WO2019157742A1 - 信道状态信息矩阵信息处理方法及通信装置 - Google Patents

信道状态信息矩阵信息处理方法及通信装置 Download PDF

Info

Publication number
WO2019157742A1
WO2019157742A1 PCT/CN2018/076884 CN2018076884W WO2019157742A1 WO 2019157742 A1 WO2019157742 A1 WO 2019157742A1 CN 2018076884 W CN2018076884 W CN 2018076884W WO 2019157742 A1 WO2019157742 A1 WO 2019157742A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel state
state information
matrix
equal
frequency
Prior art date
Application number
PCT/CN2018/076884
Other languages
English (en)
French (fr)
Inventor
王绪振
马欣
叶威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/076884 priority Critical patent/WO2019157742A1/zh
Priority to CN201880086544.0A priority patent/CN111587543B/zh
Publication of WO2019157742A1 publication Critical patent/WO2019157742A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to communication technologies, and in particular, to a channel state information matrix information processing method and a communication device.
  • Massive Multi-Input Multi-Output (Massive MIMO) technology uses large-scale array antennas at the base station side to achieve higher antenna degrees of freedom by configuring a large number of antennas, and can support more users. Thereby improving the throughput of the cell, greatly improving the performance of the cell.
  • the uplink and downlink channels do not have uplink and downlink reciprocity. Therefore, the downlink channel information needs to be fed back to the access network device through the terminal. Specifically, the terminal feeds back channel state information (CSI) to the access network device, and the access network device eliminates interference between users according to the CSI. Therefore, in an FDD system using Massive MIMO, how to report CSI with higher accuracy is the key to improving cell performance.
  • CSI channel state information
  • the terminal feeds back high-precision CSI
  • the CSI occupies too many resources, which leads to increased system overhead and reduced system resource utilization.
  • the present application provides a channel state information matrix information processing method and a communication device, which are used to solve the problem of excessive CSI resource occupation in the prior art.
  • a first aspect of the present application provides a channel state information matrix information processing method, where the method includes:
  • the first communication device first determines channel state information matrix indication information, and further transmits channel state information matrix indication information.
  • the channel state information matrix indication information is used to indicate N 3 channel state information matrices, and each of the N 3 channel state information matrices is a matrix of 2N 1 N 2 rows and 1 column,
  • the kth channel state information matrix in the N 3 channel state information matrices is W k , N 3 is an integer greater than 0; k is an integer, and 1 ⁇ k ⁇ N 3 , and
  • the first column is the kth column of the matrix W
  • P is an integer greater than 0, and L is an integer greater than 0, a row vector of length N 1 , a row vector of length N 2 , a row vector of length N 3 , versus For real numbers, versus a complex number of modulo 1; in equation (3), Is a row vector of length 2.
  • the first communication device determines channel state information matrix indication information, and the channel state information matrix indicated by the channel state information matrix indicates that the matrix state information matrix satisfies the formulas (1)-(2) or satisfies the formulas (3)-(4).
  • the channel state information matrix indicates that the information feedback amount is small, so that the feedback amount of the channel state information matrix indication information is significantly reduced compared with the feedback amount of the indication information for acquiring the same precision channel state information in the prior art, thereby greatly The effective resource occupation is reduced; or the indication information of the same number of channel state information is fed back, the accuracy of the access network device to obtain channel state information can be greatly improved, thereby improving the performance of the entire system.
  • the N 3 channel state information matrices are in one-to-one correspondence with N 3 frequency domain resource units, and the k-th channel state information matrix W k and the N 3 channel state information matrices
  • the kth frequency domain resource unit of the N 3 frequency domain resource units is corresponding, and k is an integer, k ⁇ ⁇ 1, 2, ..., N 3 ⁇ ;
  • N 3 The frequency-domain resource elements of k 2 frequency-domain resource elements occupied by the frequency of the lowest frequency is greater than or equal to the N 3 frequency-domain resource unit k 1 -th frequency-domain resource element occupied frequencies The highest frequency, where k 2 is greater than k 1 .
  • N 1 , N 2 , O 1 , O 2 , O 3 , and O 4 are all integers greater than 0.
  • the feedback amount of the CSI reported by the terminal to the access network device can be greatly compressed. Therefore, in the present application, the codebook structure is based on the transform domain, and the terminal Only the codeword corresponding to the component with a large amount of information in the transform domain is reported, so that the feedback amount can be greatly compressed while ensuring the accuracy of the reported CSI.
  • the oversampling operation is performed on the constructed codeword, and after the oversampling process, the resolution of the codeword can be greatly increased, the redundancy of the codebook is improved, and the mapping of the channel on the codebook can be more sparse, thereby
  • the terminal can select less codewords to report CSI to the access network device, and at the same time, the access network device can obtain higher CSI precision.
  • the channel state information matrix indication information includes an indication as well as Information, instructions as well as Information, as well as instructions as well as Information.
  • At least one of P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 is indicated by physical layer signaling or radio resource control RRC signaling,
  • P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 are predefined values.
  • the P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 involved in the feedback channel state information are indicated by physical signaling, RRC signaling or a predefined manner. Some or all of the parameters can flexibly control the implementation complexity and the amount of feedback, and meet the requirements of feedback and channel state information accuracy in various scenarios.
  • the channel state information matrix is a channel information matrix or a precoding matrix.
  • the channel state information matrix may be a precoding matrix or channel information, and such processing can make the terminal more flexible in algorithm design and implementation.
  • a second aspect of the present application provides a channel state information matrix information processing method, where the method includes:
  • the second communication device receives the channel state information matrix indication information, and further determines the channel state information matrix according to the channel state information matrix indication information.
  • the channel state information matrix indication information is used to indicate N 3 channel state information matrices, and each of the N 3 channel state information matrices is a matrix of 2N 1 N 2 rows and 1 column,
  • the kth channel state information matrix in the N 3 channel state information matrices is W k , N 3 is an integer greater than 0, k is an integer, and 1 ⁇ k ⁇ N 3 , and
  • the first column is the kth column of the matrix W
  • P is an integer greater than 0, and L is an integer greater than 0, a row vector of length N 1 , a row vector of length N 2 , a row vector of length N 3 , versus For real numbers, versus a complex number of modulo 1; in equation (3), Is a row vector of length 2.
  • the N 3 channel state information matrices are in one-to-one correspondence with N 3 frequency domain resource units, and the k-th channel state information matrix W k and the N 3 channel state information matrices
  • the kth frequency domain resource unit of the N 3 frequency domain resource units is corresponding, and k is an integer, k ⁇ ⁇ 1, 2, ..., N 3 ⁇ ;
  • N 3 The frequency-domain resource elements of k 2 frequency-domain resource elements occupied by the frequency of the lowest frequency is greater than or equal to the N 3 frequency-domain resource unit k 1 -th frequency-domain resource element occupied frequencies The highest frequency, where k 2 is greater than k 1 .
  • N 1 , N 2 , O 1 , O 2 , O 3 , and O 4 are all integers greater than 0, An integer greater than or equal to 0 and less than or equal to O 1 N 1 -1, An integer greater than or equal to 0 and less than or equal to O 2 N 2 -1, An integer greater than or equal to 0 and less than or equal to O 3 N 3 -1, An integer greater than or equal to 0 and less than or equal to 2O 4 -1.
  • the channel state information matrix indication information includes an indication as well as Information, instructions as well as Information, as well, instructions as well as Information.
  • the method for determining, by the second communication device, the channel state information matrix according to the channel state information matrix indication information is:
  • the second communication device indicates information acquisition according to the channel state information matrix as well as
  • the second communication device is based on O 1 , O 2 , O 3 and the following formula are calculated
  • the second communication device is based on N 1 , N 2 , N 3 , O 1 , O 2 , O 3 and the following formula are calculated as well as
  • the second communication device is based on P, L, formula (1) and formula (2), the channel state information matrix is calculated;
  • the second communication device normalizes the channel state information matrix according to ⁇ k , or ⁇ k,1 , ⁇ k,2 .
  • the method for determining, by the second communication device, the channel state information matrix according to the channel state information matrix indication information is:
  • the second communication device indicates information acquisition according to the channel state information matrix as well as
  • the second communication device is based on O 1 , O 2 , O 3 , O 4 and the following formula are calculated
  • the second communication device is based on N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 and the following formula are calculated as well as
  • the second communication device is based on P, L, formula (3) and formula (4), the channel state information matrix is calculated;
  • the second communication device normalizes the channel state information matrix according to ⁇ k , or ⁇ k,1 , ⁇ k,2 .
  • At least one of P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 is indicated by physical layer signaling or radio resource control RRC signaling,
  • P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 are predefined values.
  • the channel state information matrix is a channel information matrix or a precoding matrix.
  • a third aspect of the present application provides a communication device having the function of implementing the first communication device in the first aspect. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the communication device may include a processing module and a sending module, and the modules may perform corresponding functions in the first aspect, such as: a processing module, configured to determine channel state information matrix indication information; and a sending module, And configured to send the channel state information matrix indication information.
  • a fourth aspect of the present application provides a communication device having the function of implementing the second communication device in the second aspect. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the communication device may include a receiving module and a processing module, and the modules may perform corresponding functions in the second aspect, for example, a receiving module, configured to receive channel state information matrix indication information; and a processing module, And configured to determine a channel state information matrix according to the channel state information matrix indication information.
  • a fifth aspect of the present application provides a communication device, the device comprising: a memory and a processor.
  • the memory is used to store program instructions
  • the processor is configured to call program instructions in the memory to implement the functions of the first communication device in the first aspect described above.
  • a sixth aspect of the present application provides a communication device, the device comprising: a memory and a processor.
  • the memory is used to store program instructions
  • the processor is configured to call program instructions in the memory to implement the functions of the second communication device in the second aspect.
  • a seventh aspect of the present application provides a chip for a first communication device, the chip comprising: at least one communication interface, at least one processor, at least one memory, wherein the communication interface, the processor, and the memory pass the circuit In some cases, it may also be a bus interconnect, and the processor calls instructions stored in the memory to perform the method steps described in the first aspect above.
  • An eighth aspect of the present application provides a chip for a second communication device, the chip comprising: at least one communication interface, at least one processor, at least one memory, wherein the communication interface, the processor, and the memory pass the circuit In some cases, it may also be a bus interconnect, and the processor calls instructions stored in the memory to perform the method steps described in the second aspect above.
  • a ninth aspect of the present application provides a computer readable storage medium storing a computer program, the computer program comprising program instructions, the program instructions, when executed by a module, causing the module to perform the first aspect described above Said method.
  • a tenth aspect of the present application provides a computer readable storage medium storing a computer program, the computer program comprising program instructions, the program instructions, when executed by a module, causing the module to perform the second aspect described above Said method.
  • An eleventh aspect of the present application provides a non-volatile storage medium, where the one or more program codes are stored, and when the terminal executes the program code, the terminal performs the first aspect in the first aspect. Related method steps performed by the communication device.
  • the twelfth aspect of the present application provides a non-volatile storage medium, where the one or more program codes are stored, and when the access network device executes the program code, the access network device performs A related method step performed by the second communication device in the second aspect.
  • a thirteenth aspect of the present application provides a computer program product comprising one or more computer instructions for performing the method steps of the first aspect described above when the computer instructions are loaded and executed on a computer.
  • a fourteenth aspect of the present application provides a computer program product comprising one or more computer instructions for performing the method steps of the second aspect described above when the computer instructions are loaded and executed on a computer.
  • Figure 1 is a system architecture diagram to which the present application applies
  • FIG. 2 is a schematic structural diagram of a dual-polarized array antenna provided by the present application.
  • FIG. 3 is an interaction flowchart of an embodiment of a channel state information matrix information processing method provided by the present application
  • FIG. 4 is a schematic flowchart diagram of an embodiment of a channel state information matrix information processing method provided by the present application.
  • FIG. 5 is a schematic flowchart diagram of an embodiment of a method for processing channel state information matrix information provided by the present application
  • FIG. 6 is a block diagram of a communication device provided by the present application.
  • FIG. 7 is a block diagram of a communication device provided by the present application.
  • FIG. 8 is a physical block diagram of a communication apparatus provided by the present application.
  • FIG. 9 is a physical block diagram of a communication device provided by the present application.
  • FIG. 10 is a physical block diagram of a chip provided by the present application.
  • FIG. 11 is a physical block diagram of still another chip provided by the present application.
  • the channel state information matrix information processing method and device provided by the present application can be applied to the system architecture shown in FIG. 1.
  • the system includes: an access network device and at least one terminal, and the access network device sends data to the terminal through an antenna.
  • Massive MIMO technology the structure of the antenna has evolved into a dual-polarized array antenna.
  • 2 is a schematic structural diagram of a dual-polarized array antenna provided by the present application. Each cross line in FIG. 2 represents an antenna array, and each oblique line in the cross line represents a polarization direction.
  • the first communication device may be a processing chip in the terminal or the terminal, the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may provide voice and/or other service data communication to the user.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the second processing device may be a processing chip in the access network device or the access network device, where the access network device may be a base station, or an access point, or may refer to an access network.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access (
  • the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point.
  • gNB base station in a 5G network, etc., is not limited herein.
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • N1, N2 indicate the horizontal and vertical antenna dimension respectively.
  • N 1 represents the horizontal antenna dimension size
  • N 2 represents the vertical antenna dimension size
  • N 1 represents the vertical antenna dimension size
  • N3 indicates the size of the transform domain dimension of the codebook
  • O 1 , O 2 , O 3 , O 4 indicates oversampling parameters
  • indicates that the complex number a is taken.
  • angle (a): indicates the phase of the complex a.
  • the middle layer of this application corresponds to the concept of rank, the rank 1 corresponds to 1 layer of data transmission, and the rank 2 corresponds to 2 layers of data transmission.
  • the parameters (1)-(5) is indicated by physical layer signaling or Radio Resource Control (RRC) signaling, or (1)-(5) above.
  • RRC Radio Resource Control
  • the parameters can also be predefined values. Wherein, the predefined value refers to a value defined by a protocol, or a value defined by the first communication device and/or the second communication device.
  • P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 involved in the feedback channel state information are indicated by physical signaling, RRC signaling or a predefined manner. Some or all of the parameters can flexibly control the implementation complexity and the amount of feedback, and meet the requirements of feedback and channel state information accuracy in various scenarios.
  • FIG. 3 is an interaction flowchart of an embodiment of a channel state information matrix information processing method provided by the present application. As shown in FIG. 3, the method includes:
  • the first communication device determines channel state information matrix indication information.
  • the first communication device may be specifically the above terminal.
  • the channel state information matrix indication information is used to indicate N 3 channel state information matrices, and each of the N 3 channel state information matrices is a matrix of 2N 1 N 2 rows and 1 column, and the N 3
  • the kth channel state information matrix in the channel state information matrix is W k , where k is an integer and 1 ⁇ k ⁇ N 3 , and
  • the first column is the kth column of the matrix W
  • a row vector of length N 1 a row vector of length N 2 , a row vector of length N 3 , which is a vector of the transform domain matrix, versus For real numbers, versus A complex number of modulo 1.
  • I a row vector of length 2.
  • the above l represents the number of layers of the antenna.
  • the above formula (1) and formula 2 correspond to scenes in which the weighting coefficients are separately calculated for each polarization direction of the antenna
  • the above formula (3) and formula (4) correspond to scenes in which the two polarization directions of the antenna jointly calculate the weighting coefficient.
  • the first communication device may calculate the channel state information matrix indication information based on a specific formula, or determine the channel state information matrix indication information by traversing the channel state information matrix.
  • the method for determining the channel state information matrix indication information by traversing the channel state information matrix is as follows:
  • the codewords in all codebooks are traversed, wherein the codewords are generated according to the above formula (2) or formula (4). Furthermore, the correlation with the original frequency domain channel information is calculated, and the optimal oversampling parameter is selected according to the criterion with the highest correlation. After determining the optimal oversampling parameters, the P transform domain indices selected by the transform domain are determined. Furthermore, all the selected transform domain indexes are traversed, and for each selected transform domain index, L vector index indices and vector weighting coefficients are calculated, and then all channel state information matrix indication information is obtained.
  • a channel state information matrix is obtained by using a weighted combining method, wherein the weighted combining satisfies the above formula (1) or the above formula (3).
  • the first communication device sends the channel state information matrix indication information.
  • the second communication device determines the channel state information matrix according to the channel state information matrix indication information.
  • the channel state information matrix indicates that the information forms a downlink CSI, and the first communication device sends the downlink CSI to the second communication device, where the second communication device may be the access network device.
  • the channel state information matrix may be determined according to the channel state information matrix indication information, or when the channel state information matrix is a precoding matrix, in some specific scenarios.
  • the second communication device may also directly determine the channel state information matrix according to actual needs without according to the channel state information matrix indication information.
  • the access network device determines that only one column of channel state information matrix is needed, and the access network device selects One of the channel state information matrices is used as a channel state information matrix.
  • the foregoing channel state information matrix may be a channel information matrix or a precoding matrix.
  • the following embodiment of the present application uses a channel information matrix as an example to describe the specific implementation process of the present application.
  • the processing related to the precoding matrix is also described in the following embodiments.
  • the channel state information matrix may be a precoding matrix or channel information information, and such processing can make the terminal more flexible in algorithm design and implementation.
  • the first communication device determines channel state information matrix indication information, where the channel state information matrix indication information indicates that the channel state information matrix satisfies the formulas (1)-(2) or satisfies the formulas (3)-(4). .
  • the channel state information matrix indicates that the information feedback amount is small, so that the feedback amount of the channel state information matrix indication information is significantly reduced compared with the feedback amount of the indication information for acquiring the same precision channel state information in the prior art, thereby greatly The effective resource occupation is reduced; or the indication information of the same number of channel state information is fed back, the accuracy of the access network device to obtain channel state information can be greatly improved, thereby improving the performance of the entire system.
  • the following embodiment uses a system bandwidth of 10 Resource Blocks (RBs), where the resource blocks represent time-frequency units occupying a certain time width and frequency width in the time domain frequency domain.
  • FIG. 4 is a schematic flowchart of an embodiment of a method for processing channel state information matrix information provided by the present application. As shown in FIG. 4, the process for determining information of a channel state information matrix by a first communication device is:
  • the frequency domain channel information matrix H is a three-dimensional matrix, the first dimension represents the number of antennas of the first communication device, the size is 2, the second dimension represents the number of antennas of the second communication device, the size is 4, and the third dimension represents the frequency domain.
  • the number of RBs is 10.
  • the following step S402 and subsequent processing may be performed to obtain channel state information matrix indication information, and the indication information can indicate N 3 channel states.
  • the information matrix, the N 3 channel state information matrices can reflect the frequency domain channel information matrix H, and the N 3 channel state information matrices satisfy the above formula (1) or (3).
  • the oversampling operation is performed on the constructed codeword, and after the oversampling process, the resolution of the codeword can be greatly increased, the redundancy of the codebook is improved, and the mapping of the channel on the codebook can be more sparse, thereby
  • the terminal can select less codewords to report CSI to the access network device, and at the same time, the access network device can obtain higher CSI precision.
  • the channel state information matrix in the present application is a precoding matrix
  • the singular value decomposition (SVD) decomposition may be performed on the frequency domain channel information matrix H after the step S401 is performed.
  • the channel state information matrix indicates the index pmi 3 , and the subsequent specific processing manners are the same as the processing methods corresponding to the channel information matrix, and are not described below.
  • the first communications apparatus calculates the orthogonal basis oversampling parameter according to the frequency domain channel information matrix H. And when the channel state information matrix indicates the index pmi 3 , the transform domain transform may be performed first to obtain the transform domain channel information matrix corresponding to the frequency domain channel information matrix H. Furthermore, when the transform domain transform supports oversampling, the orthogonal basis oversampling parameter is calculated according to the transform domain channel information matrix. And the channel state information matrix indicates an index pmi 3 , wherein each pmi 3 can represent the selected transform domain dimension index. When the transform domain transform does not support oversampling, then O 3 is 1, that is, no oversampling is performed, and the orthogonal base oversampling parameter is not required to be fed back. It is only necessary to calculate the channel state information matrix indication index pmi 3 from the transform domain channel information matrix.
  • the first communication device when it performs the transform domain transform, it may perform an Inverse Discrete Fourier Transform (IDFT) transform, or may also perform a Discrete Fourier Transform (DFT). Transform, Discrete Cosine Transform (DCT) transform, etc.
  • IDFT Inverse Discrete Fourier Transform
  • DFT Discrete Fourier Transform
  • DCT Discrete Cosine Transform
  • the corresponding transform domain is DFT transform
  • the corresponding DFT matrix ⁇ DFT satisfies
  • the DFT transform corresponds to the DFT matrix ⁇ DFT Listed as
  • the IDFT transform is taken as an example to illustrate that the first communication apparatus performs transform domain transform and calculates orthogonal basis oversampling parameters.
  • the channel state information matrix indicates the process of index pmi 3 .
  • Step 1 Perform IDFT transformation.
  • ⁇ IDFT size is O 3 N 3 lines N 3 columns.
  • ⁇ DFT ( ⁇ IDFT ) H , Represents a unit array of size N 3 .
  • Hf(i rx , i tx , 1:20 ) is obtained, where i tx is an integer, 1 ⁇ i tx ⁇ 4, i rx is an integer, and 1 ⁇ i rx ⁇ 2.
  • the codebook structure is based on the transform domain.
  • the terminal only reports the codeword corresponding to the component with a large amount of information in the transform domain, so the feedback amount can be greatly compressed under the condition of ensuring the reported CSI precision.
  • the size of the first dimension of the Hf matrix is 2, the size of the second dimension is 4, and the size of the third dimension is 20.
  • Hf1 Hf(:,:,1:2:20)
  • Hf2 Hf(:,:,2:2:20)
  • Hf1 is the matrix corresponding to the odd-numbered number of the third dimension of the Hf matrix
  • Hf2 is a matrix corresponding to the even number of the third dimension of the Hf matrix
  • the size is consistent with the H size.
  • Step 3 Calculate, for Hf1 and Hf2, respectively, all transmit and receive antenna link powers corresponding to each time domain point idxF after IDFT transformation, where 1 ⁇ idxF ⁇ 10.
  • the antenna power sum corresponding to Hf1 and Hf2 is calculated using the following formula.
  • pathPow1 and pathPow2 are vectors of 1 row and 10 columns.
  • Step 4. Calculate pathPowP1 and pathPowP2 according to pathPow1 and pathPow2.
  • pathPowP1 is the power of the P points with the largest value in pathPow1
  • Step 5 Determine orthogonal basis oversampling parameters according to pathPowP1, pathPowP2, and the index of the time domain point And a channel state information matrix indication index pmi 3, pmi 3 to indicate information.
  • pathPowP1 if pathPowP1 ⁇ pathPowP2, then:
  • the two polarizations jointly calculate the weighting coefficients
  • the information with the dual polarization phase indicates pmi 4 .
  • O 4 is 2, so among them Indicates rounding down a.
  • q 4 m 4 -O 4 n 4 .
  • this step is traversed Calculate q 1 , q 2 and pmi 1 , pmi 2 .
  • the step S403 can be regarded as a process of performing vector decomposition on a multipath channel information in the time domain after the IDFT to obtain vector indication information.
  • Step 1 for any group Determine its corresponding orthogonal basis matrix.
  • m 4 is calculated by the above formula (7).
  • Step 2 determined for the above steps Traversing the elements in pmi 3 , calculating the power sum of the maximum power L vectors corresponding to each pmi 3 element, and obtaining the channel state information matrix indication index according to the power sum calculation And weighting factors.
  • the size is 1 row and 4 columns.
  • the size is 1 row and 4 columns.
  • the subscript p0 indicates the first polarization
  • the subscript p1 represents the second polarization.
  • the superscript (1) represents the first UE antenna
  • the superscript (2) represents the second UE antenna.
  • the weighting coefficients of the corresponding UE antennas and corresponding polarization directions are respectively indicated, and the sizes are all 1 row and 2 column vectors.
  • the powCof size is 1*2.
  • Step 3 Traverse idxP ⁇ ⁇ 0, 1 ⁇ , and use the method of step 2 above to calculate the following information:
  • Step 4 Calculate the power sum of the largest L vectors of all multipaths using the following formula (16):
  • Step 5 traverse all versus Repeat steps 1 through 4.
  • Step 6 select Maximum value As the above oversampling parameter
  • Step 7 Determine, according to the selected ⁇ q 1 , q 2 ⁇ , a channel state information matrix indicating index pmi 1 , pmi 2 :
  • channel state information matrix weighting information is determined based on the weighting coefficient described above.
  • the weighting information ⁇ ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 ⁇ , where ⁇ 1 is the amplitude information of the UE antenna 1 , ⁇ 1 is the phase information of the UE antenna 1 , and ⁇ 2 is the UE antenna 2 The amplitude information, ⁇ 2 is the phase information of the UE antenna 2.
  • ⁇ 1 contains the above formula (1)
  • ⁇ 2 contains the following formula (1)
  • ⁇ 1 contains the above formula (1)
  • ⁇ 1 and ⁇ 1 are specifically:
  • ⁇ 2 and ⁇ 2 are specifically:
  • the first communication device transmits the channel state information matrix indication information to the second communication device in accordance with the above-described step S302.
  • the channel state information matrix indication information sent by the first communications apparatus to the second communications apparatus includes the oversampling parameter determined by the foregoing steps.
  • the dual polarization phase oversampling parameter q 4 and the dual polarization phase indication information pmi 4 are also included.
  • the channel state information matrix indication information includes an indication.
  • the indication information of the channel state information matrix includes an indication.
  • Information, instructions Information, as well as instructions With information, among them, Indicates the magnitude of the weighting factor, Indicates the weighting coefficient phase, where l is 1 or 2.
  • the first communication device may transmit only part of the information in the information to the second communication device.
  • O 1 1
  • O 2 1
  • O 3 1
  • O 4 1
  • the first communication device does not need to go to the second communication device.
  • N 1 1
  • N 2 1
  • N 3 1.
  • the first communication device does not need to send the above n 3 to the second communication device.
  • the second communication device may calculate the channel state information matrix based on the formula in the foregoing embodiment, or the second communication device may also be based on a discrete Fourier transform (Discrete) Fourier Transform (DFT) and linear merging methods are used to obtain a channel state information matrix.
  • DFT discrete Fourier transform
  • the case where all the above parameters are included in the channel state information matrix indication information is taken as an example.
  • the second communication device may The remaining parameter values are obtained according to the above correspondence.
  • FIG. 5 is a schematic flowchart of an embodiment of a method for processing channel state information matrix information provided by the present application. As shown in FIG. 5, the process for calculating a channel state information matrix by a second communication device is as follows:
  • the second communication device acquires an oversampling parameter according to the channel state information matrix indication information.
  • the second communication device can obtain the information according to the channel state information matrix indication information. as well as
  • the second communication device further acquires the dual-polarized phase oversampling parameter q 4 and the dual-polarized phase indication information pmi according to the channel state information matrix indication information. 4 .
  • the second communication device calculates the first data according to the acquired parameters.
  • the first data is specifically
  • the second communication device is based on O 1 , O 2 , O 3 and formula (5) and formula (8), calculated
  • the second communication device also calculates according to q 4 and pmi 4 simultaneously.
  • the second communication device calculates the second data according to the first data.
  • the second communication device is based on N 1 , N 2 , N 3 , O 1 , O 2 , O 3 and formulas (9) and (10), and, formula (6-0) or formula (6-1), are calculated as well as
  • N 1 , N 2 , O 1 , O 2 , O 3 , O 4 are integers greater than 0, An integer greater than or equal to 0 and less than or equal to O 1 N 1 -1, An integer greater than or equal to 0 and less than or equal to O 2 N 2 -1, An integer greater than or equal to 0 and less than or equal to O 3 N 3 -1, An integer greater than or equal to 0 and less than or equal to 2O 4 -1.
  • the second communication device is also simultaneously based on Calculated
  • the second communication device calculates a channel state information matrix according to the second data.
  • the second communication device is based on P, L, formula (1) and formula (2), the channel state information matrix is calculated.
  • the channel state information matrix satisfies the formula (1).
  • the second communication device also simultaneously And calculate according to formulas (3) and (4).
  • the channel state information matrix satisfies the formula (3).
  • the transform domain transform represents a vector in the corresponding matrix, wherein the transform domain transform may be a DFT transform, a DCT transform, or the like.
  • the above formula (6-0) corresponds to the DFT transform
  • the above formula (6-1) corresponds to the DCT transform.
  • the transform domain is DFT matrix DFT for DFT transform, and the DFT matrix corresponding to DFT transform ⁇ DFT Listed as
  • the transform domain is the DCT matrix when DCT transform Listed as
  • the second communication device normalizes the channel state information matrix according to the normalization coefficient.
  • ⁇ k is a normalization coefficient when the number of layers is 1
  • ⁇ k,1 , ⁇ k,2 are normalization coefficients when the number of layers is 2.
  • the first column is the kth column of the matrix W, The second column is the N 3 +k column of the matrix W.
  • the N 3 channel state information matrices described in the foregoing embodiments are in one-to-one correspondence with the N 3 frequency domain resource units.
  • the N 3 channel state of the k-th channel state information matrix information matrix W is k and the k th frequency domain resource unit corresponding to the N 3 frequency-domain resource elements, wherein, k is an integer, k ⁇ ⁇ 1 , 2,...,N 3 ⁇ .
  • the N 3 frequency-domain resource elements of k 2 frequency-domain resource elements occupied by the frequency of the lowest frequency is greater than or equal to the N 3 frequency-domain resource unit k 1 -th frequency-domain resource element occupied frequency
  • the channel state information matrix is a precoding matrix
  • the precoding matrix may be obtained according to the channel information matrix
  • FIG. 6 is a block diagram of a communication device provided by the present application.
  • the communication device is the first communication device.
  • the communication device includes:
  • the processing module 601 is configured to determine channel state information matrix indication information.
  • the channel state information matrix indication information is used to indicate N 3 channel state information matrices, and each of the N 3 channel state information matrices is a matrix of 2N 1 N 2 rows and 1 column, and the N 3
  • the kth channel state information matrix in the channel state information matrix is W k , N 3 is an integer greater than 0; k is an integer, and 1 ⁇ k ⁇ N 3 , and
  • the first column is the kth column of the matrix W
  • P is an integer greater than 0, and L is an integer greater than 0, a row vector of length N 1 , a row vector of length N 2 , a row vector of length N 3 , versus For real numbers, versus a complex number of modulo 1; in equation (3), a row vector of length 2;
  • the sending module 602 is configured to send the channel state information matrix indication information.
  • the N 3 channel state information matrices are in one-to-one correspondence with N 3 frequency domain resource units, and the kth channel state information matrix W k in the N 3 channel state information matrices and the foregoing
  • the kth frequency domain resource unit of N 3 frequency domain resource units corresponds, and k is an integer, k ⁇ ⁇ 1, 2, ..., N 3 ⁇ .
  • N 1 , N 2 , O 1 , O 2 , O 3 , and O 4 are all integers greater than 0.
  • the foregoing channel state information matrix indication information includes an indication as well as Information, instructions as well as Information, as well as instructions as well as Information.
  • At least one of P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 is controlled by physical layer signaling or radio resource RRC signaling.
  • P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 are predefined values.
  • the channel state information matrix is a channel information matrix or a precoding matrix.
  • FIG. 7 is a block diagram of a communication device provided by the present application.
  • the communication device is the second communication device. As shown in FIG. 7, the communication device includes:
  • the receiving module 701 is configured to receive channel state information matrix indication information.
  • the channel state information matrix indication information is used to indicate N 3 channel state information matrices, and each of the N 3 channel state information matrices is a matrix of 2N 1 N 2 rows and 1 column, and the N 3
  • the kth channel state information matrix in the channel state information matrix is W k , N 3 is an integer greater than 0, k is an integer, and 1 ⁇ k ⁇ N 3 , and
  • the first column is the kth column of the matrix W
  • P is an integer greater than 0, and L is an integer greater than 0, a row vector of length N 1 , a row vector of length N 2 , a row vector of length N 3 , versus For real numbers, versus a complex number of modulo 1; in equation (3), Is a row vector of length 2.
  • the processing module 702 is configured to determine a channel state information matrix according to the channel state information matrix indication information.
  • the N 3 channel state information matrices are in one-to-one correspondence with N 3 frequency domain resource units, and the kth channel state information matrix W k in the N 3 channel state information matrices and the foregoing
  • the kth frequency domain resource unit of N 3 frequency domain resource units corresponds, and k is an integer, k ⁇ ⁇ 1, 2, ..., N 3 ⁇ .
  • N 1 , N 2 , O 1 , O 2 , O 3 , and O 4 are all integers greater than 0.
  • the foregoing channel state information matrix indication information includes an indication as well as Information, instructions as well as Information, as well as instructions as well as Information.
  • At least one of P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 is controlled by physical layer signaling or radio resource RRC signaling.
  • P, L, N 1 , N 2 , N 3 , O 1 , O 2 , O 3 , O 4 are predefined values.
  • the channel state information matrix is a channel information matrix or a precoding matrix.
  • FIG. 8 is a physical block diagram of a communication device provided by the present application. As shown in FIG. 8, the communication device includes:
  • the memory 801 is configured to store program instructions, and the processor 802 is configured to call program instructions in the memory 801 to implement the functions of the first communication device in the foregoing method embodiments.
  • FIG. 9 is a physical block diagram of a communication device provided by the present application. As shown in FIG. 9, the communication device includes:
  • the memory 901 is configured to store program instructions, and the processor 902 is configured to invoke program instructions in the memory 901 to implement the functions of the second communication device in the foregoing method embodiments.
  • the chip 1000 is a physical block diagram of a chip provided by the present application.
  • the chip can be used in a first communication device.
  • the chip 1000 includes: at least one communication interface 1001, at least one processor 1002, at least one memory. 1003, wherein the communication interface, the processor, and the memory are interconnected by a circuit (which may also be a bus) 1004, and the processor 1002 calls an instruction stored in the memory 1003 to execute the first communication device corresponding to the foregoing method embodiment. Method steps.
  • FIG. 11 is a physical block diagram of still another chip provided by the present application.
  • the chip can be used in a second communication device.
  • the chip includes: at least one communication interface 1101, at least one processor 1102, at least one memory. 1103, wherein the communication interface, the processor, and the memory are interconnected by a circuit (or in some cases, a bus) 1104, and the processor 1102 calls an instruction stored in the memory 1103 to execute the second communication device corresponding to the foregoing method embodiment.
  • Method steps are possible to be used in a second communication device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信道状态信息矩阵信息处理方法及通信装置,该方法包括:第一通信装置首先确定信道状态信息矩阵指示信息,进而发送信道状态信息矩阵指示信息,该信道状态信息矩阵指示信息指示的信道状态信息矩阵满足公式(1)‐(2)或满足公式(3)‐(4)。该信道状态信息矩阵指示信息反馈量小,从而使得信道状态信息矩阵指示信息所承载的反馈量相比现有技术中获取相同精度信道状态信息的指示信息反馈量有明显减小,从而可以极大地减少有效资源占用;或者在反馈相同数量信道状态信息的指示信息情况下,能够大大提升接入网设备获取信道状态信息精度,从而提升整个系统的性能。本实施例提供的方法可以应用于通信系统,例如V2X、LTE-V、V2V、车联网、MTC、ΙοΤ、LTE-M、M2M、物联网等。

Description

信道状态信息矩阵信息处理方法及通信装置 技术领域
本申请涉及通信技术,尤其涉及一种信道状态信息矩阵信息处理方法及通信装置。
背景技术
大规模多输入多输出(Massive Multi-Input Multi-Output,Massive MIMO)技术在基站端采用大规模阵列天线,通过配置数量众多的天线,获得更高的天线自由度,能够支持更多的用户,从而提高小区吞吐量的目的,极大的提高小区的性能。在使用Massive MIMO的频分复用(Frequency Division Duplexing,FDD)系统中,上下行信道不存在上下行互易性,因此下行信道信息需要通过终端反馈给接入网设备。具体的,终端向接入网设备反馈信道状态信息(Channel State Information,CSI),接入网设备根据CSI来消除用户之间的干扰。因此,在使用Massive MIMO的FDD系统中,如何上报精度较高的CSI是提升小区性能的关键。
但是终端反馈高精度CSI,会导致CSI占用的资源过多,进而导致增加了系统开销,降低了系统资源的利用率。
发明内容
本申请提供一种信道状态信息矩阵信息处理方法及通信装置,用于解决现有技术中CSI占用资源过多的问题。
本申请第一方面提供一种信道状态信息矩阵信息处理方法,该方法包括:
第一通信装置首先确定信道状态信息矩阵指示信息,进而发送信道状态信息矩阵指示信息。
其中,所述信道状态信息矩阵指示信息用于指示N 3个信道状态信息矩阵,所述N 3个信道状态信息矩阵中每个信道状态信息矩阵为2N 1N 2行l列的矩阵,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵为W k,N 3为大于0的整数;k为整数,且1≤k≤N 3,且
l=1,
Figure PCTCN2018076884-appb-000001
Figure PCTCN2018076884-appb-000002
为矩阵W的第k列,W=W 1k为实数;或者,
l=2时,
Figure PCTCN2018076884-appb-000003
Figure PCTCN2018076884-appb-000004
的第1列为矩阵W的第k列,
Figure PCTCN2018076884-appb-000005
的第2列是矩阵W的第N 3+k列,其中,W满足:W=[W 1 W 2],β k,2k,1为实数;
W l,l=1,2,满足如下公式(1)或(3):
Figure PCTCN2018076884-appb-000006
其中,
Figure PCTCN2018076884-appb-000007
满足
Figure PCTCN2018076884-appb-000008
或者,
Figure PCTCN2018076884-appb-000009
其中,
Figure PCTCN2018076884-appb-000010
满足
Figure PCTCN2018076884-appb-000011
其中,在公式(1)和公式(3)中,P为大于0的整数,L为大于0的整数,
Figure PCTCN2018076884-appb-000012
为长度为N 1的行向量,
Figure PCTCN2018076884-appb-000013
为长度为N 2的行向量,
Figure PCTCN2018076884-appb-000014
为长度为N 3的行向量,
Figure PCTCN2018076884-appb-000015
Figure PCTCN2018076884-appb-000016
为实数,
Figure PCTCN2018076884-appb-000017
Figure PCTCN2018076884-appb-000018
为模为1的复数;在公式(3)中,
Figure PCTCN2018076884-appb-000019
为长度为2的行向量。
该方法中,第一通信装置确定出信道状态信息矩阵指示信息,该信道状态信息矩阵指示信息指示的信道状态信息矩阵满足公式(1)-(2)或满足公式(3)-(4)。该信道状态信息矩阵指示信息反馈量小,从而使得信道状态信息矩阵指示信息所承载的反馈量相比现有技术中获取相同精度信道状态信息的指示信息反馈量有明显减小,从而可以极大地减少有效资源占用;或者在反馈相同数量信道状态信息的指示信息情况下,能够大大提升接入网设备获取信道状态信息精度,从而提升整个系统的性能。
在一种可能的设计中,所述N 3个信道状态信息矩阵与N 3个频域资源单元一一对应,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵W k与所述N 3个频域资源单元的第k个频域资源单元对应,k为整数,k∈{1,2,...,N 3};
所述N 3个频域资源单元中第k 2个频域资源单元所占频率中的最低频率大于等于所述N 3个频域资源单元中第k 1个频域资源单元所占频率中的最高频率,其中,k 2大于k 1
在一种可能的设计中,
Figure PCTCN2018076884-appb-000020
满足如下表示:
Figure PCTCN2018076884-appb-000021
Figure PCTCN2018076884-appb-000022
Figure PCTCN2018076884-appb-000023
Figure PCTCN2018076884-appb-000024
其中,N 1、N 2、O 1、O 2、O 3、O 4均为大于0的整数。
Figure PCTCN2018076884-appb-000025
为大于等于0小于等于O 1N 1-1的整数,
Figure PCTCN2018076884-appb-000026
为大于等于0小于等于O 2N 2-1的整数,
Figure PCTCN2018076884-appb-000027
为大于等于0小于等于O 3N 3-1的整数,
Figure PCTCN2018076884-appb-000028
为大于等于0小于等于2O 4-1的整数。
该方法中,基于信道信息在一些变换域中具有稀疏特性的考虑,可以大大压缩终端向接入网设备上报的CSI的反馈量,因此在本申请中,码本构造是基于变换域的,终端仅上报变换域中信息量较大的分量对应的码字,因此可以在保证上报的CSI精度的情况下,大大压缩反馈量。
在一种可能的设计中,
Figure PCTCN2018076884-appb-000029
满足如下表示:
Figure PCTCN2018076884-appb-000030
Figure PCTCN2018076884-appb-000031
Figure PCTCN2018076884-appb-000032
Figure PCTCN2018076884-appb-000033
其中,
Figure PCTCN2018076884-appb-000034
Figure PCTCN2018076884-appb-000035
该方法中,对构造码字进行过采样操作,经过过采样处理后,能够大大增加码字的分辨率,提高码本的冗余度,使得信道在码本上的映射能够更加稀疏,从而使得终端可以选取更少的码字向接入网设备上报CSI,同时,接入网设备能够获得更高的CSI的精度。
在一种可能的设计中,所述信道状态信息矩阵指示信息包括指示
Figure PCTCN2018076884-appb-000036
以及
Figure PCTCN2018076884-appb-000037
的信息、指示
Figure PCTCN2018076884-appb-000038
以及
Figure PCTCN2018076884-appb-000039
的信息,以及指示
Figure PCTCN2018076884-appb-000040
以及
Figure PCTCN2018076884-appb-000041
的信息。
在一种可能的设计中,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的至少一个由物理层信令或无线资源控制RRC信令指示,或者,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4为预定义值。
该方法中,通过物理信令、RRC信令或预定义方式来指示反馈信道状态信息所涉及的P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的部分或全部参数,能够灵活的控制实现复杂度与反馈量大小,满足各种场景对于反馈量与信道状态信息精度的需求。
在一种可能的设计中,所述信道状态信息矩阵为信道信息矩阵或预编码矩阵。
该方法中,信道状态信息矩阵可以是预编码矩阵,也可以是信道信息,这样的处理能够使得终端在算法设计与实现上更具有灵活性。
本申请第二方面提供一种信道状态信息矩阵信息处理方法,该方法包括:
第二通信装置接收信道状态信息矩阵指示信息,进而根据所述信道状态信息矩阵指示信息确定信道状态信息矩阵。
其中,所述信道状态信息矩阵指示信息用于指示N 3个信道状态信息矩阵,所述N 3个信道状态信息矩阵中每个信道状态信息矩阵为2N 1N 2行l列的矩阵,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵为W k,N 3为大于0的整数,k为整数,且1≤k≤N 3,且
l=1,
Figure PCTCN2018076884-appb-000042
Figure PCTCN2018076884-appb-000043
为矩阵W的第k列,W=W 1k为实数;
l=2,
Figure PCTCN2018076884-appb-000044
Figure PCTCN2018076884-appb-000045
的第1列为矩阵W的第k列,
Figure PCTCN2018076884-appb-000046
的第2列是矩阵W的第N 3+k列,其中,W满足:W=[W 1 W 2],β k,1、β k,2为实数;
W l,l=1,2,满足如下公式(1)或(3):
Figure PCTCN2018076884-appb-000047
其中,
Figure PCTCN2018076884-appb-000048
满足
Figure PCTCN2018076884-appb-000049
或者,
Figure PCTCN2018076884-appb-000050
其中,
Figure PCTCN2018076884-appb-000051
满足
Figure PCTCN2018076884-appb-000052
其中,在公式(1)和公式(3)中,P为大于0的整数,L为大于0的整数,
Figure PCTCN2018076884-appb-000053
为长度为N 1的行向量,
Figure PCTCN2018076884-appb-000054
为长度为N 2的行向量,
Figure PCTCN2018076884-appb-000055
为长度为N 3的行向量,
Figure PCTCN2018076884-appb-000056
Figure PCTCN2018076884-appb-000057
为实数,
Figure PCTCN2018076884-appb-000058
Figure PCTCN2018076884-appb-000059
为模为1的复数;在公式(3)中,
Figure PCTCN2018076884-appb-000060
为长度为2的行向量。
在一种可能的设计中,所述N 3个信道状态信息矩阵与N 3个频域资源单元一一对应,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵W k与所述N 3个频域资源单元的第k个频域资源单元对应,k为整数,k∈{1,2,...,N 3};
所述N 3个频域资源单元中第k 2个频域资源单元所占频率中的最低频率大于等于所述N 3个频域资源单元中第k 1个频域资源单元所占频率中的最高频率,其中,k 2大于k 1
在一种可能的设计中,
Figure PCTCN2018076884-appb-000061
满足如下表示:
Figure PCTCN2018076884-appb-000062
Figure PCTCN2018076884-appb-000063
Figure PCTCN2018076884-appb-000064
Figure PCTCN2018076884-appb-000065
其中,N 1、N 2、O 1、O 2、O 3、O 4均为大于0的整数,
Figure PCTCN2018076884-appb-000066
为大于等于0小于等于O 1N 1-1的整数,
Figure PCTCN2018076884-appb-000067
为大于等于0小于等于O 2N 2-1的整数,
Figure PCTCN2018076884-appb-000068
为大于等于0小于等于O 3N 3-1的整数,
Figure PCTCN2018076884-appb-000069
为大于等于0小于等于2O 4-1的整数。
在一种可能的设计中,
Figure PCTCN2018076884-appb-000070
满足如下表示:
Figure PCTCN2018076884-appb-000071
Figure PCTCN2018076884-appb-000072
Figure PCTCN2018076884-appb-000073
Figure PCTCN2018076884-appb-000074
其中,
Figure PCTCN2018076884-appb-000075
Figure PCTCN2018076884-appb-000076
在一种可能的设计中,所述信道状态信息矩阵指示信息包括指示
Figure PCTCN2018076884-appb-000077
以及
Figure PCTCN2018076884-appb-000078
的信息、指示
Figure PCTCN2018076884-appb-000079
以及
Figure PCTCN2018076884-appb-000080
的信息,以及,指示
Figure PCTCN2018076884-appb-000081
Figure PCTCN2018076884-appb-000082
以及
Figure PCTCN2018076884-appb-000083
的信息。
在一种可能的设计中,所述第二通信装置根据所述信道状态信息矩阵指示信息确定信道状态信息矩阵的方法为:
所述第二通信装置根据所述信道状态信息矩阵指示信息获取
Figure PCTCN2018076884-appb-000084
Figure PCTCN2018076884-appb-000085
以及
Figure PCTCN2018076884-appb-000086
所述第二通信装置根据
Figure PCTCN2018076884-appb-000087
O 1、O 2、O 3以及如下公式,计算得到
Figure PCTCN2018076884-appb-000088
Figure PCTCN2018076884-appb-000089
Figure PCTCN2018076884-appb-000090
Figure PCTCN2018076884-appb-000091
所述第二通信装置根据
Figure PCTCN2018076884-appb-000092
N 1、N 2、N 3、O 1、O 2、O 3以及如下公式,计算得到
Figure PCTCN2018076884-appb-000093
以及
Figure PCTCN2018076884-appb-000094
Figure PCTCN2018076884-appb-000095
Figure PCTCN2018076884-appb-000096
Figure PCTCN2018076884-appb-000097
所述第二通信装置根据
Figure PCTCN2018076884-appb-000098
P、L、公式(1)以及公式(2),计算得到信道状态信息矩阵;
所述第二通信装置根据α k,或者β k,1、β k,2,对所述信道状态信息矩阵进行归一化处理。
在一种可能的设计中,所述第二通信装置根据所述信道状态信息矩阵指示信息确定信道状态信息矩阵的方法为:
所述第二通信装置根据所述信道状态信息矩阵指示信息获取
Figure PCTCN2018076884-appb-000099
Figure PCTCN2018076884-appb-000100
以及
Figure PCTCN2018076884-appb-000101
所述第二通信装置根据
Figure PCTCN2018076884-appb-000102
O 1、 O 2、O 3、O 4以及如下公式,计算得到
Figure PCTCN2018076884-appb-000103
Figure PCTCN2018076884-appb-000104
Figure PCTCN2018076884-appb-000105
Figure PCTCN2018076884-appb-000106
Figure PCTCN2018076884-appb-000107
所述第二通信装置根据
Figure PCTCN2018076884-appb-000108
N 1、N 2、N 3、O 1、O 2、O 3、O 4以及如下公式,计算得到
Figure PCTCN2018076884-appb-000109
以及
Figure PCTCN2018076884-appb-000110
Figure PCTCN2018076884-appb-000111
Figure PCTCN2018076884-appb-000112
Figure PCTCN2018076884-appb-000113
Figure PCTCN2018076884-appb-000114
所述第二通信装置根据
Figure PCTCN2018076884-appb-000115
P、L、公式(3)以及公式(4),计算得到信道状态信息矩阵;
所述第二通信装置根据α k,或者β k,1、β k,2,对所述信道状态信息矩阵进行归一化处理。
在一种可能的设计中,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的至少一个由物理层信令或无线资源控制RRC信令指示,或者,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4为预定义值。
在一种可能的设计中,所述信道状态信息矩阵为信道信息矩阵或预编码矩阵。
本申请第三方面提供一种通信装置,该通信装置有实现第一方面中第一通信装置的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该通信装置可以包括处理模块以及发送模块,这些模块可以执行上述第一方面中的相应功能,例如:处理模块,用于确定信道状态信息矩阵指示信息;发送模块,用于发送所述信道状态信息矩阵指示信息。
本申请第四方面提供一种通信装置,该通信装置有实现第二方面中第二通信装置的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或 软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该通信装置可以包括接收模块以及处理模块,这些模块可以执行上述第二方面中的相应功能,例如:接收模块,用于接收信道状态信息矩阵指示信息;处理模块,用于根据所述信道状态信息矩阵指示信息确定信道状态信息矩阵。
本申请第五方面提供一种通信装置,该装置包括:存储器和处理器。存储器用于存储程序指令,处理器用于调用存储器中的程序指令,实现上述第一方面中第一通信装置的功能。
本申请第六方面提供一种通信装置,该装置包括:存储器和处理器。存储器用于存储程序指令,处理器用于调用存储器中的程序指令,实现上述第二方面中第二通信装置的功能。
本申请第七方面提供一种芯片,该芯片用于第一通信装置,该芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,其中,通信接口、处理器和存储器通过电路(某些情况下也可以是总线)互联,处理器调用存储器中存储的指令,以执行上述第一方面所述的方法步骤。
本申请第八方面提供一种芯片,该芯片用于第二通信装置,该芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,其中,通信接口、处理器和存储器通过电路(某些情况下也可以是总线)互联,处理器调用存储器中存储的指令,以执行上述第二方面所述的方法步骤。
本申请第九方面提供一种计算机可读存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被模块执行时使所述模块执行上述第一方面所述的方法。
本申请第十方面提供一种计算机可读存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被模块执行时使所述模块执行上述第二方面所述的方法。
本申请第十一方面提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当终端执行该程序代码时,该终端执行第一方面中第一通信装置执行的相关方法步骤。
本申请第十二方面提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当接入网设备执行该程序代码时,该接入网设备执行第二方面中第二通信装置执行的相关方法步骤。
本申请第十三方面提供一种计算机程序产品,所述计算机程序产品包括一个或多个计算机指令,在计算机上加载和执行所述计算机指令时,执行上述第一方面的方法步骤。
本申请第十四方面提供一种计算机程序产品,所述计算机程序产品包括一个或多个计算机指令,在计算机上加载和执行所述计算机指令时,执行上述第二方面的方法步骤。
附图说明
图1为本申请所适用的系统架构图;
图2为本申请提供的一种双极化阵列天线的结构示意图;
图3为本申请提供的信道状态信息矩阵信息处理方法实施例的交互流程图;
图4为本申请提供的信道状态信息矩阵信息处理方法实施例的流程示意图;
图5为本申请提供的信道状态信息矩阵信息处理方法实施例的流程示意图;
图6为本申请提供的一种通信装置的模块结构图;
图7为本申请提供的一种通信装置的模块结构图;
图8为本申请提供的一种通信装置的实体框图;
图9为本申请提供的一种通信装置的实体框图;
图10为本申请提供的一种芯片的实体框图;
图11为本申请提供的又一种芯片的实体框图。
具体实施方式
本申请提供的信道状态信息矩阵信息处理方法和设备,可以适用于图1所示的系统架构。如图1所示,该系统包括:接入网设备和至少一个终端,接入网设备通过天线向终端发送数据。随着MassiveMIMO技术的引入,天线的结构发展为双极化阵列天线。图2为本申请提供的一种双极化阵列天线的结构示意图,图2中每个交叉线代表天线阵子,交叉线中的每根斜线代表一个极化方向。
为了更好的理解本申请的技术方案,下面对图1中涉及的网元以及本申请中涉及的其他术语进行解释说明:
1)、第一通信装置:该第一通信装置可以是终端或终端中的处理芯片,该终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
2)、第二处理装置:该第二处理装置可以是接入网设备或者接入网设备中的处理芯片,该接入网设备可以是基站,或者接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址 (Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站(gNB)等,在此并不限定。
3)、“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以下首先对本申请涉及的参数、符号标志与概念进行解释说明,这些参数、符号标志与概念在第一通信装置和第二通信装置侧的含义都相同。
(1)P:表示经过IDFT变换后,选取的时间域多径数目
(2)L:表示在一个多径中的用于线性合并的向量的个数
(3)N1、N2:分别表示水平、垂直天线维度大小。当N 1表示水平天线维度大小时,N 2表示垂直天线维度大小;当N 2表示水平天线维度大小时,N 1表示垂直天线维度大小。
(4)N3:表示码本的变换域维度大小
(5)O 1、O 2、O 3、O 4:表示过采样参数
(6)
Figure PCTCN2018076884-appb-000116
表示克罗内克积,kronecker product
(7)(A) T表示对矩阵或向量A进行转置
(8)(A) *表示对矩阵或向量A进行共轭
(9)(A) H表示对矩阵或向量A进行共轭转置
(10)A(1,:,1)中表示取矩阵A中第一维度为1、第二维度所有取值、第三维度为1指示的元素,“:”表示取该维度上的所有取值。
(11)[a:b]:表示[a:b]=[a,a+1,a+2,…,b],其中a,b都为整数,且b>a。
(12)|a|:表示对复数a取模。
(13)angle(a):表示计算复数a的相位。
(14)层:本申请中层与秩的概念对应,秩为1对应1层数据传输,秩为2对应2层数据传输。
可选的,上述(1)-(5)所示参数中的至少一个由物理层信令或者无线资源控制(Radio Resource Control,RRC)信令指示,或者,上述(1)-(5)所示参数也可以为预定义值。其中,该预定义值是指由协议定义的值,或者,由第一通信装置和/或第二通信装置定义的值。
本申请中,通过物理信令、RRC信令或预定义方式来指示反馈信道状态信息所涉及的P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的部分或全部参数,能够灵活的控制实现复杂度与反馈量大小,满足各种场景对于反馈量与信道状态信息精度的需求。
图3为本申请提供的信道状态信息矩阵信息处理方法实施例的交互流程图,如图3所示,该方法包括:
S301、第一通信装置确定信道状态信息矩阵指示信息。
其中,上述第一通信装置具体可以为上述的终端。
其中,上述信道状态信息矩阵指示信息用于指示N 3个信道状态信息矩阵,该N 3个信道状态信息矩阵中每个信道状态信息矩阵为2N 1N 2行l列的矩阵,该N 3个信道状 态信息矩阵中第k个信道状态信息矩阵为W k,其中,k为整数,且1≤k≤N 3,且
l=1,
Figure PCTCN2018076884-appb-000117
Figure PCTCN2018076884-appb-000118
为矩阵W的第k列,W=W 1k为归一化系数,α k为实数;或者,
l=2时,
Figure PCTCN2018076884-appb-000119
Figure PCTCN2018076884-appb-000120
的第1列为矩阵W的第k列,
Figure PCTCN2018076884-appb-000121
的第2列是矩阵W的第N 3+k列,其中,W满足:W=[W 1 W 2],β k,2k,1为归一化系数,β k,2k,1为实数。
W l,l=1,2,满足如下公式(1)或(3):
Figure PCTCN2018076884-appb-000122
其中,
Figure PCTCN2018076884-appb-000123
满足
Figure PCTCN2018076884-appb-000124
或者,
Figure PCTCN2018076884-appb-000125
其中,
Figure PCTCN2018076884-appb-000126
满足
Figure PCTCN2018076884-appb-000127
其中,在公式(1)和公式(3)中,
Figure PCTCN2018076884-appb-000128
为长度为N 1的行向量,
Figure PCTCN2018076884-appb-000129
为长度为N 2的行向量,
Figure PCTCN2018076884-appb-000130
为长度为N 3的行向量,是变换域矩阵的一个向量,
Figure PCTCN2018076884-appb-000131
Figure PCTCN2018076884-appb-000132
为实数,
Figure PCTCN2018076884-appb-000133
Figure PCTCN2018076884-appb-000134
为模为1的复数。在公式(3)中,
Figure PCTCN2018076884-appb-000135
为长度为2的行向量。
另外,上述l表示天线的层数。
具体的,上述公式(1)和公式2对应于天线每个极化方向单独计算加权系数的场景,上述公式(3)和公式(4)对应于天线两个极化方向联合计算加权系数的场景。
在一个示例中,第一通信装置可以基于特定的公式计算出信道状态信息矩阵指示信息,或者,通过遍历信道状态信息矩阵的方式确定出信道状态信息矩阵指示信息。
其中,基于特定的公式计算信道状态信息矩阵指示信息的具体方法将在下述实施例中进行详细描述。
通过遍历信道状态信息矩阵的方式确定信道状态信息矩阵指示信息的方法如下:
遍历所有的码本中的码字,其中,码字按照上述公式(2)或公式(4)生成。进而, 计算与原频域信道信息的相关性,根据相关性最大的准则选取最优的过采样参数。在确定出最优的过采样参数之后,再确定变换域选取的P个变换域索引。进而,遍历所有选取的变换域索引,对每个选取的变换域索引,计算得到L个向量指示索引与向量加权系数,进而得到所有的信道状态信息矩阵指示信息。
相应的,在接收端,即接入网设备侧,采用加权合并的方法得到信道状态信息矩阵,其中,加权合并满足上述公式(1)或上述公式(3)。
S302、第一通信装置发送上述信道状态信息矩阵指示信息。
S303、第二通信装置根据上述信道状态信息矩阵指示信息确定信道状态信息矩阵。
上述信道状态信息矩阵指示信息形成了下行CSI,第一通信装置将其发送给第二通信装置,其中,该第二通信装置具体可以为上述的接入网设备。
当第二通信装置接收到上述信道状态信息矩阵指示信息之后,可以根据该信道状态信息矩阵指示信息确定出信道状态信息矩阵,或者,当信道状态信息矩阵为预编码矩阵时,在一些特定的场景下,第二通信装置还可以不依据上述信道状态信息矩阵指示信息,而根据实际需要直接确定出信道状态信息矩阵。
示例性的,在一些特定的场景下,对于列数为2(即l=2)的信道状态信息矩阵,接入网设备判断出仅需要1列信道状态信息矩阵,则接入网设备会选择其中1列信道状态信息矩阵作为信道状态信息矩阵。
第二通信装置根据上述信道状态信息矩阵指示信息确定信道状态信息矩阵的具体方法将在下述实施例中进行详细描述。
可选的,上述信道状态信息矩阵具体可以为信道信息矩阵或者为预编码矩阵。本申请以下实施例以信道信息矩阵为例来说明本申请的具体执行过程,涉及预编码矩阵的处理也会在以下实施例中进行说明。
本申请中,信道状态信息矩阵可以是预编码矩阵,也可以是信道信息信息,这样的处理能够使得终端在算法设计与实现上更具有灵活性。
本实施例中,第一通信装置确定出信道状态信息矩阵指示信息,该信道状态信息矩阵指示信息指示的信道状态信息矩阵满足公式(1)-(2)或满足公式(3)-(4)。该信道状态信息矩阵指示信息反馈量小,从而使得信道状态信息矩阵指示信息所承载的反馈量相比现有技术中获取相同精度信道状态信息的指示信息反馈量有明显减小,从而可以极大地减少有效资源占用;或者在反馈相同数量信道状态信息的指示信息情况下,能够大大提升接入网设备获取信道状态信息精度,从而提升整个系统的性能。
以下首先说明第一通信装置确定上述信道状态信息矩阵指示信息的具体过程。
为便于理解,以下实施例以系统带宽为10个资源块(Resource Block,RB),其中,资源块表示在时域频域中占据一定时间宽度与频率宽度的时频单元。第一通信装置的天线数为2,天线排列为1行2列,第二通信装置的天线数为4为例进行说明,相应的,则N 1=2,N 2=1,N 3=10。另外,本申请以下实施例假设P=2,L=1,O 1=4,O 2=1,O 3=2。
则上述步骤S301中第一通信装置确定信道状态信息矩阵指示信息的具体过程如下。
图4为本申请提供的信道状态信息矩阵信息处理方法实施例的流程示意图,如图4所示,第一通信装置确定信道状态信息矩阵指示信息的过程为:
S401、进行信道估计,得到频域信道信息矩阵H。
其中,频域信道信息矩阵H为三维矩阵,第一维度表示第一通信装置端天线数,大小为2,第二维度表示第二通信装置端天线数,大小为4,第三维度表示频域RB数目,大小为10。
进而,为了使得第二通信装置侧获得精确的频域信道信息矩阵H,可执行下述步骤S402及其后续的处理,以获得信道状态信息矩阵指示信息,这些指示信息能够指示N 3个信道状态信息矩阵,该N 3个信道状态信息矩阵能够反映频域信道信息矩阵H,并且,该N 3个信道状态信息矩阵满足上述公式(1)或(3)。
S402、根据上述频域信道信息矩阵H计算正交基过采样参数
Figure PCTCN2018076884-appb-000136
以及信道状态信息矩阵指示索引pmi 3,pmi 3用来指示
Figure PCTCN2018076884-appb-000137
其中,
Figure PCTCN2018076884-appb-000138
Figure PCTCN2018076884-appb-000139
满足以下关系,
Figure PCTCN2018076884-appb-000140
其中,
Figure PCTCN2018076884-appb-000141
本申请中,对构造码字进行过采样操作,经过过采样处理后,能够大大增加码字的分辨率,提高码本的冗余度,使得信道在码本上的映射能够更加稀疏,从而使得终端可以选取更少的码字向接入网设备上报CSI,同时,接入网设备能够获得更高的CSI的精度。
需要说明的是,如果本申请中的信道状态信息矩阵为预编码矩阵,则在执行完上述步骤S401之后,可以对上述频域信道信息矩阵H进行奇异值(Singular Value Decomposition,SVD)分解,得到对应的预编码矩阵,进而,在本步骤中,根据得到的预编码矩阵计算正交基过采样参数
Figure PCTCN2018076884-appb-000142
以及信道状态信息矩阵指示索引pmi 3,后续具体的处理方式都与信道信息矩阵对应的处理方式相同,以下不再赘述。
作为一种可选的实施方式,第一通信装置在根据上述频域信道信息矩阵H计算正交基过采样参数
Figure PCTCN2018076884-appb-000143
以及信道状态信息矩阵指示索引pmi 3时,可以首先执行变换域变换,得到上述频域信道信息矩阵H对应的变换域信道信息矩阵。进而,当变换域变换支持过采样时,再根据变换域信道信息矩阵计算正交基过采样参数
Figure PCTCN2018076884-appb-000144
以及信道状态信息矩阵指示索引pmi 3,其中,每个pmi 3可以表示所选择的变换域维度索引。而当变换域变换不支持过采样时,则O 3为1,即不进行过采样,不需要反馈正交基过采样参数
Figure PCTCN2018076884-appb-000145
只需根据变换域信道信息矩阵计算信道状态信息矩阵指示索引pmi 3
示例性的,第一通信装置执行变换域变换时,可以是执行离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)变换,或者也可以是执行离散傅里叶变换(Discrete Fourier Transform,DFT)变换、离散余弦变换(Discrete Cosine Transform,DCT)变换等。
其中,当码本中
Figure PCTCN2018076884-appb-000146
对应的变换域为DFT变换时,对应的DFT矩阵Γ DFT满足,DFT 变换对应的DFT矩阵Γ DFT的第
Figure PCTCN2018076884-appb-000147
列为
Figure PCTCN2018076884-appb-000148
Figure PCTCN2018076884-appb-000149
当码本中
Figure PCTCN2018076884-appb-000150
对应的变换域为DCT变换时,对应的DCT矩阵第
Figure PCTCN2018076884-appb-000151
列为
Figure PCTCN2018076884-appb-000152
Figure PCTCN2018076884-appb-000153
本步骤中以IDFT变换为例说明第一通信装置执行变换域变换以及计算正交基过采样参数
Figure PCTCN2018076884-appb-000154
以及信道状态信息矩阵指示索引pmi 3的过程。
具体过程如下:
步骤1、执行IDFT变换。
当码本为DFT变换域码本时,相应的在UE端对频域信道信息矩阵H的每一个发送接收天线链路进行过采样IDFT变换,其中IDFT变换点数为O 3*N 3。根据前述的参数示例,此处O 3=2,N 3=10。则对于第二通信装置的天线i tx与第一通信装置的天线i rx对应的信道链路H(i rx,i tx,1:10)进行O 3*N 3=2*10=20点的IDFT变换。其中,IDFT变换所对应的IDFT矩阵Γ IDFT中的第
Figure PCTCN2018076884-appb-000155
行上述公式(6)表示。当变换域为IDFT变换时,对应的IDFT矩阵中的第
Figure PCTCN2018076884-appb-000156
行满足如下公式(6):
Figure PCTCN2018076884-appb-000157
其中,
Figure PCTCN2018076884-appb-000158
Γ IDFT大小为O 3N 3行N 3列。
则有Γ DFT=(Γ IDFT) H
Figure PCTCN2018076884-appb-000159
Figure PCTCN2018076884-appb-000160
表示大小为N 3的单位阵。
经过IDFT变换之后,得到Hf(i rx,i tx,1:20),其中i tx为整数,1≤i tx≤4,i rx为整数,1≤i rx≤2。
需要说明的是,基于信道信息在一些变换域中具有稀疏特性的考虑,可以大大压缩终端向接入网设备上报的CSI的反馈量,因此在本申请中,码本构造是基于变换域的,终端仅上报变换域中信息量较大的分量对应的码字,因此可以在保证上报的CSI精度的情况下,大大压缩反馈量。
步骤2、遍历所有的i rx与i tx,1≤i rx≤N 2=2,1≤i tx≤N 1=4得到Hf、Hf1以及Hf2。
其中,Hf矩阵第一维度大小为2,第二维度大小为4,第三维度大小为20。
令Hf1=Hf(:,:,1:2:20),Hf2=Hf(:,:,2:2:20),即Hf1为取Hf矩阵第三维度的奇数序号对应的矩阵,大小与H大小一致,Hf2为取Hf矩阵第三维度的偶数序号对应的矩阵,大小与H大小一致。
步骤3、对Hf1和Hf2分别计算经过IDFT变换后的每个时域点idxF对应的所有的收发天线链路功率和,其中,1≤idxF≤10。
具体的,使用如下公式计算Hf1和Hf2对应的天线功率和。
Figure PCTCN2018076884-appb-000161
Figure PCTCN2018076884-appb-000162
其中,pathPow1与pathPow2均为1行10列的向量。
步骤4、根据pathPow1与pathPow2计算pathPowP1与pathPowP2。
其中,pathPowP1是pathPow1中值最大的P个点的功率和,pathPowP2是pathPow2中值最大的P个点的功率和,根据前述的参数示例,此处P=2。
进而,记录pathPowP1和pathPowP2对应的最大的P个时域点(此处为2个时域点)的索引,分别为
Figure PCTCN2018076884-appb-000163
步骤5、根据pathPowP1、pathPowP2以及上述时域点的索引,确定正交基过采样参数
Figure PCTCN2018076884-appb-000164
以及信道状态信息矩阵指示索引pmi 3,pmi 3用来指示
Figure PCTCN2018076884-appb-000165
信息。
具体的,若pathPowP1≥pathPowP2,则:
Q 3=q 3=0,
Figure PCTCN2018076884-appb-000166
Hf0=Hf1
若pathPowP1<pathPowP2,则:
Q 3=q 3=1,
Figure PCTCN2018076884-appb-000167
Hf0=Hf2
通过上述过程,即可以得到
Figure PCTCN2018076884-appb-000168
Figure PCTCN2018076884-appb-000169
0≤i 1≤P-1=1,0≤i 2≤L-1=0。
进一步地,在两个极化联合计算加权系数的场景下,还需要计算双极化相位过采样参数
Figure PCTCN2018076884-appb-000170
与双极化相位指示信息pmi 4
其中,
Figure PCTCN2018076884-appb-000171
为如下公式(7)中的
Figure PCTCN2018076884-appb-000172
pmi 4用来指示如下公式(7)中的
Figure PCTCN2018076884-appb-000173
Figure PCTCN2018076884-appb-000174
其中,
Figure PCTCN2018076884-appb-000175
示例性地,可以通过如下方式计算
Figure PCTCN2018076884-appb-000176
和pmi 4
首先,根据频域指示信息H,计算
Figure PCTCN2018076884-appb-000177
并计算
Figure PCTCN2018076884-appb-000178
其中,
Figure PCTCN2018076884-appb-000179
为整数,且
Figure PCTCN2018076884-appb-000180
在本实施例中,O 4为2,因此
Figure PCTCN2018076884-appb-000181
其中
Figure PCTCN2018076884-appb-000182
表示对a向下取整。q 4=m 4-O 4n 4
即可以得到
Figure PCTCN2018076884-appb-000183
S403、计算过采样参数
Figure PCTCN2018076884-appb-000184
以及信道状态信息矩阵指示索引pmi 1、pmi 2,pmi 1用来指示
Figure PCTCN2018076884-appb-000185
pmi 2用来指示
Figure PCTCN2018076884-appb-000186
其中,
Figure PCTCN2018076884-appb-000187
满足以下关系。
Figure PCTCN2018076884-appb-000188
其中,
Figure PCTCN2018076884-appb-000189
具体的,本步骤通过遍历
Figure PCTCN2018076884-appb-000190
计算q 1,q 2和pmi 1,pmi 2。该步骤S403可以看作是对IDFT后的时域中的一个多径的信道信息进行向量分解得到向量指示信息的过程。
具体过程如下:
步骤1、对于任意一组
Figure PCTCN2018076884-appb-000191
确定其对应的正交基矩阵。
具体的,令
Figure PCTCN2018076884-appb-000192
其中正交基矩阵
Figure PCTCN2018076884-appb-000193
的第
Figure PCTCN2018076884-appb-000194
列可以表示为:
Figure PCTCN2018076884-appb-000195
Figure PCTCN2018076884-appb-000196
Figure PCTCN2018076884-appb-000197
其中,
Figure PCTCN2018076884-appb-000198
Figure PCTCN2018076884-appb-000199
Figure PCTCN2018076884-appb-000200
另外,对于公式(10),如果N 2大于或等于1时,则公式(10)可以表示为:
Figure PCTCN2018076884-appb-000201
进而,与
Figure PCTCN2018076884-appb-000202
对应的正交基矩阵
Figure PCTCN2018076884-appb-000203
Figure PCTCN2018076884-appb-000204
Figure PCTCN2018076884-appb-000205
大小为2*2。
另一种情况下,对于两个极化联合计算加权系数的场景,则不使用上述公式(11),而使用下述的公式(12)。
Figure PCTCN2018076884-appb-000206
其中,
Figure PCTCN2018076884-appb-000207
m 4由上述的公式(7)计算得到。
步骤2、对于上述步骤确定出的
Figure PCTCN2018076884-appb-000208
遍历pmi 3中的元素,计算得到每个pmi 3元素对应的功率最大L个向量的功率和,并根据该功率和计算得到信道状态信息矩阵指示索引
Figure PCTCN2018076884-appb-000209
以及加权系数。
对任意选定的
Figure PCTCN2018076884-appb-000210
idxP∈{0,1},有
Figure PCTCN2018076884-appb-000211
大小为1行4列,
Figure PCTCN2018076884-appb-000212
大小为1行4列。
具体的,首先对于选定的
Figure PCTCN2018076884-appb-000213
Figure PCTCN2018076884-appb-000214
使用如下公式(13)计算加权系数:
Figure PCTCN2018076884-appb-000215
其中,上述公式中
Figure PCTCN2018076884-appb-000216
下标 p0表示第一个极化,
Figure PCTCN2018076884-appb-000217
下标 p1表示第二个极化。上标 (1)表示第一UE天线,上标 (2)表示第二UE天线。
Figure PCTCN2018076884-appb-000218
分别表示相应UE天线、相应极化方向上的加权系数,大小均为1行2列向量。
其次,使用如下公式(14)计算向量功率和:
Figure PCTCN2018076884-appb-000219
其中,powCof大小为1*2。
进而,选取powCof最大的L个值,并对最大的L个值求和,记为
Figure PCTCN2018076884-appb-000220
根据上述的参数示例,L=1,因此,选取的最大的powCof值,其对应的索引为idxL,且1≤idxL≤2,有
Figure PCTCN2018076884-appb-000221
Figure PCTCN2018076884-appb-000222
保存对应的信道状态信息矩阵指示索引为
Figure PCTCN2018076884-appb-000223
对应的加权系数,分别为:
Figure PCTCN2018076884-appb-000224
其中|a|表示复数a的模值,angle(a)表示复数a的相位。
步骤3、遍历idxP∈{0,1},分别使用上述步骤2的方法计算得到以下信息:
Figure PCTCN2018076884-appb-000225
Figure PCTCN2018076884-appb-000226
Figure PCTCN2018076884-appb-000227
步骤4、使用如下公式(16)计算所有多径的最大L个向量的功率和:
Figure PCTCN2018076884-appb-000228
步骤5、遍历所有的
Figure PCTCN2018076884-appb-000229
Figure PCTCN2018076884-appb-000230
Figure PCTCN2018076884-appb-000231
重复步骤1到步骤4。
步骤6、选取
Figure PCTCN2018076884-appb-000232
最大值对应的
Figure PCTCN2018076884-appb-000233
作为上述过采样参数
Figure PCTCN2018076884-appb-000234
Figure PCTCN2018076884-appb-000235
通过上述过程,即可以得到
Figure PCTCN2018076884-appb-000236
步骤7、根据选取的{q 1,q 2}确定信道状态信息矩阵指示索引pmi 1,pmi 2
Figure PCTCN2018076884-appb-000237
Figure PCTCN2018076884-appb-000238
通过上述过程,即可以得到
Figure PCTCN2018076884-appb-000239
进而,根据上述加权系数确定信道状态信息矩阵加权信息。
具体的,加权信息Ω={ω 1122},其中,ω 1为UE天线1的幅度信息,θ 1为UE天线1的相位信息,ω 2为UE天线2的幅度信息,θ 2为UE天线2的相位信息。
其中,ω 1包含上述公式(1)中的
Figure PCTCN2018076884-appb-000240
ω 2包含如下公式(1)中的
Figure PCTCN2018076884-appb-000241
Figure PCTCN2018076884-appb-000242
θ 1包含上述公式(1)中的
Figure PCTCN2018076884-appb-000243
θ 2包含上述公式(1)中的
Figure PCTCN2018076884-appb-000244
0≤i 1≤P-1=1,0≤i 2≤L-1=0。
其中,
Figure PCTCN2018076884-appb-000245
Figure PCTCN2018076884-appb-000246
为实数,
Figure PCTCN2018076884-appb-000247
Figure PCTCN2018076884-appb-000248
为模为1的复数。
ω 1和θ 1具体为:
Figure PCTCN2018076884-appb-000249
Figure PCTCN2018076884-appb-000250
即从上面可以获得
Figure PCTCN2018076884-appb-000251
ω 2和θ 2具体为:
Figure PCTCN2018076884-appb-000252
Figure PCTCN2018076884-appb-000253
通过上述过程,即可以面可以获得
Figure PCTCN2018076884-appb-000254
Figure PCTCN2018076884-appb-000255
另一种情况下,在两个极化联合计算加权系数的场景下,两个极化的加权系数联合计算,因此不再使用上述公式(13),而使用下述公式(18)。
Figure PCTCN2018076884-appb-000256
相应的,不再使用公式(13),而使用下述公式(19)。
powCof=|cof (1)| 2++|cof (2)| 2              (19)
相应的,不再使用公式(15),而使用下述公式(20)。
Figure PCTCN2018076884-appb-000257
从而得到:
Figure PCTCN2018076884-appb-000258
Figure PCTCN2018076884-appb-000259
Figure PCTCN2018076884-appb-000260
Figure PCTCN2018076884-appb-000261
其中,ω 1包含上述公式(3)中的
Figure PCTCN2018076884-appb-000262
ω 2为如下公式(3)中的
Figure PCTCN2018076884-appb-000263
θ 1为上述公式(3)中的
Figure PCTCN2018076884-appb-000264
θ 2为上述公式(3)中的
Figure PCTCN2018076884-appb-000265
本步骤其他保持不变,则本步最终可以得到以下内容:
Figure PCTCN2018076884-appb-000266
Figure PCTCN2018076884-appb-000267
Figure PCTCN2018076884-appb-000268
进而,第一通信装置按照上述步骤S302,向第二通信装置发送信道状态信息矩阵指示信息。
在一种可选的实施方式中,第一通信装置向第二通信装置发送的信道状态信息矩阵指示信息中包括由上述步骤所确定的过采样参数
Figure PCTCN2018076884-appb-000269
信道状态信息矩阵指示索引pmi 1,pmi 2,pmi 3,以及信道状态信息矩阵加权信息Ω={ω 1122}。在两个极化联合计算加权系数的场景下,还包括双极化相位过采样参数q 4与双极化相位指示信息pmi 4
具体的,信道状态信息矩阵指示信息中包含{Q,pmi,Ω},其中,Q={q 1,q 2,q 3,q 4},pmi={pmi 1,pmi 2,pmi 3},或者,Q={q 1,q 2,q 3},pmi={pmi 1,pmi 2,pmi 3,pmi 4}。
即,当天线每个极化单独计算加权系数时,上述信道状态信息矩阵指示信息中包括了指示
Figure PCTCN2018076884-appb-000270
的信息、指示
Figure PCTCN2018076884-appb-000271
的信息,以及指示
Figure PCTCN2018076884-appb-000272
Figure PCTCN2018076884-appb-000273
以及
Figure PCTCN2018076884-appb-000274
的信息,其中,
Figure PCTCN2018076884-appb-000275
Figure PCTCN2018076884-appb-000276
表示加权系数幅度,
Figure PCTCN2018076884-appb-000277
以及
Figure PCTCN2018076884-appb-000278
表示加权系数相位,l值为1或2。
当天线每个极化联合计算加权系数时,上述信道状态信息矩阵指示信息中包括了指示
Figure PCTCN2018076884-appb-000279
的信息、指示
Figure PCTCN2018076884-appb-000280
的信息,以及指示
Figure PCTCN2018076884-appb-000281
以的信息,其中,
Figure PCTCN2018076884-appb-000282
表示加权系数幅度,
Figure PCTCN2018076884-appb-000283
表示加权系数相位,l值为1或2。
并且有:
Figure PCTCN2018076884-appb-000284
而在另一种可选的实施方式中,第一通信装置可以仅向第二通信装置发送上述信息中的部分信息。示例性的,若O 1=1,则第一通信装置无需向第二通信装置发送上述q 1,若O 2=1,则第一通信装置无需向第二通信装置发送上述q 2,若O 3=1,则第一通信装置无需向第二通信装置发送上述q 3,在两个极化联合计算加权系数的场景下,若O 4=1,则第一通信装置无需向第二通信装置发送上述q 4。另外,若N 1=1,则第一通信装置无需向第二通信装置发送上述n 1,若N 2=1,则第一通信装置无需向第二通信装置发送上述n 2,若N 3=1,则第一通信装置无需向第二通信装置发送上述n 3
以下说明第二通信装置根据上述信道状态信息矩阵指示信息确定信道状态信息矩阵的具体方法。
可选的,第二通信装置在接收到信道状态信息矩阵指示信息之后,可以基于上述实施例中的公式计算得到信道状态信息矩阵,或者,第二通信装置也可以基于离散傅里叶变换(Discrete Fourier Transform,DFT)和线性合并的方法来得到信道状态信息矩阵。
以下首先说明第二通信装置基于上述实施例中的公式计算得到信道状态信息矩阵的过程。
需要说明的是,以下实施例以信道状态信息矩阵指示信息中包含了上述全部参数的情况为例来进行说明,对于信道状态信息矩阵指示信息中仅包含了部分参数的情况,第二通信装置可以按照上述的对应关系得到其余的参数值。
图5为本申请提供的信道状态信息矩阵信息处理方法实施例的流程示意图,如图5所示,第二通信装置计算信道状态信息矩阵的过程如下:
S501、第二通信装置根据信道状态信息矩阵指示信息,获取过采样参数
Figure PCTCN2018076884-appb-000285
Figure PCTCN2018076884-appb-000286
信道状态信息矩阵指示索引pmi 1,pmi 2,pmi 3以及信道状态信息矩阵加权信息Ω={ω 1122}。
具体的,第二通信装置根据信道状态信息矩阵指示信息,可以获取到
Figure PCTCN2018076884-appb-000287
Figure PCTCN2018076884-appb-000288
以及
Figure PCTCN2018076884-appb-000289
另一种情况下,在两个极化联合计算加权系数的场景下,第二通信装置还会根据信道状态信息矩阵指示信息获取双极化相位过采样参数q 4与双极化相位指示信息pmi 4
S502、第二通信装置根据获取的参数计算得到第一数据。
其中,上述第一数据具体为
Figure PCTCN2018076884-appb-000290
则具体的,第二通信装置根据
Figure PCTCN2018076884-appb-000291
O 1、O 2、O 3以及公式(5)和公式(8),计算得到
Figure PCTCN2018076884-appb-000292
其中,
Figure PCTCN2018076884-appb-000293
分别满足上述公式(5)和公式(8)。
另一种情况下,在两个极化联合计算加权系数的场景下,第二通信装置还会同时根据q 4和pmi 4,计算得到
Figure PCTCN2018076884-appb-000294
其中,
Figure PCTCN2018076884-appb-000295
Figure PCTCN2018076884-appb-000296
S503、第二通信装置根据上述第一数据计算得到第二数据。
其中,上述第二数据具体为
Figure PCTCN2018076884-appb-000297
以及
Figure PCTCN2018076884-appb-000298
则具体的,第二通信装置根据
Figure PCTCN2018076884-appb-000299
N 1、N 2、N 3、O 1、O 2、O 3以及公式(9)和(10),以及,公式(6-0)或公式(6-1),计算得到
Figure PCTCN2018076884-appb-000300
以及
Figure PCTCN2018076884-appb-000301
其中,
Figure PCTCN2018076884-appb-000302
满足上述公式(9),
Figure PCTCN2018076884-appb-000303
满足上述公式(10),
Figure PCTCN2018076884-appb-000304
满足上述公式(6-0)或公式(6-1),在这些公式中,N 1、N 2、O 1、O 2、O 3、O 4均为大于0的整数,
Figure PCTCN2018076884-appb-000305
为大于等于0小于等于O 1N 1-1的整数,
Figure PCTCN2018076884-appb-000306
为大于等于0小于等于O 2N 2-1的整数,
Figure PCTCN2018076884-appb-000307
为大于等于0小于等于O 3N 3-1的整数,
Figure PCTCN2018076884-appb-000308
为大于等于0小于等于2O 4-1的整数。
另一种情况下,在两个极化联合计算加权系数的场景下,第二通信装置还会同时 根据
Figure PCTCN2018076884-appb-000309
计算得到
Figure PCTCN2018076884-appb-000310
S504、第二通信装置根据上述第二数据,计算得到信道状态信息矩阵。
具体的,第二通信装置根据
Figure PCTCN2018076884-appb-000311
P、L、公式(1)以及公式(2),计算得到信道状态信息矩阵。
具体的,上述公式(1)为
Figure PCTCN2018076884-appb-000312
即信道状态信息矩阵满足该公式(1)。
上述公式(2)为
Figure PCTCN2018076884-appb-000313
即通过对由上述公式(9)和(10)计算得出的
Figure PCTCN2018076884-appb-000314
以及由公式(6-0)或公式(6-1)计算得出的
Figure PCTCN2018076884-appb-000315
进行克罗内克积相乘,可以计算得到公式(1)中的
Figure PCTCN2018076884-appb-000316
另一种情况下,在两个极化联合计算加权系数的场景下,第二通信装置还会同时根据
Figure PCTCN2018076884-appb-000317
并根据公式(3)和(4)进行计算。
具体的,上述公式(3)为
Figure PCTCN2018076884-appb-000318
即信道状态信息矩阵满足该公式(3)。
上述公式(4)为
Figure PCTCN2018076884-appb-000319
即通过对由上述公式(9)和(10)计算得出的
Figure PCTCN2018076884-appb-000320
以及由公式(6-0)或公式(6-1)计算得出的
Figure PCTCN2018076884-appb-000321
以及根据
Figure PCTCN2018076884-appb-000322
进行克罗内克积相乘,可以计算得到公式(4)中的
Figure PCTCN2018076884-appb-000323
其中,上述的
Figure PCTCN2018076884-appb-000324
表示变换域变换对应矩阵中的向量,其中,该变换域变换可以是DFT变换,也可以是DCT变换等。上述公式(6-0)对应于DFT变换,上述公式(6-1)对应于DCT变换。
即,变换域为DFT变换时的DFT矩阵Γ DFT满足,DFT变换对应的DFT矩阵Γ DFT 的第
Figure PCTCN2018076884-appb-000325
列为
Figure PCTCN2018076884-appb-000326
变换域为DCT变换时的DCT矩阵第
Figure PCTCN2018076884-appb-000327
列为
Figure PCTCN2018076884-appb-000328
S505、第二通信装置根据归一化系数对信道状态信息矩阵进行归一化处理。
具体的,α k为层数为1时的归一化系数,β k,1、β k,2为层数为2时的归一化系数。
对于N3个信道状态信息矩阵中的第k个信道状态信息矩阵W k,当层数l=1时,
Figure PCTCN2018076884-appb-000329
Figure PCTCN2018076884-appb-000330
为矩阵W的第k列,W=W 1。当层数l=2时,
Figure PCTCN2018076884-appb-000331
Figure PCTCN2018076884-appb-000332
的第1列为矩阵W的第k列,
Figure PCTCN2018076884-appb-000333
的第2列是矩阵W的第N 3+k列。
另一实施例中,上述各实施例中所述的N 3个信道状态信息矩阵与N 3个频域资源单元一一对应。具体的,该N 3个信道状态信息矩阵中第k个信道状态信息矩阵W k与该N 3个频域资源单元的第k个频域资源单元对应,其中,k为整数,k∈{1,2,...,N 3}。
可选的,该N 3个频域资源单元中第k 2个频域资源单元所占频率中的最低频率大于等于该N 3个频域资源单元中第k 1个频域资源单元所占频率中的最高频率,其中,k 1和k 2为k的两个具体取值,并且k 2大于k 1
另外需要说明的是,如果上述信道状态信息矩阵为预编码矩阵,则第二通信装置根据前述步骤处理得到信道信息矩阵之后,可以再根据该信道信息矩阵得到预编码矩阵。
图6为本申请提供的一种通信装置的模块结构图,该通信装置为上述的第一通信装置,如图6所示,该通信装置包括:
处理模块601,用于确定信道状态信息矩阵指示信息。
其中,上述信道状态信息矩阵指示信息用于指示N 3个信道状态信息矩阵,该N 3个信道状态信息矩阵中每个信道状态信息矩阵为2N 1N 2行l列的矩阵,该N 3个信道状态信息矩阵中第k个信道状态信息矩阵为W k,N 3为大于0的整数;k为整数,且1≤k≤N 3,且
l=1,
Figure PCTCN2018076884-appb-000334
Figure PCTCN2018076884-appb-000335
为矩阵W的第k列,W=W 1k为实数;或者,
l=2时,
Figure PCTCN2018076884-appb-000336
Figure PCTCN2018076884-appb-000337
的第1列为矩阵W的第k列,
Figure PCTCN2018076884-appb-000338
的第2列是矩阵W的第N 3+k列,其中,W满足:W=[W 1 W 2],β k,2k,1为实数;
W l,l=1,2,满足如下公式(1)或(3):
Figure PCTCN2018076884-appb-000339
其中,
Figure PCTCN2018076884-appb-000340
满足
Figure PCTCN2018076884-appb-000341
或者,
Figure PCTCN2018076884-appb-000342
其中,
Figure PCTCN2018076884-appb-000343
满足
Figure PCTCN2018076884-appb-000344
其中,在公式(1)和公式(3)中,P为大于0的整数,L为大于0的整数,
Figure PCTCN2018076884-appb-000345
为长度为N 1的行向量,
Figure PCTCN2018076884-appb-000346
为长度为N 2的行向量,
Figure PCTCN2018076884-appb-000347
为长度为N 3的行向量,
Figure PCTCN2018076884-appb-000348
Figure PCTCN2018076884-appb-000349
为实数,
Figure PCTCN2018076884-appb-000350
Figure PCTCN2018076884-appb-000351
为模为1的复数;在公式(3)中,
Figure PCTCN2018076884-appb-000352
为长度为2的行向量;
发送模块602,用于发送上述信道状态信息矩阵指示信息。
在一种可选的实施方式中,上述N 3个信道状态信息矩阵与N 3个频域资源单元一一对应,上述N 3个信道状态信息矩阵中第k个信道状态信息矩阵W k与上述N 3个频域资源单元的第k个频域资源单元对应,k为整数,k∈{1,2,...,N 3}。
上述N 3个频域资源单元中第k 2个频域资源单元所占频率中的最低频率大于等于上述N 3个频域资源单元中第k 1个频域资源单元所占频率中的最高频率,其中,k 2大于k 1
在一种可选的实施方式中,
Figure PCTCN2018076884-appb-000353
满足如下表示:
Figure PCTCN2018076884-appb-000354
Figure PCTCN2018076884-appb-000355
Figure PCTCN2018076884-appb-000356
Figure PCTCN2018076884-appb-000357
其中,N 1、N 2、O 1、O 2、O 3、O 4均为大于0的整数。
Figure PCTCN2018076884-appb-000358
为大于等于0小于等于O 1N 1-1的整数,
Figure PCTCN2018076884-appb-000359
为大于等于0小于等于O 2N 2-1的整数,
Figure PCTCN2018076884-appb-000360
为大于等于0小于等于O 3N 3-1的整数,
Figure PCTCN2018076884-appb-000361
为大于等于0小于等于2O 4-1的整数。
在一种可选的实施方式中,
Figure PCTCN2018076884-appb-000362
满足如下表示:
Figure PCTCN2018076884-appb-000363
Figure PCTCN2018076884-appb-000364
Figure PCTCN2018076884-appb-000365
Figure PCTCN2018076884-appb-000366
其中,
Figure PCTCN2018076884-appb-000367
Figure PCTCN2018076884-appb-000368
在一种可选的实施方式中,上述信道状态信息矩阵指示信息包括指示
Figure PCTCN2018076884-appb-000369
Figure PCTCN2018076884-appb-000370
以及
Figure PCTCN2018076884-appb-000371
的信息、指示
Figure PCTCN2018076884-appb-000372
以及
Figure PCTCN2018076884-appb-000373
的信息,以及指示
Figure PCTCN2018076884-appb-000374
Figure PCTCN2018076884-appb-000375
以及
Figure PCTCN2018076884-appb-000376
的信息。
在一种可选的实施方式中,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的至少一个由物理层信令或无线资源控制RRC信令指示,或者,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4为预定义值。
在一种可选的实施方式中,上述信道状态信息矩阵为信道信息矩阵或预编码矩阵。
图7为本申请提供的一种通信装置的模块结构图,该通信装置为上述的第二通信装置,如图7所示,该通信装置包括:
接收模块701,用于接收信道状态信息矩阵指示信息。
其中,上述信道状态信息矩阵指示信息用于指示N 3个信道状态信息矩阵,该N 3个信道状态信息矩阵中每个信道状态信息矩阵为2N 1N 2行l列的矩阵,该N 3个信道状态信息矩阵中第k个信道状态信息矩阵为W k,N 3为大于0的整数,k为整数,且1≤k≤N 3,且
l=1,
Figure PCTCN2018076884-appb-000377
Figure PCTCN2018076884-appb-000378
为矩阵W的第k列,W=W 1k为实数;
l=2,
Figure PCTCN2018076884-appb-000379
Figure PCTCN2018076884-appb-000380
的第1列为矩阵W的第k列,
Figure PCTCN2018076884-appb-000381
的第2列是矩阵W 的第N 3+k列,其中,W满足:W=[W 1 W 2],β k,1、β k,2为实数;
W l,l=1,2,满足如下公式(1)或(3):
Figure PCTCN2018076884-appb-000382
其中,
Figure PCTCN2018076884-appb-000383
满足
Figure PCTCN2018076884-appb-000384
或者,
Figure PCTCN2018076884-appb-000385
其中,
Figure PCTCN2018076884-appb-000386
满足
Figure PCTCN2018076884-appb-000387
其中,在公式(1)和公式(3)中,P为大于0的整数,L为大于0的整数,
Figure PCTCN2018076884-appb-000388
为长度为N 1的行向量,
Figure PCTCN2018076884-appb-000389
为长度为N 2的行向量,
Figure PCTCN2018076884-appb-000390
为长度为N 3的行向量,
Figure PCTCN2018076884-appb-000391
Figure PCTCN2018076884-appb-000392
为实数,
Figure PCTCN2018076884-appb-000393
Figure PCTCN2018076884-appb-000394
为模为1的复数;在公式(3)中,
Figure PCTCN2018076884-appb-000395
为长度为2的行向量。
处理模块702,用于根据上述信道状态信息矩阵指示信息确定信道状态信息矩阵。
在一种可选的实施方式中,上述N 3个信道状态信息矩阵与N 3个频域资源单元一一对应,上述N 3个信道状态信息矩阵中第k个信道状态信息矩阵W k与上述N 3个频域资源单元的第k个频域资源单元对应,k为整数,k∈{1,2,...,N 3}。
上述N 3个频域资源单元中第k 2个频域资源单元所占频率中的最低频率大于等于上述N 3个频域资源单元中第k 1个频域资源单元所占频率中的最高频率,其中,k 2大于k 1
在一种可选的实施方式中,
Figure PCTCN2018076884-appb-000396
满足如下表示:
Figure PCTCN2018076884-appb-000397
Figure PCTCN2018076884-appb-000398
Figure PCTCN2018076884-appb-000399
Figure PCTCN2018076884-appb-000400
其中,N 1、N 2、O 1、O 2、O 3、O 4均为大于0的整数。
Figure PCTCN2018076884-appb-000401
为大于等于0小于等于O 1N 1-1的整数,
Figure PCTCN2018076884-appb-000402
为大于等于0小于等于O 2N 2-1的整数,
Figure PCTCN2018076884-appb-000403
为大于等于0小于等于O 3N 3-1的整数,
Figure PCTCN2018076884-appb-000404
为大于等于0小于等于2O 4-1的整数。
在一种可选的实施方式中,
Figure PCTCN2018076884-appb-000405
满足如下表示:
Figure PCTCN2018076884-appb-000406
Figure PCTCN2018076884-appb-000407
Figure PCTCN2018076884-appb-000408
Figure PCTCN2018076884-appb-000409
其中,
Figure PCTCN2018076884-appb-000410
Figure PCTCN2018076884-appb-000411
在一种可选的实施方式中,上述信道状态信息矩阵指示信息包括指示
Figure PCTCN2018076884-appb-000412
Figure PCTCN2018076884-appb-000413
以及
Figure PCTCN2018076884-appb-000414
的信息、指示
Figure PCTCN2018076884-appb-000415
以及
Figure PCTCN2018076884-appb-000416
的信息,以及指示
Figure PCTCN2018076884-appb-000417
Figure PCTCN2018076884-appb-000418
以及
Figure PCTCN2018076884-appb-000419
的信息。
在一种可选的实施方式中,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的至少一个由物理层信令或无线资源控制RRC信令指示,或者,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4为预定义值。
在一种可选的实施方式中,上述信道状态信息矩阵为信道信息矩阵或预编码矩阵。
图8为本申请提供的一种通信装置的实体框图,如图8所示,该通信装置包括:
存储器801和处理器802。
存储器801用于存储程序指令,处理器802用于调用存储器801中的程序指令,实现上述方法实施例中第一通信装置的功能。
图9为本申请提供的一种通信装置的实体框图,如图9所示,该通信装置包括:
存储器901和处理器902。
存储器901用于存储程序指令,处理器902用于调用存储器901中的程序指令,实现上述方法实施例中第二通信装置的功能。
图10为本申请提供的一种芯片的实体框图,该芯片可以用于第一通信装置,如图10所示,该芯片1000包括:至少一个通信接口1001,至少一个处理器1002,至少一个存储 器1003,其中,通信接口、处理器和存储器通过电路(某些情况下也可以是总线)1004互联,处理器1002调用存储器1003中存储的指令,以执行上述方法实施例中第一通信装置对应的方法步骤。
图11为本申请提供的又一种芯片的实体框图,该芯片可以用于第二通信装置,如图11所示,该芯片包括:至少一个通信接口1101,至少一个处理器1102,至少一个存储器1103,其中,通信接口、处理器和存储器通过电路(某些情况下也可以是总线)1104互联,处理器1102调用存储器1103中存储的指令,以执行上述方法实施例中第二通信装置对应的方法步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求书意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求书及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (34)

  1. 一种信道状态信息矩阵信息处理方法,其特征在于,包括:
    第一通信装置确定信道状态信息矩阵指示信息,其中,所述信道状态信息矩阵指示信息用于指示N 3个信道状态信息矩阵,所述N 3个信道状态信息矩阵中每个信道状态信息矩阵为2N 1N 2行l列的矩阵,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵为W k,N 3为大于0的整数;k为整数,且1≤k≤N 3,且
    l=1,
    Figure PCTCN2018076884-appb-100001
    Figure PCTCN2018076884-appb-100002
    为矩阵W的第k列,W=W 1k为实数;或者,
    l=2时,
    Figure PCTCN2018076884-appb-100003
    Figure PCTCN2018076884-appb-100004
    的第1列为矩阵W的第k列,
    Figure PCTCN2018076884-appb-100005
    的第2列是矩阵W的第N 3+k列,其中,W满足:W=[W 1 W 2],β k,2k,1为实数;
    W l,l=1,2,满足如下公式(1)或(3):
    Figure PCTCN2018076884-appb-100006
    其中,
    Figure PCTCN2018076884-appb-100007
    满足
    Figure PCTCN2018076884-appb-100008
    或者,
    Figure PCTCN2018076884-appb-100009
    其中,
    Figure PCTCN2018076884-appb-100010
    满足
    Figure PCTCN2018076884-appb-100011
    其中,在公式(1)和公式(3)中,P为大于0的整数,L为大于0的整数,
    Figure PCTCN2018076884-appb-100012
    为长度为N 1的行向量,
    Figure PCTCN2018076884-appb-100013
    为长度为N 2的行向量,
    Figure PCTCN2018076884-appb-100014
    为长度为N 3的行向量,
    Figure PCTCN2018076884-appb-100015
    Figure PCTCN2018076884-appb-100016
    为实数,
    Figure PCTCN2018076884-appb-100017
    Figure PCTCN2018076884-appb-100018
    为模为1的复数;在公式(3)中,
    Figure PCTCN2018076884-appb-100019
    为长度为2的行向量;
    所述第一通信装置发送所述信道状态信息矩阵指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述N 3个信道状态信息矩阵与N 3个频域资源单元一一对应,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵W k与所述N 3个频域资源单元的第k个频域资源单元对应,k为整数,k∈{1,2,...,N 3};
    所述N 3个频域资源单元中第k 2个频域资源单元所占频率中的最低频率大于等于所述N 3个频域资源单元中第k 1个频域资源单元所占频率中的最高频率,其中,k 2大于k 1
  3. 根据权利要求1或2所述的方法,其特征在于,
    Figure PCTCN2018076884-appb-100020
    满足如下表示:
    Figure PCTCN2018076884-appb-100021
    Figure PCTCN2018076884-appb-100022
    Figure PCTCN2018076884-appb-100023
    Figure PCTCN2018076884-appb-100024
    其中,N 1、N 2、O 1、O 2、O 3、O 4均为大于0的整数。
    Figure PCTCN2018076884-appb-100025
    为大于等于0小于等于O 1N 1-1的整数,
    Figure PCTCN2018076884-appb-100026
    为大于等于0小于等于O 2N 2-1的整数,
    Figure PCTCN2018076884-appb-100027
    为大于等于0小于等于O 3N 3-1的整数,
    Figure PCTCN2018076884-appb-100028
    为大于等于0小于等于2O 4-1的整数。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    Figure PCTCN2018076884-appb-100029
    满足如下表示:
    Figure PCTCN2018076884-appb-100030
    Figure PCTCN2018076884-appb-100031
    Figure PCTCN2018076884-appb-100032
    Figure PCTCN2018076884-appb-100033
    其中,
    Figure PCTCN2018076884-appb-100034
    Figure PCTCN2018076884-appb-100035
  5. 根据权利要求4所述的方法,其特征在于,所述信道状态信息矩阵指示信息包括指示
    Figure PCTCN2018076884-appb-100036
    以及
    Figure PCTCN2018076884-appb-100037
    的信息、指示
    Figure PCTCN2018076884-appb-100038
    以及
    Figure PCTCN2018076884-appb-100039
    的信息,
    以及指示
    Figure PCTCN2018076884-appb-100040
    以及
    Figure PCTCN2018076884-appb-100041
    的信息。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的至少一个由物理层信令或无线资源控制RRC信令指示,或者,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4为预定义值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述信道状态信息矩阵为信道信息矩阵或预编码矩阵。
  8. 一种信道状态信息矩阵信息处理方法,其特征在于,包括:
    第二通信装置接收信道状态信息矩阵指示信息,其中,所述信道状态信息矩阵指示信息用于指示N 3个信道状态信息矩阵,所述N 3个信道状态信息矩阵中每个信道状态信息矩阵为2N 1N 2行l列的矩阵,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵为W k,N 3为大于0的整数,k为整数,且1≤k≤N 3,且
    l=1,
    Figure PCTCN2018076884-appb-100042
    Figure PCTCN2018076884-appb-100043
    为矩阵W的第k列,W=W 1k为实数;
    l=2,
    Figure PCTCN2018076884-appb-100044
    Figure PCTCN2018076884-appb-100045
    的第1列为矩阵W的第k列,
    Figure PCTCN2018076884-appb-100046
    的第2列是矩阵W的第N 3+k列,其中,W满足:W=[W 1 W 2],β k,1、β k,2为实数;
    W l,l=1,2,满足如下公式(1)或(3):
    Figure PCTCN2018076884-appb-100047
    其中,
    Figure PCTCN2018076884-appb-100048
    满足
    Figure PCTCN2018076884-appb-100049
    或者,
    Figure PCTCN2018076884-appb-100050
    其中,
    Figure PCTCN2018076884-appb-100051
    满足
    Figure PCTCN2018076884-appb-100052
    其中,在公式(1)和公式(3)中,P为大于0的整数,L为大于0的整数,
    Figure PCTCN2018076884-appb-100053
    为长度为N 1的行向量,
    Figure PCTCN2018076884-appb-100054
    为长度为N 2的行向量,
    Figure PCTCN2018076884-appb-100055
    为长度为N 3的行向量,
    Figure PCTCN2018076884-appb-100056
    Figure PCTCN2018076884-appb-100057
    为实数,
    Figure PCTCN2018076884-appb-100058
    Figure PCTCN2018076884-appb-100059
    为模为1的复数;在公式(3)中,
    Figure PCTCN2018076884-appb-100060
    为长度为2的行向量;
    所述第二通信装置根据所述信道状态信息矩阵指示信息确定信道状态信息矩阵。
  9. 根据权利要求8所述的方法,其特征在于,所述N 3个信道状态信息矩阵与N 3个频域资源单元一一对应,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵W k与所述N 3个频域资源单元的第k个频域资源单元对应,k为整数,k∈{1,2,...,N 3};
    所述N 3个频域资源单元中第k 2个频域资源单元所占频率中的最低频率大于等于所述N 3个频域资源单元中第k 1个频域资源单元所占频率中的最高频率,其中,k 2大于k 1
  10. 根据权利要求8或9所述的方法,其特征在于,
    Figure PCTCN2018076884-appb-100061
    满足如下表示:
    Figure PCTCN2018076884-appb-100062
    Figure PCTCN2018076884-appb-100063
    Figure PCTCN2018076884-appb-100064
    Figure PCTCN2018076884-appb-100065
    其中,N 1、N 2、O 1、O 2、O 3、O 4均为大于0的整数,
    Figure PCTCN2018076884-appb-100066
    为大于等于0小于等于O 1N 1-1的整数,
    Figure PCTCN2018076884-appb-100067
    为大于等于0小于等于O 2N 2-1的整数,
    Figure PCTCN2018076884-appb-100068
    为大于等于0小于等于O 3N 3-1的整数,
    Figure PCTCN2018076884-appb-100069
    为大于等于0小于等于2O 4-1的整数。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,
    Figure PCTCN2018076884-appb-100070
    满足如下表示:
    Figure PCTCN2018076884-appb-100071
    Figure PCTCN2018076884-appb-100072
    Figure PCTCN2018076884-appb-100073
    Figure PCTCN2018076884-appb-100074
    其中,
    Figure PCTCN2018076884-appb-100075
    Figure PCTCN2018076884-appb-100076
  12. 根据权利要求11所述的方法,其特征在于,所述信道状态信息矩阵指示信息包括指示
    Figure PCTCN2018076884-appb-100077
    以及
    Figure PCTCN2018076884-appb-100078
    的信息、指示
    Figure PCTCN2018076884-appb-100079
    以及
    Figure PCTCN2018076884-appb-100080
    的信息,以及,指示
    Figure PCTCN2018076884-appb-100081
    以及
    Figure PCTCN2018076884-appb-100082
    的信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第二通信装置根据所述信道状态信息矩阵指示信息确定信道状态信息矩阵,包括:
    所述第二通信装置根据所述信道状态信息矩阵指示信息获取
    Figure PCTCN2018076884-appb-100083
    Figure PCTCN2018076884-appb-100084
    以及
    Figure PCTCN2018076884-appb-100085
    所述第二通信装置根据
    Figure PCTCN2018076884-appb-100086
    O 1、O 2、O 3以及如下公式,计算得到
    Figure PCTCN2018076884-appb-100087
    Figure PCTCN2018076884-appb-100088
    Figure PCTCN2018076884-appb-100089
    Figure PCTCN2018076884-appb-100090
    所述第二通信装置根据
    Figure PCTCN2018076884-appb-100091
    N 1、N 2、N 3、O 1、O 2、O 3以及如下公式,计算得到
    Figure PCTCN2018076884-appb-100092
    以及
    Figure PCTCN2018076884-appb-100093
    Figure PCTCN2018076884-appb-100094
    Figure PCTCN2018076884-appb-100095
    Figure PCTCN2018076884-appb-100096
    所述第二通信装置根据
    Figure PCTCN2018076884-appb-100097
    P、L、公式(1)以及公式(2),计算得到信道状态信息矩阵;
    所述第二通信装置根据α k,或者β k,1、β k,2,对所述信道状态信息矩阵进行归一化处理。
  14. 根据权利要求12所述的方法,其特征在于,所述第二通信装置根据所述信道 状态信息矩阵指示信息确定信道状态信息矩阵,包括:
    所述第二通信装置根据所述信道状态信息矩阵指示信息获取
    Figure PCTCN2018076884-appb-100098
    Figure PCTCN2018076884-appb-100099
    以及
    Figure PCTCN2018076884-appb-100100
    所述第二通信装置根据
    Figure PCTCN2018076884-appb-100101
    O 1、O 2、O 3、O 4以及如下公式,计算得到
    Figure PCTCN2018076884-appb-100102
    Figure PCTCN2018076884-appb-100103
    Figure PCTCN2018076884-appb-100104
    Figure PCTCN2018076884-appb-100105
    Figure PCTCN2018076884-appb-100106
    所述第二通信装置根据
    Figure PCTCN2018076884-appb-100107
    N 1、N 2、N 3、O 1、O 2、O 3、O 4以及如下公式,计算得到
    Figure PCTCN2018076884-appb-100108
    以及
    Figure PCTCN2018076884-appb-100109
    Figure PCTCN2018076884-appb-100110
    Figure PCTCN2018076884-appb-100111
    Figure PCTCN2018076884-appb-100112
    Figure PCTCN2018076884-appb-100113
    所述第二通信装置根据
    Figure PCTCN2018076884-appb-100114
    P、L、公式(3)以及公式(4),计算得到信道状态信息矩阵;
    所述第二通信装置根据α k,或者β k,1、β k,2,对所述信道状态信息矩阵进行归一化处理。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的至少一个由物理层信令或无线资源控制RRC信令指示,或者,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4为预定义值。
  16. 根据权利要求8-15任一项所述的方法,其特征在于,所述信道状态信息矩阵 为信道信息矩阵或预编码矩阵。
  17. 一种通信装置,其特征在于,包括:
    处理模块,用于确定信道状态信息矩阵指示信息,其中,所述信道状态信息矩阵指示信息用于指示N 3个信道状态信息矩阵,所述N 3个信道状态信息矩阵中每个信道状态信息矩阵为2N 1N 2行l列的矩阵,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵为W k,N 3为大于0的整数;k为整数,且1≤k≤N 3,且
    l=1,
    Figure PCTCN2018076884-appb-100115
    Figure PCTCN2018076884-appb-100116
    为矩阵W的第k列,W=W 1k为实数;或者,
    l=2时,
    Figure PCTCN2018076884-appb-100117
    Figure PCTCN2018076884-appb-100118
    的第1列为矩阵W的第k列,
    Figure PCTCN2018076884-appb-100119
    的第2列是矩阵W的第N 3+k列,其中,W满足:W=[W 1 W 2],β k,2k,1为实数;
    W l,l=1,2,满足如下公式(1)或(3):
    Figure PCTCN2018076884-appb-100120
    其中,
    Figure PCTCN2018076884-appb-100121
    满足
    Figure PCTCN2018076884-appb-100122
    或者,
    Figure PCTCN2018076884-appb-100123
    其中,
    Figure PCTCN2018076884-appb-100124
    满足
    Figure PCTCN2018076884-appb-100125
    其中,在公式(1)和公式(3)中,P为大于0的整数,L为大于0的整数,
    Figure PCTCN2018076884-appb-100126
    为长度为N 1的行向量,
    Figure PCTCN2018076884-appb-100127
    为长度为N 2的行向量,
    Figure PCTCN2018076884-appb-100128
    为长度为N 3的行向量,
    Figure PCTCN2018076884-appb-100129
    Figure PCTCN2018076884-appb-100130
    为实数,
    Figure PCTCN2018076884-appb-100131
    Figure PCTCN2018076884-appb-100132
    为模为1的复数;在公式(3)中,
    Figure PCTCN2018076884-appb-100133
    为长度为2的行向量;
    发送模块,用于发送所述信道状态信息矩阵指示信息。
  18. 根据权利要求17所述的装置,其特征在于,所述N 3个信道状态信息矩阵与N 3个频域资源单元一一对应,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵W k与所述N 3个频域资源单元的第k个频域资源单元对应,k为整数,k∈{1,2,...,N 3};
    所述N 3个频域资源单元中第k 2个频域资源单元所占频率中的最低频率大于等于所述N 3个频域资源单元中第k 1个频域资源单元所占频率中的最高频率,其中,k 2大于k 1
  19. 根据权利要求17或18所述的装置,其特征在于,
    Figure PCTCN2018076884-appb-100134
    满足如下表示:
    Figure PCTCN2018076884-appb-100135
    Figure PCTCN2018076884-appb-100136
    Figure PCTCN2018076884-appb-100137
    Figure PCTCN2018076884-appb-100138
    其中,N 1、N 2、O 1、O 2、O 3、O 4均为大于0的整数。
    Figure PCTCN2018076884-appb-100139
    为大于等于0小于等于O 1N 1-1的整数,
    Figure PCTCN2018076884-appb-100140
    为大于等于0小于等于O 2N 2-1的整数,
    Figure PCTCN2018076884-appb-100141
    为大于等于0小于等于O 3N 3-1的整数,
    Figure PCTCN2018076884-appb-100142
    为大于等于0小于等于2O 4-1的整数。
  20. 根据权利要求17-19任一项所述的装置,其特征在于,
    Figure PCTCN2018076884-appb-100143
    满足如下表示:
    Figure PCTCN2018076884-appb-100144
    Figure PCTCN2018076884-appb-100145
    Figure PCTCN2018076884-appb-100146
    Figure PCTCN2018076884-appb-100147
    其中,
    Figure PCTCN2018076884-appb-100148
    Figure PCTCN2018076884-appb-100149
  21. 根据权利要求20所述的装置,其特征在于,所述信道状态信息矩阵指示信息包括指示
    Figure PCTCN2018076884-appb-100150
    以及
    Figure PCTCN2018076884-appb-100151
    的信息、指示
    Figure PCTCN2018076884-appb-100152
    以及
    Figure PCTCN2018076884-appb-100153
    的信息, 以及指示
    Figure PCTCN2018076884-appb-100154
    以及
    Figure PCTCN2018076884-appb-100155
    的信息。
  22. 根据权利要求19-21任一项所述的装置,其特征在于,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的至少一个由物理层信令或无线资源控制RRC信令指示,或者,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4为预定义值。
  23. 根据权利要求17-22任一项所述的装置,其特征在于,所述信道状态信息矩阵为信道信息矩阵或预编码矩阵。
  24. 一种通信装置,其特征在于,包括:
    接收模块,用于接收信道状态信息矩阵指示信息,其中,所述信道状态信息矩阵指示信息用于指示N 3个信道状态信息矩阵,所述N 3个信道状态信息矩阵中每个信道状态信息矩阵为2N 1N 2行l列的矩阵,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵为W k,N 3为大于0的整数,k为整数,且1≤k≤N 3,且
    l=1,
    Figure PCTCN2018076884-appb-100156
    Figure PCTCN2018076884-appb-100157
    为矩阵W的第k列,W=W 1k为实数;
    l=2,
    Figure PCTCN2018076884-appb-100158
    Figure PCTCN2018076884-appb-100159
    的第1列为矩阵W的第k列,
    Figure PCTCN2018076884-appb-100160
    的第2列是矩阵W的第N 3+k列,其中,W满足:W=[W 1 W 2],β k,1、β k,2为实数;
    W l,l=1,2,满足如下公式(1)或(3):
    Figure PCTCN2018076884-appb-100161
    其中,
    Figure PCTCN2018076884-appb-100162
    满足
    Figure PCTCN2018076884-appb-100163
    或者,
    Figure PCTCN2018076884-appb-100164
    其中,
    Figure PCTCN2018076884-appb-100165
    满足
    Figure PCTCN2018076884-appb-100166
    其中,在公式(1)和公式(3)中,P为大于0的整数,L为大于0的整数,
    Figure PCTCN2018076884-appb-100167
    为长度 为N 1的行向量,
    Figure PCTCN2018076884-appb-100168
    为长度为N 2的行向量,
    Figure PCTCN2018076884-appb-100169
    为长度为N 3的行向量,
    Figure PCTCN2018076884-appb-100170
    Figure PCTCN2018076884-appb-100171
    为实数,
    Figure PCTCN2018076884-appb-100172
    Figure PCTCN2018076884-appb-100173
    为模为1的复数;在公式(3)中,
    Figure PCTCN2018076884-appb-100174
    为长度为2的行向量;
    处理模块,用于根据所述信道状态信息矩阵指示信息确定信道状态信息矩阵。
  25. 根据权利要求24所述的装置,其特征在于,所述N 3个信道状态信息矩阵与N 3个频域资源单元一一对应,所述N 3个信道状态信息矩阵中第k个信道状态信息矩阵W k与所述N 3个频域资源单元的第k个频域资源单元对应,k为整数,k∈{1,2,...,N 3};
    所述N 3个频域资源单元中第k 2个频域资源单元所占频率中的最低频率大于等于所述N 3个频域资源单元中第k 1个频域资源单元所占频率中的最高频率,其中,k 2大于k 1
  26. 根据权利要求24或25所述的装置,其特征在于,
    Figure PCTCN2018076884-appb-100175
    满足如下表示:
    Figure PCTCN2018076884-appb-100176
    Figure PCTCN2018076884-appb-100177
    Figure PCTCN2018076884-appb-100178
    Figure PCTCN2018076884-appb-100179
    其中,N 1、N 2、O 1、O 2、O 3、O 4均为大于0的整数,
    Figure PCTCN2018076884-appb-100180
    为大于等于0小于等于O 1N 1-1的整数,
    Figure PCTCN2018076884-appb-100181
    为大于等于0小于等于O 2N 2-1的整数,
    Figure PCTCN2018076884-appb-100182
    为大于等于0小于等于O 3N 3-1的整数,
    Figure PCTCN2018076884-appb-100183
    为大于等于0小于等于2O 4-1的整数。
  27. 根据权利要求24-26任一项所述的装置,其特征在于,
    Figure PCTCN2018076884-appb-100184
    满足如下表示:
    Figure PCTCN2018076884-appb-100185
    Figure PCTCN2018076884-appb-100186
    Figure PCTCN2018076884-appb-100187
    Figure PCTCN2018076884-appb-100188
    其中,
    Figure PCTCN2018076884-appb-100189
    Figure PCTCN2018076884-appb-100190
  28. 根据权利要求27所述的装置,其特征在于,所述信道状态信息矩阵指示信息包括指示
    Figure PCTCN2018076884-appb-100191
    以及
    Figure PCTCN2018076884-appb-100192
    的信息、指示
    Figure PCTCN2018076884-appb-100193
    以及
    Figure PCTCN2018076884-appb-100194
    的信息,以及,指示
    Figure PCTCN2018076884-appb-100195
    以及
    Figure PCTCN2018076884-appb-100196
    的信息。
  29. 根据权利要求28所述的装置,其特征在于,所述处理模块具体用于:
    根据所述信道状态信息矩阵指示信息获取
    Figure PCTCN2018076884-appb-100197
    Figure PCTCN2018076884-appb-100198
    以及
    Figure PCTCN2018076884-appb-100199
    根据
    Figure PCTCN2018076884-appb-100200
    O 1、O 2、O 3以及如下公式,计算得到
    Figure PCTCN2018076884-appb-100201
    Figure PCTCN2018076884-appb-100202
    Figure PCTCN2018076884-appb-100203
    Figure PCTCN2018076884-appb-100204
    根据
    Figure PCTCN2018076884-appb-100205
    N 1、N 2、N 3、O 1、O 2、O 3以及如下公式,计算得到
    Figure PCTCN2018076884-appb-100206
    Figure PCTCN2018076884-appb-100207
    以及
    Figure PCTCN2018076884-appb-100208
    Figure PCTCN2018076884-appb-100209
    Figure PCTCN2018076884-appb-100210
    Figure PCTCN2018076884-appb-100211
    根据
    Figure PCTCN2018076884-appb-100212
    P、L、公式(1)以及公式(2),计算得到信道状态信息矩阵;
    根据α k,或者β k,1、β k,2,对所述信道状态信息矩阵进行归一化处理。
  30. 根据权利要求28所述的装置,其特征在于,所述处理模块具体用于:
    根据所述信道状态信息矩阵指示信息获取
    Figure PCTCN2018076884-appb-100213
    Figure PCTCN2018076884-appb-100214
    以及
    Figure PCTCN2018076884-appb-100215
    根据
    Figure PCTCN2018076884-appb-100216
    O 1、O 2、O 3、O 4以及 如下公式,计算得到
    Figure PCTCN2018076884-appb-100217
    Figure PCTCN2018076884-appb-100218
    Figure PCTCN2018076884-appb-100219
    Figure PCTCN2018076884-appb-100220
    Figure PCTCN2018076884-appb-100221
    根据
    Figure PCTCN2018076884-appb-100222
    N 1、N 2、N 3、O 1、O 2、O 3、O 4以及如下公式,计算得到
    Figure PCTCN2018076884-appb-100223
    以及
    Figure PCTCN2018076884-appb-100224
    Figure PCTCN2018076884-appb-100225
    Figure PCTCN2018076884-appb-100226
    Figure PCTCN2018076884-appb-100227
    Figure PCTCN2018076884-appb-100228
    根据
    Figure PCTCN2018076884-appb-100229
    P、L、公式(3)以及公式(4),计算得到信道状态信息矩阵;
    根据α k,或者β k,1、β k,2,对所述信道状态信息矩阵进行归一化处理。
  31. 根据权利要求26-20任一项所述的装置,其特征在于,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4中的至少一个由物理层信令或无线资源控制RRC信令指示,或者,P、L、N 1、N 2、N 3、O 1、O 2、O 3、O 4为预定义值。
  32. 根据权利要求24-31任一项所述的装置,其特征在于,所述信道状态信息矩阵为信道信息矩阵或预编码矩阵。
  33. 一种计算机可读存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被模块执行时使所述模块执行如权利要求1-7任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被模块执行时使所述模块执行如权利要求8-16任一项所述的方法。
PCT/CN2018/076884 2018-02-14 2018-02-14 信道状态信息矩阵信息处理方法及通信装置 WO2019157742A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/076884 WO2019157742A1 (zh) 2018-02-14 2018-02-14 信道状态信息矩阵信息处理方法及通信装置
CN201880086544.0A CN111587543B (zh) 2018-02-14 2018-02-14 信道状态信息矩阵信息处理方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076884 WO2019157742A1 (zh) 2018-02-14 2018-02-14 信道状态信息矩阵信息处理方法及通信装置

Publications (1)

Publication Number Publication Date
WO2019157742A1 true WO2019157742A1 (zh) 2019-08-22

Family

ID=67619130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076884 WO2019157742A1 (zh) 2018-02-14 2018-02-14 信道状态信息矩阵信息处理方法及通信装置

Country Status (2)

Country Link
CN (1) CN111587543B (zh)
WO (1) WO2019157742A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160546A1 (zh) * 2022-02-25 2023-08-31 维沃移动通信有限公司 感知方法、装置及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024780A (zh) * 2014-04-23 2015-11-04 中国移动通信集团公司 一种信息发送、确定与信道重构方法及相关装置与系统
WO2017069580A1 (en) * 2015-10-23 2017-04-27 Samsung Electronics Co., Ltd. Precoder codebook for advanced wireless communication systems
CN107302389A (zh) * 2017-08-28 2017-10-27 南京科兴新材料科技有限公司 一种3dmu‑mimo预编码矩阵构造方法及装置
CN107431515A (zh) * 2015-03-30 2017-12-01 三星电子株式会社 用于码本设计和信令的方法和装置
US20180014305A1 (en) * 2016-07-08 2018-01-11 Alcatel-Lucent Usa Inc. Apparatus configured to approximate a power coefficient in a cell-free massive mimo wireless system and method of performing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8542763B2 (en) * 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
EP2590338B1 (en) * 2010-07-02 2020-03-11 LG Electronics Inc. Method and apparatus for transmitting signals using codebooks in a wireless communication system that supports multiple antennas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024780A (zh) * 2014-04-23 2015-11-04 中国移动通信集团公司 一种信息发送、确定与信道重构方法及相关装置与系统
CN107431515A (zh) * 2015-03-30 2017-12-01 三星电子株式会社 用于码本设计和信令的方法和装置
WO2017069580A1 (en) * 2015-10-23 2017-04-27 Samsung Electronics Co., Ltd. Precoder codebook for advanced wireless communication systems
US20180014305A1 (en) * 2016-07-08 2018-01-11 Alcatel-Lucent Usa Inc. Apparatus configured to approximate a power coefficient in a cell-free massive mimo wireless system and method of performing same
CN107302389A (zh) * 2017-08-28 2017-10-27 南京科兴新材料科技有限公司 一种3dmu‑mimo预编码矩阵构造方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160546A1 (zh) * 2022-02-25 2023-08-31 维沃移动通信有限公司 感知方法、装置及通信设备

Also Published As

Publication number Publication date
CN111587543B (zh) 2021-10-01
CN111587543A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2018127151A1 (zh) 一种预编码矩阵指示方法、装置和系统
WO2018202154A1 (zh) 传输预编码矩阵的指示方法和设备
WO2018228120A1 (zh) 一种发送下行控制信息dci的方法及装置
TWI782367B (zh) 一種基於通道互易性的預編碼矩陣配置方法、網路側裝置、終端、存儲介質
WO2017157282A1 (zh) 一种信道信息上报方法、装置及系统
US20180191410A1 (en) Subset of w2 method and apparatus for sending precoding information and feeding back precoding information
WO2014101242A1 (zh) 报告信道状态信息csi的方法、用户设备和基站
WO2018023221A1 (zh) 一种信道信息传输装置、方法和系统
JP7371270B2 (ja) チャネル状態情報フィードバック方法及び通信装置
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
WO2019144418A1 (zh) 一种预编码矩阵索引上报方法、通信装置及介质
CN115833890A (zh) 码本反馈方法、网络设备、终端设备及计算机存储介质
US11196522B2 (en) Enhanced sounding reference signal scheme
CN111865376B (zh) 一种通信方法及装置
US11159346B2 (en) Co-polarized feedback for frequency domain compression
WO2019157742A1 (zh) 信道状态信息矩阵信息处理方法及通信装置
WO2019196886A1 (zh) 一种预编码矩阵确定方法及装置
WO2020118728A1 (zh) 通信方法及装置
WO2020215341A1 (en) Method, device and computer readable medium for channel state information transmission
WO2020107188A1 (zh) 一种数据处理方法、设备及存储介质
WO2018059567A1 (zh) 基于码本的信道状态信息反馈方法及设备
JP2024530013A (ja) チャネル情報フィードバック方法および通信装置
CN115150228B (zh) 数据传输方法、装置、设备以及存储介质
WO2023206170A1 (zh) Csi的上报方法、预编码矩阵的确定方法、装置及设备
WO2024066900A1 (zh) 上行传输方法、终端、网络设备、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906443

Country of ref document: EP

Kind code of ref document: A1