RU2543092C2 - Системы и способы координации передач в распределенных беспроводных системах посредством кластеризации пользователей - Google Patents

Системы и способы координации передач в распределенных беспроводных системах посредством кластеризации пользователей Download PDF

Info

Publication number
RU2543092C2
RU2543092C2 RU2013125496/07A RU2013125496A RU2543092C2 RU 2543092 C2 RU2543092 C2 RU 2543092C2 RU 2013125496/07 A RU2013125496/07 A RU 2013125496/07A RU 2013125496 A RU2013125496 A RU 2013125496A RU 2543092 C2 RU2543092 C2 RU 2543092C2
Authority
RU
Russia
Prior art keywords
mas
cluster
antennas
user
dido
Prior art date
Application number
RU2013125496/07A
Other languages
English (en)
Other versions
RU2013125496A (ru
Inventor
Антонио ФОРЕНЦА
Эрик ЛИНДСКОГ
Стивен Дж. ПЕРЛМАН
Original Assignee
Риарден, Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Риарден, Ллк filed Critical Риарден, Ллк
Publication of RU2013125496A publication Critical patent/RU2013125496A/ru
Application granted granted Critical
Publication of RU2543092C2 publication Critical patent/RU2543092C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

Изобретение относится к распределенным беспроводным системам связи и раскрывает координацию передач в распределенных беспроводных системах посредством кластеризации пользователей, в частности способ, который содержит этапы: измеряют качество линии связи между целевым пользователем и множеством распределенных антенн с распределенным входом и распределенным выходом (DIDO) базовых приемопередающих станций (BTS); используют результаты измерения качества линии связи для определения кластера пользователей; измеряют информацию о состоянии канала (CSI) между каждым пользователем и каждой антенной DIDO в пределах определенного кластера пользователей; и выполняют предварительное кодирование передач данных между каждой антенной DIDO и каждым пользователем в кластере пользователей на основе измеренной CSI. 24 з.п. ф-лы, 48 ил.

Description

Уровень техники
Многопользовательские беспроводные системы предшествующего уровня техники могут иметь в своем составе только одну базовую станцию или несколько базовых станций.
Одиночная базовая станция WiFi (например, использующая протоколы 2,4 ГГц 802.11b, g или n), подключенная к соединению широковещательной проводной Интернет-сети в области, где не существует других точек доступа WiFi (например, точка доступа WiFi, подключенная к DSL внутри сельского дома), является примером относительно простой многопользовательской беспроводной системы как единственной базовой станции, совместно используемой одним или более пользователями, находящимися в пределах дальности ее передачи. Если пользователь находится в том же самом помещении, что и точка беспроводного доступа, то пользователь будет обычно использовать высокоскоростную линию связи с некоторыми нарушениями передачи (например, возможна потеря пакета из-за помех, создаваемых на частоте 2,4 ГГц, например, микроволновыми печами, но не из-за использования спектра совместно с другими устройствами WiFi). Если пользователь находится на среднем расстоянии удаления или имеет несколько препятствий на пути между пользователем и точкой доступа WiFi, то пользователь, вероятно, будет использовать среднескоростную линию связи. Если пользователь приблизится к краю дальности действия точки доступа WiFi, то ему, вероятно, придется использовать низкоскоростную линию связи и он может подвергаться периодическим пропаданиям связи, если изменения в канале приводят в результате к SNR сигнала, падающему ниже допустимых уровней. И, наконец, если пользователь находится за пределами дальности действия базовой станции WiFi, у пользователя вообще не будет линии связи.
Когда многочисленные пользователи получают доступ к базовой станции WiFi одновременно, то тогда доступная пропускная способность передачи данных делится между ними. Разные пользователи в данный момент обычно будут предъявлять разные требования к пропускной способности базовой станции WiFi, но время от времени, когда совокупные требования к пропускной способности превысят доступную пропускную способность от базовой станции WiFi к пользователям, то тогда некоторые или все пользователи получат меньшую пропускную способность передачи данных, чем та, к которой они стремятся. В предельной ситуации, когда точка доступа WiFi совместно используется очень большим количеством пользователей, пропускная способность для каждого пользователя может замедлиться до "ползания" и хуже, пропускная способность передачи данных для каждого пользователя может достигнуть кратковременных быстрых периодов, разделенных длительными периодами отсутствия пропускной способности передачи данных вообще в то время, когда обслуживаются другие пользователи. Такая "изменчивая" доставка данных может повредить некоторым приложениям, таким как передача медиапотока.
Добавление дополнительных базовых станций WiFi в ситуациях с большим количеством пользователей может помочь только до некоторой степени. В пределах полосы ISM 2,4 ГГц в США существуют 3 не создающих друг другу помех канала, которые могут использоваться для WiFi, и если 3 базовые станции WiFi в одной и той же области покрытия будут конфигурированы каждая для использования другого из не создающих друг другу помех каналов, то совокупная пропускная способность области покрытия для многочисленных пользователей будет увеличена до 3 раз. Но сверх этого, добавление большего количества базовых станций WiFi в одной и той же зоне покрытия не будет увеличивать совокупную пропускную способность, так как они начнут совместно использовать между собой один и тот же доступный спектр, эффективно используя мультиплексированный доступ с временным разделением (TDMA), "набирая обороты" в использовании спектра. Такая ситуация часто наблюдается в областях покрытия с высокой плотностью населения, таких как многоквартирные жилые дома. Например, пользователь в большом жилом доме с модемом WiFi может часто иметь очень плохую пропускную способность из-за десятков других создающих помехи сетей WiFi (например, в других квартирах), обслуживающих других пользователей, которые находятся в той же самой области покрытия, даже если точка доступа пользователя находится в том же самом помещении, что и устройство клиента, получающее доступ к базовой станции. Хотя качество линии связи в этой ситуации, вероятно, будет хорошим, пользователь может принимать помехи от соседних модемов WiFi, работающих в том же самом частотном диапазоне, снижая эффективную пропускную способность для пользователя.
Существующие многопользовательские беспроводные системы, содержащие как нелицензированный спектр, такие как WiFi, так и лицензированный спектр, страдают несколькими ограничениями. К ним относятся область покрытия, скорость передачи данных по нисходящему каналу (DL) и скорость передачи данных по восходящему каналу (UL). Главные цели беспроводных систем следующего поколения, такие как WiMAX и LTE, состоят в том, чтобы улучшить область покрытия и скорость передачи данных по DL и UL посредством технологии со многими входами-многими выходами (MIMO). MIMO использует многочисленные антенны на сторонах передачи и приема беспроводных линий связи, чтобы улучшить качество линии связи (приводя к более широкому покрытию) или скорость передачи данных (создавая многочисленные не создающие друг другу помех пространственные каналы для каждого пользователя). Если даже каждому пользователю доступна достаточная скорость передачи данных (заметим, что термины "пользователь" и "клиент" используются здесь взаимозаменяемо), однако может потребоваться использовать пространственное разнесение каналов, чтобы создать не создающие друг другу помех каналы для многочисленных пользователей (а не для одного единственного пользователя) в соответствии с многопользовательскими способами MIMO (MU-MIMO). Смотрите, например, следующие ссылки не литературу:
G. Caire and S. Shamai, "On the achievable throughput of a multiantenna Gaussian broadcast channel," IEEE Trans. Info. Th., vol. 49, pp.1691-1706, July 2003.
P. Viswanath and D. Tse, "Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality," IEEE Trans. Info. Th., vol. 49, pp.1912-1921, July 2003.
S. Vishwanath, N. Jindal, and A. Goldsmith, "Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels," IEEE Trans. Info. Th., vol. 49, pp.2658-2668, Oct. 2003.
W. Yu and J. Cioffi, "Sum capacity of Gaussian vector broadcast channels," IEEE Trans. Info. Th., vol. 50, pp.1875-1892, Sep. 2004.
M. Costa, "Writing on dirty paper," IEEE Transactions on Information Theory, vol. 29, pp.439-441, May 1983.
M. Bengtsson, "A pragmatic approach to multi-user spatial multiplexing," Proc. of Sensor Array and Multichannel Sign. Proc. Workshop, pp.130-134, Aug. 2002.
K.-K. Wong, R.D. Murch, and K.В. Letaief, "Performance enhancement of multiuser MIMO wireless communication systems," IEEE Trans. Comm., vol. 50, pp.1960-1970, Dec. 2002.
M. Sharif and В. Hassibi, "On the capacity of MIMO broadcast channel with partial side information," IEEE Trans. Info. Th., vol. 51, pp.506-522, Feb. 2005.
Например, в системах MIMO 4×4 (то есть четыре передающие и четыре приемные антенны), полоса пропускания 10 МГц, модуляция 16-QAM и кодирование с прямой коррекцией ошибок (FEC) с коэффициентом 3/4 (приведенная спектральная эффективность 3 бит/с/Гц), идеальная пиковая скорость передачи данных, достижимая на физическом уровне для каждого пользователя, составляет 4×30 Мбит/с = 120 Мбит/с, что намного выше, чем необходимо для доставки видеоконтента высокой четкости (который может потребовать только ~10 Мбит/с). В системах MU-MIMO с четырьмя передающими антеннами, четырьмя пользователями и одной антенной на каждого пользователя, в идеальных сценариях (то есть независимые тождественно распределенные (i.i.d.) каналы) скорость передачи данных по нисходящему каналу может совместно использоваться для этих четырех пользователей и пространственное разнесение каналов может быть использовано для создания четырех параллельных каналов передачи данных пользователям со скоростью 30 Мбит/с.
Различные схемы MU-MIMO были предложены как часть стандарта LTE, как описано, например, в 3GPP, "Multiple Input Multiple Output in UTRA", 3GPP TR 25.876 V7.0.0, Mar. 2007; 3GPP, "Base Physical channels and modulation", TS 36.211, V8.7.0, May 2009; и 3GPP, "Multiplexing and channel coding", TS 36.212, V8.7.0, May 2009. Однако эти схемы могут обеспечить только двукратное увеличение скорости передачи данных по DL с четырьмя передающими антеннами. Практические реализации способов MU-MIMO в стандартных и частных системах сотовой связи такими компаниями, как ArrayComm (см., например, ArrayComm, "Field-proven results", <http://www.arraycomm.com/serve.php?page=proof>), привели примерно к трехкратному увеличению (с четырьмя передающими антеннами) скорости передачи данных по DL через множественный доступ с пространственным разделением (SDMA). Ключевым ограничением схем MU-MIMO в сотовых сетях является нехватка пространственного разнесения на стороне передачи. Пространственное разнесение является функцией разнесения антенн и многолучевого углового разброса в беспроводных линиях связи. В системах сотовой связи, использующих способы MU-MIMO, передающие антенны на базовой станции обычно группируются вместе и располагаются на расстоянии одной или двух длин волны из-за ограниченной полезной площади на опорных конструкциях антенн (упоминаемых здесь как "башни", независимо от того, высокие они или нет) и из-за ограничений на то, где эти башни могут быть расположены. Кроме того, многолучевой угловой разброс является низким, поскольку башни сотовой связи обычно располагаются высоко (10 метров или больше) над препятствиями, чтобы получить более широкое покрытие.
Другими практическими проблемами с развертыванием системы сотовой связи являются чрезмерная стоимость и ограниченная доступность мест для расположения антенн сотовой связи (например, из-за муниципальных ограничений на размещение антенн, стоимости недвижимости, физических препятствий и т.д.) и стоимость и/или доступность сетевых соединений с передатчиками (упомянутых здесь как "транспортная сеть связи"). Дополнительно, системы сотовой связи часто испытывают затруднения в доступе к клиентам, расположенным глубоко внутри зданий, из-за потерь в стенах, потолках, полах, мебели и других препятствий.
Конечно, полная концепция сотовой структуры для беспроводной связи в глобальной сети предполагает довольно жесткое размещение башен сотовой связи, чередование частот между смежными ячейками и часто секторизацию, чтобы избежать помех между передатчиками (или базовыми станциями или пользователями), которые используют одну и ту же частоту. В результате данный сектор данной ячейки приходит к совместно используемому блоку спектра для DL и UL среди всех пользователей в секторе ячейки, который затем совместно используется среди этих пользователей прежде всего только во временной области. Например, системы сотовой связи, основанные на множественном доступе с временным разделением (TDMA) и множественном доступе с кодовым разделением (CDMA), обе совместно используют спектр среди пользователей во временной области. Накладывая на такие сотовые системы секторизацию, можно достигнуть двух-трехкратного выигрыша в пространственной области. И затем, накладывая на такие системы сотовой связи систему MU-MIMO, такую как те, которые описаны ранее, можно достигнуть дополнительного двух-трехкратного дополнительного выигрыша в пространственно-временной области. Но, учитывая, что ячейки и сектора системы сотовой связи обычно находятся в неподвижных местах, часто продиктованных тем, где башни могут быть расположены, даже такие ограниченные преимущества трудно использовать, если плотность пользователей (или требования к скорости передачи данных) в данное время не имеет хорошего соответствия расположению башни/сектора. От последствий этого сегодня часто страдают сотовые пользователи смартфонов, когда пользователь может говорить по телефону или загружать веб-страницу без какой-либо проблемы вообще, а затем после переезда (или даже перехода) в новое место внезапно видит пропадание качества речи или веб-страница крайне замедляется или даже соединение пропадает полностью. Но на другой день пользователь в любом месте может иметь совершенно противоположное. То, что пользователь, вероятно, испытывает, предполагая, что условия окружающей среды являются одними и теми же, является результатом того факта, что плотность пользователей (или требования к скорости передачи данных) сильно меняется, а доступный общий спектр (и, таким образом, общая скорость передачи данных, используя способы предшествующего уровня техники) должен использоваться совместно между пользователями в данном местоположении, в значительной степени является постоянным явлением.
Дополнительно, системы сотовой связи предшествующего уровня опираются на использование разных частот в разных соседних ячейках, обычно, трех разных частот. Для заданного значения спектра это снижает доступную скорость передачи данных в три раза.
Итак, в итоге системы сотовой связи предшествующего уровня могут проиграть, возможно, в три раза в использовании спектра из-за сотового построения и могут улучшить использование спектра, возможно, в три раза за счет секторизации и, возможно, в три раза за счет способов MU-MIMO, приводя в итоге к 3*3/3 = трехкратному увеличению потенциального использования спектра. Затем эта ширина полосы обычно делится между пользователями во временной области, основываясь на том, в какой сектор какой ячейки пользователи попадают в данный момент. Существует еще дополнительная неэффективность, приводящая в результате к тому факту, что требования к скорости передачи данных данного пользователя обычно независимы от местоположения пользователя, но доступная скорость передачи данных меняется в зависимости от качества линии связи между пользователем и базовой станцией. Например, пользователь, удаленный от сотовой базовой станции, обычно будет иметь меньшую доступную скорость передачи данных, чем пользователь, находящийся ближе к базовой станции. Так как скорость передачи данных обычно совместно используется между всеми пользователями в данном сотовом секторе, результатом является то, что на всех пользователей влияют высокие требования скорости передачи данных от удаленных пользователей с плохим качеством линии связи (например, на краю ячейки), так как такие пользователи продолжают требовать ту же самую скорость передачи объема данных и они будут больше потреблять совместно используемый спектр, чтобы добиться этой скорости.
Другие предложенные системы совместного использования спектра, такие как те, которые используют WiFi (например, 802.11b, g и n), и те, которые предложены организацией White Spaces Coalition, совместно используют спектр очень неэффективно, поскольку одновременные передачи базовыми станциями в пределах диапазона дальности пользователя приводят в результате к помехе и, по существу, системы пользуются протоколами предотвращения столкновений и совместного использования. Эти протоколы совместного использования спектра являются протоколами использования спектра во временной области, и, таким образом, когда имеется большое количество мешающих друг другу базовых станций и пользователей, независимо от того, насколько эффективно каждая из базовых станций сама использует спектр, все вместе базовые станции ограничиваются совместным использованием временной области для используемых друг другом спектров. Другие системы совместного использования спектра предшествующего уровня аналогично опираются на подобные способы, чтобы уменьшить помеху среди базовых станций (ими являются сотовые базовые станции с антеннами на башнях или базовые станции мелкого масштаба, такие как точки доступа (AP) WiFi). Эти способы содержат ограничение мощности передачи от базовой станции, так чтобы ограничивать диапазон дальности действия помехи, формирование луча (посредством синтетических или физических средств), чтобы сузить область помехи, мультиплексирование во временной области для спектра и/или способы MU-MIMO с многочисленными кластеризованными антеннами на устройстве пользователя, базовой станции или у обоих. И, в случае усовершенствованных сотовых связей, действующих или планируемых сегодня, часто многие из этих способов используются сразу же.
Но, что является очевидным из-за того факта, что даже усовершенствованные системы сотовой связи могут достигнуть только приблизительно трехкратного увеличения использования спектра по сравнению с одиночным пользователем, использующим спектр, это то, что все эти способы сделали немного, чтобы увеличить совокупную скорость передачи данных среди пользователей совместного пользования для заданной области покрытия. В частности, поскольку заданная область покрытия масштабируется с точки зрения пользователей, становится все труднее масштабировать доступную скорость передачи данных в пределах заданной величины спектра, чтобы идти в ногу с растущим числом пользователей. Например, для систем сотовой связи, чтобы увеличить совокупную скорость передачи данных в пределах заданной области, обычно ячейки подразделяются на меньшие ячейки (часто называемые нано-ячейками или фемто-ячейками). Такие мелкие ячейки могут стать чрезвычайно дорогими, учитывая ограничения на то, где могут быть размещены башни, и требование, чтобы башни располагались по должным образом структурированной схеме, чтобы обеспечить покрытие с минимумом "мертвых зон", избегая при этом помех между соседними ячейками, использующими те же самые частоты. По существу, область покрытия должна планироваться, доступные места расположения для башен или базовых станций должны быть идентифицированы, и затем, с условием этих ограничений, разработчики системы сотовой связи должны суметь сделать лучшее, что они могут. И, конечно, если требования пользователей по скорости передачи данных растут со временем, то разработчики системы сотовой связи должны снова и снова повторно планировать область покрытия, пытаться найти местоположения для башен или базовых станций, и снова разработать в пределах ограничений, создаваемых обстоятельствами. Причем очень часто просто нет никакого хорошего решения, что приводит в результате к мертвым зонам или несоответствующей совокупной производительности по скорости передачи данных в области покрытия. Другими словами, жесткие требования к физическому размещению системы сотовой связи, чтобы избежать помех между башнями или базовыми станциями, использующими одну и ту же частоту, приводят в результате к значительным трудностям и ограничениям при проектировании системы сотовой связи и часто неспособны удовлетворить требования пользователя по скорости передачи данных и покрытию.
Так называемые "совместные" и "когнитивные" системы радиосвязи предшествующего уровня техники стремятся повысить использование спектра в заданной области, используя интеллектуальные алгоритмы в пределах систем радиосвязи, так чтобы они могли минимизировать помехи друг другу, и/или так, чтобы они могли потенциально "слушать" использование спектра другими, чтобы выжидать, пока канал станет чистым. Такие системы предлагаются для использования, в частности, в нелицензируемом спектре, чтобы повысить использование такого спектра.
Мобильная оперативная сеть (MANET) (смотрите http://en.wikipedia.org/wiki/Mobile_ad_hoc_network) является примером совместной самоконфигурирующейся сети, предназначенной для обеспечения одноранговой связи, и может использоваться для установления связи среди радиосистем без сотовой инфраструктуры и с достаточно низкой мощностью при связи, может потенциально уменьшить помеху для одновременных передач, которые находятся вне диапазона дальности связи друг от друга. Для системы MANET было предложено и реализовано огромное количество протоколов маршрутизации (смотрите <http://en.wikipedia.org/wiki/List_of_ad-hoc_routing_protocols>, где приводится список десятков протоколов маршрутизации в широком диапазоне классов), но общей темой среди них является то, что все они являются способами маршрутизации (например, ретрансляции) передач таким образом, чтобы минимизировать помеху передатчика внутри доступного спектра с целью определенных парадигм эффективности или надежности.
Все предшествующие многопользовательские беспроводные системы предшествующего уровня стремятся улучшить использование спектра в заданной области покрытия, используя способы, позволяющие одновременное использование спектра базовыми станциями и многочисленными пользователями. Примечательно, что во всех этих случаях способы, применяемые для одновременного использования спектра базовыми станциями и многочисленными пользователями, достигают одновременного использования спектра многочисленными пользователями, смягчая помехи для сигналов многочисленных пользователей. Например, в случае 3 базовых станций, каждая из которых использует разные частоты для передачи одному из 3 пользователей, помеха уменьшается, потому что эти 3 передачи ведутся на 3 различных частотах. В случае секторизации от базовой станции к 3 различным пользователям, при каждом отклонении на 180 градусов относительно базовой станции помеха уменьшается, потому что формирование луча препятствует тому, чтобы эти 3 передачи накладывались друг на друга у любого пользователя.
Когда такие способы подкрепляются использованием MU-MIMO, и, например, каждая базовая станция имеет 4 антенны, то это дает потенциальную возможность повысить пропускную способность нисходящей линии связи в 4 раза, создавая четыре не создающих друг другу помех пространственных канала в направлении пользователей в заданной области покрытия. Но это все же тот случай, когда для уменьшения помехи при многочисленных одновременных передачах многочисленным пользователям в различных областях покрытия должен быть использован некий способ.
И, как обсуждалось ранее, такие способы предшествующего уровня техники (например, создание сотовых сетей, секторизация) обычно не только страдают увеличением стоимости многопользовательской беспроводной системы и/или недостатком гибкости развертывания, но они обычно сталкиваются с физическими или практическими ограничениями совокупной пропускной способности в заданной области покрытия. Например, в системе сотовой связи может оказаться недостаточно доступных мест для установки большего количества базовых станций, чтобы создать более мелкие ячейки. В системе MU-MIMO, учитывая кластеризированное разнесение антенн в каждом месте расположения базовой станции, ограниченное пространственное разнесение приводит в результате к асимптотически убывающему выигрышу в пропускной способности по мере добавления к базовой станции большего количества антенн.
И дополнительно, в случае многопользовательских беспроводных систем, где расположение и плотность пользователей непредсказуемы, это приводит к непредсказуемой (часто с резкими изменениями) пропускной способности, что неудобно для пользователя и делает некоторые применения (например, предоставление услуг, требующих предсказуемой пропускной способности) непрактичными или низкого качества. Таким образом, многопользовательские беспроводные системы предшествующего уровня все еще оставляют желать лучшего с точки зрения их возможности предоставлять пользователям предсказуемые и/или высококачественные услуги.
Несмотря на экстраординарную изощренность и сложность, с которыми в течение долгого времени разрабатывались многопользовательские беспроводные системы предшествующего уровня, существуют общие темы: передачи распределяются между различными базовыми станциями (или специальными приемопередатчиками) и структурируются и/или управляются так, чтобы на приемнике заданного пользователя избежать взаимодействия друг с другом передач радиочастотных сигналов от различных базовых станций и/или различных специальных приемопередатчиков.
Или, выражаясь иначе, принимается как данность, что если пользователю случается принимать передачи от более чем одной базовой станции или специального приемопередатчика одновременно, помеха из-за многочисленных одновременных передач приводит к снижению SNR и/или ширины полосы сигнала для пользователя, что, если такое снижение достаточно серьезно, приведет к потере всех или некоторых потенциальных данных (или аналоговой информации), которые, в противном случае, должны были бы быть приняты пользователем.
Таким образом, в многопользовательской беспроводной системе необходимо использовать один или более подходов к совместному использованию спектра или что-то другое, чтобы избежать или уменьшить пользователям такую помеху, создаваемую многочисленными базовыми станциями или специальными приемопередатчиками, работающими на одной и той же частоте одновременно. На предшествующем уровне техники было разработано огромное количество подходов к избежанию такой помехи, в том числе управление физическим расположением базовых станций (например, создание сотовых сетей), ограничение выходной мощности базовых станций и/или специальных приемопередатчиков (например, ограничение дальности передачи), формирование диаграммы направленности/секторизация и мультиплексирование во временной области. Короче говоря, все эти системы совместного использования спектра стремятся решить проблему ограничения многопользовательских беспроводных систем, состоящую в том, что когда многочисленные базовые станции и/или специальные приемопередатчики, ведущие передачу одновременно на одной и той же частоте, принимаются одним и тем же пользователем, возникающая в результате помеха уменьшает или уничтожает пропускную способность данных для пользователя, на которого она оказывает влияние. Если большой процент или все пользователи в многопользовательской беспроводной системе подвергаются воздействию помехи от многочисленных базовых станций и/или специальных приемопередатчиков (например, в случае сбоя в работе компонента многопользовательской беспроводной системы), то это может привести к ситуации, когда совокупная пропускная способность многопользовательской беспроводной системы существенно уменьшится или даже окажется неработоспособной.
Многопользовательские беспроводные системы предшествующего уровня техники добавляют сложность и вводят ограничения для беспроводных сетей и часто приводят к ситуации, где на опыт работы данного пользователя (например, в отношении доступной пропускной способности, задержки, предсказуемости, надежности) влияет использование спектра другими пользователями в области покрытия. Учитывая растущий спрос на совокупную ширину полосы в пределах спектра беспроводной связи, совместно используемого многочисленными пользователями, и увеличивающееся количество применений, которые могут опираться на надежность, предсказуемость и низкую задержку многопользовательской беспроводной сети для данного пользователя, очевидно, что многопользовательская технология беспроводной связи предшествующего уровня развития техники страдает многими ограничениями. Действительно, при ограниченной доступности спектра, пригодного для определенных типов беспроводной связи, (например, длины волн, которые эффективны для проникновения через стены здания), может иметь место, что беспроводные способы предшествующего уровня техники будут недостаточны для удовлетворения растущего спроса на пропускную способность, которая надежна, предсказуема и обладает низкой задержкой.
Предшествующий уровень техники, связанный с настоящим изобретением, описывает системы формирования диаграммы направленности луча и способы управления нулем в многопользовательских сценариях. Формирование луча первоначально было задумано, чтобы максимизировать отношение сигнал-шум (SNR) при приеме, динамически регулируя фазу и/или амплитуду сигналов (то есть веса при формировании луча), подаваемых к антенным решеткам, фокусируя, таким образом, энергию в направлении пользователя. В многопользовательском сценарии формирование луча может использоваться для подавления источников помех и максимизации отношения "сигнал/смесь помехи с шумом" (SINR). Например, когда формирование луча используется в приемнике беспроводной линии связи, веса вычисляются так, чтобы создать нули в направлении источников помех. Когда формирование луча используется в передатчике в многопользовательских сценариях для нисходящей линии связи, веса вычисляются, чтобы заранее подавить межпользовательскую помеху и максимизировать SINR для каждого пользователя. Альтернативные способы для многопользовательских систем, такие как предварительное кодирование BD, вычисляют веса перед кодированием, чтобы максимизировать пропускную способность в нисходящем широковещательном канале. Одновременно рассматриваемые заявки, которые включаются сюда посредством ссылки, описывают упомянутые выше технологии (смотрите одновременно рассматриваемые заявки для конкретных ссылок).
Краткое описание чертежей
Лучшего понимания настоящего изобретения можно достигнуть, изучая последующее подробное описание в сочетании с чертежами, на которых:
фиг.1 - основной кластер DIDO, окруженный соседними кластерами DIDO в одном из вариантов осуществления изобретения;
фиг.2 - способы множественного доступа с частотным разделением (FDMA), используемые в одном из вариантов осуществления изобретения;
фиг.3 - способы множественного доступа с временным разделением (TDMA), используемые в одном из вариантов осуществления изобретения;
фиг.4 - различные типы помеховых зон, рассматриваемых в одном из вариантов осуществления изобретения;
фиг.5 - структура, используемая в одном из вариантов осуществления изобретения;
фиг.6 - график SER как функции SNR, принимая SIR=10 дБ для целевого клиента в помеховой зоне;
фиг.7 - график SER, полученный двумя способами предварительного кодирования IDCI;
фиг.8 - пример сценария, в котором целевой клиент перемещается из основного кластера DIDO в помеховый кластер;
фиг.9 - отношение "сигнал/смесь помехи с шумом" (SINR) как функция расстояния (D);
фиг.10 - характеристика частоты появления ошибочных символов (SER) для трех сценариев модуляции 4-QAM в узкополосных каналах с неглубоким замиранием;
фиг.11 - способ предварительного кодирования IDCI в соответствии с одним из вариантов осуществления изобретения;
фиг.12 - изменение SINR в одном из вариантов осуществления как функция расстояния местоположения клиента от центра основных кластеров DIDO;
фиг.13 - вариант осуществления, в котором значение SER получают для модуляции 4-QAM;
фиг.14 - вариант осуществления изобретения, в котором конечный автомат реализует алгоритм эстафетной передачи;
фиг.15 - вариант осуществления стратегии эстафетной передачи в присутствии затенения;
фиг.16 - механизм гистерезисного цикла при переключении между двумя состояниями, показанными на фиг.14;
фиг.17 - вариант осуществления системы DIDO с управлением мощностью;
фиг.18 - график зависимости SER от SNR, предполагая четыре передающих антенны DIDO и четыре клиента в различных сценариях;
фиг.19 - плотность мощности МРЕ как функция расстояния от источника радиочастотного излучения для различных значений мощности передачи в соответствии с одним из вариантов осуществления изобретения;
фиг.20a-в - различные распределения антенн низкой мощности и антенн высокой мощности для распределенных антенн DIDO;
фиг.21a-в - два распределения мощности, соответствующие конфигурациям, показанным соответственно на фиг.20a и 20в;
фиг.22a-в - распределение частоты для двух сценариев, показанных на фиг.20a и 20в соответственно;
фиг.23 - один из вариантов осуществления системы DIDO с управлением мощностью;
фиг.24 - один из вариантов осуществления способа, который выполняет итерации по всем группам антенн согласно политике планирования кругового обслуживания для передачи данных;
фиг.25 - сравнение характеристики некодированного значения SER при управлении мощностью с группированием антенной с выбором обычной собственной моды в патенте США №7,636,381;
фиг.26a-c - три сценария, в которых предварительное кодирование BD динамически регулирует веса предварительного кодирования, чтобы учесть различные уровни мощности по беспроводным линиям связи между антеннами DIDO и клиентами;
фиг.27 - амплитуда в каналах с низкой частотной селективностью (полагая β=1) в области задержки или мгновенного PDP (верхний график) и частотной области (нижний график) для систем DIDO 2×2;
фиг.28 - один из вариантов осуществления частотной характеристики канальной матрицы для DIDO 2×2 с одной антенной на каждого клиента;
фиг.29 - вариант осуществления частотной характеристики канальной матрицы для DIDO 2×2 с одной антенной на каждого клиента для каналов, характеризуемых высокой частотной селективностью (например, при β=0,1);
фиг.30 - пример SER для различных схем QAM (то есть 4-QAM, 16-QAM, 64-QAM);
фиг.31 - вариант осуществления способа реализации технологии адаптации линий связи (LA);
фиг.32 - показатель SER для одного из вариантов осуществления технологии адаптации линий связи (LA);
фиг.33 - элементы матрицы в уравнении (28) как функция индекса тонального сигнала FDM для системы DIDO 2×2 с NFFT=64 и L0=8;
фиг.34 - зависимость SER от SNR для L0=8, передающих антенн M=Nt=2 и переменного числа P;
фиг.35 - показатель SER для одного из вариантов осуществления способа интерполяции для различных порядков DIDO и L0=16,
фиг.36 - вариант осуществления системы, использующей суперкластеры, DIDO-кластеры и кластеры пользователей;
фиг.37 - система с кластерами пользователей, соответствующая одному из вариантов осуществления изобретения;
фиг.38a-в - метрические пороги качества линии связи, используемые в одном из вариантов осуществления изобретения;
фиг.39-41 - примеры матриц качества линий связи для организации кластеров пользователей;
фиг.42 - вариант осуществления, в котором клиент движется через различные кластеры DIDO.
Подробное описание
Одним из решений по преодолению многих из упомянутых выше ограничений предшествующего уровня техники является вариант осуществления технологии распределенного входа-распределенного выхода (Distributed-Input Distributed-Output, DIDO). Технология DIDO описывается в следующих патентах и патентных заявках, которые все переуступлены правопреемнику настоящего патента и включаются сюда посредством ссылки. Эти патенты и заявки иногда здесь упоминаются все вместе как "родственные патенты и заявки":
Заявка США №12/802,988, поданная 16 июня 2010 г., под названием "Interference Management, Handoff, Power Control And Link Adaptation In Distributed-Input Distributed-Output (DIDO) Communication Systems";
Заявка США №12/802,976, поданная 16 июня 2010 г., под названием "System And Method For Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements";
Заявка США №12/802,974, поданная 16 июня 2010 г., под названием "System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters";
Заявка США №12/802,989, поданная 16 июня 2010 г., под названием "System And Method For Managing Handoff Of A Client Between Different Distributed-Input-Distributed-Output (DIDO) Networks Based On Detected Velocity Of The Client";
Заявка США №12/802,958, поданная 16 июня 2010 г., под названием "System And Method For Power Control And Antenna Grouping In A Distributed-Input-Distributed-Output (DIDO) Network";
Заявка США №12/802,975, поданная 16 июня 2010 г., под названием "System And Method For Link adaptation In DIDO Multicarrier Systems";
Заявка США №12/802,938, поданная 16 июня 2010 г., под названием "System And Method For DIDO Precoding Interpolation In Multicarrier Systems";
Заявка США №12/630,627, поданная 2 декабря 2009 г., под названием "System and Method For Distributed Antenna Wireless Communications";
Патент США №7,599,420, заявка подана 20 августа 2007 г., выдан 6 октября 2009 г., под названием "System and Method for Distributed Input Distributed Output Wireless Communication";
Патент США №7,633,994, заявка подана 20 августа 2007 г., выдан 15 декабря 2009 г., под названием "System and Method for Distributed Input Distributed Output Wireless Communication";
Патент США №7,636,381, заявка подана 20 августа 2007 г., выдан 22 декабря 2009 г., под названием "System and Method for Distributed Input Distributed Output Wireless Communication";
Заявка США №12/143,503, поданная 20 июня 2008 г., под названием "System and Method For Distributed Input-Distributed Output Wireless Communications";
Заявка США №11/256,478, поданная 21 октября 2005 г., под названием "System and Method For Spatial-Multiplexed Tropospheric Scatter Communications";
Патент США №7,418,053, заявка подана 30 июля 2004 г., выдан 26 августа 2008 г., под названием "System and Method for Distributed Input Distributed Output Wireless Communication";
Заявка США №10/817,731, поданная 2 апреля 2004 г., под названием "System and Method For Enhancing Near Vertical Incidence Skywave ("NVIS") Communication Using Space-Time Coding".
Чтобы уменьшить размер и сложность настоящей патентной заявки, раскрытие некоторых родственных патентов и заявок не излагается здесь в явном виде. Пожалуйста, смотрите родственные патенты и заявки для полного подробного описания раскрытия.
Заметим, что приведенный ниже раздел I (Раскрытие из родственной заявки №12/802,988) использует его собственный набор примечаний, которые относятся к ссылкам предшествующего уровня и предшествующим заявкам, переуступленным правопреемнику настоящей заявки. Ссылки в примечаниях перечисляются в конце раздела I (непосредственно перед заголовком раздела II). Ссылки, используемые в разделе II, могут иметь числовые обозначения для своих ссылок, которые частично совпадают со ссылками, используемыми в разделе I, даже при том, что эти числовые обозначения идентифицируют различные ссылки (перечисленные в конце раздела II). Таким образом, ссылки, идентифицированные определенным числовым обозначением, могут быть идентифицированы в пределах раздела, в котором используется числовое обозначение.
I. Раскрытие из родственной заявки №12/802,988
1. Способы удаления межкластерной помехи
Ниже описаны системы, являющиеся системами беспроводной радиочастотой (RF) связи, и способы, использующие множество распределенных передающих антенн для создания в пространстве мест с нулевой радиочастотной энергией. Когда используются М передающих антенн, можно создать до (M-1) точек с нулевой радиочастотной энергией в заданных местах. В одном из вариантов осуществления изобретения точки с нулевой радиочастотной энергии являются беспроводными устройствами и передающие антенны знают информацию о состоянии канала (CSI) между передатчиками и приемниками. В одном из вариантов осуществления CSI вычисляется на приемниках и возвращается обратно к передатчикам. В другом варианте осуществления CSI вычисляется на передатчике через прохождение контрольных сигналов от приемников, предполагая использование взаимообразности канала. Передатчики могут использовать CSI для определения помеховых сигналы, которые будут передаваться одновременно. В одном из вариантов осуществления предварительное кодирование блочной диагонализации (BD) используется в передающих антеннах для формирования точек с нулевой радиочастотной энергией.
Система и способы, описанные здесь, отличаются от описанных выше стандартных технологий формирования луча при передаче/приеме. Фактически, при формировании луча при приеме вычисляют веса для подавления помехи на приемной стороне (посредством управления нулями), тогда как некоторые варианты осуществления изобретения, описанные здесь, применяют веса на передающей стороне, чтобы создать помеховые структуры, которые приводят к одному или множеству мест в пространстве с "нулевой радиочастотной энергией". В отличие от стандартного формирования луча при передаче или предварительного кодирования BD, разработанных для максимизации качества сигнала (или SINR) для каждого пользователя или пропускной способности нисходящей линии связи, соответственно, системы и способы, описанные здесь, минимизируют качество сигнала при определенных условиях и/или от определенных передатчиков, создавая, таким образом, точки с нулевой радиочастотной энергией в устройствах клиента (иногда упоминаемых здесь как "пользователи"). Кроме того, в контексте систем распределенного входа-распределенного выхода (DIDO) (описанных в наших родственных патентах и заявках), передающие антенны, распределенные в пространстве, обеспечивают более высокие степени свободы (то есть более высокое пространственное разнесение каналов), которые могут быть использованы для создания многочисленных точек с нулевой радиочастотной энергией и/или получения максимального SINR для различных пользователей. Например, с помощью M передающих антенн можно создать до (M-1) точек радиочастотной энергии. В отличие от этого практическое формирование луча или многопользовательские системы с BD обычно разрабатываются с близко расположенными антеннами на передающей стороне, которые ограничивают количество одновременных пользователей, которые могут быть обслужены по беспроводной линии связи, при любом количестве передающих антенн M.
Рассмотрим систему с M передающих антенн и K пользователями, причем K<M. Мы предполагаем, что передатчик знает CSI (H∈CK×M) между M передающих антенн и K пользователями. Для упрощения каждый пользователь предполагается имеющим одну антенну, но тот же самый способ может быть распространен на многочисленные приемные антенны у каждого пользователя. Веса предварительного кодирования (), которые создают нулевую радиочастотную энергию в K мест расположения пользователей, вычисляются, чтобы удовлетворить w∈CM×1 следующее условие
Hw=0K×1
где 0K×1 - вектор со всеми нулевыми элементами и H является канальной матрицей, полученной объединением векторов канала (hk∈C1×M) от M передающих антенн к K пользователям как
H = [ h 1 h k h н ]
Figure 00000001
В одном из вариантов осуществления вычисляется разложение (SVD) по сингулярным числам матрицы канала H и вес w предварительного кодирования определяется как правый сингулярный вектор, соответствующий нулевому подпространству (идентифицируемому нулевым сингулярным значением) для H.
Передающие антенны используют весовой вектор, определенный выше, для передачи радиочастотной энергии, в то же время создавая K точек с нулевой радиочастотной энергией в местах расположения K пользователей, так что сигнал, принятый в k-м пользователем, представляется как
rk=hkwsk+nk=0+nk
где nk∈C1×1 - аддитивный белый гауссов шум (AWGN) у k-го пользователя.
В одном из вариантов осуществления вычисляется разложение (SVD) по сингулярным числам канальной матрицы H и вес w предварительного кодирования определяется как правый сингулярный вектор, соответствующий нулевому подпространству (идентифицируемому нулевым сингулярным значением) для H.
В одном из вариантов осуществления вычисляется сингулярное разложение (SVD) канальной матрицы H и вес перед кодированием w определяется как правый сингулярный вектор, соответствующий нулевому подпространству (идентифицированный нулевым сингулярным значением) H.
В другом варианте осуществления беспроводная система является системой DIDO, и точки с нулевой радиочастотной энергией создаются, чтобы предварительно исключить помеху для клиентов между различными областями покрытия DIDO. В заявке США №12/630,627 описывается система DIDO, содержащая:
- Клиенты DIDO
- Распределенные антенны DIDO
- Базовые приемопередающие станции (BTS) DIDO
- Сеть базовых станций (BSN) DIDO
Каждая BTS соединяется через BSN с многочисленными распределенными антеннами, которые обеспечивают обслуживание в заданной области, называемой кластер DIDO. В настоящей патентной заявке мы описываем систему и способ подавления помехи между смежными кластерами DIDO. Как показано на фиг.1, мы предполагаем, что в основном кластере DIDO размещается клиент (то есть устройство пользователя, обслуживаемое многопользовательской системой DIDO), на которого воздействует помеха (или целевой клиент) со стороны соседних кластеров.
В одном из вариантов осуществления соседние кластеры работают на различных частотах согласно способам множественного доступа с частотным разделением (FDMA) подобно стандартным системам сотовой связи. Например, при коэффициенте повторного использования частоты, равном 3, одна и та же несущая частота используется повторно каждым третьим кластером DIDO, как показано на фиг.2. На фиг.2 различные несущие частоты идентифицируются как F1, F2 и F3. Хотя этот вариант осуществления может использоваться в некоторых реализациях, такое решение приводит в итоге к снижению спектральной эффективности, так как доступный спектр делится на многочисленные поддиапазоны, и только один поднабор кластеров DIDO работает в одном и том же поддиапазоне. Кроме того, это требует сложного планирования сотовой связи, чтобы связать различные кластеры DIDO с различными частотами, предотвращая, таким образом, действие помехи. Подобно сотовым системам предшествующего уровня техники, такое планирование сотовой связи требует особого размещения антенн и ограничения мощности передачи, чтобы избежать помех между кластерами, использующими одну и ту же частоту.
В другом варианте осуществления соседние кластеры работают в одной и той же полосе частот, но в различных временных слотах в соответствии со способом множественного доступа с временным разделением (TDMA). Например, как показано на фиг.3, передача DIDO разрешается только в моменты времени T1, T2 и T3 для определенных кластеров, как показано на чертеже. Временные слоты могут назначаться в равной степени различным кластерам, так что различные кластеры планируются в соответствии с политикой кругового обслуживания. Если различные кластеры характеризуются различными требованиями к скорости передачи данных (то есть кластеры в переполненных городских средах в отличие от кластеров в сельских районах с меньшим количеством клиентов на область покрытия), то различным кластерам назначаются различные приоритеты, так что больше временных слотов назначаются кластерам с большими требованиями к скорости передачи данных. Хотя TDMA, как описано выше, может использоваться в одном из вариантов осуществления изобретения, подход TDMA может потребовать синхронизации во времени для различных кластеров и может привести к более низкой спектральной эффективности, так как помеховые кластеры не могут использовать одну и ту же частоту одновременно.
В одном из вариантов осуществления все соседние кластеры ведут передачу одновременно в одной и той же полосе частот и используют для кластеров пространственную обработку, чтобы избежать помех. В этом варианте осуществления мультикластерная система DIDO: (i) использует стандартное предварительное кодирование DIDO внутри основного кластера, чтобы передать одновременные, не создающие помех потоки данных в пределах одной и той же полосы частот многочисленным клиентам (как описано в родственных патентах и заявках, в числе которых №№7599420; 7633994; 7636381; и заявке №12/143,503); (ii) использует предварительное кодирование DIDO с подавлением помех в соседних кластерах, чтобы избежать помех клиентам, находящимся в помеховых зонах 8010, как показано на фиг.4, создавая точки с нулевой радиочастотной (RF) энергией в местах расположения целевых клиентов. Если целевой клиент находится в помеховой зоне 410, он будет принимать сумму радиочастотной энергии, содержащей поток данных от основного кластера 411, и нулевой радиочастотной энергии от помехового кластера 412-413, которая будет просто радиочастотной энергией, содержащей поток данных от основного кластера. Таким образом, смежные кластеры могут использовать одну и ту же частоту одновременно, не имея в помеховой зоне целевых клиентов, страдающих от помех.
В практических системах на характеристики предварительного кодирования DIDO могут влиять различные факторы, такие как: ошибка оценки канала или эффекты Доплера (приводящие к устаревшей информации о состоянии канала на распределенных антеннах DIDO); перекрестные искажения (IMD) в системах DIDO с мультинесущей; смещения по времени или по частоте. В результате этих эффектов может оказаться нецелесообразным добиваться достижения точек с нулевой радиочастотной энергией. Однако, пока радиочастотная энергия у целевого клиента от помеховых кластеров незначительна по сравнению с радиочастотной энергией от основного кластера, характеристики линии связи у целевого клиента помехой не затрагиваются. Например, предположим, что клиент требует отношение сигнал-шум 20 дБ (SNR), чтобы демодулировать комбинацию 4-QAM, используя кодирование с прямым исправлением ошибок (FEC), чтобы достигнуть целевого значения частоты появления ошибочных битов (BER) 10-6. Если радиочастотная энергия у целевого клиента, принятая от помехового кластера, на 20 дБ ниже радиочастотной энергии, принятой от основного кластера, помеха незначительна и клиент может успешно демодулировать данные в пределах заданного целевого значения BER. Таким образом, термин "нулевая радиочастотная энергия", как он используется здесь, не обязательно означает, что радиочастотная энергия помеховых радиочастотных сигналов равна нулю. Скорее это означает, что радиочастотная энергия является достаточно низкой относительно радиочастотной энергии полезного радиочастотного сигнала, так что полезный радиочастотный сигнал может быть принят в приемнике. Кроме того, хотя для помеховой радиочастотной энергии описываются определенные желаемые пороговые значения относительно полезной радиочастотной энергии, основополагающие принципы изобретения не ограничиваются никакими определенными пороговыми значениями.
Существуют различные типы помеховых зон 8010, как показано на фиг.4. Например, на зоны "типа A" (как обозначено буквой "A") влияет помеха только от одного соседнего кластера, тогда как зоны "типа B" (как обозначено буквой "B") учитывают помеху от двух или более соседних кластеров.
На фиг.5 показана структура, используемая в одном из вариантов осуществления изобретения. Точки обозначают распределенные антенны DIDO, кресты относятся к клиентам DIDO, и стрелки указывают направления распространения радиочастотной энергии. Антенны DIDO в основном кластере передают сигналы предварительно кодированных данных клиентам МС 501 в этом кластере. Аналогично, антенны DIDO в помеховом кластере обслуживают клиентов IC 502 в пределах этого кластера посредством стандартного предварительного кодирования DIDO. Зеленый крест 503 обозначает целевого клиента TC 503 в помеховой зоне. Антенны DIDO в основном кластере 511 передают сигналы предварительно кодированных данных целевому клиенту (черные стрелки) посредством стандартного предварительного кодирования DIDO. Антенны DIDO в помеховом кластере 512 используют предварительное кодирование для создания нулевой радиочастотной энергии в направлении целевого клиента 503 (зеленые стрелки).
Принятый сигнал у целевого клиента k в любой помеховой зоне 410A, B на фиг.4 описывается как
r k = H k W k s k + H k u = 1 u k U W u s u + c = 1 C H c , k i = 1 I C W c , i s c , i + n k ( 1 )
Figure 00000002
где k=1, …, K и K - количество клиентов в помеховой зоне 8010А, В, U - количество клиентов в основном кластере DIDO, C - количество помеховых кластеров DIDO 412-413 и Ic - количество клиентов в помеховом кластере c. Кроме того, rk∈CN×M - вектор, содержащий принимаемые потоки данных у клиента k, принимая M передающих антенн DIDO и N приемных антенн в устройствах клиентов; sk∈CN×1 - вектор передаваемых потоков данных клиенту k в основном кластере DIDO; sc,i∈CN×1 - вектор передаваемых потоков данных клиенту и в основном кластере DIDO; sc,i∈CN×1 - вектор передаваемых потоков данных клиенту i в c-ом помеховом кластере DIDO; nk⊂CN×1 - вектор аддитивного белого гауссова шума (AWGN) в N приемных антеннах клиента k; Hk⊂CN×M - канальная матрица DIDO от M передающих антенн DIDO до N приемных антенн у клиента k в основном кластере DIDO; Hc,k∈CN×M - канальная матрица DIDO от M передающих антенн DIDO до N приемных антенн у клиента k в c-м помеховом кластере DIDO; Wk∈CM×N - матрица весов предварительного кодирования DIDO для клиента k в основном кластере DIDO; Wk∈CM×N - матрица весов предварительного кодирования DIDO для клиента и в основном кластере DIDO; Wc,i∈CM×N - матрица весов предварительного кодирования DIDO для клиента i в c-м помеховом кластере DIDO.
Чтобы упростить условные обозначения и без потери общности, мы предполагаем, что все клиенты снабжены N приемными антеннами и имеется M распределенных антенн DIDO в каждом кластере DIDO, причем M≥(N·U) и M≥(N·Ic), ∀c=1, …, C. Если M больше, чем общее количество приемных антенн в кластере, дополнительные передающие антенны используются, чтобы заранее уничтожить помеху целевым клиентам в помеховой зоне или улучшить устойчивость линии связи для клиентов в пределах того же самого кластера через схемы разнесения, описанные в родственных патентах и заявках, в том числе в патентах 7599420; 7633994; 7636381 и заявке №12/143,503.
Веса предварительного кодирования DIDO вычисляются, чтобы заранее подавить межклиентскую помеху в пределах одного и того же кластера DIDO. Например, предварительное кодирование с блочной диагонализацией (BD), описанное в родственных патентах и заявках, в том числе в патентах 7599420; 7633994; 7636381; и заявке №12/143,503 и [7], может использоваться для удаления межклиентской помехи, так что в основном кластере удовлетворяется следующее условие:
H k W u = O N × N ; u = 1 , , U ; п р и u k ( 2 )
Figure 00000003
Весовые матрицы предварительного кодирования в соседних кластерах DIDO проектируются таким образом, что удовлетворяется следующее условие:
H c , k W c . i = O N × N ; c = 1 , , C ; и c = 1 , , C ( 3 )
Figure 00000004
Чтобы вычислить матрицы Wc.i предварительного кодирования, нисходящий канал от M передающих антенн к Ic клиентам в помеховом кластере, а также клиенту k в помеховой зоне оценивается и матрица предварительного кодирования вычисляется на BTS DIDO в помеховом кластере. Если для вычисления матриц предварительного кодирования в помеховых кластерах используется способ BD, следующая эффективная канальная матрица создается, чтобы вычислить веса для i-го клиента в соседних кластерах
H ¯ c , i = [ H c , k H c , i ] ( 4 )
Figure 00000005
где H ˜ c , i
Figure 00000006
является матрицей, полученной из матрицы канала HG∈C(N-IC)×M для помехового кластера c, где строки, соответствующие i-му клиенту, удаляются.
Подставляя условия (2) и (3) в (1), мы получаем принятые потоки данных для целевого клиента k, где внутрикластерная и межкластерная помехи удалены
r k = H k W k s k + n k ( 5 )
Figure 00000007
Веса Wc.i предварительного кодирования в (1), вычисленные в соседних кластерах, разрабатываются так, чтобы передавать предварительно кодированные потоки данных всем клиентам в этих кластерах, в то же время заранее уничтожая помеху для целевого клиента в помеховой зоне. Целевой клиент принимает предварительно кодированные данные только от своего основного кластера. В другом варианте осуществления тот же самый поток данных посылается целевому клиенту как от основного, так и от соседних кластеров, чтобы получить выигрыш от разнесения. В этом случае, модель сигнала в (5) выражается следующим образом:
r k = ( H k W k + c = 1 c H c , k W c , k ) s k + n k ( 6 )
Figure 00000008
где Wc,k является матрицей предварительного кодирования DIDO от передатчиков DIDO в c-м кластере к целевому клиенту k в помеховой зоне. Заметим, что способ в (6) требует синхронизации во времени для соседних кластеров, которую может быть трудно достигнуть в больших системах, но тем не менее она вполне осуществима, если преимущество выигрыша при разнесении оправдывает затраты на реализацию.
Мы начинаем с оценки характеристик предложенного способа с точки зрения частоты появления ошибочных символов (SER) как функции отношения сигнал/шум (SNR). Без потери общности мы определяем следующую модель сигнала, принимая одну антенну на каждого клиента, и переформулируем (1) следующим образом:
r k = S N R h k w k s k + I N R h c , k i = 1 I w c , i s c , i + n k ( 7 )
Figure 00000009
где INR является отношением "помеха-шум", определяемым как INR=SNR/SIR и SIR является отношением "сигнал-помеха".
На фиг.6 показано SER как функция SNR, принимая SIR=10 дБ для целевого клиента в помеховой зоне. Без потери общности, мы измеряли SER для 4-QAM и 16-QAM без кодирования с прямым исправлением ошибок (FEC). Мы получили целевое SER равным 1% для некодированных систем. Эта цель соответствует различным значениям SNR в зависимости от порядка модуляции (то есть SNR=20 дБ для 4-QAM и SNR=28 дБ для 16-QAM). Более низкие целевые значения SER могут быть удовлетворены при тех же самых значениях SNR, используя кодирование с FEC за счет выигрыша, даваемого кодированием. Мы рассматриваем сценарий двух кластеров (один основной кластер и один помеховый кластер) с двумя антеннами DIDO и двумя клиентами (каждый из которых оборудован одной антенной) на кластер. Один из клиентов в основном кластере находится в помеховой зоне. Мы предполагаем узкополосные каналы с неглубоким замиранием, но нижеследующие результаты могут быть распространены на частотно-селективные системы с мультинесущей (OFDM), где каждая поднесущая подвергается неглубокому замиранию. Мы рассматриваем два сценария: (i) один с помехой между кластерами DIDO (IDCI), где веса Wc,i предварительного кодирования вычисляются, не учитывая целевого клиента в помеховой зоне; и (ii) другой, где IDCI удаляется, вычисляя веса Wc,i, чтобы уничтожить IDCI для целевого клиента. Мы видим, что в присутствии IDCI SER является высоким и выше заданной цели. При предварительном кодировании с IDCI в соседнем кластере помеха для целевого клиента подавляется и цели SER достигаются для SNR>20 дБ.
Результаты, показанные на фиг.6, предполагают предварительное кодирование с IDCI, как в выражении (5). Если предварительное кодирование с IDCI используется также в соседних кластерах, чтобы предварительно кодировать потоки данных для целевого клиента в помеховой зоне, в выражении (6), при разнесении получается дополнительный выигрыш. На фиг.7 показано сравнение SER, полученного двумя способами: (i) "Способ 1", использующий предварительное кодирование с IDCI согласно (5); (ii) "Способ 2", использующий предварительное кодирование с IDCI согласно (6), где соседние кластеры также передают поток предварительно кодированных данных целевому клиенту. Способ 2 приносит выигрыш ~3 дБ по сравнению со стандартным предварительным кодированием с IDCI из-за дополнительного выигрыша, даваемого матрицей, обеспечиваемой антеннами DIDO в соседнем кластере, используемыми для передачи предварительно кодированного потока данных целевому клиенту. В более общем смысле, выигрыш за счет матрицы в способе 2 относительно способа 1 пропорционален 10*log10 (C+1), где C - количество соседних кластеров и коэффициент "1" относится к основному кластеру.
Затем мы оцениваем характеристики упомянутого выше способа как функцию расположения целевого клиента относительно помеховой зоны. Мы рассматриваем один простой сценарий, где целевой клиент 8401 перемещается из основного кластера DIDO 802 в помеховый кластер 803, как показано на фиг.8. Мы предполагаем, что все антенны DIDO 812 внутри основного кластера 802 используют предварительное кодирование BD для подавления внутрикластерной помехи, чтобы удовлетворить условие (2). Мы предполагаем единственный помеховый кластер DIDO, единственную приемную антенну в устройстве 801 клиента и равные потери на пути прохождения сигнала от всех антенн DIDO в основном или помеховом кластере до клиента (то есть до антенн DIDO, расположенных по кругу вокруг клиента). Мы используем упрощенную модель потерь на пути прохождения с экспонентой 4 потерь на пути прохождения (как в типичных городских средах) [11].
Анализ после этого основан на следующей упрощенной модели сигнала, которая расширяет (7) для учета потерь на пути прохождения сигнала
r k = S N R D o 4 D 4 h k w k s k + S N R D o 4 ( 1 D ) 4 h c , k i = 1 I w c , i s c , i + n k                                                                                        ( 8 )
Figure 00000010
где отношение сигнал-помеха (SIR) получается как SIR=(1-D)/D)4. При моделировании IDCI мы рассматриваем три сценария: i) идеальный случай без IDCI; ii) предварительное подавление IDCI посредством предварительного кодирования BD в помеховом кластере, чтобы удовлетворить условие (3); iii) с IDCI, без предварительного подавления соседним кластером.
На фиг.9 показано отношение сигнал-смесь помехи с шумом (SINR) как функция D (то есть когда целевой клиент перемещается из основного кластера 802 в направлении антенн DIDO 813 в помеховом кластере 8403). SINR получается как отношение мощностей сигнала и смеси помехи и шума, используя модель сигнала, приведенную в (8). Мы предполагаем, что Do=0,1 и SNR=50 дБ для D=Do. В отсутствие IDCI на характеристики беспроводной линии связи влияет только шум и SINR уменьшается за счет потерь на пути прохождения сигнала. В присутствии IDCI (то есть без предварительного кодирования с IDCI) помеха от антенн DIDO в соседнем кластере способствует уменьшению SINR.
На фиг.10 показана характеристика частоты появления ошибочных символов (SER) для этих трех сценариев, представленных выше, для модуляции 4-QAM в узкополосных каналах с неглубоким замиранием. Эти результаты SER соответствуют SINR на фиг.9. Мы принимаем порог SER равным 1% для некодированных систем (то есть без FEC), соответствующий порогу SINR SINRT=20 дБ на фиг.9. Порог SINR зависит от порядка модуляции, используемого для передачи данных. Более высокие порядки модуляции обычно характеризуются более высоким SINRT, чтобы достигнуть той же самой целевой частоты ошибок. При наличии FEC более низкая целевая SER может быть достигнута для того же самого значения SINR благодаря выигрышу от кодирования. В случае IDCI без предварительного кодирования целевая SER достигается только в пределах диапазона D<0,25. При предварительном кодировании с IDCI в соседнем кластере диапазон, который удовлетворяет целевой SER, расширяется до D<0,6. Сверх этого диапазона SINR увеличивается из-за потерь на пути прохождения сигнала и целевая SER не удовлетворяется.
Один из вариантов осуществления способа предварительного кодирования с IDCI показан на фиг.11 и состоит из следующих этапов:
- Оценка SIR на этапе 1101: Клиенты оценивают мощность сигнала от основного кластера DIDO (то есть основываясь на принятых предварительно кодированных данных) и мощность смеси сигнала помехи и шума от соседних кластеров DIDO. В системах DIDO с одиночной несущей структура кадра может быть разработана с короткими периодами молчания. Например, периоды молчания могут быть определены между использованием контрольного сигнала для оценки канала и передачами предварительно кодированных данных во время обратной связи для передачи информации о состоянии канала (CSI). В одном из вариантов осуществления мощность смеси сигнала помехи и шума от соседних кластеров измеряется в течение периодов молчания от антенн DIDO в основном кластере. В практических системах DIDO с мультинесущей (OFDM) нулевые тональные сигналы обычно используются для предотвращения смещения постоянного тока (DC) и затухания на краю полосы из-за фильтрации на передающей и приемной сторонах. В другом варианте осуществления, использующем системы с мультинесущей, мощность смеси сигнала и шума оценивается по нулевым тональным сигналам. Поправочные коэффициенты могут использоваться для компенсации затухания фильтров передачи/приема на краю полосы. Когда оценивается мощность смеси сигнала помехи и шума (PS) от основного кластера и мощность смеси помехи и шума от соседних кластеров (PIN), клиент вычисляет SINR следующим образом:
S I N R = P S P I N P I N . ( 9 )
Figure 00000011
Альтернативно, оценка SINR получается из индикации мощности принятого сигнала (RSSI), используемой в типичных системах беспроводной связи для измерения мощности радиосигнала.
Заметим, что показатель в (9) не может делать различие между уровнем мощности шума и уровнем мощности помехи. Например, клиенты, на которые влияет затенение (то есть находящиеся позади препятствий, которые ослабляют мощность сигнала от всех распределенных антенн DIDO в основном кластере) в средах, свободных от помех, могут получить низкое значение SINR даже при том, что на них не влияет межкластерная помеха. Более надежным показателем для предложенного способа является значение SIR, вычисляемое следующим образом:
S I R = P S P I N P I N P N ( 10 )
Figure 00000012
где PN является мощностью шума. В практических системах OFDM с мультинесущей мощность шума PN в (10) оценивается по нулевым тональным сигналам, предполагая, что все антенны DIDO из основного и соседних кластеров используют один и тот же набор нулевых тональных сигналов. Мощность смеси помехи и шума (PIN) оценивается в период молчания, как упомянуто выше. Наконец, мощность (PS) сигнала смеси помехи и шума получается из тональных сигналов данных. Из этих оценок клиент вычисляет значение SIR в выражении (10).
- Оценка канала в соседних кластерах на этапах 1102-1103: Если предполагаемое значение SIR в (10) ниже заданного порога (SIRT), определенного на этапе 8702 на фиг.11, клиент начинает слушать контрольные сигналы от соседних кластеров. Заметим, что значение SIRT зависит от модуляции и схемы кодирования FEC (MCS), используемых для передачи данных. Различные целевые значения SIR определяются в зависимости от MCS у клиента. Когда распределенные антенны DIDO различных кластеров синхронизируются во времени (то есть привязываются к одному и тому же импульсу за секунду, PPS, время отсчета), клиент использует контрольную последовательность, чтобы передать свои оценки канала антеннам DIDO в соседних кластерах на этапе 8703. Контрольная последовательность для оценки канала в соседних кластерах спроектирована так, чтобы быть ортогональной к контрольной последовательности от основного кластера. Альтернативно, когда антенны DIDO в различных кластерах не синхронизируются во времени, ортогональные последовательности (с хорошими свойствами взаимной корреляции) используются для синхронизации во времени в различных кластерах DIDO. Как только клиент привязывается ко времени отсчета/опорной частоте соседних кластеров, на этапе 1103 выполняется оценка канала.
- Предварительное кодирование с IDCI на этапе 1104: Как только на BTS DIDO в соседних кластерах доступны оценки канала, вычисляется предварительное кодирование с IDCI, чтобы удовлетворить условие в выражении (3). Антенны DIDO в соседних кластерах передают потоки предварительно кодированных данных только клиентам в своем кластере, в то же время предварительно подавляя помеху у клиентов в помеховой зоне 410 на фиг.4. Заметим, что, если клиент находится в помеховой зоне 410 типа B на фиг.4, помеха у клиента формируется многочисленными кластерами и предварительное кодирование с IDCI выполняется всеми соседними кластерами одновременно.
Способы эстафетной передачи
Здесь далее мы описываем различные способы эстафетной передачи для клиентов, которые движутся через кластеры DIDO, заполненные распределенными антеннами, расположенные в отдельных областях или которые предоставляют различные виды обслуживания (то есть низко- или высокомобильные службы).
a. Эстафетная передача между смежными кластерами DIDO
В одном из вариантов осуществления предварительный кодер IDCI для удаления межкластерной помехи, описанной выше, используется в качестве исходной точки для способов эстафетной передачи в системах DIDO. Стандартная эстафетная передача в системах сотовой связи придумана для клиентов, чтобы незаметно переключаться через ячейки, обслуживаемые различными базовыми станциями. В системах DIDO эстафетная передача позволяет клиентам перемещаться из одного кластера в другой без потери соединения.
Чтобы иллюстрировать один из вариантов осуществления стратегии эстафетной передачи для систем DIDO, мы снова рассмотрим пример на фиг.8 только с двумя кластерами 802 и 803. По мере того как клиент 801 перемещается от основного кластера (C1) 802 к соседнему кластеру (C2) 803, в одном из вариантов осуществления способа эстафетной передачи динамически вычисляется качество сигнала в различных кластерах и выбирается кластер, приводящий к самому низкому показателю частоты ошибок для клиента.
На фиг.12 показано изменение SINR как функция расстояния между клиентом и центром кластеров C1. Для модуляции 4-QAM без кодирования FEC мы принимаем целевое значение SINR=20 дБ. Линия, показанная окружностями, представляет SINR для целевого клиента, обслуживаемого антеннами DIDO в C1, когда как C1, так и C2 используют предварительное кодирование DIDO без подавления помехи. Значение SINR уменьшается как функция D из-за потерь на пути прохождения сигнала и помехи от соседнего кластера. Когда предварительное кодирование с IDCI реализуется в соседнем кластере, снижение SINR происходит только из-за потерь на пути прохождения сигнала (как показано линией с треугольниками), так как помеха полностью удалена. Симметричное поведение имеет место, когда клиент обслуживается из соседнего кластера. Один из вариантов осуществления стратегии эстафетной передачи определяется таким образом, что по мере того, как клиент перемещается из C1 в C2, алгоритм осуществляет переключение между различными схемами DIDO, чтобы поддерживать значение SINR выше заданного целевого значения.
Из графиков на фиг.12 мы получаем значение SER для модуляции 4-QAM на фиг.13. Заметим, что переключаясь между различными стратегиями предварительного кодирования, значение SER поддерживается в пределах заданного целевого значения.
Один из вариантов осуществления стратегии эстафетной передачи является следующим.
- Предварительное кодирование C1-DIDO и C2-DIDO: Когда клиент находится в пределах C1 вдали от помеховой зоны, оба кластера, C1 и C2, работают со стандартным предварительным кодированием DIDO независимо.
- Предварительное кодирование C1-DIDO и C2-IDCI: По мере того как клиент движется в направлении помеховой зоны, его значения SIR или SINR ухудшаются. Когда достигается целевое значение SINRT1, целевой клиент начинает оценивать канал от всех антенн DIDO в C2 и предоставляет CSI на BTS в C2. BTS в C2 вычисляет предварительное кодирование IDCI и осуществляет передачу всем клиентам в C2, в то же время предотвращая помеху целевому клиенту. Пока целевой клиент находится в помеховой зоне, он будет продолжать предоставлять свою CSI и для C1 и для C2.
- Предварительное кодирование C1-IDCI и C2-DIDO: По мере того как клиент движется в направлении C2, его значение SIR или SINR продолжает уменьшаться, пока снова не достигнет целевого значения. В этой точке клиент решает переключиться на соседний кластер. В этом случае C1 начинает использовать CSI от целевого клиента, чтобы создать нулевую помеху в его направлении с помощью предварительного кодирования IDCI, тогда как соседний кластер использует CSI для стандартного предварительного кодирования DIDO. В одном из вариантов осуществления, по мере того как оценка SIR приближается к целевому значению, кластеры C1 и C2 альтернативно пробуют схемы предварительного кодирования DIDO и IDCI, чтобы позволить клиенту оценить SIR для обоих случаев. Затем клиент выбирает лучшую схему, чтобы максимизировать определенный показатель частоты ошибок. Когда применяется этот способ, точка перехода для стратегии эстафетной передачи приходится на пересечение кривых с треугольниками и ромбами на фиг.12. Один из вариантов осуществления использует модифицированный способ предварительного кодирования IDCI, описанный в (6), где соседний кластер также передает поток предварительно кодированных данных целевому клиенту, чтобы обеспечить выигрыш за счет решетки. При таком подходе стратегия эстафетной передачи упрощается, так как клиенту не требуется оценивать SINR для обеих стратегий в точке перехода.
- Предварительное кодирование C1-DIDO и C2-DIDO: По мере того как клиент движется из помеховой зоны в направлении C2, основной кластер C1 прекращает предварительное подавление помехи в направлении этого целевого клиента через предварительное кодирование IDCI и переключается обратно на стандартное предварительное кодирование DIDO для всех клиентов, остающихся в C1. Эта заключительная точка перехода в нашей стратегии эстафетной передачи полезна, чтобы избежать ненужной обратной связи CSI от целевого клиента к C1, уменьшая, таким образом, непроизводительные потери по каналу обратной связи. В одном из вариантов осуществления определяется второе целевое значение SINRT2. Когда значение SINR (или SIR) увеличивается выше этого целевого значения, стратегия переключается на C1-DIDO и C2-DIDO. В одном из вариантов осуществления кластер C1 продолжает переключаться между предварительным кодированием DIDO и IDCI, чтобы позволить клиенту оценить SINR. Затем клиент выбирает способ для C1, который из приведенных выше наиболее близко приближается к целевому значению SINRT1.
Способ, описанный выше, вычисляет оценки SINR или SIR для различных схем в режиме реального времени и использует их для выбора оптимальной схемы. В одном из вариантов осуществления алгоритм эстафетной передачи разработан на основе конечного автомата, показанного на фиг.14. Клиент отслеживает свое текущее состояние и переключается в следующее состояние, когда значение SINR или SIR проходит ниже или выше заданных пороговых значений, показанных на фиг.12. Как обсуждалось выше, в состоянии 1201 оба кластера, C1 и C2, работают со стандартным предварительным кодированием DIDO независимо и клиент обслуживается кластером C1; в состоянии 1202 клиент обслуживается кластером C1, BTS в C2 вычисляет предварительное кодирование IDCI и кластер C1 работает, используя стандартное предварительное кодирование DIDO; в состоянии 1203 клиент обслуживается кластером C2, BTS в C1 вычисляет предварительное кодирование IDCI и кластер C2 работает, используя стандартное предварительное кодирование DIDO; и в состоянии 1204 клиент обслуживается кластером C2 и оба кластера, C1 и C2, независимо работают со стандартным предварительным кодированием DIDO.
В присутствии эффектов затенения качество сигнала или SIR могут флюктуировать вокруг порогов, как показано на фиг.15, вызывая повторяющееся переключение между последовательными состояниями, показанными на фиг.14. Повторяющееся изменение состояний является нежелательным эффектом, так как оно приводит к значительным непроизводительным издержкам по каналам управления между клиентами и BTS, чтобы позволить переключение между схемами передачи. На фиг.15 показан пример стратегии эстафетной передачи в присутствии затенения. В одном из вариантов осуществления коэффициент затенения моделируется согласно нормальному логарифмическому распределению с дисперсией 3 [3]. Здесь далее, мы определяем некоторые способы предотвращения эффекта повторяющегося переключения во время эстафетной передачи DIDO.
Один из вариантов осуществления изобретения использует гистерезисный цикл, чтобы справляться с эффектами переключения состояния. Например, при переключении между "C1-DIDO, C2-IDCI" 9302 и "C1-IDCI, K2-DIDO" 9303 состояния на фиг.14 (или наоборот) пороговое значение SINRT1 может регулироваться в пределах диапазона A1. Этот способ позволяет избежать повторных переключений между состояниями по мере того, как качество сигнала колеблется вокруг SINRT1. Например, на фиг.16 показан гистерезисный механизм цикла при переключении между любыми двумя состояниями, показанными на фиг.14. Чтобы переключиться из состояния B в состояние A, значение SIR должно быть больше (SIRT1+A1/2), но для переключения обратно из состояния B в состояние A значение SIR должно упасть ниже (SIRT1-A1/2).
В другом варианте осуществления порог SINRT2 регулируется, чтобы избежать повторяющегося переключения между первым и вторым (или третьим и четвертым) состояниями конечного автомата, показанного на фиг.14. Например, диапазон значений A2 может быть определен так, что порог SINRT2 выбирается в пределах этого диапазона в зависимости от состояния канала и эффектов затенения.
В одном из вариантов осуществления, в зависимости от изменений затенения, ожидаемых на беспроводной линии связи, порог SINR динамически корректируется в пределах диапазона [SINRT2, SINRT2+A2]. Дисперсия нормального логарифмического распределения может быть оценена по дисперсии принятой мощности сигнала (или RSSI) по мере того, как клиент перемещается из своего текущего кластера в соседний кластер.
Описанные выше способы предполагают, что клиент инициировал стратегию эстафетной передачи. В одном из вариантов осуществления решение об эстафетной передаче перекладывается на станции BTS DIDO, предполагая, что связь через многочисленные BTS разрешена.
Для простоты приведенные выше способы получают без учета кодирования FEC и 4-QAM. В более общем смысле, пороги SINR или SIR получаются для различных схем кодирования модуляции (MCS), и стратегия эстафетной передачи разрабатывается в комбинации с адаптацией линии связи (смотрите, например, патент США №7636381), чтобы оптимизировать скорость передачи данных по нисходящей линии связи каждому клиенту в помеховой зоне.
b. Эстафетная передача между сетями DIDO с низким и высоким доплером
Системы DIDO используют схемы передачи с обратной связью для предварительного кодирования потоков данных по нисходящему каналу. Схемам с обратной связью свойственно ограничение, связанное с задержкой по каналу обратной связи. В практических системах DIDO время вычислений может быть уменьшено с помощью приемопередатчиков с большой вычислительной мощностью и ожидается, что большая часть задержки будет вводиться за счет BSN DIDO при доставке CSI и предварительно кодированных данных об основной полосе от BTS к распределенным антеннам. BSN может содержать различные сетевые технологии, в том числе, в частности, цифровые абонентские линии (DSL), кабельные модемы, оптоволоконные кольца, линии T1, гибридные волоконные (HFC) коаксиальные сети и/или фиксированные беспроводные сети (например, WiFi). Выделенные волоконные линии обычно имеют очень большую пропускную способность и низкую задержку, потенциально меньше одной миллисекунды в локальной области, но они менее широко распространены, чем DSL и кабельные модемы. На сегодня, DSL и соединения кабельного модема обычно имеют задержку между 10-25 мс на последней миле в Соединенных Штатах, но они очень широко распространены.
Максимальная задержка по BSN определяет максимальную доплеровскую частоту, которая может быть допущена на беспроводной линии связи DIDO без ухудшения характеристик предварительного кодирования DIDO. Например, в [1] показано, что на несущей частоте 400 МГц сети с задержкой приблизительно 10 мс (то есть DSL) можно допустить скорость клиентов до 8 миль в час (скорость при беге), тогда как сети с задержкой 1 мс (то есть оптоволоконное кольцо) могут поддерживать скорость до 70 миль в час (то есть график автострады).
Мы определяем две или более подсети DIDO в зависимости от максимальной доплеровской частоты, которая может быть допустима по BSN. Например, BSN с соединениями DSL с высокой задержкой между BTS DIDO и распределенными антеннами могут допускать только низкую мобильность или услуги неподвижной беспроводной связи (то есть низкодоплеровская сеть), тогда как BSN с низкой задержкой по оптоволоконному кольцу с низкой задержки может допускать высокую мобильность (то есть высокодоплеровская сеть). Мы видим, что большинство пользователей широкополосной связи не перемещаются, когда используют широкополосную связь, и дополнительно, большинство из них вряд ли будет расположено около областей с множеством объектов, движущихся на высокой скорости (например, рядом со скоростной магистралью), так как такие места обычно менее желательны для жизни или работы офиса. Однако существуют пользователи широкополосной связи, которые будут использовать широкополосную связь на высоких скоростях (например, когда автомобиль едет по скоростной магистрали) или будут находиться вблизи высокоскоростных объектов (например, на складе, расположенном около скоростной магистрали). Чтобы решить ситуацию этих двух различающихся доплеровских сценариев для пользователей, в одном из вариантов осуществления низкодоплеровская сеть DIDO обычно состоит из большего числа антенн DIDO с относительно низкой мощностью (то есть 1-100 Вт для установки внутри помещения или на крыше), расположенных на большой площади, тогда как высокодоплеровская сеть обычно состоит из меньшего количества антенн DIDO с передачей высокой мощности (то есть 100 Вт для установки на крыше или башне). Низкодоплеровская сеть DIDO обычно обслуживает большое количество низкодоплеровских пользователей и может делать это обычно по более низкой стоимости связи, используя недорогие широкополосные соединения с высокой задержкой, такие как DSL и кабельные модемы. Высокодоплеровская сеть DIDO обслуживает обычно меньшее количество высокодоплеровских пользователей и может делать это обычно по более высокой стоимости связи, используя более дорогие широкополосные соединения с низкой задержкой такие как оптоволокно.
Чтобы избежать помех среди различных типов сетей DIDO (например, низкодоплеровская и высокодоплеровская), могут использоваться различные способы множественного доступа, такие как множественный доступ с временным разделением (TDMA), множественный доступ с частотным разделением (FDMA) или множественный доступ с кодовым разделением (CDMA).
Здесь далее мы предлагаем способы назначения клиентов различным типам сетей DIDO и разрешения эстафетной передачи между ними. Выбор сети основан на типе мобильности каждого клиента. Скорость клиента (v) пропорциональна максимальному доплеровскому сдвигу согласно следующему уравнению [6]:
f d = ν λ sin θ ( 11 )
Figure 00000013
где fd - максимальный доплеровский сдвиг, λ - длина волны, соответствующая несущей частоте, и θ - угол между вектором, указывающим направление клиент-передатчик и вектором скорости.
В одном из вариантов осуществления доплеровский сдвиг каждого клиента вычисляется посредством способов слепой оценки. Например, доплеровский сдвиг может быть оценен, посылая радиочастотную энергию клиенту и анализируя отраженный сигнал, подобно доплеровским радиолокационным системам.
В другом варианте осуществления, одна или множество антенн DIDO посылают клиенту контрольные сигналы. На основе этих контрольных сигналов клиент оценивает доплеровский сдвиг, используя такие способы, как подсчет пересечений нулевого уровня усиления канала или выполнение спектрального анализа. Замечено, что для фиксированной скорости ν и траектории клиента угловая скорость ν sinθ в (11) может зависеть от относительного расстояния клиента до каждой антенны DIDO. Например, антенны DIDO вблизи движущегося клиента приводят к большей угловой скорости и доплеровскому сдвигу, чем удаленные антенны. В одном из вариантов осуществления доплеровская скорость оценивается из множества антенн DIDO на различных расстояниях от клиента и среднего значения, взвешенного среднего значения или стандартного отклонения, которые используются в качестве индикатора мобильности клиента. На основе оцененного в доплеровском индикаторе BTS DIDO решает, назначить ли клиента низкодоплеровской или высокодоплеровской сети.
Доплеровский индикатор периодически контролируется для всех клиентов, и его данные отсылаются обратно к BTS. Когда один или много клиентов изменяют свою доплеровскую скорость (то есть клиент, едущий в автобусе относительно клиента, идущий пешком или стоящий), эти клиенты динамически переназначаются другой сети DIDO, которая может допускать их уровень мобильности.
Хотя на доплеровский сдвиг для низкоскоростных клиентов могут влиять находящиеся поблизости высокоскоростные объекты (например, вблизи скоростной магистрали), доплеровский сдвиг обычно гораздо меньше, чем доплеровский сдвиг у клиентов, которые находятся в самостоятельном движении. Также в одном из вариантов осуществления скорость клиента оценивается (например, используя такие средства, как контроль положения клиента, используя GPS), и если скорость низкая, клиент назначается низкодоплеровской сети, а если скорость высокая, клиент назначается высокодоплеровской сети.
Способы управления мощностью и группирования антенн
Блок-схема систем DIDO с управлением мощностью показана на фиг.17. Один или более потоков (sk) данных для каждого клиента (1, …, U) сначала умножаются на веса, формируемые блоком предварительного кодирования DIDO. Предварительно кодированные потоки данных умножаются на масштабный коэффициент мощности, вычисленный блоком управления мощностью, основываясь на входной информации о качестве канала (CQI). CQI либо возвращается от клиентов к BTS DIDO, либо извлекается из восходящего канала, допускающего взаимообразность восходящего-нисходящего канала. U предварительно кодированных потоков для различных клиентов затем объединяются и мультиплексируются в M потоков данных (tm), по одному для каждой из M передающих антенн. Наконец, потоки tm посылаются на блок цифроаналогового преобразователя (DAC), радиочастотный (RF) блок, блок (PA) усилителя мощности и, наконец, к антеннам.
Блок управления мощностью измеряет CQI для всех клиентов. В одном из вариантов осуществления CQI является средним значением SNR или RSSI. CQI изменяется для различных клиентов в зависимости от потерь на пути прохождения сигнала или затенения. Наш способ управления мощностью регулирует масштабные коэффициенты мощности Pk передачи для различных клиентов и умножает их на предварительно кодированные потоки данных, сформированные для различных клиентов. Заметим, что один или множество потоков данных могут быть сформированы для каждого клиента, в зависимости от количества приемных антенн клиентов.
Чтобы оценить характеристики предложенного способа, мы определили следующую модель сигнала, основанную на выражении (5), содержащую потери на пути прохождения сигнала и параметры управления мощностью:
r k = S N R P k α k H k w k s k + n k ( 12 )
Figure 00000014
где k=1, …, U, U - количество клиентов, SNR=Po/No, где Ро - средняя мощность передачи, No - мощность шума и αk - коэффициент потерь при прохождении сигнала/затенении. Для моделирования потерь при прохождении сигнала/затенении мы используем следующую упрощенную модель:
α k = e a k 1 U ( 13 )
Figure 00000015
где a=4 - экспонента потерь при прохождении сигнала, и мы принимаем, что потери при прохождении сигнала увеличиваются с увеличением индекса клиента (то есть клиенты располагаются на увеличивающемся расстоянии от антенн DIDO).
На фиг.18 показаны значения SER в зависимости от SNR, предполагая четыре передающие антенны DIDO и четыре клиента в различных сценариях. Идеальный случай предполагает, что все клиенты имеют одни и те же потери на пути прохождения сигнала (то есть a=0), приводя к Pk=1 для всех клиентов. График с квадратами относится к случаю, когда клиенты имеют различные потери на пути прохождения сигнала и управление мощностью отсутствует. Кривая с точками получается из того же самого сценария (с потерями на пути прохождения сигнала), где коэффициенты управления мощностью выбираются так, что Pk=1/αk. При применении способа управления мощностью большая мощность назначается потокам данных, предназначенным клиентам, которые испытывают более высокие потери при прохождении сигнала/затенении, приводя к выигрышу в значении SNR на 9 дБ (для этого конкретного сценария) по сравнению со случаем без управления мощностью.
Федеральная комиссия по связи (FCC) (и другие международные регулирующие органы) определяет ограничения на максимальную мощность, которая может передаваться от беспроводных устройств, чтобы ограничить воздействие электромагнитного (EM) излучения на человеческий организм. Существуют два типа предельных значений [2]: i) "профессиональное/управляемое" предельное значение, когда люди полностью осведомлены об источнике радиочастотного (RF) излучения посредством ограждений, предупреждений или объявлений; ii) предельное значение для "обычного населения/неуправляемое", когда нет никакого управления воздействием.
Для различных типов беспроводных устройств определяются различные уровни излучения. В целом, распределенные антенны DIDO, используемые для внутренних/наружных применений, квалифицируются по категории FCC как "мобильные" устройства, определяемые согласно [2] как:
"передающие устройства, предназначенные для использования в местах, отличных от неподвижных местоположений, которые обычно могут использоваться с излучающими структурами, удерживаемыми на расстоянии 20 см или больше от тела пользователя или соседних людей".
EM-излучение "мобильных" устройств измеряется с точки зрения максимального допустимого воздействия (МРЕ), выраженного в мВт/см2. На фиг.19 показана плотность мощности МРЕ как функция расстояния от источника радиочастотного излучения для различных значений мощности передачи на несущей частоте 700 МГц. Максимально допустимая мощность, чтобы удовлетворять "неуправляемому" предельному значению FCC для устройств, которые обычно работают дальше 20 см от человеческого тела, составляет 1 Вт.
Менее жесткие ограничения по излучаемой мощности определяются для передатчиков, установленных на крышах или зданиях, далеко от "обычного населения". Для этих "передатчиков на крышах" FCC определяет менее жесткое предельное значение излучения 1000 Вт, измеренное с точки зрения эффективно излучаемой мощности (ERP).
На основе упомянутых выше ограничений FCC, в одном из вариантов осуществления мы определяем два типа распределенных антенн DIDO для практических систем:
- Маломощные (LP) передатчики: расположенные в любом месте (то есть на открытом воздухе или внутри помещения) на любой высоте, с максимальной мощностью передачи 1 Вт и возможностью соединения с широкополосной транспортной сетью связи потребительского класса со скоростью 5 Мбит/с (например, DSL, кабельный модем, Fibe To The Home (FTTH)).
- Мощные (HP) передатчики: антенны, монтируемые на крыше здания или на здании на высоте приблизительно 10 метров, с мощностью передачи 100 Вт и широкополосная коммерческого класса связь транспортная сеть связи (например, оптоволоконное кольцо) рейс (с эффективно "неограниченной" скоростью передачи данных по сравнению с пропускной способностью, доступной по беспроводным линиям связи DIDO).
Заметим, что LP-передатчики с возможностью связи с DSL или кабельным модемом являются хорошими кандидатами на низкодоплеровские сети DIDO (как описано в предыдущем разделе), так как их клиенты главным образом неподвижны или обладают низкой мобильностью. HP-передатчики с возможностью соединения с коммерческой оптоволоконной линией связи могут допускать более высокую мобильность клиента и могут использоваться в высокодоплеровских сетях DIDO.
Чтобы получить практическое знание по характеристикам систем DIDO с различными типами LP/HP-передатчиков, мы рассматриваем практический случай установки антенны DIDO в центре города Пало-Альто, Калифорния. На фиг.20a показано случайное распределение NLP=100 маломощных распределенных антенн DIDO в Пало-Альто. На фиг.20в, 50 LP-антенн заменяются NHP=50 мощными передатчиками.
Основываясь на распределениях антенн DIDO на фиг.20a-в, мы получаем карты покрытия в Пало-Альто для систем, использующих технологию DIDO. На фиг.21a и 21в показаны два распределения мощностей, соответствующие конфигурациям на фиг.20a и фиг.20в соответственно. Распределение принимаемой мощности (выраженной в дБм) получается, принимая модель потерь на пути прохождения сигнала/затенения для городских сред, определенную стандартом 3GPP [3], на несущей частоте 700 МГц. Мы видим, что использование 50% HP-передатчиков приводит к лучшему покрытию выбранной области.
На фиг.22a-в показано распределение скорости для двух сценариев, описанных выше. Пропускная способность (выраженная в Мбит/с) получается на основе порогов мощности для различных схем кодирования модуляции, определенных в стандарте долгосрочного развития 3GPP (LTE) в [4, 5]. Общая доступная полоса пропускания устанавливается равной 10 МГц на несущей частоте 700 МГц. Рассматриваются два различных плана выделения частот: i) спектр 5 МГц выделяется только LP-станциям; ii) 9 МГц выделяется HP-передатчикам и 1 МГц к LP-передатчикам. Заметим, что меньшая полоса пропускания обычно выделяется LP-станциям из-за их способности соединения транспортной сети связи с ограниченной пропускной способностью с DSL. Фиг.22a-в показывают, что при использовании 50% HP-передатчиков возможно значительно увеличить распределение скоростей, повышая среднюю скорость передачи для каждого клиента с 2,4 Мбит/с на фиг.22a до 38 Мбит/с на фиг.22в.
Затем, мы определили алгоритмы управления мощностью передачи LP-станций, так что более высокая мощность разрешается в любой момент времени, увеличивая, таким образом, пропускную способность по нисходящему каналу систем DIDO, как показано на фиг.22в. Мы видим, что предельные значения FCC по плотности мощности определяются, основываясь на среднем значении во времени, следующим образом [2]:
S = n = 1 N s n t n T M P E ( 14 )
Figure 00000016
где T M P E = n = 1 N t n
Figure 00000017
- время усреднения MPE, tn - период времени воздействия излучения с плотностью мощности Sn. Для "управляемого" воздействия время усреднения составляет 6 минут, тогда как для "неуправляемого" воздействия оно увеличивается до 30 минут. Затем любому источнику мощности разрешается вести передачу при больших уровнях мощности, чем предельные значения MPE, пока средняя плотность мощности в (14) удовлетворяет предельному значению FCC для 30-минутного усреднения при "неуправляемом" воздействии.
Основываясь на этом анализе, мы определяем адаптивные способы управления мощностью, чтобы увеличивать мгновенную мощность передачи на каждую антенну, в то же время поддерживая среднюю мощность на каждую антенну DIDO ниже предельных значений MPE. Мы рассматриваем системы DIDO с количеством передающих антенн, большим, чем количество активных клиентов. Это обоснованное предположение при условии, что антенны DIDO могут представляться как недорогие беспроводные устройства (подобные точкам доступа WiFi) и могут быть установлены где угодно, где существует DSL, кабельный модем, оптоволокно или другая возможность подключения к Интернету.
Структура систем DIDO с адаптивным управлением мощности для каждой антенны показана на фиг.23. Амплитуда цифрового сигнала, приходящего от мультиплексора 234, динамически регулируется с масштабными коэффициентами мощности S1, …, SM, прежде чем посылается на блоки 235 DAC. Коэффициенты масштабирования мощности вычисляются блоком 232 управления мощностью, основываясь на CQI 233.
В одном из вариантов осуществления определяются Ng групп антенн DIDO. Каждая группа содержит, по меньшей мере, столько антенн DIDO, сколько имеется активных клиентов (K). В любое заданное время, только одна группа имеет Na>K активных антенн DIDO, ведущих передачу клиентам на большем уровне мощности (So), чем предельное значение MPE(). При одном из способов выполняются итерации по всем группам антенн согласно политике планирования кругового обслуживания, показанной на фиг.24. В другом M P E ¯
Figure 00000018
варианте осуществления различные способы планирования (то есть пропорционально-справедливое планирование [8]) используются для выбора кластера, чтобы оптимизировать частоту ошибок или характеристики пропускной способности.
Принимая планирование выделения мощности по принципу кругового обслуживания, из выражения (14) мы получаем среднюю мощность передачи для каждой антенны DIDO как
S = S o t o T M P E M P E ¯ ( 15 )
Figure 00000019
где t0 - промежуток времени, в котором группа антенн активна, и TMPE=30 мин является средним временем, определенным руководствами FCC [2]. Отношение в выражении (15) является коэффициентом использования (DF) групп, определенным так, что средняя мощность передачи от каждой антенны DIDO удовлетворяет предельному значению MPE (). Коэффициент использования зависит от количества активных клиентов, M P E ¯
Figure 00000018
количества групп и активных антенн на группу в соответствии со следующим определением:
DF
Figure 00000020
K N g N a = t o T M P E ( 16 )
Figure 00000021
Выигрыш в SNR (в дБ), полученный в системах DIDO с управлением мощностью и группировкой антенн, выражается как функция коэффициента использования:
G d B = 10 log 10 ( 1 D F ) . ( 17 )
Figure 00000022
Мы видим, что выигрыш в (17) достигается за счет дополнительной мощности передачи GdB через все антенны DIDO.
В целом, общая мощность передачи от всех Na из всех Ng групп определяется как
P ¯ = j = 1 N g i = 1 N a P i j ( 18 )
Figure 00000023
где Pij является средним значением мощности передачи на антенну, определяемым выражением
P i j = 1 T M P E O T M P E S i j ( t ) d t M P E ¯ ( 19 )
Figure 00000024
и Sij(t) является спектральной плотностью мощности для i-й передающей антенны в пределах j-й группы. В одном из вариантов осуществления спектральная плотность мощности в (19) предназначена для каждой антенны, чтобы оптимизировать частоту ошибок или характеристику пропускной способности.
Для получения некоторого знания о характеристиках предложенного способа рассмотрим 400 распределенных антенн DIDO в заданной области покрытия и 400 клиентов, подписавшихся на услугу беспроводного Интернета, предложенную через системы DIDO. Маловероятно, что каждое Интернет-соединение будет полностью использоваться все время. Давайте предполагать, что 10% клиентов будут активно использовать соединение беспроводного Интернета в любой момент времени. Тогда 400 антенн DIDO могут быть разделены на Ng=10 групп антенн по Na=40 антенн в каждой, каждая группа обслуживает K=40 активных клиентов в любой момент времени с коэффициентом использования DF=0.1. Выигрыш в SNR в результате такой схемы передачи составляет GdB=10log10 (1/DF)=10 дБ, обеспечиваемый дополнительной мощностью передачи 10 дБ от всех антенн DIDO. Мы видим, однако, что средняя мощность передачи на каждую антенну является постоянной и находится в рамках предельного значения МРЕ.
На фиг.25 сравниваются (некодированная) характеристика SER вышеупомянутого управления мощностью с группированием антенн и стандартный выбор собственной моды в патенте США №7636381. Все схемы используют предварительное кодирование BD с четырьмя клиентами, каждый клиент снабжен одной антенной. SNR относится к отношению мощности передачи на одну антенну к мощности шума (то есть SNR передачи на одну антенну). Кривая, обозначенная как DIDO 4×4, предполагает четыре передающие антенны и предварительное кодирование BD. Кривая с квадратами обозначает показатель SER с двумя дополнительными передающими антеннами и BD с выбором собственной моды, приводя к выигрышу SNR на 10 дБ (при целевом значении SER 1%) над стандартным предварительным кодированием BD. Управление мощностью с группированием антенн и DF=1/10 также приводит к выигрышу 10 дБ при том же самом целевом значении SER. Мы видим, что выбор собственной моды изменяет наклон кривой SER благодаря выигрышу при разнесении, тогда как наш способ управления мощностью смещает кривую SER влево (поддерживая тот же самый наклон) благодаря увеличенной средней мощности передачи. Для сравнения показано значение SER с большим коэффициентом использования DF=1/50, который обеспечивает дополнительный выигрыш на 7 дБ по сравнению с DF=1/10.
Заметим, что наше управление мощностью может быть менее сложным, чем стандартные способы выбора собственной моды. Фактически, антенны ID каждой группы могут быть предварительно вычислены и совместно использованы среди антенн DIDO и клиентов посредством таблиц поиска, так что только K оценок канала требуется в любое заданное время. Для выбора собственной моды вычисляются (K+2) оценок канала и требуется дополнительная вычислительная обработка, чтобы выбрать собственную моду, которая минимизирует SER в любой момент времени для всех клиентов.
Затем мы описываем другой способ, содержащий группирование антенн DIDO для уменьшения непроизводительных издержек обратной связи CSI в некоторых специальных сценариях. На фиг.26a показан один сценарий, где клиенты (точки) рассеяны в произвольном порядке в одной области, покрытой многочисленными распределенными антеннами DIDO (кресты). Средняя мощность по каждой беспроводной линии связи передачи-приема может быть вычислена как
A = { | H | 2 } ( 20 )
Figure 00000025
где H является матрицей оценки канала, доступной на станции BTS DIDO.
Матрицы A на фиг.26a-c получаются в цифровой форме, усредняя канальные матрицы для 1000 случаев. На фиг.26в и 26c показаны два альтернативных сценария соответственно, где клиенты группируются вокруг подмножества антенн DIDO и принимают пренебрежимо малую мощность от антенн DIDO, расположенных далеко. Например, фиг.26в показывает две группы антенн, образующих блочную диагональную матрицу A. Одним крайним сценарием является то, когда каждый клиент находится очень близко только к одному передатчику, а передатчики находятся далеко друг от друга, так что мощность от всех других антенн DIDO незначительна. В этом случае, линия связи DIDO ухудшается до многочисленных линий связи SISO и A является диагональной матрицей, как на фиг.26c.
Во всех трех сценариях, приведенных выше, предварительное кодирование BD динамически регулирует веса перед кодированием, чтобы учесть различные уровни мощности на беспроводных линиях связи между антеннами DIDO и клиентами. Удобно, однако, идентифицировать многочисленные группы в пределах кластера DIDO и управлять предварительным кодированием DIDO только в пределах каждой группы. Наш предложенный способ группирования приводит к следующим преимуществам:
- Выигрыш в вычислениях: предварительное кодирование DIDO вычисляется только в пределах каждой группы в кластере. Например, если используется предварительное кодирование BD, сингулярное разложение (SVD) обладает сложностью O(n3), где n является минимальной размерностью канальной матрицы H. Если H может быть уменьшена до блочной диагональной матрицы, SVD вычисляется для каждого блока с пониженной сложностью. Фактически, если канальная матрица делится на две блочные матрицы с размерностями n1 и n2 так, что n=n1+n2, сложность SVD составляет только O ( n 1 3 ) + O ( n 2 3 ) < O ( n 3 )
Figure 00000026
. В предельном случае, если Н является диагональной матрицей, линия связи DIDO уменьшается до многочисленных линий связи SISO и никакое вычисление SVD не требуется.
- Пониженные непроизводительные издержки обратной связи CSI: Когда антенны DIDO и клиенты делятся на группы, в одном из вариантов осуществления, CSI вычисляется от клиентов к антеннам только в пределах одной и той же группы. В системах TDD, предполагающих взаимообразность канала, группирование антенн сокращает количество оценок канала для вычисления канальной матрицы H. В системах FDD, где CSI возвращается по беспроводной линии связи, группирование антенн дает дополнительное снижение непроизводительных издержек обратной связи CSI по беспроводным линиям связи между антеннами DIDO и клиентами.
Способы множественного доступа для восходящего канала DIDO
В одном из вариантов осуществления изобретения различные способы множественного доступа определяются для восходящего канала DIDO. Эти способы могут использоваться для обратной связи CSI или для передачи потоков данных от клиентов к антеннам DIDO по восходящему каналу. Здесь далее мы обращаемся к обратной связи CSI и к потокам данных как к восходящим потокам.
- Система со многими входами и многими выходами (MIMO): восходящие потоки передаются от клиента к антеннам DIDO через схемы мультиплексирования MIMO с разомкнутым циклом. Этот способ предполагает, что все клиенты синхронизированы по времени/частоте. В одном из вариантов осуществления синхронизация между клиентами достигается посредством передачи контрольного сигнала от нисходящего канала и все антенны DIDO предполагаются находящимися в синхронизме с одним и тем же опорным тактовым сигналом времени/частоты. Заметим, что изменения в распространении задержки у различных клиентов могут формировать дрожание фазы между тактовыми сигналами различных клиентов, которые могут влиять на характеристики схемы MIMO восходящего канала. После того как клиенты послали восходящие потоки через схемы мультиплексирования MIMO, приемные антенны DIDO могут использовать нелинейные (то есть с максимальной вероятностью, ML) или линейные (то есть обращающие в нуль незначащие коэффициенты, минимальная среднеквадратичная ошибка) приемники, чтобы подавить помехи от соседних каналов и индивидуально демодулировать восходящие потоки.
- Множественный доступ с временным разделением (TDMA): Различным клиентам назначаются различные временные слоты. Каждый клиент посылает свой восходящий поток, когда доступен его временной слот.
- Множественный доступ с частотным разделением (FDMA): Различным клиентам назначаются различные несущие частоты. В системах с мультинесущей (OFDM) подмножество тональных частот назначается различным клиентам, которые одновременно передают восходящие потоки, уменьшая, таким образом, задержку.
- Множественный доступ с кодовым разделением (CDMA): Каждому клиенту назначается различная псевдослучайная последовательность, и ортогональность между клиентами клиенты достигается в кодовой области.
В одном из вариантов осуществления изобретения клиенты являются беспроводными устройствами, которые ведут передачу при намного более низкой мощности, чем антенны DIDO. В этом случае, BTS DIDO определяет клиентские подгруппы, основываясь на восходящей информации о SNR, так, что помеха по подгруппам минимизируется. Внутри каждой подгруппы упомянутые выше способы множественного доступа используются, чтобы создать ортогональные каналы во временной, частотной, пространственной или кодовой областях, избегая, таким образом, помех по восходящему каналу для различных клиентов.
В другом варианте осуществления восходящие способы множественного доступа по восходящему каналу, описанные выше, используются в комбинации с способами группирования антенн, представленными в предыдущем разделе, чтобы определить различные клиентские группы внутри кластера DIDO.
Система и способ адаптации линий связи в системах DIDO с мультинесущей
Способы адаптации линий связи для систем DIDO, использующих временную, частотную и пространственную селективность беспроводных каналов, были определены в патенте США №7636381. Описанное ниже является вариантами осуществления изобретения для адаптации линий связи в системах DIDO с мультинесущей (OFDM), которые используют временную/частотную избирательность беспроводных каналов.
Мы моделируем каналы с рэлеевскими замираниями, соответствующими экспоненциально затухающему профилю задержки мощности (PDP) или модели Салеха-Вэлензуелы в [9]. Для простоты мы принимаем однокластерный канал с многопутевым PDP, определяемым как
P n = e β n ( 21 )
Figure 00000027
где n=0, …, L-1 - индекс ответвления канала, L - количество ответвлений канала и β=1/σDS - экспонента PDP, которая является показателем когерентной полосы пропускания канала, инверсии, пропорциональной разбросу задержки канала (σDS). Низкие значения β дают в результате каналы с равномерной частотной характеристикой, тогда как высокие значения β создают частотно-избирательные каналы. PDP в (21) нормализуется так, что полная средняя мощность для всех ответвлений канала L унитарно равна
P ¯ n = P n i = 0 L 1 P i . ( 22 )
Figure 00000028
На фиг.27 показана амплитуда низкочастотных селективных каналов (полагая β=1) в области задержки или мгновенного PDP (верхний график) и частотной области (нижний график) для системы DIDO 2×2. Первый нижний индекс указывает клиента, второй нижний индекс указывает передающую антенну. Каналы с высокой частотной селективностью (β=0,1) показаны на фиг.28.
Далее мы изучим характеристики предварительного кодирования DIDO в частотно-избирательных каналах. Мы вычисляем веса предварительного кодирования DIDO посредством BD, принимая модель сигнала, показанную в (1), которая удовлетворяет условию, содержащемуся в (2). Мы переформулируем модель принимаемого сигнала DIDO в (5) с условием, содержащимся в (2), как
r k = H e k s k + n k ( 23 )
Figure 00000029
где Hek=HkWk - эффективная канальная матрица для пользователя k. Для DIDO 2×2, с одной антенной на клиента эффективная канальная матрица уменьшается до одного значения с частотной характеристикой, показанной на фиг.29, а для каналов, характеризующихся высокой частотной селективностью (например, β=0,1), - на фиг.28. Непрерывная линия на фиг.29 относится к клиенту 1, а линия с точками относится к клиенту 2. На основе показателей качества канала на фиг.29 мы определяем способы адаптации линий связи (LA) во временной/частотной области, которые динамически регулируют MCS в зависимости от меняющихся состояний канала.
Мы начинаем с оценки характеристик различных MCS в AWGN и каналах SISO с рэлеевским замиранием. Для простоты принимаем, что кодирование FEC отсутствует, но нижеследующие способы LA могут быть распространены на системы, содержащие FEC.
На фиг.30 показано значение SER для различных схем QAM (то есть 4-QAM, 16-QAM, 64-QAM). Без потери общности, принимаем целевое значение SER равным 1% для некодированных систем. Пороговые значения SNR для удовлетворения этого целевого значения SER в каналах AWGN составляют 8 дБ, 15,5 дБ и 22 дБ для трех схем модуляции соответственно. Для каналов с рэлеевским замиранием известно, что характеристики SER для упомянутых выше схем модуляции хуже, чем AWGN [13], и пороговые значения SNR составляют 18,6 дБ, 27,3 дБ и 34,1 дБ соответственно. Видно, что предварительное кодирование DIDO преобразует многопользовательский нисходящий канал в ряд параллельных линий связи SISO. Следовательно, те же самые пороговые значения SNR, что и на фиг.30 для систем SISO, сохраняются для систем DIDO на основе клиент-клиент. Кроме того, если выполняется мгновенная LA, используются пороги в каналах AWGN.
Ключевая идея предложенного способа LA для систем DIDO состоит в использовании MCS низкого порядка, когда канал подвергается глубоким замираниям во временной области или частотной области (показано на фиг.28), чтобы обеспечить устойчивость линии связи. Напротив, когда канал характеризуется большим усилением, способ LA переключается на MCS более высокого порядка, чтобы увеличить спектральную эффективность. Одним из достижений настоящей заявки по сравнению с патентном США №7636381 должно быть использование эффективной матрицы канала в (23) и на фиг.29 в качестве показателя для разрешения адаптации.
Общая структура способов LA показана на фиг.31 и определяется следующим образом:
- Оценка CSI: На этапе 3171 BTS DIDO вычисляет CSI от всех пользователей. Пользователи могут быть снабжены одиночной или многочисленными приемными антеннами.
- Предварительное кодирование DIDO: На этапе 3172 BTS вычисляет веса предварительного кодирования DIDO для всех пользователей. В одном из вариантов осуществления BD используется для вычисления этих весов. Веса предварительного кодирования вычисляются на основе следующих друг за другом тональных сигналов.
- Вычисление качества линии связи: На этапе 3173 BTS вычисляет показатели качества линий связи в частотной области. В системах OFDM показатели вычисляются из весов предварительного кодирования DIDO и CSI для каждого тонального сигнала. В одном из вариантов осуществления изобретения показателем качества линии связи является среднее значение SNR по всем тональным сигналам OFDM. Мы определяем этот способ как LA1 (основанный на характеристике среднего значения SNR). В другом варианте осуществления показателем качества линии связи является частотная характеристика эффективного канала в (23). Мы определяем этот способ как LA2 (основанный на характеристике для каждого тонального сигнала для использования разнесения частот). Если каждый клиент имеет одну антенну, эффективный канал в частотной области показан на фиг.29. Если клиенты имеют многочисленные приемные антенны, показатель качества линии связи определяется как норма Фробениуса для матрицы эффективного канала для каждого тонального сигнала. Альтернативно, многочисленные показатели качества линий связи определяются для каждого клиента как сингулярные значения матрицы эффективного канала в (23).
- Алгоритм битовой загрузки: На этапе 3174, основанном на показателе качества линии связи, BTS определяет MCS для различных клиентов и различных тональных сигналов OFDM. Для способа LA1 одна и та же MCS используется для всех клиентов и всех тональных сигналов OFDM, основываясь на пороговых значения SNR для каналов с рэлеевскими замираниями, как показано на фиг.30. Для LA2 различные MCS назначаются различным тональным сигналам OFDM, чтобы использовать частотное разнесение каналов.
- Передача предварительно кодированных данных: На этапе 3175 BTS передает предварительно кодированные потоки данных от распределенных антенн DIDO клиентам, использующим MCS, полученную из алгоритма битовой загрузки. К предварительно кодированным данным присоединяется заголовок, чтобы сообщить клиентам разные MCS для различных тональных сигналов. Например, если доступны восемь MCS и символы OFDM определяются с помощью N=64 тональных сигналов, log2 (8) *N=192 битов требуются, чтобы сообщить текущую MCS каждому клиенту. Принимая, что используется схема 4-QAM (спектральная эффективность 2 бита/символ), чтобы отобразить эти биты в символах, всего 192/2/N=1,5 символов OFDM требуются для отображения информации об MCS. В другом варианте осуществления многочисленные поднесущие (или тональные сигналы OFDM) группируются по поддиапазонам и одна и та же MCS назначается всем тональным сигналам в одном и том же поддиапазоне, чтобы уменьшить непроизводительные издержки за счет управляющей информации. Кроме того, MCS регулируются на основе временных изменений усиления канала (пропорционально времени когерентности). В неподвижном беспроводном канале (характеризуемом низким эффектом Доплера) MCS повторно вычисляются на каждой части времени когерентности канала, уменьшая, таким образом, непроизводительные издержки, требующиеся для управляющей информации.
На фиг.32 показана характеристика SER способов LA, описанных выше. Для сравнения, характеристика SER в каналах с рэлеевским замиранием графически изображается для каждой из трех используемых схем QAM. Способ LA2 адаптирует MCS к флюктуациям эффективного канала в частотной области, обеспечивая, таким образом, выигрыш 1, 8 бит/с/Гц в спектральной эффективности для низкого значения SNR (то есть SNR=20 дБ) и выигрыш 15 дБ для SNR (для SNR>35 дБ) по сравнению с LA1.
Система и способ интерполяции предварительного кодирования DIDO в системах с мультинесущей
Вычислительная сложность систем DIDO локализована главным образом в централизованном процессоре или BTS. Наиболее вычислительно дорогостоящей операцией является вычисление весов предварительного кодирования для всех клиентов из их CSI. Когда используется предварительное кодирование BD, BTS должна выполнить столько операций сингулярного разложения (SVD), сколько имеется клиентов в системе. Одним из способов уменьшения сложности является параллелизированная обработка, когда SVD вычисляется на отдельном процессоре для каждого клиента.
В системах DIDO с мультинесущей каждая поднесущая использует канал с неглубоким замиранием и SVD выполняется для каждого клиента по каждой поднесущей. Ясно, что сложность системы увеличивается линейно с увеличением количества поднесущих. Например, в системах OFDM с шириной полосы сигнала 1 МГц циклический префикс (L0) должен иметь по меньшей мере восемь ответвлений канала (то есть продолжительность 8 микросекунд), чтобы избежать межсимвольных помех во внешних городских средах с макроячейками с большим разбросом задержки [3]. Размер (NFFT) быстрого преобразования Фурье (FFT), используемый для формирования символов OFDM, обычно устанавливается кратным L0, чтобы уменьшить потерю скорости передачи данных. Если NFFT=64, то действенная спектральная эффективность системы ограничивается с коэффициентом NFFT/(NFFT+L0)=89%. Большие значения NFFT приводят к более высокой спектральной эффективности за счет более высокой вычислительной сложности в предварительном кодере DIDO.
Одним из способов уменьшения вычислительной сложности в предварительном кодере DIDO является выполнение операции SVD для подмножества тональных сигналов (которые мы называем экспериментальными тональными сигналами) и получение весов предварительного кодирования для остальных тональных сигналов посредством интерполяции. Интерполяция весов является одним из источников ошибки, которая приводит к межклиентской помехе. В одном из вариантов осуществления используются оптимальные способы интерполяции весов, чтобы уменьшить межклиентскую помеху, приводя к улучшенному показателю частоты ошибок и пониженной вычислительной сложности в системах с мультинесущей. В системах DIDO с M передающих антенн, U клиентами и N приемными антеннами на клиента, условием для весов предварительного кодирования k-го клиента (Wk), которое гарантирует нулевую помеху другим клиентам и получается из (2) следующим образом:
H u W k = O N × N ; u = 1 , , U ; п р и u k ( 24 )
Figure 00000030
где Hu - матрицы каналов, соответствующие другим клиентам DIDO в системе.
В одном из вариантов осуществления изобретения целевая функция способа интерполяции весов определяется как
f ( θ k ) = u = 1 u k U H u W ^ k ( θ k ) F ( 25 )
Figure 00000031
где θk - набор параметров, которые будут оптимизированы для пользователя k, w ˜ k ( 0 k )
Figure 00000032
- матрица интерполяции веса и F
Figure 00000033
- норма Фробениуса для матрицы. Проблема оптимизации формулируется как
θ k , o p t = arg min θ k Θ k f ( θ k ) ( 26 )
Figure 00000034
где θk - осуществимый набор проблемы оптимизации и θk,opt - оптимальное решение.
Целевая функция в (25) определяется для одного тонального сигнала OFDM. В другом варианте осуществления изобретения целевая функция определяется как линейная комбинация нормы Фробениуса в (25) матриц для всех тональных сигналов OFDM, которые должны интерполироваться. В другом варианте осуществления спектр OFDM делится на подмножества тональных сигналов и оптимальным решением является:
θ k , o p t = arg min θ k Θ k max n A f ( n , θ k ) ( 27 )
Figure 00000035
где n является индексом тонального сигнала OFDM и A является подмножеством тональных сигналов.
Матрица Wkk) интерполяции весов в (25) выражается как функция набора θk параметров. Когда оптимальный набор определен согласно (26) или (27), вычисляется оптимальная матрица весов. В одном из вариантов осуществления изобретения матрица интерполяции весов для заданного тонального сигнала n OFDM определяется как линейная комбинация матриц весов контрольных тональных сигналов. Один из примеров функции интерполяции весов для систем формирования луча с одиночным клиентом был определен в [11]. В мультиклиентских системах DIDO мы записываем матрицу интерполяции весов как
W ^ k ( l N o + n , θ k ) = ( 1 c n ) W ( l ) + c n e j θ k W ( l + 1 ) ( 28 )
Figure 00000036
где 0≤l≤(L0-1), L0 - количество контрольных тональных сигналов и cn=(n-1)/N0 при N0=NFFT/L0. Матрица весов в (28) затем нормализуется, так что W ^ k F = N M
Figure 00000037
, чтобы гарантировать унитарную передачу мощности от каждой антенны. Если N=1 (одна приемная антенна на клиента), матрица в (28) становится вектором, который нормализован относительно его нормы. В одном из вариантов осуществления изобретения контрольные тональные сигналы выбираются единообразно в пределах диапазона тональных сигналов OFDM. В другом варианте осуществления контрольные тональные сигналы выбираются адаптивно, основываясь на CSI, чтобы минимизировать ошибку интерполяции.
Мы видим, что одним из главных отличий системы и способа в [11] от тех, которые предложены в настоящей патентной заявке, является целевая функция. В частности, системы в [11] предполагают многочисленные передающие антенны и одного клиента, так что соответствующий способ разрабатывается таким образом, чтобы максимизировать произведение весов предварительного кодирования на канал, чтобы максимизировать значение SNR при приеме для клиента. Этот способ, однако, не работает в мультиклиентских сценариях, так как он приводит к межклиентской помехе из-за ошибки интерполяции. В отличие от этого, наш способ разработан, чтобы минимизировать межклиентскую помеху, улучшая, таким образом, показатель частоты ошибок для всех клиентов.
На фиг.33 показаны элементы матрицы в (28) как функция индекса тонального сигнала OFDM для системы DIDO 2×2 с NFFT=64 L0=8. Канал PDP формируется согласно модели в (21) β=1 и канал состоит только из восьми отведений канала. Мы видим, что L0 должно быть выбрано большим, чем количество отведений канала. Сплошные линии на фиг.33 представляют идеальные функции, тогда как пунктирные линии являются интерполированными функциями. Интерполированные веса совпадают с идеальными для контрольных тональных сигналов, согласно определению, данному в (28). Веса, вычисленные для остальных тональных сигналов, только приближаются к идеальному случаю из-за ошибки оценки.
Одним из путей реализовать способ интерполяции весов является исчерпывающий поиск по осуществимому набору θk в (26). Чтобы уменьшить сложность поиска, мы квантуем осуществимый набор на значения P равномерно в диапазоне [0, 2π]. На фиг.34 показана зависимость SER от SNR для L0=8, M=Nt=2 передающих антенн и переменного числа P. По мере увеличения количества уровней квантования характеристика SER улучшается. Мы видим случай, когда P=10 приближается к показателю P=100 при намного меньшей вычислительной сложности за счет сокращения количества поисков.
На фиг.35 показана характеристика SER способа интерполяции для различных порядков DIDO и L0=16. Мы предполагаем количество клиентов таким же, как количество передающих антенн, и каждый клиент обеспечивается одной антенной. По мере увеличения количества клиентов характеристика SER ухудшается за счет увеличения межклиентской помехи, создаваемой ошибкой интерполяции весов.
В другом варианте осуществления изобретения используются функции интерполяции весов, отличные от показанных в (28). Например, авторегрессивные модели [12] линейного предсказания могут использоваться для интерполяции весов посредством различных тональных сигналов OFDM, основываясь на оценках корреляции частоты каналов.
Литература
1. A. Forenza and S.G. Perlman, "System and method for distributed antenna wireless communications", U.S. Application Serial No. 12/630,627, filed December 2, 2009, entitled "System and Method For Distributed Antenna Wireless Communications".
2. FCC, "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields," OET Bulletin 65, Ed. 97-01, Aug. 1997.
3. 3GPP, "Spatial Channel Model AHG (Combined ad-hoc from 3GPP & 3GPP2)", SCM Text V6.0, April 22, 2003.
4. 3GPP TR 25.912, "Feasibility Study for Evolved UTRA and UTRAN", V9.0.0 (2009-10).
5. 3GPP TR 25.913, "Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)", V8.0.0 (2009-01).
6. W.С. Jakes, Microwave Mobile Communications, IEEE Press, 1974.
7. K.K. Wong, et al., "A joint channel diagonalization for multiuser MIMO antenna systems," IEEE Trans. Wireless Comm., vol. 2, pp.773-786, July 2003.
8. P. Viswanath, et al., "Opportunistic beamforming using dump antennas," IEEE Trans. On Inform. Theory, vol. 48, pp.1277-1294, June 2002.
9. A.A. M. Saleh, et al., "A statistical model for indoor multipath propagation," IEEE Jour. Select. Areas in Comm., vol. 195 SAC-5, no. 2, pp.128-137, Feb. 1987.
10. A. Paulraj, et al., Introduction to Space-Time Wireless Communications, Cambridge University Press, 40 West 20th Street, New York, NY, USA, 2003.
11. J. Choi, et al., "Interpolation Based Transmit Beamforming for MIMO-OFDM with Limited Feedback," IEEE Trans. on Signal Processing, vol. 53, no. 11, pp.4125-4135, Nov. 2005.
12. I. Wong, et al., "Long Range Channel Prediction for Adaptive OFDM Systems," Proc. of the IEEE Asilomar Conf. on Signals, Systems, and Computers, vol.1, pp.723-736, Pacific Grove, CA, USA, Nov. 7-10, 2004.
13. J.G. Proakis, Communication System Engineering, Prentice Hall, 1994.
14. B.D. Van Veen, et al., "Beamforming: a versatile approach to spatial filtering," IEEE ASSP Magazine, Apr. 1988.
15. R.G. Vaughan, "On optimum combining at the mobile," IEEE Trans. On Vehic. Tech., vol 37, n.4, pp.181-188, Nov. 1988.
16. F. Qian, "Partially adaptive beamforming for correlated interference rejection," IEEE Trans. On Sign. Proc., vol.43, n.2, pp.506-515, Feb. 1995.
17. H. Krim, et. al., "Two decades of array signal processing research," IEEE Signal Proc. Magazine, pp.67-94, July 1996.
19. W.R. Remley, "Digital beamforming system", US Patent N. 4,003,016, Jan. 1977.
18. R.J. Masak, "Beamforming/null-steering adaptive array", US Patent N. 4,771,289, Sep. 1988.
20. K.-B. Yu, et. al., "Adaptive digital beamforming architecture and algorithm for nulling mainlobe and multiple sidelobe radar jammers while preserving monopulse ratio angle estimation accuracy", US Patent 5,600,326, Feb. 1997.
21. H. Boche, et al., "Analysis of different precoding/decoding strategies for multiuser beamforming", IEEE Vehic. Tech. Conf, vol.1, Apr. 2003.
22. M. Schubert, et al., "Joint 'dirty paper' pre-coding and downlink beamforming," vol.2, pp.536-540. Dec. 2002.
23. H. Boche, et al." A general duality theory for uplink and downlink beamformingc", vol.1, pp.87-91, Dec. 2002.
24. K.K. Wong, R.D. Murch, and K.В. Letaief, "A joint channel diagonalization for multiuser MIMO antenna systems," IEEE Trans. Wireless Comm., vol. 2, pp.773-786, Jul 2003.
25. Q.H. Spencer, A.L. Swindlehurst, and M. Haardt, "Zero forcing methods for downlink spatial multiplexing in multiuser MIMO channels," IEEE Trans. Sig. Proc., vol. 52, pp.461-471, Feb. 2004.
II. Раскрытие настоящей заявки
Ниже описываются системы и способы беспроводной радиочастотной (RF) связи, использующие множество распределенных передающих антенн, работающих совместно для создания беспроводных линий связи к заданным пользователям, в то же время подавляя помеху другим пользователям. Координация через различные передающие антенны разрешается через кластеризацию пользователей. Кластер пользователей является подмножеством передающих антенн, сигнал которых может быть надежно обнаружен данным пользователем (то есть мощность принятого сигнала выше уровня шума или уровня помех). Каждый пользователь в системе определяет свой собственный кластер пользователей. Сигналы, посылаемые передающими антеннами в пределах одного и того же пользовательского кластера, когерентно объединяются, чтобы создать радиочастотную энергию в месте расположения целевого пользователя и точки с нулевой радиочастотной помехой в расположении любого другого пользователя, доступного для этих антенн.
Рассмотрим систему с M передающих антенн в пределах одного пользовательского кластера и K пользователями, доступными для этих М антенн, с K≤M. Предположим, что передатчики знают CSI () между M передающих антенн и K пользователями. Для H∈CK×M упрощения каждый пользователь, как предполагается, снабжен одной антенной, но тот же самый способ может быть распространен на множество приемных антенн, приходящихся на одного пользователя. Рассмотрим hk∈C1×M матрицу H канала, полученную объединением векторов () каналов от M передающих антенн к K пользователям, как
H = [ h 1 h k h K ]
Figure 00000038
Веса (wk∈CM×1) предварительного кодирования, которые создают радиочастотную энергию для пользователя k и сводят к нулю радиочастотную энергию для всех других K-1 пользователей, вычисляются, чтобы удовлетворить следующее условие:
H ˜ k
Figure 00000039
wk=OK×1
где H ˜ k
Figure 00000040
- эффективная канальная матрица пользователя k, полученная удалением k-й строки матрицы H, и OK×1 - вектор со всеми нулевыми элементами.
В одном из вариантов осуществления беспроводная система является системой DIDO и кластеризация пользователей используется для создания беспроводной линии связи к целевому пользователю, предварительно подавляя помеху любому другому пользователю, доступному антеннам, лежащим в пределах пользовательского кластера. В патенте США №12/630,627 описывается система DIDO, содержащая:
- Клиенты DIDO: терминалы пользователей, снабженные одной или множеством антенн;
- Распределенные антенны DIDO: станции приемопередатчиков, работающие совместно для передачи потоков предварительно кодированных данных многочисленным пользователям, подавляя, таким образом, межпользовательскую помеху;
- Базовые приемопередающие станции (BTS) DIDO: централизованный процессор, формирующий предварительно кодированные сигналы для распределенных антенн DIDO;
- Сеть базовых станций DIDO (BSN): проводная транспортная сеть связи, соединяющая BTS с распределенными антеннами DIDO или другими BTS.
Распределенные антенны DIDO группируются в различные подмножества в зависимости от их пространственного распределения относительно расположения клиентов DIDO или BTS. Мы определяем три типа кластеров, как показано на фиг.36:
- Суперкластер 3640: набор распределенных антенн DIDO, соединенных с одной или множеством BTS, так что задержка туда и обратно между всеми BTS и соответствующими пользователями находится в пределах ограничения цикла предварительного кодирования для DIDO;
- DIDO-кластер 3641: набор распределенных антенн DIDO, соединенных с одной и той же BTS. Когда суперкластер содержит только одну BTS, его определение совпадает с DIDO-кластером;
- Кластер пользователей 3642: набор распределенных антенн DIDO, которые совместно передают предварительно кодированные данные заданному пользователю.
Например, станции BTS являются локальными концентраторами, соединенными с другими BTS и распределенными антеннами DIDO через BSN. BSN может содержать различные сетевые технологии, в том числе, в частности, цифровые абонентские линии (DSL), ADSL, VDSL [6], кабельные модемы, оптоволоконные кольца, линии T1, гибридные оптоволоконные коаксиальные сети (HFC) и/или неподвижную беспроводную связь (например, WiFi). Все BTS в пределах одного и того же суперкластера совместно используют информацию о предварительном кодировании DIDO через BSN, так что задержка туда и обратно находится в пределах цикла предварительного кодирования DIDO.
На фиг.37 точки обозначают распределенные антенны DIDO, кресты обозначают пользователей и пунктирные линии указывают кластеры пользователей для пользователей U1 и U8 соответственно. Способ, описанный здесь далее, предназначен для создания линии связи к целевому пользователю U1, создавая точки нулевой радиочастотной энергии для любого другого пользователя (U2-U8) внутри или снаружи пользовательского кластера.
Мы предложили подобный способ в [5], где точки нулевой радиочастотной энергии были созданы, чтобы удалить помеху в перекрывающихся областях между кластерами DIDO. Для передачи сигнала клиентам в пределах кластера DIDO, подавляя межкластерную помеху, понадобились дополнительные антенны. Один из вариантов осуществления способа, предложенного в настоящей заявке, не пытается удалить межкластерную помеху для кластеров DIDO; скорее предполагается, что кластер связан с клиентом (то есть, кластером пользователей) и гарантирует, что никакая помеха (или незначительная помеха) не создается никакому другому клиенту в его окружении.
Одна идея, связанная с предложенным способом, состоит в том, что на пользователей, достаточно удаленных от пользовательского кластера, не влияет излучение от передающих антенн, из-за больших потерь на пути прохождения сигнала. Пользователи, находящиеся вблизи или внутри пользовательского кластера, принимают не создающий помех сигнал за счет предварительного кодирования. Кроме того, к пользовательскому кластеру могут быть добавлены дополнительные передающие антенны (как показано на фиг.37), так что условие K≤M удовлетворяется.
Один вариантов осуществления способа, использующего кластеризацию пользователей, состоит из следующих шагов:
a. Измерения качества линии связи: качество линии связи между каждой распределенной антенной DIDO и каждым пользователем сообщается на BTS. Показателем качества линии связи является отношение "сигнал-шум" (SNR) или отношение "сигнал-смесь помехи с шумом" (SINR).
В одном из вариантов осуществления распределенные антенны DIDO передают контрольные сигналы и пользователи оценивают качество принятого сигнала на основе этих контрольных сигналов. Контрольные сигналы разработаны как ортогональные во временной, частотной или кодовой области, так чтобы пользователи могли различаться разными передатчиками. Альтернативно, антенны DIDO передают узкополосные сигналы (то есть единственный тональный сигнал) на одной определенной частоте (то есть канал маяка), и пользователи оценивают качество линии связи, основываясь на этом сигнале маяка. Одно пороговое значение определяется как минимальная амплитуда сигнала (или мощность) выше уровня шума, чтобы успешно демодулировать данные, как показано на фиг.38а. Любой показатель качества линии связи ниже этого порогового значения, как предполагается, является нулем. Показатель качества линии связи квантуется по конечному числу битов и возвращается к передатчику.
В другом варианте осуществления контрольные сигналы или маяки передаются от пользователей и качество линии связи оценивается на передающих антеннах DIDO (как на фиг.38в), предполагая взаимообразность потерь на пути прохождения сигнала между восходящим каналом (UL) и нисходящим каналом (DL). Заметим, что взаимообразность потерь на пути прохождения сигнала является реальным предположением в дуплексных системах с временным разделением (TDD) (с каналами UL и DL на одной и той же частоте) и дуплексных системах с частотным разделением (FDD), когда полосы частот UL и DL относительно близки.
Информацией о показателях качества линий связи используется совместно различными BTS через BSN, как показано на фиг.37, так что все BTS знают о качестве линии связи между каждой парой антенна/пользователь через различные кластеры DIDO.
b. Определение кластеров пользователей: показатели качества линий связи всех беспроводных ссылок в кластерах DIDO являются элементами в матрице качества линии связи, совместно используемой всеми BTS через BSN. Один из примеров матрицы качества линии связи для сценария на фиг.37 показан на фиг.39.
Матрица качества ссылки используется для определения кластеров пользователей. Например, на фиг.39 показан выбор пользовательского кластера для пользователя U8. Сначала идентифицируется подмножество передатчиков с ненулевыми показателями качества линий связи (то есть активных передатчиков) для пользователя U8. Эти передатчики заполняют кластер пользователей для пользователя U8. Затем выбирается субматрица, содержащая ненулевые элементы, вводимые от передатчиков внутри пользовательского кластера к другим пользователям. Заметим, что поскольку показатели качества линий связи используются, только чтобы выбрать кластер пользователей, они могут быть квантованы только двумя битами (то есть, чтобы идентифицировать состояние выше или ниже порогов на фиг.38), снижая, таким образом, непроизводительные издержки.
Другой пример показан на фиг.40 для пользователя U1. В этом случае количество активных передатчиков ниже, чем количество пользователей в субматрице, нарушая, таким образом, условие K≤M. Поэтому к субматрице добавляются один или более столбцов, чтобы удовлетворить это условие. Если количество передатчиков превышает количество пользователей, для схем разнесения могут использоваться дополнительные антенны (то есть на выбор, антенна или собственная мода).
Еще один пример показан на фиг.41 для пользователя U4. Мы видим, что субматрица может быть получена как объединение двух субматриц.
c. Сообщение CSI на BTS: Как только кластеры пользователей выбраны, CSI от всех передатчиков в пределах пользовательского кластера для каждого пользователя, достигаемого этими передатчиками, делается доступным для всех BTS. Информация CSI используется совместно всеми BTS через BSN. В системах TDD взаимообразность каналов UL и DL может быть использована для получения CSI при прохождении контрольного сигнала по каналу UL. В системах FDD требуются каналы обратной связи от всех пользователей к BTS. Чтобы уменьшить объем обратной связи, только CSI, соответствующая ненулевым элементам матрицы качества линии связи, подается в качестве обратной связи.
d. Предварительное кодирование DIDO: Наконец, предварительное кодирование DIDO применяется к каждой субматрице CSI, соответствующей различным кластерам пользователей (как описано, например, в родственных патентных заявках США).
В одном из вариантов осуществления H ˜ k
Figure 00000041
вычисляется сингулярное разложение (SVD) эффективной матрицы канала и вес Wk предварительного кодирования для пользователя k определяется как правый сингулярный вектор, соответствующий нулевому подпространству. Альтернативно, если M>K и SVD разлагает эффективную матрицу канала как H ˜ k V k Σ k U k H
Figure 00000042
, предварительно кодированный вес DIDO для пользователя k задается выражением
w k = U 0 ( U 0 H h k T )
Figure 00000043
где U0 - матрица со столбцами, являющимися сингулярными векторами нулевого подпространства.
Исходя из основных соображений линейной алгебры, мы видим, что правый сингулярный вектор в нулевом подпространстве матрицы H ˜
Figure 00000044
равен собственному вектору C, соответствующему нулевому собственному значению
C = H ˜ H H ˜ = ( V Σ U H ) H ( V Σ U H ) = U Σ 2 U H
Figure 00000045
где эффективная канальная матрица разлагается как H ˜ = V Σ U H
Figure 00000046
согласно SVD. Далее, одной альтернативой вычислениям SVD для H ˜ k
Figure 00000047
должно быть вычисление разложения собственного значения C. Есть несколько способов вычисления разложения собственного значения, такое как способ мощности. Так как мы интересуемся только собственным вектором, соответствующим нулевому подпространству C, мы используем способ инверсной мощности, описанный итерацией
u i + 1 = ( C λ I ) 1 u i ( C λ I ) 1 u i
Figure 00000048
где вектор (ui) при первой итерации является случайным вектором.
Учитывая, что собственное значение (λ) нулевого подпространства известно (то есть ноль), способ итерации мощности требует, чтобы сходилась только одна итерация, уменьшая, таким образом, вычислительную сложность. Затем мы записываем вектор веса предварительного кодирования как
w=C-1u1
где вектор u1 с реальными элементами, равными 1 (то есть вектор веса предварительного кодирования является суммой столбцов C-1).
Вычисление предварительного кодирования DIDO требует одной матричной инверсии. Существуют несколько числовых решений для уменьшения сложности матричных инверсий, такие как алгоритм Стрэссена [1] или алгоритм Копперсмита-Виноградова [2, 3]. Так как C является эрмитовой матрицей по определению, альтернативное решение состоит в разложении C на ее действительную и мнимую составляющие и вычислении на матричную инверсию действительной матрицы согласно способу, изложенному в [4, Раздел 11.4].
Другим признаком предложенных способа и системы является их переконфигурируемость. По мере того как клиент перемещается через различные кластеры DIDO, как показано на фиг.42, кластер пользователей следует за его перемещениями. Другими словами, подмножество передающих антенн постоянно обновляется, поскольку клиент изменяет свое положение, и эффективная канальная матрица (и соответствующие веса предварительного кодирования) вычисляются повторно.
Способ, предложенный здесь, работает в пределах суперкластера, показанного на фиг.36, так как линии связи между BTS через BSN должны обладать низкой задержкой. Чтобы подавить помеху в области перекрытия различных суперкластеров, возможно применить наш способ, приведенный в [5], который использует дополнительные антенны для создания точек нулевой радиочастотной энергии в помеховых областях между кластерами DIDO.
Нужно отметить, что термины "пользователь" и "клиент" используются здесь взаимозаменяемо.
Литература
1. S. Robinson, "Toward an Optimal Algorithm for Matrix Multiplication", SIAM News, Volume 38, Number 9, November 2005.
2. D. Coppersmith and S. Winograd, "Matrix Multiplication via Arithmetic Progression", J. Symb. Comp. vol.9, p.251-280, 1990.
3. H. Cohn, R. Kleinberg, В. Szegedy, С. Umans, "Group-theoretic Algorithms for Matrix Multiplication", p.379-388, Nov. 2005.
4. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery "NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING", Cambridge University Press, 1992.
5. A. Forenza and S.G. Perlman, "Interference Management, Handoff, Power Control and Link Adaptation in Distributed-Input Distributed-Output (DIDO) Communication Systems", Patent Application Serial No. 12/802,988, filed June 16, 2010.
6. Per-Erik Eriksson and Björn Odenhammar, "VDSL2: Next important broadband technology", Ericsson Review No. 1, 2006.
Варианты осуществления изобретения могут содержать различные этапы, как указано выше. Этапы могут быть реализованы в исполняемых компьютером командах, которые заставляют универсальный процессор или специализированный процессор выполнять определенные этапы. Например, различные компоненты внутри базовых станций/AP и устройств клиента, описанные выше, могут быть реализованы как программное обеспечение, исполняемое на универсальном процессоре или на специализированном процессоре. Чтобы не заслонять относящиеся к делу аспекты изобретения, различные известные компоненты персонального компьютера, такие как устройство памяти компьютера, жесткий диск, устройства ввода данных и т.д., на чертежах не показывались.
Альтернативно, в одном из вариантов осуществления различные функциональные модули, показанные здесь, и сопутствующие этапы могут быть выполнены специальными аппаратными компонентами, которые содержат аппаратно реализованную логику для выполнения этапов, такими как специализированная прикладная интегральная схема ("ASIC") или любой комбинацией запрограммированных компьютерных компонентов и заказных компонент аппаратного обеспечения.
В одном из вариантов осуществления определенные модули, такие как модули 903 кодирования, модуляции и логической обработки сигналов, описанные выше, могут быть реализованы на программируемом цифровом сигнальном процессоре ("DSP") (или группе DSP), таком как DSP, использующем архитектуру Texas Instruments TMS320x (например, TMS320C6000, TMS320C5000 … и т.д.). DSP в этом варианте осуществления может быть встроен в плату расширения для персонального компьютера, такую как, например, плата PCI. Конечно, может использоваться множество различных архитектур DSP, выполняя в то же время основополагающие принципы изобретения.
Элементы настоящего изобретения могут также быть обеспечены как компьютерно-читаемый носитель для хранения исполняемых компьютером команд. Компьютерно-читаемый носитель может быть, в частности, флэш-памятью, оптическим диском, CD-ROM, DVD ROM, RAM, EPROM, EEPROM, магнитными или оптическими картами, носителями для распространения или другим типом компьютерночитаемых носителей, пригодных для хранения электронных команд. Например, настоящее изобретение может быть загружено как компьютерная программа, которая может быть передана от удаленного компьютера (например, сервера) к запрашивающему компьютеру (например, клиенту) посредством сигналов данных, реализованных в виде несущей волны или другой среды распространения через линию связи (например, модем или сетевое соединение).
Повсюду в приведенном описании для целей объяснения были приведены многочисленные конкретные подробности, чтобы обеспечить полное понимание представленных системы и способа. Специалистам в данной области техники, очевидно, должно быть понятно, что система и способ могут быть реализованы без некоторых из этих конкретных подробностей. Соответственно, объем и сущность настоящего изобретения должны рассматриваться с точки зрения формулы изобретения, приведенной далее.
Кроме того, повсеместно в приведенном выше описании были процитированы многочисленные публикации, чтобы обеспечить более полное понимание настоящего изобретения. Все эти процитированные ссылки включаются в настоящую заявку посредством ссылки.

Claims (25)

1. Многопользовательская (MU) мультиантенная система (MU-MAS), содержащая:
один или более централизованных блоков, посредством средств связи связанных с многочисленными распределенными приемопередающими станциями через сеть;
сеть, состоящую из проводных или беспроводных линий связи или комбинации их обоих, используемую как канал сети транспортной связи;
централизованный блок, преобразующий N потоков данных в М потоков предварительно кодированных данных, причем каждый поток предварительно кодированных данных является комбинацией нескольких или всех потоков данных;
M потоков предварительно кодированных данных, посылаемых по сети на распределенные приемопередающие станции;
распределенные приемопередающие станции, одновременно посылающие потоки предварительно кодированных данных по беспроводным линиям связи по меньшей мере к одному устройству клиента, так что по меньшей мере одно устройство клиента принимает по меньшей мере один из первоначальных N потоков данных.
2. Система по п.1, в которой множество распределенных антенн передают радиочастотные сигналы, чтобы создать места в пространстве с нулевой радиочастотной энергией.
3. Система по п.1, в которой MU-MAS подавляет помехи между соседними кластерами и содержит:
первый кластер MU-MAS для связи с первым устройством клиента по каналу связи MU-MAS;
первое устройство клиента для обнаружения мощности сигнала от первого кластера MU-MAS;
второй кластер MU-MAS для формирования сигналов, взаимодействующих с каналом связи MU-MAS, в котором первое устройство клиента обнаруживает мощность сигнала помехи от второго кластера MU-MAS;
если мощность сигнала от первого кластера MU-MAS достигает указанного значения относительно значения мощности сигнала помехи от второго кластера MU-MAS, то тогда первое устройство клиента формирует информацию о состоянии канала (CSI), определяющую состояние канала между одной или более антеннами первого устройства клиента и одной или более антеннами второго кластера MU-MAS, и передает CSI на базовую приемопередающую станцию (BTS) во втором кластере MU-MAS; и
BTS, реализующую предварительное кодирование MU-MAS с подавлением межкластерной помехи MU-MAS (IMCI), чтобы избежать радиочастотной помехи у первого пользователя.
4. Система по п.1, в которой MU-MAS регулирует связь с первым устройством клиента по мере того, как первое устройство клиента перемещается от первого кластера MU-MAS ко второму кластеру MU-MAS, причем упомянутая система содержит:
первое устройство клиента, обнаруживающее мощность ("S1") сигнала между первым устройством клиента и первым кластером MU-MAS и мощность ("S2") сигнала между первым устройством клиента и вторым кластером MU-MAS;
когда первое устройство клиента находится в пределах первой заданной зоны, в которой S2 достаточно низкая относительно S1, то осуществляют предварительное кодирование MU-MAS по меньшей мере на одной из базовых приемопередающих станций (BTS) в первом кластере MU-MAS, чтобы передать одновременные не создающие друг другу помех потоки данных в пределах одной и той же полосы частот к первому множеству устройств клиента, содержащему первого пользователя, и осуществляют стандартное предварительное кодирование MU-MAS на станциях BTS во втором кластере MU-MAS, чтобы передать одновременные не создающие друг другу помех потоки данных в пределах одной и той же полосы частот ко второму множеству устройств клиента, не содержащих первого пользователя;
когда первое устройство клиента находится в пределах второй заданной зоны, в которой S2 увеличилась относительно S1 и/или S1 уменьшилась относительно S2, так что относительные значения S2 и S1 привели в результате к достижению первого порогового значения, то затем формируют информацию о состоянии канала (CSI), определяющую состояние канала между одной или более антеннами первого устройства клиента и одной или более антеннами второго кластера MU-MAS, в котором BTS второго кластера MU-MAS использует CSI, чтобы осуществить предварительное кодирование MU-MAS с подавлением межкластерной помехи MU-MAS (IMCI) для подавления радиочастотной помехи у первого пользователя;
когда первое устройство клиента находится в пределах третьей заданной зоны, в которой S2 увеличилась относительно S1 и/или S1 уменьшилась относительно S2, так что относительные значения S2 и S1 привели в результате к достижению второго порогового значения, то затем осуществляют стандартное предварительное кодирование MU-MAS на станциях BTS во втором кластере MU-MAS, чтобы передать одновременные не создающие друг другу помех потоки данных в пределах одной и той же полосы частот ко второму множеству устройств клиента, содержащему первое устройство клиента, и формируют информацию о состоянии канала (CSI), определяющую состояние канала между одной или более антеннами первого устройства клиента и одной или более антеннами первого кластера MU-MAS, в которой BTS первого кластера MU-MAS использует CSI, чтобы осуществить предварительное кодирование MU-MAS с подавлением межкластерной помехи MU-MAS (IMCI), чтобы избежать радиочастотной помехи у первого пользователя; и
когда первое устройство клиента находится в пределах четвертой заданной зоны, в которой S2 увеличилась относительно S1 и/или S1 уменьшилась относительно S2, так что относительные значения S2 и S1 привели в результате к достижению третьего порогового значения, то затем осуществляют стандартное предварительное кодирование MU-MAS по меньшей мере на одной из базовых приемопередающих станций (BTS) во втором кластере MU-MAS, чтобы передать одновременные не создающие друг другу помех потоки данных в пределах одной и той же полосы частот ко второму множеству устройств клиента, содержащему первого пользователя, и осуществляют стандартное предварительное кодирование MU-MAS на станциях BTS в первом кластере MU-MAS, чтобы передать одновременные не создающие друг другу помех потоки данных в пределах одной и той же полосы частот первому множеству устройств клиента, не содержащему первого пользователя.
5. Система по п.1, в которой MU-MAS регулирует связь с первым устройством клиента и содержит:
сеть MU-MAS, имеющую множество антенн, посылающих радиочастотную энергию пользователю;
устройство клиента и/или один или более приемопередатчиков базовой станции (BTS) сети MU-MAS, оценивающее текущую скорость движения пользователя; и
одну или более станций BTS, назначающих устройство клиента конкретной сети MU-MAS, основываясь на оцененной скорости движения пользователя.
6. Система по п.1, в которой MU-MAS регулирует связь с первым устройством клиента и содержит:
применение весов MU-MAS к одному или более потокам данных, чтобы сформировать один или более предварительно кодированных потоков данных MU-MAS;
прием информации о качестве входного канала (CQI) и/или информации о состоянии канала (CSI), относящейся к каналам связи, по которым должны передаваться предварительно кодированные потоки данных MU-MAS;
определение коэффициента масштабирования мощности, основываясь на CQI и/или CSI; и
применение коэффициента масштабирования мощности к каждому из предварительно кодированных потоков данных MU-MAS.
7. Система по п.1, в которой MU-MAS регулирует связь с первым устройством клиента и содержит:
прием информации о состоянии канала (CSI) и/или информации о качестве канала (CQI);
выбор групп антенн MU-MAS в пределах одного и того же кластера, основываясь на CSI или CQI; и
применение весов MU-MAS для формирования одного или более предварительно кодированных потоков данных MU-MAS в пределах каждой группы, основываясь на CSI и/или CQI.
8. Система по п.1, в которой MU-MAS осуществляет связь с множеством устройств клиента и содержит:
определение информации о состоянии канала (CSI), определяющее состояние канала между каждой из первого множества антенн MU-MAS и каждым устройством клиента;
использование CSI для определения весов предварительного кодирования MU-MAS для каждого из каналов между каждой из первого множества антенн MU-MAS и антеннами каждого из устройств клиента;
использование CSI и весов предварительного кодирования MU-MAS для определения показателей качества канала, определяющих качество канала между каждой из первого множества антенн MU-MAS и антеннами каждого из устройств клиента;
использование показателей качества линии связи для определения схем кодирования модуляции (MCS) для различных устройств клиента; и
передачу предварительно кодированных потоков данных от каждой из первого множества антенн MU-MAS к каждому из отдельных устройств клиента, используя MCS, определенные для этих устройств клиента.
9. Система по п.1, в которой MU-MAS выполняет интерполяцию предварительного кодирования и использует ортогональное мультиплексирование с частотным разделением (OFDM) и предварительное кодирование MU-MAS для осуществления связи с множеством устройств клиента, причем система содержит процессор для обработки управляющей программы для выполнения следующих операций:
выбор первого подмножества тональных сигналов ODFM для определения первого подмножества весов предварительного кодирования;
получение второго подмножества весов предварительного кодирования для второго подмножества тональных сигналов ODFM посредством интерполяции между первым подмножеством весов предварительного кодирования; и
использование сочетания первого подмножества весов предварительного кодирования и второго подмножества весов предварительного кодирования для выполнения предварительного кодирования потока данных перед передачей потока данных пользователю.
10. Система по п.1, в которой MU-MAS содержит:
множество беспроводных устройств клиента;
множество базовых приемопередающих станций (BTS), имеющих множество антенн MU-MAS для установления многочисленных параллельных каналов связи со множеством устройств клиента;
в которой любая BTS и/или любое беспроводное устройство клиента измеряет качество линий связи для каналов связи между ними и использует результаты измерения качества лини связи для определения кластера пользователя;
BTS и/или беспроводные устройства клиента дополнительно посредством измерения получают информацию о состоянии канала (CSI) между каждым устройством клиента и каждой антенной MU-MAS в пределах определенного кластера пользователя и предварительно кодируют передачи данных между антеннами MU-MAS в пределах кластера пользователя и устройствами клиента, доступными для этих антенн MU-MAS, основываясь на измеренной CSI.
11. Система по п.1, использующая предварительное кодирование блочной диагонализации.
12. Система по п.2, в которой M распределенных передающих антенн создают до (M-1) точек с нулевой радиочастотной энергией,
13. Система по п.2, в которой точки с нулевой радиочастотной энергией создаются для подавления помехи между соседними кластерами MU-MAS.
14. Система по п.3, в которой обнаружение мощности сигнала помехи в первом устройстве клиента от второго кластера MU-MAS содержит измерение мощности сигнала во время назначенных периодов молчания от антенн MU-MAS первого кластера MU-MAS.
15. Система по п.4, дополнительно содержащая:
первое устройство клиента и/или BTS, вычисляющие отношение сигнал-смесь помехи с шумом (SINR) и/или отношение сигнал-помеха (SIR) для S1 и S2; и
определение первого, второго и третьего пороговых значений, основываясь на значениях SIR и/или SINR.
16. Система по п.4, дополнительно содержащая:
первое устройство клиента и/или BTS, динамически регулирующие каждое первое-третье пороговые значения, чтобы осуществить гистерезисный цикл в ответ на перемещение первого устройства клиента между зонами для недопущения периодически повторяющихся переключений между зонами, основываясь на относительных значениях S1 и S2.
17. Система по п.5, в которой радиочастотная энергия используется для оценки текущей скорости движения для устройства клиента, оценивая доплеровский сдвиг.
18. Система по п.5, в которой, если скорость движения пользователя превышает заданное пороговое значение, устройство клиента назначается первой сети MU-MAS, способной осуществлять связь с высокоскоростными устройствами клиента, а если скорость пользователя ниже заданного порогового значения, то устройство клиента назначается второй сети MU-MAS.
19. Система по п.6, в которой коэффициент масштабирования мощности применяется к каждому из потоков данных, посланных каждой антенне MU-MAS, и динамически регулируется так, что мгновенная мощность передачи на каждую антенну MU-MAS может подниматься выше заданного максимально допустимого воздействия (МРЕ), но средняя мощность в каждой антенне MU-MAS поддерживается ниже предельных значений МРЕ.
20. Система по п.8 в которой система, использующая ортогональное мультиплексирование с разделением частот (OFDM), дополнительно содержит: определение на основе показателей качества канала, различных тональных сигналов OFDM, которые должны использоваться для связи с каждым из различных устройств клиента.
21. Система по п.8, дополнительно содержащая регулирование MCS на основе обнаруженных временных изменений усиления канала.
22. Система по п.1, в которой антеннам MU-MAS известна информация о состоянии канала между передатчиками и приемниками и передатчики используют информацию о состоянии канала для определения сигналов помехи, которые должны передавать одновременно.
23. Система по п.10, в которой качество канала измеряется как отношение сигнал-шум (SNR) или отношение сигнал-смесь помехи с шумом (SINR).
24. Система по п.10, в которой использование результатов измерений качества линии связи для определения кластера пользователя содержит идентификацию подмножества антенн, имеющих ненулевые показатели качества линии связи для целевого пользователя.
25. Система по п.10, в которой взаимообразность восходящего/нисходящего (UL/DL) канала используется для получения CSI из использования контрольного сигнала по каналу UL для дуплексных систем с временным разделением (TDD).
RU2013125496/07A 2010-11-01 2011-10-31 Системы и способы координации передач в распределенных беспроводных системах посредством кластеризации пользователей RU2543092C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/917,257 US8542763B2 (en) 2004-04-02 2010-11-01 Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US12/917,257 2010-11-01
PCT/US2011/058663 WO2012061325A1 (en) 2010-11-01 2011-10-31 Systems and methods to coordinate transmissions in distributed wireless systems via user clustering

Publications (2)

Publication Number Publication Date
RU2013125496A RU2013125496A (ru) 2014-12-10
RU2543092C2 true RU2543092C2 (ru) 2015-02-27

Family

ID=46024795

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013125496/07A RU2543092C2 (ru) 2010-11-01 2011-10-31 Системы и способы координации передач в распределенных беспроводных системах посредством кластеризации пользователей

Country Status (17)

Country Link
US (3) US8542763B2 (ru)
EP (3) EP3557782B1 (ru)
JP (7) JP5957000B2 (ru)
KR (4) KR102125039B1 (ru)
CN (3) CN108063631B (ru)
AU (6) AU2011323559B2 (ru)
BR (1) BR112013010642A2 (ru)
CA (1) CA2816556C (ru)
FI (1) FI3557782T3 (ru)
HK (1) HK1255304A1 (ru)
IL (3) IL226082A (ru)
MX (1) MX2013004913A (ru)
NZ (1) NZ610463A (ru)
RU (1) RU2543092C2 (ru)
SG (3) SG189554A1 (ru)
TW (4) TWI587655B (ru)
WO (1) WO2012061325A1 (ru)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745275C2 (ru) * 2017-01-31 2021-03-23 Пойнтинг Энтеннес (Пти) Лимитед Система и способ предоставления услуг связи на обеих сторонах коридора
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11070258B2 (en) 2004-04-02 2021-07-20 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11146313B2 (en) 2013-03-15 2021-10-12 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11190247B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11451281B2 (en) 2013-03-12 2022-09-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US11818604B2 (en) 2012-11-26 2023-11-14 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10187133B2 (en) 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
JP4433867B2 (ja) 2004-04-28 2010-03-17 ソニー株式会社 無線通信システム
US9685997B2 (en) * 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US7917176B2 (en) * 2006-02-14 2011-03-29 Nec Laboratories America, Inc. Structured codebook and successive beamforming for multiple-antenna systems
US8989155B2 (en) * 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
US8547861B2 (en) * 2008-07-07 2013-10-01 Apple Inc. Optimizing downlink communications between a base station and a remote terminal by power sharing
US8249540B1 (en) 2008-08-07 2012-08-21 Hypres, Inc. Two stage radio frequency interference cancellation system and method
US8160571B2 (en) 2008-10-06 2012-04-17 Root Wireless, Inc. Mobile device and method for collecting location based user quality data
US8832258B2 (en) * 2008-10-06 2014-09-09 Root Wireless, Inc. Server device and method for directing mobile devices to collect and communicate location based user quality data
US8379532B2 (en) 2008-10-06 2013-02-19 Root Wireless, Inc. Web server and method for hosting a web page for presenting location based user quality data related to a communication network
US9113345B2 (en) 2008-10-06 2015-08-18 Root Wireless, Inc. Web server and method for hosting a web page for presenting location based user quality data related to a communication network
KR101800294B1 (ko) * 2009-04-02 2017-12-20 삼성전자주식회사 다중 셀 통신 시스템에서 셀 가장자리 사용자의 에러를 최소화하기 위한 장치 및 방법
US8145223B2 (en) * 2009-04-09 2012-03-27 Telefonaktiebolaget L M Ericsson (Publ) Inter-cell interference mitigation
US20100304773A1 (en) * 2009-05-27 2010-12-02 Ramprashad Sean A Method for selective antenna activation and per antenna or antenna group power assignments in cooperative signaling wireless mimo systems
US8325860B2 (en) 2009-11-09 2012-12-04 Marvell World Trade Ltd. Asymmetrical feedback for coordinated transmission systems
JP2012085115A (ja) * 2010-10-12 2012-04-26 Panasonic Corp 通信端末およびクラスター監視方法
US9048970B1 (en) 2011-01-14 2015-06-02 Marvell International Ltd. Feedback for cooperative multipoint transmission systems
CN105959956B (zh) 2011-02-22 2019-07-23 索尼公司 天线管理装置和方法
CN103548284B (zh) 2011-03-31 2017-07-21 马维尔国际贸易有限公司 用于协作多点传输的信道反馈
US8948293B2 (en) * 2011-04-20 2015-02-03 Texas Instruments Incorporated Downlink multiple input multiple output enhancements for single-cell with remote radio heads
EP2705726A4 (en) * 2011-05-02 2015-04-29 Ziva Corp DISTRIBUTED COOPERATIVE NODES USING REVERSIBILITY IN TIME
EP2747325A4 (en) * 2011-08-15 2015-07-08 Sharp Kk WIRELESS TRANSMISSION DEVICE, WIRELESS RECEPTION DEVICE, PROGRAM, INTEGRATED CIRCUIT, AND WIRELESS COMMUNICATION SYSTEM
US9977188B2 (en) 2011-08-30 2018-05-22 Skorpios Technologies, Inc. Integrated photonics mode expander
CN102983933B (zh) * 2011-09-06 2017-12-26 中兴通讯股份有限公司 信号发送方法、信号解码方法、装置和系统
BR112014005163A2 (pt) * 2011-09-14 2017-04-11 Rearden Llc sistema de antena múltipla (mas) para múltiplos usuários (mu) e método de exploração de áreas de coerência em canais sem fio no referido sistema
KR101477169B1 (ko) * 2011-09-26 2014-12-29 주식회사 에치에프알 클라우드 기반 네트워크를 위한 광 선로 공유 방법과 그를 위한 시스템 및 장치
US9025479B2 (en) * 2011-10-03 2015-05-05 Qualcomm Incorporated Increasing CSI-RS overhead via antenna port augmentation
US9031597B2 (en) 2011-11-10 2015-05-12 Marvell World Trade Ltd. Differential CQI encoding for cooperative multipoint feedback
US9220087B1 (en) 2011-12-08 2015-12-22 Marvell International Ltd. Dynamic point selection with combined PUCCH/PUSCH feedback
US9137818B2 (en) * 2011-12-14 2015-09-15 Alcatel Lucent Method and system for a reduced-complexity scheduling for a network MIMO with linear zero-forcing beamforming
CN103188768A (zh) * 2011-12-30 2013-07-03 华为终端有限公司 一种通信模式选择方法及装置
US9295033B2 (en) 2012-01-31 2016-03-22 Qualcomm Incorporated Systems and methods for narrowband channel selection
US9882614B2 (en) 2012-02-06 2018-01-30 Nippon Telegraph And Telephone Corporation Wireless signal transmitting method and wireless apparatus
US10090901B2 (en) 2012-02-07 2018-10-02 Motorola Mobility Llc Method and apparatus for optimizing antenna precoder selection with coupled antennas
US9215597B2 (en) * 2012-03-16 2015-12-15 Alcatel Lucent Method of coordinating concurrent sector optimizations in a wireless communication system
US9019148B1 (en) * 2012-04-24 2015-04-28 Sandia Corporation Remote sensing using MIMO systems
US9143951B2 (en) 2012-04-27 2015-09-22 Marvell World Trade Ltd. Method and system for coordinated multipoint (CoMP) communication between base-stations and mobile communication terminals
CA2872502C (en) * 2012-05-04 2021-05-18 Rearden, Llc System and methods for coping with doppler effects in distributed-input distributed-output wireless systems
SG10201702179RA (en) * 2012-05-18 2017-04-27 Rearden Llc Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
US9282473B2 (en) * 2012-06-07 2016-03-08 Samsung Electronics Co., Ltd. Wireless communication system with channel-quality indicator mechanism and method of operation thereof
US9215726B1 (en) * 2012-07-24 2015-12-15 Spectranet, Inc. Low latency wireless messaging
CN103596196B (zh) * 2012-08-14 2018-05-25 中兴通讯股份有限公司 一种多接入点校准方法及装置
JP6019298B2 (ja) * 2012-10-03 2016-11-02 株式会社国際電気通信基礎技術研究所 無線通信システム、無線送信装置および無線通信方法
EP3306826B1 (en) * 2012-10-03 2019-06-05 Sckipio Technologies S.i Ltd Hybrid precoder
US9161385B2 (en) 2012-11-26 2015-10-13 Brightsource Industries (Israel) Ltd. Systems and methods for wireless communications in a solar field
US20150229372A1 (en) 2014-02-07 2015-08-13 Rearden, Llc Systems and methods for mapping virtual radio instances into physical volumes of coherence in distributed antenna wireless systems
CN104919839B (zh) * 2013-01-09 2019-06-21 安华高科技股份有限公司 用于建立并保持小区集群的系统和方法
US9241275B2 (en) * 2013-02-28 2016-01-19 Cisco Technologies, Inc. Distributed processing distributed-input distributed-output (DIDO) wireless communication
US9973246B2 (en) * 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US9923657B2 (en) * 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9544112B2 (en) * 2013-03-19 2017-01-10 Lg Electronics Inc. Method by which terminal transmits and receives signal in multi cell-based wireless communication system, and device for same
JP2016129270A (ja) * 2013-04-24 2016-07-14 三菱電機株式会社 通信装置および受信装置
WO2015023275A1 (en) * 2013-08-14 2015-02-19 Hewlett-Packard Development Company, L.P. Transmit antenna selection
US9344159B2 (en) 2013-10-09 2016-05-17 Telefonaktiebolaget L M Ericsson (Publ) Dynamic multi-cell clustering for downlink comp in a wireless communication network
KR102220399B1 (ko) * 2013-10-21 2021-02-25 삼성전자주식회사 다중 입력 다중 출력 방식을 사용하는 무선 통신 시스템에서 사용자 단말기 선택 및 빔 포밍 동작 수행 장치 및 방법
US9521520B2 (en) 2013-11-13 2016-12-13 Cisco Technology, Inc. Distributed-input OFDM angle-of-arrival scheme for location determination
CN103702343B (zh) * 2013-12-30 2017-06-06 大唐移动通信设备有限公司 一种同频干扰小区的检测方法及装置
US9664855B2 (en) 2014-03-07 2017-05-30 Skorpios Technologies, Inc. Wide shoulder, high order mode filter for thick-silicon waveguides
WO2015183992A1 (en) 2014-05-27 2015-12-03 Skorpios Technologies, Inc. Waveguide mode expander using amorphous silicon
EP3657882B1 (en) 2014-06-09 2023-04-26 Commscope Technologies LLC Radio access networks using plural remote units
CN104101873B (zh) * 2014-06-29 2017-04-19 西北工业大学 一种基于加权平均策略的分布式雷达网络多目标定位方法
EP3202052B1 (en) * 2014-09-29 2018-11-07 Telefonaktiebolaget LM Ericsson (publ) Interference and/or power reduction for multiple relay nodes using cooperative beamforming
KR102069543B1 (ko) * 2014-10-14 2020-01-23 주식회사 쏠리드 분산 안테나 시스템의 헤드엔드 장치 및 그 신호 처리 방법
US20160128048A1 (en) * 2014-10-29 2016-05-05 Qualcomm Incorporated Control channel on plcp service data unit (psdu) tones
US9544032B2 (en) * 2014-11-20 2017-01-10 Huawei Technologies Canada Co., Ltd. System and method for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) offset quadrature amplitude modulation (OQAM)
US9706514B2 (en) 2014-12-02 2017-07-11 Cisco Technology, Inc. Wideband angle-of-arrival location determination using bandwidth partitioning
CN104579441B (zh) * 2014-12-29 2018-01-23 三维通信股份有限公司 一种室内das系统与小基站下行干扰避免方法
US9936422B2 (en) * 2015-03-16 2018-04-03 Aruba Networks, Inc. Client association management for improving MU-MIMO transmissions
CN106161725B (zh) * 2015-03-24 2019-10-29 联想(北京)有限公司 一种信息处理方法及电子设备
CN107005343B (zh) * 2015-03-31 2019-06-07 深圳市大疆创新科技有限公司 一种无线通信控制方法和装置
US9829631B2 (en) 2015-04-20 2017-11-28 Skorpios Technologies, Inc. Vertical output couplers for photonic devices
KR102123032B1 (ko) * 2015-05-22 2020-06-16 모토로라 모빌리티 엘엘씨 결합된 안테나들로 안테나 프리코더 선택을 최적화하기 위한 방법 및 장치
JP6447723B2 (ja) * 2015-06-05 2019-01-09 富士通株式会社 観測システムおよび観測方法
US10178560B2 (en) * 2015-06-15 2019-01-08 The Invention Science Fund I Llc Methods and systems for communication with beamforming antennas
CN106257951B (zh) * 2015-06-19 2021-04-30 中兴通讯股份有限公司 一种数据传输方法和基站
US9661598B2 (en) 2015-09-30 2017-05-23 Mitsubishi Electric Research Laboratories, Inc. System and method for reducing interference between multiple terminals
US10327164B2 (en) * 2015-10-29 2019-06-18 Cable Television Laboratories, Inc. Multichannel communication systems
US10972155B2 (en) * 2015-11-25 2021-04-06 Hewlett Packard Enterprise Development Lp Access point selection
US10419975B1 (en) 2015-12-11 2019-09-17 Spectranet, Inc. Parallel multi-bit low latency wireless messaging
CN105721026B (zh) * 2015-12-31 2019-12-17 华为技术有限公司 一种联合数据传输方法及设备
WO2017126541A1 (ja) * 2016-01-20 2017-07-27 日本電気株式会社 計算方法、無線局、記憶媒体
RU2617207C1 (ru) * 2016-02-24 2017-04-24 Ольга Олеговна Матросова Способ организации абонентского доступа к сетям передачи данных
US10200894B2 (en) * 2016-04-22 2019-02-05 City University Of Hong Kong Facilitating interference management in multi-cell and multi-user millimeter wave cellular networks
CN107370523A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 码本配置的选择方法及执行该方法的电子设备
US9668149B1 (en) 2016-05-25 2017-05-30 Cisco Technology, Inc. Receiver stomp-and-restart in a distributed MU-MIMO system using RSSI separation
CA3026385A1 (en) * 2016-06-10 2017-12-14 At&T Intellectual Property I, L.P. Backhaul link with reference signal for distributed antenna system
US9918317B2 (en) * 2016-07-08 2018-03-13 Alcatel-Lucent Usa Inc. Apparatus configured to approximate a power coefficient in a cell-free massive MIMO wireless system and method of performing same
US10312979B2 (en) 2016-07-27 2019-06-04 Cisco Technology, Inc. Enabling distributed access points on high bandwidth cables for band and antenna splitting
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
US20180101590A1 (en) * 2016-10-10 2018-04-12 International Business Machines Corporation Message management in a social networking environment
US10039120B2 (en) * 2016-10-24 2018-07-31 Qualcomm Incorporated Scaling of shared spectrum exclusive resources
CN107249191B (zh) * 2017-04-27 2019-12-10 东南大学 一种基于hedonic博弈的分布式基站分簇方法
US10306675B2 (en) 2017-05-03 2019-05-28 Cisco Technology, Inc. Collision detection and avoidance mechanism using distributed radio heads in a wireless network
US10645704B2 (en) * 2017-06-15 2020-05-05 Qualcomm Incorporated Multi-user multiple-input/multiple-output transmissions in millimeter wave systems
CN109309924B (zh) * 2017-07-26 2022-06-03 北京小米移动软件有限公司 数据传输方法及装置
US10229092B2 (en) 2017-08-14 2019-03-12 City University Of Hong Kong Systems and methods for robust low-rank matrix approximation
US11038544B2 (en) * 2017-08-31 2021-06-15 Apple Inc. Method and apparatus for IIP2 calibration
CN109495152A (zh) 2017-09-13 2019-03-19 索尼公司 电子设备和通信方法
WO2019070627A1 (en) 2017-10-03 2019-04-11 Commscope Technologies Llc DYNAMIC DOWNLINK REUSE IN A C-RAN
WO2019075876A1 (zh) * 2017-10-20 2019-04-25 华为技术有限公司 资源调度方法和终端设备
US10649148B2 (en) 2017-10-25 2020-05-12 Skorpios Technologies, Inc. Multistage spot size converter in silicon photonics
US10330770B2 (en) 2017-11-09 2019-06-25 Cisco Technology, Inc. Channel estimation in OFDMA for switched antenna array based angle-of-arrival location
US11324014B2 (en) * 2017-12-22 2022-05-03 Qualcomm Incorporated Exposure detection in millimeter wave systems
CN110062417B (zh) 2018-01-19 2023-08-22 华为技术有限公司 一种协作传输控制的方法、装置及系统
WO2019157742A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 信道状态信息矩阵信息处理方法及通信装置
CN110324846B (zh) 2018-03-28 2021-09-03 维沃移动通信有限公司 一种上行传输取消指令的监听方法及终端
CN108966369B (zh) * 2018-07-19 2021-08-17 广州华创物联科技股份有限公司 一种养老院人员定位监护系统及其方法
CN110752866B (zh) * 2018-07-23 2021-08-20 华为技术有限公司 大规模多输入多输出mimo预编码传输方法以及装置
CN109033084B (zh) * 2018-07-26 2022-10-28 国信优易数据股份有限公司 一种语义层次树构建方法以及装置
CN108848525B (zh) * 2018-08-02 2021-09-03 武汉虹信科技发展有限责任公司 一种用于精确测量lte上行功率的场强测量方法及装置
RU2688927C1 (ru) * 2018-08-10 2019-05-23 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ определения углового положения источника OFDM сигналов
CN109409216B (zh) * 2018-09-18 2022-04-05 哈尔滨工程大学 基于子载波动态选择的速度自适应室内人体检测方法
US11184863B2 (en) * 2018-10-08 2021-11-23 Qualcomm Incorporated Uplink beam selection in millimeter wave subject to maximum permissible exposure constraints
WO2020124589A1 (en) 2018-12-21 2020-06-25 Qualcomm Incorporated Beam-strength related type-ii channel state information coefficient feedback
CN109769274B (zh) * 2018-12-27 2021-06-25 普联技术有限公司 无线组网系统中信道切换的方法、设备及可读存储介质
KR102547761B1 (ko) 2019-01-11 2023-06-23 텔레폰악티에볼라겟엘엠에릭슨(펍) 교차 링크 간섭 관리를 위한 인터-노드 조정
US11360263B2 (en) 2019-01-31 2022-06-14 Skorpios Technologies. Inc. Self-aligned spot size converter
US11109432B2 (en) * 2019-02-15 2021-08-31 At&T Intellectual Property I, L.P. Location based coreset configuration for transmitting the physical downlink control channel in 5G wireless communication systems
CN110213713B (zh) * 2019-04-28 2020-06-23 浙江大学 一种基于时空域联合处理的集中式协作定位系统和方法
CN110191411B (zh) * 2019-04-28 2020-06-19 浙江大学 一种基于时空域联合处理的分布式协作定位系统和方法
TWI717736B (zh) 2019-05-15 2021-02-01 財團法人工業技術研究院 多天線系統及其通道校正方法
CN110166104B (zh) * 2019-06-10 2020-04-03 深圳大学 基于聚类的分布式波束成形上行链路信号识别方法及系统
CN111212433B (zh) * 2020-01-13 2020-09-08 电子科技大学 一种基于单通道自干扰对消的认知无线电装置及方法
US11190955B1 (en) 2020-01-16 2021-11-30 Sprint Communications Company L.P. Configuration of a wireless network centralized unit (CU) and multiple wireless network distributed units (DUs)
US11329722B2 (en) 2020-03-27 2022-05-10 Relative Dynamics Incorporated Optical terminals
TWI714496B (zh) * 2020-04-13 2020-12-21 國立清華大學 無線電力驅動通訊網路的強化學習通訊時間分配方法及基地台
JP7146151B2 (ja) * 2020-09-17 2022-10-03 三菱電機株式会社 無線通信装置、制御回路、記憶媒体および信号処理方法
CN112688724A (zh) * 2020-11-17 2021-04-20 西安电子科技大学 基于mimo技术的集群目标协同应答方法及询问应答系统
US11582029B2 (en) * 2020-11-18 2023-02-14 Kabushiki Kaisha Toshiba Secret key generation for wireless channels
TWI764456B (zh) * 2020-12-21 2022-05-11 鴻海精密工業股份有限公司 區塊運算方法、裝置、電腦裝置及儲存介質
KR102301131B1 (ko) * 2021-04-29 2021-09-10 세종대학교산학협력단 빔포밍을 위한 다중 안테나 채널 추정 장치 및 그 방법
WO2023278735A1 (en) * 2021-07-01 2023-01-05 Shure Acquisition Holdings, Inc. Scalable multiuser audio system and method
TWI773620B (zh) * 2021-12-28 2022-08-01 李學智 多埠多天線元素的手機毫米波天線系統
CN115685187B (zh) * 2022-07-08 2023-10-13 中山大学 一种高集成度便携式mimo形变监测雷达装置、校正方法
CN116488684B (zh) * 2023-04-26 2023-10-13 南通大学 一种超大规模mimo天线系统中可视区域的识别方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2008121170A (ru) * 2005-10-27 2009-12-10 Квэлкомм Инкорпорейтед (US) Предварительное кодирование для зависящего от сегмента планирования в беспроводных системах связи

Family Cites Families (507)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085877A (en) 1959-06-10 1963-04-16 Robert J Reid Method of producing animated motion pictures
US3887925A (en) 1973-07-31 1975-06-03 Itt Linearly polarized phased antenna array
US4075097A (en) 1975-04-01 1978-02-21 Monroe Auto Equipment Company Oil filter with oil improving dissolving body
US4003016A (en) 1975-10-06 1977-01-11 The United States Of America As Represented By The Secretary Of The Navy Digital beamforming system
US4076097A (en) 1976-08-04 1978-02-28 Thomas Lowe Clarke Augmented passive radiator loudspeaker
GB1578469A (en) 1977-11-05 1980-11-05 Marconi Co Ltd Tropospheric scatter radio communications systems
US4209780A (en) 1978-05-02 1980-06-24 The United States Of America As Represented By The United States Department Of Energy Coded aperture imaging with uniformly redundant arrays
US4771289A (en) 1982-05-28 1988-09-13 Hazeltine Corporation Beamforming/null-steering adaptive array
US4564935A (en) 1984-01-10 1986-01-14 The United States Of America As Represented By The Secretary Of The Air Force Tropospheric scatter communication system having angle diversity
US6041365A (en) 1985-10-29 2000-03-21 Kleinerman; Aurel Apparatus and method for high performance remote application gateway servers
US4855061A (en) 1988-04-26 1989-08-08 Cpc Engineering Corporation Method and apparatus for controlling the coagulant dosage for water treatment
CA1307842C (en) 1988-12-28 1992-09-22 Adrian William Alden Dual polarization microstrip array antenna
US5088091A (en) 1989-06-22 1992-02-11 Digital Equipment Corporation High-speed mesh connected local area network
US5097485A (en) 1989-10-10 1992-03-17 Hughes Aircraft Company Hf high data rate modem
US5095500A (en) 1989-12-07 1992-03-10 Motorola, Inc. Cellular radiotelephone diagnostic system
CA2011298C (en) 1990-03-01 1999-05-25 Adrian William Alden Dual polarization dipole array antenna
GB2256948B (en) 1991-05-31 1995-01-25 Thomas William Russell East Self-focussing antenna array
US5315309A (en) 1991-09-06 1994-05-24 Mcdonnell Douglas Helicopter Company Dual polarization antenna
US5600326A (en) 1991-12-16 1997-02-04 Martin Marietta Corp. Adaptive digital beamforming architecture and algorithm for nulling mainlobe and multiple sidelobe radar jammers while preserving monopulse ratio angle estimation accuracy
TW214620B (en) * 1992-04-13 1993-10-11 Ericsson Ge Mobile Communicat Calling channel in CDMA communications system
US5304809A (en) 1992-09-15 1994-04-19 Luxtron Corporation Luminescent decay time measurements by use of a CCD camera
US5483667A (en) 1993-07-08 1996-01-09 Northern Telecom Limited Frequency plan for a cellular network
US6005856A (en) * 1993-11-01 1999-12-21 Omnipoint Corporation Communication protocol for spread spectrum wireless communication system
US5472467A (en) 1994-03-14 1995-12-05 Pfeffer; Jack R. Self-supporting filter composite
US5771449A (en) 1994-03-17 1998-06-23 Endlink, Inc. Sectorized multi-function communication system
US5479026A (en) 1994-05-16 1995-12-26 United Technologies Corporation System having optically encoded information
US5424533A (en) 1994-06-21 1995-06-13 United Technologies Corporation Self illuminating touch activated optical switch
US5787344A (en) 1994-06-28 1998-07-28 Scheinert; Stefan Arrangements of base transceiver stations of an area-covering network
SE513974C2 (sv) 1994-08-19 2000-12-04 Telia Ab Hastighetsbestämning av mobila enheter i telekommunikationssystem
JP3467888B2 (ja) 1995-02-08 2003-11-17 三菱電機株式会社 受信装置及び送受信装置
US6005516A (en) 1995-06-08 1999-12-21 Metawave Communications Corporation Diversity among narrow antenna beams
US5838671A (en) 1995-06-23 1998-11-17 Ntt Mobile Communications Network Inc. Method and apparatus for call admission control in CDMA mobile communication system
US5841768A (en) 1996-06-27 1998-11-24 Interdigital Technology Corporation Method of controlling initial power ramp-up in CDMA systems by using short codes
US5950124A (en) 1995-09-06 1999-09-07 Telxon Corporation Cellular communication system with dynamically modified data transmission parameters
US5809422A (en) 1996-03-08 1998-09-15 Watkins Johnson Company Distributed microcellular communications system
US5742253A (en) 1996-03-12 1998-04-21 California Institute Of Technology System and method for controlling the phase of an antenna array
CA2265875C (en) 1996-09-09 2007-01-16 Dennis Jay Dupray Location of a mobile station
FR2754968B1 (fr) 1996-10-22 1999-06-04 Sagem Terminal de telephonie mobile cellulaire localisable
US6732183B1 (en) 1996-12-31 2004-05-04 Broadware Technologies, Inc. Video and audio streaming for multiple users
US6049593A (en) 1997-01-17 2000-04-11 Acampora; Anthony Hybrid universal broadband telecommunications using small radio cells interconnected by free-space optical links
US5872814A (en) 1997-02-24 1999-02-16 At&T Wireless Services Inc. Method for linearization of RF transmission electronics using baseband pre-distortion in T/R compensation pilot signals
US6792259B1 (en) 1997-05-09 2004-09-14 Ronald J. Parise Remote power communication system and method thereof
US6308080B1 (en) 1997-05-16 2001-10-23 Texas Instruments Incorporated Power control in point-to-multipoint systems
US6008760A (en) 1997-05-23 1999-12-28 Genghis Comm Cancellation system for frequency reuse in microwave communications
US5930379A (en) 1997-06-16 1999-07-27 Digital Equipment Corporation Method for detecting human body motion in frames of a video sequence
US6259687B1 (en) 1997-10-31 2001-07-10 Interdigital Technology Corporation Communication station with multiple antennas
US6061023A (en) 1997-11-03 2000-05-09 Motorola, Inc. Method and apparatus for producing wide null antenna patterns
US6252912B1 (en) 1997-12-24 2001-06-26 General Dynamics Government Systems Corporation Adaptive predistortion system
JPH11252613A (ja) * 1998-03-05 1999-09-17 Tsushin Hoso Kiko 移動体通信システム
FR2783126B1 (fr) 1998-09-03 2001-03-30 Cit Alcatel Passage de la couche microcellulaire a la couche macrocellulaire dans une cellule a deux couches d'un reseau de telecommunications
US6411612B1 (en) 1998-05-19 2002-06-25 Harris Communication Selective modification of antenna directivity pattern to adaptively cancel co-channel interference in TDMA cellular communication system
DE19833967C2 (de) 1998-07-28 2001-02-08 Siemens Ag Empfangsdiversitätsverfahren und Funk-Kommunikationssystem mit Diversitätsempfang
US7483049B2 (en) 1998-11-20 2009-01-27 Aman James A Optimizations for live event, real-time, 3D object tracking
US6442151B1 (en) 1999-04-06 2002-08-27 Ericsson Inc. System and method for variable reassignment of transmission channels
US6804311B1 (en) 1999-04-08 2004-10-12 Texas Instruments Incorporated Diversity detection for WCDMA
EP1077535B1 (en) 1999-05-26 2001-12-19 Motorola, Inc. Transmit diversity method and system with phase adjustment for radio communications systems
US6717930B1 (en) 2000-05-22 2004-04-06 Interdigital Technology Corporation Cell search procedure for time division duplex communication systems using code division multiple access
US6067290A (en) 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US6400761B1 (en) 1999-09-15 2002-06-04 Princeton University Method and apparatus for adaptively compensating channel or system variations in precoded communications system
WO2001041479A1 (fr) 1999-11-24 2001-06-07 Fujitsu Limited Dispositif de commande de station de base, dispositif radio terminal et systeme de communication radio
US6901062B2 (en) 1999-12-01 2005-05-31 Kathrein-Werke Kg Adaptive antenna array wireless data access point
US6975666B2 (en) 1999-12-23 2005-12-13 Institut National De La Recherche Scientifique Interference suppression in CDMA systems
US6888809B1 (en) 2000-01-13 2005-05-03 Lucent Technologies Inc. Space-time processing for multiple-input, multiple-output, wireless systems
JP2001217759A (ja) 2000-01-31 2001-08-10 Matsushita Electric Ind Co Ltd 無線通信装置及びアダプティブアレーによる無線通信方法
US6633294B1 (en) 2000-03-09 2003-10-14 Seth Rosenthal Method and apparatus for using captured high density motion for animation
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US7139324B1 (en) 2000-06-02 2006-11-21 Nokia Networks Oy Closed loop feedback system for improved down link performance
US20020027985A1 (en) * 2000-06-12 2002-03-07 Farrokh Rashid-Farrokhi Parallel processing for multiple-input, multiple-output, DSL systems
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
JP3473555B2 (ja) 2000-06-30 2003-12-08 日本電気株式会社 送信電力制御方式、制御方法及び基地局、制御局並びに記録媒体
KR100493152B1 (ko) 2000-07-21 2005-06-02 삼성전자주식회사 이동 통신 시스템에서의 전송 안테나 다이버시티 방법 및이를 위한 기지국 장치 및 이동국 장치
US6834043B1 (en) * 2000-07-24 2004-12-21 Motorola, Inc. Method and device for exploiting transmit diversity in time varying wireless communication systems
GB2365239A (en) 2000-07-26 2002-02-13 Alenia Marconi Systems Ltd Near-vertical incidence skywave HF radar
US6920192B1 (en) 2000-08-03 2005-07-19 Lucent Technologies Inc. Adaptive antenna array methods and apparatus for use in a multi-access wireless communication system
US6643386B1 (en) 2000-08-10 2003-11-04 Omnivision Technologies, Inc. Method and apparatus for adding watermarks to images and/or video data streams
US6718180B1 (en) 2000-10-24 2004-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Power level convergence in a communications system
US8670390B2 (en) 2000-11-22 2014-03-11 Genghiscomm Holdings, LLC Cooperative beam-forming in wireless networks
US6836673B1 (en) 2000-12-22 2004-12-28 Arraycomm, Inc. Mitigating ghost signal interference in adaptive array systems
US6870515B2 (en) 2000-12-28 2005-03-22 Nortel Networks Limited MIMO wireless communication system
US7116722B2 (en) 2001-02-09 2006-10-03 Lucent Technologies Inc. Wireless communication system using multi-element antenna having a space-time architecture
FR2821217B1 (fr) 2001-02-21 2003-04-25 France Telecom Procede et systeme de codage-decodage iteratif de flux de donnees numeriques codees par combinaisons spatio-temporelles, en emission et reception multiple
JP2002281551A (ja) 2001-03-16 2002-09-27 Mitsubishi Electric Corp データ送信装置、送信許可装置、データ送信方法及び送信許可方法
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US20020176485A1 (en) 2001-04-03 2002-11-28 Hudson John E. Multi-cast communication system and method of estimating channel impulse responses therein
JP3631698B2 (ja) 2001-04-09 2005-03-23 日本電信電話株式会社 Ofdm信号伝送システム、ofdm信号送信装置及びofdm信号受信装置
US10425135B2 (en) 2001-04-26 2019-09-24 Genghiscomm Holdings, LLC Coordinated multipoint systems
WO2002089411A2 (en) 2001-05-01 2002-11-07 Koninklijke Philips Electronics N.V. Handoff in radio communication arrangements
EP1255369A1 (en) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US6996400B2 (en) 2001-05-15 2006-02-07 Nokia Corporation Method of channel allocation for a mobile terminal moving in a cellular communication network
US6662024B2 (en) 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
US20030026348A1 (en) * 2001-06-07 2003-02-06 National University Of Singapore Wireless communication apparatus and method
CN100438389C (zh) 2001-06-21 2008-11-26 皇家菲利浦电子有限公司 无线电通信网络中的mimo传输系统
GB0115937D0 (en) 2001-06-29 2001-08-22 Koninkl Philips Electronics Nv Radio communication system
JP2003018054A (ja) 2001-07-02 2003-01-17 Ntt Docomo Inc 無線通信方法及びシステム並びに通信装置
US20030012315A1 (en) 2001-07-06 2003-01-16 John Fan System and method for multistage error correction coding wirelessly transmitted information in a multiple antennae communication system
US7197282B2 (en) * 2001-07-26 2007-03-27 Ericsson Inc. Mobile station loop-back signal processing
US20030048753A1 (en) 2001-08-30 2003-03-13 Ahmad Jalali Method and apparatus for multi-path elimination in a wireless communication system
US7149254B2 (en) 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
US7068704B1 (en) 2001-09-26 2006-06-27 Itt Manufacturing Enterpprises, Inc. Embedded chirp signal for position determination in cellular communication systems
US7313617B2 (en) 2001-09-28 2007-12-25 Dale Malik Methods and systems for a communications and information resource manager
US6956907B2 (en) 2001-10-15 2005-10-18 Qualcomm, Incorporated Method and apparatus for determining power allocation in a MIMO communication system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US8396368B2 (en) 2009-12-09 2013-03-12 Andrew Llc Distributed antenna system for MIMO signals
US7154936B2 (en) 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US20030114165A1 (en) * 2001-12-07 2003-06-19 Mills Donald Charles Method for enhanced wireless signal distribution
US6760388B2 (en) 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
JP2003179948A (ja) 2001-12-10 2003-06-27 Furukawa Electric Co Ltd:The Catvシステムの監視システム
JP4052835B2 (ja) 2001-12-28 2008-02-27 株式会社日立製作所 多地点中継を行う無線伝送システム及びそれに使用する無線装置
JP3840412B2 (ja) 2001-12-28 2006-11-01 株式会社日立製作所 無線端末装置
GB2388264A (en) 2002-01-10 2003-11-05 Roke Manor Research GPS based networked time synchronised unit
US20030220112A1 (en) 2002-01-16 2003-11-27 Engim, Incorporated System and method for enabling the use of spatially distributed multichannel wireless access points/base stations
US7020482B2 (en) 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US6654521B2 (en) 2002-01-23 2003-11-25 Teraxion Inc. Diffraction compensation of FBG phase masks for multi-channel sampling applications
US7813311B2 (en) 2002-02-05 2010-10-12 Interdigital Technology Corporation Method and apparatus for synchronizing base stations
US7116944B2 (en) 2002-02-07 2006-10-03 Lucent Technologies Inc. Method and apparatus for feedback error detection in a wireless communications systems
US7218934B2 (en) 2002-02-14 2007-05-15 Nokia Corporation Mobile station speed estimation
EP1573770B1 (en) 2002-02-20 2013-06-26 University of Washington Analytical instruments using a pseudorandom array of sources, such as a micro-machined mass spectrometer
US6862271B2 (en) 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US7039356B2 (en) 2002-03-12 2006-05-02 Blue7 Communications Selecting a set of antennas for use in a wireless communication system
JP4166026B2 (ja) 2002-03-22 2008-10-15 三洋電機株式会社 無線装置、空間パス制御方法および空間パス制御プログラム
US7197084B2 (en) 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
US6801580B2 (en) 2002-04-09 2004-10-05 Qualcomm, Incorporated Ordered successive interference cancellation receiver processing for multipath channels
US7386274B2 (en) 2002-04-15 2008-06-10 Aol Llc, A Delaware Limited Liability Company Wireless viral mesh network and process for using the same
DE60214340T2 (de) 2002-04-30 2007-05-16 Motorola, Inc., Schaumburg Drahtlose Kommunikation mittels Vielfachsende- und Vielfachempfangs-Antennenanordnung
KR100605824B1 (ko) 2002-05-13 2006-07-31 삼성전자주식회사 부호분할다중접속 이동통신시스템의 방송서비스 방법
US6950056B2 (en) 2002-05-13 2005-09-27 Honeywell International Inc. Methods and apparatus for determination of a filter center frequency
JP4178501B2 (ja) 2002-05-21 2008-11-12 日本電気株式会社 アンテナ送受信システム
DE10223564A1 (de) 2002-05-27 2003-12-11 Siemens Ag Verfahren zur Übertragung von Informationen in einem Funkkommunikationssystem mit Sendestation und Empfangsstationen mit jeweils einer Antenne mit mehreren Antennenelementen und Funkkommunikationssystem
US7421039B2 (en) 2002-06-04 2008-09-02 Lucent Technologies Inc. Method and system employing antenna arrays
TWI225339B (en) 2002-06-06 2004-12-11 Via Telecom Co Ltd Power control of plural packet data control channels
US6791508B2 (en) 2002-06-06 2004-09-14 The Boeing Company Wideband conical spiral antenna
FR2841068B1 (fr) 2002-06-14 2004-09-24 Comsis Procede pour decoder des codes espace-temps lineaires dans un systeme de transmission sans fil multi-antennes, et decodeur mettant en oeuvre un tel procede
US7184713B2 (en) 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US20030235146A1 (en) 2002-06-21 2003-12-25 Yunnan Wu Bezout precoder for transmitter in MIMO communications network
US20040002835A1 (en) 2002-06-26 2004-01-01 Nelson Matthew A. Wireless, battery-less, asset sensor and communication system: apparatus and method
US7920590B2 (en) 2002-07-12 2011-04-05 Spyder Navigations L.L.C. Wireless communications system having built-in packet data compression and support for enabling non-standard features between network elements
US7751843B2 (en) 2002-07-29 2010-07-06 Qualcomm Incorporated Reducing interference with a multiple format channel in a communication system
US7072693B2 (en) 2002-08-05 2006-07-04 Calamp Corp. Wireless communications structures and methods utilizing frequency domain spatial processing
GB2392065B (en) 2002-08-15 2004-12-29 Toshiba Res Europ Ltd Signal decoding methods and apparatus
DE60325921D1 (de) 2002-08-22 2009-03-12 Imec Inter Uni Micro Electr Verfahren zur MIMO-Übertragung für mehrere Benutzer und entsprechende Vorrichtungen
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
JP4110519B2 (ja) 2002-09-05 2008-07-02 ソニー株式会社 空間分割多重アクセス制御方法、無線通信システム、基地局、および移動局
WO2004023668A1 (en) 2002-09-05 2004-03-18 The Regents Of The University Of California Scheduling methods for wireless networks
GB2393618B (en) 2002-09-26 2004-12-15 Toshiba Res Europ Ltd Transmission signals methods and apparatus
US7412212B2 (en) 2002-10-07 2008-08-12 Nokia Corporation Communication system
GB2394389B (en) 2002-10-15 2005-05-18 Toshiba Res Europ Ltd Equalisation apparatus and methods
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
AU2003291502A1 (en) 2002-11-08 2004-06-03 Lyndale Trading Company Limited Adaptive broadband platforms and methods of operation
US7082305B2 (en) * 2002-11-22 2006-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for generating a neighbor cell list
FR2848747A1 (fr) 2002-12-16 2004-06-18 France Telecom Procede et dispositif multi-antenne de transmission de signaux
US7154960B2 (en) 2002-12-31 2006-12-26 Lucent Technologies Inc. Method of determining the capacity of each transmitter antenna in a multiple input/multiple output (MIMO) wireless system
CN100454795C (zh) 2003-01-03 2009-01-21 华为技术有限公司 一种自适应空时闭环发射分集方法及其系统
US6919857B2 (en) 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US20040176097A1 (en) 2003-02-06 2004-09-09 Fiona Wilson Allocation of sub channels of MIMO channels of a wireless network
US9177387B2 (en) 2003-02-11 2015-11-03 Sony Computer Entertainment Inc. Method and apparatus for real time motion capture
GB2398455B (en) 2003-02-11 2007-09-26 Ipwireless Inc Method, base station and mobile station for TDD operation in a communication system
US7369876B2 (en) 2003-03-04 2008-05-06 Samsung Electronics Co., Ltd. Apparatus and method for estimating a velocity of a mobile station in a mobile communication system
US7257237B1 (en) 2003-03-07 2007-08-14 Sandia Corporation Real time markerless motion tracking using linked kinematic chains
US7197082B2 (en) 2003-03-20 2007-03-27 Lucent Technologies Inc. Linear transformation of symbols to at least partially compensate for correlation between antennas in space time block coded systems
US7327795B2 (en) 2003-03-31 2008-02-05 Vecima Networks Inc. System and method for wireless communication systems
US7389096B2 (en) 2003-04-07 2008-06-17 Bellow Bellows Llc Monitoring system using multi-antenna transceivers
US7099678B2 (en) 2003-04-10 2006-08-29 Ipr Licensing, Inc. System and method for transmit weight computation for vector beamforming radio communication
FR2854020B1 (fr) 2003-04-17 2005-09-09 Wavecom Procede de transmission de donnees radio mettant en oeuvre plusieurs motifs de pilotes distincts, procede de reception, systeme, mobile et station de base correspondants
KR100957395B1 (ko) 2003-05-23 2010-05-11 삼성전자주식회사 레벨 교차율을 이용한 속도추정 장치 및 방법
CN1820424A (zh) 2003-06-02 2006-08-16 高通股份有限公司 带有混合均衡器和rake接收机的接收设备以及相应的接收方法
US7646802B2 (en) 2003-06-02 2010-01-12 Qualcomm Incorporated Communication receiver with hybrid equalizer
US7302278B2 (en) 2003-07-03 2007-11-27 Rotani, Inc. Method and apparatus for high throughput multiple radio sectorized wireless cell
US20050014496A1 (en) * 2003-07-14 2005-01-20 Seung-Jae Han Method and apparatus for adaptive and online assignment in hierarchical overlay networks
US7242724B2 (en) 2003-07-16 2007-07-10 Lucent Technologies Inc. Method and apparatus for transmitting signals in a multi-antenna mobile communications system that compensates for channel variations
US7558575B2 (en) 2003-07-24 2009-07-07 Motorola Inc. Method and apparatus for wireless communication in a high velocity environment
US7286609B2 (en) 2003-08-08 2007-10-23 Intel Corporation Adaptive multicarrier wireless communication system, apparatus and associated methods
KR100790092B1 (ko) 2003-08-18 2007-12-31 삼성전자주식회사 다중 사용자 다중 입력 다중 출력 방식을 사용하는 무선통신 시스템에서 자원 스케쥴링 장치 및 방법
US7257167B2 (en) 2003-08-19 2007-08-14 The University Of Hong Kong System and method for multi-access MIMO channels with feedback capacity constraint
US7065144B2 (en) 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US7440510B2 (en) 2003-09-15 2008-10-21 Intel Corporation Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
DE10345541A1 (de) 2003-09-30 2005-04-28 Siemens Ag Verfahren zum Einstellen der Übertragungsparameter von in einer Gruppe zusammengefassten, breitbandigen Übertragungskanälen
US8306574B2 (en) 2003-10-29 2012-11-06 Robert Warner Method and system for an adaptive wireless communication system optimized for economic benefit
US8705659B2 (en) 2003-11-06 2014-04-22 Apple Inc. Communication channel optimization systems and methods in multi-user communication systems
US7664533B2 (en) 2003-11-10 2010-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for a multi-beam antenna system
US7298805B2 (en) 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
FI20031702A0 (fi) 2003-11-21 2003-11-21 Nokia Corp Useiden kantoaaltojen allokointi usealle käyttäjälle viestintäjärjestelmässä
US7747250B2 (en) 2003-12-30 2010-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Calibration method to achieve reciprocity of bidirectional communication channels
WO2005069846A2 (en) * 2004-01-14 2005-08-04 Interdigital Technology Corporation Method and apparatus for dynamically selecting the best antennas/mode ports for transmission and reception
US7006043B1 (en) 2004-01-16 2006-02-28 The United States Of America, As Represented By The Secretary Of The Army Wideband circularly polarized single layer compact microstrip antenna
US7339904B2 (en) 2004-02-06 2008-03-04 M-Stack Limited Apparatus and method for operating a communications device in a mobile communications network
US20050186991A1 (en) 2004-02-10 2005-08-25 Bateman Blaine R. Wireless access point with enhanced coverage
JP4012167B2 (ja) 2004-03-31 2007-11-21 株式会社東芝 無線通信システム
US7633994B2 (en) 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US8170081B2 (en) 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US8160121B2 (en) 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US7711030B2 (en) 2004-07-30 2010-05-04 Rearden, Llc System and method for spatial-multiplexed tropospheric scatter communications
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US8571086B2 (en) 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US7418053B2 (en) 2004-07-30 2008-08-26 Rearden, Llc System and method for distributed input-distributed output wireless communications
US10187133B2 (en) 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US7636381B2 (en) 2004-07-30 2009-12-22 Rearden, Llc System and method for distributed input-distributed output wireless communications
KR100651447B1 (ko) 2004-04-14 2006-11-29 삼성전자주식회사 복수의 안테나들을 사용하는 셀룰러 이동통신 시스템에서의 안테나 재 선택 시스템 및 방법
US7492749B2 (en) 2004-05-19 2009-02-17 The Directv Group, Inc. Method and system for providing multi-input-multi-output (MIMO) downlink transmission
JP2005341432A (ja) 2004-05-28 2005-12-08 Ntt Docomo Inc 周波数選択装置、移動通信システムおよびマルチバンド制御方法
KR101050603B1 (ko) 2004-06-23 2011-07-19 삼성전자주식회사 무선 통신 시스템에서 다중 안테나를 이용한 패킷 데이터송/수신 장치 및 방법
US7327983B2 (en) 2004-06-25 2008-02-05 Mitsubishi Electric Research Laboratories, Inc. RF-based antenna selection in MIMO systems
US7606319B2 (en) * 2004-07-15 2009-10-20 Nokia Corporation Method and detector for a novel channel quality indicator for space-time encoded MIMO spread spectrum systems in frequency selective channels
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US7512110B2 (en) 2004-09-21 2009-03-31 Motorola, Inc. Method and apparatus to facilitate inter-AN HRPD hard handoff
WO2006035704A1 (ja) 2004-09-28 2006-04-06 Matsushita Electric Industrial Co., Ltd. マルチキャリア通信装置及びマルチキャリア通信方法
GB2418827B (en) 2004-09-28 2010-11-10 British Broadcasting Corp Method and system for providing a volumetric representation of a 3-Dimensional object
KR20060049146A (ko) 2004-10-21 2006-05-18 삼성전자주식회사 다중입출력 통신 시스템의 빔 및 전력 할당 방법
KR20060038812A (ko) 2004-11-01 2006-05-04 엘지전자 주식회사 다중입출력 시스템의 선행 코딩 행렬 정보 전송 방법 및이를 이용한 신호 전송 방법
KR100909539B1 (ko) 2004-11-09 2009-07-27 삼성전자주식회사 다중 안테나를 사용하는 광대역 무선 접속 시스템에서 다양한 다중안테나 기술을 지원하기 위한 장치 및 방법
US7573851B2 (en) 2004-12-07 2009-08-11 Adaptix, Inc. Method and system for switching antenna and channel assignments in broadband wireless networks
US7548752B2 (en) 2004-12-22 2009-06-16 Qualcomm Incorporated Feedback to support restrictive reuse
WO2006070754A1 (ja) 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. 無線通信装置及び無線通信方法
CN1797987B (zh) * 2004-12-30 2011-02-16 都科摩(北京)通信技术研究中心有限公司 自适应调度的mimo通信系统及其自适应用户调度方法
GB2422073B (en) * 2005-01-07 2007-03-28 Toshiba Res Europ Ltd Improved frequency offset tracking
US8780957B2 (en) 2005-01-14 2014-07-15 Qualcomm Incorporated Optimal weights for MMSE space-time equalizer of multicode CDMA system
WO2006078019A1 (ja) * 2005-01-24 2006-07-27 Ntt Docomo, Inc. 移動通信端末およびマルチパス干渉除去装置の起動を制御する方法
US7596111B2 (en) 2005-01-27 2009-09-29 Atc Technologies, Llc Satellite/terrestrial wireless communications systems and methods using disparate channel separation codes
JP4599192B2 (ja) 2005-03-02 2010-12-15 株式会社日立製作所 無線データ通信システム、および、無線データ通信方法
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
CN1841960B (zh) * 2005-03-31 2010-06-23 西门子(中国)有限公司 分布式天线系统中的下行链路数据流分配方法
JP4856221B2 (ja) * 2005-03-31 2012-01-18 株式会社エヌ・ティ・ティ・ドコモ 基地局及び受信方法
US8483200B2 (en) * 2005-04-07 2013-07-09 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7609751B1 (en) 2005-05-24 2009-10-27 L-3 Communications Corporation Method and apparatus to initiate communications between an unknown node and an existing secure network
US7616930B2 (en) 2005-05-24 2009-11-10 Magnolia Broadband Inc. Determining a phase adjustment in accordance with power trends
US8307922B2 (en) 2005-05-24 2012-11-13 Rearden, Llc System and method for powering an aircraft using radio frequency signals and feedback
CN101238648B (zh) 2005-06-14 2013-03-20 高通股份有限公司 用于从蜂窝式无线电网络进行广播及多播的方法和设备
US7630732B2 (en) 2005-06-14 2009-12-08 Interdigital Technology Corporation Method and apparatus for generating feedback information for transmit power control in a multiple-input multiple-output wireless communication system
WO2006138622A2 (en) 2005-06-16 2006-12-28 Qualcomm Incorporated Negotiated channel information reporting in a wireless communication system
US7817967B2 (en) 2005-06-21 2010-10-19 Atc Technologies, Llc Communications systems including adaptive antenna systems and methods for inter-system and intra-system interference reduction
KR100946924B1 (ko) 2005-06-24 2010-03-09 삼성전자주식회사 제로 포싱 빔포밍 알고리즘에서의 사용자 단말 선택 방법
US7480497B2 (en) 2005-06-29 2009-01-20 Intel Corporation Multicarrier receiver and method for carrier frequency offset correction and channel estimation for receipt of simultaneous transmissions over a multi-user uplink
NZ566171A (en) 2005-08-22 2010-08-27 Qualcomm Inc Method and apparatus for selection of virtual antennas
JP4702883B2 (ja) 2005-08-23 2011-06-15 国立大学法人東京工業大学 送信装置、受信装置、mimo−ofdm通信システム及びmimo−ofdm通信システムにおけるiqインバランス補償方法
US8054312B2 (en) 2005-08-26 2011-11-08 Sony Corporation Material for motion capture costumes and props
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
FI20055483A0 (fi) 2005-09-08 2005-09-08 Nokia Corp Datasiirtojärjestelmä langattomassa tietoliikennejärjestelmässä
KR20070032548A (ko) 2005-09-16 2007-03-22 삼성전자주식회사 다중 안테나를 사용하는 무선통신시스템에서 채널 보정장치 및 방법
US7630337B2 (en) * 2005-09-21 2009-12-08 Broadcom Corporation Method and system for an improved user group selection scheme with finite-rate channel state information feedback for FDD multiuser MIMO downlink transmission
KR100734890B1 (ko) 2005-10-10 2007-07-03 삼성전자주식회사 스마트 안테나 시스템에서 단말의 수신성능을 향상시키기위한 장치 및 방법
CN100407825C (zh) 2005-10-18 2008-07-30 上海贝尔阿尔卡特股份有限公司 分布式基站、通信系统及其使用的信号传输方法
US7539458B2 (en) 2005-10-24 2009-05-26 The Regents Of The University Of California Apparatus and method for a system architecture for multiple antenna wireless communication systems using round robin channel estimation and transmit beam forming algorithms
US8483616B1 (en) 2005-11-01 2013-07-09 At&T Intellectual Property Ii, L.P. Non-interference technique for spatially aware mobile ad hoc networking
US8064901B2 (en) 2005-11-16 2011-11-22 Telefonaktiebolaget L M Ericsson (Publ) Expert system
US7720437B2 (en) 2005-12-08 2010-05-18 University Of South Florida Zero-order energy smart antenna and repeater
US7860502B2 (en) 2005-12-10 2010-12-28 Samsung Electronics Co., Ltd. Apparatus and method for hard handover in a wireless communication system
CN101606339B (zh) 2006-01-13 2013-10-16 Lg电子株式会社 使用基于反馈信息的天线选择实现发射分集和空间复用的方法和装置
US7426198B2 (en) 2006-02-06 2008-09-16 Motorola, Inc. Method and apparatus for performing spatial-division multiple access
GB0602380D0 (en) 2006-02-06 2006-03-15 Qinetiq Ltd Imaging system
KR101218495B1 (ko) 2006-02-21 2013-01-18 삼성전자주식회사 직교 주파수 분할 다중화/시분할 듀플렉스 방식의 이동통신시스템에서 상향링크 사전등화를 위한 하향링크 채널변화에 따른 적응채널 예측 장치 및 방법
JP2007228029A (ja) 2006-02-21 2007-09-06 Fujitsu Ltd 無線通信システム及び受信装置
WO2007103085A2 (en) 2006-03-01 2007-09-13 Interdigital Technology Corporation Method and apparatus for calibration and channel state feedback to support transmit beamforming in a mimo system
US7729433B2 (en) 2006-03-07 2010-06-01 Motorola, Inc. Method and apparatus for hybrid CDM OFDMA wireless transmission
KR100841639B1 (ko) 2006-03-13 2008-06-26 삼성전자주식회사 이동통신 시스템에서 간섭 제거를 위한 채널 추정 장치 및방법
US8041362B2 (en) 2006-03-20 2011-10-18 Intel Corporation Downlink resource allocation and mapping
CN101405973B (zh) 2006-03-20 2013-04-24 英特尔公司 用于分配时间和频率资源的无线接入网和方法
WO2007117468A2 (en) 2006-03-30 2007-10-18 Beceem Communications, Inc. Method and system for uplink coordinated reception in orthogonal frequency division multiple access systems
KR101231357B1 (ko) 2006-04-06 2013-02-07 엘지전자 주식회사 다중 안테나 시스템에서 채널 상태 정보 귀환 방법 및데이터 송신 방법
US20070249380A1 (en) 2006-04-19 2007-10-25 Motorola, Inc. Apparatus and method for broadcasting data
KR100913856B1 (ko) 2006-04-19 2009-08-26 삼성전자주식회사 다중 사용자 mimo 시스템에서 채널 선택 장치 및방법과 시스템
CN101056152B (zh) * 2006-04-30 2010-08-04 华为技术有限公司 通用移动通信系统中的传输方法及其系统
US7751368B2 (en) * 2006-05-01 2010-07-06 Intel Corporation Providing CQI feedback to a transmitter station in a closed-loop MIMO system
US7894820B2 (en) 2006-05-01 2011-02-22 Intel Corporation Channel feedback using channel state predictions based also on delays
US7756222B2 (en) 2006-05-04 2010-07-13 Integrated System Solution Corporation Adaptive quantization method and apparatus for an OFDM receiver
US7633944B1 (en) 2006-05-12 2009-12-15 Juniper Networks, Inc. Managing timeouts for dynamic flow capture and monitoring of packet flows
US20070280116A1 (en) 2006-06-05 2007-12-06 Hong Kong University Of Science And Technology Adaptive multi-user mimo non-cooperative threshold-based wireless communication system using limited channel feedback
US7801084B2 (en) * 2006-06-09 2010-09-21 Intel Corporation Doppler frequency determination for mobile wireless devices
KR101269201B1 (ko) 2006-06-30 2013-05-28 삼성전자주식회사 폐 루프 방식의 다중 안테나 시스템에서 데이터송/수신장치 및 방법
US8396158B2 (en) 2006-07-14 2013-03-12 Nokia Corporation Data processing method, data transmission method, data reception method, apparatus, codebook, computer program product, computer program distribution medium
JP4806307B2 (ja) * 2006-07-28 2011-11-02 京セラ株式会社 無線通信方法、無線基地局、無線通信端末及び基地局制御装置
TW200824378A (en) 2006-08-17 2008-06-01 Interdigital Tech Corp Method and apparatus for reducing a peak-to-average power ratio in a multiple-input multiple-output system
US8271043B2 (en) 2006-08-21 2012-09-18 Qualcomm Incorporated Approach to a unified SU-MIMO/MU-MIMO operation
JP4845640B2 (ja) 2006-08-23 2011-12-28 富士通株式会社 無線通信システムおよび無線通信方法
CN101141165A (zh) 2006-09-05 2008-03-12 华为技术有限公司 实现发射及接收分集的系统及方法
US7729439B2 (en) 2006-09-18 2010-06-01 Marvell World Trade Ltd. Calibration correction for implicit beamforming in a wireless MIMO communication system
US20080080635A1 (en) 2006-10-02 2008-04-03 Nokia Corporation Advanced feedback signaling for multi-antenna transmission systems
US20090135944A1 (en) 2006-10-23 2009-05-28 Dyer Justin S Cooperative-MIMO Communications
KR100834631B1 (ko) 2006-10-25 2008-06-02 삼성전자주식회사 분산 무선 통신 시스템에서의 직교 공간 시간 블록 코드 겸빔 형성을 위한 적응식 전송 파워 할당 방법
WO2008049366A1 (fr) 2006-10-26 2008-05-02 Huawei Technologies Co., Ltd. Procédé de construction d'un répertoire d'accès sdma et appareil se rapportant à celui-ci et procédé de programmation et appareil et système se rapportant à celui-ci
EP2087610B1 (en) 2006-10-31 2015-09-09 QUALCOMM Incorporated Unified design and centralized scheduling for dynamic simo, su-mimo and mu-mimo operation for rl transmissions
US8644263B2 (en) 2006-11-01 2014-02-04 Unwired Planet, Llc Method and arrangement for SINR feedback in MIMO based wireless communication systems
US8126510B1 (en) 2006-11-15 2012-02-28 Nextel Communications Inc. Public safety communications network architecture
KR100842619B1 (ko) 2006-11-22 2008-06-30 삼성전자주식회사 분산 무선 통신 시스템에서 심볼 에러율의 기반 직교 공간시간 블록 코드 겸 빔 형성을 위한 적응식 전송 파워 할당방법
GB0623653D0 (en) 2006-11-27 2007-01-03 Innovision Res & Tech Plc Near field RF communicators and near field RF communications enabled devices
WO2008084392A2 (en) 2007-01-12 2008-07-17 Nokia Corporation Method and apparatus for providing automatic control channel mapping
KR100950706B1 (ko) 2007-01-29 2010-03-31 삼성전자주식회사 다중 안테나 시스템에서 프리코딩 장치 및 방법
KR20080074004A (ko) 2007-02-07 2008-08-12 엘지전자 주식회사 피드백 정보를 이용한 상향링크의 가상 다중 안테나 전송방법 및 이를 지원하는 이동 단말
MX2009008594A (es) 2007-02-12 2009-09-09 Interdigital Tech Corp Metodo y aparato para soportar transferencia de lte/eutram a gprs/geran.
KR100866188B1 (ko) 2007-02-22 2008-10-30 삼성전자주식회사 분산 무선 통신 시스템에서 직교 공간 시간 블록 코드를위한 심볼 에러율 근사화 방법
KR101005233B1 (ko) 2007-03-14 2010-12-31 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 다중 안테나 시스템에서 간섭 제거 장치 및 방법
CN101272520B (zh) 2007-03-21 2011-04-13 上海贝尔阿尔卡特股份有限公司 在系统架构演进中支持多媒体广播组播业务的方法和装置
US20080233902A1 (en) 2007-03-21 2008-09-25 Interdigital Technology Corporation Method and apparatus for communicating precoding or beamforming information to users in mimo wireless communication systems
US20080268833A1 (en) 2007-03-30 2008-10-30 Leping Huang System and Method for Self-Optimization of Interference Coordination in Communication Systems
JP5006097B2 (ja) * 2007-04-24 2012-08-22 京セラ株式会社 受信制御方法および無線通信装置
WO2008144151A2 (en) 2007-05-15 2008-11-27 Rambus Inc. Multi-antenna transmitter for multi-tone signaling
US8482462B2 (en) 2007-05-25 2013-07-09 Rambus Inc. Multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal
JPWO2008146494A1 (ja) 2007-05-29 2010-08-19 三菱電機株式会社 キャリブレーション方法、通信システムおよび周波数制御方法
CN101325741B (zh) 2007-06-14 2012-12-12 Nxp股份有限公司 用于操作多用户多输入多输出(mu-mimo)无线通信系统的方法和系统
US8379749B2 (en) 2007-06-19 2013-02-19 Ntt Docomo, Inc. Transmitter and transmission method
US8160601B2 (en) 2007-06-21 2012-04-17 Elektrobit Wireless Communications Ltd. Method for optimizing spatial modulation in a wireless link and network element thereto
US8010116B2 (en) 2007-06-26 2011-08-30 Lgc Wireless, Inc. Distributed antenna communications system
US20090023467A1 (en) 2007-07-18 2009-01-22 Kaibin Huang Method and apparatus for performing space division multiple access in a wireless communication network
US8675743B2 (en) 2007-08-03 2014-03-18 Apple Inc. Feedback scheduling to reduce feedback rates in MIMO systems
US8369450B2 (en) 2007-08-07 2013-02-05 Samsung Electronics Co., Ltd. Pilot boosting and traffic to pilot ratio estimation in a wireless communication system
US8798183B2 (en) 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
ATE528879T1 (de) 2007-08-16 2011-10-15 Nokia Siemens Networks Oy Integrationsvorrichtung, kommunikationsnetzwerk und verfahren zur integration eines netzwerkknotens in ein kommunikationsnetzwerk
US20090046678A1 (en) 2007-08-17 2009-02-19 Industry-Academic Cooperation Foundation Of Kyung Hee University Method for predicting the mobility in mobile ad hoc networks
US8989155B2 (en) 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
US20090067198A1 (en) 2007-08-29 2009-03-12 David Jeffrey Graham Contactless power supply
US8699429B2 (en) * 2007-08-31 2014-04-15 Fujitsu Limited Wireless communication system and wireless communication method
US8830812B2 (en) 2007-08-31 2014-09-09 Alcatel Lucent Optimizing precoder settings using average SINR reports for groups of tones
US20090075686A1 (en) 2007-09-19 2009-03-19 Gomadam Krishna S Method and apparatus for wideband transmission based on multi-user mimo and two-way training
US8077809B2 (en) 2007-09-28 2011-12-13 Cisco Technology, Inc. Link adaptation based on generic CINR measurement according to log-likelihood ratio distribution
US8948093B2 (en) * 2007-10-02 2015-02-03 Apple Inc. Rank adaptation for an open loop multi-antenna mode of wireless communication
EP2204051A1 (en) 2007-10-30 2010-07-07 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Distributed antenna system
US8300726B2 (en) 2007-11-02 2012-10-30 Alcatel Lucent Interpolation method and apparatus for increasing efficiency of crosstalk estimation
US8195224B2 (en) 2008-05-13 2012-06-05 Corning Mobileaccess Ltd Multiple data services over a distributed antenna system
KR100991794B1 (ko) 2007-12-31 2010-11-03 엘지전자 주식회사 셀간 간섭 감소 방법
US8055211B2 (en) 2007-12-31 2011-11-08 Motorola Mobility, Inc. Method and system for utilizing transmit local oscillator for improved cell search and multi-link communication in multi-mode device
US20090195355A1 (en) 2008-02-01 2009-08-06 Cynthia Sue Mitchell Methods and apparatus for place shifting content to a vehicle entertainment system
US8509291B2 (en) 2008-02-08 2013-08-13 Qualcomm Incorporated Open-loop transmit diversity schemes with four transmit antennas
US20090209206A1 (en) 2008-02-15 2009-08-20 The Hong Kong University Of Science And Technology Optimal mimo isi channel estimation using loosely synchronized codes and their variations
JP4946922B2 (ja) 2008-03-06 2012-06-06 住友電気工業株式会社 無線通信装置
KR20100132012A (ko) 2008-03-07 2010-12-16 노텔 네트웍스 리미티드 무선 액세스 기술간 통신을 위한 시스템 시간 오버헤드 파라미터 길이 리프리젠테이션을 감소시키는 방법 및 시스템
US8594733B2 (en) 2008-03-08 2013-11-26 Qualcomm Incorporated Methods and apparatus for using polarized antennas in wireless networks including single sector base stations
US8085721B2 (en) 2008-03-10 2011-12-27 Elektrobit Wireless Communications Oy Adaptive transmission method and a base station using the method
US8203483B2 (en) 2008-03-13 2012-06-19 Cubic Corporation Digital beamforming antenna and datalink array
US20110021163A1 (en) 2008-03-28 2011-01-27 Ulf Lindgren Antenna optimization
US8243353B1 (en) 2008-04-07 2012-08-14 Applied Science Innovations, Inc. Holography-based device, system and method for coded aperture imaging
US8301956B2 (en) 2008-04-07 2012-10-30 Samsung Electronics Co., Ltd. Methods and apparatus to improve communication in a relay channel
US8559879B2 (en) 2008-04-22 2013-10-15 Qualcomm Incorporated Null pilots for interference estimation in a wireless communication network
US8811353B2 (en) 2008-04-22 2014-08-19 Texas Instruments Incorporated Rank and PMI in download control signaling for uplink single-user MIMO (UL SU-MIMO)
US8155063B2 (en) 2008-04-28 2012-04-10 Apple Inc. Apparatus and methods for transmission and reception of data in multi-antenna systems
KR101486378B1 (ko) 2008-05-07 2015-01-26 엘지전자 주식회사 협력적 다중 입출력 안테나 이동 통신 시스템에서의 데이터송수신 방법
US8102785B2 (en) 2008-05-21 2012-01-24 Alcatel Lucent Calibrating radiofrequency paths of a phased-array antenna
US8218422B2 (en) 2008-06-03 2012-07-10 Nec Laboratories America, Inc. Coordinated linear beamforming in downlink multi-cell wireless networks
US9225575B2 (en) 2008-06-18 2015-12-29 Center Of Excellence In Wireless Technology Precoding for single transmission streams in multiple antenna systems
US8326341B2 (en) 2008-06-23 2012-12-04 Nokia Corporation Method, apparatus and computer program for downlink MU-MIMO power settings and control
JP2010016674A (ja) * 2008-07-04 2010-01-21 Fujitsu Ltd 無線通信装置、無線通信システム、及び無線通信方法
US9374746B1 (en) 2008-07-07 2016-06-21 Odyssey Wireless, Inc. Systems/methods of spatial multiplexing
US8243690B2 (en) 2008-07-09 2012-08-14 Intel Corporation Bandwidth allocation base station and method for allocating uplink bandwidth using SDMA
WO2010006645A1 (en) 2008-07-16 2010-01-21 Telefonaktiebolaget Lm Ericsson (Publ) Base and repeater stations
KR101236033B1 (ko) 2008-07-21 2013-02-21 한국전자통신연구원 통신 오버헤드를 제거하는 통신 시스템
US8711774B2 (en) * 2008-07-30 2014-04-29 Hitachi, Ltd. Wireless communication system and wireless communication method
US9755705B2 (en) 2008-08-07 2017-09-05 Qualcomm Incorporated Method and apparatus for supporting multi-user and single-user MIMO in a wireless communication system
US8391206B2 (en) 2008-08-07 2013-03-05 Alcatel Lucent Method of joint resource allocation and clustering of base stations
US8705484B2 (en) 2008-08-15 2014-04-22 Ntt Docomo, Inc. Method for varying transmit power patterns in a multi-cell environment
JP5431481B2 (ja) 2008-08-20 2014-03-05 クゥアルコム・インコーポレイテッド 単一チャネルにおける信号割り当て方法および装置
JP5256955B2 (ja) * 2008-09-12 2013-08-07 富士通株式会社 制御方法、通信特性制御方法、基地局装置、及び移動局装置
US8717947B2 (en) 2008-09-12 2014-05-06 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for spatial coding
US8340235B2 (en) 2008-09-25 2012-12-25 Research In Motion Limited X-MIMO systems with multi-transmitters and multi-receivers
US8295395B2 (en) 2008-09-30 2012-10-23 Apple Inc. Methods and apparatus for partial interference reduction within wireless networks
US8830926B2 (en) 2008-10-27 2014-09-09 Nokia Siemens Networks Oy Method for network co-ordination in a mobile communications system and apparatus thereof
WO2010067419A1 (ja) 2008-12-09 2010-06-17 株式会社日立製作所 無線通信システム及び無線通信方法
US8625542B2 (en) 2008-12-18 2014-01-07 Cisco Technology, Inc. Beamforming spatial de-multiplexing for collaborative spatially multiplexed wireless communication
US8068844B2 (en) 2008-12-31 2011-11-29 Intel Corporation Arrangements for beam refinement in a wireless network
US20100178934A1 (en) 2009-01-13 2010-07-15 Qualcomm Incorporated Environment-specific measurement weighting in wireless positioning
US8867493B2 (en) 2009-02-02 2014-10-21 Qualcomm Incorporated Scheduling algorithms for cooperative beamforming based on resource quality indication
US8700039B2 (en) 2009-02-10 2014-04-15 Lg Electronics Inc. Method and apparatus for coordinated multiple point transmission and reception
US8325846B2 (en) 2009-02-13 2012-12-04 Lg Electronics Inc. Data transmission method and apparatus in multiple antenna system
JP4993778B2 (ja) * 2009-02-18 2012-08-08 日本電信電話株式会社 分散アンテナシステムおよび分散アンテナ制御方法
US8264407B2 (en) 2009-02-19 2012-09-11 Qualcomm Atheros, Inc. Transmitter beamforming steering matrix processing and storage
US8428177B2 (en) 2009-02-25 2013-04-23 Samsung Electronics Co., Ltd. Method and apparatus for multiple input multiple output (MIMO) transmit beamforming
US8989106B2 (en) 2009-02-27 2015-03-24 Qualcomm Incorporated Methods and apparatuses for scheduling uplink request spatial division multiple access (RSDMA) messages in an SDMA capable wireless LAN
KR101584689B1 (ko) 2009-03-04 2016-01-13 삼성전자주식회사 다중 안테나 시스템에서 다중 사용자 간섭 제거 방법 및 장치
WO2010105210A2 (en) 2009-03-12 2010-09-16 Comsys Communication & Signal Processing Ltd. Vehicle integrated communications system
US20100238984A1 (en) 2009-03-19 2010-09-23 Motorola, Inc. Spatial Information Feedback in Wireless Communication Systems
WO2010110588A2 (ko) 2009-03-23 2010-09-30 엘지전자주식회사 다중안테나 시스템에서 참조신호 전송방법 및 장치
US20100260060A1 (en) 2009-04-08 2010-10-14 Qualcomm Incorporated Integrated calibration protocol for wireless lans
US9432991B2 (en) * 2009-04-21 2016-08-30 Qualcomm Incorporated Enabling support for transparent relays in wireless communication
JP4801755B2 (ja) 2009-04-23 2011-10-26 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び方法
US8320432B1 (en) 2009-04-27 2012-11-27 Indian Institute of Science at Bangalore Device and method for precoding vectors in a communication system
US8380135B2 (en) 2009-05-04 2013-02-19 Lg Electronics Inc. Method of transmitting control information in wireless communication system
US8553589B2 (en) 2009-05-12 2013-10-08 Airhop Communications, Inc. Dual mode radio for frequency division duplexing and time division duplexing communication modes
US8107965B2 (en) * 2009-05-14 2012-01-31 Telefonaktiebolaget L M Ericsson (Publ) Distributed computation of precoding weights for coordinated multipoint transmission on the downlink
US8320926B2 (en) 2009-05-20 2012-11-27 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a wireless communication system
KR101607336B1 (ko) 2009-06-07 2016-03-30 엘지전자 주식회사 무선 통신 시스템에서 rb 설정 방법 및 장치
KR101715939B1 (ko) 2009-06-18 2017-03-14 엘지전자 주식회사 채널 상태 정보 피드백 방법 및 장치
US8711716B2 (en) 2009-06-19 2014-04-29 Texas Instruments Incorporated Multiple CQI feedback for cellular networks
US8934523B2 (en) 2009-07-13 2015-01-13 Lg Electronics Inc. Method and apparatus for configuring a transmission mode for a backhaul link transmission
US8879602B2 (en) 2009-07-24 2014-11-04 At&T Mobility Ii Llc Asymmetrical receivers for wireless communication
CN101989870A (zh) 2009-08-05 2011-03-23 株式会社Ntt都科摩 获取信道质量指示信息的方法及基站
CN102511130B (zh) 2009-08-14 2015-08-12 诺基亚通信公司 用于协作传输的方法和设备
US8848624B2 (en) 2009-08-17 2014-09-30 Broadcom Corporation Multi-user uplink communications within multiple user, multiple access, and/or MIMO wireless communication systems
US9094180B2 (en) 2009-08-24 2015-07-28 Nokia Siemens Networks Oy Channel-adaptive transmission in a distributed coordinated multi-point transmission system
US8391429B2 (en) 2009-08-26 2013-03-05 Qualcomm Incorporated Methods for determining reconstruction weights in a MIMO system with successive interference cancellation
CN102025396B (zh) 2009-09-23 2013-09-11 华为技术有限公司 滤波处理方法、系统及设备
JP5354498B2 (ja) 2009-09-24 2013-11-27 独立行政法人情報通信研究機構 コグニティブ通信ネットワークシステム及びその通信方法
US8923905B2 (en) 2009-09-30 2014-12-30 Qualcomm Incorporated Scrambling sequence initialization for coordinated multi-point transmissions
WO2011041719A2 (en) 2009-10-02 2011-04-07 Interdigital Patent Holdings, Inc. Method and apparatus for transmit power control for multiple antenna transmissions in the uplink
US8185088B2 (en) 2009-10-09 2012-05-22 At&T Mobility Ii Llc Mobile device leasing with customized operational features
US8873650B2 (en) 2009-10-12 2014-10-28 Motorola Mobility Llc Configurable spatial channel information feedback in wireless communication system
WO2011046349A2 (ko) 2009-10-12 2011-04-21 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조 신호 전송 전력 정보 제공 방법 및 장치
US20110090885A1 (en) * 2009-10-15 2011-04-21 Saeid Safavi Methods and apparatus for centralized and coordinated interference mitigation in a wlan network
US20110090820A1 (en) 2009-10-16 2011-04-21 Osama Hussein Self-optimizing wireless network
KR101769380B1 (ko) 2009-11-05 2017-08-18 엘지전자 주식회사 채널 품질 정보의 전송 방법 및 이를 위한 장치
US8582516B2 (en) 2009-11-09 2013-11-12 Qualcomm Incorporated Reference signaling for a high-mobility wireless communication device
USRE49471E1 (en) 2009-11-24 2023-03-21 Electronics And Telecommunications Research Institute Method for protecting data in a mu-mimo based wireless communication system
AU2010328805B2 (en) 2009-12-10 2014-05-08 Lg Electronics Inc. Method and apparatus of transmitting training signal in wireless local area network system
HUE050957T2 (hu) 2010-01-18 2021-01-28 Ericsson Telefon Ab L M Rádiós bázisállomás, felhasználói berendezés és abban lévõ eljárások
US20110176633A1 (en) 2010-01-20 2011-07-21 Eric Ojard Method and system for orthogonalized beamforming in multiple user multiple input multiple output (mu-mimo) communication systems
US8792367B2 (en) 2010-01-21 2014-07-29 Polytechnic Institute Of New York University CoopMAX: a cooperative MAC with randomized distributed space time coding for an IEEE 802.16 network
KR101419925B1 (ko) 2010-02-08 2014-07-14 브로드콤 코포레이션 다중포트 네트워크를 관통하여 광대역 신호를 빔성형하는 방법 및 시스템
US8861332B2 (en) 2010-02-11 2014-10-14 Lg Electronics Inc. Method and apparatus of recovering backhaul link failure between base station and relay node
US9392515B2 (en) 2010-02-12 2016-07-12 Interdigital Technology Corporation Data split between multiple sites
US20110199946A1 (en) 2010-02-17 2011-08-18 Qualcomm Incorporated Method and apparatus for supporting adaptive channel state information feedback rate in multi-user communication systems
US8705443B2 (en) 2010-02-24 2014-04-22 Futurewei Technologies, Inc. System and method for reduced feedback in multiuser multiple input, multiple output wireless communications
WO2011116824A1 (en) 2010-03-25 2011-09-29 Telefonaktiebolaget L M Ericsson (Publ) Method for backhaul link protection in a mimo wireless link
CN103039107B (zh) 2010-03-29 2016-01-27 Lg电子株式会社 用于对无线电通信系统中的小区间干扰协调的测量的方法和装置
WO2011136518A2 (en) 2010-04-26 2011-11-03 Samsung Electronics Co., Ltd. Method and apparatus for controlling inter-cell interference of control channels in ofdm-based hierarchical cellular system
US9288690B2 (en) 2010-05-26 2016-03-15 Qualcomm Incorporated Apparatus for clustering cells using neighbor relations
WO2011155763A2 (ko) 2010-06-08 2011-12-15 엘지전자 주식회사 협력 멀티 포인트 통신 시스템에서 채널상태정보 송수신 방법 및 장치
US8521199B2 (en) 2010-06-15 2013-08-27 Futurewei Technologies, Inc. System and method for transparent coordinated beam-forming
US8838161B2 (en) 2010-06-16 2014-09-16 Samsung Electronics Co., Ltd Uplink power control method for mobile communication system
US8787484B2 (en) 2010-06-18 2014-07-22 Nec Corporation Precoding techniques for downlink coordinated multipoint transmission in radio communications system
KR20110138742A (ko) 2010-06-21 2011-12-28 주식회사 팬택 장치의 채널정보 전송방법, 그 장치, 기지국, 그 기지국의 전송방법
US8934557B2 (en) 2010-06-30 2015-01-13 Telefonaktiebolaget L M Ericsson (Publ) Statistical joint precoding in multi-cell, multi-user MIMO
KR20120003781A (ko) 2010-07-05 2012-01-11 주식회사 팬택 송신장치 및 그 통신방법, 수신장치, 그 통신방법
US20120021707A1 (en) 2010-07-26 2012-01-26 Qualcomm Incorporated Apparatus and method for adjustment of transmitter power in a system
US8660057B2 (en) 2010-08-26 2014-02-25 Golba, Llc Method and system for distributed communication
WO2012033877A1 (en) 2010-09-08 2012-03-15 Mediatek Singapore Pte. Ltd. Psmp-based downlink multi-user mimo communications
KR101835326B1 (ko) 2010-09-26 2018-03-07 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 효율적인 피드백 방법 및 장치
US8687555B2 (en) 2010-09-29 2014-04-01 Lg Electronics Inc. Method and apparatus for performing effective feedback in wireless communication system supporting multiple antennas
US8681660B2 (en) 2010-10-01 2014-03-25 Clearwire Ip Holdings Llc Enabling coexistence between FDD and TDD wireless networks
EP2622757B1 (en) 2010-10-01 2018-11-07 CommScope Technologies LLC Distributed antenna system for mimo signals
US8576742B2 (en) 2010-10-06 2013-11-05 Qualcomm Incorporated Dynamic switching between common reference signal interference cancellation and resource element puncturing in a co-channel heterogeneous network
EP2633662B1 (en) 2010-10-29 2020-03-18 Lilee Systems, Ltd System and method of frequency offset compensation for radio system with fast doppler shift
WO2012064998A2 (en) 2010-11-10 2012-05-18 Interdigital Patent Holdings, Inc. Method and apparatus for interference mitigation via successive cancellation in heterogeneous networks
JP2012124859A (ja) 2010-12-10 2012-06-28 Sharp Corp 通信システム、基地局装置、通信方法、及び通信プログラム
US20140295758A1 (en) 2010-12-14 2014-10-02 Thomas Pedersen Docking station for a handheld telecommunication device
EP2673892A4 (en) 2011-02-07 2016-09-14 Intel Corp COPHASING EMISSIONS FROM MULTIPLE INFRASTRUCTURE N UDS
US9426703B2 (en) 2011-02-11 2016-08-23 Qualcomm Incorporated Cooperation and operation of macro node and remote radio head deployments in heterogeneous networks
US10187859B2 (en) 2011-02-14 2019-01-22 Qualcomm Incorporated Power control and user multiplexing for heterogeneous network coordinated multipoint operations
US8774167B2 (en) 2011-03-04 2014-07-08 T-Mobile Usa, Inc. Packet-switched core network architecture for voice services on second- and third-generation wireless access networks
US8737298B2 (en) 2011-03-11 2014-05-27 Telefonaktiebolaget L M Ericsson (Publ) Method of downlink signal transport over backhaul communications through distributed processing
US9351315B2 (en) 2011-03-25 2016-05-24 Beijing Nufront Mobile Multimedia Technology Co. Ltd. Resource scheduling method and device
US8442579B2 (en) 2011-03-31 2013-05-14 Intel Corporation Distributed adaptive resource allocation to enhance cell edge throughput
WO2012146280A1 (en) 2011-04-27 2012-11-01 Fujitsu Limited Wireless communication with co-operating cells
US20120281555A1 (en) 2011-05-02 2012-11-08 Research In Motion Limited Systems and Methods of Wireless Communication with Remote Radio Heads
US8837621B2 (en) 2011-05-09 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation for a very large-scale multiple-input multiple output (MIMO) system
US20140198744A1 (en) 2011-05-17 2014-07-17 Interdigital Patent Holdings, Inc. Method and apparatus for data-splitting transmission from multiple sites
GB2491157B (en) 2011-05-24 2013-08-07 Toshiba Res Europ Ltd Method and apparatus for antenna selection in wireless communications systems
CN103650391B (zh) 2011-06-29 2016-08-17 Lg电子株式会社 在无线通信系统中控制小区间干扰的方法和设备
WO2013017175A1 (en) 2011-08-04 2013-02-07 Telefonaktiebolaget L M Ericsson (Publ) An outdoor-indoor mimo communication system using multiple repeaters and leaky cables
US8693420B2 (en) 2011-08-10 2014-04-08 Futurewei Technologies, Inc. System and method for signaling and transmitting uplink reference signals
US9548802B2 (en) 2011-08-12 2017-01-17 Interdigital Patent Holdings, Inc. Method and apparatus for multiple-input multiple-output operation
US9025574B2 (en) 2011-08-12 2015-05-05 Blackberry Limited Methods of channel state information feedback and transmission in coordinated multi-point wireless communications system
US8849339B2 (en) 2011-08-12 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Closed loop power control in a heterogeneous network by selecting among sets of accumulative power step values
US20130083681A1 (en) 2011-09-30 2013-04-04 Research In Motion Limited Methods of Channel State Information Feedback and Transmission in Coordinated Multi-Point Wireless Communications System
KR20140060303A (ko) 2011-08-12 2014-05-19 인터디지탈 패튼 홀딩스, 인크 무선 네트워크들에서의 간섭 측정
WO2013027963A2 (ko) 2011-08-19 2013-02-28 엘지전자 주식회사 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
CN102983934B (zh) 2011-09-06 2015-12-02 华为技术有限公司 多用户多输入多输出系统中线性预编码的方法及装置
BR112014005163A2 (pt) * 2011-09-14 2017-04-11 Rearden Llc sistema de antena múltipla (mas) para múltiplos usuários (mu) e método de exploração de áreas de coerência em canais sem fio no referido sistema
US9124475B2 (en) 2011-09-19 2015-09-01 Alcatel Lucent Method and apparatus for interference cancellation for antenna arrays
US8743791B2 (en) 2011-09-22 2014-06-03 Samsung Electronics Co., Ltd. Apparatus and method for uplink transmission in wireless communication systems
US8797966B2 (en) 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission
US20130114437A1 (en) 2011-11-04 2013-05-09 Qualcomm Incorporated Method and apparatus for interference cancellation by a user equipment using blind detection
WO2013073917A1 (ko) 2011-11-17 2013-05-23 엘지전자 주식회사 상향링크 신호 수신 방법 및 기지국과, 상향링크 신호 전송 방법 및 사용자기기
US20130128821A1 (en) 2011-11-18 2013-05-23 Nokia Siemens Networks Oy Demodulation Reference Signal Arrangement For Uplink Coordinated Multi-Point Reception
US8731028B2 (en) 2011-12-02 2014-05-20 Futurewei Technologies, Inc. Method and apparatus for modulation and coding scheme adaption in a MIMO system
WO2013080582A1 (en) 2011-12-02 2013-06-06 Nec Corporation Method of providing control information for user equipment in lte communication system
EP2806573B1 (en) 2012-01-20 2019-03-06 LG Electronics Inc. Method of receiving control information and device therefor
EP2621242A1 (en) 2012-01-26 2013-07-31 Panasonic Corporation Improved discontinuous reception operation with additional wake up opportunities
GB2498815A (en) 2012-01-30 2013-07-31 Renesas Mobile Corp Enhanced PHICH with multibit ACK/NAK
US20130195086A1 (en) 2012-02-01 2013-08-01 Qualcomm Incorporated Timing management in uplink (ul) coordinated multipoint (comp) transmission
ES2775798T3 (es) 2012-02-03 2020-07-28 Ericsson Telefon Ab L M Procesador digital avanzado de banda base
EP2813021A4 (en) 2012-02-08 2015-07-01 Ericsson Telefon Ab L M COMMON ACK / NACK MESSAGES
US10051406B2 (en) 2012-02-15 2018-08-14 Maxlinear, Inc. Method and system for broadband near-field communication (BNC) utilizing full spectrum capture (FSC) supporting concurrent charging and communication
US9526091B2 (en) 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9591583B2 (en) 2012-03-17 2017-03-07 Lg Electronics Inc. Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
CA2872502C (en) 2012-05-04 2021-05-18 Rearden, Llc System and methods for coping with doppler effects in distributed-input distributed-output wireless systems
SG10201702179RA (en) 2012-05-18 2017-04-27 Rearden Llc Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
US8995410B2 (en) 2012-05-25 2015-03-31 University Of Southern California Airsync: enabling distributed multiuser MIMO with full multiplexing gain
KR101669701B1 (ko) 2012-06-25 2016-10-26 주식회사 케이티 물리적 상향링크 데이터 채널 맵핑정보 제공방법 및 그 송수신포인트, 물리적 상향링크 데이터 채널의 전송방법, 그 단말
CN103517360B (zh) 2012-06-25 2017-04-19 华为终端有限公司 切换方法、系统及设备
US8908743B2 (en) 2012-09-26 2014-12-09 Intel Mobile Communications GmbH Receiver with multi layer interference cancellation
US9055425B2 (en) 2012-09-27 2015-06-09 Nokia Technologies Oy Method and apparatus for enhancing emergency calling with mobile devices
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US9407302B2 (en) 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
WO2014101233A1 (zh) 2012-12-31 2014-07-03 华为技术有限公司 信息传输方法和装置
US9397820B2 (en) 2013-02-04 2016-07-19 Ubiquiti Networks, Inc. Agile duplexing wireless radio devices
US9936470B2 (en) 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
US9733797B2 (en) 2013-02-08 2017-08-15 Ubiquiti Networks, Inc. Radio system for long-range high speed wireless communication
US9923621B2 (en) 2013-02-16 2018-03-20 Cable Television Laboratories, Inc. Multiple-input multiple-output (MIMO) communication system
US9241275B2 (en) 2013-02-28 2016-01-19 Cisco Technologies, Inc. Distributed processing distributed-input distributed-output (DIDO) wireless communication
US9331882B2 (en) 2013-06-05 2016-05-03 Telefonaktiebolaget L M Ericsson (Publ) Crest factor reduction of carrier aggregated signals
US9451625B2 (en) 2013-09-19 2016-09-20 Telefonaktiebolaget Lm Ericsson (Publ) System and method for providing interference characteristics for interference mitigation
CN104519514B (zh) 2013-10-08 2019-12-06 中兴通讯股份有限公司 一种减小节点间干扰的方法、节点和系统
EP2889957A1 (en) 2013-12-30 2015-07-01 Clemens Rheinfelder Active antenna system with distributed transceiver system
US9698881B2 (en) 2014-11-14 2017-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Feedback channel transmission and detection in multi antenna wireless communication systems
US9615263B2 (en) 2015-05-27 2017-04-04 Telefonaktiebolaget L M Ericsson (Publ) Method to improve the performance in cell range expansion using location based codebook subset restriction
US9883529B2 (en) 2015-06-19 2018-01-30 Intel IP Corporation Controlling uplink transmissions in communication systems with scheduled trigger frames

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2008121170A (ru) * 2005-10-27 2009-12-10 Квэлкомм Инкорпорейтед (US) Предварительное кодирование для зависящего от сегмента планирования в беспроводных системах связи

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11923931B2 (en) 2004-04-02 2024-03-05 Rearden, Llc System and method for distributed antenna wireless communications
US11070258B2 (en) 2004-04-02 2021-07-20 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11190247B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US11190246B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US11646773B2 (en) 2004-04-02 2023-05-09 Rearden, Llc System and method for distributed antenna wireless communications
US11196467B2 (en) 2004-04-02 2021-12-07 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11818604B2 (en) 2012-11-26 2023-11-14 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11901992B2 (en) 2013-03-12 2024-02-13 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11451281B2 (en) 2013-03-12 2022-09-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11581924B2 (en) 2013-03-15 2023-02-14 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11146313B2 (en) 2013-03-15 2021-10-12 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
RU2763167C2 (ru) * 2016-08-26 2021-12-28 Риарден, Ллк Системы и способы снижения уровня помех в пределах активно используемого диапазона частот
RU2745275C2 (ru) * 2017-01-31 2021-03-23 Пойнтинг Энтеннес (Пти) Лимитед Система и способ предоставления услуг связи на обеих сторонах коридора

Also Published As

Publication number Publication date
FI3557782T3 (fi) 2024-05-29
JP2013543348A (ja) 2013-11-28
CA2816556A1 (en) 2012-05-10
KR20200075019A (ko) 2020-06-25
RU2013125496A (ru) 2014-12-10
TW201225563A (en) 2012-06-16
AU2017213585B2 (en) 2017-09-28
AU2017272221A1 (en) 2018-01-04
AU2018241100B2 (en) 2020-10-15
JP6641512B2 (ja) 2020-02-05
WO2012061325A9 (en) 2013-06-13
KR20170016016A (ko) 2017-02-10
KR102125039B1 (ko) 2020-06-22
JP5957000B2 (ja) 2016-07-27
SG10202111030TA (en) 2021-11-29
AU2011323559A2 (en) 2013-06-13
EP4373041A2 (en) 2024-05-22
JP2020074541A (ja) 2020-05-14
BR112013010642A2 (pt) 2016-08-09
JP2019146175A (ja) 2019-08-29
SG10201508965PA (en) 2015-11-27
TWI672013B (zh) 2019-09-11
NZ610463A (en) 2015-08-28
EP3557782A1 (en) 2019-10-23
CN114024581A (zh) 2022-02-08
TWI587655B (zh) 2017-06-11
IL269332B (en) 2020-02-27
HK1255304A1 (zh) 2019-08-16
IL226082A (en) 2017-08-31
AU2017272221B2 (en) 2018-02-22
EP2636166A1 (en) 2013-09-11
CN108063631A (zh) 2018-05-22
AU2011323559B2 (en) 2016-05-26
US20160294455A1 (en) 2016-10-06
EP2636166A4 (en) 2017-06-28
MX2013004913A (es) 2013-08-29
TWI631839B (zh) 2018-08-01
US10320455B2 (en) 2019-06-11
AU2011323559A1 (en) 2013-06-06
KR20130141568A (ko) 2013-12-26
EP2636166B1 (en) 2019-03-06
AU2016219662A1 (en) 2016-09-15
JP6263300B2 (ja) 2018-01-17
CA2816556C (en) 2021-07-20
AU2018203567B2 (en) 2018-07-05
IL253541A0 (en) 2017-09-28
AU2017213585A1 (en) 2017-08-31
IL226082A0 (en) 2013-06-27
JP2018078608A (ja) 2018-05-17
JP2023071793A (ja) 2023-05-23
US20110044193A1 (en) 2011-02-24
US20140016499A1 (en) 2014-01-16
CN103348608B (zh) 2017-07-14
TW201944743A (zh) 2019-11-16
WO2012061325A1 (en) 2012-05-10
EP2636166B8 (en) 2019-04-17
IL253541B (en) 2019-09-26
EP3557782B1 (en) 2024-04-03
IL269332A (en) 2019-11-28
JP2016213846A (ja) 2016-12-15
KR101703384B1 (ko) 2017-02-06
KR101983915B1 (ko) 2019-05-29
CN103348608A (zh) 2013-10-09
TW201720076A (zh) 2017-06-01
JP6155368B2 (ja) 2017-06-28
KR20190058718A (ko) 2019-05-29
AU2016219662B2 (en) 2017-05-18
CN108063631B (zh) 2021-11-23
SG189554A1 (en) 2013-05-31
AU2018241100A1 (en) 2018-10-25
JP2017188934A (ja) 2017-10-12
AU2018203567A1 (en) 2018-06-07
TW201830886A (zh) 2018-08-16
US8542763B2 (en) 2013-09-24
US9369888B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
RU2543092C2 (ru) Системы и способы координации передач в распределенных беспроводных системах посредством кластеризации пользователей
RU2628223C2 (ru) Системы и способы эксплуатации областей когерентности в беспроводных системах
US10749582B2 (en) Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
NZ754048B2 (en) Systems and methods to exploit areas of coherence in wireless systems
NZ738000B2 (en) Systems and methods to exploit areas of coherence in wireless systems
NZ757995B2 (en) Systems and methods to exploit areas of coherence in wireless systems

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner