WO2023206171A1 - Csi的上报方法、预编码矩阵的确定方法、装置及设备 - Google Patents

Csi的上报方法、预编码矩阵的确定方法、装置及设备 Download PDF

Info

Publication number
WO2023206171A1
WO2023206171A1 PCT/CN2022/089667 CN2022089667W WO2023206171A1 WO 2023206171 A1 WO2023206171 A1 WO 2023206171A1 CN 2022089667 W CN2022089667 W CN 2022089667W WO 2023206171 A1 WO2023206171 A1 WO 2023206171A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
csi
component
parameter
terminal device
Prior art date
Application number
PCT/CN2022/089667
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001341.3A priority Critical patent/CN117322040A/zh
Priority to PCT/CN2022/089667 priority patent/WO2023206171A1/zh
Publication of WO2023206171A1 publication Critical patent/WO2023206171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of mobile communications, and in particular to a CSI reporting method, a precoding matrix determination method, apparatus and equipment.
  • the terminal device reports Channel Status Information (CSI) to the network device, so that the network device can calculate the precoding used for downlink data transmission based on the information reported by the terminal device. matrix.
  • CSI Channel Status Information
  • the terminal device can implement high-precision CSI quantized feedback.
  • the network equipment can accurately calculate the precoding matrix of the corresponding channel based on the above codebook reported by the terminal equipment, thereby improving the performance of data transmission.
  • the precoding matrix calculated based on the above codebook may be inconsistent with the channel. matching issues, thereby reducing data transfer performance.
  • how to design the corresponding codebook and calculate the precoding matrix that matches the channel is an urgent problem to be solved.
  • Embodiments of the present application provide a CSI reporting method, a precoding matrix determination method, an apparatus and a device.
  • the technical solutions are as follows:
  • a CSI reporting method is provided.
  • the method is executed by a terminal device.
  • the method includes:
  • the CSI is used by the network device to calculate a precoding matrix for downlink data transmission at time t, where time t is after the T consecutive time moments, and T is a positive integer.
  • a method for determining a precoding matrix is provided.
  • the method is executed by a network device, and the method includes:
  • the CSI is determined by the terminal device according to the downlink pilot signal, and the time t is after the T consecutive time moments, and T is a positive integer.
  • a CSI reporting device where the device includes:
  • the receiving module is used to receive downlink pilot signals sent by the network equipment at T consecutive times;
  • a determination module configured to estimate the downlink channel information for the T consecutive times according to the downlink pilot signals for the T consecutive times
  • the determination module is further configured to determine the CSI corresponding to the T consecutive time moments based on the downlink channel information of the T consecutive T time moments;
  • a sending module configured to report the CSI to the network device
  • the CSI is used by the network device to calculate a precoding matrix for downlink data transmission at time t, where time t is after the T consecutive time moments, and T is a positive integer.
  • a device for determining a precoding matrix includes:
  • the sending module is used to send downlink pilot signals to the terminal equipment at T consecutive times;
  • a receiving module configured to receive the CSI corresponding to the T consecutive times reported by the terminal device
  • a calculation module configured to calculate a precoding matrix for downlink data transmission at time t according to the CSI
  • the CSI is determined by the terminal device according to the downlink pilot signal, and the time t is after the T consecutive time moments, and T is a positive integer.
  • a terminal device which terminal device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein, The processor is configured to load and execute the executable instructions to implement the CSI reporting method as described in the above aspect.
  • a network device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein, The processor is configured to load and execute the executable instructions to implement the method for determining the precoding matrix as described in the above aspect.
  • a computer-readable storage medium in which executable instructions are stored, and the executable instructions are loaded and executed by a processor to implement the above aspects.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions.
  • a computer program product or computer program includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • a processor reads the computer instructions from the computer program.
  • the readable storage medium reads and executes the computer instructions, so that the computer device performs the CSI reporting method or the precoding matrix determining method described in the above aspect.
  • the correlation of the channel information in the time domain can be taken into account in the process of determining the CSI.
  • the network device uses the CSI to determine the precoding matrix, which enables the network device to calculate the precoding matrix at different times in the future based on the CSI reported once by the terminal device. While ensuring data transmission performance, it prevents terminal equipment from frequently reporting CSI due to rapid movement, reduces the period for terminal equipment to report CSI, and reduces the uplink feedback overhead of terminal equipment.
  • Figure 1 is a schematic diagram of the system architecture of a communication system provided by an exemplary embodiment of the present application
  • Figure 2 is a flow chart of a CSI reporting method provided by an exemplary embodiment of the present application.
  • Figure 3 is a flow chart of a method for determining a precoding matrix provided by an exemplary embodiment of the present application
  • Figure 4 is a flow chart of a method for determining a precoding matrix provided by an exemplary embodiment of the present application
  • Figure 5 is a schematic diagram of transmitting CSI-RS provided by an exemplary embodiment of the present application.
  • Figure 6 is a flow chart of a method for determining a precoding matrix provided by an exemplary embodiment of the present application
  • Figure 7 is a schematic diagram of transmitting CSI-RS provided by an exemplary embodiment of the present application.
  • Figure 8 is a flow chart of a method for determining a precoding matrix provided by an exemplary embodiment of the present application.
  • Figure 9 is a structural block diagram of a CSI reporting device provided by an exemplary embodiment of the present application.
  • Figure 10 is a structural block diagram of a device for determining a precoding matrix provided by an exemplary embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • the terminal device reports CSI to the network device, so that the network device can calculate the precoding matrix used for downlink data transmission based on the information reported by the terminal device.
  • R16 R16 Type II codebook and R16 Type II port selection codebook are provided.
  • R17 the R17 Type II port selection codebook is provided.
  • the network device calculates the precoding matrix used for downlink data transmission based on the above codebook reported by the terminal device, which can adapt the data transmission process to changes in channel status and improve the performance of data transmission.
  • the codebook structure can be expressed as in, represents the frequency domain compression matrix composed of frequency domain basis vectors (Frequency Domain basis, FD basis), N 3 represents the number of subbands of the Precoding Matrix Indication (PMI), and M v represents the transmission rank when v The number of FD basis, Represents a plural number.
  • R16 Type II codebook Represents the spatial domain compression diagonal matrix composed of Spatial Domain basis (SD basis), N t represents the number of ports of the transmitting antenna, and L represents the number of SD basis contained in one polarization direction.
  • SD basis Spatial Domain basis
  • N t represents the number of ports of the transmitting antenna
  • L represents the number of SD basis contained in one polarization direction.
  • the antenna has two polarization directions, and the two polarization directions use the same SD basis.
  • This transport layer is used by network devices to map code words to ports. For example, the above W 1 , and W f are calculated by the terminal device estimating the downlink channel information based on the received Channel Status Information-Reference Signal (CSI-RS).
  • CSI-RS Channel Status Information-Reference Signal
  • the terminal device When the user (terminal device) moves at medium to high speed, in order to obtain an accurate precoding matrix, the user needs to use a smaller reporting period to report CSI. If the above Type II codebook is still used for CSI reporting, the terminal device will greatly increase the Uplink feedback overhead. If the reporting period of the CSI used by the user remains unchanged or is larger, system performance will be reduced.
  • Doppler offset will cause the channel to change rapidly with time. If the above Type II codebook continues to be used, the terminal equipment needs to frequently feed back CSI to adapt to the channel. changes to ensure data transmission performance, otherwise data transmission performance will be reduced. However, frequently reporting CSI will increase the uplink feedback overhead of the terminal device.
  • the channel information at different moments is correlated in the time domain, or the Doppler offset is fixed within a certain period of time, so the channel information is correlated in the time domain.
  • the method provided by the embodiments of the present application can utilize the time domain correlation of the channel information or the Doppler information of the channel to solve the above problem.
  • the network device can calculate the precoding matrix at different times in the future based on the CSI reported once by the terminal device. While ensuring data transmission performance, it prevents terminal equipment from frequently reporting CSI due to rapid movement, reduces the period for terminal equipment to report CSI, and reduces the uplink feedback overhead of terminal equipment.
  • Figure 1 shows a schematic diagram of the system architecture of a communication system provided by an embodiment of the present application.
  • the system architecture may include: terminal equipment 10, access network equipment 20 and core network equipment 30.
  • the terminal equipment 10 may refer to UE (User Equipment), access terminal equipment, user unit, user station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, wireless communication equipment, user agent or user device .
  • the terminal device can also be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, or a PDA (Personal Digital Assistant).
  • terminal devices handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5GS (5th Generation System, fifth-generation mobile communication system) or future evolved PLMNs (Public Land Mobile Network, public land mobile communication network) terminal equipment, etc.
  • 5GS Fifth Generation System, fifth-generation mobile communication system
  • PLMNs Public Land Mobile Network, public land mobile communication network
  • terminal devices the devices mentioned above are collectively referred to as terminal devices.
  • the number of terminal devices 10 is usually multiple, and one or more terminal devices 10 may be distributed in the cell managed by each access network device 20 .
  • the access network device 20 is a device deployed in the access network to provide wireless communication functions for the terminal device 10 .
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with access network device functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB. As communication technology evolves, the name "access network equipment" may change.
  • access network devices For convenience of description, in the embodiment of the present application, the above-mentioned devices that provide wireless communication functions for the terminal device 10 are collectively referred to as access network devices.
  • a communication relationship can be established between the terminal device 10 and the core network device 30.
  • the access network device 20 may be EUTRAN (Evolved Universal Terrestrial Radio Access Network) or one or more eNodeBs in EUTRAN; in the 5G NR system, the access network device 20 The network device 20 may be a RAN or one or more gNBs in the RAN.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • eNodeBs Evolved Universal Terrestrial Radio Access Network
  • the network device 20 may be a RAN or one or more gNBs in the RAN.
  • the functions of the core network equipment 30 are mainly to provide user connections, manage users, and carry services, and serve as a bearer network to provide an interface to an external network.
  • the core network equipment in the 5G NR system can include AMF (Access and Mobility Management Function, access and mobility management function) entities, UPF (User Plane Function, user plane function) entities, SMF (Session Management Function, session management Function) entities and Location Management Function (LMF) entities and other equipment.
  • AMF Access and Mobility Management Function, access and mobility management function
  • UPF User Plane Function, user plane function
  • SMF Session Management Function, session management Function
  • LMF Location Management Function
  • the access network equipment 20 and the core network equipment 30 may be collectively referred to as network equipment.
  • the core network device 30 is an LMF network element as an example for explanation.
  • the access network device 20 and the core network device 30 communicate with each other through some over-the-air technology, such as the NG interface in the 5G NR system.
  • the access network device 20 and the terminal device 10 communicate with each other through some air technology, such as the Uu interface.
  • Figure 2 shows a flow chart of a CSI reporting method provided by an embodiment of the present application. This method can be applied to the terminal device shown in Figure 1.
  • the method includes:
  • Step 202 Receive downlink pilot signals sent by the network device at T consecutive times.
  • the downlink pilot signal is used by the terminal equipment to determine the downlink channel information, and T is a positive integer.
  • the downlink pilot signal includes at least one of the following:
  • DMRS ⁇ Demodulation Reference Signal
  • the above parameter T is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates predefined ones with network equipment.
  • Step 204 Estimate the downlink channel information for T consecutive times based on the downlink pilot signals for T consecutive times.
  • the terminal device can estimate the downlink channel information at each of the T consecutive time moments based on the downlink pilot signal at each of the T consecutive time moments.
  • the downlink channel information is information reflecting the characteristics of the downlink channel.
  • Step 206 Determine the CSI corresponding to T consecutive time moments based on the downlink channel information for T consecutive time moments.
  • the network device can determine the precoding matrix for downlink data transmission based on the CSI determined by the terminal device.
  • CSI can also be called codebook parameter information.
  • the information in CSI includes the following two situations:
  • the CSI includes at least one of the following information:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the time domain Doppler component indication The information is used to indicate the K time domain Doppler components selected by the terminal device.
  • the combination coefficient indication information is used to indicate the combination coefficient determined by the terminal device.
  • the parameter L, parameter M v and parameter K are positive integers.
  • the time domain Doppler component indication information is used to indicate K time domain basis vectors selected by the terminal device, or K phase offsets, that is, the time domain Doppler components are represented by phase offsets or basis vectors.
  • the above parameter K is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates with network equipment to be predefined
  • the terminal device is determined based on the downlink channel information.
  • the terminal device determines the parameter K based on the downlink channel information
  • the terminal device reports the parameter K determined by the terminal device to the network device.
  • parameter T and/or parameter K are network device configurations
  • parameter T and/or parameter K are configured by the network device to the terminal device through at least one of the following signalings:
  • RRC Radio Resource Control
  • MAC-CE Media Access Control-Control Element
  • DCI Downlink Control Information
  • the time domain Doppler component meets at least one of the following conditions:
  • the space-frequency component is composed of a spatial domain beam component and a frequency domain delay component
  • the time-frequency component is composed of a frequency domain delay component and a time domain Doppler component. Since there are usually two polarization directions, the time domain Doppler components corresponding to the two polarization directions are the same or different.
  • the above-mentioned polarization direction refers to the polarization direction in which the network device sends data to the terminal device.
  • the time domain Doppler components corresponding to different transmission layers are the same or different.
  • Multi-layer transmission means there are multiple transport layers, which are used by network devices to map codewords to ports.
  • the time domain Doppler component is represented by a phase offset between adjacent moments when the downlink pilot signal is sent; or the time domain Doppler component is represented by a basis vector.
  • the parameter K is determined by the terminal device, then the parameter K is determined by the terminal device based on the number of non-zero coefficients of each transmission layer.
  • the time domain Doppler component is represented by a basis vector, and the basis vector includes at least one of the following:
  • the CSI includes at least one of the following information:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the combination coefficient indication information is Instructing the terminal device to determine T groups of combination coefficients corresponding to consecutive T moments, the information on the non-zero coefficient positions in the matrix of the T groups of combination coefficients is the same, and the parameter L and the parameter M v are positive integers.
  • the non-zero coefficients can correspond to one beam, and the same information on the positions of the non-zero coefficients means that the same beams are used.
  • the above-mentioned spatial domain beam component and frequency domain delay component can be represented by basis vectors, for example, by discrete Fourier Transform (Discrete Fourier Transform, DFT) basis vectors.
  • DFT discrete Fourier Transform
  • ⁇ Terminal equipment negotiates with network equipment to be predefined
  • the terminal device is determined based on the downlink channel information.
  • Step 208 Report the CSI to the network device.
  • the terminal device reports all or part of the information in the CSI determined by it to the network device.
  • CSI is used by network equipment to calculate the precoding matrix for downlink data transmission at time t, which is after T consecutive times.
  • the network device calculates the precoding matrix for downlink data transmission at each of the T consecutive times according to the CSI reported by the terminal device as the precoding matrix at time t.
  • the network device can also directly calculate the precoding matrix at time t based on the CSI reported by the terminal device.
  • the method provided by this embodiment uses the terminal device to determine the CSI based on the downlink pilot signals for T consecutive times, and can take the correlation of the channel information in the time domain into consideration in the process of determining the CSI.
  • the network device uses the CSI to determine the precoding matrix, which enables the network device to calculate the precoding matrix at different times in the future based on the CSI reported once by the terminal device. While ensuring data transmission performance, it prevents terminal equipment from frequently reporting CSI due to rapid movement, reduces the period for terminal equipment to report CSI, and reduces the uplink feedback overhead of terminal equipment.
  • Figure 3 shows a flow chart of a method for determining a precoding matrix provided by an embodiment of the present application. This method can be applied to the network equipment shown in Figure 1. The method includes:
  • Step 302 Send downlink pilot signals to the terminal equipment at T consecutive times.
  • the downlink pilot signal is used by the terminal equipment to determine the downlink channel information, and T is a positive integer.
  • the downlink pilot signal includes at least one of the following:
  • the above parameter T is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates predefined ones with network equipment.
  • Step 304 Receive CSI corresponding to T consecutive times reported by the terminal device.
  • the CSI is determined by the terminal device based on the downlink pilot signal.
  • the terminal equipment will estimate the downlink channel information for T consecutive times based on the downlink pilot signals for T consecutive times. Then, based on the downlink channel information for T consecutive times, the CSI corresponding to T consecutive times is determined.
  • the information in CSI includes the following two situations:
  • the CSI includes at least one of the following information:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the time domain Doppler component indication The information is used to indicate the K time domain Doppler components selected by the terminal device.
  • the combination coefficient indication information is used to indicate the combination coefficient determined by the terminal device.
  • the parameter L, parameter M v and parameter K are positive integers.
  • the time domain Doppler component indication information is used to indicate K time domain basis vectors selected by the terminal device, or K phase offsets, that is, the time domain Doppler components are represented by phase offsets or basis vectors.
  • the time domain Doppler component meets at least one of the following conditions:
  • the space-frequency component is composed of a spatial domain beam component and a frequency domain delay component
  • the time-frequency component is composed of a frequency domain delay component and a time domain Doppler component. Since there are usually two polarization directions, the time domain Doppler components corresponding to the two polarization directions are the same or different.
  • the above-mentioned polarization direction refers to the polarization direction in which the network device sends data to the terminal device.
  • the time domain Doppler components corresponding to different transmission layers are the same or different.
  • Multi-layer transmission means there are multiple transport layers, which are used by network devices to map codewords to ports.
  • the time domain Doppler component is represented by a phase offset between adjacent moments when the downlink pilot signal is sent; or the time domain Doppler component is represented by a basis vector.
  • the time domain Doppler component is represented by a basis vector, and the basis vector includes at least one of the following:
  • the CSI includes at least one of the following information:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the combination coefficient indication information is Instructing the terminal device to determine T groups of combination coefficients corresponding to consecutive T moments, the information on the non-zero coefficient positions in the matrix of the T groups of combination coefficients is the same, and the parameter L and the parameter M v are positive integers.
  • the non-zero coefficients can correspond to one beam, and the same information on the positions of the non-zero coefficients means that the same beams are used.
  • the above-mentioned spatial domain beam component and frequency domain delay component can be represented by DFT basis vectors.
  • Step 306 Calculate the precoding matrix for downlink data transmission at time t according to the CSI.
  • the network device calculates the precoding matrix for downlink data transmission at each of the T consecutive times according to the CSI reported by the terminal device as the precoding matrix at time t.
  • the network device can also directly calculate the precoding matrix at time t based on the CSI reported by the terminal device.
  • the network device will use the above time domain Doppler component in the process of calculating the precoding matrix for downlink data transmission at time t based on the CSI.
  • the time domain Doppler component is determined by the terminal device.
  • the time domain Doppler component is determined by the network device.
  • the method provided by this embodiment uses the terminal device to determine the CSI based on the downlink pilot signals for T consecutive times, and can take the correlation of the channel information in the time domain into consideration in the process of determining the CSI.
  • the network device uses the CSI to determine the precoding matrix, which enables the network device to calculate the precoding matrix at different times in the future based on the CSI reported once by the terminal device. While ensuring data transmission performance, it prevents terminal equipment from frequently reporting CSI due to rapid movement, reduces the period for terminal equipment to report CSI, and reduces the uplink feedback overhead of terminal equipment.
  • the method provided by the embodiment of the present application can realize the enhanced design of the CSI reporting process, so that when determining the precoding matrix for downlink data transmission, the time domain Doppler component is used for determination.
  • the time domain Doppler component By using the Doppler information of the channel (time domain Doppler component), the correlation of the channel information in the time domain can be taken into account.
  • Using the time domain Doppler component to determine the precoding matrix enables the network device to calculate the precoding matrix at different times in the future based on the CSI reported once by the terminal device. While ensuring data transmission performance, it prevents terminal equipment from frequently reporting CSI due to rapid movement, reduces the period for terminal equipment to report CSI, and reduces the uplink feedback overhead of terminal equipment.
  • the time domain Doppler component can be represented by the phase offset between adjacent moments when the network device sends the downlink pilot signal, or it can also be represented by the basis vector. Moreover, the time domain Doppler component can be determined by the terminal device or by the network device. The method provided by this application is introduced below through three embodiments:
  • Figure 4 shows a flow chart of a method for determining a precoding matrix provided by an embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 402 The network device sends downlink pilot signals to the terminal device at T consecutive times.
  • the downlink pilot signal is used by the terminal equipment to determine the downlink channel information, and T is a positive integer.
  • the downlink pilot signal includes at least one of the following:
  • the above parameter T is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates predefined ones with network equipment.
  • Step 404 The terminal equipment estimates the downlink channel information for T consecutive times based on the downlink pilot signals for T consecutive times.
  • the terminal device can estimate the downlink channel information at each of the T consecutive time moments based on the downlink pilot signal at each of the T consecutive time moments.
  • the downlink channel information is information reflecting the characteristics of the downlink channel.
  • Step 406 The terminal device determines the first type of CSI corresponding to T consecutive time points based on the downlink channel information for T consecutive time points.
  • the network device can determine the precoding matrix for downlink data transmission based on the CSI determined by the terminal device.
  • CSI can also be called codebook parameter information.
  • the CSI includes at least one of the following information:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the time domain Doppler component indication The information is used to indicate the K time domain Doppler components selected by the terminal device.
  • the combination coefficient indication information is used to indicate the combination coefficient determined by the terminal device.
  • the parameter L, parameter M v and parameter K are positive integers.
  • the time domain Doppler component indication information is used to indicate K time domain basis vectors selected by the terminal device, or K phase offsets, that is, the time domain Doppler components are represented by phase offsets or basis vectors.
  • the above-mentioned spatial domain beam component and frequency domain delay component can be represented by DFT basis vectors.
  • Each parameter in the above parameter L and parameter M v is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates with network equipment to be predefined
  • the terminal device is determined based on the downlink channel information.
  • the above parameter K is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates with network equipment to be predefined
  • the terminal device is determined based on the downlink channel information.
  • the terminal device determines the parameter K based on the downlink channel information
  • the terminal device reports the parameter K determined by the terminal device to the network device.
  • parameter T and/or parameter K are network device configurations
  • parameter T and/or parameter K are configured by the network device to the terminal device through at least one of the following signalings:
  • the time domain Doppler component meets at least one of the following conditions:
  • the space-frequency component is composed of a spatial domain beam component and a frequency domain delay component
  • the time-frequency component is composed of a frequency domain delay component and a time domain Doppler component. Since there are usually two polarization directions, the time domain Doppler components corresponding to the two polarization directions are the same or different.
  • the above-mentioned polarization direction refers to the polarization direction in which the network device sends data to the terminal device.
  • the time domain Doppler components corresponding to different transmission layers are the same or different.
  • Multi-layer transmission means there are multiple transport layers, which are used by network devices to map codewords to ports.
  • the time domain Doppler component is represented by a phase offset between adjacent moments when the downlink pilot signal is sent.
  • the time domain Doppler component is represented by a phase offset
  • the parameter K is determined by the terminal device, then the parameter K is determined by the terminal device based on the number of non-zero coefficients of each transmission layer.
  • time domain Doppler component is represented by a phase offset.
  • the expression of the time domain Doppler component is as follows:
  • e represents a natural constant and j represents an imaginary number.
  • j represents an imaginary number.
  • the parameter L represents the number of air domain beam components selected by the terminal equipment
  • the parameter M v represents the number of frequency domain delay components selected by the terminal equipment.
  • Parameter L and parameter M v are positive integers.
  • the terminal device reports the time domain Doppler component to the network device
  • the terminal device reports the phase offset value corresponding to the xth air domain beam component and the yth frequency domain delay component that meets the following conditions:
  • the amplitude of the combination coefficient corresponding to the xth spatial domain beam component and the yth frequency domain delay component is not 0.
  • the terminal device will also report the strongest coefficient to the network device.
  • Step 408 The terminal device reports the first type of CSI to the network device.
  • the terminal device reports all or part of the information in the CSI determined by it to the network device.
  • CSI is used by network equipment to calculate the precoding matrix for downlink data transmission at time t, which is after T consecutive times.
  • the terminal device quantifies the information in the CSI.
  • Step 410 The network device calculates the precoding matrix for downlink data transmission at time t based on the first type of CSI.
  • the network device calculates the precoding matrix for downlink data transmission at each of the T consecutive times according to the CSI reported by the terminal device as the precoding matrix at time t.
  • the network device can also directly calculate the precoding matrix at time t based on the CSI reported by the terminal device.
  • the network device can calculate the precoding matrix corresponding to each time in T consecutive times through the following formula, and use it as the precoding for downlink data transmission at time t matrix:
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • H represents the conjugate transpose of the matrix
  • the time intervals between adjacent moments in T consecutive moments are equal, the time difference between moment t and the first moment in T consecutive moments is ⁇ t, and ⁇ t is the phase difference in T consecutive moments.
  • ⁇ t is the phase difference in T consecutive moments.
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • Parameter L represents the number of air domain beam components selected by the terminal equipment
  • parameter M v represents the number of frequency domain delay components selected by the terminal equipment
  • H represents the conjugate transpose of the matrix
  • parameter L and parameter M v are positive integers.
  • FIG. 5 is a schematic diagram of transmitting CSI-RS provided by an exemplary embodiment of the present application.
  • the downlink pilot signal used for downlink channel estimation is CSI-RS.
  • the UE estimates the downlink channel information at these two moments based on the received CSI-RS burst. Assume that the SD basis and FD basis calculated by the UE based on the channel information at the first moment are respectively and The UE uses W 1 and W f to calculate the combination coefficient matrix based on the downlink information at the first moment of the two moments (the first moment, that is, t 0 moment). in and is a complex number whose magnitude is greater than 0. The UE then uses the same W 1 and W f to calculate the combination coefficient matrix based on the downlink information at the second time of the two times (the second time, that is, time t 0 +1).
  • the UE reports the indication information of W 1 and W f (used to indicate W 1 and W f to the gNB), the quantized combination coefficient matrix and the quantized time domain Doppler component D to the gNB.
  • gNB passed and The precoding matrices at time t 0 and time t 0 +1 are respectively calculated, and the precoding matrix can be used as the precoding matrix for downlink data transmission at time t after T consecutive time moments.
  • gNB can also pass Calculate the precoding matrix at time t, where and Represents the power normalization factor.
  • ⁇ t is the relative time difference between time t and time t 0
  • ⁇ t is an integer multiple of the relative time difference between time t 0 and time t 0 +1.
  • the method provided by this embodiment allows the terminal device to determine the time domain Doppler component based on the downlink pilot signals for T consecutive times, which can take into account the correlation of the channel information in the time domain in the process of determining the CSI. sex.
  • the network device uses the time domain Doppler component to determine the precoding matrix, which enables the network device to calculate the precoding matrix at different times in the future based on the CSI reported once by the terminal device. While ensuring data transmission performance, it prevents terminal equipment from frequently reporting CSI due to rapid movement, reduces the period for terminal equipment to report CSI, and reduces the uplink feedback overhead of terminal equipment.
  • determining the time domain Doppler component represented by the phase offset provides a way to determine the time domain Doppler component.
  • time domain Doppler component is represented by a basis vector and the terminal device determines the time domain Doppler component:
  • Figure 6 shows a flow chart of a method for determining a precoding matrix provided by an embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 602 The network device sends downlink pilot signals to the terminal device at T consecutive times.
  • the downlink pilot signal is used by the terminal equipment to determine the downlink channel information, and T is a positive integer.
  • the downlink pilot signal includes at least one of the following:
  • the above parameter T is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates predefined ones with network equipment.
  • Step 604 The terminal equipment estimates the downlink channel information for T consecutive times based on the downlink pilot signals for T consecutive times.
  • the terminal device can estimate the downlink channel information at each of the T consecutive time moments based on the downlink pilot signal at each of the T consecutive time moments.
  • the downlink channel information is information reflecting the characteristics of the downlink channel.
  • Step 606 The terminal device determines the second type of CSI corresponding to T consecutive time points based on the downlink channel information for T consecutive time points.
  • the network device can determine the precoding matrix for downlink data transmission based on the CSI determined by the terminal device.
  • CSI can also be called codebook parameter information.
  • the CSI includes at least one of the following information:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the time domain Doppler component indication The information is used to indicate the K time domain Doppler components selected by the terminal device.
  • the combination coefficient indication information is used to indicate the combination coefficient determined by the terminal device.
  • the parameter L, parameter M v and parameter K are positive integers.
  • the time domain Doppler component indication information is used to indicate K time domain basis vectors selected by the terminal device, or K phase offsets, that is, the time domain Doppler components are represented by phase offsets or basis vectors.
  • the above-mentioned spatial domain beam component and frequency domain delay component can be represented by DFT basis vectors.
  • Each parameter in the above parameter L and parameter M v is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates with network equipment to be predefined
  • the terminal device is determined based on the downlink channel information.
  • the above parameter K is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates with network equipment to be predefined
  • the terminal device is determined based on the downlink channel information.
  • the terminal device determines the parameter K based on the downlink channel information
  • the terminal device reports the parameter K determined by the terminal device to the network device.
  • parameter T and/or parameter K are network device configurations
  • parameter T and/or parameter K are configured by the network device to the terminal device through at least one of the following signalings:
  • the time domain Doppler component meets at least one of the following conditions:
  • the space-frequency component is composed of a spatial domain beam component and a frequency domain delay component
  • the time-frequency component is composed of a frequency domain delay component and a time domain Doppler component. Since there are usually two polarization directions, the time domain Doppler components corresponding to the two polarization directions are the same or different.
  • the above-mentioned polarization direction refers to the polarization direction in which the network device sends data to the terminal device.
  • the time domain Doppler components corresponding to different transmission layers are the same or different.
  • Multi-layer transmission means there are multiple transport layers, which are used by network devices to map codewords to ports.
  • the time domain Doppler component is represented by basis vectors.
  • the basis vector includes at least one of the following:
  • the time domain Doppler component can be oversampled and expanded to obtain more basis vector information.
  • time domain Doppler component is represented by a basis vector.
  • the expression of the time domain Doppler component is as follows:
  • the K basis vectors in W d are selected by the terminal device from candidate basis vectors; or, the K basis vectors in W d are fixed or predefined basis vectors.
  • the terminal device indicates the selected K time domain Doppler components to the network device by combining coefficients or bitmaps.
  • Step 608 The terminal device reports the second type of CSI to the network device.
  • the terminal device reports all or part of the information in the CSI determined by it to the network device.
  • CSI is used by network equipment to calculate the precoding matrix for downlink data transmission at time t, which is after T consecutive times.
  • the terminal device quantifies the information in the CSI.
  • Step 610 The network device calculates the precoding matrix for downlink data transmission at time t based on the second type of CSI.
  • the network device calculates the precoding matrix for downlink data transmission at each of the T consecutive times according to the CSI reported by the terminal device as the precoding matrix at time t.
  • the network device can also directly calculate the precoding matrix at time t based on the CSI reported by the terminal device.
  • the network device can calculate the precoding matrix corresponding to each time in T consecutive times through at least one of the following formulas, and use it as the downlink of time t Precoding matrix for data transmission:
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • H represents the conjugate transpose of the matrix
  • the time domain Doppler component is represented by a DFT basis vector.
  • the time interval from the last moment among T moments is n times the target time interval.
  • the target time interval is the time interval between adjacent moments among T consecutive moments, and n is a positive integer.
  • the network device can directly calculate the precoding matrix for downlink data transmission at time t through at least one of the following formulas:
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • f d,k (T) represents the elements corresponding to the T-th row of the DFT basis vector
  • k K represents the K-th DFT basis vector
  • O 3 represents the oversampling factor
  • H represents the conjugate transpose of the matrix.
  • FIG. 7 is a schematic diagram of transmitting CSI-RS provided by an exemplary embodiment of the present application.
  • the downlink pilot signal used for downlink channel estimation is CSI-RS.
  • the UE estimates the downlink channel information at these four moments based on the received CSI-RS burst. Assume that the SD basis and FD basis calculated by the UE based on the channel information at the first moment among the four moments (the first moment, that is, t 0 moment) are respectively and The UE uses W 1 and W f to calculate the combination coefficient matrix based on the downlink information at the first moment. Similarly, the UE can use the same W 1 and W f to calculate the combined coefficient matrices corresponding to the remaining three moments except the first moment, respectively.
  • the UE reports the indication information of W 1 and W f , the quantized combination coefficient matrix and the time domain Doppler component W d to the gNB.
  • gNB passed Calculate the precoding matrix corresponding to each time within T consecutive time moments, and the precoding matrix can be used as the precoding matrix for downlink data transmission at time t after the T consecutive time moments.
  • gNB can also pass Calculate the precoding matrix at time t.
  • the target time interval is T moments.
  • the time interval between adjacent moments in . f d,k (T) represents the element corresponding to the T-th row of the basis vector.
  • the method provided by this embodiment allows the terminal device to determine the time domain Doppler component based on the downlink pilot signals for T consecutive times, which can take into account the correlation of the channel information in the time domain in the process of determining the CSI. sex.
  • the network device uses the time domain Doppler component to determine the precoding matrix, which enables the network device to calculate the precoding matrix at different times in the future based on the CSI reported once by the terminal device. While ensuring data transmission performance, it prevents terminal equipment from frequently reporting CSI due to rapid movement, reduces the period for terminal equipment to report CSI, and reduces the uplink feedback overhead of terminal equipment.
  • determining the time domain Doppler component represented by the basis vector provides a way to determine the time domain Doppler component.
  • Figure 8 shows a flow chart of a method for determining a precoding matrix provided by an embodiment of the present application. This method can be applied to the system shown in Figure 1. The method includes:
  • Step 802 The network device sends downlink pilot signals to the terminal device at T consecutive times.
  • the downlink pilot signal is used by the terminal equipment to determine the downlink channel information, and T is a positive integer.
  • the downlink pilot signal includes at least one of the following:
  • the above parameter T is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates predefined ones with network equipment.
  • Step 804 The terminal equipment estimates the downlink channel information for T consecutive times based on the downlink pilot signals for T consecutive times.
  • the terminal device can estimate the downlink channel information at each of the T consecutive time moments based on the downlink pilot signal at each of the T consecutive time moments.
  • the downlink channel information is information reflecting the characteristics of the downlink channel.
  • Step 806 The terminal device determines the third type of CSI corresponding to T consecutive time points based on the downlink channel information for T consecutive time points.
  • the network device can determine the precoding matrix for downlink data transmission based on the CSI determined by the terminal device.
  • CSI can also be called codebook parameter information.
  • the CSI includes at least one of the following information:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the combination coefficient indication information is Instructing the terminal device to determine T groups of combination coefficients corresponding to consecutive T moments, the information on the non-zero coefficient positions in the matrix of the T groups of combination coefficients is the same, and the parameter L and the parameter M v are positive integers.
  • the non-zero coefficients can correspond to one beam, and the same information on the positions of the non-zero coefficients means that the same beams are used.
  • the above-mentioned spatial domain beam component and frequency domain delay component can be represented by DFT basis vectors.
  • Each parameter in the above parameter L and parameter M v is determined in at least one of the following ways:
  • ⁇ Terminal equipment negotiates with network equipment to be predefined
  • the terminal device is determined based on the downlink channel information.
  • the parameter T is configured by the network device to the terminal device through at least one of the following signalings:
  • Step 808 The terminal device reports the third type of CSI to the network device.
  • the terminal device reports all or part of the information in the CSI determined by it to the network device.
  • CSI is used by network equipment to calculate the precoding matrix for downlink data transmission at time t, which is after T consecutive times.
  • the terminal device quantifies the information in the CSI.
  • Step 810 The network device calculates the precoding matrix for downlink data transmission at time t based on the third CSI.
  • the network device calculates the precoding matrix for downlink data transmission at each of the T consecutive times according to the CSI reported by the terminal device as the precoding matrix at time t.
  • the network device calculates the precoding matrix for downlink data transmission at time t according to the CSI reported by the terminal device through at least one of the following formulas:
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components, and Represents the matrix of combination coefficients
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • D is the time domain Doppler component represented by the phase offset between adjacent moments when the downlink pilot signal is sent
  • W d is The time domain Doppler component represented by the basis vector, D, and It is determined by the network equipment based on the T group combination coefficient. and represents the power normalization factor
  • H represents the conjugate transpose of the matrix.
  • the method provided by this embodiment allows the terminal device to determine T groups of combination coefficients based on the downlink pilot signals for T consecutive times and report the CSI to the network device, so that the network device can consider the CSI in the process of determining the CSI. to the correlation of channel information in the time domain.
  • the network device determines the precoding matrix by determining the time domain Doppler component, which enables the network device to calculate the precoding matrix at different times in the future based on the CSI reported once by the terminal device. While ensuring data transmission performance, it prevents terminal equipment from frequently reporting CSI due to rapid movement, reduces the period for terminal equipment to report CSI, and reduces the uplink feedback overhead of terminal equipment. In addition, by allowing the network device to determine the time domain Doppler component, the uplink feedback overhead of the terminal device can be further reduced.
  • Figure 9 shows a structural block diagram of a CSI reporting device provided by an exemplary embodiment of the present application. As shown in Figure 9, the device includes:
  • the receiving module 901 is used to receive downlink pilot signals sent by the network device at T consecutive times;
  • the determination module 902 is configured to estimate the downlink channel information for T consecutive times based on the downlink pilot signals for T consecutive times;
  • the determination module 902 is also configured to determine the CSI corresponding to T consecutive time moments based on the downlink channel information of the consecutive T time moments;
  • the sending module 903 is used to report CSI to the network device
  • CSI is used by the network device to calculate the precoding matrix for downlink data transmission at time t.
  • Time t is after T consecutive time moments, and T is a positive integer.
  • CSI includes at least one of the following:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the time domain Doppler component indication The information is used to indicate the K time domain Doppler components selected by the terminal device.
  • the combination coefficient indication information is used to indicate the combination coefficient determined by the terminal device.
  • the parameter L, parameter M v and parameter K are positive integers.
  • CSI includes at least one of the following:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the combination coefficient indication information is Instructing the terminal device to determine T groups of combination coefficients corresponding to consecutive T moments, the information on the non-zero coefficient positions in the matrix of the T groups of combination coefficients is the same, and the parameter L and the parameter M v are positive integers.
  • parameter K is determined in at least one of the following ways:
  • Terminal equipment negotiates with network equipment to predefine
  • the terminal device is determined based on the downlink channel information.
  • sending module 903 is used for:
  • the terminal device determines the parameter K based on the downlink channel information
  • the parameter K determined by the terminal device is reported to the network device.
  • the time domain Doppler component is represented by the phase offset between adjacent moments when the downlink pilot signal is sent; or the time domain Doppler component is represented by the basis vector.
  • the parameter K is determined by the terminal device based on the number of non-zero coefficients of each transmission layer.
  • the time domain Doppler component satisfies at least one of the following conditions:
  • the time domain Doppler components corresponding to different polarization directions are the same or different;
  • the time domain Doppler components corresponding to different space-frequency components are the same or different;
  • the time domain Doppler components corresponding to different time-frequency components are the same or different;
  • the space-frequency component is composed of a spatial domain beam component and a frequency domain delay component
  • the time-frequency component is composed of a frequency domain delay component and a time domain Doppler component.
  • the time domain Doppler components corresponding to different transmission layers are the same or different.
  • the time domain Doppler component is represented by a phase offset.
  • the expression of the time domain Doppler component is as follows:
  • the parameter L indicates the number of airspace beam components selected by the terminal equipment.
  • the parameter M v indicates the frequency domain delay selected by the terminal equipment. The number of components, parameter L and parameter M v are positive integers.
  • sending module 903 is used for:
  • the amplitude of the combination coefficient corresponding to the xth spatial domain beam component and the yth frequency domain delay component is not 0.
  • time domain Doppler component is represented by a basis vector, and the expression of the time domain Doppler component is as follows:
  • the K basis vectors in W d are selected by the terminal device from candidate basis vectors; or, the K basis vectors in W d are fixed or predefined basis vectors.
  • the time domain Doppler component is represented by a basis vector, and the basis vector includes at least one of the following:
  • parameter T is determined in at least one of the following ways:
  • End devices negotiate predefined ones with network devices.
  • parameter T and/or parameter K are network device configurations
  • parameter T and/or parameter K are configured by the network device to the terminal device through at least one of the following signalings:
  • the downlink pilot signal includes at least one of the following:
  • Figure 10 shows a structural block diagram of a device for determining a precoding matrix provided by an exemplary embodiment of the present application. As shown in Figure 10, the device includes:
  • the sending module 1001 is used to send downlink pilot signals to the terminal equipment at T consecutive times;
  • the receiving module 1002 is used to receive the CSI corresponding to T consecutive times reported by the terminal device;
  • Calculation module 1003 used to calculate the precoding matrix for downlink data transmission at time t based on CSI;
  • CSI is determined by the terminal device based on the downlink pilot signal.
  • Time t is after T consecutive time moments, and T is a positive integer.
  • CSI includes at least one of the following:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the time domain Doppler component indication The information is used to indicate the K time domain Doppler components selected by the terminal device.
  • the combination coefficient indication information is used to indicate the combination coefficient determined by the terminal device.
  • the parameter L, parameter M v and parameter K are positive integers.
  • CSI includes at least one of the following:
  • the air domain beam component indication information is used to indicate the L air domain beam components selected by the terminal equipment
  • the frequency domain delay component indication information is used to indicate the M v frequency domain delay components selected by the terminal equipment
  • the combination coefficient indication information is Instructing the terminal device to determine T groups of combination coefficients corresponding to consecutive T moments, the information on the non-zero coefficient positions in the matrix of the T groups of combination coefficients is the same, and the parameter L and the parameter M v are positive integers.
  • the time domain Doppler component is represented by the phase offset between adjacent moments when the downlink pilot signal is sent; or the time domain Doppler component is represented by the basis vector.
  • the time domain Doppler component is represented by a phase offset.
  • the expression of the time domain Doppler component is as follows:
  • the parameter L indicates the number of airspace beam components selected by the terminal equipment.
  • the parameter M v indicates the frequency domain delay selected by the terminal equipment. The number of components, parameter L and parameter M v are positive integers.
  • time domain Doppler component is represented by a basis vector, and the expression of the time domain Doppler component is as follows:
  • the K basis vectors in W d are selected by the terminal device from candidate basis vectors; or, the K basis vectors in W d are fixed or predefined basis vectors.
  • calculation module 1003 is used for:
  • the precoding matrix for downlink data transmission at time t is calculated through the following formula:
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • H represents the conjugate transpose of the matrix
  • calculation module 1003 is used for:
  • the precoding matrix for downlink data transmission at time t is calculated through at least one of the following formulas:
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • H represents the conjugate transpose of the matrix
  • calculation module 1003 is used for:
  • the precoding matrix for downlink data transmission at time t is calculated through at least one of the following formulas:
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components, and Represents the matrix of combination coefficients
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • D is the time domain Doppler component represented by the phase offset between adjacent moments when the downlink pilot signal is sent
  • W d is The time domain Doppler component represented by the basis vector, D, and It is determined based on the T group combination coefficient, and represents the power normalization factor
  • H represents the conjugate transpose of the matrix.
  • the time intervals between adjacent moments in T consecutive moments are equal, the time difference between moment t and the first moment in T consecutive moments is ⁇ t, and ⁇ t is T consecutive moments.
  • the precoding matrix for downlink data transmission at time t is calculated through the following formula:
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • parameter L represents the number of air domain beam components selected by the terminal equipment
  • parameter M v represents the number of frequency domain delay components selected by the terminal equipment
  • parameter L and parameter M v are positive integers
  • H represents Conjugate transpose of a matrix.
  • the target time interval is the time interval between adjacent moments among T consecutive moments, and n is a positive integer;
  • the precoding matrix for downlink data transmission at time t is calculated through at least one of the following formulas:
  • W 1 represents the matrix composed of basis vectors corresponding to the spatial domain beam components
  • W f represents the matrix composed of basis vectors corresponding to the frequency domain delay component
  • f d,k (T) represents the elements corresponding to the T-th row of the DFT basis vector
  • k K represents the K-th DFT basis vector
  • O 3 represents the oversampling factor
  • H represents the conjugate transpose of the matrix.
  • the downlink pilot signal includes at least one of the following:
  • the device provided in the above embodiment implements its functions, only the division of the above functional modules is used as an example. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG 11 shows a schematic structural diagram of a communication device (terminal device or network device) provided by an exemplary embodiment of the present application.
  • the communication device 110 includes: a processor 1101, a receiver 1102, a transmitter 1103, a memory 1104 and a bus 1105 .
  • the processor 1101 includes one or more processing cores.
  • the processor 1101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1102 and the transmitter 1103 can be implemented as a communication component, and the communication component can be a communication chip.
  • the memory 1104 is connected to the processor 1101 through a bus 1105.
  • the memory 1104 can be used to store at least one instruction, and the processor 1101 is used to execute the at least one instruction to implement each step in the above method embodiment.
  • memory 1104 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read -Only Memory (ROM), magnetic memory, flash memory, Programmable Read-Only Memory (PROM).
  • magnetic or optical disks electrically erasable programmable Read-only memory (Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read -Only Memory (ROM), magnetic memory, flash memory, Programmable Read-Only Memory (PROM).
  • EEPROM electrically erasable programm
  • the processor and transceiver in the communication device involved in the embodiment of the present application can be implemented together as a communication chip, or the transceiver alone forms a communication chip.
  • the transmitter in the transceiver performs the sending step performed by the terminal device in any of the above methods
  • the receiver in the transceiver performs the receiving step performed by the terminal device in any of the above methods
  • the processor Perform steps other than sending and receiving steps, which will not be described here.
  • the processor and transceiver in the communication device involved in the embodiment of the present application can be implemented together as a communication chip, or the transceiver alone forms a communication chip.
  • the transmitter in the transceiver performs the sending step performed by the network device in any of the above methods
  • the receiver in the transceiver performs the receiving step performed by the network device in any of the above methods
  • the processor Perform steps other than sending and receiving steps, which will not be described here.
  • a computer-readable storage medium in which at least one instruction, at least a program, a code set or an instruction set is stored, and the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the CSI reporting method or the precoding matrix determination method provided by each of the above method embodiments.
  • a chip is also provided.
  • the chip includes programmable logic circuits and/or program instructions. When the chip is run on a communication device, it is used to implement the CSI provided by each of the above method embodiments. reporting method or precoding matrix determination method.
  • a computer program product is also provided.
  • the computer program product When the computer program product is run on a processor of a computer device, the computer device performs the above-mentioned CSI reporting method or precoding matrix determination method.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种CSI的上报方法、预编码矩阵的确定方法、装置及设备,涉及移动通信领域。该方法包括:接收网络设备在连续T个时刻发送的下行导频信号;根据连续T个时刻的下行导频信号,估计连续T个时刻的下行信道信息;根据连续T个时刻的下行信道信息,确定连续T个时刻对应的CSI;向网络设备上报CSI;其中,CSI用于网络设备计算时刻t的下行数据传输的预编码矩阵,时刻t在连续T个时刻之后。本申请能够使网络设备根据终端设备一次上报的CSI,实现计算未来不同时刻的预编码矩阵。在保证数据传输性能的同时,避免终端设备由于快速移动从而频繁上报CSI,减小了终端设备上报CSI的周期,降低了终端设备的上行反馈开销。

Description

CSI的上报方法、预编码矩阵的确定方法、装置及设备 技术领域
本申请涉及移动通信领域,特别涉及一种CSI的上报方法、预编码矩阵的确定方法、装置及设备。
背景技术
在新空口(New Radio,NR)系统中,终端设备通过向网络设备上报信道状态信息(Channel Status Information,CSI),使得网络设备可以根据终端设备上报的信息,计算下行数据传输所使用的预编码矩阵。
在版本16(Release 16,R16)中,提供了R16版本2(Type II)码本,以及R16 Type II端口选择码本。在R17中,提供了R17 Type II端口选择码本。通过上述码本,能够实现终端设备进行高精度的CSI的量化反馈。
对于低速移动的终端设备,网络设备根据终端设备上报的上述码本能够准确计算相应信道的预编码矩阵,提高数据传输的性能。而对于中高速移动的终端设备,若采用与低速移动的终端设备相同的CSI上报周期,由于终端设备移动会引起不同时刻的信道快速变化,基于上述码本计算的预编码矩阵可能存在和信道不匹配的问题,从而降低数据传输性能。针对快速变化的信道,如何设计相应的码本并计算出和信道相匹配的预编码矩阵是亟待解决的问题。
发明内容
本申请实施例提供了一种CSI的上报方法、预编码矩阵的确定方法、装置及设备。所述技术方案如下:
根据本申请的一方面,提供了一种CSI的上报方法,所述方法由终端设备执行,所述方法包括:
接收网络设备在连续T个时刻发送的下行导频信号;
根据所述连续T个时刻的所述下行导频信号,估计所述连续T个时刻的下行信道信息;
根据所述连续T个时刻的所述下行信道信息,确定所述连续T个时刻对应的CSI;
向所述网络设备上报所述CSI;
其中,所述CSI用于所述网络设备计算时刻t的下行数据传输的预编码矩阵,所述时刻t在所述连续T个时刻之后,T为正整数。
根据本申请的另一方面,提供了一种预编码矩阵的确定方法,所述方法由网络设备执行,所述方法包括:
在连续T个时刻向终端设备发送下行导频信号;
接收所述终端设备上报的所述连续T个时刻对应的CSI;
根据所述CSI计算时刻t的下行数据传输的预编码矩阵;
其中,所述CSI是所述终端设备根据所述下行导频信号确定的,所述时刻t在所述连续T个时刻之后,T为正整数。
根据本申请的另一方面,提供了一种CSI的上报装置,所述装置包括:
接收模块,用于接收网络设备在连续T个时刻发送的下行导频信号;
确定模块,用于根据所述连续T个时刻的所述下行导频信号,估计所述连续T个时刻的下行信道信息;
所述确定模块,还用于根据所述连续T个时刻的所述下行信道信息,确定所述连续T个时刻对应的CSI;
发送模块,用于向所述网络设备上报所述CSI;
其中,所述CSI用于所述网络设备计算时刻t的下行数据传输的预编码矩阵,所述时刻t在所述连续T个时刻之后,T为正整数。
根据本申请的另一方面,提供了一种预编码矩阵的确定装置,所述装置包括:
发送模块,用于在连续T个时刻向终端设备发送下行导频信号;
接收模块,用于接收所述终端设备上报的所述连续T个时刻对应的CSI;
计算模块,用于根据所述CSI计算时刻t的下行数据传输的预编码矩阵;
其中,所述CSI是所述终端设备根据所述下行导频信号确定的,所述时刻t在所述连续T个时刻之后,T为正整数。
根据本申请的另一方面,提供了一种终端设备,所述终端设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的CSI的上报方法。
根据本申请的另一方面,提供了一种网络设备,所述网络设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的预编码矩阵的确定方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如上述方面所述的CSI的上报方法或预编码矩阵的确定方法。
根据本申请的另一方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于实现上述方面所述的CSI的上报方法或预编码矩阵的确定方法。
根据本申请的另一方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,使得计算机设备执行上述方面所述的CSI的上报方法或预编码矩阵的确定方法。
本申请提供的技术方案至少包括如下有益效果:
通过终端设备根据连续T个时刻的下行导频信号来确定CSI,能够在确定CSI的过程中考虑到信道信息在时域上的相关性。网络设备使用该CSI来确定预编码矩阵,能够使网络设备根据终端设备一次上报的CSI,实现计算未来不同时刻的预编码矩阵。在保证数据传输性能的同时,避免终端设备由于快速移动从而频繁上报CSI,减小了终端设备上报CSI的周期,降低了终端设备的上行反馈开销。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的通信系统的系统架构的示意图;
图2是本申请一个示例性实施例提供的CSI的上报方法的流程图;
图3是本申请一个示例性实施例提供的预编码矩阵的确定方法的流程图;
图4是本申请一个示例性实施例提供的预编码矩阵的确定方法的流程图;
图5是本申请一个示例性实施例提供的发送CSI-RS的示意图;
图6是本申请一个示例性实施例提供的预编码矩阵的确定方法的流程图;
图7是本申请一个示例性实施例提供的发送CSI-RS的示意图;
图8是本申请一个示例性实施例提供的预编码矩阵的确定方法的流程图;
图9是本申请一个示例性实施例提供的CSI的上报装置的结构框图;
图10是本申请一个示例性实施例提供的预编码矩阵的确定装置的结构框图;
图11是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在NR系统中,终端设备通过向网络设备上报CSI,使得网络设备可以根据终端设备上报的信息,计算下行数据传输所使用的预编码矩阵。在R16中,提供了R16 Type II码本,以及R16 Type II端口选择码本。在R17中,提供了R17 Type II端口选择码本。通过上述码本,能够实现终端设备进行高精度的CSI的量化反馈。网络设备根据终端设备上报的上述码本,计算下行数据传输所使用的预编码矩阵,可以使数据发送过程适应信道状态的变化,能够提高数据传输的性能。
对于R16 Type II码本和R16 Type II端口选择码本,其码本结构可表示为
Figure PCTCN2022089667-appb-000001
其中,
Figure PCTCN2022089667-appb-000002
表示由频域基向量(Frequency Domain basis,FD basis)组成的频域压缩矩阵,N 3表示预编码矩阵指示(Precoding Matrix Indication,PMI)的子带个数,M v表示传输秩为v时的FD basis的个数,
Figure PCTCN2022089667-appb-000003
表示复数。
对于R16 Type II码本,
Figure PCTCN2022089667-appb-000004
表示空域基向量(Spatial Domain basis,SD basis)组成的空域压缩对角阵,N t表示发送天线的端口数,L表示一个极化方向上包含的SD basis的个数。通常天线存在两个极化方向,两个极化方向采用相同的SD basis。
Figure PCTCN2022089667-appb-000005
表示组合系数的矩阵。
当传输秩v>1时,所有传输层采用相同的L个SD basis,每一层独立采用一个
Figure PCTCN2022089667-appb-000006
和W f,不同层可以采用不同的M v个FD bases。该传输层用于网络设备将码字(Code Word)映射至端口。示例地,上述W 1
Figure PCTCN2022089667-appb-000007
和W f的计算是终端设备根据接收的信道状态信息参考信号(Channel Status Information-Reference Signal,CSI-RS)估计得到下行信道信息,进行计算得到的。
当用户(终端设备)以中高速度移动时,为了获得准确的预编码矩阵,用户需要采用更小的上报周期来上报CSI,若仍采用上述Type II码本进行CSI上报,将大大增加终端设备的上行反馈开销。若用户使用的CSI的上报周期维持不变或较大,将导致系统性能降低。
对于中高速度移动的终端设备,由于多普勒(Doppler)偏移会引起信道随着时间的变化而快速变化,若继续采用上述Type II码本,则需要终端设备频繁地反馈CSI以适应信道的变化,从而保证数据传输性能,否则数据传输性能降低。但频繁地上报CSI又会增加终端设备的上行反馈开销。在连续的一定时间内,不同时刻的信道信息在时域上具有相关性,或者 Doppler偏移在一定时间内是固定不变的,因此信道信息在时域上具有相关性。本申请实施例提供的方法,能够利用信道信息的时域相关性或者信道的Doppler信息,从而解决上述问题。具体的,通过利用信道的Doppler信息对上述R16 Type II码本进行增强设计,能够实现使网络设备根据终端设备一次上报的CSI,可以计算未来不同时刻的预编码矩阵。在保证数据传输性能的同时,避免终端设备由于快速移动从而频繁上报CSI,减小了终端设备上报CSI的周期,降低了终端设备的上行反馈开销。
图1示出了本申请一个实施例提供的通信系统的系统架构的示意图。该系统架构可以包括:终端设备10、接入网设备20和核心网设备30。
终端设备10可以指UE(User Equipment,用户设备)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、无线通信设备、用户代理或用户装置。可选地,终端设备还可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digita1 Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5GS(5th Generation System,第五代移动通信系统)中的终端设备或者未来演进的PLMN(Pub1ic Land Mobi1e Network,公用陆地移动通信网络)中的终端设备等,本申请实施例对此并不限定。为方便描述,上面提到的设备统称为终端设备。终端设备10的数量通常为多个,每一个接入网设备20所管理的小区内可以分布一个或多个终端设备10。
接入网设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的设备。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为接入网设备。可选地,通过接入网设备20,终端设备10和核心网设备30之间可以建立通信关系。示例性地,在LTE系统中,接入网设备20可以是EUTRAN(Evolved Universal Terrestrial Radio Access Network,演进的通用陆地无线网)或者EUTRAN中的一个或者多个eNodeB;在5G NR系统中,接入网设备20可以是RAN或者RAN中的一个或者多个gNB。
核心网设备30的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。例如,5G NR系统中的核心网设备可以包括AMF(Access and Mobility Management Function,接入和移动性管理功能)实体、UPF(User Plane Function,用户平面功能)实体、SMF(Session Management Function,会话管理功能)实体和定位管理功能(Location Management Function,LMF)实体等设备。接入网设备20和核心网设备30可统称为网络设备。本申请实施例中,以核心网设备30为LMF网元为例进行说明。
在一个示例中,接入网设备20与核心网设备30之间通过某种空中技术相互通信,例如5G NR系统中的NG接口。接入网设备20与终端设备10之间通过某种空中技术互相通信,例如Uu接口。
图2示出了本申请一个实施例提供的CSI的上报方法的流程图。该方法可以应用于图1所示的终端设备中。该方法包括:
步骤202:接收网络设备在连续T个时刻发送的下行导频信号。
该下行导频信号用于终端设备确定下行信道信息,T为正整数。可选地,该下行导频信号包括如下至少一种:
·CSI-RS;
·解调参考信号(Demodulation Reference Signal,DMRS);
·CSI-RS和DMRS的组合。
可选地,上述参数T是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的。
步骤204:根据连续T个时刻的下行导频信号,估计连续T个时刻的下行信道信息。
可选地,终端设备根据连续T个时刻中各时刻的下行导频信号,能够估计连续T个时刻中各时刻的下行信道信息。该下行信道信息是用于反映下行信道的特征的信息。
步骤206:根据连续T个时刻的下行信道信息,确定连续T个时刻对应的CSI。
网络设备根据终端设备确定的CSI,能够确定用于下行数据传输的预编码矩阵。CSI也可称为码本参数信息。可选地,CSI中的信息包括以下两种情况:
第一种情况:
该CSI包括如下至少一种信息:
·空域波束分量指示信息;
·频域时延分量指示信息;
·时域Doppler分量指示信息;
·组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,时域Doppler分量指示信息用于指示终端设备所选的K个时域Doppler分量,组合系数指示信息用于指示终端设备确定的组合系数,参数L、参数M v和参数K为正整数。可选地,时域Doppler分量指示信息用于指示终端设备所选的K个时域基向量,或者是K个相位偏移,即时域Doppler分量通过相位偏移或基向量表示。
可选地,上述参数K是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的;
·终端设备根据下行信道信息确定的。
在终端设备根据下行信道信息确定参数K的情况下,终端设备会向网络设备上报终端设备确定的参数K。
可选地,在参数T和/或参数K是网络设备配置的情况下,参数T和/或参数K是网络设备通过如下至少一种信令向终端设备配置的:
·无线资源控制(Radio Resource Control,RRC)信令;
·媒介接入控制-控制单元(Media Access Control-Control Element,MAC-CE)信令;
·下行控制信息(Downlink Control Information,DCI)。
可选地,该时域Doppler分量满足如下条件中的至少之一:
·不同极化方向对应的时域Doppler分量相同或不同;
·不同空频分量对应的时域Doppler分量相同或不同;
·不同时频分量对应的时域Doppler分量相同或不同;
其中,空频分量是由空域波束分量和频域时延分量组成的,时频分量是由频域时延分量和时域Doppler分量组成的。由于通常存在两个极化方向,因此该两个极化方向对应的时域Doppler分量相同或不同。上述极化方向指网络设备向终端设备发送数据的极化方向。
可选地,在下行数据传输为多层传输的情况下,不同传输层对应的时域Doppler分量相同或不同。多层传输即存在多个传输层,该传输层用于网络设备将码字映射至端口。
可选地,该时域Doppler分量通过发送下行导频信号的相邻时刻之间的相位偏移表示;或,时域Doppler分量通过基向量表示。
在时域Doppler分量通过相位偏移表示的情况下,若参数K是终端设备确定的,则参数K是终端设备根据每个传输层的非零系数的个数确定的。
可选地,时域Doppler分量通过基向量表示,基向量包括如下至少一种:
·离散傅里叶变换(Discrete Fourier Transform,DFT)基向量;
·离散余弦变换(Discrete Cosine Transform,DCT)基向量;
·多项式基向量。
第二种情况:
该CSI包括如下至少一种信息:
·空域波束分量指示信息;
·频域时延分量指示信息;
·组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,组合系数指示信息用于指示终端设备确定的连续T个时刻对应的T组组合系数,T组组合系数的矩阵中非零系数位置的信息相同,参数L和参数M v为正整数。示例性地,非零系数能够对应一个波束,非零系数位置的信息相同表示使用的波束相同。
可选地,上述空域波束分量和频域时延分量能够通过基向量表示,例如通过离散傅里叶变换(Discrete Fourier Transform,DFT)基向量表示。上述参数L和参数Mv中的每个参数,是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的;
·终端设备根据下行信道信息确定的。
步骤208:向网络设备上报CSI。
可选地,终端设备会向网络设备上报其确定的CSI中的全部信息或部分信息。CSI用于网络设备计算时刻t的下行数据传输的预编码矩阵,该时刻t在连续T个时刻之后。可选地,网络设备根据终端设备上报的CSI,计算连续T个时刻中各时刻的下行数据传输的预编码矩阵,作为时刻t的预编码矩阵。网络设备也能够根据终端设备上报的CSI,直接计算出时刻t的预编码矩阵。
综上所述,本实施例提供的方法,通过终端设备根据连续T个时刻的下行导频信号来确定CSI,能够在确定CSI的过程中考虑到信道信息在时域上的相关性。网络设备使用该CSI来确定预编码矩阵,能够使网络设备根据终端设备一次上报的CSI,实现计算未来不同时刻的预编码矩阵。在保证数据传输性能的同时,避免终端设备由于快速移动从而频繁上报CSI,减小了终端设备上报CSI的周期,降低了终端设备的上行反馈开销。
图3示出了本申请一个实施例提供的预编码矩阵的确定方法的流程图。该方法可以应用于图1所示的网络设备中。该方法包括:
步骤302:在连续T个时刻向终端设备发送下行导频信号。
该下行导频信号用于终端设备确定下行信道信息,T为正整数。可选地,该下行导频信号包括如下至少一种:
·CSI-RS;
·DMRS;
·CSI-RS和DMRS的组合。
可选地,上述参数T是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的。
步骤304:接收终端设备上报的连续T个时刻对应的CSI。
该CSI是终端设备根据下行导频信号确定的。终端设备会根据连续T个时刻的下行导频 信号,估计连续T个时刻的下行信道信息。之后根据连续T个时刻的下行信道信息,从而确定连续T个时刻对应的CSI。可选地,CSI中的信息包括以下两种情况:
第一种情况:
该CSI包括如下至少一种信息:
·空域波束分量指示信息;
·频域时延分量指示信息;
·时域Doppler分量指示信息;
·组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,时域Doppler分量指示信息用于指示终端设备所选的K个时域Doppler分量,组合系数指示信息用于指示终端设备确定的组合系数,参数L、参数M v和参数K为正整数。可选地,时域Doppler分量指示信息用于指示终端设备所选的K个时域基向量,或者是K个相位偏移,即时域Doppler分量通过相位偏移或基向量表示。
可选地,该时域Doppler分量满足如下条件中的至少之一:
·不同极化方向对应的时域Doppler分量相同或不同;
·不同空频分量对应的时域Doppler分量相同或不同;
·不同时频分量对应的时域Doppler分量相同或不同;
其中,空频分量是由空域波束分量和频域时延分量组成的,时频分量是由频域时延分量和时域Doppler分量组成的。由于通常存在两个极化方向,因此该两个极化方向对应的时域Doppler分量相同或不同。上述极化方向指网络设备向终端设备发送数据的极化方向。
可选地,在下行数据传输为多层传输的情况下,不同传输层对应的时域Doppler分量相同或不同。多层传输即存在多个传输层,该传输层用于网络设备将码字映射至端口。
可选地,该时域Doppler分量通过发送下行导频信号的相邻时刻之间的相位偏移表示;或,时域Doppler分量通过基向量表示。
可选地,时域Doppler分量通过基向量表示,基向量包括如下至少一种:
·DFT基向量;
·DCT基向量;
·多项式基向量。
第二种情况:
该CSI包括如下至少一种信息:
·空域波束分量指示信息;
·频域时延分量指示信息;
·组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,组合系数指示信息用于指示终端设备确定的连续T个时刻对应的T组组合系数,T组组合系数的矩阵中非零系数位置的信息相同,参数L和参数M v为正整数。示例性地,非零系数能够对应一个波束,非零系数位置的信息相同表示使用的波束相同。
可选地,上述空域波束分量和频域时延分量能够通过DFT基向量表示。
步骤306:根据CSI计算时刻t的下行数据传输的预编码矩阵。
该时刻t在连续T个时刻之后。可选地,网络设备根据终端设备上报的CSI,计算连续T个时刻中各时刻的下行数据传输的预编码矩阵,作为时刻t的预编码矩阵。网络设备也能够根据终端设备上报的CSI,直接计算出时刻t的预编码矩阵。
网络设备在根据CSI计算时刻t的下行数据传输的预编码矩阵的过程中,会使用上述时 域Doppler分量。可选地,针对上述CSI的第一种情况,时域Doppler分量是由终端设备确定的。针对上述CSI的第二种情况,时域Doppler分量是由网络设备确定的。
综上所述,本实施例提供的方法,通过终端设备根据连续T个时刻的下行导频信号来确定CSI,能够在确定CSI的过程中考虑到信道信息在时域上的相关性。网络设备使用该CSI来确定预编码矩阵,能够使网络设备根据终端设备一次上报的CSI,实现计算未来不同时刻的预编码矩阵。在保证数据传输性能的同时,避免终端设备由于快速移动从而频繁上报CSI,减小了终端设备上报CSI的周期,降低了终端设备的上行反馈开销。
本申请实施例提供的方法,能够实现对CSI的上报过程进行增强设计,从而实现在确定下行数据传输的预编码矩阵时,使用时域Doppler分量进行确定。通过使用信道的Doppler信息(时域Doppler分量),能够考虑到信道信息在时域上的相关性。使用时域Doppler分量来确定预编码矩阵,能够使网络设备根据终端设备一次上报的CSI,实现计算未来不同时刻的预编码矩阵。在保证数据传输性能的同时,避免终端设备由于快速移动从而频繁上报CSI,减小了终端设备上报CSI的周期,降低了终端设备的上行反馈开销。其中,时域Doppler分量可通过网络设备发送下行导频信号的相邻时刻之间的相位偏移表示,也可通过基向量表示。并且,时域Doppler分量可由终端设备确定,或由网络设备确定。以下通过三个实施例对本申请提供的方法进行介绍:
1、针对时域Doppler分量通过相位偏移表示,由终端设备确定时域Doppler分量的情况:
图4示出了本申请一个实施例提供的预编码矩阵的确定方法的流程图。该方法可以应用于图1所示的系统。该方法包括:
步骤402:网络设备在连续T个时刻向终端设备发送下行导频信号。
该下行导频信号用于终端设备确定下行信道信息,T为正整数。可选地,该下行导频信号包括如下至少一种:
·CSI-RS;
·DMRS;
·CSI-RS和DMRS的组合。
可选地,上述参数T是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的。
步骤404:终端设备根据连续T个时刻的下行导频信号,估计连续T个时刻的下行信道信息。
可选地,终端设备根据连续T个时刻中各时刻的下行导频信号,能够估计连续T个时刻中各时刻的下行信道信息。该下行信道信息是用于反映下行信道的特征的信息。
步骤406:终端设备根据连续T个时刻的下行信道信息,确定连续T个时刻对应的第一种CSI。
网络设备根据终端设备确定的CSI,能够确定用于下行数据传输的预编码矩阵。CSI也可称为码本参数信息。可选地,该CSI包括如下至少一种信息:
·空域波束分量指示信息;
·频域时延分量指示信息;
·时域Doppler分量指示信息;
·组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,时域Doppler分量指示信息用于指示终端设备所选的K个时域Doppler分量,组合系数指示信息用于指示终端设备确定的组合 系数,参数L、参数M v和参数K为正整数。可选地,时域Doppler分量指示信息用于指示终端设备所选的K个时域基向量,或者是K个相位偏移,即时域Doppler分量通过相位偏移或基向量表示。
可选地,上述空域波束分量和频域时延分量能够通过DFT基向量表示。上述参数L和参数M v中的每个参数,是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的;
·终端设备根据下行信道信息确定的。
可选地,上述参数K是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的;
·终端设备根据下行信道信息确定的。
在终端设备根据下行信道信息确定参数K的情况下,终端设备会向网络设备上报终端设备确定的参数K。
可选地,在参数T和/或参数K是网络设备配置的情况下,参数T和/或参数K是网络设备通过如下至少一种信令向终端设备配置的:
·RRC信令;
·MAC-CE信令;
·DCI。
可选地,该时域Doppler分量满足如下条件中的至少之一:
·不同极化方向对应的时域Doppler分量相同或不同;
·不同空频分量对应的时域Doppler分量相同或不同;
·不同时频分量对应的时域Doppler分量相同或不同;
其中,空频分量是由空域波束分量和频域时延分量组成的,时频分量是由频域时延分量和时域Doppler分量组成的。由于通常存在两个极化方向,因此该两个极化方向对应的时域Doppler分量相同或不同。上述极化方向指网络设备向终端设备发送数据的极化方向。
可选地,在下行数据传输为多层传输的情况下,不同传输层对应的时域Doppler分量相同或不同。多层传输即存在多个传输层,该传输层用于网络设备将码字映射至端口。
可选地,该时域Doppler分量通过发送下行导频信号的相邻时刻之间的相位偏移表示。在时域Doppler分量通过相位偏移表示的情况下,若参数K是终端设备确定的,则参数K是终端设备根据每个传输层的非零系数的个数确定的。
可选地,时域Doppler分量通过相位偏移表示,该时域Doppler分量的表达式如下:
Figure PCTCN2022089667-appb-000008
其中,e表示自然常数,j表示虚数。
Figure PCTCN2022089667-appb-000009
表示第x个空域波束分量和第y个频域时延分量对应的相位偏移值。参数L表示终端设备所选的空域波束分量的数量,参数M v表示终端设备所选的频域时延分量的数量,参数L和参数M v为正整数。
可选地,终端设备在向网络设备上报时域Doppler分量的情况下,终端设备会上报满足如下条件的第x个空域波束分量和第y个频域时延分量对应的相位偏移值:
第x个空域波束分量和第y个频域时延分量对应的组合系数的幅度不为0。
可选地,终端设备还会向网络设备上报最强系数。
步骤408:终端设备向网络设备上报第一种CSI。
可选地,终端设备会向网络设备上报其确定的CSI中的全部信息或部分信息。CSI用于网络设备计算时刻t的下行数据传输的预编码矩阵,该时刻t在连续T个时刻之后。可选地,终端设备在上报CSI时,会对CSI中的信息进行量化。
步骤410:网络设备根据第一种CSI计算时刻t的下行数据传输的预编码矩阵。
可选地,网络设备根据终端设备上报的CSI,计算连续T个时刻中各时刻的下行数据传输的预编码矩阵,作为时刻t的预编码矩阵。网络设备也能够根据终端设备上报的CSI,直接计算出时刻t的预编码矩阵。
针对网络设备计算连续T个时刻的预编码矩阵作为时刻t的预编码矩阵的情况:
时域Doppler分量与时间存在对应关系,网络设备根据终端设备上报的CSI,通过如下公式能够计算连续T个时刻中各时刻对应的预编码矩阵,并将其作为时刻t的下行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000010
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000011
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000012
表示功率归一化因子,H表示矩阵的共轭转置。
针对网络设备直接计算时刻t的预编码矩阵的情况:
可选地,连续T个时刻中的相邻时刻之间的时间间隔相等,时刻t与连续T个时刻中的第一个时刻之间的时间差为Δt,并且Δt为连续T个时刻中的相邻时刻的时间间隔的整数倍。网络设备根据终端设备上报的CSI,通过如下公式能够直接计算时刻t的下行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000013
Figure PCTCN2022089667-appb-000014
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000015
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000016
表示功率归一化因子。参数L表示终端设备所选的空域波束分量的数量,参数M v表示终端设备所选的频域时延分量的数量,H表示矩阵的共轭转置,参数L和参数M v为正整数。
在一个具体的例子中,本申请实施例提供的方法用于对R16 Type II码本进行优化设计,时域Doppler分量采用相位偏移表示。示例地,图5是本申请一个示例性实施例提供的发送CSI-RS的示意图。如图5所示,用于进行下行信道估计的下行导频信号为CSI-RS。gNB在连续T=2个时刻向UE发送CSI-RS,并定义发送的CSI-RS为一个CSI-RS突发(burst)。示例性地,数据通过一流传输,即传输秩v=1,发送天线端口数为N t,PMI子带的个数为N 3。gNB通过RRC信令向UE配置了码本参数以确定L=2,M v=2,非零系数的个数为K 0=4。
UE根据接收的CSI-RS burst估计出这两个时刻的下行信道信息。假设UE根据第一时刻的信道信息计算的SD basis和FD basis分别为
Figure PCTCN2022089667-appb-000017
Figure PCTCN2022089667-appb-000018
UE利用W 1和W f,根据两个时刻中的第一时刻(第一个时刻,即t 0时刻)的下行信息计算组合系数矩阵
Figure PCTCN2022089667-appb-000019
Figure PCTCN2022089667-appb-000020
Figure PCTCN2022089667-appb-000021
其中
Figure PCTCN2022089667-appb-000022
Figure PCTCN2022089667-appb-000023
为复数,其幅度大于0。UE再利用相同的W 1和W f,根据两个时刻中的第二时刻(第二个时刻,即t 0+1时刻)的下行信息计算组合系数矩阵
Figure PCTCN2022089667-appb-000024
以及计算时域Doppler分量
Figure PCTCN2022089667-appb-000025
其中,
Figure PCTCN2022089667-appb-000026
Figure PCTCN2022089667-appb-000027
UE把W 1和W f的指示信息(用于向gNB指示W 1和W f)、量化后的组合系数矩阵和量化后的时域Doppler分量D上报给gNB。gNB通过
Figure PCTCN2022089667-appb-000028
Figure PCTCN2022089667-appb-000029
Figure PCTCN2022089667-appb-000030
分别计算t 0时刻和t 0+1时刻的预编码矩阵,该预编码矩阵可作为连续T个 时刻之后的时刻t的下行数据传输的预编码矩阵。gNB也可以通过
Figure PCTCN2022089667-appb-000031
计算时刻t的预编码矩阵,其中
Figure PCTCN2022089667-appb-000032
Figure PCTCN2022089667-appb-000033
Figure PCTCN2022089667-appb-000034
表示功率归一化因子。Δt为时刻t与t 0时刻之间的相对时间差,并且Δt为t 0时刻与t 0+1时刻相对时间差的整数倍。
综上所述,本实施例提供的方法,通过终端设备根据连续T个时刻的下行导频信号来确定时域Doppler分量,能够实现在确定CSI的过程中考虑到信道信息在时域上的相关性。网络设备使用该时域Doppler分量来确定预编码矩阵,能够使网络设备根据终端设备一次上报的CSI,实现计算未来不同时刻的预编码矩阵。在保证数据传输性能的同时,避免终端设备由于快速移动从而频繁上报CSI,减小了终端设备上报CSI的周期,降低了终端设备的上行反馈开销。另外,确定采用相位偏移表示的时域Doppler分量,提供了一种确定时域Doppler分量的方式。
2、针对时域Doppler分量通过基向量表示,由终端设备确定时域Doppler分量的情况:
图6示出了本申请一个实施例提供的预编码矩阵的确定方法的流程图。该方法可以应用于图1所示的系统。该方法包括:
步骤602:网络设备在连续T个时刻向终端设备发送下行导频信号。
该下行导频信号用于终端设备确定下行信道信息,T为正整数。可选地,该下行导频信号包括如下至少一种:
·CSI-RS;
·DMRS;
·CSI-RS和DMRS的组合。
可选地,上述参数T是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的。
步骤604:终端设备根据连续T个时刻的下行导频信号,估计连续T个时刻的下行信道信息。
可选地,终端设备根据连续T个时刻中各时刻的下行导频信号,能够估计连续T个时刻中各时刻的下行信道信息。该下行信道信息是用于反映下行信道的特征的信息。
步骤606:终端设备根据连续T个时刻的下行信道信息,确定连续T个时刻对应的第二种CSI。
网络设备根据终端设备确定的CSI,能够确定用于下行数据传输的预编码矩阵。CSI也可称为码本参数信息。可选地,该CSI包括如下至少一种信息:
·空域波束分量指示信息;
·频域时延分量指示信息;
·时域Doppler分量指示信息;
·组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,时域Doppler分量指示信息用于指示终端设备所选的K个时域Doppler分量,组合系数指示信息用于指示终端设备确定的组合系数,参数L、参数M v和参数K为正整数。可选地,时域Doppler分量指示信息用于指示终端设备所选的K个时域基向量,或者是K个相位偏移,即时域Doppler分量通过相位偏移或基向量表示。
可选地,上述空域波束分量和频域时延分量能够通过DFT基向量表示。上述参数L和参数M v中的每个参数,是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的;
·终端设备根据下行信道信息确定的。
可选地,上述参数K是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的;
·终端设备根据下行信道信息确定的。
在终端设备根据下行信道信息确定参数K的情况下,终端设备会向网络设备上报终端设备确定的参数K。
可选地,在参数T和/或参数K是网络设备配置的情况下,参数T和/或参数K是网络设备通过如下至少一种信令向终端设备配置的:
·RRC信令;
·MAC-CE信令;
·DCI。
可选地,该时域Doppler分量满足如下条件中的至少之一:
·不同极化方向对应的时域Doppler分量相同或不同;
·不同空频分量对应的时域Doppler分量相同或不同;
·不同时频分量对应的时域Doppler分量相同或不同;
其中,空频分量是由空域波束分量和频域时延分量组成的,时频分量是由频域时延分量和时域Doppler分量组成的。由于通常存在两个极化方向,因此该两个极化方向对应的时域Doppler分量相同或不同。上述极化方向指网络设备向终端设备发送数据的极化方向。
可选地,在下行数据传输为多层传输的情况下,不同传输层对应的时域Doppler分量相同或不同。多层传输即存在多个传输层,该传输层用于网络设备将码字映射至端口。
可选地,该时域Doppler分量通过基向量表示。该基向量包括如下至少一种:
·DFT基向量;
·DCT基向量;
·多项式基向量。
可选地,通过引入参数O 3,能够实现对时域Doppler分量进行过采样扩展,从而获得更多的基向量信息。
可选地,时域Doppler分量通过基向量表示,该时域Doppler分量的表达式如下:
W d=[f d,1 … f d,K];
其中,W d中的K个基向量是终端设备从候选基向量中选择的;或者,W d中的K个基向量是固定或预定义的基向量。可选地,终端设备通过组合系数或位图(bitmap),向网络设备指示所选的K个时域Doppler分量。
步骤608:终端设备向网络设备上报第二种CSI。
可选地,终端设备会向网络设备上报其确定的CSI中的全部信息或部分信息。CSI用于网络设备计算时刻t的下行数据传输的预编码矩阵,该时刻t在连续T个时刻之后。可选地,终端设备在上报CSI时,会对CSI中的信息进行量化。
步骤610:网络设备根据第二种CSI计算时刻t的下行数据传输的预编码矩阵。
可选地,网络设备根据终端设备上报的CSI,计算连续T个时刻中各时刻的下行数据传输的预编码矩阵,作为时刻t的预编码矩阵。网络设备也能够根据终端设备上报的CSI,直接计算出时刻t的预编码矩阵。
针对网络设备计算连续T个时刻的预编码矩阵作为时刻t的预编码矩阵的情况:
时域Doppler分量与时间存在对应关系,网络设备根据终端设备上报的CSI,通过如下公式中的至少一种能够计算连续T个时刻中各时刻对应的预编码矩阵,并将其作为时刻t的下 行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000035
Figure PCTCN2022089667-appb-000036
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000037
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000038
Figure PCTCN2022089667-appb-000039
表示功率归一化因子,H表示矩阵的共轭转置。
针对网络设备直接计算时刻t的预编码矩阵的情况:
可选地,时域Doppler分量采用DFT基向量表示,连续T个时刻中的相邻时刻之间的时间间隔相等,t=T+n,表示时刻t为T个时刻中最后一个时刻之后,且与T个时刻中最后一个时刻的时间间隔为n倍目标时间间隔的时刻,目标时间间隔为连续T个时刻中的相邻时刻之间的时间间隔,n为正整数。网络设备根据终端设备上报的CSI,通过如下公式中的至少一种能够直接计算时刻t的下行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000040
Figure PCTCN2022089667-appb-000041
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000042
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,f d,k(T)表示DFT基向量的第T行对应的元素,k K表示第K个DFT基向量的索引值,
Figure PCTCN2022089667-appb-000043
Figure PCTCN2022089667-appb-000044
表示功率归一化因子,O 3表示过采样因子,H表示矩阵的共轭转置。
在一个具体的例子中,本申请实施例提供的方法用于对R16 Type II码本进行优化设计,时域Doppler分量采用基向量表示。示例地,图7是本申请一个示例性实施例提供的发送CSI-RS的示意图。如图7所示,用于下行信道估计的下行导频信号为CSI-RS。gNB在连续T=4个时刻向UE发送CSI-RS burst。示例性地,数据通过一流传输,即传输秩v=1,发送天线端口数N t=16,PMI子带的个数为N 3。gNB通过RRC信令向UE配置了码本参数以确定L=2,M v=2,上报的组合系数的个数为K 0=8。时域Doppler分量通过K=2个DFT基向量表示,并且对时域Doppler分量的基向量不做过采样,即DFT基向量对应的参数O 3=1。
UE根据接收的CSI-RS burst估计出这四个时刻的下行信道信息。假设UE根据四个时刻中的第一时刻(第一个时刻,即t 0时刻)的信道信息计算的SD basis和FD basis分别为
Figure PCTCN2022089667-appb-000045
Figure PCTCN2022089667-appb-000046
Figure PCTCN2022089667-appb-000047
UE利用W 1和W f,根据第一时刻的下行信息计算组合系数矩阵
Figure PCTCN2022089667-appb-000048
Figure PCTCN2022089667-appb-000049
类似地,UE再利用相同的W 1和W f,能够实现计算除第一时刻以外的,其余三个时刻对应的组合系数矩阵,分别为
Figure PCTCN2022089667-appb-000050
Figure PCTCN2022089667-appb-000051
Figure PCTCN2022089667-appb-000052
Figure PCTCN2022089667-appb-000053
表示
Figure PCTCN2022089667-appb-000054
通过该方式可相应得到
Figure PCTCN2022089667-appb-000055
Figure PCTCN2022089667-appb-000056
再令
Figure PCTCN2022089667-appb-000057
根据
Figure PCTCN2022089667-appb-000058
可计算出时域Doppler分量
Figure PCTCN2022089667-appb-000059
Figure PCTCN2022089667-appb-000060
UE根据连续T个时刻的下行信道信息和W 1,W f、W d 确定组合系数矩阵
Figure PCTCN2022089667-appb-000061
然后选择其中K 0=8个非零系数上报。UE将W 1和W f的指示信息、量化后的组合系数矩阵和时域Doppler分量W d上报给gNB。gNB通过
Figure PCTCN2022089667-appb-000062
Figure PCTCN2022089667-appb-000063
计算连续T个时刻内各时刻对应的预编码矩阵,该预编码矩阵可作为连续T个时刻之后的时刻t的下行数据传输的预编码矩阵。gNB也可以通过
Figure PCTCN2022089667-appb-000064
Figure PCTCN2022089667-appb-000065
计算时刻t的预编码矩阵。其中,t=T+n,表示时刻t为T个时刻中最后一个时刻之后,且与T个时刻中最后一个时刻的时间间隔为n倍目标时间间隔的时刻,该目标时间间隔为T个时刻中的相邻时刻之间的时间间隔。f d,k(T)表示基向量的第T行对应的元素。
综上所述,本实施例提供的方法,通过终端设备根据连续T个时刻的下行导频信号来确定时域Doppler分量,能够实现在确定CSI的过程中考虑到信道信息在时域上的相关性。网络设备使用该时域Doppler分量来确定预编码矩阵,能够使网络设备根据终端设备一次上报的CSI,实现计算未来不同时刻的预编码矩阵。在保证数据传输性能的同时,避免终端设备由于快速移动从而频繁上报CSI,减小了终端设备上报CSI的周期,降低了终端设备的上行反馈开销。另外,确定采用基向量表示的时域Doppler分量,提供了一种确定时域Doppler分量的方式。
3、针对时域Doppler由网络设备确定的情况:
图8示出了本申请一个实施例提供的预编码矩阵的确定方法的流程图。该方法可以应用于图1所示的系统。该方法包括:
步骤802:网络设备在连续T个时刻向终端设备发送下行导频信号。
该下行导频信号用于终端设备确定下行信道信息,T为正整数。可选地,该下行导频信号包括如下至少一种:
·CSI-RS;
·DMRS;
·CSI-RS和DMRS的组合。
可选地,上述参数T是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的。
步骤804:终端设备根据连续T个时刻的下行导频信号,估计连续T个时刻的下行信道信息。
可选地,终端设备根据连续T个时刻中各时刻的下行导频信号,能够估计连续T个时刻中各时刻的下行信道信息。该下行信道信息是用于反映下行信道的特征的信息。
步骤806:终端设备根据连续T个时刻的下行信道信息,确定连续T个时刻对应的第三种CSI。
网络设备根据终端设备确定的CSI,能够确定用于下行数据传输的预编码矩阵。CSI也可称为码本参数信息。可选地,该CSI包括如下至少一种信息:
·空域波束分量指示信息;
·频域时延分量指示信息;
·组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,组合系数指示信息用于指示终端 设备确定的连续T个时刻对应的T组组合系数,T组组合系数的矩阵中非零系数位置的信息相同,参数L和参数M v为正整数。示例性地,非零系数能够对应一个波束,非零系数位置的信息相同表示使用的波束相同。
可选地,上述空域波束分量和频域时延分量能够通过DFT基向量表示。上述参数L和参数M v中的每个参数,是通过如下至少一种方式确定的:
·网络设备配置的;
·终端设备与网络设备协商预定义的;
·终端设备根据下行信道信息确定的。
可选地,在参数T是网络设备配置的情况下,参数T是网络设备通过如下至少一种信令向终端设备配置的:
·RRC信令;
·MAC-CE信令;
·DCI。
步骤808:终端设备向网络设备上报第三种CSI。
可选地,终端设备会向网络设备上报其确定的CSI中的全部信息或部分信息。CSI用于网络设备计算时刻t的下行数据传输的预编码矩阵,该时刻t在连续T个时刻之后。可选地,终端设备在上报CSI时,会对CSI中的信息进行量化。
步骤810:网络设备根据第三种CSI计算时刻t的下行数据传输的预编码矩阵。
可选地,网络设备根据终端设备上报的CSI,计算连续T个时刻中各时刻的下行数据传输的预编码矩阵,作为时刻t的预编码矩阵。可选地,网络设备根据终端设备上报的CSI,通过如下公式中的至少一种计算时刻t的下行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000066
Figure PCTCN2022089667-appb-000067
Figure PCTCN2022089667-appb-000068
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000069
Figure PCTCN2022089667-appb-000070
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,D为通过发送下行导频信号的相邻时刻之间的相位偏移表示的时域Doppler分量,W d为通过基向量表示的时域Doppler分量,D、
Figure PCTCN2022089667-appb-000071
Figure PCTCN2022089667-appb-000072
是网络设备根据T组组合系数确定的,
Figure PCTCN2022089667-appb-000073
Figure PCTCN2022089667-appb-000074
表示功率归一化因子,H表示矩阵的共轭转置。
综上所述,本实施例提供的方法,通过终端设备根据连续T个时刻的下行导频信号来确定T组组合系数,并向网络设备上报CSI,能够实现网络设备在确定CSI的过程中考虑到信道信息在时域上的相关性。网络设备通过确定时域Doppler分量来确定预编码矩阵,能够使网络设备根据终端设备一次上报的CSI,实现计算未来不同时刻的预编码矩阵。在保证数据传输性能的同时,避免终端设备由于快速移动从而频繁上报CSI,减小了终端设备上报CSI的周期,降低了终端设备的上行反馈开销。另外,通过由网络设备确定时域Doppler分量,能够实现进一步降低终端设备的上行反馈开销。
需要说明的是,本申请实施例提供的方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
图9示出了本申请一个示例性实施例提供的CSI的上报装置的结构框图。如图9所示,该装置包括:
接收模块901,用于接收网络设备在连续T个时刻发送的下行导频信号;
确定模块902,用于根据连续T个时刻的下行导频信号,估计连续T个时刻的下行信道信息;
确定模块902,还用于根据连续T个时刻的下行信道信息,确定连续T个时刻对应的CSI;
发送模块903,用于向网络设备上报CSI;
其中,CSI用于网络设备计算时刻t的下行数据传输的预编码矩阵,时刻t在连续T个时刻之后,T为正整数。
在一个可选的设计中,CSI包括如下至少一种:
空域波束分量指示信息;
频域时延分量指示信息;
时域Doppler分量指示信息;
组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,时域Doppler分量指示信息用于指示终端设备所选的K个时域Doppler分量,组合系数指示信息用于指示终端设备确定的组合系数,参数L、参数M v和参数K为正整数。
在一个可选的设计中,CSI包括如下至少一种:
空域波束分量指示信息;
频域时延分量指示信息;
组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,组合系数指示信息用于指示终端设备确定的连续T个时刻对应的T组组合系数,T组组合系数的矩阵中非零系数位置的信息相同,参数L和参数M v为正整数。
在一个可选的设计中,参数K是通过如下至少一种方式确定的:
网络设备配置的;
终端设备与网络设备协商预定义的;
终端设备根据下行信道信息确定的。
在一个可选的设计中,发送模块903,用于:
在终端设备根据下行信道信息确定参数K的情况下,向网络设备上报终端设备确定的参数K。
在一个可选的设计中,时域Doppler分量通过发送下行导频信号的相邻时刻之间的相位偏移表示;或,时域Doppler分量通过基向量表示。
在一个可选的设计中,在时域Doppler分量通过相位偏移表示的情况下,参数K是终端设备根据每个传输层的非零系数的个数确定的。
在一个可选的设计中,时域Doppler分量满足如下条件中的至少之一:
不同极化方向对应的时域Doppler分量相同或不同;
不同空频分量对应的时域Doppler分量相同或不同;
不同时频分量对应的时域Doppler分量相同或不同;
其中,空频分量是由空域波束分量和频域时延分量组成的,时频分量是由频域时延分量和时域Doppler分量组成的。
在一个可选的设计中,在下行数据传输为多层传输的情况下,不同传输层对应的时域Doppler分量相同或不同。
在一个可选的设计中,时域Doppler分量通过相位偏移表示,时域Doppler分量的表达式如下:
Figure PCTCN2022089667-appb-000075
其中,
Figure PCTCN2022089667-appb-000076
表示第x个空域波束分量和第y个频域时延分量对应的相位偏移值,参数L表示终端设备所选的空域波束分量的数量,参数M v表示终端设备所选的频域时延分量的数量,参数L和参数M v为正整数。
在一个可选的设计中,发送模块903,用于:
在向网络设备上报时域Doppler分量的情况下,上报满足如下条件的第x个空域波束分量和第y个频域时延分量对应的相位偏移值:
第x个空域波束分量和第y个频域时延分量对应的组合系数的幅度不为0。
在一个可选的设计中,时域Doppler分量通过基向量表示,时域Doppler分量的表达式如下:
W d=[f d,1 … f d,K];
其中,W d中的K个基向量是终端设备从候选基向量中选择的;或者,W d中的K个基向量是固定或预定义的基向量。
在一个可选的设计中,时域Doppler分量通过基向量表示,基向量包括如下至少一种:
DFT基向量;
DCT基向量;
多项式基向量。
在一个可选的设计中,参数T是通过如下至少一种方式确定的:
网络设备配置的;
终端设备与网络设备协商预定义的。
在一个可选的设计中,在参数T和/或参数K是网络设备配置的情况下,参数T和/或参数K是网络设备通过如下至少一种信令向终端设备配置的:
RRC信令;
MAC-CE信令;
DCI。
在一个可选的设计中,下行导频信号包括如下至少一种:
CSI-RS;
DMRS;
CSI-RS和DMRS的组合。
图10示出了本申请一个示例性实施例提供的预编码矩阵的确定装置的结构框图。如图10所示,该装置包括:
发送模块1001,用于在连续T个时刻向终端设备发送下行导频信号;
接收模块1002,用于接收终端设备上报的连续T个时刻对应的CSI;
计算模块1003,用于根据CSI计算时刻t的下行数据传输的预编码矩阵;
其中,CSI是终端设备根据下行导频信号确定的,时刻t在连续T个时刻之后,T为正整数。
在一个可选的设计中,CSI包括如下至少一种:
空域波束分量指示信息;
频域时延分量指示信息;
时域Doppler分量指示信息;
组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,时域Doppler分量指示信息用于指示终端设备所选的K个时域Doppler分量,组合系数指示信息用于指示终端设备确定的组合系数,参数L、参数M v和参数K为正整数。
在一个可选的设计中,CSI包括如下至少一种:
空域波束分量指示信息;
频域时延分量指示信息;
组合系数指示信息;
其中,空域波束分量指示信息用于指示终端设备所选的L个空域波束分量,频域时延分量指示信息用于指示终端设备所选的M v个频域时延分量,组合系数指示信息用于指示终端设备确定的连续T个时刻对应的T组组合系数,T组组合系数的矩阵中非零系数位置的信息相同,参数L和参数M v为正整数。
在一个可选的设计中,时域Doppler分量通过发送下行导频信号的相邻时刻之间的相位偏移表示;或,时域Doppler分量通过基向量表示。
在一个可选的设计中,时域Doppler分量通过相位偏移表示,时域Doppler分量的表达式如下:
Figure PCTCN2022089667-appb-000077
其中,
Figure PCTCN2022089667-appb-000078
表示第x个空域波束分量和第y个频域时延分量对应的相位偏移值,参数L表示终端设备所选的空域波束分量的数量,参数M v表示终端设备所选的频域时延分量的数量,参数L和参数M v为正整数。
在一个可选的设计中,时域Doppler分量通过基向量表示,时域Doppler分量的表达式如下:
W d=[f d,1 … f d,K];
其中,W d中的K个基向量是终端设备从候选基向量中选择的;或者,W d中的K个基向量是固定或预定义的基向量。
在一个可选的设计中,计算模块1003,用于:
根据CSI,通过如下公式计算时刻t的下行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000079
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000080
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000081
表示功率归一化因子,H表示矩阵的共轭转置。
在一个可选的设计中,计算模块1003,用于:
根据CSI,通过如下公式中的至少一种计算时刻t的下行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000082
Figure PCTCN2022089667-appb-000083
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000084
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000085
Figure PCTCN2022089667-appb-000086
表示功率归一化因子,H表示矩阵的共轭转置。
在一个可选的设计中,计算模块1003,用于:
根据CSI,通过如下公式中的至少一种计算时刻t的下行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000087
Figure PCTCN2022089667-appb-000088
Figure PCTCN2022089667-appb-000089
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000090
Figure PCTCN2022089667-appb-000091
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,D为通过发送下行导频信号的相邻时刻之间的相位偏移表示的时域Doppler分量,W d为通过基向量表示的时域Doppler分量,D、
Figure PCTCN2022089667-appb-000092
Figure PCTCN2022089667-appb-000093
是根据T组组合系数确定的,
Figure PCTCN2022089667-appb-000094
Figure PCTCN2022089667-appb-000095
表示功率归一化因子,H表示矩阵的共轭转 置。
在一个可选的设计中,连续T个时刻中的相邻时刻之间的时间间隔相等,时刻t与连续T个时刻中的第一个时刻之间的时间差为Δt,并且Δt为连续T个时刻中的相邻时刻的时间间隔的整数倍;计算模块1003,用于:
根据CSI,通过如下公式计算时刻t的下行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000096
Figure PCTCN2022089667-appb-000097
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000098
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000099
表示功率归一化因子,参数L表示终端设备所选的空域波束分量的数量,参数M v表示终端设备所选的频域时延分量的数量,参数L和参数M v为正整数,H表示矩阵的共轭转置。
在一个可选的设计中,时域Doppler分量采用DFT基向量表示,连续T个时刻中的相邻时刻之间的时间间隔相等,t=T+n,表示时刻t为T个时刻中最后一个时刻之后,且与T个时刻中最后一个时刻的时间间隔为n倍目标时间间隔的时刻,目标时间间隔为连续T个时刻中的相邻时刻之间的时间间隔,n为正整数;计算模块1003,用于:
根据CSI,通过如下公式中的至少一种计算时刻t的下行数据传输的预编码矩阵:
Figure PCTCN2022089667-appb-000100
Figure PCTCN2022089667-appb-000101
其中,W 1表示空域波束分量对应的基向量组成的矩阵,
Figure PCTCN2022089667-appb-000102
表示组合系数的矩阵,W f表示频域时延分量对应的基向量组成的矩阵,f d,k(T)表示DFT基向量的第T行对应的元素,k K表示第K个DFT基向量的索引值,
Figure PCTCN2022089667-appb-000103
Figure PCTCN2022089667-appb-000104
表示功率归一化因子,O 3表示过采样因子,H表示矩阵的共轭转置。
在一个可选的设计中,下行导频信号包括如下至少一种:
CSI-RS;
DMRS;
CSI-RS和DMRS的组合。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图11示出了本申请一个示例性实施例提供的通信设备(终端设备或网络设备)的结构示意图,该通信设备110包括:处理器1101、接收器1102、发射器1103、存储器1104和总线1105。
处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块, 从而执行各种功能应用以及信息处理。
接收器1102和发射器1103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1104通过总线1105与处理器1101相连。
存储器1104可用于存储至少一个指令,处理器1101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
其中,当通信设备实现为终端设备时,本申请实施例涉及的通信设备中的处理器和收发器,可以一起实现成为一个通信芯片,或者收发器单独形成通信芯片。其中,收发器中的发射器执行上述任一所示的方法中由终端设备执行的发送步骤,收发器中的接收器执行上述任一所示的方法中由终端设备执行的接收步骤,处理器执行发送和接收步骤之外的步骤,此处不再赘述。
其中,当通信设备实现为网络设备时,本申请实施例涉及的通信设备中的处理器和收发器,可以一起实现成为一个通信芯片,或者收发器单独形成通信芯片。其中,收发器中的发射器执行上述任一所示的方法中由网络设备执行的发送步骤,收发器中的接收器执行上述任一所示的方法中由网络设备执行的接收步骤,处理器执行发送和接收步骤之外的步骤,此处不再赘述。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的CSI的上报方法或预编码矩阵的确定方法。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在通信设备上运行时,用于实现上述各个方法实施例提供的CSI的上报方法或预编码矩阵的确定方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述CSI的上报方法或预编码矩阵的确定方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (35)

  1. 一种信道状态信息CSI的上报方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收网络设备在连续T个时刻发送的下行导频信号;
    根据所述连续T个时刻的所述下行导频信号,估计所述连续T个时刻的下行信道信息;
    根据所述连续T个时刻的所述下行信道信息,确定所述连续T个时刻对应的CSI;
    向所述网络设备上报所述CSI;
    其中,所述CSI用于所述网络设备计算时刻t的下行数据传输的预编码矩阵,所述时刻t在所述连续T个时刻之后,T为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述CSI包括如下至少一种信息:
    空域波束分量指示信息;
    频域时延分量指示信息;
    时域多普勒Doppler分量指示信息;
    组合系数指示信息;
    其中,所述空域波束分量指示信息用于指示所述终端设备所选的L个空域波束分量,所述频域时延分量指示信息用于指示所述终端设备所选的M v个频域时延分量,所述时域Doppler分量指示信息用于指示所述终端设备所选的K个时域Doppler分量,所述组合系数指示信息用于指示所述终端设备确定的组合系数,参数L、参数M v和参数K为正整数。
  3. 根据权利要求1所述的方法,其特征在于,所述CSI包括如下至少一种信息:
    空域波束分量指示信息;
    频域时延分量指示信息;
    组合系数指示信息;
    其中,所述空域波束分量指示信息用于指示所述终端设备所选的L个空域波束分量,所述频域时延分量指示信息用于指示所述终端设备所选的M v个频域时延分量,所述组合系数指示信息用于指示所述终端设备确定的所述连续T个时刻对应的T组组合系数,所述T组组合系数的矩阵中非零系数位置的信息相同,参数L和参数M v为正整数。
  4. 根据权利要求2所述的方法,其特征在于,所述参数K是通过如下至少一种方式确定的:
    所述网络设备配置的;
    所述终端设备与所述网络设备协商预定义的;
    所述终端设备根据所述下行信道信息确定的。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在所述终端设备根据所述下行信道信息确定所述参数K的情况下,向所述网络设备上报所述终端设备确定的所述参数K。
  6. 根据权利要求2所述的方法,其特征在于,所述时域Doppler分量通过发送所述下行导频信号的相邻时刻之间的相位偏移表示;或,所述时域Doppler分量通过基向量表示。
  7. 根据权利要求4所述的方法,其特征在于,在所述时域Doppler分量通过所述相位偏移表示的情况下,所述参数K是所述终端设备根据每个传输层的非零系数的个数确定的。
  8. 根据权利要求2所述的方法,其特征在于,所述时域Doppler分量满足如下条件中的至少之一:
    不同极化方向对应的时域Doppler分量相同或不同;
    不同空频分量对应的时域Doppler分量相同或不同;
    不同时频分量对应的时域Doppler分量相同或不同;
    其中,所述空频分量是由所述空域波束分量和所述频域时延分量组成的,所述时频分量是由所述频域时延分量和所述时域Doppler分量组成的。
  9. 根据权利要求2所述的方法,其特征在于,在所述下行数据传输为多层传输的情况下,不同传输层对应的时域Doppler分量相同或不同。
  10. 根据权利要求6所述的方法,其特征在于,所述时域Doppler分量通过所述相位偏移表示,所述时域Doppler分量的表达式如下:
    Figure PCTCN2022089667-appb-100001
    其中,
    Figure PCTCN2022089667-appb-100002
    表示第x个所述空域波束分量和第y个所述频域时延分量对应的相位偏移值,所述参数L表示所述终端设备所选的所述空域波束分量的数量,所述参数M v表示所述终端设备所选的所述频域时延分量的数量,所述参数L和所述参数M v为正整数。
  11. 根据权利要求10所述的方法,其特征在于,所述向所述网络设备上报所述CSI,包括:
    在向所述网络设备上报所述时域Doppler分量的情况下,上报满足如下条件的第x个所述空域波束分量和第y个所述频域时延分量对应的相位偏移值:
    第x个所述空域波束分量和第y个所述频域时延分量对应的组合系数的幅度不为0。
  12. 根据权利要求6所述的方法,其特征在于,所述时域Doppler分量通过所述基向量表示,所述时域Doppler分量的表达式如下:
    W d=[f d,1…f d,K];
    其中,W d中的K个基向量是所述终端设备从候选基向量中选择的;或者,W d中的K个基向量是固定或预定义的基向量。
  13. 根据权利要求6所述的方法,其特征在于,所述时域Doppler分量通过所述基向量表示,所述基向量包括如下至少一种:
    DFT基向量;
    离散余弦变换DCT基向量;
    多项式基向量。
  14. 根据权利要求1所述的方法,其特征在于,参数T是通过如下至少一种方式确定的:
    所述网络设备配置的;
    所述终端设备与所述网络设备协商预定义的。
  15. 根据权利要求2所述的方法,其特征在于,在所述参数T和/或所述参数K是所述网络设备配置的情况下,所述参数T和/或所述参数K是所述网络设备通过如下至少一种信令向所述终端设备配置的:
    无线资源控制RRC信令;
    媒介接入控制-控制单元MAC-CE信令;
    下行控制信息DCI。
  16. 根据权利要求1所述的方法,其特征在于,所述下行导频信号包括如下至少一种:
    信道状态信息参考信号CSI-RS;
    解调参考信号DMRS;
    CSI-RS和DMRS的组合。
  17. 一种预编码矩阵的确定方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    在连续T个时刻向终端设备发送下行导频信号;
    接收所述终端设备上报的所述连续T个时刻对应的CSI;
    根据所述CSI计算时刻t的下行数据传输的预编码矩阵;
    其中,所述CSI是所述终端设备根据所述下行导频信号确定的,所述时刻t在所述连续T个时刻之后,T为正整数。
  18. 根据权利要求17所述的方法,其特征在于,所述CSI包括如下至少一种信息:
    空域波束分量指示信息;
    频域时延分量的示信息;
    时域Doppler分量指示信息;
    组合系数指示信息;
    其中,所述空域波束分量指示信息用于指示所述终端设备所选的L个空域波束分量,所述频域时延分量指示信息用于指示所述终端设备所选的M v个频域时延分量,所述时域Doppler分量指示信息用于指示所述终端设备所选的K个时域Doppler分量,所述组合系数指示信息用于指示所述终端设备确定的组合系数,参数L、参数M v和参数K为正整数。
  19. 根据权利要求17所述的方法,其特征在于,所述CSI包括如下至少一种信息:
    空域波束分量指示信息;
    频域时延分量指示信息;
    组合系数指示信息;
    其中,所述空域波束分量指示信息用于指示所述终端设备所选的L个空域波束分量,所述频域时延分量指示信息用于指示所述终端设备所选的M v个频域时延分量,所述组合系数指示信息用于指示所述终端设备确定的所述连续T个时刻对应的T组组合系数,所述T组组合系数的矩阵中非零系数位置的信息相同,参数L和参数M v为正整数。
  20. 根据权利要求18所述的方法,其特征在于,所述时域Doppler分量通过发送所述下行导频信号的相邻时刻之间的相位偏移表示;或,所述时域Doppler分量通过基向量表示。
  21. 根据权利要求20所述的方法,其特征在于,所述时域Doppler分量通过所述相位偏移表示,所述时域Doppler分量的表达式如下:
    Figure PCTCN2022089667-appb-100003
    其中,
    Figure PCTCN2022089667-appb-100004
    表示第x个所述空域波束分量和第y个所述频域时延分量对应的相位偏移值所述参数L表示所述终端设备所选的所述空域波束分量的数量,所述参数M v表示所述终端设备所选的所述频域时延分量的数量,所述参数L和所述参数M v为正整数。
  22. 根据权利要求20所述的方法,其特征在于,所述时域Doppler分量通过所述基向量表 示,所述时域Doppler分量的表达式如下:
    W d=[f d,1…f d,K];
    其中,W d中的K个基向量是所述终端设备从候选基向量中选择的;或者,W d中的K个基向量是固定或预定义的基向量。
  23. 根据权利要求21所述的方法,其特征在于,所述根据所述CSI计算时刻t的下行数据传输的预编码矩阵,包括:
    根据所述CSI,通过如下公式计算时刻t的下行数据传输的预编码矩阵:
    Figure PCTCN2022089667-appb-100005
    其中,W 1表示所述空域波束分量对应的基向量组成的矩阵,
    Figure PCTCN2022089667-appb-100006
    表示所述组合系数的矩阵,W f表示所述频域时延分量对应的基向量组成的矩阵,
    Figure PCTCN2022089667-appb-100007
    表示功率归一化因子,H表示矩阵的共轭转置。
  24. 根据权利要求22所述的方法,其特征在于,所述根据所述CSI计算时刻t的下行数据传输的预编码矩阵,包括:
    根据所述CSI,通过如下公式中的至少一种计算时刻t的下行数据传输的预编码矩阵:
    Figure PCTCN2022089667-appb-100008
    Figure PCTCN2022089667-appb-100009
    其中,W 1表示所述空域波束分量对应的基向量组成的矩阵,
    Figure PCTCN2022089667-appb-100010
    表示所述组合系数的矩阵,W f表示所述频域时延分量对应的基向量组成的矩阵,
    Figure PCTCN2022089667-appb-100011
    Figure PCTCN2022089667-appb-100012
    表示功率归一化因子,H表示矩阵的共轭转置。
  25. 根据权利要求19所述的方法,其特征在于,所述根据所述CSI计算时刻t的下行数据传输的预编码矩阵,包括:
    根据所述CSI,通过如下公式中的至少一种计算时刻t的下行数据传输的预编码矩阵:
    Figure PCTCN2022089667-appb-100013
    Figure PCTCN2022089667-appb-100014
    Figure PCTCN2022089667-appb-100015
    其中,W 1表示所述空域波束分量对应的基向量组成的矩阵,
    Figure PCTCN2022089667-appb-100016
    Figure PCTCN2022089667-appb-100017
    表示组合系数的矩阵,W f表示所述频域时延分量对应的基向量组成的矩阵,D为通过发送所述下行导频信号的相邻时刻之间的相位偏移表示的时域Doppler分量,W d为通过基向量表示的时域Doppler分量,D、
    Figure PCTCN2022089667-appb-100018
    Figure PCTCN2022089667-appb-100019
    是根据所述T组组合系数确定的,
    Figure PCTCN2022089667-appb-100020
    Figure PCTCN2022089667-appb-100021
    表示功率归一化因子,H表示矩阵的共轭转置。
  26. 根据权利要求21所述的方法,其特征在于,所述连续T个时刻中的相邻时刻之间的时间间隔相等,所述时刻t与所述连续T个时刻中的第一个时刻之间的时间差为Δt,并且Δt为所述连续T个时刻中的相邻时刻的时间间隔的整数倍;
    所述根据所述CSI计算时刻t的下行数据传输的预编码矩阵,包括:
    根据所述CSI,通过如下公式计算时刻t的下行数据传输的预编码矩阵:
    Figure PCTCN2022089667-appb-100022
    Figure PCTCN2022089667-appb-100023
    其中,W 1表示所述空域波束分量对应的基向量组成的矩阵,
    Figure PCTCN2022089667-appb-100024
    表示所述组合系数的矩阵,W f表示所述频域时延分量对应的基向量组成的矩阵,
    Figure PCTCN2022089667-appb-100025
    表示功率归一化因子,所述参数L表 示所述终端设备所选的所述空域波束分量的数量,所述参数M v表示所述终端设备所选的所述频域时延分量的数量,所述参数L和所述参数M v为正整数,H表示矩阵的共轭转置。
  27. 根据权利要求22所述的方法,其特征在于,所述时域Doppler分量采用DFT基向量表示,所述连续T个时刻中的相邻时刻之间的时间间隔相等,t=T+n,表示所述时刻t为所述T个时刻中最后一个时刻之后,且与所述T个时刻中最后一个时刻的时间间隔为n倍目标时间间隔的时刻,所述目标时间间隔为所述连续T个时刻中的相邻时刻之间的时间间隔,n为正整数;
    所述根据所述CSI计算时刻t的下行数据传输的预编码矩阵,包括:
    根据所述CSI,通过如下公式中的至少一种计算时刻t的下行数据传输的预编码矩阵:
    Figure PCTCN2022089667-appb-100026
    Figure PCTCN2022089667-appb-100027
    其中,W 1表示所述空域波束分量对应的基向量组成的矩阵,
    Figure PCTCN2022089667-appb-100028
    表示所述组合系数的矩阵,W f表示所述频域时延分量对应的基向量组成的矩阵,f d,k(T)表示所述DFT基向量的第T行对应的元素,k K表示第K个DFT基向量的索引值,
    Figure PCTCN2022089667-appb-100029
    Figure PCTCN2022089667-appb-100030
    表示功率归一化因子,O 3表示过采样因子,H表示矩阵的共轭转置。
  28. 根据权利要求17所述的方法,其特征在于,所述下行导频信号包括如下至少一种:
    CSI-RS;
    DMRS;
    CSI-RS和DMRS的组合。
  29. 一种CSI的上报装置,其特征在于,所述装置包括:
    接收模块,用于接收网络设备在连续T个时刻发送的下行导频信号;
    确定模块,用于根据所述连续T个时刻的所述下行导频信号,估计所述连续T个时刻的下行信道信息;
    所述确定模块,还用于根据所述连续T个时刻的所述下行信道信息,确定所述连续T个时刻对应的CSI;
    发送模块,用于向所述网络设备上报所述CSI;
    其中,所述CSI用于所述网络设备计算时刻t的下行数据传输的预编码矩阵,所述时刻t在所述连续T个时刻之后,T为正整数。
  30. 一种预编码矩阵的确定装置,其特征在于,所述装置包括:
    发送模块,用于在连续T个时刻向终端设备发送下行导频信号;
    接收模块,用于接收所述终端设备上报的所述连续T个时刻对应的CSI;
    计算模块,用于根据所述CSI计算时刻t的下行数据传输的预编码矩阵;
    其中,所述CSI是所述终端设备根据所述下行导频信号确定的,所述时刻t在所述连续T个时刻之后,T为正整数。
  31. 一种终端设备,其特征在于,所述终端设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至16中任一所述的CSI的上报方法。
  32. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求17至28中任一所述的预编码矩阵的确定方法。
  33. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如权利要求1至16中任一所述的CSI的上报方法,或权利要求17至28中任一所述的预编码矩阵的确定方法。
  34. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路或程序,所述芯片用于实现如权利要求1至16中任一所述的CSI的上报方法,或权利要求17至28中任一所述的预编码矩阵的确定方法。
  35. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如权利要求1至16中任一所述的CSI的上报方法,或权利要求17至28中任一所述的预编码矩阵的确定方法。
PCT/CN2022/089667 2022-04-27 2022-04-27 Csi的上报方法、预编码矩阵的确定方法、装置及设备 WO2023206171A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001341.3A CN117322040A (zh) 2022-04-27 2022-04-27 Csi的上报方法、预编码矩阵的确定方法、装置及设备
PCT/CN2022/089667 WO2023206171A1 (zh) 2022-04-27 2022-04-27 Csi的上报方法、预编码矩阵的确定方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089667 WO2023206171A1 (zh) 2022-04-27 2022-04-27 Csi的上报方法、预编码矩阵的确定方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2023206171A1 true WO2023206171A1 (zh) 2023-11-02

Family

ID=88516700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089667 WO2023206171A1 (zh) 2022-04-27 2022-04-27 Csi的上报方法、预编码矩阵的确定方法、装置及设备

Country Status (2)

Country Link
CN (1) CN117322040A (zh)
WO (1) WO2023206171A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644364A (zh) * 2017-08-21 2019-04-16 Oppo广东移动通信有限公司 一种信道状态信息测量及反馈方法及相关产品
CN113840324A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种测量上报方法及装置
CN113965232A (zh) * 2019-01-30 2022-01-21 华为技术有限公司 信息反馈方法及装置
WO2022077484A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种信息指示方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644364A (zh) * 2017-08-21 2019-04-16 Oppo广东移动通信有限公司 一种信道状态信息测量及反馈方法及相关产品
CN113965232A (zh) * 2019-01-30 2022-01-21 华为技术有限公司 信息反馈方法及装置
CN113840324A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种测量上报方法及装置
WO2022077484A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种信息指示方法及装置

Also Published As

Publication number Publication date
CN117322040A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US20230122302A1 (en) Measurement reporting method and apparatus
WO2019149216A1 (zh) 上报信道状态信息csi的方法和装置
WO2018171491A1 (zh) 无线通信的方法、网络设备和终端设备
JP2024016263A (ja) 通信方法
US11196522B2 (en) Enhanced sounding reference signal scheme
WO2023133764A1 (zh) 信息上报、信息接收方法、装置、设备及存储介质
WO2021179864A1 (zh) 码本反馈方法、网络设备、终端设备及计算机存储介质
CN114451039A (zh) 一种配置预编码的方法及装置
RU2748317C1 (ru) Способ передачи сигнала, сетевое устройство и оконечное устройство
WO2023206171A1 (zh) Csi的上报方法、预编码矩阵的确定方法、装置及设备
TW202013917A (zh) 一種通道狀態訊息上報方法、終端設備及網路設備
WO2023206170A1 (zh) Csi的上报方法、预编码矩阵的确定方法、装置及设备
WO2023133763A1 (zh) 信息上报、信息接收方法、装置、设备及存储介质
WO2022183563A1 (zh) 码本上报的方法、终端设备和网络设备
CN111587543B (zh) 信道状态信息矩阵信息处理方法及通信装置
WO2020227873A1 (zh) 一种信道状态信息传输方法、设备及存储介质
WO2024008065A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022205459A1 (zh) 无线通信方法、终端设备和网络设备
WO2023206047A1 (zh) 信道状态信息csi上报方法和装置
WO2023216166A1 (zh) 相干带宽的测量方法和装置
WO2024040578A1 (zh) 码本结构的配置、上报方法、装置、设备及存储介质
WO2024001865A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024065426A1 (zh) 一种信道质量指示cqi上报方法、装置、设备及存储介质
WO2024045102A1 (zh) 通信方法及装置
CN117377083A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001341.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939024

Country of ref document: EP

Kind code of ref document: A1