an LC meter using the platinum black electrode as a cathode and an electrostatic capacity (CV value) and leakage current (LC value) were measured.
  • element The sintered body subjected to chemical conversion treatment
  • Example 2 to 5 and Comparative Examples 1 to 6 A device was prepared in the same manner as in Example 1 except that the concentrations of nitric acid and phosphoric acid, the formation temperature, the formation voltage, and the heat treatment temperature were changed to those shown in Table 1, and their capacitance (CV value). The leakage current (LC value) was measured. The results are shown in Table 1.
  • an anode body containing niobium is subjected to electrolysis within a temperature range from 40 ° C. to the boiling point of the chemical conversion solution in a chemical conversion solution containing nitric acid and phosphoric acid;
  • a leakage current is obtained. Can be significantly reduced (Examples 1 to 5).
  • the chemical conversion treatment method of the present invention even if the chemical conversion voltage is increased, the leakage current can be kept low (Example 5).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 ニオブを含有する陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程I;該電解化成された陽極体を150~300℃の温度範囲内で熱処理する工程II;および前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程IIIを含む化成処理方法によって、ニオブを含有する陽極体の表面層を誘電体層に成す。該誘電体層の上に陰極を形成することによって固体電解コンデンサ素子を得、該素子を外装することによって固体電解コンデンサを得る。

Description

固体電解コンデンサの製造方法
 本発明は固体電解コンデンサ用陽極体の化成処理方法、並びに固体電解コンデンサ素子および固体電解コンデンサの製造方法に関する。より詳細には、本発明は、ニオブ陽極体表面に形成される誘電体層の安定性を増加でき且つ漏れ電流を大幅に低減できる固体電解コンデンサ用陽極体の化成処理方法、並びに高い信頼性を有する固体電解コンデンサ素子および固体電解コンデンサを高収率で製造することができる方法に関する。
 固体電解コンデンサは、弁作用を有する金属等を含有する陽極体を化成処理することによって、該陽極体の表面層を酸化物等に成し、これを誘電体層として利用したコンデンサである。
 市販の固体電解コンデンサの陽極体には、タンタルまたはアルミニウムが多用されている。アルミニウム電解コンデンサは大容量が得られ、電源回路の平滑用・時定数回路用等に好適である。タンタル電解コンデンサは、アルミニウム電解コンデンサよりも小型で特性が優れている。特にアナログ回路に多く用いられている。デジタル回路でもスパイク状の電流を除去する目的等で使われている。
 ところで、タンタル金属と物理的化学的性質が類似しているものとしてニオブ金属が知られている。ニオブはタンタルに比べて埋蔵量が多く、電解コンデンサの供給安定化や低価格化が期待できる。また、ニオブ電解コンデンサは、タンタル電解コンデンサより大容量化できる可能性があることから、将来的にはタンタル電解コンデンサを置き換えることが期待されている。
 ところが、ニオブを含有する陽極体の電解化成をアルミニウムやタンタルの場合と同様の化成条件で行っても満足な特性が得られなかった。すなわち、ニオブからなる陽極体を化成することによって得られるニオブ酸化被膜はタンタル酸化被膜に比べ不安定であった。特に化成電圧当たりに生成するニオブ酸化被膜の厚みはタンタル酸化被膜の倍であり、被膜の成長に伴い発生する歪みもニオブ酸化被膜はタンタル酸化被膜の倍になる。そのため膜厚さ基準における耐電圧はニオブ酸化被膜はタンタル酸化被膜の半分であった。また、ニオブ酸化物にはタンタル酸化物にはない非化学量論的低級酸化物が存在する。これが誘電体層内での酸素の拡散を助長し、誘電体層に半導体的性質を与え、漏れ電流を増加させる原因になっていると考えられている。
 このような不安定な特性を有するニオブ酸化被膜ではあるが、ニオブ電解コンデンサはタンタル電解コンデンサを超える性能を発揮する可能性を持っているので、さらなる多くの研究がなされている。
 例えば、特許文献1には、化成液としてリン酸、硝酸、硫酸、アジピン酸、ホウ酸およびそれらの塩から選ばれる少なくとも一つの酸またはその塩を溶質として含む水溶液を用いて、約40℃以下の温度で、ニオブからなる焼結体を電解化成することを含む電解コンデンサの製造方法が記載されている。
 特許文献2には、ホウ酸の塩またはアジピン酸の塩を含む水溶液にアジピン酸からなる酸性化材を添加して酸性に設定してなる化成液を用いて、15℃の低温にて、ニオブを含有する陽極体を電解化成することを含む電解コンデンサの製造方法が記載されている。
 特許文献3には、金属ニオブのペレットを、pH6~11.5に調整されたリン酸水溶液中において電解化成し、該化成処理液から取り出し、リン酸と硝酸との混合液に数分間~10分間程度浸漬し、その後250~800℃の温度にて数分間~10分間程度加熱し次いで徐冷するという鈍焼処理を施し、最後にpH0~5.9に調整されたリン酸水溶液中において修復化成することを含む電解コンデンサ用ニオブの陽極酸化方法が記載されている。
 特許文献4には、弁作用金属粉末を焼結してなる陽極体を、先ず、リン酸水溶液中において電解化成し、次いで、硝酸水溶液中において60V以下の電圧にて電解化成することを含む固体電解コンデンサの製造方法が記載されている。
 ただし、特許文献4はタンタル焼結体に化成処理を施した場合に漏れ電流の抑制ができたことを実施例として示しているのみである。
 特許文献5には、アジピン酸塩を含む電解液中で化成する工程、シュウ酸、硝酸、硫酸、アジピン酸、リン酸、ケイ酸およびこれらの塩からなる群から選ばれる少なくとも1種の成分を含む電解液で化成する工程、250~400℃の温度にて熱処理する工程、およびアジピン酸塩を含む電解液中で化成する工程をこの順で行う弁作用金属材料の化成処理方法が記載されている。
 ただし、特許文献5はアルミニウム箔に化成処理を施した場合に漏れ電流の抑制ができたことを実施例として示しているのみである。
特開2002-198266号公報 特開2005-57057号公報 特開2005-325380号公報 特開平7-220982号公報 WO2007/020969号公報
 ところが、特許文献1~3に記載のニオブ陽極体の化成処理方法によって得られる固体電解コンデンサは、漏れ電流が十分に低く抑えられておらず、信頼性が未だ低かった。
 また、特許文献4に記載のタンタル焼結体に対する電解化成条件と同じ条件でニオブ焼結体に化成処理を施しても、ニオブ酸化被膜は、安定性が低く、漏れ電流が十分に低く抑えられておらず、信頼性が未だ低かった。
 特許文献5に記載のアルミニウム箔に対する電解化成条件と同じ条件でニオブ焼結体に化成処理を施すことで、ニオブ酸化被膜は、安定性が若干向上し、漏れ電流が低くなるものの、未だ満足できる域に達しておらず、さらなる改良が求められた。
 本発明の目的は、ニオブ陽極体表面に形成される誘電体層の安定性を増加でき且つ漏れ電流を大幅に低減できる固体電解コンデンサ用陽極体の化成処理方法、並びに高い信頼性を有する固体電解コンデンサ素子および固体電解コンデンサを高収率で製造することができる方法を提供することにある。
 硝酸は導電率が大きく、電解化成液用の電解質として公知のものである。また、硝酸は優れた酸化剤としても知られている。ところが硝酸を用いて電解化成を行うと高温や高電圧によって硝酸が分解し酸化剤として作用することがある。そのために、硝酸を用いた電解化成液では、生成する酸化被膜の特性制御が難しかった。また硝酸は化学変化や大きな経時変化を生じるので、電解化成液用の電解質として工業的に使用するのは困難であった。
 硝酸のような不具合が無いリン酸は電解化成液用の電解質として工業的に賞用されているが、リン酸化成液によるニオブ陽極体の電解化成では、ニオブ酸化被膜の安定性が低かった。
 本発明者らは、前記目的を達成するために鋭意検討し、前述のような不具合のある硝酸とリン酸とに着目した。その結果、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程I;該電解化成された陽極体を150~300℃の温度範囲内で熱処理する工程II;および前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程IIIを含む化成処理方法を、ニオブ陽極体に施すと、高電圧でも化成処理をすることが可能になり、ニオブ陽極体表面に形成される誘電体層の安定性を増加でき且つ漏れ電流を大幅に低減できることを見出した。
 本発明はこの知見に基づいてさらに検討したことによって完成するに至ったものである。
 すなわち、本発明は以下の態様を含む。
〈1〉ニオブを含有する陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程I;
 該電解化成された陽極体を150~300℃の温度範囲内で熱処理する工程II;および
 前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程III
 を含む、固体電解コンデンサ用陽極体の化成処理方法。
〈2〉化成液における硝酸濃度が0.01質量%~飽和濃度である前記〈1〉に記載の固体電解コンデンサ用陽極体の化成処理方法。
〈3〉化成液におけるリン酸濃度が硝酸に対する質量比で0.1~9倍となる濃度である前記〈1〉または〈2〉に記載の固体電解コンデンサ用陽極体の化成処理方法。
〈4〉リン酸がオルトリン酸である前記〈1〉~〈3〉のいずれか1項に記載の固体電解コンデンサ用陽極体の化成処理方法。
〈5〉ニオブを含有する陽極体がニオブ多孔質焼結体である前記〈1〉~〈4〉のいずれか1項に記載の固体電解コンデンサ陽極体の化成処理方法。
〈6〉前記〈1〉~〈5〉のいずれか1項に記載の化成処理方法によって、ニオブを含有する陽極体の表面層を誘電体層に成し;次いで該誘電体層の上に陰極を形成することを含む、固体電解コンデンサ素子の製法。
〈7〉陰極が、半導体層と導電体層とからなる、前記〈6〉に記載の固体電解コンデンサ素子の製法。
〈8〉前記〈6〉または〈7〉に記載の製法で得られた固体電解コンデンサ素子を外装することを含む、固体電解コンデンサの製造方法。
 本発明によれば、固体電解コンデンサの漏れ電流値が低減され、熱安定性が改善される。また、高電圧で化成できるので、高耐電圧の固体電解コンデンサが得られる。このような著効は、ニオブ表面に緻密で欠陥が少ない安定な酸化被膜が形成されるためと考えられる。
 以下、本発明についてより詳細に説明する。
 本発明に使用される陽極体はニオブを含有するものである。例えば、ニオブ金属またはニオブ基合金からなる陽極体が挙げられる。陽極体は、ニオブ多孔質焼結体が好ましい。
 ニオブ多孔質焼結体は、例えば、次のようにして製造することができる。ニオブ粉末にバインダーを添加して混合する。この混合物を所定形状にプレス成形する。このプレス成形の際に陽極用リード線(通常はニオブ線)を埋設し植立させる。次いで、成形品を高真空中(通常10-4Pa以下)で1000~1400℃で焼成してニオブ粉末を焼結させ、最後に真空中で冷却する。
〔工程I〕
 本発明の固体電解コンデンサ用陽極体の化成処理方法では、先ず、前記陽極体を硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する(工程I)。この電解化成によって酸化被膜が形成される。
 硝酸およびリン酸それぞれを単独で化成液の電解質に用いた場合には前述のような課題を有していた。ところが、硝酸とリン酸の両方を電解質として用いると、各々の化成液よりも定電圧化成時の電解化成電流の収束値(以下「絞り電流値」ということがある。)が小さくなり、固体電解コンデンサとしての漏れ電流が非常に小さくなることを見出した。この理由は定かでないが、リン酸が縮合することで硝酸の分解が抑制され硝酸の酸化作用を相殺するからであろうと推測する。
 なお、添加するリン酸としては、オルトリン酸が工業的に利用しやすく好ましい。
 化成液には、本発明の効果を損なわない範囲で、他の電解質が含まれていてもよい。他の電解質としては、硫酸、ホウ酸などの無機酸;シュウ酸、アジピン酸等の有機酸;またはこれらのアルカリ金属塩やアンモニウム塩等が挙げられる。化成液の溶媒には、水が通常用いられる。また、化成液には、本発明の効果を損なわない範囲で、過酸化水素やオゾンなどの酸素供給剤が含まれていてもよい。
 電解質の濃度は電解化成が実施できる範囲であれば特に制限されない。電解質濃度が高い場合には、電気伝導率が高くなり、効率的に化成処理ができる傾向がある。逆に、電解液濃度が低い場合には、電解化成後の洗浄が容易になる傾向がある。
 電解質の濃度は、上記の観点から適宜選択できる。例えば、硝酸の濃度としては、好ましくは0.01質量%~飽和濃度、より好ましくは0.2~2質量%、さらに好ましくは0.2~1質量%である。
 リン酸の濃度は、硝酸に対して質量比で好ましくは0.1~9倍であり、より好ましくは0.2~4倍である。リン酸濃度が硝酸に対してこの質量比範囲にあると硝酸の分解が抑制されニオブ酸化被膜の安定性が向上する。
 電解化成は、40℃から化成液沸点までの温度範囲内で行う。低い温度になると漏れ電流が大きくなる傾向がある。約100℃を超えると静電容量が低下傾向になる。このような観点から、電解化成時の温度は、好ましくは50~100℃、より好ましくは70~90℃、さらに好ましくは75~85℃、特に好ましくは80℃前後である。
 電解化成時に印加する電圧および電流は、得られる固体電解コンデンサの目標耐電圧によって選択できる。化成電流は、通常0.1mA/g~1A/gであるが、例えば、静電容量(CV積)5万~15万μFV/gの粉末を使用する場合、その静電容量の観点から100mA/g~400mA/gが好ましく、中でも200mA/g程度が特に好ましい。
 電解化成において、電圧は、最初に電流値が一定になるようにして増加させ、次いで一定電圧(化成電圧)で保持するのが好ましい。化成の終了は、絞り電流値ができるだけ小さくなった時点が望まれ、化成開始時の初期電流値の1/20以下になった時点、または化成開始から数時間経過した時点であることが好ましい。
〔工程II〕
 工程Iの後、電解化成された陽極体を、純水で洗浄し、次いで熱処理する(工程II)。この熱処理によって、水分を除去し、酸化被膜を堅固にする。熱処理は、酸化被膜に残った硝酸イオンを引き抜き除去する効果もある。
 熱処理は150℃~300℃の温度範囲内で、好ましくは200~290℃、より好ましくは220~280℃、さらに好ましくは240~260℃、特に好ましくは250℃前後で行う。高温過ぎると膜の損傷が過剰に進行する。低温すぎると硝酸イオンの除去が進まない。酸化被膜に残った硝酸イオンは低級酸化ニオブの生成を助長することがあり、絶縁性を劣化させることがある。
 熱処理の時間は、被膜の安定性が維持できる範囲であれば特に制限されず、好ましくは10分間~2時間、より好ましくは20分間~30分間である。
〔工程III〕
 工程IIの後、前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する(工程III)。この工程IIIにおける電解化成によって、工程Iにおける電解化成で十分に酸化されなかった部位や、工程IIにおける硝酸イオンの引き抜きで生じた格子欠陥部位を、再酸化して、酸化ニオブ被膜の安定化を図ることができる。工程IIIにおける電解化成を修復化成と呼ぶことがある。
 工程IIIにおける電解化成に用いられる化成液ならびに化成時の温度、電圧および電流は、前記工程Iにおける電解化成に用いられる化成液ならびに化成時の温度、電圧および電流として挙げたものと同じものを挙げることができる。化成の終了は、絞り電流値が安定した時点とすることができる。工程IIIにおける電解化成の時間は、通常1時間未満、好ましくは20分間~30分間である。
 工程IIIにおける電解化成が施された陽極体は、純水で洗浄され、次いで乾燥させる。乾燥は陽極体に付着した水が蒸発する温度および時間であれば特に制限はない。ただし乾燥時の温度が高すぎると酸化被膜内の酸素が拡散しやすくなり、電気特性に影響が出るおそれがある。そこで、例えば、温度105℃で30分間保持するなどの条件で乾燥することが好ましい。
 本発明の固体電解コンデンサ素子は、上記の化成処理方法によってニオブを含有する陽極体の表面層を誘電体層(すなわち、酸化被膜)に成し;次いで該誘電体層の上に陰極を形成することを含む製法によって得られる。なお、陽極体の表面層は、該陽極体が多孔質体である場合には、細孔内壁の表面層も包含する。
 また、本発明の固体電解コンデンサは、上記で得られた固体電解コンデンサ素子を外装することを含む製法によって得られる。
 陰極は従来の固体電解コンデンサに用いられているものが制限なく使用できる。陰極は半導体層からなるものであってもよいし、半導体層と導電体層とからなるものであってもよい。半導体層としては、例えば、二酸化モリブデン層、二酸化タングステン層、二酸化鉛層、二酸化マンガン層などの無機半導体層や、テトラシアノキノジメタン(TCNQ)錯塩層またはポリピロール層、ポリチオフェン層、ポリスルファイド層、ポリフラン層、ポリアニリン層などの有機半導体層または導電性高分子層が挙げられる。陽極体が多孔質体である場合に細孔内壁表面に形成された誘電体層の上にも陰極を形成しやすいという観点から半導体層は有機半導体層または導電性高分子層が好ましい。導電体層としては、導電性カーボンペーストや銀ペーストなどを塗布して成る導電性ペースト層や、金属メッキや蒸着等で形成できる導電性金属層などが挙げられる。
 上記陰極に陰極リードが通電可能な状態で接続され、該陰極リードが固体電解コンデンサの外装の外部に露出して陰極外部端子となる。一方、陽極体には、陽極リードが通電可能な状態で接続され、該陽極リードが固体電解コンデンサの外装の外部に露出して陽極外部端子となる。陰極リードおよび陽極リードの取り付けには通常のリードフレームを用いることができる。次いで、樹脂等による封止によって外装を形成して固体電解コンデンサを得ることができる。このようにして作成された固体電解コンデンサは、所望によりエージング処理を行うことができる。本発明の製造方法によって得られる固体電解コンデンサは、各種電気回路または電子回路に装着し、使用することができる。
 本発明の製造方法によって得られる固体電解コンデンサ素子または固体電解コンデンサの電気特性は、化成処理された陽極体の電気的特性を測定することで、迅速に評価を行うことができる。即ち、化成処理された陽極体を40質量%の硫酸水溶液に漬け、該陽極体を陽極として且つ白金黒電極を陰極としてインピーダンスアナライザーおよびLCメータに繋ぎ、電気的特性を測定することで、本発明の効果を判断することができる。
 以下に、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの記載により限定されるものでない。
(実施例1)
 CV積13万μFV/gのニオブ微粉末22mgを立方体に成形した。この立方体の成形と同時に立方体の一面の中心にニオブ製導線を埋設、植立させた。この成形体を10-4Pa以下に減圧された焼成炉にて温度1210℃で30分間焼成して焼結体を得た。
 硝酸0.5質量%、およびオルトリン酸0.5質量%(硝酸に対する質量比1倍)の水溶液を調製し、これを化成液とした。
 化成液を80℃に加温した。化成液に前記焼結体を浸漬し、焼結体を陽極として電流200mA/gを維持するようにして直流電圧を印加した。印加電圧が20Vに達した時点から電圧20Vを維持するようにして2時間の電解化成を実施した。
 その後、電解化成された焼結体を、水で洗浄して、250℃の乾燥機にて20分間熱処理を行った。
 前記と同じ組成で80℃の化成液に熱処理された焼結体を浸漬し、焼結体を陽極として電流200mA/gを維持するようにして直流電圧を印加した。印加電圧が20Vに達した時点から電圧20Vを維持するようにして30分間の電解化成を実施した。
 化成処理された焼結体(以下、これを素子と呼ぶことがある。)を水で洗浄し、乾燥した。次いで40質量%硫酸水溶液に浸漬し、該素子を陽極として且つ白金黒電極を陰極としてインピーダンスアナライザーおよびLCメータに繋ぎ、静電容量(CV値)および漏れ電流(LC値)を測定した。
(実施例2~5および比較例1~6)
 硝酸およびリン酸の濃度、化成温度、化成電圧、および熱処理温度を表1に示すものに変更した以外は、実施例1と同じ手法にて素子を作成し、それらの静電容量(CV値)および漏れ電流(LC値)を測定した。それらの結果を表1に示す。
Figure JPOXMLDOC01-appb-I000001
 表1からわかるように、硝酸水溶液を用いた電解化成では、高い化成電圧にすることができず(比較例5)、低電圧で化成した場合には漏れ電流が高い(比較例3)。
 リン酸水溶液を用いた電解化成では、化成電圧が高くなると漏れ電流を低く抑えることができない(比較例4および6)。
 また、電解化成後に105℃の単なる乾燥を行っただけのもの(比較例1)、電解化成を30℃の室温で行ったもの(比較例2)は、漏れ電流が高い。
 これに対して、ニオブを含有する陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成し;該電解化成された陽極体を150~300℃の温度範囲内で熱処理し;次いで前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成すると、漏れ電流を大幅に低減できる(実施例1~5)。また、本発明の化成処理方法では、化成電圧を高くしても、漏れ電流を低く抑えることができる(実施例5)。

Claims (8)

  1.  ニオブを含有する陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程I;
     該電解化成された陽極体を150~300℃の温度範囲内で熱処理する工程II;および
     前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程III
     を含む、固体電解コンデンサ用陽極体の化成処理方法。
  2.  化成液における硝酸濃度が0.01質量%~飽和濃度である請求項1に記載の固体電解コンデンサ用陽極体の化成処理方法。
  3.  化成液におけるリン酸濃度が硝酸に対する質量比で0.1~9倍となる濃度である請求項1に記載の固体電解コンデンサ用陽極体の化成処理方法。
  4.  リン酸がオルトリン酸である請求項1に記載の固体電解コンデンサ用陽極体の化成処理方法。
  5.  ニオブを含有する陽極体がニオブ多孔質焼結体である請求項1に記載の固体電解コンデンサ陽極体の化成処理方法。
  6.  ニオブを含有する陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程I;
     該電解化成された陽極体を150~300℃の温度範囲内で熱処理する工程II;および
     前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程III を含む化成処理方法によって、ニオブを含有する陽極体の表面層を誘電体層に成し;
     次いで該誘電体層の上に陰極を形成することを含む、固体電解コンデンサ素子の製法。
  7.  陰極が、半導体層と導電体層とからなる、請求項6に記載の固体電解コンデンサ素子の製法。
  8.  請求項6に記載の製法で得られた固体電解コンデンサ素子を外装することを含む、固体電解コンデンサの製造方法。
PCT/JP2010/004805 2009-07-29 2010-07-29 固体電解コンデンサの製造方法 WO2011013375A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800335537A CN102473528B (zh) 2009-07-29 2010-07-29 固体电解电容器的制造方法
JP2011524663A JPWO2011013375A1 (ja) 2009-07-29 2010-07-29 固体電解コンデンサの製造方法
EP10804126.0A EP2461337B1 (en) 2009-07-29 2010-07-29 Manufacturing method for solid electrolytic capacitor
US13/387,859 US8512423B2 (en) 2009-07-29 2010-07-29 Method for producing solid electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-176166 2009-07-29
JP2009176166 2009-07-29

Publications (1)

Publication Number Publication Date
WO2011013375A1 true WO2011013375A1 (ja) 2011-02-03

Family

ID=43529045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004805 WO2011013375A1 (ja) 2009-07-29 2010-07-29 固体電解コンデンサの製造方法

Country Status (5)

Country Link
US (1) US8512423B2 (ja)
EP (1) EP2461337B1 (ja)
JP (1) JPWO2011013375A1 (ja)
CN (1) CN102473528B (ja)
WO (1) WO2011013375A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150340158A1 (en) * 2012-06-22 2015-11-26 Showa Denko K.K. Method for producing capacitor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9396881B2 (en) * 2012-02-08 2016-07-19 Showa Denko K.K. Solid electrolytic capacitor
JP2016122780A (ja) * 2014-12-25 2016-07-07 昭和電工株式会社 化成処理済みタングステン陽極体、固体電解コンデンサ素子及び固体電解コンデンサの製造方法
CN113192755A (zh) * 2021-04-29 2021-07-30 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) 一种电解电容器的阳极氧化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220982A (ja) 1994-01-31 1995-08-18 Elna Co Ltd 固体電解コンデンサの製造方法
JP2002198266A (ja) 2000-12-27 2002-07-12 Sanyo Electric Co Ltd 電解コンデンサの製造方法
JP2002246273A (ja) * 2001-02-14 2002-08-30 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
WO2004068517A1 (ja) * 2003-01-31 2004-08-12 Showa Denko K.K. 固体電解コンデンサの製造方法
JP2005057057A (ja) 2003-08-05 2005-03-03 Sanyo Electric Co Ltd ニオブ固体電解コンデンサの製造方法
JP2005325830A (ja) * 2004-05-12 2005-11-24 Hideo Okamoto 排熱エネルギー交換装置
JP2005325380A (ja) 2004-05-12 2005-11-24 Companhia Brasileira De Metalurgia & Mineracao 電解コンデンサ用ニオブの陽極酸化方法および電解コンデンサ
WO2007020969A1 (ja) 2005-08-18 2007-02-22 Showa Denko K. K. 弁作用金属材料の化成処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3070408B2 (ja) 1993-12-28 2000-07-31 日本電気株式会社 固体電解コンデンサおよびその製造方法
US6183618B1 (en) * 1999-02-02 2001-02-06 Kemet Electronics Corporation Process for treating impregnated electrolytic capacitor anodes
US6261434B1 (en) * 1999-10-19 2001-07-17 Kemet Electronics Corporation Differential anodization process for electrolytic capacitor anode bodies
JP2002060803A (ja) * 2000-08-10 2002-02-28 Showa Kyabotto Super Metal Kk 電解コンデンサ用タンタル焼結体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220982A (ja) 1994-01-31 1995-08-18 Elna Co Ltd 固体電解コンデンサの製造方法
JP2002198266A (ja) 2000-12-27 2002-07-12 Sanyo Electric Co Ltd 電解コンデンサの製造方法
JP2002246273A (ja) * 2001-02-14 2002-08-30 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
WO2004068517A1 (ja) * 2003-01-31 2004-08-12 Showa Denko K.K. 固体電解コンデンサの製造方法
JP2005057057A (ja) 2003-08-05 2005-03-03 Sanyo Electric Co Ltd ニオブ固体電解コンデンサの製造方法
JP2005325830A (ja) * 2004-05-12 2005-11-24 Hideo Okamoto 排熱エネルギー交換装置
JP2005325380A (ja) 2004-05-12 2005-11-24 Companhia Brasileira De Metalurgia & Mineracao 電解コンデンサ用ニオブの陽極酸化方法および電解コンデンサ
WO2007020969A1 (ja) 2005-08-18 2007-02-22 Showa Denko K. K. 弁作用金属材料の化成処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461337A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150340158A1 (en) * 2012-06-22 2015-11-26 Showa Denko K.K. Method for producing capacitor
US9607770B2 (en) * 2012-06-22 2017-03-28 Show A Denko K.K. Method for producing capacitor

Also Published As

Publication number Publication date
JPWO2011013375A1 (ja) 2013-01-07
US20120137482A1 (en) 2012-06-07
EP2461337A4 (en) 2016-03-23
CN102473528A (zh) 2012-05-23
EP2461337A1 (en) 2012-06-06
CN102473528B (zh) 2013-10-09
EP2461337B1 (en) 2017-04-05
US8512423B2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
JP4983744B2 (ja) 固体電解コンデンサの製造方法
US8915974B2 (en) Method for manufacturing capacitor element
WO2014034201A1 (ja) 固体電解コンデンサの製造方法および固体電解コンデンサ
WO2013186970A1 (ja) コンデンサ素子およびその製造方法
US8513123B2 (en) Method of manufacturing solid electrolytic capacitor
EP2461337B1 (en) Manufacturing method for solid electrolytic capacitor
JP3711964B2 (ja) 固体電解コンデンサの製造方法
JP5502562B2 (ja) 固体電解コンデンサの製造方法
WO2014091647A1 (ja) カーボンペーストおよび固体電解コンデンサ素子
US8257449B2 (en) Method for manufacturing niobium solid electrolytic capacitor
JPH11150041A (ja) 固体電解コンデンサの製造方法
WO2014091648A1 (ja) 固体電解コンデンサ素子の製造方法
JP2007173454A (ja) 固体電解コンデンサ
JP4891140B2 (ja) 固体電解コンデンサの製造方法
JP4863509B2 (ja) 固体電解コンデンサの製造方法
EP2866237A1 (en) Capacitor element
JP4401195B2 (ja) 固体電解コンデンサおよびその製造方法
JP5473111B2 (ja) 固体電解コンデンサの製造方法
JP4931730B2 (ja) 固体電解コンデンサおよびその製造方法
JP5496708B2 (ja) 固体電解コンデンサの製造方法
JP3750476B2 (ja) 固体電解コンデンサの製造方法
JP2000297142A (ja) 固体電解質形成用重合液と製造方法、およびこれらを用いた固体電解コンデンサの製造方法
JP2006210837A (ja) 固体電解コンデンサおよびその製造方法。
JP2000040642A (ja) 固体電解コンデンサの製造方法
JP2008226971A (ja) 固体電解コンデンサの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033553.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524663

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010804126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010804126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13387859

Country of ref document: US