WO2011013375A1 - 固体電解コンデンサの製造方法 - Google Patents
固体電解コンデンサの製造方法 Download PDFInfo
- Publication number
- WO2011013375A1 WO2011013375A1 PCT/JP2010/004805 JP2010004805W WO2011013375A1 WO 2011013375 A1 WO2011013375 A1 WO 2011013375A1 JP 2010004805 W JP2010004805 W JP 2010004805W WO 2011013375 A1 WO2011013375 A1 WO 2011013375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode body
- electrolytic capacitor
- solid electrolytic
- chemical
- chemical conversion
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 63
- 239000007787 solid Substances 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 74
- 239000000126 substance Substances 0.000 claims abstract description 73
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000010410 layer Substances 0.000 claims abstract description 42
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 42
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 38
- 239000010955 niobium Substances 0.000 claims abstract description 38
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000009835 boiling Methods 0.000 claims abstract description 15
- 239000002344 surface layer Substances 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 76
- 235000011007 phosphoric acid Nutrition 0.000 claims description 35
- 239000004065 semiconductor Substances 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 29
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 24
- 239000003792 electrolyte Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 229910000484 niobium oxide Inorganic materials 0.000 description 11
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 229910052715 tantalum Inorganic materials 0.000 description 9
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- -1 alkali metal salts Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 5
- 229910001936 tantalum oxide Inorganic materials 0.000 description 5
- 229910002651 NO3 Inorganic materials 0.000 description 4
- 239000001361 adipic acid Substances 0.000 description 4
- 235000011037 adipic acid Nutrition 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 2
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten(iv) oxide Chemical compound O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- PYLYNBWPKVWXJC-UHFFFAOYSA-N [Nb].[Pb] Chemical compound [Nb].[Pb] PYLYNBWPKVWXJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000414 polyfuran Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0032—Processes of manufacture formation of the dielectric layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/07—Dielectric layers
Definitions
- the present invention relates to a chemical conversion treatment method for an anode body for a solid electrolytic capacitor, a solid electrolytic capacitor element, and a method for manufacturing a solid electrolytic capacitor. More specifically, the present invention provides a method for chemical conversion treatment of an anode body for a solid electrolytic capacitor that can increase the stability of a dielectric layer formed on the surface of a niobium anode body and can significantly reduce the leakage current, as well as high reliability. The present invention relates to a solid electrolytic capacitor element having a high yield and a solid electrolytic capacitor device.
- a solid electrolytic capacitor is a capacitor in which a surface layer of an anode body is formed into an oxide or the like by performing chemical conversion treatment on an anode body containing a metal or the like having a valve action, and this is used as a dielectric layer.
- Tantalum or aluminum is frequently used for the anode body of commercially available solid electrolytic capacitors.
- Aluminum electrolytic capacitors have a large capacity and are suitable for smoothing power supply circuits, time constant circuits, and the like. Tantalum electrolytic capacitors are smaller and have better characteristics than aluminum electrolytic capacitors. In particular, it is often used in analog circuits. It is also used for the purpose of removing spike-like currents in digital circuits.
- niobium metal is known to be similar in physical and chemical properties to tantalum metal. Niobium has more reserves than tantalum, and it can be expected to stabilize the supply of electrolytic capacitors and reduce the price. In addition, since niobium electrolytic capacitors may be able to have a larger capacity than tantalum electrolytic capacitors, it is expected to replace tantalum electrolytic capacitors in the future.
- the niobium oxide film obtained by forming an anode body made of niobium was more unstable than the tantalum oxide film.
- the thickness of the niobium oxide film generated per chemical conversion voltage is twice that of the tantalum oxide film, and the strain generated as the film grows is also twice that of the tantalum oxide film. Therefore, the withstand voltage on the basis of the film thickness was half that of the tantalum oxide film in the niobium oxide film.
- the niobium oxide includes a non-stoichiometric lower oxide not found in tantalum oxide. This is considered to promote the diffusion of oxygen in the dielectric layer, impart semiconductor characteristics to the dielectric layer, and increase the leakage current.
- a niobium electrolytic capacitor Although it is a niobium oxide film having such unstable characteristics, a niobium electrolytic capacitor has a possibility of exhibiting performance exceeding that of a tantalum electrolytic capacitor, and thus further research has been conducted.
- an aqueous solution containing at least one acid selected from phosphoric acid, nitric acid, sulfuric acid, adipic acid, boric acid and salts thereof as a solute as a chemical conversion solution is used at about 40 ° C. or less.
- a method for producing an electrolytic capacitor is described which includes electrolytically forming a sintered body made of niobium at the above temperature.
- Patent Document 2 discloses that niobium is formed at a low temperature of 15 ° C. using a chemical conversion solution obtained by adding an acidifying material composed of adipic acid to an aqueous solution containing a boric acid salt or an adipic acid salt.
- a method for producing an electrolytic capacitor is described that includes electrolytically forming an anode body that contains.
- niobium metal pellets are electrolytically formed in a phosphoric acid aqueous solution adjusted to pH 6 to 11.5, taken out from the chemical conversion treatment solution, and mixed into a mixed solution of phosphoric acid and nitric acid for several minutes to 10-10. Immerse it for about a minute, then heat it for a few minutes to 10 minutes at a temperature of 250-800 ° C, and then slowly cool it down.
- a method for anodizing niobium for electrolytic capacitors, including forming, is described.
- Patent Document 4 discloses a solid body including firstly electrolyzing an anode body formed by sintering a valve action metal powder in a phosphoric acid aqueous solution and then electrolyzing in a nitric acid aqueous solution at a voltage of 60 V or less. An electrolytic capacitor manufacturing method is described. However, Patent Document 4 only shows as an example that leakage current can be suppressed when the tantalum sintered body is subjected to chemical conversion treatment.
- Patent Document 5 includes at least one component selected from the group consisting of a step of forming in an electrolyte containing adipate, oxalic acid, nitric acid, sulfuric acid, adipic acid, phosphoric acid, silicic acid, and salts thereof.
- a chemical conversion treatment method for a valve action metal material is described in which a step of forming with an electrolytic solution containing, a step of heat-treating at a temperature of 250 to 400 ° C., and a step of forming in an electrolytic solution containing an adipate are performed in this order.
- Patent Document 5 merely shows as an example that leakage current can be suppressed when a chemical conversion treatment is applied to an aluminum foil.
- the solid electrolytic capacitors obtained by the conversion treatment methods for niobium anodes described in Patent Documents 1 to 3 have not been sufficiently low in leakage current, and are still low in reliability. Further, even if the niobium sintered body is subjected to chemical conversion treatment under the same conditions as the electrolytic conversion conditions for the tantalum sintered body described in Patent Document 4, the niobium oxide film has low stability and the leakage current is sufficiently low. The reliability was still low. Although the niobium oxide film is slightly improved in stability and lower in leakage current by subjecting the niobium sintered body to chemical conversion treatment under the same conditions as the electrolytic conversion conditions for the aluminum foil described in Patent Document 5, it is still satisfactory. Since it has not reached the range, further improvements were sought.
- An object of the present invention is to provide a method for chemical conversion treatment of an anode body for a solid electrolytic capacitor capable of increasing the stability of a dielectric layer formed on the surface of a niobium anode body and greatly reducing leakage current, and solid electrolysis having high reliability.
- the object is to provide a method capable of producing a capacitor element and a solid electrolytic capacitor in high yield.
- Nitric acid has a high electrical conductivity and is known as an electrolyte for an electrolytic solution. Nitric acid is also known as an excellent oxidizing agent. However, when electrolytic conversion is performed using nitric acid, the nitric acid may be decomposed by high temperature or high voltage to act as an oxidizing agent. For this reason, it has been difficult to control the characteristics of the oxide film to be produced with an electrolytic solution using nitric acid. Moreover, since nitric acid causes a chemical change and a big change with time, it was difficult to use it industrially as an electrolyte for an electrolytic solution.
- Phosphoric acid having no defects such as nitric acid has been industrially used as an electrolyte for electrolytic solution, but the stability of the niobium oxide film was low in the electrolytic formation of the niobium anode body by the phosphorylating solution.
- step I of electrolytically forming within a temperature range from 40 ° C. to the boiling point of the chemical conversion solution; the electrolytically formed anode body within a temperature range of 150 to 300 ° C.
- a chemical conversion treatment method comprising: a step II of heat treatment; and a step III of electrolyzing the heat-treated anode body in a chemical liquid containing nitric acid and phosphoric acid within a temperature range from 40 ° C. to the boiling point of the chemical liquid.
- Step I of electrolytically forming an anode body containing niobium within a temperature range from 40 ° C. to the boiling point of the chemical conversion solution in a chemical conversion solution containing nitric acid and phosphoric acid;
- a chemical conversion treatment method for an anode body for a solid electrolytic capacitor In the temperature range of III A chemical conversion treatment method for an anode body for a solid electrolytic capacitor.
- ⁇ 2> The chemical conversion treatment method for an anode body for a solid electrolytic capacitor as described in ⁇ 1> above, wherein the nitric acid concentration in the chemical conversion solution is 0.01% by mass to a saturated concentration.
- ⁇ 3> The chemical conversion treatment method for an anode body for a solid electrolytic capacitor according to the above ⁇ 1> or ⁇ 2>, wherein the phosphoric acid concentration in the chemical conversion liquid is a concentration that is 0.1 to 9 times the mass ratio with respect to nitric acid.
- ⁇ 4> The chemical conversion treatment method for an anode body for a solid electrolytic capacitor according to any one of ⁇ 1> to ⁇ 3>, wherein the phosphoric acid is orthophosphoric acid.
- ⁇ 5> The chemical conversion treatment method for a solid electrolytic capacitor anode body according to any one of ⁇ 1> to ⁇ 4>, wherein the anode body containing niobium is a niobium porous sintered body.
- ⁇ 6> The surface layer of the anode body containing niobium is formed into a dielectric layer by the chemical conversion treatment method according to any one of ⁇ 1> to ⁇ 5>; then, a cathode is formed on the dielectric layer.
- the manufacturing method of a solid electrolytic capacitor element including forming.
- ⁇ 7> The method for producing a solid electrolytic capacitor element according to ⁇ 6>, wherein the cathode includes a semiconductor layer and a conductor layer.
- a method for producing a solid electrolytic capacitor comprising: covering a solid electrolytic capacitor element obtained by the production method according to ⁇ 6> or ⁇ 7>.
- the leakage current value of the solid electrolytic capacitor is reduced and the thermal stability is improved. Further, since it can be formed at a high voltage, a solid electrolytic capacitor having a high withstand voltage can be obtained. Such a remarkable effect is thought to be due to the formation of a stable oxide film that is dense and has few defects on the niobium surface.
- the anode body used in the present invention contains niobium.
- niobium for example, an anode body made of niobium metal or a niobium-based alloy can be mentioned.
- the anode body is preferably a niobium porous sintered body.
- the niobium porous sintered body can be manufactured, for example, as follows. Add binder to niobium powder and mix. This mixture is press-molded into a predetermined shape. An anode lead wire (usually niobium wire) is buried and planted during the press molding. Next, the molded article is fired at 1000 to 1400 ° C. in a high vacuum (usually 10 ⁇ 4 Pa or less) to sinter the niobium powder, and finally cooled in vacuum.
- a high vacuum usually 10 ⁇ 4 Pa or less
- Step I In the chemical conversion treatment method for an anode body for a solid electrolytic capacitor of the present invention, first, the anode body is electrolytically formed in a chemical liquid containing nitric acid and phosphoric acid within a temperature range from 40 ° C. to the boiling point of the chemical liquid (step). I). An oxide film is formed by this electrolytic conversion.
- the chemical conversion liquid may contain other electrolytes as long as the effects of the present invention are not impaired.
- other electrolytes include inorganic acids such as sulfuric acid and boric acid; organic acids such as oxalic acid and adipic acid; or alkali metal salts and ammonium salts thereof.
- Water is usually used as the solvent for the chemical conversion liquid.
- the chemical conversion liquid may contain an oxygen supply agent such as hydrogen peroxide or ozone as long as the effects of the present invention are not impaired.
- the concentration of the electrolyte is not particularly limited as long as it can be subjected to electrolytic formation.
- the concentration of the electrolyte can be appropriately selected from the above viewpoint.
- the concentration of nitric acid is preferably 0.01% by mass to saturated concentration, more preferably 0.2 to 2% by mass, and still more preferably 0.2 to 1% by mass.
- the concentration of phosphoric acid is preferably 0.1 to 9 times, more preferably 0.2 to 4 times, by mass ratio with respect to nitric acid. When the phosphoric acid concentration is in this mass ratio range with respect to nitric acid, the decomposition of nitric acid is suppressed and the stability of the niobium oxide film is improved.
- Electrochemical conversion is performed within a temperature range from 40 ° C. to the boiling point of the chemical conversion solution. At low temperatures, the leakage current tends to increase. If it exceeds about 100 ° C., the capacitance tends to decrease. From such a viewpoint, the temperature at the time of electrolytic formation is preferably 50 to 100 ° C., more preferably 70 to 90 ° C., further preferably 75 to 85 ° C., and particularly preferably about 80 ° C.
- the voltage and current applied at the time of electrolytic formation can be selected according to the target withstand voltage of the obtained solid electrolytic capacitor.
- the formation current is usually 0.1 mA / g to 1 A / g.
- 100 mA is used from the viewpoint of the capacitance.
- / G to 400 mA / g is preferable, and about 200 mA / g is particularly preferable.
- the voltage is preferably first increased so that the current value becomes constant, and then maintained at a constant voltage (formation voltage).
- the end of the formation is desired when the aperture current value becomes as small as possible, and is preferably the time when the current value becomes 1/20 or less of the initial current value at the start of formation, or when several hours have passed since the start of formation.
- Step II the electrolytically formed anode body is washed with pure water and then heat-treated (Step II).
- This heat treatment removes moisture and hardens the oxide film.
- the heat treatment also has an effect of extracting and removing nitrate ions remaining on the oxide film.
- the heat treatment is performed within a temperature range of 150 ° C. to 300 ° C., preferably 200 to 290 ° C., more preferably 220 to 280 ° C., further preferably 240 to 260 ° C., particularly preferably around 250 ° C. If the temperature is too high, film damage will proceed excessively. If the temperature is too low, removal of nitrate ions will not proceed.
- Nitrate ions remaining on the oxide film may promote the formation of lower niobium oxide, which may degrade the insulation.
- the heat treatment time is not particularly limited as long as the stability of the coating can be maintained, and is preferably 10 minutes to 2 hours, more preferably 20 minutes to 30 minutes.
- Step III After Step II, the heat-treated anode body is subjected to electrolysis within a temperature range from 40 ° C. to the boiling point of the conversion solution in a conversion solution containing nitric acid and phosphoric acid (Step III).
- electrolytic conversion in step III the portion that was not sufficiently oxidized by the electrolytic formation in Step I and the lattice defect portion that was generated by the extraction of nitrate ions in Step II were reoxidized to stabilize the niobium oxide film. Can be planned.
- the electrolytic conversion in step III may be referred to as repair conversion.
- the conversion liquid used for the electrolytic conversion in Step III and the temperature, voltage and current at the time of chemical formation are the same as those listed as the chemical conversion liquid used for the electrolytic formation in Step I and the temperature, voltage and current at the time of chemical formation. be able to.
- the end of the formation can be made when the aperture current value becomes stable.
- the time for electrolytic formation in Step III is usually less than 1 hour, preferably 20 to 30 minutes.
- the anode body that has been subjected to electrolytic formation in step III is washed with pure water and then dried.
- the drying is not particularly limited as long as it is a temperature and a time at which water attached to the anode body evaporates. However, if the temperature during drying is too high, oxygen in the oxide film is likely to diffuse, which may affect the electrical characteristics. Therefore, for example, it is preferable to dry under conditions such as holding at a temperature of 105 ° C. for 30 minutes.
- the surface layer of the anode body containing niobium is formed into a dielectric layer (that is, an oxide film) by the above chemical conversion treatment method; then, the cathode is formed on the dielectric layer. It is obtained by the manufacturing method including this.
- the surface layer of the anode body includes the surface layer of the pore inner wall when the anode body is a porous body.
- the solid electrolytic capacitor of this invention is obtained by the manufacturing method including covering the solid electrolytic capacitor element obtained above.
- the cathode used in a conventional solid electrolytic capacitor can be used without limitation.
- the cathode may be composed of a semiconductor layer, or may be composed of a semiconductor layer and a conductor layer.
- the semiconductor layer include inorganic semiconductor layers such as molybdenum dioxide layer, tungsten dioxide layer, lead dioxide layer, manganese dioxide layer, tetracyanoquinodimethane (TCNQ) complex salt layer or polypyrrole layer, polythiophene layer, polysulfide layer. , Organic semiconductor layers such as polyfuran layers and polyaniline layers, or conductive polymer layers.
- the semiconductor layer is preferably an organic semiconductor layer or a conductive polymer layer from the viewpoint of easily forming a cathode on the dielectric layer formed on the surface of the pore inner wall.
- the conductor layer include a conductive paste layer formed by applying a conductive carbon paste, a silver paste, or the like, or a conductive metal layer that can be formed by metal plating or vapor deposition.
- the cathode lead is connected to the cathode in a state where electricity can be passed, and the cathode lead is exposed to the outside of the exterior of the solid electrolytic capacitor and becomes a cathode external terminal.
- the anode lead is connected to the anode body in a state where electricity can be passed, and the anode lead is exposed to the outside of the exterior of the solid electrolytic capacitor and becomes an anode external terminal.
- a normal lead frame can be used to attach the cathode lead and the anode lead.
- the exterior can be formed by sealing with a resin or the like to obtain a solid electrolytic capacitor.
- the solid electrolytic capacitor thus produced can be subjected to an aging treatment as desired.
- the solid electrolytic capacitor obtained by the production method of the present invention can be used by being mounted on various electric circuits or electronic circuits.
- the electrical characteristics of the solid electrolytic capacitor element or the solid electrolytic capacitor obtained by the production method of the present invention can be evaluated quickly by measuring the electrical characteristics of the chemical-treated anode body. That is, the chemical conversion-treated anode body is immersed in a 40% by mass sulfuric acid aqueous solution, the anode body is used as an anode, and a platinum black electrode is used as a cathode, and connected to an impedance analyzer and an LC meter, and the electrical characteristics are measured. The effect can be judged.
- Example 1 22 mg of niobium fine powder having a CV product of 130,000 ⁇ FV / g was molded into a cube. Simultaneously with the formation of the cube, a niobium lead was buried in the center of one side of the cube and planted. This molded body was fired at a temperature of 1210 ° C. for 30 minutes in a firing furnace depressurized to 10 ⁇ 4 Pa or less to obtain a sintered body. An aqueous solution of 0.5% by mass of nitric acid and 0.5% by mass of orthophosphoric acid (mass ratio with respect to nitric acid was 1 time) was prepared and used as a chemical conversion solution.
- the chemical conversion liquid was heated to 80 ° C.
- the sintered body was immersed in the chemical conversion solution, and a DC voltage was applied so as to maintain a current of 200 mA / g using the sintered body as an anode. From the time when the applied voltage reached 20V, the electrolytic formation was carried out for 2 hours so as to maintain the voltage of 20V. Thereafter, the electrolytically formed sintered body was washed with water and heat-treated for 20 minutes in a 250 ° C. dryer. A sintered body having the same composition as described above and heat-treated in a chemical conversion solution at 80 ° C. was immersed, and a DC voltage was applied so as to maintain a current of 200 mA / g using the sintered body as an anode. From the point of time when the applied voltage reached 20V, electrolysis was performed for 30 minutes so as to maintain the voltage of 20V.
- the sintered body subjected to chemical conversion treatment (hereinafter sometimes referred to as element) was washed with water and dried. Subsequently, it was immersed in a 40 mass% sulfuric acid aqueous solution, and the device was connected to an impedance analyzer and an LC meter using the platinum black electrode as a cathode and an electrostatic capacity (CV value) and leakage current (LC value) were measured.
- element The sintered body subjected to chemical conversion treatment
- Example 2 to 5 and Comparative Examples 1 to 6 A device was prepared in the same manner as in Example 1 except that the concentrations of nitric acid and phosphoric acid, the formation temperature, the formation voltage, and the heat treatment temperature were changed to those shown in Table 1, and their capacitance (CV value). The leakage current (LC value) was measured. The results are shown in Table 1.
- an anode body containing niobium is subjected to electrolysis within a temperature range from 40 ° C. to the boiling point of the chemical conversion solution in a chemical conversion solution containing nitric acid and phosphoric acid;
- a leakage current is obtained. Can be significantly reduced (Examples 1 to 5).
- the chemical conversion treatment method of the present invention even if the chemical conversion voltage is increased, the leakage current can be kept low (Example 5).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
市販の固体電解コンデンサの陽極体には、タンタルまたはアルミニウムが多用されている。アルミニウム電解コンデンサは大容量が得られ、電源回路の平滑用・時定数回路用等に好適である。タンタル電解コンデンサは、アルミニウム電解コンデンサよりも小型で特性が優れている。特にアナログ回路に多く用いられている。デジタル回路でもスパイク状の電流を除去する目的等で使われている。
ただし、特許文献4はタンタル焼結体に化成処理を施した場合に漏れ電流の抑制ができたことを実施例として示しているのみである。
ただし、特許文献5はアルミニウム箔に化成処理を施した場合に漏れ電流の抑制ができたことを実施例として示しているのみである。
また、特許文献4に記載のタンタル焼結体に対する電解化成条件と同じ条件でニオブ焼結体に化成処理を施しても、ニオブ酸化被膜は、安定性が低く、漏れ電流が十分に低く抑えられておらず、信頼性が未だ低かった。
特許文献5に記載のアルミニウム箔に対する電解化成条件と同じ条件でニオブ焼結体に化成処理を施すことで、ニオブ酸化被膜は、安定性が若干向上し、漏れ電流が低くなるものの、未だ満足できる域に達しておらず、さらなる改良が求められた。
硝酸のような不具合が無いリン酸は電解化成液用の電解質として工業的に賞用されているが、リン酸化成液によるニオブ陽極体の電解化成では、ニオブ酸化被膜の安定性が低かった。
本発明はこの知見に基づいてさらに検討したことによって完成するに至ったものである。
〈1〉ニオブを含有する陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程I;
該電解化成された陽極体を150~300℃の温度範囲内で熱処理する工程II;および
前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程III
を含む、固体電解コンデンサ用陽極体の化成処理方法。
〈2〉化成液における硝酸濃度が0.01質量%~飽和濃度である前記〈1〉に記載の固体電解コンデンサ用陽極体の化成処理方法。
〈3〉化成液におけるリン酸濃度が硝酸に対する質量比で0.1~9倍となる濃度である前記〈1〉または〈2〉に記載の固体電解コンデンサ用陽極体の化成処理方法。
〈4〉リン酸がオルトリン酸である前記〈1〉~〈3〉のいずれか1項に記載の固体電解コンデンサ用陽極体の化成処理方法。
〈5〉ニオブを含有する陽極体がニオブ多孔質焼結体である前記〈1〉~〈4〉のいずれか1項に記載の固体電解コンデンサ陽極体の化成処理方法。
〈7〉陰極が、半導体層と導電体層とからなる、前記〈6〉に記載の固体電解コンデンサ素子の製法。
〈8〉前記〈6〉または〈7〉に記載の製法で得られた固体電解コンデンサ素子を外装することを含む、固体電解コンデンサの製造方法。
本発明に使用される陽極体はニオブを含有するものである。例えば、ニオブ金属またはニオブ基合金からなる陽極体が挙げられる。陽極体は、ニオブ多孔質焼結体が好ましい。
ニオブ多孔質焼結体は、例えば、次のようにして製造することができる。ニオブ粉末にバインダーを添加して混合する。この混合物を所定形状にプレス成形する。このプレス成形の際に陽極用リード線(通常はニオブ線)を埋設し植立させる。次いで、成形品を高真空中(通常10-4Pa以下)で1000~1400℃で焼成してニオブ粉末を焼結させ、最後に真空中で冷却する。
本発明の固体電解コンデンサ用陽極体の化成処理方法では、先ず、前記陽極体を硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する(工程I)。この電解化成によって酸化被膜が形成される。
なお、添加するリン酸としては、オルトリン酸が工業的に利用しやすく好ましい。
電解質の濃度は、上記の観点から適宜選択できる。例えば、硝酸の濃度としては、好ましくは0.01質量%~飽和濃度、より好ましくは0.2~2質量%、さらに好ましくは0.2~1質量%である。
リン酸の濃度は、硝酸に対して質量比で好ましくは0.1~9倍であり、より好ましくは0.2~4倍である。リン酸濃度が硝酸に対してこの質量比範囲にあると硝酸の分解が抑制されニオブ酸化被膜の安定性が向上する。
電解化成において、電圧は、最初に電流値が一定になるようにして増加させ、次いで一定電圧(化成電圧)で保持するのが好ましい。化成の終了は、絞り電流値ができるだけ小さくなった時点が望まれ、化成開始時の初期電流値の1/20以下になった時点、または化成開始から数時間経過した時点であることが好ましい。
工程Iの後、電解化成された陽極体を、純水で洗浄し、次いで熱処理する(工程II)。この熱処理によって、水分を除去し、酸化被膜を堅固にする。熱処理は、酸化被膜に残った硝酸イオンを引き抜き除去する効果もある。
熱処理は150℃~300℃の温度範囲内で、好ましくは200~290℃、より好ましくは220~280℃、さらに好ましくは240~260℃、特に好ましくは250℃前後で行う。高温過ぎると膜の損傷が過剰に進行する。低温すぎると硝酸イオンの除去が進まない。酸化被膜に残った硝酸イオンは低級酸化ニオブの生成を助長することがあり、絶縁性を劣化させることがある。
熱処理の時間は、被膜の安定性が維持できる範囲であれば特に制限されず、好ましくは10分間~2時間、より好ましくは20分間~30分間である。
工程IIの後、前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する(工程III)。この工程IIIにおける電解化成によって、工程Iにおける電解化成で十分に酸化されなかった部位や、工程IIにおける硝酸イオンの引き抜きで生じた格子欠陥部位を、再酸化して、酸化ニオブ被膜の安定化を図ることができる。工程IIIにおける電解化成を修復化成と呼ぶことがある。
また、本発明の固体電解コンデンサは、上記で得られた固体電解コンデンサ素子を外装することを含む製法によって得られる。
CV積13万μFV/gのニオブ微粉末22mgを立方体に成形した。この立方体の成形と同時に立方体の一面の中心にニオブ製導線を埋設、植立させた。この成形体を10-4Pa以下に減圧された焼成炉にて温度1210℃で30分間焼成して焼結体を得た。
硝酸0.5質量%、およびオルトリン酸0.5質量%(硝酸に対する質量比1倍)の水溶液を調製し、これを化成液とした。
その後、電解化成された焼結体を、水で洗浄して、250℃の乾燥機にて20分間熱処理を行った。
前記と同じ組成で80℃の化成液に熱処理された焼結体を浸漬し、焼結体を陽極として電流200mA/gを維持するようにして直流電圧を印加した。印加電圧が20Vに達した時点から電圧20Vを維持するようにして30分間の電解化成を実施した。
硝酸およびリン酸の濃度、化成温度、化成電圧、および熱処理温度を表1に示すものに変更した以外は、実施例1と同じ手法にて素子を作成し、それらの静電容量(CV値)および漏れ電流(LC値)を測定した。それらの結果を表1に示す。
リン酸水溶液を用いた電解化成では、化成電圧が高くなると漏れ電流を低く抑えることができない(比較例4および6)。
また、電解化成後に105℃の単なる乾燥を行っただけのもの(比較例1)、電解化成を30℃の室温で行ったもの(比較例2)は、漏れ電流が高い。
Claims (8)
- ニオブを含有する陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程I;
該電解化成された陽極体を150~300℃の温度範囲内で熱処理する工程II;および
前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程III
を含む、固体電解コンデンサ用陽極体の化成処理方法。 - 化成液における硝酸濃度が0.01質量%~飽和濃度である請求項1に記載の固体電解コンデンサ用陽極体の化成処理方法。
- 化成液におけるリン酸濃度が硝酸に対する質量比で0.1~9倍となる濃度である請求項1に記載の固体電解コンデンサ用陽極体の化成処理方法。
- リン酸がオルトリン酸である請求項1に記載の固体電解コンデンサ用陽極体の化成処理方法。
- ニオブを含有する陽極体がニオブ多孔質焼結体である請求項1に記載の固体電解コンデンサ陽極体の化成処理方法。
- ニオブを含有する陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程I;
該電解化成された陽極体を150~300℃の温度範囲内で熱処理する工程II;および
前記熱処理された陽極体を、硝酸及びリン酸を含有する化成液中にて40℃から化成液沸点までの温度範囲内で電解化成する工程III を含む化成処理方法によって、ニオブを含有する陽極体の表面層を誘電体層に成し;
次いで該誘電体層の上に陰極を形成することを含む、固体電解コンデンサ素子の製法。 - 陰極が、半導体層と導電体層とからなる、請求項6に記載の固体電解コンデンサ素子の製法。
- 請求項6に記載の製法で得られた固体電解コンデンサ素子を外装することを含む、固体電解コンデンサの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800335537A CN102473528B (zh) | 2009-07-29 | 2010-07-29 | 固体电解电容器的制造方法 |
JP2011524663A JPWO2011013375A1 (ja) | 2009-07-29 | 2010-07-29 | 固体電解コンデンサの製造方法 |
EP10804126.0A EP2461337B1 (en) | 2009-07-29 | 2010-07-29 | Manufacturing method for solid electrolytic capacitor |
US13/387,859 US8512423B2 (en) | 2009-07-29 | 2010-07-29 | Method for producing solid electrolytic capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-176166 | 2009-07-29 | ||
JP2009176166 | 2009-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011013375A1 true WO2011013375A1 (ja) | 2011-02-03 |
Family
ID=43529045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/004805 WO2011013375A1 (ja) | 2009-07-29 | 2010-07-29 | 固体電解コンデンサの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8512423B2 (ja) |
EP (1) | EP2461337B1 (ja) |
JP (1) | JPWO2011013375A1 (ja) |
CN (1) | CN102473528B (ja) |
WO (1) | WO2011013375A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150340158A1 (en) * | 2012-06-22 | 2015-11-26 | Showa Denko K.K. | Method for producing capacitor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9396881B2 (en) * | 2012-02-08 | 2016-07-19 | Showa Denko K.K. | Solid electrolytic capacitor |
JP2016122780A (ja) * | 2014-12-25 | 2016-07-07 | 昭和電工株式会社 | 化成処理済みタングステン陽極体、固体電解コンデンサ素子及び固体電解コンデンサの製造方法 |
CN113192755A (zh) * | 2021-04-29 | 2021-07-30 | 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) | 一种电解电容器的阳极氧化方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07220982A (ja) | 1994-01-31 | 1995-08-18 | Elna Co Ltd | 固体電解コンデンサの製造方法 |
JP2002198266A (ja) | 2000-12-27 | 2002-07-12 | Sanyo Electric Co Ltd | 電解コンデンサの製造方法 |
JP2002246273A (ja) * | 2001-02-14 | 2002-08-30 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサの製造方法 |
WO2004068517A1 (ja) * | 2003-01-31 | 2004-08-12 | Showa Denko K.K. | 固体電解コンデンサの製造方法 |
JP2005057057A (ja) | 2003-08-05 | 2005-03-03 | Sanyo Electric Co Ltd | ニオブ固体電解コンデンサの製造方法 |
JP2005325830A (ja) * | 2004-05-12 | 2005-11-24 | Hideo Okamoto | 排熱エネルギー交換装置 |
JP2005325380A (ja) | 2004-05-12 | 2005-11-24 | Companhia Brasileira De Metalurgia & Mineracao | 電解コンデンサ用ニオブの陽極酸化方法および電解コンデンサ |
WO2007020969A1 (ja) | 2005-08-18 | 2007-02-22 | Showa Denko K. K. | 弁作用金属材料の化成処理方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3070408B2 (ja) | 1993-12-28 | 2000-07-31 | 日本電気株式会社 | 固体電解コンデンサおよびその製造方法 |
US6183618B1 (en) * | 1999-02-02 | 2001-02-06 | Kemet Electronics Corporation | Process for treating impregnated electrolytic capacitor anodes |
US6261434B1 (en) * | 1999-10-19 | 2001-07-17 | Kemet Electronics Corporation | Differential anodization process for electrolytic capacitor anode bodies |
JP2002060803A (ja) * | 2000-08-10 | 2002-02-28 | Showa Kyabotto Super Metal Kk | 電解コンデンサ用タンタル焼結体の製造方法 |
-
2010
- 2010-07-29 JP JP2011524663A patent/JPWO2011013375A1/ja active Pending
- 2010-07-29 CN CN2010800335537A patent/CN102473528B/zh not_active Expired - Fee Related
- 2010-07-29 WO PCT/JP2010/004805 patent/WO2011013375A1/ja active Application Filing
- 2010-07-29 EP EP10804126.0A patent/EP2461337B1/en not_active Not-in-force
- 2010-07-29 US US13/387,859 patent/US8512423B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07220982A (ja) | 1994-01-31 | 1995-08-18 | Elna Co Ltd | 固体電解コンデンサの製造方法 |
JP2002198266A (ja) | 2000-12-27 | 2002-07-12 | Sanyo Electric Co Ltd | 電解コンデンサの製造方法 |
JP2002246273A (ja) * | 2001-02-14 | 2002-08-30 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサの製造方法 |
WO2004068517A1 (ja) * | 2003-01-31 | 2004-08-12 | Showa Denko K.K. | 固体電解コンデンサの製造方法 |
JP2005057057A (ja) | 2003-08-05 | 2005-03-03 | Sanyo Electric Co Ltd | ニオブ固体電解コンデンサの製造方法 |
JP2005325830A (ja) * | 2004-05-12 | 2005-11-24 | Hideo Okamoto | 排熱エネルギー交換装置 |
JP2005325380A (ja) | 2004-05-12 | 2005-11-24 | Companhia Brasileira De Metalurgia & Mineracao | 電解コンデンサ用ニオブの陽極酸化方法および電解コンデンサ |
WO2007020969A1 (ja) | 2005-08-18 | 2007-02-22 | Showa Denko K. K. | 弁作用金属材料の化成処理方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2461337A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150340158A1 (en) * | 2012-06-22 | 2015-11-26 | Showa Denko K.K. | Method for producing capacitor |
US9607770B2 (en) * | 2012-06-22 | 2017-03-28 | Show A Denko K.K. | Method for producing capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011013375A1 (ja) | 2013-01-07 |
US20120137482A1 (en) | 2012-06-07 |
EP2461337A4 (en) | 2016-03-23 |
CN102473528A (zh) | 2012-05-23 |
EP2461337A1 (en) | 2012-06-06 |
CN102473528B (zh) | 2013-10-09 |
EP2461337B1 (en) | 2017-04-05 |
US8512423B2 (en) | 2013-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4983744B2 (ja) | 固体電解コンデンサの製造方法 | |
US8915974B2 (en) | Method for manufacturing capacitor element | |
WO2014034201A1 (ja) | 固体電解コンデンサの製造方法および固体電解コンデンサ | |
WO2013186970A1 (ja) | コンデンサ素子およびその製造方法 | |
US8513123B2 (en) | Method of manufacturing solid electrolytic capacitor | |
EP2461337B1 (en) | Manufacturing method for solid electrolytic capacitor | |
JP3711964B2 (ja) | 固体電解コンデンサの製造方法 | |
JP5502562B2 (ja) | 固体電解コンデンサの製造方法 | |
WO2014091647A1 (ja) | カーボンペーストおよび固体電解コンデンサ素子 | |
US8257449B2 (en) | Method for manufacturing niobium solid electrolytic capacitor | |
JPH11150041A (ja) | 固体電解コンデンサの製造方法 | |
WO2014091648A1 (ja) | 固体電解コンデンサ素子の製造方法 | |
JP2007173454A (ja) | 固体電解コンデンサ | |
JP4891140B2 (ja) | 固体電解コンデンサの製造方法 | |
JP4863509B2 (ja) | 固体電解コンデンサの製造方法 | |
EP2866237A1 (en) | Capacitor element | |
JP4401195B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
JP5473111B2 (ja) | 固体電解コンデンサの製造方法 | |
JP4931730B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
JP5496708B2 (ja) | 固体電解コンデンサの製造方法 | |
JP3750476B2 (ja) | 固体電解コンデンサの製造方法 | |
JP2000297142A (ja) | 固体電解質形成用重合液と製造方法、およびこれらを用いた固体電解コンデンサの製造方法 | |
JP2006210837A (ja) | 固体電解コンデンサおよびその製造方法。 | |
JP2000040642A (ja) | 固体電解コンデンサの製造方法 | |
JP2008226971A (ja) | 固体電解コンデンサの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080033553.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10804126 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011524663 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010804126 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010804126 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13387859 Country of ref document: US |