WO2023184449A1 - 一种发送tri的方法及其装置、接收tri的方法及其装置 - Google Patents

一种发送tri的方法及其装置、接收tri的方法及其装置 Download PDF

Info

Publication number
WO2023184449A1
WO2023184449A1 PCT/CN2022/084684 CN2022084684W WO2023184449A1 WO 2023184449 A1 WO2023184449 A1 WO 2023184449A1 CN 2022084684 W CN2022084684 W CN 2022084684W WO 2023184449 A1 WO2023184449 A1 WO 2023184449A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
tri
precoding matrix
network device
terminal device
Prior art date
Application number
PCT/CN2022/084684
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/084684 priority Critical patent/WO2023184449A1/zh
Priority to CN202280000758.8A priority patent/CN117157903A/zh
Publication of WO2023184449A1 publication Critical patent/WO2023184449A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method of sending TRI and its device, and a method and device of receiving TRI.
  • the number of uplink transmission layers of the terminal device can be increased to 8 layers to support a higher uplink transmission rate that is comparable to that of downlink.
  • the uplink of terminal equipment is enhanced to Layer 8, how to implement non-codebook Physical Uplink Share Channel (PUSCH) transmission becomes a problem that needs to be solved.
  • PUSCH Physical Uplink Share Channel
  • the embodiments of the present application provide a method and device for transmitting TRI, a method and device for receiving TRI, and are different from the related art in which the precoding matrix used for PUSCH transmission is determined by transmitting precoded SRS resources to the terminal equipment.
  • the embodiments of the present application provide , transmit non-precoded SRS resources to network equipment, determine TRI based on non-precoded SRS resources, and determine the precoding matrix used when sending PUSCH based on TRI. This not only proposes a new precoding matrix determination process, but also gives New ways of indicating.
  • embodiments of the present application provide a method for transmitting TRI, which is executed by a network device.
  • the method includes: configuring a non-codebook SRS resource set, wherein the non-codebook SRS resource set includes a multi-port SRS resources, the maximum number of ports is 8; receiving the first SRS resource sent by the terminal device in a non-precoding manner, the first SRS resource being the SRS resource in the SRS resource set; based on the first SRS resource , determine the transmission rank indicator TRI used for actual transmission of PUSCH; send the TRI to the terminal device, where the TRI is used to determine the precoding matrix used for actual transmission of PUSCH.
  • the embodiments of the application provide a method for transmitting TRI. Different from the related technology in which precoding SRS resources are transmitted to the terminal equipment to determine the precoding matrix used for PUSCH transmission, in the embodiments of the application, non-precoding SRS resources are transmitted to the network equipment.
  • the TRI is determined based on the non-precoded SRS resources, and the precoding matrix used in PUSCH transmission is determined based on the TRI. It not only proposes a new precoding matrix determination process, but also gives a new instruction method.
  • embodiments of the present application provide a method for receiving TRI, which is executed by a terminal device.
  • the method includes: obtaining a non-codebook SRS resource set, and sending the first SRS resource in a non-precoding manner.
  • the SRS resource The set contains a multi-port SRS resource, the maximum number of ports is 8, and the first SRS resource is an SRS resource in the SRS resource set; receive the TRI sent by the network device, wherein the TRI is composed of the The network device determines based on the first SRS resource; based on the TRI, determines the precoding matrix used for actual transmission of PUSCH.
  • the embodiments of the application provide a method for receiving TRI. Different from the related technology in which precoding SRS resources are transmitted to the terminal equipment to determine the precoding matrix used for PUSCH transmission, in the embodiments of the application, non-precoding SRS resources are transmitted to the network equipment.
  • the TRI is determined based on the non-precoded SRS resources, and the precoding matrix used for PUSCH transmission is determined based on the TRI. It not only proposes a new precoding matrix determination process, but also provides a new instruction method.
  • embodiments of the present application provide a communication device that has some or all of the functions of the network device in implementing the method described in the first aspect.
  • the functions of the communication device may include some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • embodiments of the present application provide another communication device that has some or all of the functions of the terminal device in the method example described in the second aspect.
  • the functions of the communication device may have some of the functions in this application.
  • the functions in all embodiments may also be used to implement any one embodiment of the present application independently.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present application provide a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect. the above-mentioned communication device.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • this application provides a chip system, which includes at least one processor and an interface for supporting network equipment to implement the functions involved in the second aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a method for sending TRI provided by an embodiment of the present application
  • Figure 3 is a schematic flowchart of a method for sending TRI provided by an embodiment of the present application
  • Figure 4 is a schematic flowchart of a method for sending TRI provided by an embodiment of the present application
  • Figure 5 is a schematic flowchart of a method for receiving TRI provided by an embodiment of the present application.
  • Figure 6 is a schematic flowchart of a method for receiving TRI provided by an embodiment of the present application.
  • Figure 7 is a schematic flowchart of a method for receiving TRI provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining”
  • the terms used in this article are “greater than” or “less than”, “higher than” or “lower than” when characterizing size relationships. But for those skilled in the art, it can be understood that: the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of “less than” also covers the meaning of "less than or equal to”.
  • the sounding reference signal SRS (Sounding Reference Signal,) is used to estimate the frequency domain information of the uplink channel and perform frequency selective scheduling. It is also used to estimate the uplink channel and perform downlink beamforming.
  • SRS Resource Indicator is used to instruct the UE which SRS resource to use for uplink data transmission.
  • Data transmission rank indicator (Transmission Rank Indicator, TRI), used to indicate the number of data transmission layers corresponding to the precoding matrix used for actual transmission of PUSCH.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • NR 5th generation new radio
  • side link in the embodiment of the present application may also be called a side link or a through link.
  • the network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • side-link transmission modes there are 4 side-link transmission modes.
  • Side link transmission mode 1 and side link transmission mode 2 are used for terminal device direct (device-to-device, D2D) communication.
  • Side-link transmission mode 3 and side-link transmission mode 4 are used for V2X communications.
  • resource allocation is scheduled by the network device 101.
  • the network device 101 can send resource allocation information to the terminal device 102, and then the terminal device 102 allocates resources to another terminal device, so that the other terminal device can send information to the network device 101 through the allocated resources.
  • a terminal device with better signal or higher reliability can be used as the terminal device 102 .
  • the first terminal device mentioned in the embodiment of this application may refer to the terminal device 102, and the second terminal device may refer to the other terminal device.
  • Figure 2 is a schematic flowchart of a method for sending TRI provided by an embodiment of the present application.
  • the method of sending TRI is performed by the network device.
  • the method may include but is not limited to the following steps:
  • Step S21 Configure a non-codebook sounding reference signal SRS resource set, where the SRS resource set includes a multi-port SRS resource, and the maximum number of ports is 8.
  • the number of uplink data transmission layers of the terminal equipment is increased to 8 layers, that is, the maximum PUSCH transmission that the terminal equipment can support can be increased to 8 layers, which can be used to support a higher uplink transmission rate that is comparable to downlink. .
  • the Sounding Reference Signal (SRS) resource set includes an SRS resource.
  • the SRS resource In order to support multiple uplink data transmission layers, the SRS resource needs to be configured with multiple ports, and each port corresponds to one data transport layer.
  • the maximum number of PUSCH data transmission layers that the terminal equipment can support is 8, and the number of ports that need to be configured for SRS resources is 8. That is to say, the maximum number of ports corresponding to multi-port SRS resources configured in the SRS resource set is 8.
  • the network device configures an SRS resource set with a non-codebook function to the terminal device through high-layer signaling.
  • the network device can configure the terminal device through Radio Resource Control (RRC) signaling or Media access control-Control Element (MAC-CE) signaling or other high-level signaling.
  • RRC Radio Resource Control
  • MAC-CE Media access control-Control Element
  • SRS resource collection the configuration or reconfiguration of the SRS resource set is implemented through RRC signaling, and the updated configuration of all or part of the SRS resources of a certain SRS resource set is implemented through MAC-CE signaling.
  • the time domain characteristics of the SRS resource set are periodic, semi-persistent or aperiodic. That is to say, the SRS resource set can be a periodic SRS resource set, a semi-persistent SRS resource set, or a non-periodic SRS resource set. Periodic SRS resource collection.
  • Step S22 Receive the first SRS resource sent by the terminal device in a non-precoding manner.
  • the terminal device can send the first SRS resource sent in a non-precoding manner to the network device based on the SRS resource set, where the first SRS resource is an SRS resource.
  • the SRS resources in the set that is, the terminal device does not precode the SRS resources in the SRS resource set, but directly sends the SRS resources to the network device.
  • the SRS sent by the terminal device on the SRS resource can be used to obtain channel state information (Channel State Information, CSI), and then can obtain channel estimation information.
  • the channel estimation information can reflect channel conditions, interference conditions of pre-scheduled users, and /or scheduling factors such as channel noise.
  • Step S23 Determine the TRI used for PUSCH transmission based on the first SRS resource.
  • the network device may perform channel estimation on the received first SRS resource, and further determine the TRI of the terminal device based on the channel estimation information. That is to say, the network equipment can comprehensively consider the estimated uplink channel information, interference conditions of pre-scheduled users and/or channel noise and other scheduling factors to determine the PUSCH for the terminal equipment within the maximum number of data transmission layers supported by the terminal. The number of data transmission layers that should be applied in the secondary scheduling, that is, the network device determines the TRI corresponding to the precoding matrix actually used for PUSCH transmission based on the first SRS resource.
  • Step S24 Send TRI to the terminal equipment, where TRI is used to determine the precoding matrix used for PUSCH transmission.
  • the network device sends the TRI to the terminal device, and the TRI can be used to instruct the terminal device to determine the precoding matrix used for PUSCH transmission from the initial precoding matrix.
  • the network device can use the SRI indication field to index the value through the table, or indicate the TRI based on other predefined methods.
  • the network device can indicate the TRI to the terminal device through the SRI.
  • the network device can send the TRI to the terminal device through the SRI indication field.
  • the network device can indicate the TRI to the terminal device through the SRI indication field.
  • the indication field can Carry the index value of TRI.
  • each element in Table 1 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element does not depend on the value of any other element in Table 1. Therefore, those skilled in the art can understand that the value of each element in Table 1 is an independent embodiment.
  • the method for sending TRI may also include the following steps:
  • the network device configures the associated downlink Channel State Information-Reference Signal (CSI-RS) resource to the terminal device, and sends the downlink CSI-RS resource to the terminal device, where the terminal device can be based on the downlink CSI-RS resource.
  • the RS resources determine the initial precoding matrix.
  • the precoding matrix used for actual transmission of PUSCH is selected from the initial precoding matrix.
  • the terminal device by configuring an SRS resource set with a non-codebook function to the terminal device, which includes a multi-port SRS resource with a maximum number of 8 ports, the terminal device receives the first SRS resource set sent in a non-precoding manner.
  • An SRS resource based on the first SRS resource, determine the TRI used for PUSCH transmission, and send the TRI to the terminal equipment to instruct the terminal equipment to determine the precoding matrix used for PUSCH transmission based on the TRI and the initial precoding matrix.
  • non-precoding SRS resources are transmitted to the network equipment, and TRI is determined based on the non-precoding SRS resources. Determining the precoding matrix used for PUSCH transmission based on TRI not only proposes a new precoding matrix determination process, but also gives a new instruction method.
  • Figure 3 is a schematic flowchart of a method for sending TRI provided by an embodiment of the present application.
  • the method of sending TRI is performed by the network device.
  • the method may include but is not limited to the following steps:
  • Step S31 Configure a non-codebook SRS resource set, where the SRS resource set includes a multi-port SRS resource, and the maximum number of ports is 8.
  • Step S32 Receive the first SRS resource sent by the terminal device in a non-precoding manner, where the first SRS resource is an SRS resource in the SRS resource set.
  • Step S33 Determine the TRI and the first modulation and coding scheme MCS based on the first SRS resource.
  • the network device can determine the first modulation and coding scheme (Modulation and Coding Scheme, MCS) based on scheduling information such as channel conditions, multi-user interference, and/or channel noise.
  • MCS Modulation and Coding Scheme
  • the first MCS is used to indicate the transmission from multiple users.
  • the first MCS of the matching physical transmission rate selected from the physical transmission rates can be indicated by an MCS index value, and the modulation method and coding rate transmission parameters can be determined based on the MCS index value.
  • Step S34 Send the TRI and the first MCS to the terminal device.
  • the network device can send the TRI and the first MCS to the network device separately at the same time.
  • the TRI and the first MCS can be jointly encoded and send the jointly encoded value to the terminal device.
  • the existing SRI indication field may be reused to indicate the joint encoding value to the terminal device.
  • the method for sending TRI may also include the following steps:
  • the network device configures the associated downlink CSI-RS resources for the terminal device and sends the downlink CSI-RS resources to the terminal device.
  • the terminal device can determine the initial precoding matrix based on the downlink CSI-RS resources. In this application, PUSCH transmission
  • the precoding matrix used is filtered out from the initial precoding matrix.
  • the terminal device by configuring an SRS resource set with a non-codebook function to the terminal device, which includes a multi-port SRS resource with a maximum number of 8 ports, the terminal device receives the first SRS resource set sent in a non-precoding manner.
  • An SRS resource determine the TRI and the first MCS based on the first SRS resource, and indicate the TRI and the first MCS to the terminal equipment to instruct the terminal equipment to determine the precoding matrix used for PUSCH transmission based on the TRI and the initial precoding matrix.
  • precoding SRS resources are transmitted to the terminal equipment to determine the precoding matrix used for PUSCH transmission
  • non-precoding SRS resources are transmitted to the network equipment, and TRI is determined based on the non-precoding SRS resources.
  • the precoding matrix is determined by the terminal device based on the TRI and the initial precoding matrix, which not only proposes a new precoding matrix determination process, but also provides a new instruction method.
  • a precoding matrix that meets PUSCH transmission requirements can be determined based on TRI, and MCS can be indicated synchronously, further improving the security, accuracy, and reliability of PUSCH transmission.
  • Figure 4 is a schematic flowchart of a method for sending TRI provided by an embodiment of the present application.
  • the method of sending TRI is performed by the network device.
  • the method may include but is not limited to the following steps:
  • Step S41 Configure a non-codebook SRS resource set, where the SRS resource set includes a multi-port SRS resource, and the maximum number of ports is 8.
  • Step S42 Receive the first SRS resource sent by the terminal device in a non-precoding manner, where the first SRS resource is an SRS resource in the SRS resource set.
  • Step S43 Determine the TRI based on the first SRS resource and send the TRI to the terminal device.
  • the TRI is sent to the terminal device through an SRI indication field, where the SRI indication field indicates the TRI through a table index value or a predefined manner.
  • Step S44 Receive the second SRS resource sent by the terminal device in a precoding manner, where the second SRS resource is an SRS resource measured by the network device in the SRS resource set.
  • the terminal device can filter the initial precoding matrix based on the TRI to obtain the precoding matrix used for PUSCH transmission.
  • the terminal device uses the screened precoding matrix to precode the SRS resources measured by the network device from the SRS resource set to obtain the precoded second SRS resource.
  • the network device can receive the precoded second SRS. resource.
  • Step S45 Determine the second MCS based on the second SRS resource, and send the second MCS to the terminal device.
  • the network device can perform channel estimation on the received second SRS resource to obtain channel estimation information. Since the SRS is beam-formed, a more accurate direction of the transmission beam can be determined based on the channel estimation information.
  • Scheduling parameters including second MCS. That is to say, the network device can determine the second MCS for the terminal device using scheduling information such as channel conditions, multi-user interference conditions, and/or channel noise.
  • the second MCS is used to indicate a matching physical transmission rate selected from multiple physical transmission rates.
  • the first MCS can be indicated by an MCS index value. Based on the MCS index value, the modulation method, coding rate, etc. transmission can be determined. parameter.
  • the method for sending TRI may also include the following steps:
  • the network device configures the associated downlink CSI-RS resources for the terminal device and sends the downlink CSI-RS resources to the terminal device.
  • the terminal device can determine the initial precoding matrix based on the downlink CSI-RS resources. In this application, PUSCH transmission
  • the precoding matrix used is filtered out from the initial precoding matrix.
  • the precoding matrix used for PUSCH transmission is determined by transmitting precoded SRS resources to the terminal equipment
  • the non-precoded SRS resources are transmitted to the network device, and the TRI is determined based on the non-precoded SRS resources.
  • TRI and initial precoding matrix determine PUSCH
  • the precoding matrix used for transmission not only proposes a new precoding matrix determination process, but also gives a new instruction method.
  • the network device may determine the second MCS based on the precoded second SRS resource and indicate it to the terminal device.
  • a precoding matrix that meets PUSCH transmission requirements can be determined based on TRI, and MCS can be indicated synchronously, further improving the security, accuracy, and reliability of PUSCH transmission.
  • Figure 5 is a schematic flowchart of a method for receiving TRI provided by an embodiment of the present application.
  • the method of receiving TRI is executed by the terminal device.
  • the method may include but is not limited to the following steps:
  • Step S51 obtain a non-codebook SRS resource set, and send the first SRS resource in a precoding manner, where the SRS resource set includes a multi-port SRS resource, the maximum number of ports is 8, and the first SRS resource is the SRS SRS resources within the resource collection.
  • the number of uplink data transmission layers of the terminal equipment is increased to 8 layers, that is, the maximum PUSCH transmission that the terminal equipment can support can be increased to 8 layers, which can be used to support a higher uplink transmission rate that is comparable to downlink. .
  • the Sounding Reference Signal (SRS) resource set includes an SRS resource.
  • the SRS resource In order to support multiple uplink data transmission layers, the SRS resource needs to be configured with multiple ports, and each port corresponds to one data transport layer.
  • the maximum number of PUSCH data transmission layers that the terminal equipment can support is 8, and the number of ports that need to be configured for SRS resources is 8. That is to say, the maximum number of ports corresponding to multi-port SRS resources configured in the SRS resource set is 8.
  • the terminal device obtains a configured SRS resource set from the network device through high-level signaling.
  • the terminal device can receive RRC signaling or Media Access Control-Control Element (MAC-CE). ) signaling, obtains the SRS resource set configured by the network device from RRC signaling or MAC-CE signaling or other higher-layer signaling.
  • MAC-CE Media Access Control-Control Element
  • the time domain characteristics of the SRS resource set are periodic, semi-persistent or aperiodic. That is to say, the SRS resource set can be a periodic SRS resource set, a semi-persistent SRS resource set, or a non-periodic SRS resource set. Periodic SRS resource collection.
  • the terminal device can send the first SRS resource sent in a non-precoding manner to the network device based on the SRS resource set.
  • the SRS sent by the terminal device on the SRS resource can be used to obtain CSI, and then channel estimation information can be obtained.
  • the channel estimation information can reflect scheduling information such as channel conditions, interference conditions of pre-scheduled users, and/or channel noise.
  • the network device can perform channel estimation on the received first SRS resource, obtain channel estimation information, and then determine the TRI of the number of transmission data layers used for actual transmission of PUSCH based on the channel estimation information. That is to say, the network equipment can comprehensively consider the estimated uplink channel information, interference conditions of pre-scheduled users and/or channel noise and other scheduling factors to determine the PUSCH for the terminal equipment within the maximum number of data transmission layers supported by it. The number of data transmission layers that should be used for this scheduling, that is, the network device determines the TRI based on the first SRS resource.
  • Step S52 Receive the TRI sent by the network device.
  • the terminal device may receive an index value sent by the network device to indicate the TRI, where different index values correspond to different TRIs, and the terminal device may obtain the received TRI based on the mapping relationship between the candidate TRI and the candidate index value.
  • the TRI indicated by the index value Or the terminal device indicates TRI based on other predefined methods.
  • the terminal device can determine the TRI based on the SRI.
  • the indication field of the SRI is used to indicate the TRI, that is to say, the indication field of the existing SRI is reused, and the TRI is indicated through the indication field.
  • the indication field can Carry the index value of TRI.
  • Step S53 Based on TRI, determine the precoding matrix used for PUSCH transmission.
  • TRI may be used to instruct the terminal equipment to determine the precoding matrix used for PUSCH transmission from the initial precoding matrix.
  • the port combination associated with the TRI can be determined based on the mapping relationship between the candidate TRI and the candidate port combination. In other words, different TRIs correspond to different candidate port combinations.
  • the terminal device can determine the port combination associated with the TRI based on the mapping relationship between the candidate TRI and the candidate port combination. Further, the terminal device determines the precoding vector used by the port in the port combination, where the precoding vector is a vector in the initial precoding. The terminal device determines the precoding matrix based on the precoding vector used by the port in the port combination.
  • the non-codebook uplink transmission scheme is also a spatial multiplexing technology.
  • the difference from the codebook-based uplink transmission is that its precoding is based on certain criteria, rather than based on a fixed codebook. Determine the precoding among the candidate values. If the reciprocity of the uplink and downlink channels exists, the terminal can calculate the downlink channel information based on the channel reciprocity, thereby obtaining the uplink precoding matrix. If the channel reciprocity is good enough, the terminal can obtain more accurate precoding through the downlink channel. Compared with the codebook-based transmission scheme, it can save the cost of precoding indication and obtain better performance at the same time.
  • the terminal device receives the associated CSI-RS resources configured by the network device.
  • the terminal device can determine the initial precoding matrix based on the downlink CSI-RS resources.
  • the precoding matrix used for actual transmission of PUSCH is obtained from the initial precoding matrix. filtered out from the coding matrix.
  • a set of SRS resources configured as a non-codebook function of the network device is obtained, the first SRS resource is sent in a non-precoding manner, the TRI determined by the network device based on the first SRS resource is received, and the TRI is sent based on the TRI Determine the precoding matrix used for PUSCH transmission.
  • precoding SRS resources are transmitted to the terminal equipment to determine the precoding matrix used for PUSCH transmission
  • non-precoding SRS resources are transmitted to the network equipment, and TRI is determined based on the non-precoding SRS resources. Determining the actual precoding matrix used by PUSCH based on TRI and the initial precoding matrix not only proposes a new precoding matrix determination process, but also gives a new instruction method.
  • FIG. 6 is a schematic flowchart of a method for receiving TRI provided by an embodiment of the present application.
  • the method of receiving TRI is executed by the terminal device.
  • the method may include but is not limited to the following steps:
  • Step S61 Obtain a non-codebook SRS resource set, and send the first SRS resource in a precoding manner, where the SRS resource set includes a multi-port SRS resource, the maximum number of ports is 8, and the first SRS resource is the SRS resource.
  • SRS resources within the collection are derived from the SRS resource set.
  • any implementation method in the embodiments in this application can be adopted.
  • Step S62 Receive the TRI and the first MCS sent by the network device.
  • the terminal device can send the first SRS resource sent in a non-precoding manner to the network device based on the SRS resource set.
  • the SRS sent by the terminal device on the SRS resource can be used to obtain CSI, and then channel estimation information can be obtained.
  • the channel estimation information can reflect scheduling information such as channel conditions, interference conditions of pre-scheduled users, and/or channel noise.
  • the network device can perform channel estimation on the received first SRS resource, obtain channel estimation information, and then determine the TRI of the number of data transmission layers used for actual PUSCH transmission based on the channel estimation information. That is to say, the network equipment can comprehensively consider the estimated uplink channel information, interference conditions of pre-scheduled users and/or channel noise and other scheduling factors to determine the PUSCH current time for the terminal equipment from the range of the maximum number of data transmission layers supported. The number of data transmission layers that the schedule should be applied to, that is, the network device determines the TRI based on the first SRS resource.
  • the network device may comprehensively consider the estimated uplink channel information, interference conditions of pre-scheduled users, and/or channel noise and other scheduling factors to determine the first MCS.
  • the first MCS is used to indicate the transmission rate from multiple physical transmission rates.
  • the selected matching physical transmission rate, the first MCS can be indicated by the MCS index value.
  • the terminal device can receive the MCS index value corresponding to the first MCS, and based on the MCS index value, the modulation method, coding rate, number of spatial streams and other transmission parameters can be determined.
  • the terminal device can receive the TRI and the first MCS at the same time.
  • the TRI and the first MCS can be jointly encoded, and the joint encoding value is sent to the terminal device, and accordingly the terminal device receives the joint encoding value, Based on the joint coding value, the mapping relationship between the programming and the TRI and MCS is queried, and the TRI and the first MCS corresponding to the precoding matrix are determined.
  • the existing SRI indication field may be reused to indicate the joint encoding value to the terminal device.
  • Step S63 Based on TRI, determine the precoding matrix used for PUSCH transmission.
  • the terminal device encodes and modulates the PUSCH data to be transmitted based on the precoding matrix and the first MCS, and transmits it to the network device.
  • the method for receiving TRI may also include the following steps:
  • the terminal equipment receives the associated downlink CSI-RS resources configured by the network equipment, and determines the initial precoding matrix based on the downlink CSI-RS resources.
  • the precoding matrix used for actual transmission of PUSCH is filtered out from the initial precoding matrix. of.
  • a set of SRS resources configured as a non-codebook function of the network device is obtained, the first SRS resource is sent in a non-precoding manner, and the TRI and first MCS determined by the network device based on the first SRS resource are received. , and determine the precoding matrix used for PUSCH transmission based on TRI.
  • precoding SRS resources are transmitted to the terminal equipment to determine the precoding matrix used for PUSCH transmission
  • non-precoding SRS resources are transmitted to the network equipment, and TRI is determined based on the non-precoding SRS resources.
  • Determining the precoding matrix based on TRI not only proposes a new precoding matrix determination process, but also provides a new instruction method.
  • a precoding matrix that meets PUSCH transmission requirements can be determined based on TRI, and MCS can be indicated synchronously, further improving the security, accuracy, and reliability of PUSCH transmission.
  • Figure 7 is a schematic flowchart of a method for receiving TRI provided by an embodiment of the present application.
  • the method of receiving TRI is executed by the terminal device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • Step S71 obtain a non-codebook SRS resource set, and send the first SRS resource in a precoding manner, where the SRS resource set includes a multi-port SRS resource, the maximum number of ports is 8, and the first SRS resource is the SRS resource.
  • SRS resources within the collection are included.
  • Step S72 Receive the TRI sent by the network device.
  • Step S73 Based on TRI, determine the precoding matrix used for PUSCH transmission.
  • any implementation manner in the embodiments in this application can be adopted.
  • Step S74 Use the precoding matrix to precode the SRS resources measured by the network device in the SRS resource set to obtain precoded second SRS resources and send them to the network device.
  • the terminal equipment can filter the initial precoding matrix based on TRI to obtain the precoding matrix used in actual transmission of PUSCH. Further, the terminal device uses the filtered precoding matrix to precode the SRS resources in the SRS resource set to obtain the precoded second SRS resource. The terminal device sends the precoded second SRS resource to the network device.
  • the network device can perform channel estimation on the received second SRS resource to obtain channel estimation information. Since the channel estimation information can reflect channel conditions, multi-user interference and/or channel noise, the network device can further determine based on the channel estimation information. Out of the second MCS. That is to say, the network device can determine the second MCS for the terminal device using scheduling information such as channel conditions, multi-user interference conditions, and/or channel noise.
  • the second MCS is used to indicate a matching physical transmission rate selected from multiple physical transmission rates.
  • the first MCS can be indicated by an MCS index value. Based on the MCS index value, the modulation method, coding rate, and space can be determined. Transmission parameters such as the number of streams.
  • Step S75 Receive the second MCS determined by the network device based on the second SRS resource.
  • the terminal device may receive the second MCS from the network device through RRC signaling or DCI signaling or other higher layer information.
  • the terminal equipment encodes and modulates the PUSCH data to be transmitted based on the precoding matrix and the second MCS, and transmits it to the network equipment.
  • the method for receiving TRI may also include the following steps:
  • the terminal equipment receives the associated downlink CSI-RS resources configured by the network equipment, and determines the initial precoding matrix based on the downlink CSI-RS resources.
  • the precoding matrix used for actual transmission of PUSCH is filtered out from the initial precoding matrix. of.
  • the precoding matrix used for PUSCH transmission is determined by transmitting precoded SRS resources to the terminal equipment
  • the non-precoded SRS resources are transmitted to the network device, and the TRI is determined based on the non-precoded SRS resources.
  • TRI and the initial precoding matrix determine the precoding matrix used for actual transmission of PUSCH. It not only proposes a new precoding matrix determination process, but also gives a new instruction method.
  • the network device may determine the second MCS based on the precoded second SRS resource and indicate it to the terminal device.
  • a precoding matrix that meets PUSCH transmission requirements can be determined based on TRI, and MCS can be indicated synchronously, further improving the security, accuracy, and reliability of PUSCH transmission.
  • network equipment and terminal equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • network equipment and terminal equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 8 is a schematic structural diagram of a communication device 80 provided by an embodiment of the present application.
  • the communication device 80 shown in FIG. 8 may include a transceiver module 801 and a processing module 802.
  • the transceiving module 801 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 801 may implement the sending function and/or the receiving function.
  • the communication device 80 may be a terminal device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the communication device 80 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 80 is a network device, including:
  • the transceiver module 801 is used to configure a non-codebook SRS resource set, where the non-codebook SRS resource set includes a multi-port SRS resource, and the maximum number of ports is 8; receiving the first packet sent by the terminal device in a non-precoding manner.
  • An SRS resource, the first SRS resource is an SRS resource in the SRS resource set; based on the first SRS resource, determine the transmission rank indication TRI used for actual transmission of PUSCH; send the TRI to the terminal equipment, and the TRI is used to determine the actual transmission of PUSCH The precoding matrix used for transmission.
  • the transceiver module 801 is also configured to determine the first MCS based on the first SRS resource, and send the first MCS to the terminal device.
  • the transceiving module 801 is also configured to: receive a second SRS resource sent by the terminal device in a precoding manner, where the second SRS resource is an SRS resource measured by the network device in the SRS resource set; based on the first The second SRS resource determines the second MCS and sends the second MCS to the terminal device.
  • the transceiver module 801 is also configured to: obtain channel estimation information based on the received first SRS resource, and determine the TRI based on the channel estimation information.
  • the transceiver module 801 is also used to send the TRI to the terminal device through the SRI indication field.
  • the SRI indication field indicates the TRI through a table index value or a predefined manner.
  • the transceiver module 801 is also used to configure associated downlink CSI-RS resources.
  • the communication device 80 is a terminal device, including:
  • the transceiver module 801 is used to obtain a non-codebook SRS resource set, and send the first SRS resource in a non-precoding manner.
  • the SRS resource set includes a multi-port SRS resource. The maximum number of ports is 8, and the first SRS resource is SRS resources in the SRS resource set; receiving the TRI sent by the network device, where the TRI is determined by the network device based on the first SRS resource;
  • the processing module 802 is configured to determine the precoding matrix used for actual transmission of PUSCH based on TRI.
  • the transceiving module 801 is also configured to: receive the first MCS determined by the network device based on the first SRS resource.
  • the transceiver module 801 is also configured to: use a precoding matrix to precode the SRS resources measured by the network device in the SRS resource set, obtain the precoded second SRS resource, and send it to the network device. ; Receive the second MCS determined by the network device based on the second SRS resource.
  • the transceiver module 801 is also configured to receive the SRI and determine the TRI from the indication field of the SRI.
  • the SRI indication field indicates the TRI through a table index value or a predefined manner.
  • the processing module 802 is also configured to filter the initial precoding matrix based on TRI and determine the precoding matrix.
  • the processing module 802 is also used to: determine the port combination associated with the TRI; determine the precoding vector used by the port in the port combination, where the precoding vector is the vector in the initial precoding; based on the port combination in the port combination Use the precoding vector to determine the precoding matrix.
  • the transceiver module 801 is also configured to: receive associated downlink CSI-RS resources, and determine an initial precoding matrix based on the CSI-RS resources.
  • FIG. 9 is a schematic structural diagram of another communication device 90 provided by an embodiment of the present application.
  • the communication device 90 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip, a chip system, or a processor that supports a terminal device to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 90 may include one or more processors 901.
  • the processor 901 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 90 may also include one or more memories 902, on which a computer program 904 may be stored.
  • the processor 901 executes the computer program 904, so that the communication device 90 performs the steps described in the above method embodiment. method.
  • the memory 902 may also store data.
  • the communication device 90 and the memory 902 can be provided separately or integrated together.
  • the communication device 90 may also include a transceiver 905 and an antenna 906.
  • the transceiver 905 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 905 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 90 may also include one or more interface circuits 907.
  • the interface circuit 907 is used to receive code instructions and transmit them to the processor 901 .
  • the processor 901 executes the code instructions to cause the communication device 90 to perform the method described in the above method embodiment.
  • the processor 901 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 901 may store a computer program 903, and the computer program 903 runs on the processor 901, causing the communication device 90 to perform the method described in the above method embodiment.
  • the computer program 903 may be solidified in the processor 901, in which case the processor 901 may be implemented by hardware.
  • the communication device 90 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 8 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 10 refer to the schematic structural diagram of the chip shown in FIG. 10 .
  • the chip shown in Figure 10 includes a processor 11 and an interface 12.
  • the number of processors 11 may be one or more, and the number of interfaces 12 may be multiple.
  • Interface 12 is used to configure a non-codebook SRS resource set, where the non-codebook SRS resource set includes a multi-port SRS resource, with the maximum number of ports being 8; receiving the first SRS resource sent by the terminal device in a non-precoding manner , the first SRS resource is an SRS resource in the SRS resource set; based on the first SRS resource, determine the TRI actually used for PUSCH transmission; send the TRI to the terminal device, and the TRI is used to determine the precoding matrix used for PUSCH transmission.
  • Interface 12 is used to obtain a non-codebook SRS resource set and send the first SRS resource in a non-precoding manner.
  • the non-codebook SRS resource set includes a multi-port SRS resource. The maximum number of ports is 8.
  • the first The SRS resources are SRS resources in the non-codebook SRS resource set; receive the TRI sent by the network device, where the TRI is determined by the network device based on the first SRS resource; and determine the precoding matrix used for PUSCH transmission based on the TRI.
  • the chip also includes a memory 13, which is used to store necessary computer programs and data.
  • Embodiments of the present application also provide a communication system for sending and receiving TRI.
  • the system includes a communication device as a terminal device and a communication device as a network device in the embodiment of FIG. 8, or the system includes the communication device of the embodiment of FIG. 9. as a communication device as a terminal device and as a communication device as a network device.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Abstract

本申请实施例公开了一种发送TRI的方法及其装置、接收TRI的方法及其装置,可以应用于通信领域中,该方法包括:配置非码本的SRS资源集合,其中,非码本SRS资源集合包括一个多端口的SRS资源,端口的数量最大为8;接收终端设备通过非预编码方式发送的第一SRS资源,第一SRS资源为SRS资源集合内的SRS资源;基于第一SRS资源,确定PUSCH实际传输使用的传输秩指示TRI;向终端设备发送TRI,TRI用于确定PUSCH实际传输使用的预编码矩阵。本申请实施例中,向网络设备传输非预编码SRS资源,并基于非预编码SRS资源确定出TRI,基于TRI确定预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。

Description

一种发送TRI的方法及其装置、接收TRI的方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种发送TRI的方法及其装置以及接收TRI的方法及其装置。
背景技术
为了适用当前业务或者场景,可以将终端设备的上行传输层数增多至8层,以用于支持与下行可比的更高的上行传输速率。在终端设备的上行增强至8层时,如何实现非码本的物理上行共享信道(Physical Uplink Share Channel,PUSCH)传输成为需要解决的问题。
发明内容
本申请实施例提供一种发送TRI的方法及其装置、接收TRI的方法及其装置,与相关技术中向终端设备传输预编码SRS资源确定出PUSCH传输使用的预编码矩阵不同,本申请实施例中,向网络设备传输非预编码SRS资源,并基于非预编码SRS资源确定出TRI,基于TRI确定PUSCH发送时使用的预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。
第一方面,本申请实施例提供一种发送TRI的方法,由网络设备执行,该方法包括:配置非码本的SRS资源集合,其中,所述非码本SRS资源集合包括一个多端口的SRS资源,端口的数量最大为8;接收所述终端设备通过非预编码方式发送的第一SRS资源,所述第一SRS资源为所述SRS资源集合内的SRS资源;基于所述第一SRS资源,确定PUSCH实际传输使用的传输秩指示TRI;向所述终端设备发送所述TRI,所述TRI用于确定所述PUSCH实际传输使用的预编码矩阵。
申请实施例提供一种发送TRI的方法,与相关技术中向终端设备传输预编码SRS资源确定出PUSCH传输使用的预编码矩阵不同,本申请实施例中,向网络设备传输非预编码SRS资源,并基于非预编码SRS资源确定出TRI,基于TRI确定PUSCH传输时使用的预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。
第二方面,本申请实施例提供一种接收TRI的方法,由终端设备执行,该方法包括:获取非码本的SRS资源集合,并通过非预编码方式发送第一SRS资源,所述SRS资源集合包含一个多端口SRS资源上,端口的数量最大为8,所述第一SRS资源为所述SRS资源集合内的SRS资源;接收所述网络设备发送的TRI,其中,所述TRI由所述网络设备基于所述第一SRS资源确定;基于所述TRI,确定PUSCH实际传输使用的预编码矩阵。
申请实施例提供一种接收TRI的方法,与相关技术中向终端设备传输预编码SRS资源确定出PUSCH传输使用的预编码矩阵不同,本申请实施例中,向网络设备传输非预编码SRS资源,并基于非预编码SRS资源确定出TRI,基于TRI确定PUSCH传输使用的预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持 通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得 计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种发送TRI的方法的流程示意图;
图3是本申请实施例提供的一种发送TRI的方法的流程示意图;
图4是本申请实施例提供的一种发送TRI的方法的流程示意图;
图5是本申请实施例提供的一种接收TRI的方法的流程示意图;
图6是本申请实施例提供的一种接收TRI的方法的流程示意图;
图7是本申请实施例提供的一种接收TRI的方法的流程示意图;
图8是本申请实施例提供的一种通信装置的结构示意图;
图9是本申请实施例提供的一种通信装置的结构示意图;
图10是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不 应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
为了便于理解,首先介绍本申请涉及的术语。
探测参考信号SRS(Sounding Reference Signal,),用于估计上行信道频域信息,做频率选择性调度,也用于估计上行信道,做下行波束赋形。
SRS资源指示(SRS Resource Indicator,SRI),用于指示UE使用哪个SRS资源进行上行数据传输。
数据传输秩指示(Transmission Rank Indicator,TRI),用于指示PUSCH实际传输使用的预编码矩阵对应的数据传输层数。
为了更好的理解本申请实施例公开的一种发送TRI、接收TRI的方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城 市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在侧链路通信中,存在4种侧链路传输模式。侧链路传输模式1和侧链路传输模式2用于终端设备直通(device-to-device,D2D)通信。侧链路传输模式3和侧链路传输模式4用于V2X通信。当采用侧链路传输模式3时,资源分配由网络设备101调度。具体的,网络设备101可以将资源分配信息发送给终端设备102,然后由该终端设备102向另一终端设备分配资源,以使得该另一终端设备可以通过分配到的资源向网络设备101发送信息。在V2X通信中,可以将信号较好或者可靠性较高的终端设备作为终端设备102。本申请实施例中提及的第一终端设备可以指该终端设备102,第二终端设备可以指该另一终端设备。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的发送TRI的方法及其装置、接收TRI的方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种发送TRI的方法的流程示意图。该发送TRI的方法由网络设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤S21,配置非码本的探测参考信号SRS资源集合,其中SRS资源集合包括一个多端口的SRS资源,端口的数量最大为8。
本申请实施例中,将终端设备的上行数据传输层数增加至8层,也就是终端设备可以支持最大PUSCH传输可以增加至8层,进而可以用于支持与下行可比的更高的上行传输速率。
本申请实施例中,探测参考信号(Sounding Reference Signal,SRS)资源集合中包括一个SRS资源,为了支持多个上行数据传输层,需要为该SRS资源配置有多个端口,每个端口对应一个数据传输层。本申请实施例中,终端设备可以支持最大的PUSCH数据传输层数为8层,则SRS资源需要配置的端口数量为8,也就是说SRS资源集合内配置多端口SRS资源对应的最大端口数量为8个。
可选地,网络设备通过高层信令向终端设备配置一个功能为非码本的SRS资源集合。例如,网络设备可以通过无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制-控制单元(Media access control-Control Element,MAC-CE)信令或其他高层信令向终端设备配置该SRS资源集合。可选地,通过RRC信令实现SRS资源集合的配置或重配置,通过MAC-CE信令实现对于某个SRS资源集合的全部或部分SRS资源的更新配置。
可选地,SRS资源集合的时域特性为周期性、半持续或者非周期性,也就是说SRS资源集合可以为一个周期性SRS资源集合,或者为一个半持续SRS资源集合,或者为一个非周期性SRS资源集合。
步骤S22,接收终端设备通过非预编码方式发送的第一SRS资源。
本申请实施例中,终端设备在获取到网络设备配置的SRS资源集合后,可以基于SRS资源集合,向网络设备发送通过非预编码方式发送的第一SRS资源,其中第一SRS资源为SRS资源集合内的SRS资源,即终端设备不对SRS资源集合中的SRS资源进行预编码,而是直接SRS资源发送给网络设备。其中,终端设备在SRS资源上发送的SRS可以用于获取信道状态信息(Channel State Information,CSI),进而可以获取到信道估计信息,该信道估计信息可以反映信道条件、预调度用户的干扰情况和/或信道噪声等调度因素。
步骤S23,基于第一SRS资源,确定PUSCH传输使用的TRI。
可选地,网络设备可以接收到的第一SRS资源进行信道估计,进而可以基于信道估计信息确定出终端设备的TRI。也就是说,网络设备可以综合考虑估计的上行信道信息、预调度用户的干扰情况和/或信道噪声等调度因素,为终端设备在终端所支持的最大数据传输层数范围内,确定出PUSCH本次调度应该应用的数据传输层数,即网络设备基于第一SRS资源确定出PUSCH实际发送使用的预编码矩阵对应的TRI。
步骤S24,向终端设备发送TRI,其中TRI用于确定PUSCH传输使用的预编码矩阵。
作为一种可能的实现方式,网络设备将TRI发送给终端设备,TRI可以用于指示终端设备从初始预编码矩阵中,确定出PUSCH发送使用的预编码矩阵。
可选地,网络设备可以使用SRI指示域通过表格索引值,或者基于其他预定义的方式指示TRI。
可选地,网络设备可以通过SRI,向终端设备指示TRI,可选地,网络设备通过SRI指示域,将TRI发送给终端设备,例如通过SRI指示域向终端设备指示TRI,该指示域上可以携带TRI的索引值。也就是说,SRI与TRI之间存在映射关系,基于该映射关系可以确定TRI,如表1所示。参考表1,例如SRI取值1,对应的TRI=1,SRI取值5,对应的TRI=6。该映射关系也可以直接通过预定义方式给出,比如,TRI=SRI+1。
表1
Figure PCTCN2022084684-appb-000001
可以理解的是,表1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表1中任何其他元素值。因此本领域内技术人员可以理解,该表1中的每一个元素的取值都是一个独立的实施例。
可选地,本申请实施例提供的发送TRI的方法,还可以包括以下步骤:
网络设备向终端设备配置关联的下行信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)资源,并将该下行CSI-RS资源发送给终端设备,其中,终端设备可以基于下行CSI-RS资源确定出初始预编码矩阵,本申请中PUSCH实际传输所使用的预编码矩阵是从初始预编码矩阵中筛选出的。
本申请实施例中,通过向终端设备配置一个功能为非码本的SRS资源集合,其中包含一个多端口的SRS资源,该端口的数量最大为8,接收终端设备采用非预编码方式发送的第一SRS资源,基于第一SRS资源,确定PUSCH传输使用的TRI,并将TRI发送给终端设备,以指示终端设备基于TRI和初始 预编码矩阵确定PUSCH传输使用的预编码矩阵。与相关技术中向终端设备传输预编码SRS资源确定出PUSCH传输使用的预编码矩阵不同,本申请实施例中,向网络设备传输非预编码SRS资源,并基于非预编码SRS资源确定出TRI,基于TRI确定PUSCH传输使用的预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。
请参见图3,图3是本申请实施例提供的一种发送TRI的方法的流程示意图。该发送TRI的方法由网络设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤S31,配置非码本的SRS资源集合,其中SRS资源集合包括一个多端口的SRS资源,端口的数量最大为8。
步骤S32,接收终端设备通过非预编码方式发送的第一SRS资源,所述第一SRS资源为所述SRS资源集合内的SRS资源。
关于步骤S31~S32的实现方式,可采用本申请中各实施例中任一实现方式,具体介绍可参加相关内容的记载,此处不再赘述。
步骤S33,基于第一SRS资源确定TRI和第一调制与编码方案MCS。
关于网络设备根据第一SRS资源确定出TRI的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以信道条件、多用户的干扰情况和/或信道噪声等调度信息,确定出第一调制与编码方案(Modulation and Coding Scheme,MCS),该第一MCS用于指示从多个物理传输速率中选出的匹配的物理传输速率,第一MCS可以通过MCS索引值指示,基于该MCS索引值可以确定出调制方法、编码率传输参数。
步骤S34,向终端设备发送TRI和第一MCS。
在一些实现中,网络设备可以TRI和第一MCS同时单独给网络设备,在另一些实现中,TRI与第一MCS可以联合编码,将联合编码值发送给终端设备。在又一些实现中,可以复用现有SRI指示域将联合编码值指示给终端设备。
可选地,本申请实施例提供的发送TRI的方法,还可以包括以下步骤:
网络设备为终端设备配置关联的下行CSI-RS资源,并将该下行CSI-RS资源发送给终端设备,其中,终端设备可以基于下行CSI-RS资源确定出初始预编码矩阵,本申请中PUSCH传输所使用的预编码矩阵是从初始预编码矩阵中筛选出的。
本申请实施例中,通过向终端设备配置一个功能为非码本的SRS资源集合,其中包含一个多端口的SRS资源,该端口的数量最大为8,接收终端设备采用非预编码方式发送的第一SRS资源,基于第一SRS资源,确定TRI和第一MCS,并将TRI和第一MCS指示给终端设备,以指示终端设备基于TRI和初始预编码矩阵确定PUSCH传输使用的预编码矩阵。与相关技术中向终端设备传输预编码SRS资源确定出PUSCH传输使用的预编码矩阵不同,本申请实施例中,向网络设备传输非预编码SRS资源,并基于非预编码SRS资源确定出TRI,基于TRI和初始预编码矩阵由终端设备确定出预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。本申请实施例中,基于TRI能够确定出满足PUSCH传输要求的预编码矩阵,并且可以同步指示MCS,进一步地提高PUSCH传输的安全性、准确性和可靠性。
请参见图4,图4是本申请实施例提供的一种发送TRI的方法的流程示意图。该发送TRI的方法由网络设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤S41,配置非码本的SRS资源集合,其中SRS资源集合包括一个多端口的SRS资源,端口的数量最大为8。
步骤S42,接收终端设备通过非预编码方式发送的第一SRS资源,第一SRS资源为所述SRS资源集合内的SRS资源。
步骤S43,基于第一SRS资源确定TRI,并向终端设备发送TRI。
关于步骤S41~S43的实现方式,可采用本申请中各实施例中任一实现方式,具体介绍可参加相关内容的记载,此处不再赘述。
可选地,通过SRI指示域,将TRI发送给所述终端设备,其中,SRI指示域通过表格索引值或预定义方式指示TRI。
步骤S44,接收终端设备发送的通过预编码方式发送的第二SRS资源,其中,第二SRS资源为SRS资源集合内由网络设备测量得到的SRS资源。
网络设备将TRI发送给终端设备后,终端设备可以基于TRI进行初始预编码矩阵的筛选,得到PUSCH传输时所使用的预编码矩阵。终端设备采用筛选出的预编码矩阵,对网络设备从SRS资源集合中测量得到的SRS资源进行预编码,得到预编码第二SRS资源,相应地,网络设备可以接收到预编码后的第二SRS资源。
步骤S45,基于第二SRS资源确定第二MCS,并向终端设备发送第二MCS。
可选地,网络设备可以接收到的第二SRS资源进行信道估计,获取信道估计信息,由于SRS是经过波束赋形的,进而可以基于信道估计信息确定出该发波束送方向上更为准确的调度参数,包括第二MCS。也就是说,网络设备可以信道条件、多用户的干扰情况和/或信道噪声等调度信息,为终端设备确定出第二MCS。其中,该第二MCS用于指示从多个物理传输速率中选出的匹配的物理传输速率,第一MCS可以通过MCS索引值指示,基于该MCS索引值可以确定出调制方法、编码率等传输参数。
可选地,本申请实施例提供的发送TRI的方法,还可以包括以下步骤:
网络设备为终端设备配置关联的下行CSI-RS资源,并将该下行CSI-RS资源发送给终端设备,其中,终端设备可以基于下行CSI-RS资源确定出初始预编码矩阵,本申请中PUSCH传输所使用的预编码矩阵是从初始预编码矩阵中筛选出的。
与相关技术中向终端设备传输预编码SRS资源确定出PUSCH传输使用的预编码矩阵不同,本申请实施例中,向网络设备传输非预编码SRS资源,基于非预编码SRS资源确定出TRI,基于TRI和初始预编码矩阵确定出PUSCH
传输使用的预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。进一步地,网络设备可以基于预编码的第二SRS资源,确定出第二MCS,并指示给终端设备。本申请实施例中,基于TRI能够确定出满足PUSCH传输要求的预编码矩阵,并且可以同步指示MCS,进一步地提高PUSCH传输的安全性、准确性和可靠性。
请参见图5,图5是本申请实施例提供的一种接收TRI的方法的流程示意图。该接收TRI的方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤S51,获取非码本的SRS资源集合,并采用通过预编码方式发送第一SRS资源,其中SRS资源集合包括一个多端口SRS资源,端口的数量最大为8,第一SRS资源为所述SRS资源集合内的SRS资源。
本申请实施例中,将终端设备的上行数据传输层数增加至8层,也就是终端设备可以支持最大 PUSCH传输可以增加至8层,进而可以用于支持与下行可比的更高的上行传输速率。
本申请实施例中,探测参考信号(Sounding Reference Signal,SRS)资源集合中包括一个SRS资源,为了支持多个上行数据传输层,需要为该SRS资源配置有多个端口,每个端口对应一个数据传输层。本申请实施例中,终端设备可以支持最大的PUSCH数据传输层数为8层,则SRS资源需要配置的端口数量为8,也就是说SRS资源集合内配置多端口SRS资源对应的最大端口数量为8个。
可选地,终端设备通过高层信令从网络设备处获取一个配置的SRS资源集合,例如,终端设备可以接收RRC信令或者媒体接入控制-控制单元(Media access control-Control Element,MAC-CE)信令,从RRC信令或者MAC-CE信令或者其他高层信令,获取网络设备为其配置的SRS资源集合。可选地,可以通过RRC配置或重配置,也可以通过MAC-CE更新部分或全部配置。
可选地,SRS资源集合的时域特性为周期性、半持续或者非周期性,也就是说SRS资源集合可以为一个周期性SRS资源集合,或者为一个半持续SRS资源集合,或者为一个非周期性SRS资源集合。
本申请实施例中,终端设备在获取到网络设备配置的SRS资源集合后,可以基于SRS资源集合,向网络设备发送采用非预编码方式发送的第一SRS资源。其中,终端设备在SRS资源上发送的SRS可以用于获取CSI,进而可以获取到信道估计信息,该信道估计信息可以反映信道条件、预调度用户的干扰情况和/或信道噪声等调度信息。
相应地,网络设备可以接收到的第一SRS资源进行信道估计,获取信道估计信息,进而可以基于信道估计信息确定出PUSCH实际传输使用的传输数据层数的TRI。也就是说,网络设备可以综合考虑估计的上行信道信息、预调度用户的干扰情况和/或信道噪声等调度因素,为终端设备从其所支持的最大数据传输层数范围内中,确定出PUSCH本次调度应该使用的数据传输层数,即网络设备基于第一SRS资源确定出TRI。
步骤S52,接收网络设备发送的TRI。
可选地,终端设备可以接收网络设备发送的用于指示TRI的索引值,其中,不同索引值对应不同的TRI,终端设备可以基于候选TRI与候选索引值之间的映射关系,得到接收到的索引值所指示的TRI。或者终端设备基于其他预定义的方式指示TRI。
可选地,终端设备可以基于SRI确定TRI,可选地,SRI的指示域用于指示TRI,也就是说复用现有SRI的指示域,通过该指示域来指示TRI,该指示域上可以携带TRI的索引值。也就是说,SRI与TRI之间存在映射关系,基于该映射关系可以确定TRI,如表1所示。参考表1,例如SRI取值1,对应的TRI=1,SRI取值5,对应的TRI=6。该映射关系也可以直接通过预定义方式给出,比如,TRI=SRI+1。
步骤S53,基于TRI,确定PUSCH传输使用的预编码矩阵。
本申请实施例中,TRI可以用于指示终端设备从初始预编码矩阵中,确定出PUSCH传输使用的预编码矩阵。
可选地,在获取到TRI之后,可以通过候选TRI与候选端口组合之间的映射关系,基于该映射关系,确定TRI所关联的端口组合。也就是说,不同的TRI对应有不同的候选端口组合。终端设备接收到TRI后,可以基于候选TRI与候选端口组合之间的映射关系,确定出TRI所关联的端口组合。进一步地,终端设备确定端口组合内端口所使用的预编码向量,其中预编码向量为初始预编码中的向量。终端设备基于端口组合内端口所使用的预编码向量,确定出预编码矩阵。
示例说明,初始预编码矩阵为H=[V 0,V 1,V 2,V 3,V 4,V 5,V 6,V 7],候选端口的编号为#0~#7,其中每个候选端口对应一个预编码向量,例如,端口0对应V 0,端口1对应V 1,端口2对应V 2,端口3对应V 3; 在确定出的端口组合为端口2和端口4时,则将端口2和端口4对应的V 2和V 4,确定为预编码矩阵。
需要说明的是,非码本上行传输方案也是一种空间复用技术,它与基于码本的上行传输的区别在于它的预编码基于一定的准则获得,而非基于固定的码本在有限的候选值中确定预编码。若上下行信道的互易性存在,则终端可以基于信道互易性进行下行信道信息的计算,从而获得上行预编码矩阵。若信道互易性足够好,终端通过下行信道可以获得更为准确的预编码,相对于基于码本的传输方案,可以节省预编码指示的开销,同时获得更好的性能。
可选地,终端设备接收网络设备配置的关联的CSI-RS资源,终端设备可以基于下行CSI-RS资源确定出初始预编码矩阵,本申请中PUSCH实际传输所使用的预编码矩阵是从初始预编码矩阵中筛选出的。
本申请实施例中,获取网络设备配置的一个功能为非码本的SRS资源集合,并采用非预编码方式发送第一SRS资源,接收网络设备基于第一SRS资源确定出的TRI,并基于TRI确定PUSCH传输使用的预编码矩阵。与相关技术中向终端设备传输预编码SRS资源确定出PUSCH传输使用的预编码矩阵不同,本申请实施例中,向网络设备传输非预编码SRS资源,并基于非预编码SRS资源确定出TRI,基于TRI和初始预编码矩阵确定PUSCH实际使用的预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。
请参见图6,图6是本申请实施例提供的一种接收TRI的方法的流程示意图。该接收TRI的方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤S61,获取非码本的SRS资源集合,并通过预编码方式发送第一SRS资源,其中SRS资源集合包括一个多端口SRS资源,端口的数量最大为8,第一SRS资源为所述SRS资源集合内的SRS资源。
关于步骤S61的实现方式,可采用本申请中各实施例中任一实现方式,具体介绍可参加相关内容的记载,此处不再赘述。
步骤S62,接收网络设备发送的TRI和第一MCS。
本申请实施例中,终端设备在获取到网络设备配置的SRS资源集合后,可以基于SRS资源集合,向网络设备发送采用非预编码方式发送的第一SRS资源。其中,终端设备在SRS资源上发送的SRS可以用于获取CSI,进而可以获取到信道估计信息,该信道估计信息可以反映信道条件、预调度用户的干扰情况和/或信道噪声等调度信息。
相应地,网络设备可以接收到的第一SRS资源进行信道估计,获取信道估计信息,进而可以基于信道估计信息确定出PUSCH实际传输使用的数据传输层数的TRI。也就是说,网络设备可以综合考虑估计的上行信道信息、预调度用户的干扰情况和/或信道噪声等调度因素,为终端设备从所支持的最大数据传输层数范围中,确定出PUSCH本次调度应该应用的数据传输层数,即网络设备基于第一SRS资源确定出TRI。
关于TRI的指示方式可参见本申请中各实施例中相关内容的记载,此处不再赘述。
可选地,网络设备可以综合考虑估计的上行信道信息、预调度用户的干扰情况和/或信道噪声等调度因素,确定出第一MCS,该第一MCS用于指示从多个物理传输速率中选出的匹配的物理传输速率,第一MCS可以通过MCS索引值指示。相应地,终端设备可以接收第一MCS对应的MCS索引值,基于该MCS索引值可以确定出调制方法、编码率、空间流数量等传输参数。
在一些实现中,终端设备可以同时接收TRI和第一MCS,在另一些实现中,TRI与第一MCS可以联合编码,将联合编码值发送给终端设备,相应地终端设备接收到联合编码值,基于联合编码值,查询编制与TRI和MCS之间的映射关系,从中确定出预编码矩阵对应的TRI和第一MCS。在又一些实现中, 可以复用现有SRI指示域将联合编码值指示给终端设备。
步骤S63,基于TRI,确定PUSCH传输使用的预编码矩阵。
关于终端设备基于TRI确定PUSCH传输使用的预编码矩阵的过程,可参加上述实施例中相关内容的记载,此处不再赘述。
可选地,终端设备基于预编码矩阵和第一MCS,对待传输的PUSCH数据进行编码和调制,并传输给网络设备。
可选地,本申请实施例提供的接收TRI的方法,还可以包括以下步骤:
终端设备接收网络设备配置的关联的下行CSI-RS资源,并基于下行CSI-RS资源确定出初始预编码矩阵,本申请中PUSCH实际传输所使用的预编码矩阵是从初始预编码矩阵中筛选出的。
本申请实施例中,获取网络设备配置的一个功能为非码本的SRS资源集合,并采用非预编码方式发送第一SRS资源,接收网络设备基于第一SRS资源确定出的TRI和第一MCS,并基于TRI确定PUSCH传输使用的预编码矩阵。与相关技术中向终端设备传输预编码SRS资源确定出PUSCH传输使用的预编码矩阵不同,本申请实施例中,向网络设备传输非预编码SRS资源,并基于非预编码SRS资源确定出TRI,基于TRI确定预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。本申请实施例中,基于TRI能够确定出满足PUSCH传输要求的预编码矩阵,并且可以同步指示MCS,进一步地提高PUSCH传输的安全性、准确性和可靠性。
请参见图7,图7是本申请实施例提供的一种接收TRI的方法的流程示意图。该接收TRI的方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤S71,获取非码本的SRS资源集合,并通过预编码方式发送第一SRS资源,其中SRS资源集合包括一个多端口SRS资源,端口的数量最大为8,第一SRS资源为所述SRS资源集合内的SRS资源。
步骤S72,接收网络设备发送的TRI。
步骤S73,基于TRI,确定PUSCH传输使用的预编码矩阵。
关于步骤S71~73的实现方式,可采用本申请中各实施例中任一实现方式,具体介绍可参加相关内容的记载,此处不再赘述。
步骤S74,使用预编码矩阵对SRS资源集合中由网络设备测量得到的SRS资源进行预编码,得到预编码的第二SRS资源,并发送给网络设备。
终端设备可以基于TRI对初始预编码矩阵进行筛选,得到PUSCH实际传输时使用的预编码矩阵。进一步地,终端设备采用筛选出的预编码矩阵对SRS资源集合中的SRS资源进行预编码,得到预编码的第二SRS资源。终端设备将预编码后的第二SRS资源发送给网络设备。
相应地,网络设备可以接收到的第二SRS资源进行信道估计,获取信道估计信息,由于信道估计信息可以反映出信道条件、多用户的干扰情况和/或信道噪声,进而可以基于信道估计信息确定出第二MCS。也就是说,网络设备可以信道条件、多用户的干扰情况和/或信道噪声等调度信息,为终端设备确定出第二MCS。其中,该第二MCS用于指示从多个物理传输速率中选出的匹配的物理传输速率,第一MCS可以通过MCS索引值指示,基于该MCS索引值可以确定出调制方法、编码率、空间流数量等传输参数。
步骤S75,接收网络设备基于第二SRS资源确定的第二MCS。
可选地,终端设备可以通过RRC信令或者DCI信令或者其他高层信息,从网络设备处接收到第二MCS。
可选地,终端设备基于预编码矩阵和第二MCS,对待传输的PUSCH数据进行编码和调制,并传输 给网络设备。
可选地,本申请实施例提供的接收TRI的方法,还可以包括以下步骤:
终端设备接收网络设备配置的关联的下行CSI-RS资源,并基于下行CSI-RS资源确定出初始预编码矩阵,本申请中PUSCH实际传输所使用的预编码矩阵是从初始预编码矩阵中筛选出的。
与相关技术中向终端设备传输预编码SRS资源确定出PUSCH传输使用的预编码矩阵不同,本申请实施例中,向网络设备传输非预编码SRS资源,基于非预编码SRS资源确定出TRI,基于TRI和初始预编码矩阵确定PUSCH实际传输使用的预编码矩阵,不仅提出了新的预编码矩阵的确定流程,而且给出新的指示方式。进一步地,网络设备可以基于预编码的第二SRS资源,确定出第二MCS,并指示给终端设备。本申请实施例中,基于TRI能够确定出满足PUSCH传输要求的预编码矩阵,并且可以同步指示MCS,进一步地提高PUSCH传输的安全性、准确性和可靠性。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图8,为本申请实施例提供的一种通信装置80的结构示意图。图8所示的通信装置80可包括收发模块801和处理模块802。收发模块801可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块801可以实现发送功能和/或接收功能。
通信装置80可以是终端设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。或者,通信装置80可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置80为网络设备,包括:
收发模块801,用于配置非码本的SRS资源集合,其中所述非码本SRS资源集合包括一个多端口的SRS资源,端口的数量最大为8;接收终端设备通过非预编码方式发送的第一SRS资源,所述第一SRS资源为所述SRS资源集合内的SRS资源;基于第一SRS资源,确定PUSCH实际传输使用的传输秩指示TRI;向终端设备发送TRI,TRI用于确定PUSCH实际传输使用的预编码矩阵。
可选地,收发模块801,还用于:基于第一SRS资源确定第一MCS,并向终端设备发送第一MCS。
可选地,收发模块801,还用于:接收终端设备发送的通过预编码方式发送的第二SRS资源,其中,第二SRS资源为SRS资源集合内由网络设备测量得到的SRS资源;基于第二SRS资源确定第二MCS,向终端设备发送第二MCS。
可选地,收发模块801,还用于:基于接收到的第一SRS资源获取信道估计信息,并根据信道估计信息,确定TRI。
可选地,收发模块801,还用于:通过SRI指示域,将TRI发送给终端设备。
可选地,SRI指示域通过表格索引值或预定义方式指示TRI。
可选地,收发模块801,还用于:配置关联的下行CSI-RS资源。
通信装置80为终端设备,包括:
收发模块801,用于获取非码本的SRS资源集合,并通过非预编码方式发送第一SRS资源,SRS资源集合包括一个多端口SRS资源上,端口的数量最大为8,第一SRS资源为SRS资源集合内的SRS资源;接收网络设备发送的TRI,其中,TRI由网络设备基于第一SRS资源确定;
处理模块802,用于基于TRI,确定PUSCH实际传输使用的预编码矩阵。
可选地,收发模块801,还用于:接收网络设备基于第一SRS资源确定的第一MCS。
可选地,收发模块801,还用于:使用预编码矩阵,对SRS资源集合内由所述网络设备测量得到的SRS资源进行预编码,得到预编码的第二SRS资源,并发送给网络设备;接收网络设备基于第二SRS资源确定的第二MCS。
可选地,收发模块801,还用于:接收SRI,并从SRI的指示域中确定TRI。
可选地,SRI指示域通过表格索引值或预定义方式指示TRI。
可选地,处理模块802,还用于:基于TRI,对初始预编码矩阵进行筛选,确定预编码矩阵。
可选地,处理模块802,还用于:确定TRI所关联的端口组合;确定端口组合内端口所使用的预编码向量,其中预编码向量为初始预编码中的向量;基于端口组合内端口所使用的预编码向量,确定预编码矩阵。
可选地,收发模块801,还用于:接收关联的下行CSI-RS资源,则基于CSI-RS资源确定初始预编码矩阵。
请参见图9,图9是本申请实施例提供的另一种通信装置90的结构示意图。通信装置90可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置90可以包括一个或多个处理器901。处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置90中还可以包括一个或多个存储器902,其上可以存有计算机程序904,处理器901执行所述计算机程序904,以使得通信装置90执行上述方法实施例中描述的方法。可选的,所述存储器902中还可以存储有数据。通信装置90和存储器902可以单独设置,也可以集成在一起。
可选的,通信装置90还可以包括收发器905、天线906。收发器905可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器905可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置90中还可以包括一个或多个接口电路907。接口电路907用于接收代码指令并传输至处理器901。处理器901运行所述代码指令以使通信装置90执行上述方法实施例中描述的方法。
在一种实现方式中,处理器901中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器901可以存有计算机程序903,计算机程序903在处理器901上运行, 可使得通信装置90执行上述方法实施例中描述的方法。计算机程序903可能固化在处理器901中,该种情况下,处理器901可能由硬件实现。
在一种实现方式中,通信装置90可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图8的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图10所示的芯片的结构示意图。图10所示的芯片包括处理器11和接口12。其中,处理器11的数量可以是一个或多个,接口12的数量可以是多个。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口12,用于配置非码本的SRS资源集合,其中非码本SRS资源集合包括一个多端口的SRS资源,端口的数量最大为8;接收终端设备通过非预编码方式发送的第一SRS资源,所述第一SRS资源为所述SRS资源集合内的SRS资源;基于第一SRS资源,确定PUSCH实际传输使用的TRI;向终端设备发送TRI,TRI用于确定PUSCH传输使用的预编码矩阵。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口12,用于获取非码本的SRS资源集合,并通过非预编码方式发送第一SRS资源,非码本的SRS资源集合包括一个多端口SRS资源上,端口的数量最大为8,第一SRS资源为非码本的SRS资源集合内的SRS资源;接收网络设备发送的TRI,其中,TRI由网络设备基于第一SRS资源确定;基于TRI,确定PUSCH传输使用的预编码矩阵。
可选的,芯片还包括存储器13,存储器13用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种发送TRI、接收TRI的通信系统,该系统包括前述图8实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图9实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种发送传输秩指示TRI的方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    配置非码本的探测参考信号SRS资源集合,其中,所述非码本SRS资源集合包括一个多端口的SRS资源,端口的数量最大为8;
    接收所述终端设备通过非预编码方式发送的第一SRS资源,所述第一SRS资源为所述非码本的SRS资源集合内的SRS资源;
    基于所述第一SRS资源,确定所述PUSCH实际传输使用的传输秩指示TRI;
    向所述终端设备发送所述TRI,所述TRI用于确定所述PUSCH传输使用的预编码矩阵。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述第一SRS资源确定第一调制与编码方案MCS;
    向所述终端设备发送所述第一MCS。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备通过预编码方式发送的第二SRS资源,所述第二SRS资源为所述非码本的SRS资源集合内由所述网络设备测量得到的SRS资源;
    基于所述第二SRS资源确定第二MCS;
    向所述终端设备发送所述第二MCS。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    基于所述第一SRS资源获取信道估计信息;
    根据所述信道估计信息确定所述TRI。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    通过SRS资源指示SRI指示域,将所述TRI发送给所述终端设备。
  6. 根据权利要求5所述的方法,其特征在于,所述SRI指示域通过表格索引值或预定义方式指示所述TRI。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    配置关联的下行信道状态信息参考信号CSI-RS资源。
  8. 一种接收TRI的方法,其特征在于,适用于终端设备,所述方法包括:
    获取为非码本的SRS资源集合,并通过非预编码方式发送第一SRS资源,所述非码本的SRS资源集合包括一个多端口SRS资源上,端口的数量最大为8,所述第一SRS资源为所述非码本的SRS资源集合内的SRS资源;
    接收所述网络设备发送的TRI,其中,所述TRI由所述网络设备基于所述第一SRS资源确定;
    基于所述TRI,确定PUSCH传输使用的预编码矩阵。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备基于所述第一SRS资源确定的第一MCS。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    使用所述PUSCH实际传输使用的预编码矩阵,对所述非码本的SRS资源集合内由所述网络设备测量得到的SRS资源进行预编码,得到预编码的第二SRS资源,并发送给所述网络设备;
    接收所述网络设备基于所述第二SRS资源确定的第二MCS。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述接收所述网络设备发送的TRI,包括:
    接收SRI,并从所述SRI指示域中确定所述TRI。
  12. 根据权利要求11所述的方法,其特征在于,所述SRI指示域通过表格索引值或预定义方式指示所述TRI。
  13. 根据权利要求8所述的方法,其特征在于,所述基于所述TRI,确定PUSCH传输使用的预编码矩阵,包括:
    基于所述TRI,对初始预编码矩阵进行筛选,确定所述预编码矩阵。
  14. 根据权利要求13所述的方法,其特征在于,所述基于所述TRI,对初始预编码矩阵进行筛选,确定所述预编码矩阵,包括:
    确定所述TRI所关联的端口组合;
    确定所述端口组合内端口所使用的预编码向量,其中所述预编码向量为所述初始预编码中的向量;
    基于所述端口组合内端口所使用的预编码向量,确定所述PUSCH传输使用的预编码矩阵。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    接收关联的下行CSI-RS资源,则基于所述CSI-RS资源确定所述初始预编码矩阵。
  16. 一种网络设备,其特征在于,包括:
    收发模块,用于配置非码本的SRS资源集合,其中所述非码本的SRS资源集合包括一个多端口的SRS资源,端口的数量最大为8;接收所述终端设备通过非预编码方式发送的第一SRS资源,所述第一SRS资源为所述非码本的SRS资源集合内的SRS资源;基于所述第一SRS资源,确定PUSCH传输使用的TRI;向所述终端设备发送所述TRI,所述TRI用于确定PUSCH传输使用的预编码矩阵。
  17. 一种终端设备,其特征在于,包括:
    收发模块,用于获取非码本的SRS资源集合,并通过非预编码方式发送第一SRS资源,所述非码本的SRS资源集合包括一个多端口SRS资源上,端口的数量最大为8,所述第一SRS资源为所述非码 本的SRS资源集合内的SRS资源;接收所述网络设备发送的TRI,其中,所述TRI由所述网络设备基于所述第一SRS资源确定;
    处理模块,用于基于所述TRI,确定PUSCH传输使用的预编码矩阵。
  18. 一种网络设备,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1~7中任一项所述的方法。
  19. 一种终端设备,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求8~15中任一项所述的方法。
  20. 一种网络设备,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1~7中任一项所述的方法。
  21. 一种终端设备,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求8~15中任一项所述的方法。
  22. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1~7中任一项所述的方法被实现。
  23. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求8~15中任一项所述的方法被实现。
PCT/CN2022/084684 2022-03-31 2022-03-31 一种发送tri的方法及其装置、接收tri的方法及其装置 WO2023184449A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/084684 WO2023184449A1 (zh) 2022-03-31 2022-03-31 一种发送tri的方法及其装置、接收tri的方法及其装置
CN202280000758.8A CN117157903A (zh) 2022-03-31 2022-03-31 一种发送tri的方法及其装置、接收tri的方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084684 WO2023184449A1 (zh) 2022-03-31 2022-03-31 一种发送tri的方法及其装置、接收tri的方法及其装置

Publications (1)

Publication Number Publication Date
WO2023184449A1 true WO2023184449A1 (zh) 2023-10-05

Family

ID=88198790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084684 WO2023184449A1 (zh) 2022-03-31 2022-03-31 一种发送tri的方法及其装置、接收tri的方法及其装置

Country Status (2)

Country Link
CN (1) CN117157903A (zh)
WO (1) WO2023184449A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055995A (zh) * 2018-03-13 2020-12-08 中兴通讯股份有限公司 基于候选资源或候选资源组的传输
CN112910522A (zh) * 2018-06-12 2021-06-04 华为技术有限公司 预编码矩阵的配置方法和装置
US20210320768A1 (en) * 2018-08-27 2021-10-14 Nec Corporation Method, device and computer readable medium for iab transmission
WO2021228211A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Channel status report based on sounding reference signal resource usage in full duplex
US20220039028A1 (en) * 2018-09-27 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Restricting sounding reference signal (srs) power control configurations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055995A (zh) * 2018-03-13 2020-12-08 中兴通讯股份有限公司 基于候选资源或候选资源组的传输
CN112910522A (zh) * 2018-06-12 2021-06-04 华为技术有限公司 预编码矩阵的配置方法和装置
US20210320768A1 (en) * 2018-08-27 2021-10-14 Nec Corporation Method, device and computer readable medium for iab transmission
US20220039028A1 (en) * 2018-09-27 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Restricting sounding reference signal (srs) power control configurations
WO2021228211A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Channel status report based on sounding reference signal resource usage in full duplex

Also Published As

Publication number Publication date
CN117157903A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2023184449A1 (zh) 一种发送tri的方法及其装置、接收tri的方法及其装置
CN116195215A (zh) 一种探测参考信号srs资源的调整方法及其装置
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2023184448A1 (zh) 一种基于非码本的pusch发送/接收信息的方法及其装置
WO2024031719A1 (zh) 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
WO2024031718A1 (zh) 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023201500A1 (zh) 基于码本的pusch传输方法及其装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2024026797A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024065333A1 (zh) 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置
WO2024026798A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024077620A1 (zh) 物理下行共享信道pdsch传输方法及装置
WO2024065426A1 (zh) 一种信道质量指示cqi上报方法、装置、设备及存储介质
WO2023245683A1 (zh) 基向量类型的指示方法和装置
CN114026907B (zh) 一种上行波束的测量方法及其装置
WO2023216166A1 (zh) 相干带宽的测量方法和装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024027011A1 (zh) 系数指示方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934286

Country of ref document: EP

Kind code of ref document: A1