WO2024065426A1 - 一种信道质量指示cqi上报方法、装置、设备及存储介质 - Google Patents

一种信道质量指示cqi上报方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024065426A1
WO2024065426A1 PCT/CN2022/122731 CN2022122731W WO2024065426A1 WO 2024065426 A1 WO2024065426 A1 WO 2024065426A1 CN 2022122731 W CN2022122731 W CN 2022122731W WO 2024065426 A1 WO2024065426 A1 WO 2024065426A1
Authority
WO
WIPO (PCT)
Prior art keywords
moment
terminal device
cqi
base station
formula
Prior art date
Application number
PCT/CN2022/122731
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/122731 priority Critical patent/WO2024065426A1/zh
Publication of WO2024065426A1 publication Critical patent/WO2024065426A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a CQI reporting method, apparatus, device and storage medium.
  • a terminal device In a communication system, a terminal device usually needs to report channel status information (Channel Status Information, CSI) to a network device, so that the network device can achieve high-performance and high-quality downlink transmission to the terminal device based on the CSI reported by the terminal device, where the CSI includes at least a channel quality indication (Channel Quality Indication, CQI). Also, for a terminal device moving at medium or high speeds, its channel will change rapidly in the time domain, so the CQI corresponding to different time channels will also be different.
  • CSI Channel Status Information
  • CQI Channel Quality Indication
  • the present disclosure proposes a CQI reporting method, apparatus, device and storage medium for determining which future CQIs are to be predicted, and proposes a method for how a terminal device reports the predicted CQI.
  • an embodiment of the present disclosure provides a CQI reporting method, which is executed by a terminal device and includes:
  • a CQI reporting method in which the terminal device determines at least one first moment, and calculates the CQI of the terminal device at the first moment, and then the terminal device reports the CQI to the base station. It can be seen that in the method of the present disclosure, the terminal device will determine which specific moments need to report the CQI, and after calculating the CQI at that moment, it will report the CQI to the base station. That is, the present disclosure provides an implementation method for a terminal device to determine which specific moments to predict or determine the CQI, and how to report the predicted or determined CQI. Therefore, when the terminal device is moving at medium or high speed, the method of the present disclosure can be used to enable the terminal device to report to the base station the CQI corresponding to the terminal device at certain moments.
  • the base station can use the corresponding CQI for downlink transmission at the corresponding time based on the CQI reported by the terminal device, thereby avoiding the situation where "the base station always uses the same CQI for downlink transmission, and the CQI based on which the base station performs downlink transmission to the terminal device moving at medium and high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission and improving the performance of the communication system.
  • an embodiment of the present disclosure provides a CQI reporting method, which is executed by a base station and includes:
  • At least one CQI at a first moment reported by a receiving terminal device At least one CQI at a first moment reported by a receiving terminal device.
  • an embodiment of the present disclosure provides a communication device, which is configured in a terminal device, including:
  • a processing module configured to determine at least one first moment
  • the processing module is further used to calculate the CQI of the terminal device at the first moment
  • the transceiver module is used to report the CQI to the base station.
  • an embodiment of the present disclosure provides a communication device, which is configured in a base station and includes:
  • the transceiver module is used to receive at least one CQI at a first moment reported by a terminal device.
  • an embodiment of the present disclosure provides a communication device, which includes a processor.
  • the processor calls a computer program in a memory, the method described in the first aspect is executed.
  • an embodiment of the present disclosure provides a communication device, which includes a processor.
  • the processor calls a computer program in a memory, the method described in the second aspect is executed.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and a memory, in which a computer program is stored; the processor executes the computer program stored in the memory so that the communication device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and a memory, in which a computer program is stored; the processor executes the computer program stored in the memory so that the communication device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to execute the code instructions to enable the device to execute the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, which includes the communication device described in the third aspect to the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect to the communication device described in the sixth aspect, or the system includes the communication device described in the seventh aspect to the communication device described in the eighth aspect, or the system includes the communication device described in the ninth aspect to the communication device described in the tenth aspect.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used for the above-mentioned network device and/or the above-mentioned terminal device.
  • the network device executes the method described in the first aspect above, and/or the terminal device executes the method described in the second aspect above.
  • the present disclosure further provides a computer program product comprising a computer program, which, when executed on a computer, enables the computer to execute the method described in any one of the first to second aspects above.
  • the present disclosure provides a chip system, which includes at least one processor and an interface, for supporting a network device to implement the functions involved in the methods described in the first aspect to the method, and/or, for supporting a terminal device to implement the functions involved in the methods described in the second aspect, for example, determining or processing at least one of the data and information involved in the above methods.
  • the chip system also includes a memory, which is used to store computer programs and data necessary for the source auxiliary node.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the present disclosure provides a computer program, which, when executed on a computer, enables the computer to execute the method described in any one of the first to second aspects above.
  • FIG1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • FIG2 is a flow chart of a CQI reporting method provided by another embodiment of the present disclosure.
  • FIG3 is a flow chart of a CQI reporting method provided in yet another embodiment of the present disclosure.
  • FIG4 is a flow chart of a CQI reporting method provided by another embodiment of the present disclosure.
  • FIG5 is a flow chart of a CQI reporting method provided by another embodiment of the present disclosure.
  • FIG6 is a flow chart of a CQI reporting method provided in yet another embodiment of the present disclosure.
  • FIG7 is a schematic diagram of a flow chart of a CQI reporting method provided by yet another embodiment of the present disclosure.
  • FIG8 is a flow chart of a CQI reporting method provided by another embodiment of the present disclosure.
  • FIG9 is a schematic diagram of a flow chart of a CQI reporting method provided by yet another embodiment of the present disclosure.
  • FIG10 is a schematic diagram of a flow chart of a CQI reporting method provided by yet another embodiment of the present disclosure.
  • FIG11 is a schematic flow chart of a CQI reporting method provided by yet another embodiment of the present disclosure.
  • FIG12 is a schematic diagram of the reporting time when the CQI is reported according to the embodiment of FIG3 of the present disclosure
  • FIG13 is a schematic diagram of the reporting time when the CQI is reported according to the embodiment of FIG4 or FIG5 of the present disclosure
  • FIG14 is a schematic diagram of the reporting time when the CQI is reported according to the embodiment of FIG6 of the present disclosure
  • FIG15 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure.
  • FIG16 is a schematic diagram of the structure of a communication device provided by another embodiment of the present disclosure.
  • FIG17 is a block diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of the structure of a chip provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein may be interpreted as “at” or "when” or "in response to determination".
  • Channel state information is a general concept, which includes the channel matrix. Anything that reflects the channel is called channel state information.
  • the channel matrix is only one type of channel state information in the MIMO system. Others such as Channel profile, multipath delay, Doppler frequency deviation, MIMO channel rank, beamforming vector, etc., all belong to channel state information.
  • the current channel matrix H can only be regarded as a type of channel state information, but it is the most commonly used.
  • CQI is an information indicator of channel quality, representing the quality of the current channel, corresponding to the signal-to-noise ratio of the channel, and has a value range of 0 to 31.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a base station and a terminal device.
  • the number and form of the devices shown in FIG. 1 are only used for example and do not constitute a limitation on the embodiment of the present disclosure. In actual applications, two or more base stations and two or more terminal devices may be included.
  • the communication system shown in FIG. 1 includes, for example, a base station 11 and a terminal device 12.
  • LTE long term evolution
  • 5G fifth generation
  • NR 5G new radio
  • the base station 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the base station 11 may be an evolved NodeB (eNB), a transmission reception point (TRP), a next generation NodeB (gNB) in an NR system, a base station in other future mobile communication systems, or an access node in a wireless fidelity (WiFi) system.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation NodeB
  • WiFi wireless fidelity
  • the embodiment of the present disclosure does not limit the specific technology and specific device form adopted by the base station.
  • the base station provided in the embodiment of the present disclosure may be composed of a central unit (CU) and a distributed unit (DU), wherein the CU may also be referred to as a control unit.
  • CU central unit
  • DU distributed unit
  • the CU-DU structure may be used to split the base station, such as the protocol layer of the base station, and the functions of some protocol layers are placed in the CU for centralized control, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the DU is centrally controlled by the CU.
  • the terminal device 12 in the disclosed embodiment may be an entity for receiving or transmitting signals on the user side, such as a mobile phone.
  • the terminal device may also be referred to as a terminal device (terminal), a user equipment (UE), a mobile station (MS), a mobile terminal device (MT), etc.
  • the terminal device may be a car with communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control (industrial control), a wireless terminal device in self-driving, a wireless terminal device in remote medical surgery, a wireless terminal device in smart grid (smart grid), a wireless terminal device in transportation safety (transportation safety), a wireless terminal device in a smart city (smart city), a wireless terminal device in a smart home (smart home), etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • the communication system described in the embodiment of the present disclosure is for the purpose of more clearly illustrating the technical solution of the embodiment of the present disclosure, and does not constitute a limitation on the technical solution provided by the embodiment of the present disclosure.
  • a person skilled in the art can know that with the evolution of the system architecture and the emergence of new business scenarios, the technical solution provided by the embodiment of the present disclosure is also applicable to similar technical problems.
  • FIG. 2 is a flow chart of a CQI reporting method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG. 2 , the CQI reporting method may include the following steps:
  • Step 201 Determine at least one first moment.
  • the first moment may be a moment at which the CQI needs to be calculated.
  • the first moment may be a future moment or a current moment.
  • the first moment may be determined autonomously by the terminal device, or may be indicated by the base station, or may be determined by the terminal device according to a predefined rule, or may be determined by the terminal device through negotiation with the base station, or may be determined by the terminal device based on the moment when it receives a specific signal sent by the base station. A detailed description of this part will be described in subsequent embodiments.
  • Step 202 Calculate the CQI of the terminal device at the first moment.
  • Step 203 Report the CQI to the base station.
  • the method for the terminal device to determine the first moment in the above-mentioned step 201 when the method for the terminal device to calculate the CQI at the first moment in step 202 is different, the method for the terminal device to calculate the CQI at the first moment in step 202, and the method for the terminal device to report the CQI to the base station in step 203 will also be different. This part will be described in detail in subsequent embodiments.
  • the terminal device will determine at least one first moment, and will calculate the CQI of the terminal device at the first moment, and then the terminal device will report the CQI to the base station. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and will report the CQI to the base station after calculating the CQI at the moment. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG3 is a flow chart of a CQI reporting method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG3 , the CQI reporting method may include the following steps:
  • Step 301 The terminal device autonomously determines at least one first moment, where the first moment is a future moment.
  • the method for the terminal device to autonomously determine at least one first time may include any one of the following:
  • the first method is to use the moment represented by n ref and the formula 1: Or formula 2: The calculated at least one moment is determined as at least one first moment;
  • W CSI represents the length of the reporting window, which is determined by the base station configuration or the terminal device itself; l represents the starting point of the reporting window, l ⁇ n ref or l ⁇ n, n ref represents the time domain position of the CSI reference resource, n represents the first reporting moment of CSI, and N represents the number of the first moment.
  • n ref and n may be configured by the base station to the terminal device, and the above specific value of l may be configured by the base station to the terminal device.
  • the base station may first determine the offset value n offset , wherein the offset value n offset may be determined by the base station autonomously, or may be determined by the terminal device and reported to the base station.
  • the base station may determine the value of l based on the offset value n offset and n ref , or determine the value of l based on the offset value n offset and n, and configure the specific value of l to the terminal device; or, the specific value of l may also be determined by the terminal device itself, such as, after receiving the values of n ref and n configured by the network device, the terminal device may autonomously determine or determine the offset value n offset based on the configuration of the base station, and then determine the value of l based on the offset value n offset and n ref , or determine the value of l based on the offset value n offset and n.
  • the above N may be configured by the network device to the terminal device or autonomously determined by the terminal device.
  • the above W CSI N 4 d, wherein N 4 is the length of the Doppler domain basis vector (DD basis), d is the DD basis compression unit, and the unit of d is the time slot.
  • n ref i.e., the time domain position of the CSI reference resource
  • the third method is to determine at least one moment calculated based on Formula 5: l+(k-1) ⁇ d′, k ⁇ [1,N] as at least one first moment;
  • n ref represents the time domain position of the CSI reference resource
  • n represents the first reporting moment of CSI
  • N represents the number of first moments
  • d′ represents the interval between the moments corresponding to two adjacent PMIs calculated by the terminal device or the reporting interval between two adjacent PMIs
  • k is a positive integer
  • the value of the above d′ is mainly related to the way in which the terminal device reports PMI.
  • the way in which the terminal device reports PMI is: reporting PMI once
  • the PMI reported once is a matrix composed of PMI vectors at multiple times
  • the d′ represents the interval between the times corresponding to two adjacent PMIs in the PMI reported once calculated by the terminal device, wherein the number of PMI vectors included in the PMI reported once can be configured by the base station or determined autonomously by the terminal device.
  • d′ represents the reporting interval between two adjacent PMIs calculated by the terminal device.
  • the terminal device may have reported CSI to the base station, such as the terminal device has reported CSI for the first time.
  • Step 302 Receive the Channel Status Information-Reference Signal (CSI-RS) sent by the base station.
  • CSI-RS Channel Status Information-Reference Signal
  • Step 303 Predict the first channel information corresponding to each first moment and the precoding matrix indication (PMI) corresponding to the terminal device at each first moment based on the CSI-RS.
  • PMI precoding matrix indication
  • the first channel information predicted based on the CSI-RS may be a channel information matrix H. Also, the terminal device may predict the first channel information at a first moment in the future by measuring the CSI-RS.
  • the above-mentioned PMI may be determined based on codebook structure 1 or codebook structure 2; wherein codebook structure 1 is:
  • codebook structure 2 is as follows: W 1 and W f remain unchanged relative to the codebook structure 1, but a plurality of W 2 are reported relative to the codebook structure 1.
  • W 1 , W f and W d are matrices composed of spatial basis vectors (SD basis), frequency domain basis vectors (FD basis) and DD basis respectively.
  • W d may also be a unit matrix, and the above codebook structure 1 and W 2 in codebook structure 2 can both be calculated based on the Rel-16/17 Type II codebook.
  • the dimension of is the same as the sum of the dimensions of the above multiple W 2 .
  • the terminal device predicts W 1 , W f , W d , and W 3 corresponding to each first moment in the future by measuring the CSI-RS.
  • W 2 and based on the predicted W 1 , W f , W d , W 2 is used to determine the PMI corresponding to each first moment.
  • the terminal device determines at least one first moment using the first method in step 302
  • the at least one first moment includes the moment represented by n ref
  • the calculation method of the CQI at the moment represented by n ref can be the same as the prior art, that is: it can be obtained directly by measuring the CSI-RS without prediction.
  • Step 304 Calculate the CQI of the terminal device at each first moment based on the predicted first channel information corresponding to each first moment and the PMI corresponding to each moment.
  • Step 305 Report at least one CQI at the first moment to the base station simultaneously.
  • the moment of reporting the CQI of at least one first moment may be before the first moment. It should be noted that in one embodiment of the present disclosure, when the terminal device determines at least one first moment using the first method in step 302, the at least one first moment includes the moment represented by n ref . At this time, the moment of reporting the CQI of at least one first moment may be after the moment represented by n ref and before the remaining first moments except the moment represented by n ref . For example, the terminal device may report the CQI of at least one first moment to the base station at a certain CSI reporting moment (for example, the first CSI reporting moment). Among them, the specific schematic introduction of the moment of reporting the CQI of at least one first moment can be referred to as shown in the subsequent Figure 12.
  • the terminal device will determine at least one first moment, and will calculate the CQI of the terminal device at the first moment, and then the terminal device will report the CQI to the base station. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and will report the CQI to the base station after calculating the CQI at the moment. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG4 is a flow chart of a CQI reporting method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG4 , the CQI reporting method may include the following steps:
  • Step 401 Receive an indication signaling sent by a base station, where the indication signaling indicates at least one first moment, and the first moment is a future moment.
  • the indication signaling may be at least one of Radio Resource Control (RRC) signaling, Media Access Control-Control Element (MAC-CE) signaling, or Downlink Control Information (DCI) signaling.
  • RRC Radio Resource Control
  • MAC-CE Media Access Control-Control Element
  • DCI Downlink Control Information
  • the first moment may be determined autonomously by the base station and sent to the terminal device through the indication signaling, or may be determined by the base station based on any one of the above formulas 1 to 5 and sent to the terminal device through the indication signaling.
  • the terminal device may have reported CSI to the base station, such as the terminal device has performed the first CSI reporting.
  • Step 402 Calculate the CQI at the first moment based on the demodulation reference signal (DMRS) sent by the base station.
  • DMRS demodulation reference signal
  • the CQI at the first moment may be calculated based on DMRS prediction before the first moment; or, when the first moment is reached, the CQI at the first moment may be calculated based on DMRS.
  • Step 403 Report the CQI at the first moment at the first moment; or, report the CQI at the first moment f time slots after the first moment.
  • the value of f may be configured by the base station or predefined.
  • the reason why the CQI of the first moment is reported f time slots after the first moment is mainly because when the terminal device calculates the CQI of the first moment when the first moment is reached in the above step 402, it takes some time for the terminal device to calculate the CQI, and the CQI of the first moment cannot be calculated immediately at the first moment, but may be calculated after the first moment. Therefore, the reporting time of the terminal device for the calculated CQI of the first moment should be f time slots after the first moment.
  • the terminal device will determine at least one first moment, and will calculate the CQI of the terminal device at the first moment, and then the terminal device will report the CQI to the base station. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and will report the CQI to the base station after calculating the CQI at the moment. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG5 is a flow chart of a CQI reporting method provided in an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG5 , the CQI reporting method may include the following steps:
  • Step 501 Determine the at least one first time based on a predefined rule or by negotiation with a base station.
  • determining the at least one first time based on a predefined rule or by negotiation with a base station may include:
  • n ref represents the time and based on formula 1:
  • formula 2 The calculated at least one moment is determined as the at least one first moment, and the first moment is a future moment; or
  • formula 3 Based on predefined rules or through negotiation with the base station, it will be based on formula three: Or formula 4: The calculated at least one moment is determined as at least one first moment, where the first moment is a future moment; or
  • the terminal device may have reported CSI to the base station, such as the terminal device has reported CSI for the first time.
  • Step 502 Calculate and obtain the CQI at the first moment based on the DMRS sent by the base station.
  • Step 503 Report the CQI at the first moment at the first moment; or, report the CQI at the first moment f time slots after the first moment.
  • the terminal device may have reported CSI to the base station once, such as the first CSI report.
  • steps 502 - 503 please refer to the above embodiment description.
  • the terminal device will determine at least one first moment, and will calculate the CQI of the terminal device at the first moment, and then the terminal device will report the CQI to the base station. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and will report the CQI to the base station after calculating the CQI at the moment. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG6 is a flow chart of a CQI reporting method provided in an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG6 , the CQI reporting method may include the following steps:
  • Step 601 In response to receiving a beamformed CSI-RS sent by a base station, determine a time when the beamformed CSI-RS is received as the first time.
  • the beamformed CSI-RS sent by the base station may be: the result of the base station beamforming the CSI-RS based on the PMI corresponding to the channel at the time of sending the beamformed CSI-RS.
  • the PMI corresponding to the channel at the time of sending the beamformed CSI-RS sent by the base station may be predicted in advance by the base station at a previous time, or may be directly determined based on the current channel state of the base station when the base station is to send the beamformed CSI-RS.
  • the terminal device may have reported CSI to the base station, such as the terminal device has performed the first CSI reporting.
  • Step 602 Determine second channel information based on the received beamformed CSI-RS.
  • the second channel information may be a matrix HB, wherein B is the beam adopted by the base station to send the beamformed CSI-RS, which corresponds to the PMI reported by the terminal device or predicted by the base station, wherein the PMI may be, for example, the PMI corresponding to the channel at the time of sending when the base station sends the beamformed CSI-RS; and H is the channel information matrix.
  • Step 603 Calculate the CQI at the first moment based on the second channel information.
  • Step 604 Report the CQI at the first moment at the first moment; or, report the CQI at the first moment f time slots after the first moment.
  • steps 603 and 604 For the relevant introduction of steps 603 and 604, reference may be made to the above-mentioned embodiment description.
  • the terminal device will determine at least one first moment, and will calculate the CQI of the terminal device at the first moment, and then the terminal device will report the CQI to the base station. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and will report the CQI to the base station after calculating the CQI at the moment. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG. 7 is a flow chart of a CQI reporting method provided in an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 7 , the CQI reporting method may include the following steps:
  • Step 701 Receive at least one CQI at a first moment reported by a terminal device.
  • the base station will receive at least one CQI of the first moment reported by the terminal device, wherein the above-mentioned first moments are all determined by the terminal device. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and after calculating the CQI of the moment, it will report the CQI to the base station. That is, the present disclosure provides a method for implementing the terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG8 is a flow chart of a CQI reporting method provided in an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG8 , the CQI reporting method may include the following steps:
  • Step 801 Receive the CQI of at least one first moment reported simultaneously by the terminal device, where the first moment is determined autonomously by the terminal device.
  • the base station will receive at least one CQI of the first moment reported by the terminal device, wherein the above-mentioned first moments are all determined by the terminal device. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and after calculating the CQI of the moment, it will report the CQI to the base station. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG. 9 is a flow chart of a CQI reporting method provided in an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 9 , the CQI reporting method may include the following steps:
  • Step 901 Send an indication signaling to a terminal device, wherein the indication signaling indicates at least one first moment, and the first moment is a future moment.
  • the first moment may be determined autonomously by the base station, or may be determined by the base station based on any one of Formulas 1 to 5 above.
  • Step 902 Receive the CQI at the first moment reported by the terminal device at the first moment; or, receive the CQI at the first moment reported by the terminal device f time slots after the first moment.
  • the base station will receive at least one CQI of the first moment reported by the terminal device, wherein the above-mentioned first moments are all determined by the terminal device. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and after calculating the CQI of the moment, it will report the CQI to the base station. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG. 10 is a flow chart of a CQI reporting method provided in an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 10 , the CQI reporting method may include the following steps:
  • Step 1001 Negotiate with the terminal device to indicate at least one first moment to the terminal device, where the first moment is a future moment.
  • the negotiating with the terminal device to indicate at least one first moment to the terminal device includes:
  • n ref The time indicated by n ref is negotiated with the base station and is based on formula 1: Or formula 2: The calculated at least one moment is determined as the at least one first moment, and the first moment is a future moment; or
  • the indication will be based on Formula 3 through negotiation with the base station: Or formula 4: The calculated at least one moment is determined as at least one first moment, where the first moment is a future moment; or
  • At least one moment calculated based on Formula 5: l+(k-1) ⁇ d′, k ⁇ [1,N] is determined as at least one first moment, where the first moment is a future moment.
  • Step 1002 Receive the CQI at the first moment reported by the terminal device at the first moment; or, receive the CQI at the first moment reported by the terminal device f time slots after the first moment.
  • the base station will receive at least one CQI of the first moment reported by the terminal device, wherein the above-mentioned first moments are all determined by the terminal device. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and after calculating the CQI of the moment, it will report the CQI to the base station. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG. 11 is a flow chart of a CQI reporting method provided in an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 11 , the CQI reporting method may include the following steps:
  • Step 1101 Autonomously determine at least one first moment.
  • the base station may also be determined based on any one of the above formulas 1 to 5.
  • the at least one first moment may be periodic or non-periodic.
  • Step 1102 Determine the PMI corresponding to the channel at the first moment.
  • the PMI corresponding to the channel at the first moment may be predicted by the base station before the first moment, or may be determined by the base station directly based on the channel state at the first moment when the first moment is reached. Also, the specific method for predicting or determining the PMI may refer to the description of the above embodiment.
  • Step 1103 In response to arriving at the first moment, beamforming the CSI-RS using the PMI at the first moment is performed and then sent to the terminal device.
  • Step 1104 receive the CQI at the first moment reported by the terminal device at the first moment; or, receive the CQI at the first moment reported by the terminal device f time slots after the first moment.
  • the base station will receive at least one CQI of the first moment reported by the terminal device, wherein the above-mentioned first moments are all determined by the terminal device. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and after calculating the CQI of the moment, the CQI will be reported to the base station. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • FIG. 12 is a schematic diagram of the reporting time when reporting CQI in the embodiment of FIG. 3 of the present disclosure.
  • the gNB i.e., the aforementioned base station
  • sends CSI-RS to the UE i.e., the aforementioned terminal device
  • the UE can predict the channel information at future moments based on the measured channel information, and then calculate the CSI at these future moments based on the predicted channel information, where the CSI includes information such as the calculated PMI, CQI or RI.
  • the PMI is calculated according to codebook structure 1 or codebook structure 2.
  • the window size for reporting CSI be WCSI, and define the starting point l of the window as the CSI reference resource point.
  • the first CQI can be calculated by the UE based on the channel measured by the CSI-RS, that is, the CQI determined by the corresponding CSI reference resource.
  • the UE then calculates the downlink channel information at each predicted moment and the PMI at the corresponding moment. and The CQI corresponding to the time is shown in bold in Figure 12. Note that the three CQIs determined above are reported to the gNB at the same time as reported at time n. and After the time, the CQI determined at these time points is used for downlink data transmission. In the corresponding time period, the CQI and the channel in the time period can be well matched, thereby reducing system performance loss.
  • FIG. 13 is a schematic diagram of the reporting time when the CQI is reported using the embodiment of FIG. 4 or FIG. 5 of the present disclosure.
  • the gNB sends CSI-RS to the UE for downlink channel measurement at multiple consecutive times, and the UE determines the corresponding CQI, PMI, RI and other information based on the channel information measured by the CSI-RS, and sends this information to the gNB at the reporting time n.
  • the gNB uses the received PMI to predict the PMI at a future time through codebook structure 1 or codebook structure 2.
  • the gNB sends DCI signaling to the UE at a certain time to instruct the UE to calculate the CQI at the specified time, and triggers the non-periodic CSI to report the calculated 2 CQIs at times t1 and t2, as shown in Figure 2.
  • the CQI at these two times is calculated by the UE based on the effective channel information estimated by the received DMRS.
  • FIG. 14 is a schematic diagram of the reporting time when reporting CQI in the embodiment of FIG. 6 of the present disclosure.
  • the gNB sends beamformed CSI-RS to the UE at time t1 and t2 respectively, and then the UE calculates the CQI corresponding to the two times according to the estimated effective channel information at each time, and reports it to the gNB, as shown in Figure 3.
  • the beam of the CSI-RS is the PMI at time t1 and t2 predicted by the gNB.
  • FIG. 15 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 15 , the device may include:
  • a processing module configured to determine at least one first moment
  • the processing module is further used to calculate the CQI of the terminal device at the first moment
  • the transceiver module is used to report the CQI to the base station.
  • the terminal device will determine at least one first moment, and will calculate the CQI of the terminal device at the first moment, and then the terminal device will report the CQI to the base station. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and will report the CQI to the base station after calculating the CQI at the moment. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • the processing module is further configured to:
  • the terminal device autonomously determines at least one first moment, where the first moment is a future moment.
  • the processing module is further configured to:
  • n ref represent the moment and based on formula 1:
  • formula 2 The calculated at least one moment is determined as the at least one first moment;
  • the processing module is further configured to:
  • the processing module is further configured to:
  • n ref represents the time domain position of the CSI reference resource
  • n represents the first reporting moment of the CSI
  • N represents the number of first moments
  • d′ represents the interval between the moments corresponding to two adjacent PMIs calculated by the terminal device or the reporting interval between two adjacent PMIs
  • k is a positive integer
  • the processing module is further configured to:
  • the CQI of the terminal device at each first moment is calculated based on the predicted first channel information corresponding to each first moment and the PMI corresponding to each moment.
  • the transceiver module is further used for:
  • the at least one CQI at the first moment is simultaneously reported to the base station.
  • the processing module is further configured to:
  • An indication signaling sent by a base station is received, where the indication signaling indicates at least one first moment, and the first moment is a future moment.
  • the processing module is further configured to:
  • the at least one first time is determined based on a predefined rule or by negotiation with a base station.
  • the processing module is further configured to:
  • n ref represents the time and based on formula 1:
  • formula 2 The calculated at least one moment is determined as the at least one first moment, and the first moment is a future moment; or
  • formula 3 Based on predefined rules or through negotiation with the base station, it will be based on formula three: Or formula 4: The calculated at least one moment is determined as at least one first moment, where the first moment is a future moment; or
  • the processing module is further configured to:
  • the CQI at the first moment is calculated based on a demodulation reference signal DMRS sent by the base station.
  • the processing module is further configured to:
  • a time when the beamformed CSI-RS is received is determined as the first time.
  • the processing module is further configured to:
  • the CQI at the first moment is calculated based on the second channel information.
  • the transceiver module is further used for:
  • the CQI at the first moment is reported f time slots after the first moment.
  • FIG. 16 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 16 , the device may include:
  • the transceiver module is used to receive at least one CQI at a first moment reported by a terminal device.
  • the base station will receive at least one CQI of the first moment reported by the terminal device, wherein the above-mentioned first moments are all determined by the terminal device. It can be seen that in the method of the present disclosure, the terminal device will determine which CQIs need to be reported, and will report the CQI to the base station after calculating the CQI of the moment. That is, the present disclosure provides a method for implementing a terminal device to determine which CQIs to predict or determine, and how to report the predicted or determined CQI.
  • the method of the present disclosure can be used to enable the terminal device to report the CQI corresponding to the terminal device at certain moments to the base station, so that the base station can use the corresponding CQI for downlink transmission at the corresponding moment based on the CQI reported by the terminal device, thereby avoiding the situation that "because the base station always uses the same CQI for downlink transmission, the CQI based on which the base station performs downlink transmission to the terminal device moving at a medium or high speed does not correspond to the current channel state", ensuring the accuracy and stability of downlink transmission, and improving the performance of the communication system.
  • the first moment is determined autonomously by the terminal device
  • the transceiver module is also used for:
  • the device is further used for:
  • An indication signaling is sent to the terminal device, wherein the indication signaling indicates at least one first moment, and the first moment is a future moment.
  • the device is further used for:
  • At least one first time is indicated to the terminal device by negotiating with the terminal device, where the first time is a future time.
  • the device is further used for:
  • n ref The time indicated by n ref is negotiated with the base station and is based on formula 1: Or formula 2: The calculated at least one moment is determined as the at least one first moment, and the first moment is a future moment; or
  • the indication will be based on Formula 3 through negotiation with the base station: Or formula 4: The calculated at least one moment is determined as at least one first moment, where the first moment is a future moment; or
  • At least one moment calculated based on Formula 5: l+(k-1) ⁇ d′, k ⁇ [1,N] is determined as at least one first moment, where the first moment is a future moment.
  • the device is further used for:
  • the CSI-RS is beamformed using the PMI at the first moment and then sent to the terminal device.
  • the transceiver module is further used for:
  • FIG 17 is a schematic diagram of the structure of a communication device 1700 provided in an embodiment of the present application.
  • the communication device 1700 can be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 1700 may include one or more processors 1701.
  • the processor 1701 may be a general-purpose processor or a dedicated processor, etc.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal device, a terminal device chip, a DU or a CU, etc.), execute a computer program, and process the data of the computer program.
  • the communication device 1700 may further include one or more memories 1702, on which a computer program 1704 may be stored, and the processor 1701 executes the computer program 1704 so that the communication device 1700 performs the method described in the above method embodiment.
  • data may also be stored in the memory 1702.
  • the communication device 1700 and the memory 1702 may be provided separately or integrated together.
  • the communication device 1700 may further include a transceiver 1705 and an antenna 1706.
  • the transceiver 1705 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1705 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., and is used to implement a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., and is used to implement a transmitting function.
  • the communication device 1700 may further include one or more interface circuits 1707.
  • the interface circuit 1707 is used to receive code instructions and transmit them to the processor 1701.
  • the processor 1701 runs the code instructions to enable the communication device 1700 to perform the method described in the above method embodiment.
  • the processor 1701 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 1701 may store a computer program 1703, which runs on the processor 1701 and enables the communication device 1700 to perform the method described in the above method embodiment.
  • the computer program 1703 may be fixed in the processor 1701, in which case the processor 1701 may be implemented by hardware.
  • the communication device 1700 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 17.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and computer programs;
  • ASIC such as modem
  • the communication device can be a chip or a chip system
  • the communication device can be a chip or a chip system
  • the schematic diagram of the chip structure shown in Figure 18 includes a processor 1801 and an interface 1802.
  • the number of processors 1801 can be one or more, and the number of interfaces 1802 can be multiple.
  • the chip further includes a memory 1803, and the memory 1803 is used to store necessary computer programs and data.
  • the present application also provides a readable storage medium having instructions stored thereon, which implement the functions of any of the above method embodiments when executed by a computer.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • At least one in the present application can also be described as one or more, and a plurality can be two, three, four or more, which is not limited in the present application.
  • the technical features in the technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and there is no order of precedence or size between the technical features described by the "first”, “second”, “third”, “A”, “B”, “C” and “D”.
  • the corresponding relationships shown in each table in the present application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by the present application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles in the above tables can also use other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables.
  • the predefined in the present application may be understood as defined, predefined, stored, pre-stored, pre-negotiated, pre-configured, solidified, or pre-burned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种CQI上报方法、装置、设备及存储介质,所述方法包括:确定至少一个第一时刻;计算所述终端设备在所述第一时刻的CQI;向基站上报所述CQI。利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现"由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应"的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。

Description

一种信道质量指示CQI上报方法、装置、设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及CQI上报方法、装置、设备及存储介质。
背景技术
在通信系统中,终端设备通常需要向网络设备上报信道状态信息(Channel Status Information,CSI),以便网络设备可以基于终端设备上报的CSI实现对终端设备的高性能和高质量的下行传输,其中,CSI中至少包括信道质量指示(Channel Quality Indication,CQI)。以及,对于中高速移动的终端设备而言,其信道会在时域快速变化,因此会使得不同时间信道下对应的CQI也不相同。基于此,通常需要预测或确定未来时刻下终端设备的信道所对应的CQI,并向基站上报预测出的CQI,以确保网络设备基于终端设备的上报得知未来时刻下信道所对应的CQI,并在未来采用各时刻对应的CQI来实现该时刻下的下行传输,以此来确保下行传输的准确性和稳定性。
但是,目前针对具体要预测哪些未来时刻的CQI、以及如何上报预测的CQI的实现方法还未定义。
发明内容
本公开提出的CQI上报方法、装置、设备及存储介质,以用于确定具体要预测哪些未来时刻的CQI,以及提出了终端设备具体如何上报所预测的CQI的方法。
第一方面,本公开实施例提供一种CQI上报方法,该方法被终端设备执行,包括:
确定至少一个第一时刻;
计算所述终端设备在所述第一时刻的CQI;
向基站上报所述CQI。
本公开中,提供了一种CQI上报方法,终端设备会确定至少一个第一时刻,并会计算终端设备在该第一时刻的CQI,之后,终端设备会向基站上报CQI。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应
的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
第二方面,本公开实施例提供一种CQI上报方法,该方法被基站执行,包括:
接收终端设备上报的至少一个第一时刻的CQI。
第三方面,本公开实施例提供一种通信装置,该装置被配置在终端设备中,包括:
处理模块,用于确定至少一个第一时刻;
所述处理模块,还用于计算所述终端设备在所述第一时刻的CQI;
收发模块,用于向基站上报所述CQI。
第四方面,本公开实施例提供一种通信装置,该装置被配置在基站中,包括:
收发模块,用于接收终端设备上报的至少一个第一时刻的CQI。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信系统,该系统包括第三方面所述的通信装置至第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置至第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置至第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置至第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备和/或上述终端设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第一方面所述的方法,和/或,使所述终端设备执行上述第二方面所述的方法。
第十三方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面的任一方面所述的方法。
第十四方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第一方面至所述的方法所涉及的功能,和/或,支持终端设备实现第二方面所述的方法所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存源辅节点必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十五方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面的任一方面所述的方法。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的一种通信系统的架构示意图;
图2为本公开另一个实施例所提供的CQI上报方法的流程示意图;
图3为本公开再一个实施例所提供的CQI上报方法的流程示意图;
图4为本公开又一个实施例所提供的CQI上报方法的流程示意图;
图5为本公开另一个实施例所提供的CQI上报方法的流程示意图;
图6为本公开再一个实施例所提供的CQI上报方法的流程示意图;
图7为本公开又一个实施例所提供的CQI上报方法的流程示意图;
图8为本公开又一个实施例所提供的CQI上报方法的流程示意图;
图9为本公开又一个实施例所提供的CQI上报方法的流程示意图;
图10为本公开又一个实施例所提供的CQI上报方法的流程示意图;
图11为本公开又一个实施例所提供的CQI上报方法的流程示意图;
图12为采用本公开的图3实施例上报CQI时的上报时刻的示意图;
图13为采用本公开的图4或图5实施例上报CQI时的上报时刻的示意图;
图14为采用本公开的图6实施例上报CQI时的上报时刻的示意图;
图15为本公开一个实施例所提供的通信装置的结构示意图;
图16为本公开另一个实施例所提供的通信装置的结构示意图;
图17是本公开一个实施例所提供的一种通信装置的框图;
图18为本公开一个实施例所提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了便于理解,首先介绍本申请涉及的术语。
1、信道状态信息(Channel Status Information,CSI)
信道状态信息(CSI)是一种笼统的概念,它包括信道矩阵。只要是反应Channel的都叫信道状态信息。信道矩阵只是MIMO系统中的一种信道状态信息。其他的比如Channel profile,多径时延,多普勒频偏,MIMO信道的秩,波束形成向量,等等,都属于信道状态信息。当前的信道矩阵H只能算是一种信道状态信息,但是是最常用的。
2、信道质量指示(Channel Quality Indication,CQI)
CQI是信道质量的信息指示,代表当前信道质量的好坏,和信道的信噪比大小相对应,取值范围0~31。
为了更好的理解本申请实施例公开的一种CQI上报方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个基站和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的基站,两个或两个以上的终端设备。图1所示的通信系统以包括一个基站11、一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的基站11是网络侧的一种用于发射或接收信号的实体。例如,基站11可以为演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对基站所采用的具体技术和具体设备形态不做限定。本公开实施例提供的基站可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将基站,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU 集中控制DU。
本公开实施例中的终端设备12可以是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面参考附图对本公开实施例所提供的CQI上报方法、装置、设备及存储介质进行详细描述。
图2为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由终端设备执行,如图2所示,该CQI上报方法可以包括以下步骤:
步骤201、确定至少一个第一时刻。
其中,在本公开的一个实施例之中,该第一时刻可以为:需要计算该时刻下的CQI的时刻。该第一时刻可以是未来时刻,也可以是当下时刻。
以及,在本公开的一个实施例之中,该第一时刻可以是终端设备自主确定的,或者,可以是基站指示的,或者,可以是终端设备根据预定义规则确定的,或者,可以是终端设备通过与基站协商确定的,或者,也可以是终端设备基于其接收到基站发送的特定信号的时刻确定的。关于该部分内容的详细介绍会在后续实施例进行描述。
步骤202、计算终端设备在第一时刻的CQI。
步骤203、向基站上报CQI。
其中,在本公开的一个实施例之中,当上述步骤201中终端设备确定第一时刻的方法不同时,步骤202中终端设备计算第一时刻的CQI的方法、以及步骤203中终端设备向基站上报CQI的方法也会有所不同,关于该部分介绍会在后续实施例详细描述。
综上所述,本公开提供的CQI上报方法之中,终端设备会确定至少一个第一时刻,并会计算终端设备在该第一时刻的CQI,之后,终端设备会向基站上报CQI。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
图3为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由终端设备执行,如图3所示,该CQI上报方法可以包括以下步骤:
步骤301、终端设备自主确定至少一个第一时刻,其中,该第一时刻为未来时刻。
其中,在本公开的一个实施例之中,终端设备自主确定至少一个第一时刻的方法可以包括以下任一种:
第一种、将n ref表示的时刻和基于公式一:
Figure PCTCN2022122731-appb-000001
或公式二:
Figure PCTCN2022122731-appb-000002
计算出的至少一个时刻确定为至少一个第一时刻;
其中,W CSI表示上报窗的长度,上报窗的长度由基站配置或终端设备自主确定;l表示上报窗的起始点,l≥n ref或l≥n,n ref表示CSI参考资源的时域位置,n表示CSI的第一次上报时刻,N表示第一时刻的个数,
Figure PCTCN2022122731-appb-000003
表示向下取整,
Figure PCTCN2022122731-appb-000004
表示向上取整,k为正整数,k=1、2.....N-1,其中,通过使得所述公式一或公式二中的k取不同值以基于公式一或公式二计算出至少一个时刻。
需要说明的是,上述的n ref和n可以是由基站配置给终端设备的,上述的l具体取值可以由基站配置至终端设备,具体的,基站可以先确定出偏移值n offset,其中,该偏移值n offset可以是基站自主确定的,或者,也可以是终端设备确定后上报至基站的,之后,基站可以基于偏移值n offset和n ref确定出l的值,或者,基于偏移值n offset和n确定出l的值,并将l具体取值配置至终端设备;或者,l具体取值也可以是终端设备自己确定的,如,终端设备在接收到网络设备配置的n ref和n的值之后,可以自主确定或者基于基站的配置确定出偏移值n offset,再基于偏移值n offset和n ref确定出l的值,或者,基于偏移值n offset和n确定出l的值。以及,上述的N可以是由网络设备配置至终端设备或者终端设备自主确定的。以及,上述的W CSI=N 4d,其中,N 4为多普勒域基向量(DD basis)长度,d为DD basis压缩单元,d的单位为时隙。
示例的,以利用公式一计算第一时刻为例进行说明。假设N为3,此时k可以等于1、2,则将k=1、2分别带入至上述公式一中可得出二个时刻为分别为:
Figure PCTCN2022122731-appb-000005
时刻和
Figure PCTCN2022122731-appb-000006
时刻。则此时,终端设备可以将n ref表示的时刻(即CSI参考资源的时域位置)、
Figure PCTCN2022122731-appb-000007
时刻、
Figure PCTCN2022122731-appb-000008
时刻确定为第一时刻。
第二种、将基于公式三:
Figure PCTCN2022122731-appb-000009
或公式四:
Figure PCTCN2022122731-appb-000010
计算出的至少一个时刻确定为至少一个第一时刻;
与上述第一种不同之处为:k为正整数,k=1、2.....N,通过使得公式三或公式四中的k取不同值以基于公式三或公式四计算出至少一个时刻。
第三种、将基于公式五:l+(k-1)×d′,k∈[1,N]计算出的至少一个时刻确定为至少一个第一时刻;
其中,l≥n ref或l≥n,n ref表示CSI参考资源的时域位置,n表示CSI的第一次上报时刻,N表示第一时刻的个数,d′表示终端设备计算出的两个相邻PMI对应的时刻之间的间隔或两个相邻PMI之间的上报间隔,k为正整数,k=1、2.....N-1,其中,通过使得所述公式五中的k取不同值以基于公式五计算出至少一个时刻。
需要说明的是,上述的d′的取值主要与终端设备上报PMI的方式有关。具体的,当终端设备上报PMI的方式为:上报一次PMI,且一次上报的PMI为由多个时刻的PMI向量组成的矩阵时,则该d′表示终端设备计算出的其一次上报的PMI中的两个相邻PMI对应的时刻之间的间隔,其中,一次上报的PMI中包括的PMI向量的个数可以由基站配置或终端设备自主确定。当终端设备上报PMI的方式为:分别上报不同时刻的PMI时,则d′表示终端设备计算出的两个相邻PMI之间的上报间隔。
需要说明的是,在本公开的一个实施例之中,该终端设备在自主确定至少一个第一时刻之前,终端设备可以已向基站上报过CSI,如终端设备已进行了第一次CSI上报。
步骤302、接收基站发送的信道状态信息参考信号(Channel Status Information-Reference Signal,CSI-RS)。
步骤303、基于CSI-RS预测出各个第一时刻对应的第一信道信息以及各个第一时刻下终端设备对应的预编码矩阵指示(Precoding Matrix Indication,PMI)。
其中,在本公开的一个实施例之中,上述的基于CSI-RS预测出的第一信道信息可以为信道信息矩阵H。以及,终端设备可以通过测量CSI-RS来预测出未来的第一时刻下的第一信道信息。
进一步地,在本公开的一个实施例之中,上述的PMI可以是基于码本结构1或码本结构2确定而得;其中,码本结构1为:
Figure PCTCN2022122731-appb-000011
码本结构2为:W 1和W f相对于码本结构1不变,但相对于码本结构1再上报多个W 2
上述的W 1、W f和W d分别为空域基向量(SD basis)、频域基向量(FD basis)、DD basis构成的矩阵,特别地,W d也可能是一个单位阵,以及,上述码本结构1中的
Figure PCTCN2022122731-appb-000012
和码本结构2中的W 2可以均是基于Rel-16/17 Type II码本计算得出的,
Figure PCTCN2022122731-appb-000013
的维度与上述多个W 2的维度之和相同。
基于此,在本公开的一个实施例之中,终端设备通过测量CSI-RS预测出未来各个第一时刻下所对应的W 1、W f、W d
Figure PCTCN2022122731-appb-000014
W 2,并基于预测出的W 1、W f、W d
Figure PCTCN2022122731-appb-000015
W 2来确定出各个第一时刻对应的PMI。
需要说明的是,在本公开的一个实施例之中,当终端设备在步骤302中是利用第一种方法确定至少一个第一时刻时,则该至少一个第一时刻中包括有n ref表示的时刻,其中,针对于n ref表示的时刻的CQI的计算方法可以与现有技术相同,即:直接通过测量CSI-RS即可得出,而无需预测。
步骤304、基于预测出的各个第一时刻对应的第一信道信息和各个时刻对应的PMI计算终端设备在各个第一时刻的CQI。
步骤305、将至少一个第一时刻的CQI同时上报至基站。
其中,在本公开的一个实施例之中,上报至少一个第一时刻的CQI的时刻可以位于第一时刻之前。需要说明的是,在本公开的一个实施例之中,当终端设备在步骤302中是利用第一种方法确定至少一个第一时刻时,则该至少一个第一时刻中包括有n ref表示的时刻,此时,上报至少一个第一时刻的CQI的时刻可以位于n ref表示的时刻之后,且位于除了n ref表示的时刻之外的其余第一时刻之前。例如,终端设备可以是在某个CSI上报时刻(例如第一个CSI上报时刻)来将至少一个第一时刻的CQI同时上报至基站。其中,关于上报至少一个第一时刻的CQI的时刻的具体示意介绍可以参考后续图12所示。
综上所述,本公开提供的CQI上报方法之中,终端设备会确定至少一个第一时刻,并会计算终端设备在该第一时刻的CQI,之后,终端设备会向基站上报CQI。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
图4为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由终端设备执行,如图4所示,该CQI上报方法可以包括以下步骤:
步骤401、接收基站发送的指示信令,该指示信令中指示有至少一个第一时刻,该第一时刻为未来时刻。
其中,在本公开的一个实施例之中,该指示信令可以为无线资源控制(Radio Resource Control,RRC)信令、媒介介入控制-控制单元(Media Access Control-Control Element,MAC-CE)信令或下行控制信息(Downlink Control Information,DCI)信令中的至少一种。以及,该第一时刻可以是基站自主确定后通过该指示信令发送至终端设备的,也可以是基站基于上述公式一至公式五中的任一公式确定出后通过该指示信令发送至终端设备的。
需要说明的是,在本公开的一个实施例之中,该基站在该指示信令之前,终端设备可以已向基站上报过CSI,如终端设备已进行了第一次CSI上报。
步骤402、基于基站发送的解调参考信号(demodulation reference signal,DMRS)计算得出第一时 刻的CQI。
其中,在本公开的一个实施例之中,可以是在第一时刻之前基于DMRS预测计算出第一时刻的CQI;或者,也可以是到达第一时刻时,再基于DMRS计算该第一时刻的CQI。
步骤403、在第一时刻上报第一时刻的CQI;或者,在第一时刻之后的f个时隙后上报第一时刻的CQI。
其中,该f的值可以是基站配置的或者预定义的。
需要说明的是,在本公开的一个实施例之中,之所以要在第一时刻之后的f个时隙上报该第一时刻的CQI,主要是由于当上述步骤402中终端设备是在到达第一时刻再计算第一时刻的CQI时,则终端设备计算CQI时需要一些时间,无法在第一时刻立即就计算出第一时刻的CQI,而可能是在第一时刻之后再计算出该第一时刻的CQI,由此终端设备对于计算出的第一时刻的CQI的上报时刻应当是在第一时刻之后的f个时隙。
综上所述,本公开提供的CQI上报方法之中,终端设备会确定至少一个第一时刻,并会计算终端设备在该第一时刻的CQI,之后,终端设备会向基站上报CQI。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
图5为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由终端设备执行,如图5所示,该CQI上报方法可以包括以下步骤:
步骤501、基于预定义规则或通过与基站协商确定所述至少一个第一时刻。
可选的,在本公开的一个实施例之中,所述基于预定义规则或通过与基站协商确定所述至少一个第一时刻可以包括:
基于预定义规则或通过与基站协商将n ref表示的时刻和基于公式一:
Figure PCTCN2022122731-appb-000016
或公式二:
Figure PCTCN2022122731-appb-000017
计算出的至少一个时刻确定为所述至少一个第一时刻,所述第一时刻为未来时刻;或者
基于预定义规则或通过与基站协商将基于公式三:
Figure PCTCN2022122731-appb-000018
或公式四:
Figure PCTCN2022122731-appb-000019
Figure PCTCN2022122731-appb-000020
计算出的至少一个时刻确定为至少一个第一时刻,所述第一时刻为未来时刻;或者
基于预定义规则或通过与基站协商将基于公式五:l+(k-1)×d′,k∈[1,N]计算出的至少一个时刻确定为至少一个第一时刻,所述第一时刻为未来时刻。
其中,关于上述公式一至公式五的相关介绍可以参考上述实施例描述,以及,不同之处为:在图4对应的本实施例中,l为n ref或l为n,其中,n ref表示CSI参考资源的时域位置,n表示CSI的第一次上报时刻。
需要说明的是,在本公开的一个实施例之中,终端设备在基于预定义规则或通过与基站协商确定所述至少一个第一时刻之前,终端设备可以已向基站上报过CSI,如终端设备已进行了第一次CSI上报。
步骤502、基于基站发送的DMRS计算得出第一时刻的CQI。
步骤503、在第一时刻上报第一时刻的CQI;或者,在第一时刻之后的f个时隙后上报第一时刻的CQI。
其中,需要说明的是,在图5对应的实施例之中,终端设备在上报第一时刻的CQI之前,该终端设备可以已经向基站进行了一次CSI上报,如可以是已经进行了第一次CSI上报。
关于步骤502-503的相关介绍可以参考上述实施例描述。
综上所述,本公开提供的CQI上报方法之中,终端设备会确定至少一个第一时刻,并会计算终端设备在该第一时刻的CQI,之后,终端设备会向基站上报CQI。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
图6为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由终端设备执行,如图6所示,该CQI上报方法可以包括以下步骤:
步骤601、响应于接收到基站发送的波束赋形的CSI-RS,将接收到波束赋形的CSI-RS的时刻确定为所述第一时刻。
在本公开的一个实施例之中,基站发送的波束赋形的CSI-RS可以是:基站基于其要发送波束赋形的CSI-RS时的发送时刻下信道对应的PMI对CSI-RS波束赋形后所得的。其中,基站发送波束赋形的CSI-RS时的发送时刻下信道对应的PMI可以是基站在之前时刻提前预测出的,也可以是基站要发送波束赋形的CSI-RS时直接基于基站当下的信道状态确定出的。
此外,在本公开的一个实施例之中,该基站在发送波束赋形的CSI-RS之前,终端设备可以已向基站上报过CSI,如终端设备已进行了第一次CSI上报。
步骤602、基于接收到的波束赋形的CSI-RS确定出第二信道信息。
其中,在本公开的一个实施例之中,上述的第二信道信息可以为矩阵HB,其中B为基站发送波束赋形的CSI-RS的所采用的波束,它对应终端设备上报或基站预测的PMI,其中,该PMI例如可以为基站发送波束赋形的CSI-RS时的发送时刻下信道对应的PMI;H为信道信息矩阵。
步骤603、基于第二信道信息计算出第一时刻的CQI。
步骤604、在第一时刻上报第一时刻的CQI;或者,在第一时刻之后的f个时隙后上报第一时刻的CQI。
关于步骤603和604的相关介绍可以参考上述实施例描述。
综上所述,本公开提供的CQI上报方法之中,终端设备会确定至少一个第一时刻,并会计算终端设备在该第一时刻的CQI,之后,终端设备会向基站上报CQI。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
图7为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由基站执行,如图7所示,该CQI上报方法可以包括以下步骤:
步骤701、接收终端设备上报的至少一个第一时刻的CQI。
综上所述,本公开提供的CQI上报方法之中,基站会接收终端设备上报的至少一个第一时刻的CQI,其中,上述的第一时刻均是由终端设备确定的。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了 一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
图8为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由基站执行,如图8所示,该CQI上报方法可以包括以下步骤:
步骤801、接收所述终端设备同时上报的所述至少一个第一时刻的CQI,所述第一时刻由终端设备自主确定。
综上所述,本公开提供的CQI上报方法之中,基站会接收终端设备上报的至少一个第一时刻的CQI,其中,上述的第一时刻均是由终端设备确定的。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
图9为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由基站执行,如图9所示,该CQI上报方法可以包括以下步骤:
步骤901、向终端设备发送指示信令,所述指示信令中指示有至少一个第一时刻,所述第一时刻为未来时刻。
其中,在本公开的一个实施例之中,上述的第一时刻可以是基站自主确定的,也可以是基站基于采用上述公式一至公式五中的任一公式确定的。
步骤902、接收所述终端设备在第一时刻上报的所述第一时刻的CQI;或者,接收所述终端设备在第一时刻之后的f个时隙后上报的所述第一时刻的CQI。
综上所述,本公开提供的CQI上报方法之中,基站会接收终端设备上报的至少一个第一时刻的CQI,其中,上述的第一时刻均是由终端设备确定的。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
图10为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由基站执行,如图10所示,该CQI上报方法可以包括以下步骤:
步骤1001、通过与所述终端设备协商以向所述终端设备指示至少一个第一时刻,所述第一时刻为未来时刻。
可选的,所述通过与所述终端设备协商以向所述终端设备指示至少一个第一时刻,包括:
通过与基站协商指示将n ref表示的时刻和基于公式一:
Figure PCTCN2022122731-appb-000021
或公式二:
Figure PCTCN2022122731-appb-000022
计算出的至少一个时刻确定为所述至少一个第一时刻,所述第一时刻为未来时刻;或者
通过与基站协商指示将基于公式三:
Figure PCTCN2022122731-appb-000023
或公式四:
Figure PCTCN2022122731-appb-000024
计算出的至少一个时刻确定为至少一个第一时刻,所述第一时刻为未来时刻;或者
通过与基站协商指示将基于公式五:l+(k-1)×d′,k∈[1,N]计算出的至少一个时刻确定为至少一个第一时刻,所述第一时刻为未来时刻。
步骤1002、接收所述终端设备在第一时刻上报的所述第一时刻的CQI;或者,接收所述终端设备在第一时刻之后的f个时隙后上报的所述第一时刻的CQI。
综上所述,本公开提供的CQI上报方法之中,基站会接收终端设备上报的至少一个第一时刻的CQI,其中,上述的第一时刻均是由终端设备确定的。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
图11为本公开实施例所提供的一种CQI上报方法的流程示意图,该方法由基站执行,如图11所示,该CQI上报方法可以包括以下步骤:
步骤1101、自主确定至少一个第一时刻。
在本公开的一个实施例之中,基站还可以基于上述公式一至公式五中的任一公式确定。
其中,该至少一个第一时刻之间可以是周期性的,或者,也可以是非周期性的。
步骤1102、确定所述第一时刻下的信道对应的PMI。
需要说明的是,上述的第一时刻下的信道对应的PMI可以是基站至第一时刻之前预测出的,也可以是到达第一时刻时基站直接基于第一时刻下的信道状态确定出的。以及,关于预测或确定PMI的具体方法可以参考上述实施例描述。
步骤1103、响应于到达所述第一时刻,利用所述第一时刻的PMI对CSI-RS进行波束赋形后发送至所述终端设备。
步骤1104、接收所述终端设备在第一时刻上报的所述第一时刻的CQI;或者,接收所述终端设备在第一时刻之后的f个时隙后上报的所述第一时刻的CQI。
综上所述,本公开提供的CQI上报方法之中,基站会接收终端设备上报的至少一个第一时刻的CQI,其中,上述的第一时刻均是由终端设备确定的。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
进一步地,以下对上述的实施例进行举例说明。
图12为采用本公开的图3实施例上报CQI时的上报时刻的示意图。
如图12所示,假设gNB(即前述的基站)在连续多个时刻向UE(即前述终端设备)发送CSI-RS用于下行信道测量。UE基于测量的信道信息可预测未来时刻的信道信息,然后再根据所预测的信道信息可计算这些未来时刻的CSI,其中CSI包含了计算的PMI、CQI或RI等信息。PMI的是根据码本结构1或者码本结构2计算得到。令上报CSI的窗大小WCSI,并且定义窗的起始点l为CSI参考资源点。 假设上报CQI的个数N=3,第1个CQI可由UE根据CSI-RS测量的信道计算得到,即对应CSI参考资源确定的CQI。然后UE再根据预测的各个时刻下行信道信息和对应时刻的PMI,计算
Figure PCTCN2022122731-appb-000025
Figure PCTCN2022122731-appb-000026
时刻对应的CQI,如图12中加粗线条所示时刻对应的CQI。注意的是上述确定的3个CQI是上报n时刻一起上报给gNB。使得gNB在nref、
Figure PCTCN2022122731-appb-000027
Figure PCTCN2022122731-appb-000028
时刻之后采用这些时刻确定的CQI用于下行数据传输,在相应时间段内CQI和该时间段内的信道能够较好地匹配,减少系统性能损失。
图13为采用本公开的图4或图5实施例上报CQI时的上报时刻的示意图。
如图13所示,假设UE仍需上报N=3个CQI,gNB在连续多个时刻向UE发送CSI-RS用于下行信道测量,并且UE基于CSI-RS测量的信道信息确定对应的CQI、PMI、RI等信息,并在上报n时刻把这些信息发送给gNB。gNB利用接收的PMI通过码本结构1或码本结构2可预测未来时刻的PMI。gNB在某一时刻向UE发送了DCI信令,用于指示UE计算指定时刻的CQI,并且触发非周期CSI在t1和t2时刻上报所计算的2个CQI,如图2所示。这两个时刻的CQI是UE根据接收的DMRS估计的有效信道信息计算得到。
图14为采用本公开的图6实施例上报CQI时的上报时刻的示意图。
如图14所示,可选地,gNB在t1和t2时刻分别向UE发送波束赋形的CSI-RS,然后UE根据估计的各时刻有效信道信息计算对应两个时刻的CQI,并上报给gNB,如图3所示。其中,CSI-RS的波束为gNB预测的t1和t2时刻的PMI。
图15为本公开实施例所提供的一种通信装置的结构示意图,如图15所示,装置可以包括:
处理模块,用于确定至少一个第一时刻;
所述处理模块,还用于计算所述终端设备在所述第一时刻的CQI;
收发模块,用于向基站上报所述CQI。
综上所述,在本公开实施例提供的通信装置之中,终端设备会确定至少一个第一时刻,并会计算终端设备在该第一时刻的CQI,之后,终端设备会向基站上报CQI。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
所述终端设备自主确定至少一个第一时刻,所述第一时刻为未来时刻。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
将n ref表示的时刻和基于公式一:
Figure PCTCN2022122731-appb-000029
或公式二:
Figure PCTCN2022122731-appb-000030
计算出的至少一个时刻确定为所述至少一个第一时刻;
其中,W CSI表示上报窗的长度,所述上报窗的长度由基站配置或终端设备自主确定;l表示上报窗的起始点,l≥n ref或l≥n,n ref表示信道状态信息CSI参考资源的时域位置,n表示CSI的第一次上报时刻,N表示第一时刻的个数,
Figure PCTCN2022122731-appb-000031
表示向下取整,
Figure PCTCN2022122731-appb-000032
表示向上取整,k为正整数,k=1、2.....N-1,其中,通过使得所述公式一或公式二中的k取不同值以基于公式一或公式二计算出至少一个时刻。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
将基于公式三:
Figure PCTCN2022122731-appb-000033
或公式四:
Figure PCTCN2022122731-appb-000034
计算出的至少一个时刻确 定为至少一个第一时刻;
其中,W CSI表示上报窗的长度,所述上报窗的长度由基站配置或终端设备自主确定;l表示上报窗的起始点,l≥n ref或l≥n,n ref表示CSI参考资源的时域位置,n表示CSI的第一次上报时刻,N表示第一时刻的个数,
Figure PCTCN2022122731-appb-000035
表示向下取整,
Figure PCTCN2022122731-appb-000036
表示向上取整,k为正整数,k=1、2.....N,其中,通过使得所述公式三或公式四中的k取不同值以基于公式三或公式四计算出至少一个时刻。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
将基于公式五:l+(k-1)×d′,k∈[1,N]计算出的至少一个时刻确定为至少一个第一时刻;
其中,l≥n ref或l≥n,n ref表示CSI参考资源的时域位置,n表示CSI的第一次上报时刻,N表示第一时刻的个数,d′表示终端设备计算的两个相邻PMI对应的时刻之间的间隔或两个相邻PMI之间的上报间隔,k为正整数,k=1、2.....N,其中,通过使得所述公式五中的k取不同值以基于公式五计算出至少一个时刻。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
接收所述基站发送的信道状态信息参考信号CSI-RS;
基于所述CSI-RS预测出各个第一时刻对应的第一信道信息以及各个第一时刻下所述终端设备对应的预编码矩阵指示PMI;
基于预测出的各个第一时刻对应的第一信道信息和各个时刻对应的PMI计算所述终端设备在各个第一时刻的CQI。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
将所述至少一个第一时刻的CQI同时上报至所述基站。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
接收基站发送的指示信令,所述指示信令中指示有至少一个第一时刻,所述第一时刻为未来时刻。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
基于预定义规则或通过与基站协商确定所述至少一个第一时刻。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
基于预定义规则或通过与基站协商将n ref表示的时刻和基于公式一:
Figure PCTCN2022122731-appb-000037
或公式二:
Figure PCTCN2022122731-appb-000038
计算出的至少一个时刻确定为所述至少一个第一时刻,所述第一时刻为未来时刻;或者
基于预定义规则或通过与基站协商将基于公式三:
Figure PCTCN2022122731-appb-000039
或公式四:
Figure PCTCN2022122731-appb-000040
Figure PCTCN2022122731-appb-000041
计算出的至少一个时刻确定为至少一个第一时刻,所述第一时刻为未来时刻;或者
基于预定义规则或通过与基站协商将基于公式五:l+(k-1)×d′,k∈[1,N]计算出的至少一个时刻确定为至少一个第一时刻,所述第一时刻为未来时刻。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
基于所述基站发送的解调参考信号DMRS计算得出所述第一时刻的CQI。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
响应于接收到所述基站发送的波束赋形的CSI-RS,将接收到所述波束赋形的CSI-RS的时刻确定为所述第一时刻。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
基于接收到的所述波束赋形的CSI-RS确定出第二信道信息;
基于所述第二信道信息计算出所述第一时刻的CQI。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
在第一时刻上报所述第一时刻的CQI;或者
在第一时刻之后的f个时隙后上报所述第一时刻的CQI。
图16为本公开实施例所提供的一种通信装置的结构示意图,如图16所示,装置可以包括:
收发模块,用于接收终端设备上报的至少一个第一时刻的CQI。
综上所述,在本公开实施例提供的通信装置之中,基站会接收终端设备上报的至少一个第一时刻的CQI,其中,上述的第一时刻均是由终端设备确定的。由此可知,本公开的方法中,终端设备会确定出具体需要上报哪些时刻的CQI,并且在计算出该时刻的CQI后会向基站上报该CQI。也即是,本公开提供了一种终端设备确定具体要预测或确定哪些时刻的CQI、以及如何上报预测或确定出的CQI的实现方法,由此,当终端设备在中高速移动时,可以利用本公开的方法,使得终端设备向基站上报终端设备在某些时刻对应的CQI,以便基站可以基于终端设备上报的CQI,来在对应时刻使用对应的CQI进行下行传输,则避免出现“由于基站总是使用同一CQI进行下行传输,而使得基站对中高速移动的终端设备进行下行传输时所基于的CQI与当下的信道状态不对应”的情况,确保了下行传输的准确性和稳定性,提高了通信系统的性能。
可选的,在本公开的一个实施例之中,所述第一时刻由终端设备自主确定;
所述收发模块还用于:
接收所述终端设备同时上报的所述至少一个第一时刻的CQI。
可选的,在本公开的一个实施例之中,所述装置还用于:
向所述终端设备发送指示信令,所述指示信令中指示有至少一个第一时刻,所述第一时刻为未来时刻。
可选的,在本公开的一个实施例之中,所述装置还用于:
通过与所述终端设备协商以向所述终端设备指示至少一个第一时刻,所述第一时刻为未来时刻。
可选的,在本公开的一个实施例之中,所述装置还用于:
通过与基站协商指示将n ref表示的时刻和基于公式一:
Figure PCTCN2022122731-appb-000042
或公式二:
Figure PCTCN2022122731-appb-000043
计算出的至少一个时刻确定为所述至少一个第一时刻,所述第一时刻为未来时刻;或者
通过与基站协商指示将基于公式三:
Figure PCTCN2022122731-appb-000044
或公式四:
Figure PCTCN2022122731-appb-000045
计算出的至少一个时刻确定为至少一个第一时刻,所述第一时刻为未来时刻;或者
通过与基站协商指示将基于公式五:l+(k-1)×d′,k∈[1,N]计算出的至少一个时刻确定为至少一个第一时刻,所述第一时刻为未来时刻。
可选的,在本公开的一个实施例之中,所述装置还用于:
自主确定至少一个第一时刻;
确定所述第一时刻下的信道对应的PMI;
响应于到达所述第一时刻,利用所述第一时刻的PMI对CSI-RS进行波束赋形后发送至所述终端设备。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
接收所述终端设备在第一时刻上报的所述第一时刻的CQI;或者
接收所述终端设备在第一时刻之后的f个时隙后上报的所述第一时刻的CQI。
请参见图17,图17是本申请实施例提供的一种通信装置1700的结构示意图。通信装置1700可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施 例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1700可以包括一个或多个处理器1701。处理器1701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1700中还可以包括一个或多个存储器1702,其上可以存有计算机程序1704,处理器1701执行所述计算机程序1704,以使得通信装置1700执行上述方法实施例中描述的方法。可选的,所述存储器1702中还可以存储有数据。通信装置1700和存储器1702可以单独设置,也可以集成在一起。
可选的,通信装置1700还可以包括收发器1705、天线1706。收发器1705可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1705可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1700中还可以包括一个或多个接口电路1707。接口电路1707用于接收代码指令并传输至处理器1701。处理器1701运行所述代码指令以使通信装置1700执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1701中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1701可以存有计算机程序1703,计算机程序1703在处理器1701上运行,可使得通信装置1700执行上述方法实施例中描述的方法。计算机程序1703可能固化在处理器1701中,该种情况下,处理器1701可能由硬件实现。
在一种实现方式中,通信装置1700可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图17的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图18所示的芯片的结构示意图。图18所示的芯片包括处理器1801和接口1802。其中,处理器1801的数量可以是一个或多个,接口1802的数量可以是多个。
可选的,芯片还包括存储器1803,存储器1803用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种CQI上报方法,其特征在于,被终端设备执行,所述方法包括:
    确定至少一个第一时刻;
    计算所述终端设备在所述第一时刻的信道指令指示CQI;
    向基站上报所述CQI。
  2. 如权利要求1所述的方法,其特征在于,所述确定至少一个第一时刻,包括:
    所述终端设备自主确定至少一个第一时刻。
  3. 如权利要求2所述的方法,其特征在于,所述终端设备自主确定至少一个第一时刻,包括:
    将n ref表示的时刻和基于公式一:
    Figure PCTCN2022122731-appb-100001
    或公式二:
    Figure PCTCN2022122731-appb-100002
    计算出的至少一个时刻确定为所述至少一个第一时刻;
    其中,W CSI表示上报窗的长度,所述上报窗的长度由基站配置或终端设备自主确定;l表示上报窗的起始点,l≥n ref或l≥n,n ref表示信道状态信息CSI参考资源的时域位置,n表示CSI的第一次上报时刻,N表示第一时刻的个数,
    Figure PCTCN2022122731-appb-100003
    表示向下取整,
    Figure PCTCN2022122731-appb-100004
    表示向上取整,k为正整数,k=1、2.....N-1,其中,通过使得所述公式一或公式二中的k取不同值以基于公式一或公式二计算出至少一个时刻。
  4. 如权利要求2所述的方法,其特征在于,所述终端设备自主确定至少一个第一时刻,包括:
    将基于公式三:
    Figure PCTCN2022122731-appb-100005
    或公式四:
    Figure PCTCN2022122731-appb-100006
    计算出的至少一个时刻确定为至少一个第一时刻;
    其中,W CSI表示上报窗的长度,所述上报窗的长度由基站配置或终端设备自主确定;l表示上报窗的起始点,l≥n ref或l≥n,n ref表示CSI参考资源的时域位置,n表示CSI的第一次上报时刻,N表示第一时刻的个数,
    Figure PCTCN2022122731-appb-100007
    表示向下取整,
    Figure PCTCN2022122731-appb-100008
    表示向上取整,k为正整数,k=1、2.....N,其中,通过使得所述公式三或公式四中的k取不同值以基于公式三或公式四计算出至少一个时刻。
  5. 如权利要求2所述的方法,其特征在于,所述终端设备自主确定至少一个第一时刻,包括:
    将基于公式五:l+(k-1)×d′,k∈[1,N]计算出的至少一个时刻确定为至少一个第一时刻;
    其中,l≥n ref或l≥n,n ref表示CSI参考资源的时域位置,n表示CSI的第一次上报时刻,N表示第一时刻的个数,d′表示终端设备计算出的两个相邻PMI对应的时刻之间的间隔或两个相邻PMI之间的上报间隔,k为正整数,k=1、2.....N,其中,通过使得所述公式五中的k取不同值以基于公式五计算出至少一个时刻。
  6. 如权利要求2-5任一所述的方法,其特征在于,所述计算所述终端设备在所述第一时刻的CQI,包括:
    接收所述基站发送的信道状态信息参考信号CSI-RS;
    基于所述CSI-RS预测出各个第一时刻对应的第一信道信息以及各个第一时刻下所述终端设备对应的预编码矩阵指示PMI;
    基于预测出的各个第一时刻对应的第一信道信息和各个时刻对应的PMI计算所述终端设备在各个第一时刻的CQI。
  7. 如权利要求6所述的方法,其特征在于,所述向基站上报所述CQI,包括:
    将所述至少一个第一时刻的CQI同时上报至所述基站。
  8. 如权利要求1所述的方法,其特征在于,所述确定至少一个第一时刻,包括:
    接收基站发送的指示信令,所述指示信令中指示有至少一个第一时刻。
  9. 如权利要求1所述的方法,其特征在于,所述确定至少一个第一时刻,包括:
    基于预定义规则或通过与基站协商确定所述至少一个第一时刻。
  10. 如权利要求9所述的方法,其特征在于,所述基于预定义规则或通过与基站协商确定所述至少一个第一时刻,包括:
    基于预定义规则或通过与基站协商将n ref表示的时刻和基于公式一:
    Figure PCTCN2022122731-appb-100009
    或公式二:
    Figure PCTCN2022122731-appb-100010
    计算出的至少一个时刻确定为所述至少一个第一时刻;或者
    基于预定义规则或通过与基站协商将基于公式三:
    Figure PCTCN2022122731-appb-100011
    或公式四:
    Figure PCTCN2022122731-appb-100012
    Figure PCTCN2022122731-appb-100013
    计算出的至少一个时刻确定为至少一个第一时刻;或者
    基于预定义规则或通过与基站协商将基于公式五:l+(k-1)×d′,k∈[1,N]计算出的至少一个时刻确定为至少一个第一时刻,所述第一时刻为未来时刻。
  11. 如权利要求8或9所述的方法,其特征在于,所述计算所述终端设备在所述第一时刻的CQI,包括:
    基于所述基站发送的解调参考信号DMRS计算得出所述第一时刻的CQI。
  12. 如权利要求1所述的方法,其特征在于,所述确定至少一个第一时刻,包括:
    响应于接收到所述基站发送的波束赋形的CSI-RS,将接收到所述波束赋形的CSI-RS的时刻确定为所述第一时刻。
  13. 如权利要求12所述的方法,其特征在于,所述计算所述终端设备在所述第一时刻的CQI,包括:
    基于接收到的所述波束赋形的CSI-RS确定出第二信道信息;
    基于所述第二信道信息计算出所述第一时刻的CQI。
  14. 如权利要求8或9或12所述的方法,其特征在于,所述向基站上报所述CQI,包括:
    在第一时刻上报所述第一时刻的CQI;或者
    在第一时刻之后的f个时隙后上报所述第一时刻的CQI。
  15. 一种CQI上报方法,其特征在于,被基站执行,所述方法包括:
    接收终端设备上报的至少一个第一时刻的CQI。
  16. 如权利要求15所述的方法,其特征在于,所述第一时刻由终端设备自主确定;
    所述接收终端设备上报的至少一个第一时刻的CQI,包括:
    接收所述终端设备同时上报的所述至少一个第一时刻的CQI。
  17. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送指示信令,所述指示信令中指示有至少一个第一时刻。
  18. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    通过与所述终端设备协商以向所述终端设备指示至少一个第一时刻。
  19. 如权利要求18所述的方法,其特征在于,所述通过与所述终端设备协商以向所述终端设备指示至少一个第一时刻,包括:
    通过与基站协商指示将n ref表示的时刻和基于公式一:
    Figure PCTCN2022122731-appb-100014
    或公式二:
    Figure PCTCN2022122731-appb-100015
    计算出的至少一个时刻确定为所述至少一个第一时刻;或者
    通过与基站协商指示将基于公式三:
    Figure PCTCN2022122731-appb-100016
    或公式四:
    Figure PCTCN2022122731-appb-100017
    计算出的至少一个时刻确定为至少一个第一时刻;或者
    通过与基站协商指示将基于公式五:l+(k-1)×d′,k∈[1,N]计算出的至少一个时刻确定为 至少一个第一时刻。
  20. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    自主确定至少一个第一时刻;
    确定所述第一时刻下的信道对应的PMI;
    响应于到达所述第一时刻,利用所述第一时刻的PMI对CSI-RS进行波束赋形后发送至所述终端设备。
  21. 如权利要求17或18或20所述的方法,其特征在于,所述接收终端设备上报的至少一个第一时刻的CQI,包括:
    接收所述终端设备在第一时刻上报的所述第一时刻的CQI;或者
    接收所述终端设备在第一时刻之后的f个时隙后上报的所述第一时刻的CQI。
  22. 一种通信装置,其特征在于,所述装置被配置于终端设备中,包括:
    处理模块,用于确定至少一个第一时刻;
    所述处理模块,还用于计算所述终端设备在所述第一时刻的CQI;
    收发模块,用于向基站上报所述CQI。
  23. 一种通信装置,其特征在于,所述装置被配置于网络设备中,包括:
    收发模块,用于接收终端设备上报的至少一个第一时刻的CQI。
  24. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至14中任一项所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求15至22所述的方法。
  25. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至14中任一项所述的方法,或用于运行所述代码指令以执行如权利要求15至22所述的方法。
  26. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至14中任一项所述的方法被实现,或当所述指令被执行时,使如权利要求15至22所述的方法被实现。
PCT/CN2022/122731 2022-09-29 2022-09-29 一种信道质量指示cqi上报方法、装置、设备及存储介质 WO2024065426A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122731 WO2024065426A1 (zh) 2022-09-29 2022-09-29 一种信道质量指示cqi上报方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122731 WO2024065426A1 (zh) 2022-09-29 2022-09-29 一种信道质量指示cqi上报方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024065426A1 true WO2024065426A1 (zh) 2024-04-04

Family

ID=90475415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122731 WO2024065426A1 (zh) 2022-09-29 2022-09-29 一种信道质量指示cqi上报方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024065426A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080101280A1 (en) * 2006-09-27 2008-05-01 Qualcomm Incorporated Dynamic channel quality reporting in a wireless communication system
CN102882653A (zh) * 2012-10-15 2013-01-16 华为技术有限公司 信道质量指示上报的方法和用户设备
CN104641584A (zh) * 2013-02-26 2015-05-20 华为技术有限公司 上报信道质量指示cqi的方法及其装置
CN110049571A (zh) * 2018-01-16 2019-07-23 中国移动通信有限公司研究院 一种信道质量传输方法、终端及基站
CN114765483A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 信道状态信息的上报方法、装置及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080101280A1 (en) * 2006-09-27 2008-05-01 Qualcomm Incorporated Dynamic channel quality reporting in a wireless communication system
CN102882653A (zh) * 2012-10-15 2013-01-16 华为技术有限公司 信道质量指示上报的方法和用户设备
CN104641584A (zh) * 2013-02-26 2015-05-20 华为技术有限公司 上报信道质量指示cqi的方法及其装置
CN110049571A (zh) * 2018-01-16 2019-07-23 中国移动通信有限公司研究院 一种信道质量传输方法、终端及基站
CN114765483A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 信道状态信息的上报方法、装置及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: "Remaining issues on M-TRP beam management, SRS and CSI", 3GPP DRAFT; R1-2203773, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 25 April 2022 (2022-04-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052137868 *

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2023070586A1 (zh) 物理下行共享信道pdsch配置方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2024065426A1 (zh) 一种信道质量指示cqi上报方法、装置、设备及存储介质
WO2023283841A1 (zh) 波束测量上报激活方法及装置
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024000529A1 (zh) 一种信道状态信息反馈方法及其装置
WO2023245683A1 (zh) 基向量类型的指示方法和装置
WO2024077620A1 (zh) 物理下行共享信道pdsch传输方法及装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2024065544A1 (zh) 一种信息上报方法及其装置
WO2023184449A1 (zh) 一种发送tri的方法及其装置、接收tri的方法及其装置
WO2024092833A1 (zh) 一种确定信道状态信息csi的方法及其装置
WO2023216166A1 (zh) 相干带宽的测量方法和装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
CN118120163A (zh) 一种信道质量指示cqi上报方法、装置、设备及存储介质
WO2024031718A1 (zh) 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置
WO2024011543A1 (zh) 基向量的选择指示上报方法和装置
WO2024065547A1 (zh) 指示上报方法及其装置
WO2024031719A1 (zh) 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
WO2023184448A1 (zh) 一种基于非码本的pusch发送/接收信息的方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960063

Country of ref document: EP

Kind code of ref document: A1