TW477026B - Trench structure substantially filled with high-conductivity material - Google Patents

Trench structure substantially filled with high-conductivity material Download PDF

Info

Publication number
TW477026B
TW477026B TW089112872A TW89112872A TW477026B TW 477026 B TW477026 B TW 477026B TW 089112872 A TW089112872 A TW 089112872A TW 89112872 A TW89112872 A TW 89112872A TW 477026 B TW477026 B TW 477026B
Authority
TW
Taiwan
Prior art keywords
trench
layer
patent application
scope
item
Prior art date
Application number
TW089112872A
Other languages
English (en)
Inventor
Brian S Mo
Original Assignee
Fairchild Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor filed Critical Fairchild Semiconductor
Application granted granted Critical
Publication of TW477026B publication Critical patent/TW477026B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition

Description

10 15 20 A7 B7 五、發明說明(1 ) 本發明之背景 θ X月大紅上係、有關於半導體元件及製辛呈,以及特別 9 、、 如溝木金屬氧化物半導體場效電晶體(MOSFETs )的溝渠結構及它們的製造之方法。 5 一第圖係一 11通道溝渠M0SFET之一部份的簡單剖面圖 。y溝渠10是鋪設有例如二氧化矽的一電氣絕緣材料12 、田作閘極介電材質。它接著填滿例如多晶矽的一傳導 A材料14以提供此電晶體閘極端。溝渠延伸進入能被電 乱連接至凡件之基體的一 n型>及極區域16。如圖所示,一 P i井或主體區域15係形成於基體之上,及η型源極區域 18係形成在溝渠1()之任—側。因此廳電晶體之主動區 域係形成鄰近閘極14與源極18與沒極16之間的通道區域 20 〇 溝木電日日體通常用於電力管理(p〇wer_handiing)應用 。例如電源供應管理電路、硬碟驅動電路、等等。同供一邏 輯里M0SFET用的2-5V比較時,溝渠電晶艘能在12一 100V下 操作與溝渠之深度成正比的-溝渠電晶艘之閘極係被製成 ^寬以改善溝渠電晶趙之電流輸送(wt-handl ing) 各里。顯不第1圖中的溝渠電晶體之截面係通常稱為一晶胞 為匕L 3會被重複橫越晶粒的元件之一部份。例如在功 率MOSFETs的溝渠係、被佈局於—如第2圊中形成_封閉的晶 胞架構的網格囷案、或一如第3圖的中形成一開放晶胞架構 的帶狀圖案、或例如一六角圖案之類的其他型式之圖案❹隨 著B曰粒之基艘作為供這些晶胞用的共同汲極# ,所有源極端 I__ _ 第4頁 本紙張尺度適用中國國家標準(⑽^^仏x 297 % -in —---訂 ------I >^AWi . (請先M讀背面之注意事項再填寫本頁) 477026 A7 五、發明說明(2 ) _ 被連接在一起及所有的閘極端被連接在—起以形成渠 M0SFET 。 5
10 15
經 濟 部 智― 慧 財- 產 局 員 工 消 費 合 作 社 印 製 20 針對許多應用而言,溝渠M〇SFET的一主要工作特性是 它的切換速度(switchlng寧⑷。為了使溝渠卿£丁 ^ 切換速度制最大,最^使它的極材料之電阻為最小 。當供大型功率麵ETs的晶粒尺寸與溝渠之長度增加時 ,在閘極電荷被分佈越過溝渠的長度的速度變成一利害關 係。為了降低大型溝渠M〇SFETs用的閘極電阻,溝渠一般 被分成較短的部分,與閘極金屬接觸點係佈設橫越晶粒之 表面。第4圖係顯示供開放晶胞型之一大型溝渠功率m〇sfet 用的閘極與源極接線的一頂視圖。一般由金屬(例如··鋁) 製成的閘極包括供安裝接合線4〇2用的接合墊區4〇〇,及 以平行橫越此晶粒方式延伸的閘極匯流排4〇4。閘極匯流 排404分配閘極偏壓予溝渠4〇6,它們中僅小部份為了說 明的目的而被顯示。因此,不是依賴於各溝渠内一般為多 晶矽的閘極材料來傳送閘極偏壓,而是金屬匯流排4〇4確 保閘極電荷之較快與更均勻分布至橫越晶粒的遠端溝渠。 所以,閘極匯流排404提供從閘極接合墊402至橫越晶粒 的主動閘極間的一低電阻路徑,以改善M0SFEt之切換速度 〇 無論如何,由橫越晶粒的閘極電極之匯流所引起的改 善切換速度传到在源極電極上增加電阻之代價。這是因為 不疋具有覆蓋晶粒之頂面的單一鄰近金屬層,而是源極金 屬層必須被分成多個區塊以·允許閘極匯流。此較高的源極 第5頁 請 先 閱 讀 背 面 之 注 意 事 項 再 填 寫 本 頁 k 訂 參 A7 五、發明說明(3 ) 電阻不利地影響M0SFET的汲極至源極導通電阻R[ 一功率MOSFETs用的速度臨界值工作特性。 因此希望製造例如應用於溝渠M〇SFETs的一充填低電 阻材料之溝渠,使較低閘極電阻與較快切換速度能被獲得 5而不會不利地影響Rd_。 本發明之摘要 /本發明提供一種溝渠結構,它是實質充填耐熔金屬以 形成如有低電阻與快速切換速度的M0SFET閘極端。以根據 本發明的溝渠製程製造的一溝渠電晶趙顯示為了當保持低 開極漏電流下的較快切換的一較低閘極電阻。低電阻之閘 極材料消除對橫越晶粒之頂面之閘極接觸金屬之匯流的需 求。匕依序考慮到供一單一矩形、鄰近源極接觸層的最佳 ^Dson 及另 10 、Ds〇n (請先閱讀背面之注意事項再填寫本頁) 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 在一特定執行過程中,在溝渠與閘極介電層之形成後 ,例如多晶矽之一緩衝層被形成以覆蓋閘極介電層。例如 嫣的-高㈣金屬接著例如在—低壓化學氣相沉積(LpcVD )製程内使用六氟化鎢來被積設覆蓋緩衝多晶矽層。緩衝 多晶矽層減輕於閘極介電層的應力及減少閘極漏電。作為 閘極材料的金屬之使用減少對緩衝多晶矽的摻雜要求。這 導致對η通道溝渠MOSFETs而言較低閘極漏電流,及能消 除與高能注入相關的問題例如在p通道溝渠M〇SFETs内的 硼穿透。 所以,在一實施例中,本發明提供一溝渠結構,包括 溝七係形成於一基體中、··一介電材料至少舖設於該溝渠 _ 第ό頁 本紙張尺度適用中國國家標準(CNS)A4規格( χ 297公爱)- 15 20 - ----—丨訂 --- 争 /υζο Α7 碰濟部智慧脉產局員工消費合作社印製 五、發明說明( 之一壁面上以花;士、 . 夕 電層、一緩衝層被形成於介電居 並具有一第一值道 曰丄 人· 一 ¥性、及一高傳導性層被形成鄰近並電氣 第此高傳導性層具A於第―傳導性的 5丰導細實施例中,本發明提供—溝渠金屬氧化物 半¥體场效電晶體(M0SFET)係包括一溝渠被形成於_石夕 土體中 閘極氧化層係鋪設於此溝渠之側壁與底面、一 多晶石夕緩衝層鋪設於閘極氧化層、及一金屬層充填 中心部分。 、π < 在另實施例中,本發明提供一種用以製造在一基體 中的「溝渠結構之方法,本方法包括以下步驟:(a)形成 溝木於此基體内;(b)形成一介電層以鋪設此溝渠;(〇 )於此;丨I層上开》成一緩衝材料之層以充填此溝渠之一第 一部份,緩衝材料具有一第一導電性;及(d)以具一第二 導電性的-高傳導性材料充填此溝渠的一第二部分,此第 一導電性係大於第一導電性。 以下的詳細說明及附圖提供對本發明之耐熔金屬閘極 溝渠MOSFET之特性與優點之更佳瞭解。 圖示之詳細說明 10 15 20 第1圖顯示一典型溝渠電晶體之剖視圖; 第2圖係一封閉晶胞閘極架構之簡單立體囷,·第3圖係一開放晶胞閘極架構之簡單立體圓;第4圖係一溝渠MOSFET晶粒的一頂視圖,此圖顯示 於此晶粒表面上的閘極與源極匯流排; 第7頁 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱一 Μ--------^---------線 (請先閱讀背面之注意事項再填寫本頁) 477026 經濟部智慧財產局員工消費合作社印製 A7 五、發明說明(5 ) . 第5圖係根據本發明之一實施例的一溝渠電晶體之一 部份的一簡單剖視圖; 第6A-6D圖繪示-基體之一部份的剖視圖,此基體根 據本發明之-實施例來被製造以產生一金屬問極溝渠電晶 5 體; 第7圖係根據本發明的一製程之一簡單流程圖;及 第8圖係顯示當由本發明致能的問極與源極匯流排的 一大型功率MOSFET晶.粒之頂視圖。 特定實施例之說明 本發明提供一溝渠結構應用於例如雙擴散功率電晶體 (DMOS )以表現優良操作特性,更明確地說,快速問極 切換及較低RDS()n。這些優點藉由以一閘極材料製作的一溝 渠結構來獲得,此溝渠結構係實質由例如耐熔金屬的高傳 導ϋ材料構成。雖然根據本發明的溝渠結構在溝渠 15 MOSFETs之範圍内被描述,應理解的是類似優點能在如溝 ‘電谷之類的其他半導體結構中被獲得。 參照第5圖,係顯示根據本發明之一實施例的有一低 電阻閘極的一示範的n通道溝渠電晶體5〇〇的局部簡單剖 視圖。各溝渠鋪設有一例如二氧化矽(閘極氧化層)5〇2 20的介電材料之薄層,及然後以一緩衝層504及一高傳導性 中心部分506充填。緩衝層504最好由摻雜多晶矽所構成 ,及南傳導性中心部分506最好由耐熔金屬例如鎢所構成 。假如溝渠遭受一連續的溫度週期,一多晶矽化物金屬鎢 (WSix)之層512將被形成於多晶石夕·鶴介面上。當明瞭的 第8頁 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 x 297公釐) --------^---- (請先閱讀背面之注意事項再填寫本頁) ΜΎ. 477026 經濟部i曰慧財產局員工消費合作社印製 A7 五、發明說明(6 ) - 是此措詞”多晶矽化金屬,,在此是指像多晶矽化金屬—樣的 金屬矽化物。一介電層508覆蓋閘極區域與使閘極與源極 :金屬化層510電氣隔離。閘極係電氣耦合至一閘極匯流排 或端未區512。閘極之高傳導性中心部分提供從閘極匯流 5 排至主動閘極區間的一低電阻路徑。 在高傳導性層506與閘極氧化層5〇2間的一直接介面 可能引起在閘極氧化物的應力而降低閘極氧化層之崩潰強 度,及可能增加閘極漏電流iGss。緩衝層5〇4作為保持閘 極氧化層502之介電強度與促進閘極氧化層5〇2與高傳導 10性閘極材料506間的粘著,即降低剝離。依目前情況之技 術,緩衝層504能具有一約2,〇〇〇至3,〇〇〇人之厚度。 製造根據本發明的一示範的η通道金屬閘極溝渠 MOSFET的一較佳方法將連同顯示在第6A_6D圖的剖視圖 及第7圖之製造流程圖在下文中詳述。當瞭解的是一 〇通 15道私日日體之使用僅供舉例說明之目的,及相同優點亦能在 根據本發明之主要技術製造的一 ρ通道M〇SFET中獲得。 參照第6A圖,它係顯示製作至溝渠6〇2之形成的一基體6〇() 之一部份的一示範性剖視圖。這包括形成p井6〇4、重摻 雜主體606、源極區域608、及晶胞端末井61〇之多種步驟 20 。再者,溝渠602已經被形成在基體中,及薄介電層612 鋪設於溝渠。介電層612用作閘極介電,及一般由二氧化 矽所構成,但亦能由其他介電材料例如氮化物或氮氧化合 物所構成。當明瞭的是含有差異井或主體結構之一些已知 溝渠製程中的任一個能被庵用來執行這些或類似步驟以製 第9頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公楚) ^--------^-------- (請先閱讀背面之注意事項再填«本頁) A7 經濟部智慧財產局員工消費合作社印製 五、發明說明(7 ) 備成迄今的基體。更加詳細描述這些步驟的一較加溝渠 MOSFET製程之一範例能在共同指定專利申請號碼〇8/97〇 ,211,稱為’’場效電晶體及它的製造方法,,,其整體藉由參 照而被合併。 5 參照第6B圖,在閘極介電層612的形成後,一多晶 矽(polysilicon)之層614積設於包括以一薄氧化區域618 與基體絕緣之端末區616之基體上。當明瞭的是在此使用 的名詞”多晶矽”包括多晶矽與非晶矽。多晶矽層614使用 習用摻雜製程來摻雜,例如供η型多晶石夕(η通道電晶體 )用的二氯氧化碟(POCI3)、分別對ρ通道或η通道電晶 體植入ρ型(例如:硼)或η型(例如··含磷物)、或η或 Ρ型摻質之内部摻雜。各種尺寸之示範大小能是例如溝渠 之開始寬度約1 // m、閘極氧化層厚度約5〇〇人、及多晶石夕 厚度約3000A。 其次,如在第6C圖中顯示,一高傳導性材料層例如金 屬620被積設於多晶矽614上。高傳導性材料之層62〇可 能是任何種類之耐熔金屬例如鎢、鈦、鉑、銅或諸如此類 。鎢在此為了說明用途而被使用。金屬形成步驟最好使用 以含有氟化物的化合物例如六氟化鎢(WFe)作為一初級分 子之一低壓化學氣相沉積(LPCVD)製程來執行。其他製程 例如物理氣相沉積(濺鍍)及燒結亦能被使用,使其在一 非常相似的沉積中被產生,與可靠地以無空ρ宋方式充填於 此溝渠,但是LPCVD呈現低黏滯常數。再者,應相信自鹿 用在鎢生成中的初級分子之反應的氟移動穿過多晶石夕614 第10頁 K紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 10 15 20 -----------會 (請先閱讀背面之注意事項再填寫本頁) tr---------ΜΨ 477026 A7 五、發明說明(s) 與隔離於整體石夕和閘極氧化層612間的介面,以 化層之表面的S1-F鍵。此S1-F鍵—般較傳統的 一、更為穩固與因應力而引起的漏電流更不可能,及產 生更穩定與堅固氟化的閘極介電層。此敗仰沉積製程 5能在例如約0·1至0.5T〇rr之間被執行。 、 第6D圖係在乡晶㈣後但錢層歸之前的基 之-簡單截面圖。一光阻層622已經被構圖以保護 支瓜於端末區域616的閘極鎮62〇與多晶石夕跑。由場中清 除嫣與多晶石夕與是否能由溝渠上移除某些的多晶石夕與鎮之 蝕刻步驟可能由基體之表面產生一閘極之凹陷犯4。溝渠 電晶體之各種晶胞之閘極以習用方法電氣耗合至閘極匯流 排與閘極墊(圖中未示)。 在光阻剝除後的最後製程包括纟後面是接觸罩幕與蝕 刻的介電沉積,與後面是金屬罩慕與蝕刻的金屬化之習用 =驟。最後,基體被鈍化而後面是墊罩幕與蝕刻及一最後 合金步驟。所以,能在例如約4〇(rc上發生的合金步驟亦 唯-暴露在溝渠内的多晶矽/鎢介面於一溫度週期中的步驟 。此溫度加工致使在多晶矽/鎢介面上的一多晶矽化鎢( WSix)之薄層626形成。因此在合金步驟後的產生的溝渠 結構包括閘極氧化層612、多晶矽緩衝層614、多晶矽北金 屬626與鎢620。 第7圖係針對在一溝渠M0SFET製程之範圍内根據本 發明之一示範性實施例之一金屬閘極溝渠之形成7〇〇的製 程模型之一簡單流程圖。在此範例中顯示,此溝渠製程模 第11頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 10 訂 15 20 線 477026 A7 ---------- 五、發明說明(9 ) --- 型700盡可能安排於此流程中的後面以避免暴露此溝準於 高溫週期中。所以,根據此實施例,形成晶胞 卞、 (請先閲讀背面之注意事項再填¾本頁) .定義主動區(72)、形成一井⑺)與重摻雜主體⑺): 與源極區域(75)之步驟的發生優先於溝渠形成。 5發明的溝渠製程模型700包括一在基體形成溝渠之步驟( 步驟702)而後面是形成在溝渠之㈣與底面上的閑極介 電層(例如Si〇2)(步驟704)。然後,一多晶石夕層形成在 溝渠中(步驟706)而覆蓋於閘極介電層上。此多晶石夕能 使用多種不同的已知摻雜裝置中的一種來推雜。铁後最^ H)使用- LPCVD製程來使此溝渠以例如鎢的高傳導性材料所 充填(步驟708 )。一罩幕步驟在一蝕刻步驟(71〇)過程 中保護金屬層與多晶矽之選定部分,此蝕刻步驟由除了由 蝕刻罩幕保護外的基體之場移除金屬與多晶矽。其後步驟 一般包括接觸區(76)之定義、金屬化與構圖(77)、保護 15層(78 )與合金(79)及根據已知方法以完成溝渠電晶體 之製造。 經濟部智慧財產局員工消費合作社印製 根據本發明之金屬閘極溝渠的製程(7〇〇 )能被視為 一獨立製程模型,其能在各種不同溝渠M〇SFET製程之製 作流程内的不同點上被執行。舉例來說,前述示範性實施 20例執行溝渠製程模型最好在最後雜質接合形成後(例如步 驟75後)以避免其後的高溫週期。這使因溫度加工在多晶 矽-鎢的介面上形成的多晶矽化金屬之數量最小化,及避免 能促進降低漏電流的多晶石夕緩衝層之不希望薄。最小的多 晶矽化金屬形成亦使閘極傳·導性增加。根據本發明之不同 第12頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 五、發明說明(10) :知例#娜如何,溝渠製程模型700亦能在源極與主體 區域之形成前(例如步驟72與73之間)或在根據此應用 的製造流程中的任何其他適當的點上執行。 10 有由本發明之金屬閘極溝渠脏T所獲得的數個優 5點。隨著高傳導性材料如用作形成閘極的金屬,而不需考 慮成為-限制的閘極電阻,溝渠能延伸長距離。所以,甚 至對應用於大型晶粒上的較大型溝渠而言,根據 本lx明的金屬閘極溝渠M0SFETs製程消除對橫越晶粒的問 金屬層之匯机與溝渠之隔離的需求,而不需犧牲問極切 ^速度。第8圖係根據本發明之—實施例的—溝渠電晶體 晶粒800之一簡單頂視圖。溝渠801延伸橫越晶粒綱之 整個長度並接觸一由閘極墊8〇4分配閘極電荷至主動閘極 ㈣的周圍閘極匯流排8G2e所以,源極接觸層_能是 15 一金屬之單—鄰接矩形’其相較於以内部閘極匯流排之習 用溝朱電晶體晶粒提供更降低的尺以⑽。 20 本發月之金屬開極溝渠製程之另一優點係顯著改善間 極氧化層的可靠性與完整性。這是因包括由本發明使多晶 矽摻雜程度之降低的一組合之因素所引起。閉極金屬之較 南傳導性使多晶石夕摻雜漠度降低而不需考慮對閉極切換速 度的不利影響。舉例來說,與嫣的〇 5// Ω,及多晶石夕化 金屬(WSi2)的50# Ω-cm比較,高摻雜多晶石夕之電阻一 般約500" Q_cm。所以’多晶矽層不需如同在習用多晶矽 閘溝渠M〇SFETs中的高摻雜。在習^通道溝渠刪㈣ 之情況中,舉例來說,它一般選定的p〇CL3高摻雜多晶矽 第13頁
/UZD 經濟部智慧財產局員工消費合作社印製 A7 五、發明說明(11 ) 是對增加閘極漏電流IGSS的主要貢獻者的一個。代替POCL; ’在一實施例中,本發明由植入例如在如l3K1〇ls之降低濃 上的含磷物來摻雜緩衝多晶矽層。這直接引起閘極漏電 /;,L Igss的降低。再者,在習用P通道溝渠MOSFETs之情況 5中植入之另一不希望有側壁影響例如是一普通稱為硼滲透 的現象。硼滲透發生於植進的硼滲透過閘極氧化層與進入 通道區域時而有害地影響MOSFET臨界電壓。本發明使硼 摻雜浪度降低至如”丨⑴8,所以降低硼滲透影響。在p通 道電晶體之情況中降低的硼滲透,與關於n通道電晶體之 降低閘極漏電流係與在Si-Si〇js (如前所述)上的較強 Si-F鍵結相同以提供一具有顯著改善的閘極氧化層的可靠 性與完整性之更堅固溝渠MOSFET。 雖然上述係本發明之特定實施例之一完整說明,多種 變化、改變及替換能被應用。舉例來說,雖然特定實施例 15之低電阻溝渠製程模型已經在一溝渠MOSFET製程之範圍 内描述,相同或一類似製程模型能應用於其他製程中例如 那些形成溝渠電容或其他類似結構。雖然鎢亦作為一低電 阻閘極金屬之一範例,例如鈦金屬矽化物或鉑金屬矽化物 的其他材料或其他耐熔金屬能用作形成低電阻閘極。同樣 Z〇地,雖然多晶矽作為一閘極緩衝材料之一範例,其他材料 當用作與閘極介電材料接觸的一閘極材料時亦能提供適合 應力消除。再者,特定實施例已經在僅針對描述用途的石夕 晶圓之範圍内被描述,及其他型式之基體例如一在絕緣層 上有半導體的基鱧、一鍺化矽基體、或一碳化矽基體例如 第14頁 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 x 297公釐) — — — — — — — — — — — — — — — I— ·1111111· (請先閱讀背面之注意事項再填寫本頁) 477026 A7 B7 五、發明說明( 12 5 能被一起使用。因此,本發明之範疇不應被限制於本實施 例中描述,及應由接下來申請專利範圍所定義的取代。 【元件標號對照表】 500 η通道溝渠電晶體 502閘極氧化層 504緩衝層 506高傳導性中心部分/高傳導性層/高傳導性閘極材料 10 15 508介電層 512、616端末區 602、801 溝渠 606重摻雜主體 610晶胞端末井 614多晶矽層 620金屬/閘極鎢 624凹陷 800溝渠電晶體晶粒 804閘極墊 510源極金屬化層 600基體 604 ρ 井 608源極區域 612介電層/閘極氧化層 618薄氧化區域 622光阻 626多晶石夕化嫣之薄層 802周圍閘極匯流排 806源極接觸層 — — — — — — — — — — —— — ·1111111 ·1111111· (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 第15頁

Claims (1)

  1. 477026 双面影叫巧^科曰 修正
    六、申請專利範圍 第089112872號專利申請案申請專利範圍修正本 修正日期:90年12月 1 · 一種溝渠結構,包含: 一溝渠’係被形成於一基體中; 一介電材料,至少鋪設於該溝渠之一壁面上以形成一 介電層; 一緩衝層,係被形成於該介電層上,該緩衝層具有一 第一傳導性;及 一高傳導性層,係形成於鄰近並電氣耦合至該緩衝 層,該高傳導性層具有一大於該第一傳導性的第二傳導性。 2·如申請專利範圍第丨項所述之溝渠結構,其中該緩 衝層包含多晶石夕。 3·如申請專利範圍第2項所述之溝渠結構,其中在厚 度上’該多晶石夕係至少在2000至3000入。 4·如申請專利範圍第2項所述之溝渠結構,其中該高 傳導性層充填該溝渠之一中心部分與包含金屬。 "门 5.如申請專利範圍第4項所述之溝渠結構,其中該高 傳導性層包含-些耐溶金屬中的任何一個,該等耐炼金^ 包括鑄、鈦、鉑或任何其之組合物。 6·如申請專利範圍第4項所述之溝渠結構,其中該溝 渠係被形成於一矽基體中與該介電材料包含二氧化矽。 7.如申請專利範圍第6項所述之溝渠結構,其中該高 傳導性層包含使用低壓化學氣相沉積製程所積設的鎢,1 其中該溝渠結構更包含一於該緩衝層與該高傳導性層之間 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -·· •訂. ♦ 477026 A8 B8 C8 D8 六、申請專利範圍 的多晶梦化金屬之層。 8·如申請專利範圍第7項所述之溝渠結構,更包含一 氟化介面係在該介電層與該溝渠之該壁面間。 9· 一種溝渠金屬氧化物半導體場效電晶體 (MOSFET),包含: 一溝渠,係形成於一矽基體中; 一濶極氧化層,係鋪設於該溝渠之侧壁與底面; 一多晶矽緩衝層,係鋪設於該閘極氧化層;及 一金屬層,係充填該溝渠之一中心部分。 10·如申清專利範圍第9項所述之溝渠MOSFET,更包 含一第一傳導性型之源極區域係被形成於該溝渠之任一側 上與第一傳導性型的一主體區域之内側。 U·如申請專利範圍第10項所述之溝渠MOSFET ,其 中該金屬層包含鎢。 12·如申凊專利範圍第11項所述之溝渠MOSFET,其 中該溝渠更包含一多晶矽化金屬之層係夾置於該多晶石夕緩 衝層與該金屬層之間。 13. 如申請專利範圍第12項所述之溝渠m〇sfet,其 中該鶬係由使用六氟化物作為一初級分子的低壓化學氣相 沉積製程所形成。 14. 一種溝渠電晶體,包含: 一溝渠,係延伸入一基體的一整體矽部份; 一閘極氧化層,係鋪設於該溝渠壁面與底面;及 一氟化介面區域,係於該基體之整體矽部分與該閑極 (請先閲讀背面之注意事項再填寫本頁) 訂— :線丨
    477026 A8 B8 C8 D8 、申請專利範圍 氧化層之間。 15·如申請專利範圍第14項所述之溝渠電晶體,其中 該溝渠更包含: 一缓衝多晶矽層,係鋪設於該閘極氧化層;及 一金屬層,係充填該溝渠之一中心部分。 16·如申請專利範圍第15項所述之溝渠電晶體,其中 該金屬層包含鎢,及其中一多晶矽化金屬之層係夹置於該 金屬層與該缓衝多晶石夕層之間。 17· —種供製造一溝渠結構於一基體中用的方法,該方 法包含以下之步驟: (a)形成一溝渠於該基體中; (b )形成一介電層以鋪設該溝渠; (c)形成一緩衝材料之層於該介電層上以充填該溝準 之一第一部份,該緩衝材料具有一第一導電性;及 (d )以具有一苐二導電性之南傳導性材料充填該溝 朱之一第二部分’該第二導電性係大於該第一導電性。 18.如申請專利範圍第17項所述之方法,其中該形成 一緩衝材料之層的步驟包含形成一多晶矽之層。 19·如申請專利範圍第18項所述之方法,其中該形成 夕S曰梦之層的步驟包含一植入該多晶碎之層的步驟。 20·如申請專利範圍第18項所述之方法,其中該以一 南傳導性材料充填該溝渠之一第二部分的步驟包含形成一 如嫣的耐熔金屬之層。 2ί·如申請專利範圍第20項所述之方法,其中該形成 本紙張尺度適用中國-家標準(CNS) Α4規格(21〇X297公爱)
    -3- 477026 A8 B8 C8 D8 •申請專利範圍 一耐熔金屬之層的步驟包含一低壓化學氣相沉積 (LPCVD)製程。 22·如申請專利範圍第21項所述之方法 化物初級分子係應用於該LPCVD製程中。 23·如申請專利範圍第21項所述之方法 化物初級分子包含六氟化鎢。 24·如申請專利範圍第2〇項所述之方法 結構係被形成為一溝渠電晶體之局部,及其中該形成溝渠 之步驟發生於含有摻質接合之形成的步驟後。 25. 如申請專利範圍第24項所述之方法,更包含一溝 渠結構被形成後的合金步驟,藉以多晶矽化金屬係形成在 該金屬層與該多晶矽緩衝層之間的一介面上。 26. —種供製造一溝渠電晶體用的方法,該方法包含: (a)形成一溝渠於一基體之一整體矽區域中; (b )成長一閘極氧化層以鋪設該溝渠; (c )於該閘極氧化層上積設一多晶矽之相似層以充填 該溝渠之一第一部份;及 (d)以於一低壓化學氣相沉積(lpcVD)製程中形 成的一金屬層來實質充填該溝渠之一剩餘部分。 27·如申請專利範圍第26項所述之方法,其中該充填 之步驟包含由使用六氟化鎢作為一初級分子的該LPCVD 製程來積設鎢。 其中一含氟 其中該含氟 其中該溝渠 (請先閲讀背面之注意事項再填寫本頁) i裝丨 •訂丨 :線, 本紙張尺度適用中國-家標準(CNS) A4規格(210 X 297公爱) -4-
TW089112872A 1999-06-30 2000-09-13 Trench structure substantially filled with high-conductivity material TW477026B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/343,330 US6274905B1 (en) 1999-06-30 1999-06-30 Trench structure substantially filled with high-conductivity material

Publications (1)

Publication Number Publication Date
TW477026B true TW477026B (en) 2002-02-21

Family

ID=23345670

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089112872A TW477026B (en) 1999-06-30 2000-09-13 Trench structure substantially filled with high-conductivity material

Country Status (5)

Country Link
US (2) US6274905B1 (zh)
JP (1) JP2001044435A (zh)
DE (1) DE10031626B4 (zh)
FR (1) FR2799304B1 (zh)
TW (1) TW477026B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423440B (zh) * 2007-01-30 2014-01-11 Alpha & Omega Semiconductor 用於降低極高密度金屬氧化物半導體場效應電晶體的閘極阻抗的採用不同閘極材料和功函數的分裂柵
CN104779294A (zh) * 2015-04-17 2015-07-15 上海华虹宏力半导体制造有限公司 沟槽型功率mos晶体管及其制造方法和集成电路
TWI548086B (zh) * 2015-01-21 2016-09-01 鉅晶電子股份有限公司 溝渠式橫向擴散金屬氧化半導體元件及其製造方法

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257344A (ja) * 2000-03-10 2001-09-21 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP3773755B2 (ja) * 2000-06-02 2006-05-10 セイコーインスツル株式会社 縦形mosトランジスタ及びその製造方法
US6635534B2 (en) * 2000-06-05 2003-10-21 Fairchild Semiconductor Corporation Method of manufacturing a trench MOSFET using selective growth epitaxy
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US6700158B1 (en) * 2000-08-18 2004-03-02 Fairchild Semiconductor Corporation Trench corner protection for trench MOSFET
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US6893923B2 (en) * 2001-03-21 2005-05-17 International Rectifier Corporation Reduced mask count process for manufacture of mosgated device
GB0122122D0 (en) * 2001-09-13 2001-10-31 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and their manufacture
US6674124B2 (en) * 2001-11-15 2004-01-06 General Semiconductor, Inc. Trench MOSFET having low gate charge
WO2003085722A2 (en) * 2002-03-29 2003-10-16 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US7122884B2 (en) * 2002-04-16 2006-10-17 Fairchild Semiconductor Corporation Robust leaded molded packages and methods for forming the same
US7102167B1 (en) * 2002-04-29 2006-09-05 Micrel, Inc. Method and system for providing a CMOS output stage utilizing a buried power buss
JP2003324197A (ja) * 2002-04-30 2003-11-14 Rohm Co Ltd 半導体装置およびその製造方法
US7084423B2 (en) 2002-08-12 2006-08-01 Acorn Technologies, Inc. Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US6833556B2 (en) 2002-08-12 2004-12-21 Acorn Technologies, Inc. Insulated gate field effect transistor having passivated schottky barriers to the channel
JP4158453B2 (ja) * 2002-08-22 2008-10-01 株式会社デンソー 半導体装置及びその製造方法
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6943434B2 (en) * 2002-10-03 2005-09-13 Fairchild Semiconductor Corporation Method for maintaining solder thickness in flipchip attach packaging processes
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
KR100452947B1 (ko) * 2002-12-07 2004-10-14 한국전자통신연구원 반도체 소자의 제조 방법
US6838741B2 (en) * 2002-12-10 2005-01-04 General Electtric Company Avalanche photodiode for use in harsh environments
US7087491B1 (en) * 2003-02-28 2006-08-08 Micrel, Inc. Method and system for vertical DMOS with slots
US8227860B2 (en) * 2003-02-28 2012-07-24 Micrel, Inc. System for vertical DMOS with slots
US6861701B2 (en) * 2003-03-05 2005-03-01 Advanced Analogic Technologies, Inc. Trench power MOSFET with planarized gate bus
US6958275B2 (en) * 2003-03-11 2005-10-25 Integrated Discrete Devices, Llc MOSFET power transistors and methods
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP4627974B2 (ja) * 2003-08-01 2011-02-09 セイコーインスツル株式会社 半導体装置の製造方法
US6987305B2 (en) * 2003-08-04 2006-01-17 International Rectifier Corporation Integrated FET and schottky device
JP4917246B2 (ja) 2003-11-17 2012-04-18 ローム株式会社 半導体装置およびその製造方法
KR100994719B1 (ko) 2003-11-28 2010-11-16 페어차일드코리아반도체 주식회사 슈퍼정션 반도체장치
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
US20050164469A1 (en) * 2004-01-28 2005-07-28 Infineon Technologies North America Corp. Method for N+ doping of amorphous silicon and polysilicon electrodes in deep trenches
KR100593734B1 (ko) * 2004-03-05 2006-06-28 삼성전자주식회사 채널부 홀 내 채널 영역을 갖는 반도체 장치의트랜지스터들 및 그 제조 방법들
DE102004012855B4 (de) * 2004-03-16 2006-02-02 Infineon Technologies Ag Herstellungsverfahren für einen Grabenkondensator mit Isolationskragen
US7582931B2 (en) * 2004-06-04 2009-09-01 Samsung Electronics Co., Ltd. Recessed gate electrodes having covered layer interfaces and methods of forming the same
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
TWI431771B (zh) * 2004-10-07 2014-03-21 Fairchild Semiconductor 帶狀隙經設計之金屬氧化物半導體(mos)閘控功率電晶體
DE112006000832B4 (de) 2005-04-06 2018-09-27 Fairchild Semiconductor Corporation Trenched-Gate-Feldeffekttransistoren und Verfahren zum Bilden derselben
US7120046B1 (en) 2005-05-13 2006-10-10 Micron Technology, Inc. Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
US7371627B1 (en) 2005-05-13 2008-05-13 Micron Technology, Inc. Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
DE112006001516T5 (de) 2005-06-10 2008-04-17 Fairchild Semiconductor Corp. Feldeffekttransistor mit Ladungsgleichgewicht
US7888721B2 (en) 2005-07-06 2011-02-15 Micron Technology, Inc. Surround gate access transistors with grown ultra-thin bodies
US7768051B2 (en) 2005-07-25 2010-08-03 Micron Technology, Inc. DRAM including a vertical surround gate transistor
US7943990B2 (en) * 2005-08-17 2011-05-17 International Rectifier Corporation Power semiconductor device with interconnected gate trenches
US7696567B2 (en) 2005-08-31 2010-04-13 Micron Technology, Inc Semiconductor memory device
US7416943B2 (en) * 2005-09-01 2008-08-26 Micron Technology, Inc. Peripheral gate stacks and recessed array gates
US7687342B2 (en) 2005-09-01 2010-03-30 Micron Technology, Inc. Method of manufacturing a memory device
US7557032B2 (en) 2005-09-01 2009-07-07 Micron Technology, Inc. Silicided recessed silicon
US7867845B2 (en) * 2005-09-01 2011-01-11 Micron Technology, Inc. Transistor gate forming methods and transistor structures
JP4501820B2 (ja) * 2005-09-07 2010-07-14 株式会社デンソー 半導体装置の製造方法
US7851349B2 (en) * 2005-09-26 2010-12-14 Infineon Technologies Austria Ag Method for producing a connection electrode for two semiconductor zones arranged one above another
US7462550B2 (en) * 2005-10-24 2008-12-09 Semiconductor Components Industries, L.L.C. Method of forming a trench semiconductor device and structure therefor
KR100650626B1 (ko) * 2005-11-15 2006-11-27 삼성전자주식회사 반도체 장치 및 반도체 장치의 제조 방법
US7679146B2 (en) * 2006-05-30 2010-03-16 Semiconductor Components Industries, Llc Semiconductor device having sub-surface trench charge compensation regions
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
US7656024B2 (en) 2006-06-30 2010-02-02 Fairchild Semiconductor Corporation Chip module for complete power train
KR100790267B1 (ko) 2006-07-27 2008-01-02 동부일렉트로닉스 주식회사 반도체 소자의 트랜지스터 및 그 제조방법
US7858471B2 (en) 2006-09-13 2010-12-28 Micron Technology, Inc. Methods of fabricating an access transistor for an integrated circuit device, methods of fabricating periphery transistors and access transistors, and methods of fabricating an access device comprising access transistors in an access circuitry region and peripheral transistors in a peripheral circuitry region spaced from the access circuitry region
US7564099B2 (en) * 2007-03-12 2009-07-21 International Rectifier Corporation Monolithic MOSFET and Schottky diode device
JP5138274B2 (ja) 2007-05-25 2013-02-06 三菱電機株式会社 半導体装置
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
CN101868856B (zh) 2007-09-21 2014-03-12 飞兆半导体公司 用于功率器件的超结结构及制造方法
US8426912B2 (en) * 2007-09-27 2013-04-23 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US7825465B2 (en) * 2007-12-13 2010-11-02 Fairchild Semiconductor Corporation Structure and method for forming field effect transistor with low resistance channel region
US20100013009A1 (en) * 2007-12-14 2010-01-21 James Pan Structure and Method for Forming Trench Gate Transistors with Low Gate Resistance
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7956411B2 (en) * 2008-01-15 2011-06-07 Fairchild Semiconductor Corporation High aspect ratio trench structures with void-free fill material
US7807576B2 (en) * 2008-06-20 2010-10-05 Fairchild Semiconductor Corporation Structure and method for forming a thick bottom dielectric (TBD) for trench-gate devices
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US8174067B2 (en) 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8304829B2 (en) 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8298889B2 (en) * 2008-12-10 2012-10-30 Semiconductor Components Industries, Llc Process of forming an electronic device including a trench and a conductive structure therein
US8664713B2 (en) 2008-12-31 2014-03-04 Stmicroelectronics S.R.L. Integrated power device on a semiconductor substrate having an improved trench gate structure
KR101544509B1 (ko) * 2009-02-03 2015-08-13 삼성전자주식회사 트랜지스터를 갖는 반도체소자의 제조방법
US8227855B2 (en) 2009-02-09 2012-07-24 Fairchild Semiconductor Corporation Semiconductor devices with stable and controlled avalanche characteristics and methods of fabricating the same
US8148749B2 (en) 2009-02-19 2012-04-03 Fairchild Semiconductor Corporation Trench-shielded semiconductor device
CN101826551B (zh) * 2009-03-03 2012-12-05 M-Mos半导体香港有限公司 具有低栅电阻的沟槽型半导体功率器件及其制备方法
US8143125B2 (en) * 2009-03-27 2012-03-27 Fairchild Semiconductor Corporation Structure and method for forming a salicide on the gate electrode of a trench-gate FET
US8049276B2 (en) 2009-06-12 2011-11-01 Fairchild Semiconductor Corporation Reduced process sensitivity of electrode-semiconductor rectifiers
JP5511308B2 (ja) * 2009-10-26 2014-06-04 三菱電機株式会社 半導体装置およびその製造方法
KR101675373B1 (ko) * 2010-03-24 2016-11-11 삼성전자주식회사 반도체 소자 및 그 제조 방법
JP2011243948A (ja) * 2010-04-22 2011-12-01 Elpida Memory Inc 半導体装置及びその製造方法
TWI438901B (zh) * 2010-05-27 2014-05-21 Sinopower Semiconductor Inc 具有低閘極輸入電阻之功率半導體元件及其製作方法
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US20120021577A1 (en) * 2010-07-21 2012-01-26 Purtell Robert J Gate trench conductor fill
TWI406393B (zh) * 2010-08-30 2013-08-21 Sinopower Semiconductor Inc 具有額外電容結構之半導體元件及其製作方法
TWI453831B (zh) 2010-09-09 2014-09-21 台灣捷康綜合有限公司 半導體封裝結構及其製造方法
CN102446914B (zh) * 2010-10-08 2013-09-11 大中积体电路股份有限公司 具有额外电容结构的半导体组件及其制作方法
US8598654B2 (en) 2011-03-16 2013-12-03 Fairchild Semiconductor Corporation MOSFET device with thick trench bottom oxide
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
JP2013004636A (ja) * 2011-06-15 2013-01-07 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
WO2013077954A1 (en) 2011-11-23 2013-05-30 Acorn Technologies, Inc. Improving metal contacts to group iv semiconductors by inserting interfacial atomic monolayers
JP2014007184A (ja) * 2012-06-21 2014-01-16 Ps4 Luxco S A R L 半導体装置及びその製造方法
JP2014038963A (ja) * 2012-08-17 2014-02-27 Rohm Co Ltd 半導体装置
US9601630B2 (en) 2012-09-25 2017-03-21 Stmicroelectronics, Inc. Transistors incorporating metal quantum dots into doped source and drain regions
US9748356B2 (en) 2012-09-25 2017-08-29 Stmicroelectronics, Inc. Threshold adjustment for quantum dot array devices with metal source and drain
US9105713B2 (en) 2012-11-09 2015-08-11 Infineon Technologies Austria Ag Semiconductor device with metal-filled groove in polysilicon gate electrode
US9171738B2 (en) * 2012-12-18 2015-10-27 Infineon Technologies Austria Ag Systems and methods for integrating bootstrap circuit elements in power transistors and other devices
US9589929B2 (en) 2013-03-14 2017-03-07 Vishay-Siliconix Method for fabricating stack die package
US9966330B2 (en) 2013-03-14 2018-05-08 Vishay-Siliconix Stack die package
US9129820B2 (en) * 2013-07-25 2015-09-08 Infineon Technologies Ag Integrated circuit and method of manufacturing an integrated circuit
US10002938B2 (en) 2013-08-20 2018-06-19 Stmicroelectronics, Inc. Atomic layer deposition of selected molecular clusters
US20150118810A1 (en) * 2013-10-24 2015-04-30 Madhur Bobde Buried field ring field effect transistor (buf-fet) integrated with cells implanted with hole supply path
US9773863B2 (en) * 2014-05-14 2017-09-26 Infineon Technologies Austria Ag VDMOS having a non-depletable extension zone formed between an active area and side surface of semiconductor body
US10468479B2 (en) 2014-05-14 2019-11-05 Infineon Technologies Austria Ag VDMOS having a drift zone with a compensation structure
JP6421476B2 (ja) * 2014-07-03 2018-11-14 日産自動車株式会社 半導体装置及びその製造方法
US9620611B1 (en) 2016-06-17 2017-04-11 Acorn Technology, Inc. MIS contact structure with metal oxide conductor
US10170627B2 (en) 2016-11-18 2019-01-01 Acorn Technologies, Inc. Nanowire transistor with source and drain induced by electrical contacts with negative schottky barrier height
CN106684126A (zh) * 2016-12-12 2017-05-17 中航(重庆)微电子有限公司 一种沟槽型晶体管器件结构及制作方法
JP2018181911A (ja) * 2017-04-04 2018-11-15 浜松ホトニクス株式会社 光半導体装置
DE102019109368A1 (de) 2018-05-15 2019-11-21 Infineon Technologies Ag Halbleitervorrichtung mit siliziumcarbidkörper und herstellungsverfahren
JP2020127017A (ja) * 2020-04-02 2020-08-20 ローム株式会社 半導体装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441247A (en) 1981-06-29 1984-04-10 Intel Corporation Method of making MOS device by forming self-aligned polysilicon and tungsten composite gate
US4983535A (en) 1981-10-15 1991-01-08 Siliconix Incorporated Vertical DMOS transistor fabrication process
US4503601A (en) 1983-04-18 1985-03-12 Ncr Corporation Oxide trench structure for polysilicon gates and interconnects
US4881105A (en) 1988-06-13 1989-11-14 International Business Machines Corporation Integrated trench-transistor structure and fabrication process
JPH02206175A (ja) 1989-02-06 1990-08-15 Fuji Electric Co Ltd Mos型半導体装置
JPH04145628A (ja) * 1990-10-06 1992-05-19 Nippon Telegr & Teleph Corp <Ntt> 縦型ゲート絶縁型電界効果トランジスタ及びその製法
JPH05315620A (ja) * 1992-05-08 1993-11-26 Rohm Co Ltd 半導体装置およびその製造法
US5341011A (en) 1993-03-15 1994-08-23 Siliconix Incorporated Short channel trenched DMOS transistor
JP3481287B2 (ja) 1994-02-24 2003-12-22 三菱電機株式会社 半導体装置の製造方法
DE69534888T2 (de) * 1994-04-06 2006-11-02 Denso Corp., Kariya Herstellungsverfahren für Halbleiterbauelement mit Graben
US5455190A (en) 1994-12-07 1995-10-03 United Microelectronics Corporation Method of making a vertical channel device using buried source techniques
US5648670A (en) 1995-06-07 1997-07-15 Sgs-Thomson Microelectronics, Inc. Trench MOS-gated device with a minimum number of masks
JP3201221B2 (ja) * 1995-07-05 2001-08-20 日本電気株式会社 半導体装置の製造方法
US5895951A (en) * 1996-04-05 1999-04-20 Megamos Corporation MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches
US5808340A (en) * 1996-09-18 1998-09-15 Advanced Micro Devices, Inc. Short channel self aligned VMOS field effect transistor
JPH10173072A (ja) * 1996-12-09 1998-06-26 Sony Corp 半導体装置の製造方法および半導体装置
US6051468A (en) * 1997-09-15 2000-04-18 Magepower Semiconductor Corp. Method of forming a semiconductor structure with uniform threshold voltage and punch-through tolerance
JP3052918B2 (ja) * 1997-11-27 2000-06-19 日本電気株式会社 半導体装置
US6097061A (en) * 1998-03-30 2000-08-01 Advanced Micro Devices, Inc. Trenched gate metal oxide semiconductor device and method
US6486067B1 (en) * 1999-10-29 2002-11-26 Taiwan Semiconductor Manufacturing Company Method for improving the electrical isolation between the contact and gate in a self-aligned contact MOSFET device structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423440B (zh) * 2007-01-30 2014-01-11 Alpha & Omega Semiconductor 用於降低極高密度金屬氧化物半導體場效應電晶體的閘極阻抗的採用不同閘極材料和功函數的分裂柵
TWI548086B (zh) * 2015-01-21 2016-09-01 鉅晶電子股份有限公司 溝渠式橫向擴散金屬氧化半導體元件及其製造方法
CN104779294A (zh) * 2015-04-17 2015-07-15 上海华虹宏力半导体制造有限公司 沟槽型功率mos晶体管及其制造方法和集成电路

Also Published As

Publication number Publication date
US6737323B2 (en) 2004-05-18
US20020024091A1 (en) 2002-02-28
DE10031626B4 (de) 2012-12-13
DE10031626A1 (de) 2001-02-22
FR2799304B1 (fr) 2008-09-26
US6274905B1 (en) 2001-08-14
JP2001044435A (ja) 2001-02-16
FR2799304A1 (fr) 2001-04-06

Similar Documents

Publication Publication Date Title
TW477026B (en) Trench structure substantially filled with high-conductivity material
CN102270662B (zh) 自对准工艺制备的半导体功率器件以及更加可靠的电接触
CN102097323B (zh) 形成具有屏蔽电极结构的绝缘栅场效应晶体管器件的方法
CN101663760B (zh) 自对准的沟槽型金属氧化物半导体场效应晶体管及其制造方法
TWI595651B (zh) 具有增強流動性之半導體裝置及方法
TW501227B (en) SOI MOSFET having body contact for preventing floating body effect and method of fabricating the same
US8362551B2 (en) Semiconductor device
CN102629626B (zh) 半导体器件
JP4851080B2 (ja) Ldmosトランジスタ装置、集積回路およびその製造方法
US20090085105A1 (en) Trench mosfet and method of manufacture utilizing two masks
US7687352B2 (en) Trench MOSFET and method of manufacture utilizing four masks
CN1763970A (zh) 薄型绝缘半导体之绝缘间隙壁
CN108231562A (zh) 逻辑单元结构和方法
EP1507294A2 (en) Semiconductor device with surrounding gate
TW201140835A (en) Electronic device including a buried insulating layer and a vertical conductive structure extending therethrough and a process of forming the same
CN109390393A (zh) 具有厚沟槽底部氧化物的mosfet器件
JP2008084901A (ja) 半導体装置およびその製造方法
US20170148889A1 (en) Metal oxide semiconductor field effect transistor power device with multi gates connection
CN109326653A (zh) 功率器件及其制造方法
CN106206418A (zh) 集成电路
TW200406838A (en) Method of designing semiconductor device
US20080169505A1 (en) Structure of Trench MOSFET and Method for Manufacturing the same
JP2009123944A (ja) 半導体装置及びその製造方法
TWI312192B (en) Semiconductor device and manufacture method thereof
CN102956704B (zh) 准垂直功率mosfet及其形成方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees