WO2024077619A1 - 一种信息确定方法/装置/设备及存储介质 - Google Patents

一种信息确定方法/装置/设备及存储介质 Download PDF

Info

Publication number
WO2024077619A1
WO2024077619A1 PCT/CN2022/125497 CN2022125497W WO2024077619A1 WO 2024077619 A1 WO2024077619 A1 WO 2024077619A1 CN 2022125497 W CN2022125497 W CN 2022125497W WO 2024077619 A1 WO2024077619 A1 WO 2024077619A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
joint
present disclosure
indication information
transmission
Prior art date
Application number
PCT/CN2022/125497
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/125497 priority Critical patent/WO2024077619A1/zh
Priority to CN202280003802.0A priority patent/CN115997455A/zh
Publication of WO2024077619A1 publication Critical patent/WO2024077619A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an information determination method/device/equipment and a storage medium.
  • the unified TCI state indicates the same set of TCI states for multiple channels/signals of a TRP, where the same set of TCI states may currently be separately indicated for uplink and downlink, that is, indicating DL (downlink) TCI state and/or UL (uplink) TCI state respectively, or indicating uplink and downlink jointly, that is, indicating joint TCI state.
  • the terminal device may be used for transmission of uplink channels and/or uplink signals based on the indicated joint TCI state.
  • MIMO currently supports CJT of up to 4 TRPs, and the network device will indicate 3 or 4 TCI states to the terminal device.
  • the method of determining which TCI state is used for uplink channel and/or uplink signal transmission by the terminal device when the network device indicates 1 or 2 TCI states is discussed. Therefore, the method in the related art cannot be applied to the process of determining which TCI state is used for uplink channel and/or uplink signal transmission by the terminal device in the scenario where the network device indicates 3 or 4 TCI states.
  • the information determination method/device/equipment and storage medium proposed in the present disclosure are used for a terminal device to determine which TCI state to use for uplink channel and/or uplink signal transmission when a network device indicates 3 or 4 TCI states.
  • an embodiment of the present disclosure provides an information determination method, which is executed by a terminal device and includes:
  • TCI state used for uplink channel transmission and/or uplink signal transmission.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • an embodiment of the present disclosure provides an information determination method, which is executed by a network device and includes:
  • an embodiment of the present disclosure provides a communication device, which is configured in a terminal device and includes:
  • a processing module is used to determine the TCI state for uplink channel transmission and/or uplink signal transmission.
  • an embodiment of the present disclosure provides a communication device, which is configured in a network device, including:
  • a transceiver module is used to send first indication information, wherein the first indication information is used to indicate at least one joint TCI state.
  • an embodiment of the present disclosure provides a communication device, which includes a processor.
  • the processor calls a computer program in a memory, the method described in the first aspect is executed.
  • an embodiment of the present disclosure provides a communication device, which includes a processor.
  • the processor calls a computer program in a memory, the method described in the second aspect is executed.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and a memory, in which a computer program is stored; the processor executes the computer program stored in the memory so that the communication device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and a memory, in which a computer program is stored; the processor executes the computer program stored in the memory so that the communication device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, which includes the communication device described in the third aspect to the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect to the communication device described in the sixth aspect, or the system includes the communication device described in the seventh aspect to the communication device described in the eighth aspect, or the system includes the communication device described in the ninth aspect to the communication device described in the tenth aspect.
  • an embodiment of the present disclosure provides a computer-readable storage medium for storing instructions used by the above-mentioned network device.
  • the terminal device executes the method described in any one of the above-mentioned first to second aspects.
  • the present disclosure further provides a computer program product comprising a computer program, which, when executed on a computer, enables the computer to execute the method described in any one of the first to second aspects above.
  • the present disclosure provides a chip system, which includes at least one processor and an interface, and is used to support a network device to implement the functions involved in the method described in any one of the first aspect to the second aspect, for example, determining or processing at least one of the data and information involved in the above method.
  • the chip system also includes a memory, and the memory is used to store computer programs and data necessary for the source auxiliary node.
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • the present disclosure provides a computer program, which, when executed on a computer, enables the computer to execute the method described in any one of the first to second aspects above.
  • FIG1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • FIG2 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG3 is a schematic flow chart of an information determination method provided by yet another embodiment of the present disclosure.
  • FIG4 is a flow chart of an information determination method provided by yet another embodiment of the present disclosure.
  • FIG5 is a schematic flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG6 is a schematic flow chart of an information determination method provided by yet another embodiment of the present disclosure.
  • FIG7 is a schematic flow chart of an information determination method provided by yet another embodiment of the present disclosure.
  • FIG8 is a schematic diagram of a flow chart of an information determination method provided by an embodiment of the present disclosure.
  • FIG9 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG10 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG11 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG12 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG13a is a schematic flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG13b is a schematic flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG14 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG15 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG16 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG17 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG18 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG19 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG20 is a flow chart of an information determination method provided by another embodiment of the present disclosure.
  • FIG21 is a schematic diagram of the structure of a communication device provided by another embodiment of the present disclosure.
  • FIG22 is a schematic diagram of the structure of a communication device provided by another embodiment of the present disclosure.
  • FIG23 is a block diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 24 is a schematic diagram of the structure of a chip provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein may be interpreted as “at” or "when” or "in response to determination".
  • the unified TCI state includes the joint TCI state and/or the separate TCI state.
  • the joint TCI state specifically includes: indicating that a certain TCI state is used for both uplink transmission and downlink reception; the separate TCI state specifically includes: indicating that a certain TCI state is used for uplink transmission or downlink reception; the separate TCI state includes the DL TCI state and the UL TCI state, wherein the DL TCI state is used for downlink reception and the UL TCI state is used for uplink transmission.
  • PUCCH Physical uplink control channel
  • PUCCH is used to carry uplink control information, mainly carrying scheduling request, HARQ ACK/NACK, CSI including CQI, PMI, LI and RI, etc.
  • PUSCH Physical uplink shared channel
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of devices shown in FIG. 1 are only used for example and do not constitute a limitation on the embodiment of the present disclosure. In actual applications, two or more network devices and two or more terminal devices may be included.
  • the communication system shown in FIG. 1 includes, for example, a network device 11 and a terminal device 12.
  • LTE long term evolution
  • 5G fifth generation
  • NR 5G new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 11 may be an evolved NodeB (eNB), a transmission reception point (TRP), a Radio Remote Head (RRH), a next generation NodeB (gNB) in an NR system, a base station in other future mobile communication systems, or an access node in a wireless fidelity (WiFi) system.
  • eNB evolved NodeB
  • TRP transmission reception point
  • RRH Radio Remote Head
  • gNB next generation NodeB
  • the network device provided in the embodiment of the present disclosure may be composed of a central unit (CU) and a distributed unit (DU), wherein the CU may also be referred to as a control unit.
  • CU central unit
  • DU distributed unit
  • the CU-DU structure may be used to split the protocol layer of the network device, such as a base station, and the functions of some protocol layers are placed in the CU for centralized control, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the DU is centrally controlled by the CU.
  • the terminal device 12 in the disclosed embodiment is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal device may also be referred to as a terminal device (terminal), a user equipment (UE), a mobile station (MS), a mobile terminal device (MT), etc.
  • the terminal device may be a car with communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control (industrial control), a wireless terminal device in self-driving, a wireless terminal device in remote medical surgery, a wireless terminal device in smart grid (smart grid), a wireless terminal device in transportation safety (transportation safety), a wireless terminal device in a smart city (smart city), a wireless terminal device in a smart home (smart home), etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • the communication system described in the embodiment of the present disclosure is for the purpose of more clearly illustrating the technical solution of the embodiment of the present disclosure, and does not constitute a limitation on the technical solution provided by the embodiment of the present disclosure.
  • a person skilled in the art can know that with the evolution of the system architecture and the emergence of new business scenarios, the technical solution provided by the embodiment of the present disclosure is also applicable to similar technical problems.
  • FIG2 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG2 , the information determination method may include the following steps:
  • Step 201 Determine the TCI state used for uplink channel transmission and/or uplink signal transmission.
  • the method disclosed in the present invention is applied to the CJT MIMO system that can support up to 4 TRP/RRHs.
  • the base station i.e., the network device mentioned in the present disclosure
  • the L value can be the same or different.
  • Feature 2 The terminal device independently feeds back FD basis vector information for each NZP CSI-RS, such as selecting M frequency domain basis vectors from N3 frequency domain basis vectors for each NZP CSI-RS resource.
  • the value of N3 is the product of the number of Channel Quality Indication subbands (CQI-subband) and the number of Precoding Matrix Index subbands (PMI-subband) contained in each CQI-subband (i.e., number of PMI-subband per CQI-subband).
  • CQI-subband Channel Quality Indication subband
  • PMI-subband Precoding Matrix Index subbands
  • M can be the same or different for different NZP CSI-RS resources.
  • Feature 3 The terminal feeds back frequency domain basis vector information for each CMR, that is, for different NZP CSI-RS resources, M identical frequency domain basis vectors are selected from N3 frequency domain basis vectors.
  • Feature 4 Includes multiple TRPs, each TRP corresponds to an NZP CSI-RS resource.
  • Feature 5 The number of transmitted TCI states is greater than or equal to 1.
  • the above-mentioned uplink channel may include PUSCH and/or PUCCH.
  • the uplink signal may include SRS and/or Demodulation Reference Signal (DMRS).
  • DMRS Demodulation Reference Signal
  • the PUSCH may include at least one of the following:
  • RRC Radio Resource Control
  • CG Type 2 PUSCH that is, part of the PUSCH transmission resources and parameters are determined by RRC, and the other part is indicated by downlink control information (DCI);
  • DCI downlink control information
  • PUSCH scheduled by DCI format 0_0 that is, the transmission resources and parameters of PUSCH are scheduled by DCI format 0_0;
  • PUSCH scheduled by DCI format 0_1 that is, the transmission resources and parameters of PUSCH are scheduled by DCI format 0_1;
  • PUSCH scheduled by DCI format 0_2 that is, the transmission resources and parameters of PUSCH are scheduled by DCI format 0_2.
  • the terminal device when the terminal device determines the TCI state for uplink channel and/or uplink signal transmission, it can be determined based on at least one of the default rule, the signaling sent by the network device, and the DCI for scheduling the uplink channel and/or uplink signal.
  • the default rule the signaling sent by the network device
  • the DCI for scheduling the uplink channel and/or uplink signal.
  • the TCI state may include a path loss reference signal and/or uplink power control information, wherein the path loss reference signal identifier is used to indicate the path loss reference signal, and the uplink power control identifier is used to indicate the uplink power control information. Based on this, after the TCI state for uplink channel transmission and/or uplink signal transmission is determined, the path loss reference signal and/or uplink power control information contained in the determined TCI state may be used for uplink transmission.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG3 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG3 , the information determination method may include the following steps:
  • Step 301 Receive first indication information, where the first indication information is used to indicate at least one joint TCI state.
  • At least one joint TCI state indicated by the first indication information can be used for transmission of a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the joint TCI state may include Quasi Co-location type A (QCL Type A) and/or QCL Type B.
  • QCL Type A may include ⁇ average delay, delay spread, Doppler shift, Doppler spread ⁇ .
  • QCL Type B may include ⁇ Doppler shift, Doppler spread ⁇ .
  • the joint TCI state may include a quasi-co-location type, which includes at least one of the following parameters:
  • the joint TCI state may also include a path loss reference signal identifier and/or an uplink power control identifier.
  • the path loss reference signal identifier is used to indicate a path loss reference signal
  • the uplink power control identifier is used to indicate uplink power control information.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG4 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG4 , the information determination method may include the following steps:
  • Step 401 Receive first indication information, where the first indication information is carried in a first media access control layer control element (MAC CE), and the first MAC CE is used to indicate at least one joint TCI state.
  • MAC CE media access control layer control element
  • the first MAC CE may indicate at least one joint TCI state by indicating the ID of the joint TCI state.
  • the information field corresponding to the codepoint is carried in the first downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the information field corresponding to the codepoint can be the TCI field of the first DCI or other information fields of the first DCI, wherein the above-mentioned "information field corresponding to the codepoint" can be understood as: an information field used to carry the codepoint.
  • the first DCI when at least one joint TCI state indicated by the first MAC CE corresponds to the same codepoint, and the information field corresponding to the codepoint is carried in the first DCI, the first DCI can be sent to the terminal device to indicate the codepoint to the terminal device, or it can also not be sent to the terminal device and not indicate the codepoint to the terminal device.
  • the TCI state corresponding to the codepoint "000” is: the joint TCI state with ID "2" and the joint TCI state with ID "3".
  • the first MAC CE can indicate the joint TCI state with ID "2" and the joint TCI state with ID "3"
  • the information field corresponding to the codepoint "000” corresponding to the joint TCI state with ID "2” and the joint TCI state with ID "3” is the TCI field of the first DCI.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG5 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG5 , the information determination method may include the following steps:
  • Step 501 receive the second MAC CE and the second DCI.
  • the second MAC CE carries the above-mentioned first indication information, and the second MAC CE can be used to indicate at least one joint TCI state corresponding to multiple codepoints (that is, at least one joint TCI state indicated by the second MAC CE corresponds to at least one codepoint), and the second DCI can be used to indicate one codepoint among multiple codepoints, wherein the second DCI can use the TCI field to indicate the one codepoint.
  • the second MAC CE may indicate at least one joint TCI state by indicating the ID of the joint TCI state.
  • the TCI state corresponding to codepoint "000” is: the joint TCI state with ID "2" and the joint TCI state with ID "3”
  • the TCI state corresponding to codepoint "001” is: the joint TCI state with ID "4".
  • the second MAC CE may indicate the joint TCI state with ID "2” and the joint TCI state with ID "3" corresponding to codepoint "000”
  • the joint TCI state with ID "4" corresponding to codepoint "001
  • the TCI field of the second DCI may indicate codepoint "000” or codepoint "001".
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG6 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG6 , the information determination method may include the following steps:
  • Step 601 Receive second indication information, where the second indication information is used to indicate a PDSCH transmission method.
  • the transmission method of the PDSCH indicated by the second indication information may be CJT.
  • the receiving of the second indication information may include:
  • Second indication information carried in an RRC is received, where the RRC is used to configure a transmission method of a PDSCH.
  • the receiving of the second indication information may include:
  • the RRC carries the second indication information described above, and the RRC is used to configure the transmission method of the PDSCH.
  • the third MAC CE can be used to indicate the joint TCI state corresponding to the PDSCH.
  • the third MAC CE can be used to indicate at least one joint TCI state, and the at least one joint TCI state indicated by the third MAC CE corresponds to the same codepoint, and the information field corresponding to the codepoint is included in the third DCI.
  • the structure of the third MAC CE is the same as the structure of the first MAC CE described above, and the structural principle of the third DCI is the same as the structural principle of the first DCI described above, and please refer to the above content for details.
  • the joint TCI state corresponding to the above-mentioned PDSCH can be specifically understood as: a joint TCI state used for PDSCH transmission.
  • the number of joint TCI states corresponding to PDSCH can be greater than or equal to or less than the number of at least one joint TCI state indicated by the first indication information.
  • the receiving of the second indication information may include:
  • the RRC carries the above-mentioned second indication information, and the RRC is used to configure the transmission method of the PDSCH.
  • the fourth DCI may be used to indicate the joint TCI state corresponding to the PDSCH.
  • the fourth DCI may be used to indicate a codepoint, wherein the codepoint corresponds to at least one joint TCI state in the joint TCI state indicated by the first indication information.
  • the fourth DCI may use the TCI field or other information fields to indicate the codepoint.
  • the fourth DCI may use the TCI field to indicate codepoint "000".
  • the fourth DCI may use other information fields to indicate codepoint "00" or "01" or "10".
  • the fourth DCI can use other information fields to indicate codepoint “00” or codepoint “01”.
  • the fourth DCI may indicate one or more TCI states of at least one joint TCI state indicated by the first indication information.
  • each joint TCI state indicated by the first indication information may correspond to 1 bit of the fourth DCI information field, and if the bit is a predetermined value (such as ‘1’), it indicates that the joint TCI state corresponding to the bit is used, otherwise it indicates that the joint TCI state corresponding to the bit is not used.
  • the first indication information indicates a joint TCI state with an ID of "1", a joint TCI state with an ID of "2", a joint TCI state with an ID of "3", and a joint TCI state with an ID of "4"
  • the joint TCI state with an ID of "1” corresponds to the first bit of the fourth DCI other information field
  • the joint TCI state with an ID of "2” corresponds to the second bit of the other information field
  • the joint TCI state with an ID of "3” corresponds to the second bit of the other information field.
  • the joint TCI state corresponds to the third bit of the other information field
  • the joint TCI state with ID "4" corresponds to the fourth bit of the other information field.
  • the fourth DCI other information field is 0001, it means using the joint TCI state with ID "4"; if the other information field is 0101, it means using the joint TCI state with IDs "2" and "4"; if the other information field is 1111, it means using the joint TCI state with IDs "1", "2", "3" and "4".
  • the receiving of the second indication information may include:
  • the RRC carries the above-mentioned second indication information, and the RRC is used to configure the transmission method of the PDSCH.
  • the fourth MAC CE can be used to indicate at least one first value, and the first value is used to indicate: a candidate joint TCI state corresponding to the PDSCH; the fifth DCI is used to indicate a codepoint, and the codepoint corresponds to a first value.
  • the first value corresponding to the codepoint can specifically be: an actual joint TCI state corresponding to the PDSCH.
  • the codepoint corresponding to the first numerical value and the codepoint corresponding to the TCI state are indicated by different domains of the DCI (such as the first DCI to the fifth DCI mentioned above).
  • the codepoint corresponding to the TCI state is indicated by the TCI domain of the DCI
  • the codepoint corresponding to the first numerical value is indicated by other domains of the DCI except the TCI domain.
  • the terminal device can determine that the codepoint carried by the TCI domain of the DCI corresponds to the TCI state, and the codepoint carried by other domains of the DCI except the TCI domain corresponds to the first numerical value.
  • the codepoint corresponding to the first value is indicated by the first field of the DCI other than the TCI field
  • the actual joint TCI state corresponding to the PDSCH is at least one of the joint TCI states indicated in the first indication information
  • the first indication information indicates joint TCI state combination 1, joint TCI state combination 2, joint TCI state combination 3, ...
  • the joint TCI state combination 1 indicated by the first indication information corresponds to codepoint "00”
  • combination 2 corresponds to codepoint "01”
  • combination 3 corresponds to codepoint "10”
  • the actual joint TCI state corresponding to the PDSCH is combination 2.
  • the fourth MAC CE can indicate combinations 2, 3, 4, and the first field of the fifth DCI can indicate codepoint "01".
  • the fourth MAC CE can be used to indicate at least one joint TCI state corresponding to multiple codepoints, and the fifth DCI can be used to indicate one codepoint among multiple codepoints.
  • the structure of the fourth MAC CE can be the same as that of the second MAC CE, and the structure of the fifth DCI can be the same as that of the second DCI.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 7 is a flow chart of an information determination method provided in an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG. 7 , the information determination method may include the following steps:
  • Step 701 Based on a default rule and/or a first signaling sent by a network device, a first joint TCI state among at least one joint TCI state indicated by a first indication information is determined as a TCI state for uplink channel transmission and/or uplink signal transmission.
  • the first signaling may include at least one of the following:
  • the above-mentioned first joint TCI state may be the first joint TCI state among all joint TCI states indicated by the first indication information.
  • the first joint TCI state may be the first indicated TCI state among all joint TCI states indicated by the first indication information.
  • the terminal device can determine the joint TCI state with ID "2" as the TCI state used for uplink channel transmission and/or uplink signal transmission.
  • the first joint TCI state may be the first joint TCI state among all joint TCI states indicated by the first indication information that include target information.
  • the target information may be at least one of QCL Type A, QCL Type B, path loss reference signal, and uplink power control information.
  • the target information is QCL Type A
  • the first indication information sequentially indicates the joint TCI state with ID "2", the joint TCI state with ID "3", and the joint TCI state with ID "4"
  • the joint TCI state with ID "2" includes QCL Type B
  • the joint TCI state with ID "3" and the joint TCI state with ID "4" include QCL Type A.
  • the joint TCI state with ID "3" is the first joint TCI state including QCL Type A among all the joint TCI states indicated by the first indication information, and thus, the terminal device can determine the joint TCI state with ID "3" as the TCI state used for uplink channel transmission and/or uplink signal transmission.
  • the method of the embodiment of Figure 7 can be used to determine the TCI state for SRS transmission, the TCI state for PUSCH transmission of CG Type 1, or the TCI state for PUCCH transmission.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG8 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG8 , the information determination method may include the following steps:
  • Step 801 Based on the default rule and/or the second signaling sent by the network device, a first joint TCI state and a second joint TCI state in at least one joint TCI state indicated by the first indication information are determined as TCI states for uplink channel transmission and/or uplink signal transmission.
  • the second signaling may include at least one of the following:
  • the relevant introduction about the first joint TCI state can refer to the description of the above embodiment.
  • the second joint TCI state is the second joint TCI state among all joint TCI states indicated by the first indication information.
  • the second joint TCI state is the second joint TCI state among all joint TCI states indicated by the first indication information that includes target information.
  • the target information may be at least one of QCL Type A, QCL Type B, path loss reference signal, and uplink power control information.
  • the method of the embodiment of Figure 8 can be used to determine the TCI state for PUSCH transmission scheduled by DCI format 0_0, the TCI state for PUSCH transmission of CG Type 1, or the TCI state for PUCCH transmission.
  • the method of the embodiment of Figure 8 can also be used to determine it.
  • the specific PUCCH or specific PUSCH may be: a PUCCH or PUSCH configured for a transmission method such as time division multiplexing repetition (TDM repetition), single frequency network (SFN), space division multiplexing repetition (SDM repetition), or frequency division multiplexing repetition (FDM repetition); or
  • the specific PUCCH or specific PUSCH may be: a PUCCH or PUSCH configured with multiple SRS resource indicator domains, or multiple SRS resource set indication domains, or multiple path loss reference signal indication domains, or multiple power parameter indication domains, or multiple spatial filter indication domains.
  • the above-mentioned TDM repetition can be understood as: the two resources of repeated transmission can correspond to the same frequency domain resources, but to different time domain resources, and to different TCI states;
  • the above-mentioned SFN can be understood as: the two resources of repeated transmission can correspond to the same time domain and frequency domain resources, the same DMRS port, but to different TCI states;
  • the above-mentioned SDM repetition can be understood as: the two resources of repeated transmission can correspond to the same time domain and frequency domain resources, but to different DMRS port groups and to different TCI states;
  • the above-mentioned FDM repetition can be understood as: the two resources of repeated transmission can correspond to the same time domain resources, but to different frequency domain resources and to different TCI states.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG9 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG9 , the information determination method may include the following steps:
  • Step 901 Based on the default rule and/or the third signaling sent by the network device, one or all of the first two joint TCI states in the at least one joint TCI state indicated by the first indication information are determined as TCI states for uplink channel transmission and/or uplink signal transmission.
  • the third signaling may include at least one of the following:
  • the first two joint TCI states are the first two joint TCI states among all joint TCI states indicated by the first indication information.
  • the first two joint TCI states are the first two joint TCI states among all joint TCI states indicated by the first indication information that contain target information.
  • the target information may be at least one of QCL Type A, QCL Type B, path loss reference signal, and uplink power control information.
  • At least one joint TCI state indicated by the first indication information and/or the first joint TCI state of the first two joint TCI states in at least one joint TCI state, or the second joint TCI state, or the first joint TCI state and the second joint TCI state can be determined as TCI states for uplink channel transmission and/or uplink signal transmission.
  • the method of the embodiment of Figure 9 can be used to determine the TCI state for PUSCH transmission scheduled by DCI format 0_1, the TCI state for PUSCH transmission scheduled by DCI format 0_2, the TCI state for PUSCH transmission of CG Type 2, or the TCI state for PUCCH transmission.
  • the method of the embodiment of Figure 9 can also be used to determine it.
  • the specific PUCCH or specific PUSCH may be: a PUCCH or PUSCH configured for a transmission method such as time division multiplexing repetition (TDM repetition), single frequency network (SFN), space division multiplexing repetition (SDM repetition), or frequency division multiplexing repetition (FDM repetition); or
  • the above-mentioned TDM repetition can be understood as: the two resources of repeated transmission can correspond to the same frequency domain resources, but to different time domain resources, and to different TCI states;
  • the above-mentioned SFN can be understood as: the two resources of repeated transmission can correspond to the same time domain and frequency domain resources, the same DMRS port, but to different TCI states;
  • the above-mentioned SDM repetition can be understood as: the two resources of repeated transmission can correspond to the same time domain and frequency domain resources, but to different DMRS port groups and to different TCI states;
  • the above-mentioned FDM repetition can be understood as: the two resources of repeated transmission can correspond to the same time domain resources, but to different frequency domain resources and to different TCI states.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG10 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG10 , the information determination method may include the following steps:
  • Step 1001 Based on a default rule and/or a fourth signaling sent by a network device, one or more TCI states among at least one joint TCI state indicated by the first indication information are determined as TCI states for uplink channel transmission and/or uplink signal transmission.
  • the fourth signaling may include at least one of the following:
  • the multiple TCI states can be 2 TCI states, or 3 TCI states, or 4 TCI states.
  • the method of this embodiment is different from the method of the embodiment corresponding to Figure 9 in that: in this embodiment, not only can one or two TCI states be selected from the first and second TCI states of at least one joint TCI state indicated by the first indication information for uplink channel transmission and/or uplink signal transmission, but one or two TCI states can also be arbitrarily selected from the third and fourth TCI states of at least one joint TCI state indicated by the first indication information for uplink channel transmission and/or uplink signal transmission; while the method of the embodiment corresponding to Figure 9 can only select one or two TCI states from the first two TCI states of at least one joint TCI state indicated by the first indication information for uplink channel transmission and/or uplink signal transmission.
  • the method of the embodiment of Figure 10 can be used to determine the TCI state for PUSCH transmission scheduled by DCI format 0_1, the TCI state for PUSCH transmission scheduled by DCI format 0_2, the TCI state for PUSCH transmission of CG Type 2, or the TCI state for PUCCH transmission.
  • the method of the embodiment of Figure 10 can also be used to determine it.
  • the specific PUCCH or specific PUSCH may be: a PUCCH or PUSCH configured for a transmission method such as time division multiplexing repetition (TDM repetition), single frequency network (SFN), space division multiplexing repetition (SDM repetition), or frequency division multiplexing repetition (FDM repetition); or
  • the above-mentioned TDM repetition can be understood as: the two resources of repeated transmission can correspond to the same frequency domain resources, but to different time domain resources, and to different TCI states;
  • the above-mentioned SFN can be understood as: the two resources of repeated transmission can correspond to the same time domain and frequency domain resources, the same DMRS port, but to different TCI states;
  • the above-mentioned SDM repetition can be understood as: the two resources of repeated transmission can correspond to the same time domain and frequency domain resources, but to different DMRS port groups and to different TCI states;
  • the above-mentioned FDM repetition can be understood as: the two resources of repeated transmission can correspond to the same time domain resources, but to different frequency domain resources and to different TCI states.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG11 is a flow chart of an information determination method provided in an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG11 , the information determination method may include the following steps:
  • Step 1101 Determine the TCI state used for uplink channel transmission and/or uplink signal transmission based on the TCI state of the control resource set (CORESET) corresponding to the DCI that schedules the uplink channel and/or uplink signal.
  • CORESET control resource set
  • a method for determining a TCI state for uplink channel transmission and/or uplink signal transmission based on a TCI state of a CORESET corresponding to a DCI for scheduling an uplink channel and/or an uplink signal may include:
  • the one TCI state is directly determined as the TCI state used for uplink channel transmission and/or uplink signal transmission; if the CORESET corresponding to the DCI that schedules the uplink channel and/or uplink signal corresponds to multiple TCI states, then one TCI state or multiple TCI states or all TCI states among the multiple TCI states are determined as the TCI state used for uplink channel transmission and/or uplink signal transmission.
  • the method of the embodiment of FIG. 11 may be applicable to determining the TCI state used for transmission of an uplink channel and/or uplink signal scheduled by DCI.
  • DCI format 0_0 since DCI format 0_0 is a fallback DCI, it contains fewer indication fields. Therefore, the DCI format 0_0 for scheduling PUSCH does not have enough indication fields to indicate the TCI state, and the DCI format 0_0 for scheduling PUSCH cannot indicate the TCI state.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG12 is a flow chart of an information determination method provided in an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG12 , the information determination method may include the following steps:
  • Step 1201 respectively determine the TCI state for uplink channel transmission and the TCI state for uplink signal transmission.
  • the TCI state for uplink channel transmission can be determined separately, and the TCI state for uplink signal transmission can be determined separately.
  • the first joint TCI state of at least one joint TCI state indicated by the first indication information can be determined as the TCI state for uplink channel transmission
  • the second joint TCI state of the first two joint TCI states of at least one joint TCI state indicated by the first indication information can be determined as the TCI state for uplink signal transmission.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • any two or more MAC CEs can be different MAC CEs, or the same MAC CEs as the MAC CE of the first signaling, the MAC CE of the second signaling, the MAC CE of the third signaling, and the MAC CE of the fourth signaling.
  • any two or more DCIs can be different DCIs, or the same DCIs as the DCI of the first signaling, the DCI of the second signaling, the DCI of the third signaling, and the DCI of the fourth signaling.
  • any two or more RRCs can be different RRCs, or the same RRCs as the RRC of the first signaling, the RRC of the second signaling, the RRC of the third signaling, and the RRC of the fourth signaling.
  • FIG. 13a is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 13a , the information determination method may include the following steps:
  • Step 1301a sending a first indication message, where the first indication message is used to indicate at least one joint TCI state.
  • step 1301a For a detailed description of step 1301a, please refer to the above embodiment description.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 13b is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 13b , the information determination method may include the following steps:
  • Step 1301b Send second indication information, where the second indication information is used to indicate a PDSCH transmission method.
  • step 1301b For a detailed description of step 1301b, please refer to the above embodiment description.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 14 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 14 , the information determination method may include the following steps:
  • Step 1401 Send first indication information, where the first indication information is carried in a first MAC CE, and the first MAC CE is used to indicate at least one joint TCI state.
  • step 1401 For a detailed description of step 1401 , please refer to the above embodiment description.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 15 is a flow chart of an information determination method provided in an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 15 , the information determination method may include the following steps:
  • Step 1501 send the second MAC CE and the second DCI.
  • step 1501 For a detailed description of step 1501, please refer to the above embodiment description.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 16 is a flow chart of an information determination method provided in an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 16 , the information determination method may include the following steps:
  • Step 1601 Send a first signaling to the terminal device; the first signaling is used to indicate: determine the first joint TCI state among at least one joint TCI state indicated by the first indication information as the TCI state used for uplink channel transmission and/or uplink signal transmission.
  • step 1601 For a detailed description of step 1601, please refer to the above embodiment description.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 17 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 17 , the information determination method may include the following steps:
  • Step 1701 Send a second signaling to the terminal device; the second signaling is used to indicate: determine a first joint TCI state and a second joint TCI state in at least one joint TCI state indicated by the first indication information as TCI states for uplink channel transmission and/or uplink signal transmission.
  • step 1701 For a detailed description of step 1701, please refer to the above embodiment description.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 18 is a flow chart of an information determination method provided in an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 18 , the information determination method may include the following steps:
  • Step 1801 Send a third signaling to the terminal device; the third signaling is used to indicate: one or all of the first two joint TCI states in the at least one joint TCI state indicated by the first indication information are determined as TCI states for uplink channel transmission and/or uplink signal transmission.
  • step 1801 For a detailed description of step 1801, please refer to the above embodiment description.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 19 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 19 , the information determination method may include the following steps:
  • Step 1901 Send a fourth signaling to the terminal device; the fourth signaling is used to indicate: determine one or more TCI states among at least one joint TCI state indicated by the first indication information as TCI states for uplink channel transmission and/or uplink signal transmission.
  • step 1901 For a detailed description of step 1901, please refer to the above embodiment description.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 20 is a flow chart of an information determination method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 20 , the information determination method may include the following steps:
  • Step 2001 Indicate to the terminal device the TCI state for uplink channel transmission and the TCI state for uplink signal transmission.
  • step 2001 please refer to the above embodiment description.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • FIG. 21 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 21 , the device may include:
  • a processing module is used to determine the TCI state for uplink channel transmission and/or uplink signal transmission.
  • the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs. It can be seen that the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • the device is further used for:
  • Receive first indication information is used to indicate at least one joint transmission configuration indication state joint TCI state.
  • the first indication information is carried in a first media access control layer control unit MAC CE; the first MAC CE is used to indicate at least one joint TCI state.
  • At least one joint TCI state indicated by the first MAC CE corresponds to the same code point codepoint, and the information field corresponding to the codepoint is included in the first downlink control information DCI.
  • the first indication information is carried in a second MAC CE; wherein the second MAC CE is used to indicate at least one joint TCI state corresponding to a plurality of codepoints respectively;
  • the device is also used for:
  • a second DCI is received, where the second DCI is used to indicate a codepoint among the multiple codepoints.
  • the processing module is further used for at least one of the following:
  • one or more TCI states among at least one joint TCI state indicated by the first indication information are determined as TCI states for uplink channel transmission and/or uplink signal transmission.
  • the joint TCI state includes quasi-co-site type QCL Type A and/or QCL Type B.
  • the joint TCI state includes a quasi co-location type
  • the quasi co-location type includes at least one of the following parameters:
  • the first joint TCI state is the first joint TCI state among all joint TCI states indicated by the first indication information.
  • the first joint TCI state is the first joint TCI state among all the joint TCI states indicated by the first indication information that contains target information.
  • the second joint TCI state is the second joint TCI state among all joint TCI states indicated by the first indication information.
  • the second joint TCI state is the second joint TCI state among all the joint TCI states indicated by the first indication information that contain target information.
  • the first two joint TCI states are the first two joint TCI states of all joint TCI states indicated by the first indication information.
  • the first two joint TCI states are the first two joint TCI states among all the joint TCI states indicated by the first indication information that contain target information.
  • the target information includes at least one of QCL Type A, QCL Type B, path loss reference signal and uplink power control information.
  • the first signaling, the second signaling, the third signaling, or the fourth signaling includes at least one of the following:
  • the processing module is further configured to:
  • the TCI state used for uplink channel transmission and/or uplink signal transmission is determined based on the TCI state of the control resource set CORESET corresponding to the DCI that schedules the uplink channel and/or uplink signal.
  • the processing module is further configured to:
  • the uplink channel includes a physical uplink shared channel PUSCH and/or a physical uplink control channel PUCCH;
  • the uplink signal includes a sounding reference signal SRS and/or a demodulation reference signal DMRS.
  • the PUSCH includes at least one of the following:
  • the TCI state includes a path loss reference signal and/or uplink power control information.
  • FIG. 22 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 22 , the device may include:
  • a transceiver module is used to send first indication information, wherein the first indication information is used to indicate at least one joint TCI state.
  • the network device will send a first indication information to the terminal device, wherein the first indication information is used to indicate at least one joint TCI state, and the terminal device will determine the TCI state used for uplink channel transmission and/or uplink signal transmission, wherein, in the method of the present disclosure, the information determination method can be applied to a MIMO system that can support CJT of up to 4 TRP/RRHs.
  • the method of the present disclosure is mainly used in the scenario of CJT of 3 TRP/RRHs or CJT of 4 TRP/RRHs, and of course, it is also applicable to CJT of 2 TRP/RRHs.
  • the present disclosure provides a method for a terminal device to determine which TCI state to use for uplink channel transmission and/or uplink signal transmission in response to the situation where the network device indicates 3 or 4 TCI states, thereby improving the transmission performance based on Multi-TRP coherent joint transmission.
  • the first indication information is carried in a first MAC CE; the first MAC CE is used to indicate at least one joint TCI state.
  • At least one joint TCI state indicated by the first MAC CE corresponds to the same codepoint, and the information field corresponding to the codepoint is included in the first DCI.
  • the first indication information is carried in a second MAC CE; wherein the second MAC CE is used to indicate at least one joint TCI state corresponding to a plurality of codepoints respectively;
  • the device is also used for:
  • the device is further used for at least one of the following:
  • the first signaling is used to indicate: determining a first joint TCI state among at least one joint TCI state indicated by the first indication information as a TCI state for uplink channel transmission and/or uplink signal transmission;
  • the second signaling is used to indicate: determining a first joint TCI state and a second joint TCI state in at least one joint TCI state indicated by the first indication information as TCI states for uplink channel transmission and/or uplink signal transmission;
  • the third signaling is used to indicate: determining one or all of the first two joint TCI states in the at least one joint TCI state indicated by the first indication information as the TCI state for uplink channel transmission and/or uplink signal transmission;
  • the fourth signaling is used to indicate: determining one or more TCI states among at least one joint TCI state indicated by the first indication information as TCI states for uplink channel transmission and/or uplink signal transmission.
  • the joint TCI state includes QCL Type A and/or QCL Type B.
  • the joint TCI state includes a quasi co-location type
  • the quasi co-location type includes at least one of the following parameters:
  • the first joint TCI state is the first joint TCI state among all joint TCI states indicated by the first indication information.
  • the first joint TCI state is the first joint TCI state among all the joint TCI states indicated by the first indication information that contains target information.
  • the second joint TCI state is the second joint TCI state among all joint TCI states indicated by the first indication information.
  • the second joint TCI state is the second joint TCI state among all the joint TCI states indicated by the first indication information that contain target information.
  • the first two joint TCI states are the first two joint TCI states of all joint TCI states indicated by the first indication information.
  • the first two joint TCI states are the first two joint TCI states among all the joint TCI states indicated by the first indication information that contain target information.
  • the target information includes at least one of QCL Type A, QCL Type B, path loss reference signal and uplink power control information.
  • the first signaling, the second signaling, the third signaling, or the fourth signaling includes at least one of the following:
  • the network device is used to indicate to the terminal device the TCI state for uplink channel transmission and the TCI state for uplink signal transmission, respectively.
  • the uplink channel includes PUSCH and/or PUCCH
  • the uplink signal includes SRS and/or DMRS.
  • the PUSCH includes at least one of the following:
  • the TCI state includes a path loss reference signal and/or uplink power control information.
  • FIG 23 is a schematic diagram of the structure of a communication device 2300 provided in an embodiment of the present application.
  • the communication device 2300 can be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 2300 may include one or more processors 2301.
  • the processor 2301 may be a general-purpose processor or a dedicated processor, etc. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal device, a terminal device chip, a DU or a CU, etc.), execute a computer program, and process the data of the computer program.
  • the communication device 2300 may further include one or more memories 2302, on which a computer program 2304 may be stored, and the processor 2301 executes the computer program 2304 so that the communication device 2300 performs the method described in the above method embodiment.
  • data may also be stored in the memory 2302.
  • the communication device 2300 and the memory 2302 may be provided separately or integrated together.
  • the communication device 2300 may further include a transceiver 2305 and an antenna 2306.
  • the transceiver 2305 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 2305 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication device 2300 may further include one or more interface circuits 2307.
  • the interface circuit 2307 is used to receive code instructions and transmit them to the processor 2301.
  • the processor 2301 runs the code instructions to enable the communication device 2300 to execute the method described in the above method embodiment.
  • the processor 2301 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 2301 may store a computer program 2303, which runs on the processor 2301 and enables the communication device 2300 to perform the method described in the above method embodiment.
  • the computer program 2303 may be fixed in the processor 2301, in which case the processor 2301 may be implemented by hardware.
  • the communication device 2300 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 23.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and computer programs;
  • ASIC such as modem
  • the communication device can be a chip or a chip system
  • the communication device can be a chip or a chip system
  • the schematic diagram of the chip structure shown in Figure 24 includes a processor 2401 and an interface 2402.
  • the number of processors 2401 can be one or more, and the number of interfaces 2402 can be multiple.
  • the chip further includes a memory 2403, and the memory 2403 is used to store necessary computer programs and data.
  • the present application also provides a readable storage medium having instructions stored thereon, which implement the functions of any of the above method embodiments when executed by a computer.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • At least one in the present application can also be described as one or more, and a plurality can be two, three, four or more, which is not limited in the present application.
  • the technical features in the technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and there is no order of precedence or size between the technical features described by the "first”, “second”, “third”, “A”, “B”, “C” and “D”.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles in the above tables can also use other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables.
  • the predefined in the present application may be understood as defined, predefined, stored, pre-stored, pre-negotiated, pre-configured, solidified, or pre-burned.

Abstract

本公开提出一种信息确定方法/装置/设备及存储介质,所述方法包括:确定用于上行信道传输和/或上行信号传输的传输配置指示状态TCI state。本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。

Description

一种信息确定方法/装置/设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及信息确定方法/装置/设备及存储介质。
背景技术
在多输入多输出(Multiple-Input Multiple-Output,MIMO)系统中,引入了多个发送接收点(transmission reception Point,TRP)在具有ideal backhaul(理想回程)连接的情况下所实现的相干联合传输(coherent joint transmission,CJT)。以及,目前针对于统一传输配置指示状态(Unified Transmission Configuration Indicator state,unified TCI state)已经考虑了Single-TRP(单TRP,S-TRP)的情况。具体的,unified TCI state即针对一个TRP的多个信道/信号指示同一套TCI state,其中,同一套TCI state目前可能是上行和下行分开指示,即分别指示DL(下行)TCI state和/或UL(上行)TCI state,或者上下行联合指示,即指示joint(联合)TCI state。以及,终端设备可以基于指示的joint TCI state来用于上行信道和/或上行信号的传输。
相关技术中,MIMO目前最多可支持4个TRP的CJT,则网络设备会向终端设备指示到3个或4个TCI state。但是,目前只讨论了当网络设备指示1个或2个TCI state时,终端设备确定哪个TCI state用于上行信道和/或上行信号传输的方法,因此,相关技术中的方法无法适用于网络设备指示了3个或4个TCI state这一场景下的终端设备确定具体使用哪个TCI state用于上行信道和/或上行信号传输时的确定过程。
发明内容
本公开提出的信息确定方法/装置/设备及存储介质,以用于当网络设备指示了3个或4个TCI state时终端设备确定具体使用哪个TCI state用于上行信道和/或上行信号传输。
第一方面,本公开实施例提供一种信息确定方法,该方法被终端设备执行,包括:
确定用于上行信道传输和/或上行信号传输的传输配置指示状态TCI state。
本公开中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
第二方面,本公开实施例提供一种信息确定方法,该方法被网络设备执行,包括:
发送第一指示信息,所述第一指示信息用于指示至少一个joint TCI state。
第三方面,本公开实施例提供一种通信装置,该装置配置于终端设备中,包括:
处理模块,用于确定用于上行信道传输和/或上行信号传输的TCI state。
第四方面,本公开实施例提供一种通信装置,该装置配置于网络设备中,包括:
收发模块,用于发送第一指示信息,所述第一指示信息用于指示至少一个joint TCI state。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信系统,该系统包括第三方面所述的通信装置至第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置至第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置至第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置至第十方面所述的通信装置。
第十二方面,本公开实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面至第二方面的任一方面所述的方法。
第十三方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面的任一方面所述的方法。
第十四方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第一方面至第二方面的任一方面所述的方法所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存源辅节点必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十五方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面的任一方面所述的方法。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的一种通信系统的架构示意图;
图2为本公开另一个实施例所提供的信息确定方法的流程示意图;
图3为本公开再一个实施例所提供的信息确定方法的流程示意图;
图4为本公开又一个实施例所提供的信息确定方法的流程示意图;
图5为本公开另一个实施例所提供的信息确定方法的流程示意图;
图6为本公开再一个实施例所提供的信息确定方法的流程示意图;
图7为本公开又一个实施例所提供的信息确定方法的流程示意图;
图8为本公开一个实施例所提供的信息确定方法的流程示意图;
图9为本公开另一个实施例所提供的信息确定方法的流程示意图;
图10为本公开另一个实施例所提供的信息确定方法的流程示意图;
图11为本公开另一个实施例所提供的信息确定方法的流程示意图;
图12为本公开另一个实施例所提供的信息确定方法的流程示意图;
图13a为本公开另一个实施例所提供的信息确定方法的流程示意图;
图13b为本公开另一个实施例所提供的信息确定方法的流程示意图;
图14为本公开另一个实施例所提供的信息确定方法的流程示意图;
图15为本公开另一个实施例所提供的信息确定方法的流程示意图;
图16为本公开另一个实施例所提供的信息确定方法的流程示意图;
图17为本公开另一个实施例所提供的信息确定方法的流程示意图;
图18为本公开另一个实施例所提供的信息确定方法的流程示意图;
图19为本公开另一个实施例所提供的信息确定方法的流程示意图;
图20为本公开另一个实施例所提供的信息确定方法的流程示意图;
图21为本公开另一个实施例所提供的通信装置的结构示意图;
图22为本公开另一个实施例所提供的通信装置的结构示意图;
图23是本公开一个实施例所提供的一种通信装置的框图;
图24为本公开一个实施例所提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了便于理解,首先介绍本申请涉及的术语。
1、统一传输配置指示状态(Unified Transmission Configuration Indicator state,unified TCI state)
unified TCI state包括joint TCI state(联合TCI状态)和/或separate TCI state(单独TCI状态)。其中,joint TCI state具体包括:指示某一个TCI state同时用于上行发送和下行接收,separate TCI state具体包括:指示某一个TCI state用于上行发送或下行接收,separate TCI state包括DL TCI state和UL TCI state,其中,DL TCI state用于下行接收,UL TCI state用于上行发送。
2、物理上行控制信道(physical uplink control channel,PUCCH)
PUCCH用于承载上行控制信息,主要携带scheduling request,HARQ ACK/NACK,CSI包括CQI,PMI,LI和RI等。
3、物理上行共享信道(physical uplink shared channel,PUSCH)
用于承载上行数据。
为了更好的理解本公开实施例公开的一种信息确定方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备,一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11和一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、射频拉远头(Radio Remote Head,RRH)、NR系统中的下一代基站(next generation NodeB,gNB)、其 他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面参考附图对本公开实施例所提供的信息确定方法/装置/设备及存储介质进行详细描述。
图2为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图2所示,该信息确定方法可以包括以下步骤:
步骤201、确定用于上行信道传输和/或上行信号传输的TCI state。
其中,本公开的方法是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中的。
需要说明的是,本公开中的CJT传输可以认为是包括以下至少之一特征的传输:
特征一:基站(即本公开中提到的网络设备)为终端设备配置多个(如1-4个)非零功率信道状态信息参考信号(Non-zero-power channel state information reference signal,NZP CSI-RS)资源(resource)作为信道测量资源(Channel Measurement Resource,CMR),以及,终端设备针对每个NZP CSI-RS资源独立反馈SD basis vector(空间域基向量)信息,如,从各个NZP CSI-RS资源的天线端口总数N1*N2(其中N1为第一维度天线端口数,N2为第二维度天线端口数)中分别选出指定数量L个波束来反馈空间域基向量。其中,针对不同NZP CSI-RS资源,L值可以相同或不同。
特征二:终端设备针对每个NZP CSI-RS独立反馈FD basis vector(频域基向量)信息,如,分别从N3个频域基向量中针对各个NZP CSI-RS资源分别选出M个频域基向量。其中,上述N3的值为:信道质量指示子带(Channel Quality Indicationsubband,CQI-subband)数量与每个CQI-subband包含的预编码码本索引子带(Precoding Matrix Index subband,PMI-subband)的数量(即:numberofPMI-subbandperCQI-subband)的乘积。其中,针对不同NZP CSI-RS资源,M值可以相同或不同。
特征三:终端针对每个CMR反馈频域基向量信息,即针对不同NZP CSI-RS资源,从N3个频域基向量中选出M个相同的频域基向量。
特征四:包括多个TRP,每个TRP对应一个NZP CSI-RS资源。
特征五:传输的TCI state的数量大于或等于1。
以及,在本公开的一个实施例之中,上述的上行信道可以包括PUSCH和/或PUCCH。上行信号可以包括SRS和/或解调参考信号(Demodulation Reference Signal,DMRS)。
其中,该PUSCH可以包括以下至少一项:
配置授权类型1(Type 1configured grant PUSCH,CG Type 1)的PUSCH;即:PUSCH的所有传输资源和参数由无线资源控制(Radio Resource Control,RRC)确定。
CG Type 2的PUSCH;即:PUSCH的一部分传输资源和参数由RRC确定,另一部分由下行控制 信息(Downlink Control Information,DCI)指示;
DCI format(格式)0_0调度的PUSCH;即:由DCI format 0_0来调度PUSCH的传输资源和参数;
DCI format 0_1调度的PUSCH;即:由DCI format 0_1来调度PUSCH的传输资源和参数;
DCI format 0_2调度的PUSCH;即:由DCI format 0_2来调度PUSCH的传输资源和参数。
进一步地,在本公开的一个实施例之中,终端设备在确定用于上行信道和/或上行信号传输的TCI state时,可以是基于默认规则、网络设备发送的信令、调度上行信道和/或上行信号的DCI中的至少一种来确定。其中,关于该部分内容的详细介绍会在后续实施例进行说明。
此外,在本公开的一个实施例之中,该TCI state中可以包括路径损耗参考信号和/或上行功率控制信息,其中,该路径损耗参考信号标识用于指示路径损耗参考信号,该上行功率控制标识用于指示上行功率控制信息。基于此,当确定了用于上行信道传输和/或上行信号传输的TCI state后,可以利用所确定的TCI state中包含的路径损耗参考信号和/或上行功率控制信息来进行上行传输。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图3为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图3所示,该信息确定方法可以包括以下步骤:
步骤301、接收第一指示信息,该第一指示信息用于指示至少一个joint TCI state。
其中,在本公开的一个实施例之中,该第一指示信息所指示的至少一个joint TCI state可以用于物理下行共享信道(physical downlink shared channel,PDSCH)的传输。
以及,在本公开的一个实施例之中,该joint TCI state可以包含准共址类型A(Quasi Co-location type,QCL Type A)和/或QCL Type B。其中,QCL Type A可以包含{averagedelay(平均延迟),delayspread(时延扩展),Dopplershift(多普勒频移),Dopplerspread(多普勒扩散)}。QCL Type B可以包含{Dopplershift,Dopplerspread}。
在本公开的另一个实施例之中,joint TCI state可以包含准共址类型,该准共址类型包括以下至少一项参数:
平均时延;
时延扩展;
多普勒偏移;
多普勒扩展。
在本公开的另一个实施例中,该joint TCI state还可以包含路径损耗参考信号标识,和/或,上行功率控制标识。其中,该路径损耗参考信号标识用于指示路径损耗参考信号,该上行功率控制标识用于指示上行功率控制信息。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图4为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图4所示,该信息确定方法可以包括以下步骤:
步骤401、接收第一指示信息,该第一指示信息承载在第一媒体接入控制层控制单元(Medium Access Control Control Element,MAC CE)中,该第一MAC CE用于指示至少一个joint TCI state。
其中,在本公开的一个实施例之中,第一MAC CE可以通过指示joint TCI state的ID来指示至少一个joint TCI state。
以及,在本公开的一个实施例之中,TCI state与codepoint(码点)之间存在有对应关系,该第一MAC CE所指示的至少一个joint TCI state对应于同一codepoint。其中,该codepoint对应的信息域承载在第一下行控制信息(Downlink Control Information,DCI)中,例如,在本公开的一个实施例之中,该codepoint对应的信息域可以是第一DCI的TCI域或者第一DCI的其他信息域,其中,上述的“codepoint对应的信息域”可以理解为:用于承载codepoint的信息域。以及,需要说明的是,在本公开的实施例之中,当第一MAC CE指示的至少一个joint TCI state对应同一codepoint,且该codepoint所对应的信息域承载在第一DCI中时,该第一DCI可以发送至终端设备以向终端设备指示该codepoint,或者也可以不发送至终端设备而不向该终端设备指示该codepoint。
示例的,在本公开的一个实施例之中,假设codepoint“000”对应的TCI state为:ID为“2”的joint TCI state和ID为“3”的joint TCI state。则该第一MAC CE可以指示ID为“2”的joint TCI state和ID为“3”的joint TCI state,以及,该ID为“2”的joint TCI state和ID为“3”的joint TCI state所对应的codepoint“000”对应的信息域为第一DCI的TCI域。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图5为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图5所示,该信息确定方法可以包括以下步骤:
步骤501、接收第二MAC CE和第二DCI。
其中,在本公开的一个实施例之中,该第二MAC CE中承载有上述的第一指示信息,第二MAC CE可以用于指示多个codepoint分别对应的至少一个joint TCI state(也即是第二MAC CE指示的至少一个joint TCI state对应至少一个codepoint),该第二DCI可以用于指示多个codepoint中的一个codepoint,其中,该第二DCI可以利用TCI域来指示该一个codepoint。
在本公开的一个实施例之中,第二MAC CE可以通过指示joint TCI state的ID来指示至少一个joint TCI state。
示例的,在本公开的一个实施例之中,假设codepoint“000”对应的TCI state为:ID为“2”的joint TCI state和ID为“3”的joint TCI state,codepoint“001”对应的TCI state为:ID为“4”的joint TCI state。则该第二MAC CE可以指示codepoint“000”对应的ID为“2”的joint TCI state、ID为“3”的joint TCI state,codepoint“001”对应的ID为“4”的joint TCI state,以及,第二DCI的TCI域可以指示codepoint“000”或codepoint“001”。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图6为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图6所示,该信息确定方法可以包括以下步骤:
步骤601、接收第二指示信息,该第二指示信息用于指示PDSCH的传输方法。
其中,在本公开的一个实施例之中,该第二指示信息所指示的PDSCH的传输方法可以为CJT。
以及,在本公开的一个实施例之中,上述的接收第二指示信息可以包括:
接收承载在RRC中的第二指示信息,该RRC用于配置PDSCH的传输方法。
在本公开的另一个实施例之中,上述的接收第二指示信息可以包括:
接收RRC和第三MAC CE的至少一项。其中,该RRC中承载有上述的第二指示信息,RRC用于配置PDSCH的传输方法。该第三MAC CE可以用于指示PDSCH对应的joint TCI state。或者,在本公开的另一个实施例之中,该第三MAC CE可以用于指示至少一个joint TCI state,该第三MAC CE所指示的至少一个joint TCI state对应于同一codepoint,该codepoint对应的信息域包含于第三DCI中。其中,当第三MAC CE用于指示至少一个joint TCI state时,该第三MAC CE的结构与上述的第一MAC CE的结构雷同,以及,该第三DCI的结构原理与上述的第一DCI的结构原理雷同,具体参见上述内容介绍。
需要说明的是,在本公开的一个实施例之中,上述的PDSCH对应的joint TCI state具体可以理解为:用于PDSCH传输的joint TCI state。以及,PDSCH对应的joint TCI state的个数可以大于或等于或小于第一指示信息所指示的至少一个joint TCI state的个数。
在本公开的又一个实施例之中,上述的接收第二指示信息可以包括:
接收RRC和/或第四DCI。
其中,在本公开的一个实施例之中,该RRC中承载有上述的第二指示信息,RRC用于配置PDSCH的传输方法。
以及,在本公开的一个实施例之中,该第四DCI可以用于指示PDSCH对应的joint TCI state。或者,在本公开的一个实施例之中,该第四DCI可以用于指示一个codepoint,其中该一个codepoint对应第一指示信息所指示的joint TCI state中的至少一个joint TCI state。其中,第四DCI可以利用TCI域或其他信息域来指示该一个codepoint。
示例的,假设第一指示信息指示了ID为“2”的joint TCI state和ID为“3”的joint TCI state,其中,该ID为“2”的joint TCI state和ID为“3”的joint TCI state对应codepoint“000”,则该第四DCI可以利用TCI域指示codepoint“000”。或者,假设第一指示信息指示了ID为“2”的joint TCI state和ID为“3”的joint TCI state,其中,该ID为“2”的joint TCI state对应codepoint“00”,该ID为“3”的joint TCI state对应codepoint“01”,该ID为“2”的joint TCI state和ID为“3”的joint TCI state对应codepoint“10”,则该第四DCI可以利用其他信息域指示codepoint“00”或“01”或“10”。或者,假设第一指示信息指示了ID为“2”的joint TCI state、ID为“3”的joint TCI state、ID为“4”的joint TCI state,其中,ID为“2”的joint TCI state和ID为“3”的joint TCI state对应codepoint“00”,ID为“4”的joint TCI state对应codepoint“01”,则该第四DCI可以利用其他信息域指示codepoint“00”或codepoint“01”。
或者,在本公开的一个实施例之中,该第四DCI可以指示第一指示信息所指示的至少一个joint TCI state中的一个或多个TCI state。具体的,第一指示信息所指示的每个joint TCI state可以对应上述第四DCI信息域的1bit,该bit为预定值(如‘1’)则表示使用该比特位对应的joint TCI state,否则表示不使用该比特位对应的joint TCI state。
示例的,假设第一指示信息指示了ID为“1”的joint TCI state、ID为“2”的joint TCI state、ID为“3”的joint TCI state、ID为“4”的joint TCI state,其中,ID为“1”的joint TCI state对应第四DCI其他信息域的第一比特位,ID为“2”的joint TCI state对应其他信息域的第二比特位,ID为“3”的joint TCI state对应其他信息域的第三比特位,ID为“4”的joint TCI state对应其他信息域的第四比特位,此时,第四DCI其它信息域若为0001,则表示使用ID为“4”的joint TCI state;其它信息域若为0101,则表示使用ID为“2”和“4”的joint TCI state;其它信息域若为1111,则表示使用ID为“1”,“2”,“3”和“4”的joint TCI state。
在本公开的又一个实施例之中,上述的接收第二指示信息可以包括:
接收RRC、第四MAC CE和第五DCI的至少一项。
其中,在本公开的一个实施例之中,该RRC中承载有上述的第二指示信息,RRC用于配置PDSCH的传输方法。
以及,在本公开的一个实施例之中,该第四MAC CE可以用于指示至少一个第一数值,该第一数值用于指示:PDSCH对应的候选joint TCI state;第五DCI用于指示一个codepoint,该codepoint对应一个第一数值,可选的,该codepoint对应的第一数值具体可以为:PDSCH对应的实际joint TCI state。
则由上述内容可知,codepoint与上述的第一数值之间也存在有对应关系。以及,结合前述内容可知,codepoint与TCI state之间同样存在有对应关系。基于此,为了区分该两种codepoint,在本公开的一个实施例之中,使得与第一数值存在对应关系的codepoint和与TCI state存在对应关系的codepoint由DCI(如上述的第一DCI至第五DCI)的不同域指示。例如,与TCI state存在对应关系的codepoint由DCI的TCI域指示,与第一数值存在对应关系的codepoint由DCI的除TCI域之外的其他域指示。基于此,终端设备接收到DCI后,即可确定出DCI的TCI域承载的codepoint是与TCI state对应的,以及,DCI的除TCI域之外的其他域承载的codepoint是与第一数值对应的。
示例的,假设与第一数值存在对应关系的codepoint由DCI的除TCI域之外的第一域指示,且PDSCH对应的实际joint TCI state为第一指示信息中指示的joint TCI state中的至少一个,其中,第一指示信息指示了joint TCI state组合1、joint TCI state组合2、joint TCI state组合3……,第一指示信息指示的joint TCI state组合1与codepoint“00”对应,组合2与codepoint“01”对应,组合3与codepoint“10”对应……,以及,PDSCH对应的实际joint TCI state为组合2。则该第四MAC CE可以指示组合2,3,4,第五DCI的第一域可以指示codepoint“01”。
进一步地,在本公开的另一个实施例之中,上述的第四MAC CE可以用于指示多个codepoint分别对应的至少一个joint TCI state,第五DCI可以用于指示多个codepoint中的一个codepoint。其中,该第四MAC CE的结构可以与前述第二MAC CE的结构雷同,第五DCI的结构可以与前述第二DCI的结构雷同,详细介绍可以参考上述内容描述。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图7为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图7所示,该信息确定方法可以包括以下步骤:
步骤701、基于默认规则和/或网络设备发送的第一信令将第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
其中,在本公开的一个实施例之中,该第一信令可以为包括以下至少一种:
RRC;
MAC CE;
DCI。
以及,在本公开的一个实施例之中,上述的第一个joint TCI state可以为第一指示信息所指示的所有joint TCI state中的第一个joint TCI state,换言之,第一个joint TCI state可以为第一指示信息所指示的所有joint TCI state中的第一个指示的TCI state。
示例的,假设第一指示信息依次指示了ID为“2”的joint TCI state、ID为“3”的joint TCI state、ID为“4”的joint TCI state,其中,ID为“2”的joint TCI state为第一指示信息所指示的所有joint TCI state中的第一个joint TCI state,则终端设备可以将ID为“2”的joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
或者,在本公开的另一个实施例之中,上述的第一个joint TCI state可以为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的第一个joint TCI state。其中,该目标信息可以为QCL Type A、QCL Type B、路径损耗参考信号和上行功率控制信息中的至少一项。
示例的,假设该目标信息为QCL Type A,若第一指示信息依次指示了ID为“2”的joint TCI state、 ID为“3”的joint TCI state、ID为“4”的joint TCI state,其中,ID为“2”的joint TCI state包括QCL Type B,ID为“3”的joint TCI state和ID为“4”的joint TCI state包括QCL Type A。则其中,ID为“3”的joint TCI state为第一指示信息所指示的所有joint TCI state中包含QCL Type A的TCI state中第一个joint TCI state,由此,终端设备可以将ID为“3”的joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
此外,需要说明的是,在本公开的一个实施例之中,可以使用图7实施例的方法来确定用于SRS传输的TCI state、用于CG Type 1的PUSCH传输的TCI state、或用于PUCCH传输的TCI state。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图8为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图8所示,该信息确定方法可以包括以下步骤:
步骤801、基于默认规则和/或网络设备发送的第二信令将第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state和第二个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
其中,在本公开的一个实施例之中,该第二信令可以为包括以下至少一种:
RRC;
MAC CE;
DCI。
其中,关于第一个joint TCI state的相关介绍可以参考上述实施例描述。
以及,在本公开的一个实施例之中,上述的第二个joint TCI state为第一指示信息所指示的所有joint TCI state中的第二个joint TCI state。或者,在本公开的另一个实施例之中,上述的第二个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的第二个joint TCI state。其中,该目标信息可以为QCL Type A、QCL Type B、路径损耗参考信号和上行功率控制信息中的至少一项。其中,第二个joint TCI state的相关原理与前述的第一个joint TCI state的相关原理雷同,本公开实施例在此不做赘述。
此外,需要说明的是,在本公开的一个实施例之中,可以使用图8实施例的方法来确定用于DCI format 0_0调度的PUSCH传输的TCI state、用于CG Type 1的PUSCH传输的TCI state、或用于PUCCH传输的TCI state。
以及,在本公开的一个实施例之中,当要确定用于特定PUCCH或特定PUSCH传输的TCI state时,也可以采用图8实施例的方法来确定。
其中,该特定PUCCH或特定PUSCH可以为:被配置为了时分复用重复(Time-divisionmultiplexing repetition,TDM repetition)、单频网(single frequency network,SFN)、空分复用重复(Space Division Multiplexing repetition,SDM repetition)、频分复用重复(Frequency Division Multiplexing repetition,FDM repetition)等传输方法的PUCCH或PUSCH;或者
该特定PUCCH或特定PUSCH可以为:被配置了多个SRS resource indicator(资源指示)域、或多个SRS resource set(资源集)指示域或多个路径损耗参考信号指示域或多个功率参数指示域或多个spatial filter指示域的PUCCH或PUSCH。
其中,上述的TDM repetition可以理解为:重复传输的两个资源可以对应同样的频域资源,但是对应不同时域资源,且对应不同的TCI state;上述的SFN可以理解为:重复传输的两个资源可以对应同样的时域和频域资源,相同的DMRS端口,但对应不同的TCI state;上述的SDM repetition可以理解为:重复传输的两个资源可以对应同样的时域和频域资源,但对应不同的DMRS端口组以及对应不同的TCI  state;上述的FDM repetition可以理解为:重复传输的两个资源可以对应同样的时域资源,但是对应不同的频域资源以及对应不同的TCI state。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图9为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图9所示,该信息确定方法可以包括以下步骤:
步骤901、基于默认规则和/或网络设备发送的第三信令将第一指示信息所指示的至少一个joint TCI state中的前两个joint TCI state中的其中一个或全部TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
其中,在本公开的一个实施例之中,该第三信令可以为包括以下至少一种:
RRC;
MAC CE;
DCI。
其中,在本公开的一个实施例之中,上述的前两个joint TCI state为第一指示信息所指示的所有joint TCI state中的前两个joint TCI state。或者,在本公开的另一个实施例之中,上述的前两个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的前两个joint TCI state。其中,该目标信息可以为QCL Type A、QCL Type B、路径损耗参考信号和上行功率控制信息中的至少一项。其中,前两个joint TCI state的相关原理与前述的第一个joint TCI state的相关原理雷同,本公开实施例在此不做赘述。
进一步地,在本公开的一个实施例之中,可以将第一指示信息所指示的至少一个joint TCI state和/或至少一个joint TCI state中的前两个joint TCI state中的第一个joint TCI state、或第二个joint TCI state、或第一个joint TCI state和第二个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
此外,需要说明的是,在本公开的一个实施例之中,可以使用图9实施例的方法来确定用于DCI format 0_1调度的PUSCH传输的TCI state、用于DCI format 0_2调度的PUSCH传输的TCI state、用于CG Type 2的PUSCH传输的TCI state、或用于PUCCH传输的TCI state。
以及,在本公开的一个实施例之中,当要确定用于特定PUCCH或特定PUSCH传输的TCI state时,也可以采用图9实施例的方法来确定。
其中,该特定PUCCH或特定PUSCH可以为:被配置为了时分复用重复(Time-divisionmultiplexing repetition,TDM repetition)、单频网(single frequency network,SFN)、空分复用重复(Space Division Multiplexing repetition,SDM repetition)、频分复用重复(Frequency Division Multiplexing repetition,FDM repetition)等传输方法的PUCCH或PUSCH;或者
其中,上述的TDM repetition可以理解为:重复传输的两个资源可以对应同样的频域资源,但是对应不同时域资源,且对应不同的TCI state;上述的SFN可以理解为:重复传输的两个资源可以对应同样的时域和频域资源,相同的DMRS端口,但对应不同的TCI state;上述的SDM repetition可以理解为:重复传输的两个资源可以对应同样的时域和频域资源,但对应不同的DMRS端口组以及对应不同的TCI state;上述的FDM repetition可以理解为:重复传输的两个资源可以对应同样的时域资源,但是对应不同的频域资源以及对应不同的TCI state。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI  state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图10为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图10所示,该信息确定方法可以包括以下步骤:
步骤1001、基于默认规则和/或网络设备发送的第四信令将所述第一指示信息所指示的至少一个joint TCI state中的其中一个或多个TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
其中,在本公开的一个实施例之中,该第四信令可以为包括以下至少一种:
RRC;
MAC CE;
DCI。
以及,在本公开的一个实施例之中,该多个TCI state可以是2个TCI state,或3个TCI state或4个TCI state。
需要说明的是,本实施例的方法与前述图9对应实施例的方法区别在于:本实施例中不但可以从第一指示信息所指示的至少一个joint TCI state的第1个和2个TCI state中选择1个或2个TCI state用于上行信道传输和/或上行信号传输,也是可以从第一指示信息所指示的至少一个joint TCI state的第3个和4个TCI state中任意选1个或2个TCI state用于上行信道传输和/或上行信号传输;而图9对应实施例的方法只能从第一指示信息所指示的至少一个joint TCI state的前2个TCI state里选1个或2个TCI state用于上行信道传输和/或上行信号传输。
此外,需要说明的是,在本公开的一个实施例之中,可以使用图10实施例的方法来确定用于DCI format 0_1调度的PUSCH传输的TCI state、用于DCI format 0_2调度的PUSCH传输的TCI state、用于CG Type 2的PUSCH传输的TCI state、或用于PUCCH传输的TCI state。
以及,在本公开的一个实施例之中,当要确定用于特定PUCCH或特定PUSCH传输的TCI state时,也可以采用图10实施例的方法来确定。
其中,该特定PUCCH或特定PUSCH可以为:被配置为了时分复用重复(Time-divisionmultiplexing repetition,TDM repetition)、单频网(single frequency network,SFN)、空分复用重复(Space Division Multiplexing repetition,SDM repetition)、频分复用重复(Frequency Division Multiplexing repetition,FDM repetition)等传输方法的PUCCH或PUSCH;或者
其中,上述的TDM repetition可以理解为:重复传输的两个资源可以对应同样的频域资源,但是对应不同时域资源,且对应不同的TCI state;上述的SFN可以理解为:重复传输的两个资源可以对应同样的时域和频域资源,相同的DMRS端口,但对应不同的TCI state;上述的SDM repetition可以理解为:重复传输的两个资源可以对应同样的时域和频域资源,但对应不同的DMRS端口组以及对应不同的TCI state;上述的FDM repetition可以理解为:重复传输的两个资源可以对应同样的时域资源,但是对应不同的频域资源以及对应不同的TCI state。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图11为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图11所示,该信息确定方法可以包括以下步骤:
步骤1101、基于调度上行信道和/或上行信号的DCI所对应的控制资源集(CORESET)的TCI state确定用于上行信道传输和/或上行信号传输的TCI state。
其中,在本公开的一个实施例之中,基于调度上行信道和/或上行信号的DCI所对应的CORESET的TCI state确定用于上行信道传输和/或上行信号传输的TCI state的方法可以包括:
若调度上行信道和/或上行信号的DCI所对应的CORESET仅对应一个TCI state,则直接将该一个TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;若调度上行信道和/或上行信号的DCI所对应的CORESET对应了多个TCI state,则将该多个TCI state中的其中一个TCI state或其中多个TCI state或全部TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
此外,在本公开的一个实施例之中,图11实施例的方法可以适用于针对利用DCI调度的上行信道和/或上行信号确定其传输所用的TCI state。但是,需要说明的是,针对DCI format 0_0调度的PUSCH而言,由于DCI format 0_0为fallback(回退)DCI,其所包含的指示域较少,因此,调度PUSCH的DCI format 0_0没有足够的指示域来指示TCI state,则调度PUSCH的DCI format 0_0无法指示TCI state,由此,当针对DCI format 0_0调度的PUSCH指示其传输所用的TCI state时,通常需要使用其它DCI指示或MAC CE或RRC指示,或默认规则或基于DCI format 0_0对应的CORESET的TCI state确定。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图12为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由终端设备执行,如图12所示,该信息确定方法可以包括以下步骤:
步骤1201、分别确定用于上行信道传输的TCI state,以及用于上行信号传输的TCI state。
具体的,在本公开的一个实施例之中,可以单独确定用于上行信道传输的TCI state,以及,单独确定用于上行信号传输的TCI state。
例如,可以基于网络设备发送的第一信令将第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state确定为用于上行信道传输的TCI state,以及,基于网络设备发送的第三信令将第一指示信息所指示的至少一个joint TCI state中的前两个joint TCI state中的第二个joint TCI state确定为用于上行信号传输的TCI state。
综上所述,本公开提供的信息确定方法之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
需要说明的是,本公开中的第一MAC CE,第二MAC CE,第三MAC CE,第四MAC CE,作为第一信令的MAC CE,作为第二信令的MAC CE,作为第三信令的MAC CE和作为第四信令的MAC CE中,可以任意两个或多个MAC CE为不同的MAC CE,或为相同的MAC CE。同样,本公开中的第一DCI,第二DCI,第三DCI,第四DCI,第五DCI,作为第一信令的DCI,作为第二信令的DCI,作为第三信令的DCI和作为第四信令的DCI中,可以任意两个或多个DCI为不同的DCI,或为相同的DCI。以及,本公开中的承载配置信息的RRC,作为第一信令的RRC,作为第二信令的RRC,作为第三信令的RRC和作为第四信令的RRC中,可以任意两个或多个RRC为不同的RRC,或为相同的RRC。
图13a为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由网络设备执行,如图13a所示,该信息确定方法可以包括以下步骤:
步骤1301a、发送第一指示信息,该第一指示信息用于指示至少一个joint TCI state。
其中,关于步骤1301a的详细介绍可以参考上述实施例描述。
综上所述,本公开提供的信息确定方法之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH 的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图13b为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由网络设备执行,如图13b所示,该信息确定方法可以包括以下步骤:
步骤1301b、发送第二指示信息,该第二指示信息用于指示PDSCH的传输方法。
其中,关于步骤1301b的详细介绍可以参考上述实施例描述。
综上所述,本公开提供的信息确定方法之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图14为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由网络设备执行,如图14所示,该信息确定方法可以包括以下步骤:
步骤1401、发送第一指示信息,该第一指示信息承载在第一MAC CE中,该第一MAC CE用于指示至少一个joint TCI state。
其中,关于步骤1401的详细介绍可以参考上述实施例描述。
综上所述,本公开提供的信息确定方法之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图15为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由网络设备执行,如图15所示,该信息确定方法可以包括以下步骤:
步骤1501、发送第二MAC CE和第二DCI。
其中,关于步骤1501的详细介绍可以参考上述实施例描述。
综上所述,本公开提供的信息确定方法之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图16为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由网络设备执行,如图16所示,该信息确定方法可以包括以下步骤:
步骤1601、向终端设备发送第一信令;所述第一信令用于指示:将第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
其中,关于步骤1601的详细介绍可以参考上述实施例描述。
综上所述,本公开提供的信息确定方法之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信 号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图17为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由网络设备执行,如图17所示,该信息确定方法可以包括以下步骤:
步骤1701、向所述终端设备发送第二信令;所述第二信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state和第二个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
其中,关于步骤1701的详细介绍可以参考上述实施例描述。
综上所述,本公开提供的信息确定方法之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图18为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由网络设备执行,如图18所示,该信息确定方法可以包括以下步骤:
步骤1801、向所述终端设备发送第三信令;所述第三信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的前两个joint TCI state中的其中一个或全部TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
其中,关于步骤1801的详细介绍可以参考上述实施例描述。
综上所述,本公开提供的信息确定方法之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图19为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由网络设备执行,如图19所示,该信息确定方法可以包括以下步骤:
步骤1901、向所述终端设备发送第四信令;所述第四信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的其中一个或多个TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
其中,关于步骤1901的详细介绍可以参考上述实施例描述。
综上所述,本公开提供的信息确定方法之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图20为本公开实施例所提供的一种信息确定方法的流程示意图,该方法由网络设备执行,如图20 所示,该信息确定方法可以包括以下步骤:
步骤2001、分别向终端设备指示用于上行信道传输的TCI state,以及用于上行信号传输的TCI state。
其中,关于步骤2001的详细介绍可以参考上述实施例描述。
综上所述,本公开提供的信息确定方法之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
图21为本公开实施例所提供的一种通信装置的结构示意图,如图21所示,装置可以包括:
处理模块,用于确定用于上行信道传输和/或上行信号传输的TCI state。
综上所述,在本公开实施例提供的通信装置之中,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
可选的,在本公开的一个实施例之中,所述装置还用于:
接收第一指示信息;所述第一指示信息用于指示至少一个联合传输配置指示状态joint TCI state。
可选的,在本公开的一个实施例之中,所述第一指示信息承载在第一媒体接入控制层控制单元MAC CE中;所述第一MAC CE用于指示至少一个joint TCI state。
可选的,在本公开的一个实施例之中,所述第一MAC CE所指示的至少一个joint TCI state对应于同一码点codepoint,所述codepoint对应的信息域包含于第一下行控制信息DCI中。
可选的,在本公开的一个实施例之中,所述第一指示信息承载在第二MAC CE中;其中,所述第二MAC CE用于指示多个codepoint分别对应的至少一个joint TCI state;
所述装置还用于:
接收第二DCI,所述第二DCI用于指示所述多个codepoint中的一个codepoint。
可选的,在本公开的一个实施例之中,所述处理模块还用于以下至少一项:
基于默认规则和/或网络设备发送的第一信令将所述第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
基于默认规则和/或网络设备发送的第二信令将所述第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state和第二个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
基于默认规则和/或网络设备发送的第三信令将所述第一指示信息所指示的至少一个joint TCI state中的前两个joint TCI state中的其中一个或全部TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
基于默认规则和/或网络设备发送的第四信令将所述第一指示信息所指示的至少一个joint TCI state中的其中一个或多个TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
可选的,在本公开的一个实施例之中,所述joint TCI state包含准共址类型QCL Type A和/或QCL Type B。
可选的,在本公开的一个实施例之中,所述joint TCI state包含准共址类型,所述准共址类型包括以下至少一项参数:
平均时延;
时延扩展;
多普勒偏移;
多普勒扩展。
可选的,在本公开的一个实施例之中,第一个joint TCI state为第一指示信息所指示的所有joint TCI state中的第一个joint TCI state;或者
第一个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的第一个joint TCI state。
可选的,在本公开的一个实施例之中,第二个joint TCI state为第一指示信息所指示的所有joint TCI state中的第二个joint TCI state;或者
第二个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的第二个joint TCI state。
可选的,在本公开的一个实施例之中,前两个joint TCI state为第一指示信息所指示的所有joint TCI state中的前两个joint TCI state;或者
前两个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的前两个joint TCI state。
可选的,在本公开的一个实施例之中,所述目标信息包含QCL Type A、QCL Type B、路径损耗参考信号和上行功率控制信息中的至少一项。
可选的,在本公开的一个实施例之中,第一信令、第二信令、第三信令或第四信令包括以下至少一种:
无线资源控制RRC;
MAC CE;
DCI。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
基于调度所述上行信道和/或上行信号的DCI所对应的控制资源集CORESET的TCI state确定用于上行信道传输和/或上行信号传输的TCI state。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
分别确定用于上行信道传输的TCI state,以及用于上行信号传输的TCI state。
可选的,在本公开的一个实施例之中,所述上行信道包括物理上行共享信道PUSCH和/或物理上行控制信道PUCCH;
所述上行信号包括探测参考信号SRS和/或解调参考信号DMRS。
可选的,在本公开的一个实施例之中,所述PUSCH包括以下至少一项:
配置授权类型1CG Type 1的PUSCH;
CG Type 2的PUSCH;
DCI格式format 0_0调度的PUSCH;
DCI format 0_1调度的PUSCH;
DCI format 0_2调度的PUSCH。
可选的,在本公开的一个实施例之中,所述TCI state包括路径损耗参考信号和/或上行功率控制信息。
图22为本公开实施例所提供的一种通信装置的结构示意图,如图22所示,装置可以包括:
收发模块,用于发送第一指示信息,所述第一指示信息用于指示至少一个joint TCI state。
综上所述,在本公开实施例提供的通信装置之中,网络设备会向终端设备发送第一指示信息,其中,该第一指示信息用于指示至少一个joint TCI state,以及,终端设备会确定用于上行信道传输和/或上行信号传输的TCI state,其中,本公开的方法中,该信息确定方法可以是应用于最多可支持4个TRP/RRH的CJT的MIMO系统中。由此可知,本公开的方法主要用于3个TRP/RRH的CJT或4个TRP/RRH的CJT的场景,当然,也适用于2个TRP/RRH的CJT。也即是,本公开针对于网络设备指示了3个或4个TCI state的这一情形,提供了一种终端设备确定具体使用哪个TCI state用于上行信道传输和/或上行 信号传输的方法,从而提高了基于Multi-TRP相干联合传输的传输性能。
可选的,在本公开的一个实施例之中,所述第一指示信息承载在第一MAC CE中;所述第一MAC CE用于指示至少一个joint TCI state。
可选的,在本公开的一个实施例之中,所述第一MAC CE所指示的至少一个joint TCI state对应于同一codepoint,所述codepoint对应的信息域包含于第一DCI中。
可选的,在本公开的一个实施例之中,所述第一指示信息承载在第二MAC CE中;其中,所述第二MAC CE用于指示多个codepoint分别对应的至少一个joint TCI state;
所述装置还用于:
发送第二DCI,所述第二DCI用于指示所述多个codepoint中的一个codepoint。
可选的,在本公开的一个实施例之中,所述装置还用于以下至少一种:
向所述终端设备发送第一信令;所述第一信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
向所述终端设备发送第二信令;所述第二信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state和第二个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
向所述终端设备发送第三信令;所述第三信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的前两个joint TCI state中的其中一个或全部TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
向所述终端设备发送第四信令;所述第四信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的其中一个或多个TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
可选的,在本公开的一个实施例之中,所述joint TCI state包含QCL Type A和/或QCL Type B。
可选的,在本公开的一个实施例之中,所述joint TCI state包含准共址类型,所述准共址类型包括以下至少一项参数:
平均时延;
时延扩展;
多普勒偏移;
多普勒扩展。
可选的,在本公开的一个实施例之中,第一个joint TCI state为第一指示信息所指示的所有joint TCI state中的第一个joint TCI state;或者
第一个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的第一个joint TCI state。
可选的,在本公开的一个实施例之中,第二个joint TCI state为第一指示信息所指示的所有joint TCI state中的第二个joint TCI state;或者
第二个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的第二个joint TCI state。
可选的,在本公开的一个实施例之中,前两个joint TCI state为第一指示信息所指示的所有joint TCI state中的前两个joint TCI state;或者
前两个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的前两个joint TCI state。
可选的,在本公开的一个实施例之中,所述目标信息包含QCL Type A、QCL Type B、路径损耗参考信号和上行功率控制信息中的至少一项。
可选的,在本公开的一个实施例之中,第一信令、第二信令、第三信令或第四信令包括以下至少一种:
RRC;
MAC CE;
DCI。
可选的,在本公开的一个实施例之中,所述网络设备用于分别向终端设备指示用于上行信道传输的TCI state,以及用于上行信号传输的TCI state。
可选的,在本公开的一个实施例之中,所述上行信道包括PUSCH和/或PUCCH;
所述上行信号包括SRS和/或DMRS。
可选的,在本公开的一个实施例之中,所述PUSCH包括以下至少一项:
CG Type 1的PUSCH;
CG Type 2的PUSCH;
DCI format 0_0调度的PUSCH;
DCI format 0_1调度的PUSCH;
DCI format 0_2调度的PUSCH。
可选的,在本公开的一个实施例之中,所述TCI state包括路径损耗参考信号和/或上行功率控制信息。
请参见图23,图23是本申请实施例提供的一种通信装置2300的结构示意图。通信装置2300可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置2300可以包括一个或多个处理器2301。处理器2301可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置2300中还可以包括一个或多个存储器2302,其上可以存有计算机程序2304,处理器2301执行所述计算机程序2304,以使得通信装置2300执行上述方法实施例中描述的方法。可选的,所述存储器2302中还可以存储有数据。通信装置2300和存储器2302可以单独设置,也可以集成在一起。
可选的,通信装置2300还可以包括收发器2305、天线2306。收发器2305可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器2305可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置2300中还可以包括一个或多个接口电路2307。接口电路2307用于接收代码指令并传输至处理器2301。处理器2301运行所述代码指令以使通信装置2300执行上述方法实施例中描述的方法。
在一种实现方式中,处理器2301中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器2301可以存有计算机程序2303,计算机程序2303在处理器2301上运行,可使得通信装置2300执行上述方法实施例中描述的方法。计算机程序2303可能固化在处理器2301中,该种情况下,处理器2301可能由硬件实现。
在一种实现方式中,通信装置2300可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、 硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图23的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图24所示的芯片的结构示意图。图24所示的芯片包括处理器2401和接口2402。其中,处理器2401的数量可以是一个或多个,接口2402的数量可以是多个。
可选的,芯片还包括存储器2403,存储器2403用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以 采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种信息确定方法,其特征在于,被终端设备执行,所述方法包括:
    确定用于上行信道传输和/或上行信号传输的传输配置指示状态TCI state。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息;所述第一指示信息用于指示至少一个联合传输配置指示状态joint TCI state。
  3. 如权利要求2所述的方法,其特征在于,所述第一指示信息承载在第一媒体接入控制层控制单元MAC CE中;所述第一MAC CE用于指示至少一个joint TCI state。
  4. 如权利要求3所述的方法,其特征在于,所述第一MAC CE所指示的至少一个joint TCI state对应于同一码点codepoint,所述codepoint对应的信息域包含于第一下行控制信息DCI中。
  5. 如权利要求2所述的方法,其特征在于,所述第一指示信息承载在第二MAC CE中;其中,所述第二MAC CE用于指示多个codepoint分别对应的至少一个joint TCI state;
    所述方法还包括:
    接收第二DCI,所述第二DCI用于指示所述多个codepoint中的一个codepoint。
  6. 如权利要求2所述的方法,其特征在于,所述确定用于上行信道传输和/或上行信号传输的TCI state,包括以下至少一项:
    基于默认规则和/或网络设备发送的第一信令将所述第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
    基于默认规则和/或网络设备发送的第二信令将所述第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state和第二个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
    基于默认规则和/或网络设备发送的第三信令将所述第一指示信息所指示的至少一个joint TCI state中的前两个joint TCI state中的其中一个或全部TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
    基于默认规则和/或网络设备发送的第四信令将所述第一指示信息所指示的至少一个joint TCI state中的其中一个或多个TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
  7. 如权利要求6所述的方法,其特征在于,所述joint TCI state包含准共址类型QCL Type A和/或QCL Type B。
  8. 如权利要求6或7所述的方法,其特征在于,所述joint TCI state包含准共址类型,所述准共址类型包括以下至少一项参数:
    平均时延;
    时延扩展;
    多普勒偏移;
    多普勒扩展。
  9. 如权利要求6所述的方法,其特征在于,第一个joint TCI state为第一指示信息所指示的所有jointTCI state中的第一个joint TCI state;或者
    第一个joint TCI state为第一指示信息所指示的所有jointTCI state中的包含目标信息的jointTCI state中的第一个joint TCI state。
  10. 如权利要求6所述的方法,其特征在于,第二个joint TCI state为第一指示信息所指示的所有jointTCI state中的第二个joint TCI state;或者
    第二个joint TCI state为第一指示信息所指示的所有jointTCI state中的包含目标信息的jointTCI state中的第二个joint TCI state。
  11. 如权利要求6所述的方法,其特征在于,前两个joint TCI state为第一指示信息所指示的所有jointTCI state中的前两个joint TCI state;或者
    前两个joint TCI state为第一指示信息所指示的所有jointTCI state中的包含目标信息的jointTCI state中的前两个joint TCI state。
  12. 如权利要求9或10或11所述的方法,其特征在于,
    所述目标信息包含QCL Type A、QCL Type B、路径损耗参考信号和上行功率控制信息中的至少一项。
  13. 如权利要求6所述的方法,其特征在于,第一信令、第二信令、第三信令或第四信令包括以下至少一种:
    无线资源控制RRC;
    MAC CE;
    DCI。
  14. 如权利要求1所述的方法,其特征在于,所述确定用于上行信道传输和/或上行信号传输的TCI state,包括:
    基于调度所述上行信道和/或上行信号的DCI所对应的控制资源集CORESET的TCI state确定用于上行信道传输和/或上行信号传输的TCI state。
  15. 如权利要求1所述的方法,其特征在于,所述确定用于上行信道传输和/或上行信号传输的TCI state,包括:
    分别确定用于上行信道传输的TCI state,以及用于上行信号传输的TCI state。
  16. 如权利要求1-15任一所述的方法,其特征在于,所述上行信道包括物理上行共享信道PUSCH和/或物理上行控制信道PUCCH;
    所述上行信号包括探测参考信号SRS和/或解调参考信号DMRS。
  17. 如权利要求16所述的方法,其特征在于,所述PUSCH包括以下至少一项:
    配置授权类型1CG Type 1的PUSCH;
    CG Type 2的PUSCH;
    DCI格式format 0_0调度的PUSCH;
    DCI format 0_1调度的PUSCH;
    DCI format 0_2调度的PUSCH。
  18. 如权利要求1所述的方法,其特征在于,所述TCI state包括路径损耗参考信号和/或上行功率控制信息。
  19. 一种信息确定方法,其特征在于,被网络设备执行,所述方法包括:
    发送第一指示信息,所述第一指示信息用于指示至少一个joint TCI state。
  20. 如权利要求19所述的方法,其特征在于,所述第一指示信息承载在第一MAC CE中;所述第一MAC CE用于指示至少一个joint TCI state。
  21. 如权利要求20所述的方法,其特征在于,所述第一MAC CE所指示的至少一个joint TCI state对应于同一codepoint,所述codepoint对应的信息域包含于第一DCI中。
  22. 如权利要求19所述的方法,其特征在于,所述第一指示信息承载在第二MAC CE中;其中,所述第二MAC CE用于指示多个codepoint分别对应的至少一个joint TCI state;
    所述方法还包括:
    发送第二DCI,所述第二DCI用于指示所述多个codepoint中的一个codepoint。
  23. 如权利要求19所述的方法,其特征在于,所述方法还包括以下至少一项:
    向所述终端设备发送第一信令;所述第一信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
    向所述终端设备发送第二信令;所述第二信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的第一个joint TCI state和第二个joint TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
    向所述终端设备发送第三信令;所述第三信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的前两个joint TCI state中的其中一个或全部TCI state确定为用于上行信道传输和/或上行信号传输的TCI state;
    向所述终端设备发送第四信令;所述第四信令用于指示:将所述第一指示信息所指示的至少一个joint TCI state中的其中一个或多个TCI state确定为用于上行信道传输和/或上行信号传输的TCI state。
  24. 如权利要求23所述的方法,其特征在于,所述joint TCI state包含QCL Type A和/或QCL Type B。
  25. 如权利要求23或24所述的方法,其特征在于,所述joint TCI state包含准共址类型,所述准共址类型包括以下至少一项参数:
    平均时延;
    时延扩展;
    多普勒偏移;
    多普勒扩展。
  26. 如权利要求23所述的方法,其特征在于,第一个joint TCI state为第一指示信息所指示的所有joint TCI state中的第一个joint TCI state;或者
    第一个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的第一个joint TCI state。
  27. 如权利要求23所述的方法,其特征在于,第二个joint TCI state为第一指示信息所指示的所有joint TCI state中的第二个joint TCI state;或者
    第二个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的第二个joint TCI state。
  28. 如权利要求23所述的方法,其特征在于,前两个joint TCI state为第一指示信息所指示的所有joint TCI state中的前两个joint TCI state;或者
    前两个joint TCI state为第一指示信息所指示的所有joint TCI state中的包含目标信息的joint TCI state中的前两个joint TCI state。
  29. 如权利要求26或27或28所述的方法,其特征在于,
    所述目标信息包含QCL Type A、QCL Type B、路径损耗参考信号和上行功率控制信息中的至少一项。
  30. 如权利要求23所述的方法,其特征在于,第一信令、第二信令、第三信令或第四信令包括以下至少一种:
    RRC;
    MAC CE;
    DCI。
  31. 如权利要求19所述的方法,其特征在于,所述网络设备用于分别向终端设备指示用于上行信道传输的TCI state,以及用于上行信号传输的TCI state。
  32. 如权利要求19-31任一所述的方法,其特征在于,所述上行信道包括PUSCH和/或PUCCH;
    所述上行信号包括SRS和/或DMRS。
  33. 如权利要求32所述的方法,其特征在于,所述PUSCH包括以下至少一项:
    CG Type 1的PUSCH;
    CG Type 2的PUSCH;
    DCI format 0_0调度的PUSCH;
    DCI format 0_1调度的PUSCH;
    DCI format 0_2调度的PUSCH。
  34. 如权利要求19所述的方法,其特征在于,所述TCI state包括路径损耗参考信号和/或上行功率控制信息。
  35. 一种通信装置,被配置在终端设备中,包括:
    处理模块,用于确定用于上行信道传输和/或上行信号传输的TCI state。
  36. 一种通信装置,被配置在网络设备中,包括:
    收发模块,用于发送第一指示信息,所述第一指示信息用于指示至少一个joint TCI state。
  37. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至18中任一项所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求19至34中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至18中任一项所述的方法,或用于运行所述代码指令以执行如权利要求19至34中任一项所述的方法。
  39. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至18中任一项所述的方法被实现,或当所述指令被执行时,使如权利要求19至34中任一项所述的方法被实现。
PCT/CN2022/125497 2022-10-14 2022-10-14 一种信息确定方法/装置/设备及存储介质 WO2024077619A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/125497 WO2024077619A1 (zh) 2022-10-14 2022-10-14 一种信息确定方法/装置/设备及存储介质
CN202280003802.0A CN115997455A (zh) 2022-10-14 2022-10-14 一种信息确定方法/装置/设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125497 WO2024077619A1 (zh) 2022-10-14 2022-10-14 一种信息确定方法/装置/设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024077619A1 true WO2024077619A1 (zh) 2024-04-18

Family

ID=85990614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125497 WO2024077619A1 (zh) 2022-10-14 2022-10-14 一种信息确定方法/装置/设备及存储介质

Country Status (2)

Country Link
CN (1) CN115997455A (zh)
WO (1) WO2024077619A1 (zh)

Also Published As

Publication number Publication date
CN115997455A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023070586A1 (zh) 物理下行共享信道pdsch配置方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023050234A1 (zh) 一种探测参考信号srs资源的调整方法及其装置
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024077620A1 (zh) 物理下行共享信道pdsch传输方法及装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2024087221A1 (zh) 传输配置指示tci状态指示方法及装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2023216166A1 (zh) 相干带宽的测量方法和装置
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024065333A1 (zh) 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置
WO2023184449A1 (zh) 一种发送tri的方法及其装置、接收tri的方法及其装置
WO2023050235A1 (zh) 一种探测参考信号srs的发送方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2024000202A1 (zh) 一种信道状态信息csi反馈的确定方法及其装置
WO2024065426A1 (zh) 一种信道质量指示cqi上报方法、装置、设备及存储介质
WO2024016184A1 (zh) 一种上行解调参考信号端口确定方法及其装置
WO2023283840A1 (zh) 用于确定波束测量上报方式的方法及装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置