RU97110653A - Способ уменьшения образования микротрубочек при эпитаксиальном росте карбида кремния и получающихся в результате структур карбида кремния - Google Patents

Способ уменьшения образования микротрубочек при эпитаксиальном росте карбида кремния и получающихся в результате структур карбида кремния

Info

Publication number
RU97110653A
RU97110653A RU97110653/25A RU97110653A RU97110653A RU 97110653 A RU97110653 A RU 97110653A RU 97110653/25 A RU97110653/25 A RU 97110653/25A RU 97110653 A RU97110653 A RU 97110653A RU 97110653 A RU97110653 A RU 97110653A
Authority
RU
Russia
Prior art keywords
epitaxial layer
silicon carbide
growth
epitaxial
substrate
Prior art date
Application number
RU97110653/25A
Other languages
English (en)
Other versions
RU2142027C1 (ru
Inventor
В.А. Дмитриев
С.В. Рендакова
В.А. Иванцов
Келвин Х. Картер (младший)
Original Assignee
Кри Рисерч, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/346,618 external-priority patent/US5679153A/en
Application filed by Кри Рисерч, Инк. filed Critical Кри Рисерч, Инк.
Publication of RU97110653A publication Critical patent/RU97110653A/ru
Application granted granted Critical
Publication of RU2142027C1 publication Critical patent/RU2142027C1/ru

Links

Claims (15)

1. Способ получения эпитаксиальных слоев карбида кремния, которые являются по существу свободными от дефектов в виде микротрубочек, включающий: рост объемных кристаллов карбида кремния с использованием методики затравочной сублимации; образование первого эпитаксиального слоя карбида кремния на подложке, полученной из объемного кристалла с использованием методики жидкофазной эпитаксии до тех пор, пока слой не приобретет толщину, достаточную для того, чтобы закрыть дефекты в виде микротрубочек, распространяемые подложкой в растущий первый эпитаксиальный слой с тем, чтобы воспроизведение дефектов в виде микротрубочек по существу уменьшилось при росте из расплава первого эпитаксиального слоя; и после этого образование второго эпитаксиального слоя карбида кремния на первом эпитаксиальном слое карбида кремния путем химического осаждения из паровой фазы.
2. Способ эпитаксиального роста по п. 1, где стадия роста объемного монокристалла включает рост объемного монокристалла из либо политипа 6H, либо 4H, и стадия формирования первого эпитаксиального слоя включает формирование первого эпитаксиального слоя того же политипа, что и подложка.
3. Способ эпитаксиального роста по п. 1, где стадия формирования первого эпитаксиального слоя включает формирование первого эпитаксиального слоя с проводимостью первого типа, и стадия формирования второго эпитаксиального слоя включает формирование второго слоя с проводимостью противоположного типа по отношению к первому эпитаксиальному слою, тем самым образуя p-n переход между первым и вторым эпитаксиальными слоями.
4. Способ эпитаксиального роста по п. 1, где стадии формирования первого и второго эпитаксиальных слоев включают формирование первого и второго эпитаксиальных слоев с первым типом проводимости, и дополнительно включает стадию формирования третьего эпитаксиального слоя с противоположным типом проводимости на втором эпитаксиальном слое, посредством чего образуется p-n переход между вторым и третьим эпитаксиальными слоями.
5. Способ получения эпитаксиальных слоев карбида кремния, которые являются по существу свободными от дефектов в виде микротрубочек, включающий: рост эпитаксиального слоя карбида кремния на подложке из карбида кремния путем жидкофазной эпитаксии из расплава карбида кремния в кремнии и элемента, который увеличивает растворимость карбида кремния в расплаве, и в котором атомный процент указанного элемента доминирует над атомным процентом кремния, и закрытие дефектов в виде микротрубочек, распространяемых подложкой в эпитаксиальный слой путем продолжения рота эпитаксиального слоя до тех пор, пока эпитаксиальный слой не приобретет толщину, при которой дефекты в виде микротрубочек, присутствующие в подложке, по существу не будут более воспроизводится в эпитаксиальном слое, и количество дефектов в виде микротрубочек в эпитаксиальном слое не уменьшится по существу.
6. Способ получения эпитаксиальных слоев по п. 5, где стадия роста эпитаксиального слоя в расплаве кремния и другого элемента включает рост эпитаксиального слоя в расплаве кремния и германия.
7. Способ получения эпитаксиальных слоев по п. 6, где стадия роста эпитаксиального слоя из расплава содержит рост эпитаксиального слоя в расплаве, в котором атомный процент германия составляет от примерно 70 до 90%.
8. Способ получения эпитаксиальных слоев по п. 5, где стадия роста эпитаксиального слоя в расплаве кремния и другого элемента включает рост эпитаксиального слоя в расплаве с: достаточным атомным процентом кремния для благоприятствования соответствующей скорости роста, но меньшим чем количество кремния, которое вызывало бы самопроизводное образование кристаллов в расплаве: и достаточным атомным процентом повышающего растворимость элемента для оптимизации роста карбида кремния в расплаве, но меньшим чем количество, которое могло бы графитизировать поверхность растущего эпитаксиального слоя.
9. Способ получения эпитаксиальных слоев по п. 5, где стадия роста эпитаксиального слоя на подложке из карбида кремния включает рост слоя на подложке, которая характеризуется плотностью микротрубочек от примерно 50 до 400 на квадратный сантиметр (см-2).
10. Способ получения эпитаксиальных слоев карбида кремния, которые по существу свободны от дефектов в виде микротрубочек, включающий затравливание карбида кремния с использованием методики сублимационного роста, с подложкой и ее первым эпитаксиальным слоем, образованных согласно способу по п. 5.
11. Структура карбида кремния высокого качества, особенно для использования в мощных электронных приборах, содержащая: подложку из объемного монокристалла карбида кремния; и эпитаксиальный слой карбида кремния на поверхности указанной подложки из карбида кремния, отличающаяся тем, что указанный эпитаксиальный слой демонстрирует профиль линии рентгеновских лучей, имеющий полную ширину на половине максимума в 25 дуговых секунд или менее.
12. Структура карбида кремния по п. 11, где указанная подложка демонстрирует профиль линии рентгеновских лучей, имеющий полную ширину на половине максимума примерно 100 дуговых секунд или менее.
13. Структура карбида кремния по п. 11, где указанная подложка представляет собой либо политип 6H, либо политип 4H, и указанный эпитаксиальный слой имеет тот же самый политип, что и подложка.
14. Структура карбида кремния по п. 11, дополнительно включающая второй эпитаксиальный слой, имеющий противоположный тип проводимости относительно указанного первого эпитаксиального слоя, так что указанные эпитаксиальные слои образуют p-n переход.
15. Структура карбида кремния высокого качества особенно для использования в мощных электронных приборах, содержащая: подложку из объемного монокристалла карбида кремния, имеющую плотность микротрубочек на ее поверхности от примерно 50 до 400 см-2, и эпитаксиальный слой карбида кремния на указанной поверхности указанной подложки из карбида кремния, указанный эпитаксиальный слой имеет плотность микротрубочек на его поверхности от примерно 0 до 50 см-2.
RU97110653A 1994-11-30 1995-11-22 Способ получения эпитаксиальных слоев карбида кремния (варианты), структура карбида кремния (варианты) RU2142027C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/346,618 US5679153A (en) 1994-11-30 1994-11-30 Method for reducing micropipe formation in the epitaxial growth of silicon carbide and resulting silicon carbide structures
US08/346,618 1994-11-30
PCT/US1995/015276 WO1996017112A1 (en) 1994-11-30 1995-11-22 Epitaxial growth of silicon carbide and resulting silicon carbide structures

Publications (2)

Publication Number Publication Date
RU97110653A true RU97110653A (ru) 1999-05-20
RU2142027C1 RU2142027C1 (ru) 1999-11-27

Family

ID=23360251

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97110653A RU2142027C1 (ru) 1994-11-30 1995-11-22 Способ получения эпитаксиальных слоев карбида кремния (варианты), структура карбида кремния (варианты)

Country Status (11)

Country Link
US (1) US5679153A (ru)
EP (1) EP0795049B2 (ru)
JP (2) JP4065021B2 (ru)
KR (1) KR100420182B1 (ru)
CN (1) CN1069935C (ru)
AT (1) ATE180023T1 (ru)
AU (1) AU4369196A (ru)
CA (1) CA2205918C (ru)
DE (1) DE69509678T3 (ru)
RU (1) RU2142027C1 (ru)
WO (1) WO1996017112A1 (ru)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086936B2 (ja) * 1996-10-03 2008-05-14 株式会社ブリヂストン ダミーウェハ
DE69835216T2 (de) 1997-07-25 2007-05-31 Nichia Corp., Anan Halbleitervorrichtung aus einer nitridverbindung
US6559038B2 (en) 1997-11-18 2003-05-06 Technologies And Devices International, Inc. Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6849862B2 (en) * 1997-11-18 2005-02-01 Technologies And Devices International, Inc. III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
US6476420B2 (en) 1997-11-18 2002-11-05 Technologies And Devices International, Inc. P-N homojunction-based structures utilizing HVPE growth III-V compound layers
US6559467B2 (en) 1997-11-18 2003-05-06 Technologies And Devices International, Inc. P-n heterojunction-based structures utilizing HVPE grown III-V compound layers
US6890809B2 (en) * 1997-11-18 2005-05-10 Technologies And Deviles International, Inc. Method for fabricating a P-N heterojunction device utilizing HVPE grown III-V compound layers and resultant device
US6599133B2 (en) 1997-11-18 2003-07-29 Technologies And Devices International, Inc. Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
US20020047135A1 (en) * 1997-11-18 2002-04-25 Nikolaev Audrey E. P-N junction-based structures utilizing HVPE grown III-V compound layers
US6479839B2 (en) 1997-11-18 2002-11-12 Technologies & Devices International, Inc. III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
US6555452B2 (en) 1997-11-18 2003-04-29 Technologies And Devices International, Inc. Method for growing p-type III-V compound material utilizing HVPE techniques
US6472300B2 (en) 1997-11-18 2002-10-29 Technologies And Devices International, Inc. Method for growing p-n homojunction-based structures utilizing HVPE techniques
EP0967304B1 (en) * 1998-05-29 2004-04-07 Denso Corporation Method for manufacturing single crystal of silicon carbide
JP3770014B2 (ja) 1999-02-09 2006-04-26 日亜化学工業株式会社 窒化物半導体素子
WO2000052796A1 (fr) 1999-03-04 2000-09-08 Nichia Corporation Element de laser semiconducteur au nitrure
DE50006005D1 (de) 1999-07-07 2004-05-13 Siemens Ag Keimkristallhalter mit seitlicher einfassung eines sic-keimkristalls
JP4880164B2 (ja) * 2000-02-15 2012-02-22 ザ フォックス グループ,インコーポレイティド 低欠陥密度炭化ケイ素材料
US20020163059A1 (en) * 2000-02-17 2002-11-07 Hamerski Roman J. Device with epitaxial base
US6448581B1 (en) * 2000-08-08 2002-09-10 Agere Systems Guardian Corp. Mitigation of deleterious effects of micropipes in silicon carbide devices
JP4716558B2 (ja) 2000-12-12 2011-07-06 株式会社デンソー 炭化珪素基板
JP4275308B2 (ja) * 2000-12-28 2009-06-10 株式会社デンソー 炭化珪素単結晶の製造方法およびその製造装置
US6863728B2 (en) * 2001-02-14 2005-03-08 The Fox Group, Inc. Apparatus for growing low defect density silicon carbide
US20020187427A1 (en) * 2001-05-18 2002-12-12 Ulrich Fiebag Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates
JP4848495B2 (ja) * 2001-06-04 2011-12-28 学校法人関西学院 単結晶炭化ケイ素及びその製造方法
US6488767B1 (en) * 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
US7061161B2 (en) * 2002-02-15 2006-06-13 Siemens Technology-To-Business Center Llc Small piezoelectric air pumps with unobstructed airflow
TW200307064A (en) 2002-03-19 2003-12-01 Central Res Inst Elect Method for preparing SiC crystal with reduced micro-pipes extended from substrate, SiC crystal, SiC monocrystalline film, SiC semiconductor component, SiC monocrystalline substrate and electronic device, and method for producing large SiC crystal
US7379203B2 (en) * 2002-03-22 2008-05-27 Laser Substrates, Inc. Data capture during print process
JP2003327497A (ja) * 2002-05-13 2003-11-19 Sumitomo Electric Ind Ltd GaN単結晶基板、窒化物系半導体エピタキシャル基板、窒化物系半導体素子及びその製造方法
US6814801B2 (en) * 2002-06-24 2004-11-09 Cree, Inc. Method for producing semi-insulating resistivity in high purity silicon carbide crystals
US7601441B2 (en) * 2002-06-24 2009-10-13 Cree, Inc. One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer
US7316747B2 (en) * 2002-06-24 2008-01-08 Cree, Inc. Seeded single crystal silicon carbide growth and resulting crystals
US7175704B2 (en) * 2002-06-27 2007-02-13 Diamond Innovations, Inc. Method for reducing defect concentrations in crystals
JP5122817B2 (ja) * 2003-05-09 2013-01-16 クリー インコーポレイテッド イオン・インプラント・アイソレーションによるled製作
US7018554B2 (en) * 2003-09-22 2006-03-28 Cree, Inc. Method to reduce stacking fault nucleation sites and reduce forward voltage drift in bipolar devices
US20050194584A1 (en) * 2003-11-12 2005-09-08 Slater David B.Jr. LED fabrication via ion implant isolation
US7109521B2 (en) * 2004-03-18 2006-09-19 Cree, Inc. Silicon carbide semiconductor structures including multiple epitaxial layers having sidewalls
US7173285B2 (en) * 2004-03-18 2007-02-06 Cree, Inc. Lithographic methods to reduce stacking fault nucleation sites
US7592634B2 (en) * 2004-05-06 2009-09-22 Cree, Inc. LED fabrication via ion implant isolation
US7314521B2 (en) * 2004-10-04 2008-01-01 Cree, Inc. Low micropipe 100 mm silicon carbide wafer
US8771552B2 (en) 2005-06-23 2014-07-08 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
US9708735B2 (en) 2005-06-23 2017-07-18 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
JP4277826B2 (ja) 2005-06-23 2009-06-10 住友電気工業株式会社 窒化物結晶、窒化物結晶基板、エピ層付窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
JP5141072B2 (ja) 2006-04-25 2013-02-13 日本精工株式会社 軸受ユニット用外輪の製造方法
EP2264223A3 (en) 2006-09-14 2011-10-26 Cree, Inc. Micropipe-free silicon carbide and related method of manufacture
JP4811354B2 (ja) * 2007-06-11 2011-11-09 トヨタ自動車株式会社 SiC単結晶の製造方法
JP5130468B2 (ja) * 2007-07-26 2013-01-30 株式会社エコトロン SiCエピタキシャル基板の製造方法
JP5000424B2 (ja) * 2007-08-10 2012-08-15 一般財団法人電力中央研究所 炭化珪素単結晶ウェハの欠陥検出方法、及び炭化珪素半導体素子の製造方法
US8163086B2 (en) * 2007-08-29 2012-04-24 Cree, Inc. Halogen assisted physical vapor transport method for silicon carbide growth
JP2009256193A (ja) * 2008-03-21 2009-11-05 Bridgestone Corp 炭化ケイ素単結晶の製造方法
TWI362769B (en) 2008-05-09 2012-04-21 Univ Nat Chiao Tung Light emitting device and fabrication method therefor
US8536582B2 (en) 2008-12-01 2013-09-17 Cree, Inc. Stable power devices on low-angle off-cut silicon carbide crystals
WO2010077639A2 (en) * 2008-12-08 2010-07-08 Ii-Vi Incorporated Improved axial gradient transport (agt) growth process and apparatus utilizing resistive heating
JP5415853B2 (ja) * 2009-07-10 2014-02-12 東京エレクトロン株式会社 表面処理方法
US9464366B2 (en) * 2009-08-20 2016-10-11 The United States Of America, As Represented By The Secretary Of The Navy Reduction of basal plane dislocations in epitaxial SiC
JP5875143B2 (ja) 2011-08-26 2016-03-02 学校法人関西学院 半導体ウエハの製造方法
CN104246026B (zh) * 2012-04-20 2017-05-31 丰田自动车株式会社 SiC单晶及其制造方法
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9018639B2 (en) * 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
CN105008598B (zh) * 2013-07-09 2018-01-19 富士电机株式会社 碳化硅半导体装置的制造方法以及碳化硅半导体装置
JP6052934B2 (ja) * 2013-08-14 2016-12-27 株式会社日立製作所 半導体検査方法、半導体検査装置、および半導体素子の製造方法
JP5741652B2 (ja) * 2013-08-30 2015-07-01 トヨタ自動車株式会社 n型SiC単結晶及びその製造方法
JP5854013B2 (ja) 2013-09-13 2016-02-09 トヨタ自動車株式会社 SiC単結晶の製造方法
JP2015061001A (ja) * 2013-09-20 2015-03-30 株式会社東芝 半導体装置の製造方法
CN103590101B (zh) * 2013-11-06 2016-02-24 山东大学 一种降低大尺寸高质量SiC单晶中微管密度的生长方法
JP2015151278A (ja) * 2014-02-10 2015-08-24 新日鐵住金株式会社 単結晶の製造方法、シードシャフト、および単結晶の製造装置
JP6028754B2 (ja) * 2014-03-11 2016-11-16 トヨタ自動車株式会社 SiC単結晶基板の製造方法
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
CN105140111A (zh) * 2015-08-11 2015-12-09 中国科学院半导体研究所 消除碳化硅外延面穿通缺陷的方法
US20170275779A1 (en) * 2015-10-07 2017-09-28 Sumitomo Electric Industries, Ltd. Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
US11359307B2 (en) 2016-04-28 2022-06-14 Kwansei Gakuin Educational Foundation Vapour-phase epitaxial growth method, and method for producing substrate equipped with epitaxial layer
CN106012021B (zh) * 2016-06-30 2019-04-12 山东天岳先进材料科技有限公司 一种液相生长碳化硅的籽晶轴及方法
CN106048716A (zh) * 2016-06-30 2016-10-26 山东天岳先进材料科技有限公司 一种碳化硅衬底的优化方法
WO2018043171A1 (ja) * 2016-08-31 2018-03-08 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、欠陥識別方法
CN111235633A (zh) * 2020-01-16 2020-06-05 中国科学院半导体研究所 一种在硅熔体表面通过cvd制备自支撑碳化硅晶圆的方法
CN111962157B (zh) * 2020-07-24 2021-09-28 山东天岳先进科技股份有限公司 一种碳化硅晶体微管的愈合方法及碳化硅产品和应用
CN112048769B (zh) * 2020-07-24 2021-08-31 山东天岳先进科技股份有限公司 一种碳化硅晶体微管愈合用装置及应用
CN115910755A (zh) * 2023-01-09 2023-04-04 宁波合盛新材料有限公司 一种碳化硅外延片及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123571A (en) * 1977-09-08 1978-10-31 International Business Machines Corporation Method for forming smooth self limiting and pin hole free SiC films on Si
US4419336A (en) * 1982-03-29 1983-12-06 Norton Company Silicon carbide production and furnace
JPS63156095A (ja) * 1986-12-19 1988-06-29 Sanyo Electric Co Ltd SiC単結晶の液相エピタキシヤル成長方法
US4866005A (en) * 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
US5319220A (en) * 1988-01-20 1994-06-07 Sharp Kabushiki Kaisha Silicon carbide semiconductor device
US5027168A (en) * 1988-12-14 1991-06-25 Cree Research, Inc. Blue light emitting diode formed in silicon carbide
SU1726571A1 (ru) * 1990-06-12 1992-04-15 Физико-технический институт им.А.Ф.Иоффе АН СССР Способ выращивани карбидкремниевых р-п-структур политипа 6Н
JP2579561B2 (ja) * 1991-03-22 1997-02-05 東海カーボン株式会社 SiCウイスカーの製造装置
JP3214868B2 (ja) * 1991-07-19 2001-10-02 ローム株式会社 ヘテロ接合バイポーラトランジスタの製造方法
DE4135076A1 (de) * 1991-10-24 1993-04-29 Daimler Benz Ag Mehrschichtige, monokristallines siliziumkarbid enthaltende zusammensetzung

Similar Documents

Publication Publication Date Title
RU97110653A (ru) Способ уменьшения образования микротрубочек при эпитаксиальном росте карбида кремния и получающихся в результате структур карбида кремния
JP4790909B2 (ja) 横方向成長による窒化ガリウム層の製造
Powell et al. SiC materials-progress, status, and potential roadblocks
CA2205918A1 (en) Epitaxial growth of silicon carbide and resulting silicon carbide structures
JP4783288B2 (ja) 犠牲層上のヘテロエピタキシによるiii族窒化物の自立基板の実現方法
JPS5696834A (en) Compound semiconductor epitaxial wafer and manufacture thereof
Tanaka et al. Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas‐source molecular beam epitaxy
EP0285358A3 (en) Process for producing compound semiconductor and semiconductor device using compound semiconductor obtained by same
Matsunami Progress in epitaxial growth of SiC
JPH11162850A (ja) 炭化珪素基板およびその製造方法、並びに炭化珪素基板を用いた半導体素子
JP2001181095A (ja) SiC単結晶およびその成長方法
JP3735145B2 (ja) 炭化珪素薄膜およびその製造方法
JP2004262709A (ja) SiC単結晶の成長方法
JP2003212694A (ja) 電子素子基板上へのSiC又はGaN単結晶の成長方法
JP4313000B2 (ja) 3C−SiC半導体の製造方法
Ferro Overview of 3C-SiC crystalline growth
JP2981879B2 (ja) 単結晶SiCおよびその製造方法
Morgan et al. Evaluation of GaN growth improvement techniques
JP3142312B2 (ja) 六方晶半導体の結晶成長方法
JP3520571B2 (ja) 単結晶の成長方法
JP3985288B2 (ja) 半導体結晶成長方法
Bootsma et al. A strain-relieve transition in epitaxial growth of metals on Si (111)(7× 7)
YOO et al. Epitaxial growth of thick single crystalline cubic silicon carbide by sublimation method
JPS52120764A (en) Manufacture of semiconductor device on insulator substrate
JPH04193798A (ja) SiC単結晶の製造方法