WO2024000202A1 - 一种信道状态信息csi反馈的确定方法及其装置 - Google Patents

一种信道状态信息csi反馈的确定方法及其装置 Download PDF

Info

Publication number
WO2024000202A1
WO2024000202A1 PCT/CN2022/102072 CN2022102072W WO2024000202A1 WO 2024000202 A1 WO2024000202 A1 WO 2024000202A1 CN 2022102072 W CN2022102072 W CN 2022102072W WO 2024000202 A1 WO2024000202 A1 WO 2024000202A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
indication information
terminal device
group
Prior art date
Application number
PCT/CN2022/102072
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280002161.7A priority Critical patent/CN115336221B/zh
Priority to PCT/CN2022/102072 priority patent/WO2024000202A1/zh
Publication of WO2024000202A1 publication Critical patent/WO2024000202A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method and device for determining channel state information CSI feedback.
  • Embodiments of the present disclosure provide a method and device for determining channel state information CSI feedback.
  • embodiments of the present disclosure provide a method for determining channel state information CSI feedback.
  • the method is executed by a network device.
  • the method includes: sending first indication information to a terminal device, wherein the first indication information is used to send
  • the terminal device indicates the resource unit based on which the base vector in the CSI feedback is selected, and the base vector includes at least one of a beam base vector and a frequency domain base vector.
  • the network device indicates the resource unit when selecting the basis vector in the CSI feedback to the terminal device. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs. .
  • embodiments of the present disclosure provide another method for determining channel state information CSI feedback.
  • the method is executed by a terminal device.
  • the method includes: receiving first indication information sent by a network device, wherein the first indication information is used for Indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected, and the base vector includes at least one of a beam base vector and a frequency domain base vector.
  • the terminal device receives the resource unit sent by the network device to indicate the base vector selection in the CSI feedback of the terminal device. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • embodiments of the present disclosure provide another method for determining channel state information CSI feedback.
  • the method is executed by a terminal device.
  • the method includes: sending first indication information to a network device, wherein the first indication information is used to send
  • the network device indicates the resource unit based on which the base vector in the CSI feedback of the terminal device is selected, and the base vector includes at least one of a beam base vector and a frequency domain base vector.
  • the terminal device sends the resource unit used to indicate the base vector selection in the CSI feedback of the terminal device to the network device. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • embodiments of the present disclosure provide another method for determining channel state information CSI feedback.
  • the method is executed by a network device.
  • the method includes: receiving first indication information sent by a terminal device, wherein the first indication information is used for Indicate to the network device the resource unit based on which the base vector in the CSI feedback of the terminal device is selected, and the base vector includes at least one of a beam base vector and a frequency domain base vector.
  • the network device receives the resource unit sent by the terminal device to indicate the base vector selection in the CSI feedback of the terminal device. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • an embodiment of the present disclosure provides a communication device, including:
  • a transceiver module configured to send first indication information to the terminal device, where the first indication information is used for the terminal device to determine the resource unit based on which the base vector in the CSI feedback is selected, and the base vector includes a beam base vector. and at least one of frequency domain basis vectors.
  • an embodiment of the present disclosure provides a communication device, including:
  • a transceiver module configured to receive first indication information sent by a network device, where the first indication information is used for the resource unit based on which the terminal device determines base vector selection in CSI feedback, where the base vector includes a beam base At least one of a vector and a frequency domain basis vector.
  • an embodiment of the present disclosure provides a communication device, including:
  • a transceiver module configured to send first indication information to the network device, where the first indication information is used to indicate to the network device the resource unit based on which the base vector in the CSI feedback of the terminal device is selected, and the base vector includes At least one of beam basis vectors and frequency domain basis vectors.
  • an embodiment of the present disclosure provides a communication device, including:
  • a transceiver module configured to receive first indication information sent by a terminal device, wherein the first indication information is used to indicate to the network device the resource unit based on which the base vector in the CSI feedback of the terminal device is selected, and the
  • the basis vectors include at least one of beam basis vectors and frequency domain basis vectors.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the third aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the fourth aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Execute the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Perform the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Perform the method described in the third aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Execute the method described in the fourth aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the third aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the fourth aspect above.
  • an embodiment of the present disclosure provides a determination system, which includes the communication device described in the fifth aspect and the communication device described in the sixth aspect, or the system includes the communication device described in the seventh aspect.
  • the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect, or the system includes the communication device according to the eleventh aspect and the tenth aspect.
  • the communication device according to the second aspect, or the system includes the communication device according to the thirteenth aspect and the communication device according to the fourteenth aspect, or the system includes the communication device according to the fifteenth aspect and the communication device according to the tenth aspect.
  • the communication device described in the sixth aspect, or the system includes the communication device described in the seventeenth aspect and the communication device described in the eighteenth aspect, or the system includes the communication device described in the nineteenth aspect and the second The communication device according to the tenth aspect.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. Methods.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to execute the above-mentioned second aspect. method.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned third aspect. Methods.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to execute the above-mentioned fourth aspect. method.
  • the present disclosure also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present disclosure also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the third aspect.
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the fourth aspect.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect, or the method described in the second aspect, or the third aspect.
  • the method described in the fourth aspect or perform the method described in the fourth aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 3a is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 4a is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 7 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 8 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 9 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 11 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 12 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 13 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure
  • Figure 17 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Figure 18 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • Figure 19 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • TCI Transmission configuration indication
  • SSB synchronization signal block
  • CSIRS channel state information reference signal
  • the co-site address contains one of the following transmission parameters: average delay, delay spread, Doppler frequency shift, Doppler spread, spatial relationship information, and spatial reception parameters.
  • the downlink control information sent by the network equipment to the terminal equipment includes uplink and downlink resource allocation, Hybrid Automatic Repeat Request (HARQ) information, and power control. wait.
  • HARQ Hybrid Automatic Repeat Request
  • Basis vectors contain SD basis and/or FD basis.
  • SD basis also known as beam basis vector or beam
  • L beams are selected among N1*N2 ports.
  • FD basis indicates the frequency domain basis vector selected by the terminal device.
  • N3 frequency domain basis vectors M frequency domain basis vectors are selected.
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to a network device, such as a TRP and a terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiment of the present disclosure. In actual applications, it may include two or Two or more network devices, two or more terminal devices.
  • the communication system shown in Figure 1 includes a network device 11 and a terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network equipment 11 in the embodiment of the present disclosure includes an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in the NR system, and other future mobile communication systems.
  • the embodiments of the present disclosure do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • CU-DU is used.
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal equipment.
  • a method for determining channel state information CSI feedback provided in any embodiment can be executed alone, or in combination with possible implementation methods in other embodiments, or in combination with related technologies. Any of the technical solutions are implemented together.
  • the method for determining CSI feedback proposed in this disclosure can make the network device and the terminal device have a consistent understanding of the resource units based on which the basis vectors in the CSI feedback are selected, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 2 is a schematic flowchart of a method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 2, the method may include but is not limited to the following steps:
  • Step 201 Send first indication information to the terminal device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected.
  • the basis vectors may include at least one of beam basis vectors and frequency domain basis vectors.
  • the resource unit includes at least one of the following: one CSI reference signal RS resource, multiple CSI RS resources, one port group of one CSI RS resource, or multiple port groups of one CSI RS resource.
  • SD basis and FD basis can be selected based on different resource units. That is, the network device can respectively indicate the resource unit corresponding to the beam base vector and the resource unit corresponding to the frequency domain base vector.
  • FD basis is selected based on one CSI RS resource
  • SD basis is selected based on multiple CSI RS resources, etc. This disclosure does not limit this.
  • the resource unit based on which the base vector is selected is determined, it can be determined whether the selected base vector is for the TRP or the TRP group based on the corresponding relationship between the resource unit and the TRP.
  • different TRPs correspond to different CSI RS resources. If the resource unit based on when selecting the base vector is a CSI RS resource, that is, the selected base vector is for the TRP corresponding to the CSI RS resource; or, if the base vector is selected, The resource units based on the vector are multiple CSI RS resources, that is, the selected base vector is for multiple TRPs corresponding to the multiple CSI RS resources, that is, it is for the TRP group. Or, different TRPs correspond to different port groups of a CSI RS resource. If the resource unit based on when selecting a base vector is a port group of a CSI RS resource, that is, the selected base vector corresponds to a port group of the CSI RS resource.
  • TRP that is, for the TRP group.
  • the network device first determines the resource unit based on which the terminal device selects the base vector, and then indicates the resource unit to the terminal device through the first indication information. Therefore, the terminal device can perform basis vector selection according to the number and/or type of resource units indicated in the first indication information.
  • each first CSI RS set includes one CSI RS resource.
  • the first indication information may be used to indicate to the terminal device that the resource unit is one CSI RS resource included in each first CSI RS set.
  • the first indication information may also be used to indicate to the terminal device that the resource unit is all CSI RS resources included in at least one first CSI RS set.
  • the first indication information includes CSI RS set #1 and CSI RS set #2, where each of CSI RS set #1 and CSI RS set #2 includes one CSI RS. Then the terminal device can determine that a CSI RS resource in CSI RS set #1 is a resource unit, and a CSI RS resource in CSI RS set #2 is also a resource unit. Then the terminal device uses a CSI RS resource in CSI RS set #1 as a resource unit to perform base vector selection, and uses a CSI RS resource in CSI RS set #2 as a resource unit to perform base vector selection.
  • the terminal device may also determine a CSI RS resource in CSI RS set #1 and a CSI RS resource in CSI RS set #2, with a total of two CSI RS resources as the resource unit. Then the terminal device uses two CSI RS as the resource unit to select the basis vector.
  • the first indication information includes at least one second CSI RS set, and each second CSI RS set contains one or more CSI RS resources, then the first indication information is used to indicate to the terminal device that the resource unit is each One or more CSI RS resources included in the second CSI RS set.
  • the first indication information includes CSI RS set#1 and CSI RS set#2, where CSI RS set#1 includes CSI RS resource #1 and CSI RS resource #2, and CSI RS set#2 Contains a CSI RS resource #3. Then the terminal device can determine that CSI RS resource #1 and CSI RS resource #2 in CSI RS set #1 are one resource unit, and one CSI RS resource #3 in CSI RS set #2 is also one resource unit. Then the terminal device uses CSI RS resource #1 and CSI RS resource #2 as one resource unit to perform base vector selection, and uses CSI RS resource #3 as one resource unit to perform base vector selection.
  • the first indication information may also include a third CSI RS set, and the third CSI RS set includes multiple CSI RS resources.
  • the first indication information may be used to indicate to the terminal device that the resource unit is one CSIRS resource among multiple CSI RS resources in the third CSI RS set.
  • the first indication information may also be used to indicate to the terminal device that the resource unit is multiple CSI RS resources.
  • the first indication information may also include a CSI RS resource, where the CSI RS resource includes N first port groups, where N is a positive integer.
  • the first indication information may be used to indicate to the terminal device that the resource unit is each first port group of CSI RS resources.
  • the first indication information may also be used to indicate to the terminal device that the resource unit is the entire first port group of CSI RS resources.
  • the network device can send the port number and identification corresponding to each port group to the terminal device, or the terminal device can also determine according to the agreement, which is not limited in this disclosure.
  • mapping relationship between the number of ports and the identifier corresponding to each port group can be any of the following.
  • Each port group corresponds to the same number of ports and the ports are consecutive. For example, one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, the mapping relationship 1 is specifically: ports #0 to #7 are the first port group, ports #8 to #15 are the second port group, and ports #16 to #23 are the third Port group, ports #24 to #31 are the fourth port group. Or, if it is divided into 2 port groups, the mapping relationship 1 is specifically: ports #0 to #15 are the first port group, and ports #16 to #31 are the second port group.
  • the port ID corresponding to the i-th port is 2N+i-1, the value of i is 1 or 2, and N is an integer from 0 to 15, that is, mapping relationship 2:
  • the port ID is The even-numbered port group is the first port group, and the odd-numbered port ID is the second port group.
  • ports #0, #1, #4, #5, #8, #9, #12, #13, #16, #17, #20, #21, # 24, #25, #28, and #29 are the first port group, and the other ports are the second port group.
  • the port group that is, the mapping relationship 4 is: ports #0, #1, #2, #3, #16, #17, #18, #19 is the first port group, ports #4, #5, #6, #7, #20, #21, #22, #23 are the second port group, ports #8, #9, #10, #11, #24, #25, #26, #27 are the third port Group, ports #12, #13, #14, #15, #28, #29, #30, #31 are the fourth port group. Or, if divided into 2 port groups, you can first group the 32 ports into a group of 8 consecutive ports. The 8 ports in each group include 2 consecutive 4 ports and 2 consecutive 4 ports.
  • ports #0, #1, #2, #3, #8, #9, #10, #11, #16, #17, #18, #19, # 24, #25, #26, and #27 are the first port group, and the other ports are the second port group.
  • Figure 3 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 3, the method may include but is not limited to the following steps:
  • Step 301 Send first indication information to the terminal device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected.
  • the network device if it indicates multiple first CSI RS sets to the terminal device through the first indication information, and the resource unit based on which the terminal device selects the base vector may be multiple first CSI RS sets, then it can be Send second indication information to the terminal device to indicate which first CSI RS sets are a group or to indicate which first CSI RS sets correspond to group identifiers, that is, to allow the terminal device to determine multiple first CSI RS sets as a group.
  • Multiple CSI RSs in the CSI RS set are one resource unit, so the terminal device can perform basis vector selection based on the multiple CSI RS resources in the first CSI RS set as a group.
  • each first CSI RS set may be a resource unit; or all the first CSI RS sets not indicated in the second indication information may be a group, that is, as A resource unit, which is not limited in this disclosure.
  • the first indication information includes CSI RS set#1, CSI RS set#2 and CSI RS set#3, where CSI RS set#1, CSI RS set#2 and CSI RS set#3 respectively include A CSI RS.
  • the second indication information indicates that CSI RS set #2 and CSI RS set #3 are a group or indicates group identifiers corresponding to CSI RS set #2 and CSI RS set #3.
  • the terminal device can determine that a total of two CSI RS resources included in CSI RS set #2 and CSI RS set #3 are one resource unit.
  • a CSI RS resource in CSI RS set#1 is a resource unit.
  • the network device indicates multiple first CSI RS resource sets to the terminal device through the first indication information, and then indicates to the terminal device which resource sets are a group or which resource sets are indicated through the second indication information.
  • the corresponding group identifier allows the terminal device to determine that the CSI RS resources included in the resource set of a group are one resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • FIG. 3a is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure.
  • the method is executed by a network device. As shown in Figure 3a, the method may include but is not limited to the following steps:
  • Step 303 Send first indication information to the terminal device.
  • the first indication information includes at least one second CSI RS set.
  • Each second CSI RS set includes one or more CSI RS resources.
  • the first indication information is used to notify the terminal device.
  • the device indicates that the resource unit is the one or more CSI RS resources included in each second CSI RS set.
  • the first indication information includes CSI RS set#1 and CSI RS set#2, where CSI RS set#1 includes CSI RS resource #1 and CSI RS resource #2, and CSI RS set#2 Contains a CSI RS resource #3. Then the terminal device can determine that CSI RS resource #1 and CSI RS resource #2 in CSI RS set #1 are one resource unit, and one CSI RS resource #3 in CSI RS set #2 is also one resource unit. Then the terminal device uses CSI RS resource #1 and CSI RS resource #2 as one resource unit to perform base vector selection, and uses CSI RS resource #3 as one resource unit to perform base vector selection.
  • the network device indicates to the terminal device at least one second CSI RS resource set containing one or more CSI RS resources through the first indication information, so that the terminal device determines one or more CSI RS resources in each second CSI RS set.
  • CSI RS is a resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 4 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 4, the method may include but is not limited to the following steps:
  • Step 401 Send first indication information to the terminal device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected.
  • step 401 The specific implementation process of the above step 401 can be referred to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • Step 402 In response to the first indication information including a third CSI RS set and the third CSI RS set including multiple CSI RS resources, send third indication information to the terminal device, where the third indication information is used to The terminal device indicates that at least two CSI RS resources in the third CSI RS set are a group or indicates a group identifier corresponding to at least two CSI RSs in the third CSI RS set.
  • the network device indicates a third CSI RS set containing multiple CSI RS resources to the terminal device through the first indication information, and the resource unit based on which the terminal device selects the base vector may be the third CSI RS set one or more CSI RS resources, then the third indication information can be sent to the terminal device to indicate which CSI RS resources are a group or indicate which CSI RS corresponding group identifiers, so that the terminal device can determine The several CSI RS resources are one resource unit.
  • the CSI RS resources in the third CSI RS set not indicated in the third indication information may be each CSI RS resource as a resource unit; or all the CSI RS resources not indicated in the third indication information may be a group, that is, as A resource unit, which is not limited in this disclosure.
  • the first indication information includes CSI RS set #3, where the CSI RS resources included in CSI RS set #3 are: CSI RS #1, CSI RS #2, CSI RS #3 and CSI RS #4 .
  • the third indication information indicates that CSI RS #2 and CSI RS #3 are a group or indicates the group identifier corresponding to CSI RS #2 and CSI RS #3.
  • the terminal device can determine that the CSI RS resources CSI RS #2 and CSI RS #3 are one resource unit. Then the terminal device uses CSI RS #2 and CSI RS #3 as one resource unit to perform basis vector selection.
  • CSI RS resources CSI RS #1 and CSI RS #4 are each a resource unit.
  • the terminal device uses CSI RS #1 as a resource unit to perform basis vector selection. Then the terminal device uses CSI RS #4 as a resource unit. Perform base vector selection; or CSI RS #1 and CSI RS #4 are used together as a resource unit, then the terminal device uses CSI RS #1 and CSI RS #4 as a resource unit to perform base vector selection.
  • the network device first indicates a resource set containing multiple CSI RS resources to the terminal device through the first indication information, and then indicates to the terminal device which CSI RS resources are a group or indicates which CSI RS resources are in a group through the third indication information.
  • CSI RS corresponding group identifiers so that the terminal device can determine several CSI RS resources in the group as one resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 4a is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 4a, the method may include but is not limited to the following steps:
  • Step 403 Send first indication information to the terminal device.
  • the first indication information includes a CSI RS resource.
  • the CSI RS resource includes N first port groups. N is a positive integer.
  • the first indication information is used to indicate resources to the terminal device.
  • the unit is each first port group of the CSI RS resource.
  • the network device first indicates a CSI RS resource containing multiple N port groups to the terminal device through the first indication information, so that the terminal device can determine that each port group is a resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 5 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 5, the method may include but is not limited to the following steps:
  • Step 501 Send first indication information to the terminal device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected.
  • Step 502 In response to the first indication information including a CSI RS resource, and the CSIRS resources including a plurality of first port groups, send fourth indication information to the terminal device, where the fourth indication information is used to indicate at least two first port groups to the terminal device.
  • the port group is a group or indicates group identifiers corresponding to at least two first port groups.
  • the network device indicates a CSI RS resource containing multiple port groups to the terminal device through the first indication information, and the resource unit based on which the terminal device selects the base vector is not all the port groups of the CSI RS resource, Or, not every port group can be independently used as a resource unit, then the fourth indication information can be sent to the terminal device to indicate which port groups are one group or indicate which port groups correspond to group identifiers, so as to The terminal device can determine the several port groups as one resource unit.
  • the port groups of the CSI RS not indicated in the fourth indication information may each be a resource unit; or all the port groups not indicated in the fourth indication information may be a group, that is, as a resource unit. This disclosure There is no limitation on this.
  • Port group #4 of CSI RS resource #1 is used as a resource unit for basis vector selection; or port group #1 and port group #4 are used together as a resource unit, using port group #1 and port group # of CSI RS resource #1 4. Perform basis vector selection for a resource unit.
  • the network device may also send fifth indication information to the terminal device, where the fifth indication information is used to indicate to the terminal device the mapping relationship between each first port group and at least one port identifier.
  • Each port group corresponds to the same number of ports and the ports are consecutive. For example, one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, the mapping relationship 1 is specifically: ports #0 to #7 are the first port group, ports #8 to #15 are the second port group, and ports #16 to #23 are the third Port group, ports #24 to #31 are the fourth port group. Or, if it is divided into 2 port groups, the mapping relationship 1 is specifically: ports #0 to #15 are the first port group, and ports #16 to #31 are the second port group.
  • Each port group corresponds to the same number of ports and every two ports are not consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31.
  • the port ID corresponding to the i-th port is 4N+i-1, the value of i is 1, 2, 3 or 4, and N is an integer from 0 to 7, that is, mapping relationship 2:
  • Port #0, #4, #8, #12, #16, #20, #24, #28 are the first port group, ports #1, #5, #9, #13, #17, #21, # 25, #29 is the second port group, ports #2, #6, #10, #14, #18, #22, #26, #30 are the third port group, ports #3, #7, # 11, #15, #19, #23, #27, and #31 are the fourth port group.
  • the port ID corresponding to the i-th port is 2N+i-1, the value of i is 1 or 2, and N is an integer from 0 to 15, that is, mapping relationship 2:
  • the port ID is The even-numbered port group is the first port group, and the odd-numbered port ID is the second port group.
  • Each port group corresponds to the same number of ports and every two ports are consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, first group the 32 ports into a group of 8 consecutive ports. The 8 ports in each group include 4 consecutive groups of 2 ports. The 4 consecutive groups of 2 ports are divided into different groups.
  • Port group that is, mapping relationship 3: ports #0, #1, #8, #9, #16, #17, #24, #25 are the first port group, ports #2, #3, #10, # 11, #18, #19, #26, #27 are the second port group, ports #4, #5, #12, #13, #20, #21, #28, #29 are the third port group , ports #6, #7, #14, #15, #22, #23, #30, #31 are the fourth port group.
  • the 4 ports in each group include 2 consecutive groups of 2 ports, and 2 consecutive groups of 2 ports.
  • ports #0, #1, #4, #5, #8, #9, #12, #13, #16, #17, #20, #21, # 24, #25, #28, and #29 are the first port group, and the other ports are the second port group.
  • Each port group corresponds to the same number of ports and every four ports are consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, first group the 32 ports into a group of 16 consecutive ports. The 16 ports in each group include 4 consecutive 4 ports, and the 4 consecutive 4 ports are divided into different groups.
  • ports #0, #1, #2, #3, #8, #9, #10, #11, #16, #17, #18, #19, # 24, #25, #26, and #27 are the first port group, and the other ports are the second port group.
  • the network device may not indicate the mapping relationship between each port group and the port identifier, but the terminal device may determine the mapping relationship based on the default mapping relationship.
  • the default mapping relationship includes any of the above mapping relationships 1, 2, 3, and 4.
  • the default mapping relationship is mapping relationship 1, that is, each port group contains the same number of ports and they are consecutive. Then one CSI RS resource corresponds to 32 ports, and the identifiers are #0 to #31. Then if it is divided into 4 port groups, you can determine that port IDs #0 to #7 are one port group, ports #8 to #15 are one port group, ports #16 to #23 are one port group, and ports #24 to #31 are one Port group, etc., this disclosure does not limit this.
  • the network device first indicates to the terminal device a CSI RS resource containing multiple port groups through the first indication information, and then indicates to the terminal device which port groups are one group or which several port groups are indicated through the fourth indication information.
  • Group ID corresponding to each port group so that the terminal device can determine that this group of port groups is a resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 6 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • Step 601 Receive first indication information sent by the network device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected.
  • the basis vector includes at least one of a beam basis vector and a frequency domain basis vector
  • the resource unit includes at least one of the following: a CSI reference signal RS resource, multiple CSI RS resources, a port group of a CSI RS resource, or a Multiple port groups for CSI RS resources.
  • SD basis and FD basis can be selected based on different resource units. That is, the network device can respectively indicate the resource unit corresponding to the beam base vector and the resource unit corresponding to the frequency domain base vector.
  • FD basis is selected based on one CSI RS resource
  • SD basis is selected based on multiple CSI RS resources, etc. This disclosure does not limit this.
  • the resource unit based on which the base vector is selected is determined, it can be determined whether the selected base vector is for the TRP or the TRP group based on the corresponding relationship between the resource unit and the TRP.
  • TRP that is, for the TRP group.
  • the network device first determines the resource unit based on which the terminal device selects the base vector, and then indicates the resource unit to the terminal device through the first indication information. Therefore, the terminal device can perform basis vector selection according to the number and/or type of resource units indicated in the first indication information.
  • the terminal device after receiving the first indication information sent by the network device, the terminal device can determine the resource unit based on which the base vector is selected based on the first indication information. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • FIG. 7 is a schematic flowchart of yet another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure.
  • the method is executed by a terminal device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • Step 702 Determine one CSI RS resource included in each first CSI RS set as a resource unit.
  • the terminal device may also determine that the resource unit is all CSI RS resources included in at least one first CSI RS set indicated by the first indication information.
  • the first indication information includes CSI RS set #1 and CSI RS set #2, where each of CSI RS set #1 and CSI RS set #2 includes one CSI RS. Then the terminal device can determine that a CSI RS resource in CSI RS set #1 is a resource unit, and a CSI RS resource in CSI RS set #2 is also a resource unit. Then the terminal device uses a CSI RS resource in CSI RS set #1 as a resource unit to perform base vector selection, and uses a CSI RS resource in CSI RS set #2 as a resource unit to perform base vector selection.
  • the terminal device may also determine a CSI RS resource in CSI RS set #1 and a CSI RS resource in CSI RS set #2, with a total of two CSI RS resources as the resource unit. Then the terminal device uses two CSI RS as the resource unit to select the basis vector.
  • the terminal device after the terminal device receives at least one first CSI RS set sent by the network device, it can determine one CSI RS included in each first CSI RS set as the resource unit based on when selecting the base vector. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 8 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 8, the method may include but is not limited to the following steps:
  • Step 801 Receive first indication information sent by the network device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected, and the first indication information includes up to a plurality of first CSIRS sets. , each first CSI RS set contains one CSI RS resource.
  • Step 802 Receive second indication information sent by the network device.
  • the second indication information is used to indicate to the terminal device that at least two first CSI RS sets are one group or to indicate group identifiers corresponding to at least two first CSI RS sets. .
  • Step 803 Determine CSI RS resources included in at least two first CSI RS sets as resource units.
  • each first CSI RS set may be a resource unit; or all the first CSI RS sets not indicated in the second indication information may be a group, that is, as A resource unit, which is not limited in this disclosure.
  • the first indication information includes CSI RS set#1, CSI RS set#2 and CSI RS set#3, where CSI RS set#1, CSI RS set#2 and CSI RS set#3 respectively include A CSI RS.
  • the second indication information indicates that CSI RS set #2 and CSI RS set #3 are a group or indicates group identifiers corresponding to CSI RS set #2 and CSI RS set #3.
  • the terminal device can determine that a total of two CSI RS resources included in CSI RS set #2 and CSI RS set #3 are one resource unit.
  • a CSI RS resource in CSI RS set#1 is a resource unit.
  • the terminal device uses a total of two CSI RS resources included in CSI RS set #2 and CSI RS set #3 as one resource unit to perform base vector selection, and uses one CSI RS resource in CSI RS set #1 as one resource unit. Make basis vector selection.
  • the terminal device receives a plurality of first CSI RS resource sets indicated by the network device through the first indication information, and then receives the plurality of first CSI RS resource sets indicated by the network device through the second indication information.
  • the group identifier corresponding to the resource set allows the terminal device to determine that the CSI RS resources included in the resource set as a group are one resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • FIG. 9 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure.
  • the method is executed by a terminal device. As shown in Figure 9, the method may include but is not limited to the following steps:
  • Step 901 Receive first indication information sent by the network device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected, and the first indication information includes at least one second CSI RS.
  • the first indication information includes at least one second CSI RS.
  • Set, each second CSI RS set contains one or more CSI RS resources.
  • Step 902 Determine one or more CSI RS resources included in each second CSI RS set as resource units.
  • the first indication information includes CSI RS set#1 and CSI RS set#2, where CSI RS set#1 includes CSI RS resource #1 and CSI RS resource #2, and CSI RS set#2 Contains a CSI RS resource #3. Then the terminal device can determine that CSI RS resource #1 and CSI RS resource #2 in CSI RS set #1 are one resource unit, and one CSI RS resource #3 in CSI RS set #2 is also one resource unit. Then the terminal device uses CSI RS resource #1 and CSI RS resource #2 as one resource unit to perform base vector selection, and uses CSI RS resource #3 as one resource unit to perform base vector selection.
  • the terminal device after the terminal device receives at least one second CSI RS resource set indicated by the network device through the first indication information, it can determine the CSI resources included in each second CSI set as a resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • FIG. 10 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure.
  • the method is executed by a terminal device. As shown in Figure 10, the method may include but is not limited to the following steps:
  • Step 1001 Receive first indication information sent by the network device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected, and the first indication information includes a third CSI RS set.
  • the third CSI RS set contains multiple CSI RS resources.
  • the terminal device may determine that the resource unit is one CSIRS resource or multiple CSI RS resources among multiple CSI RS resources included in the third CSI RS set.
  • the first indication information includes CSI RS set #3, where CSI RS set #3 includes multiple CSI RSs. Then the terminal device can determine each CSI RS resource in CSI RS set #3 as a resource unit. Alternatively, the terminal device may also determine multiple CSI RS resources in CSI RS set #3 as resource units.
  • Step 1002 Receive third indication information sent by the network device.
  • the third indication information is used to indicate to the terminal device that at least two CSI RS resources in the third CSI RS set are a group or indicate that the third CSI RS Group identifiers corresponding to at least two CSI RS resources in the set.
  • Step 1003 Determine at least two CSI RS resources in a group as resource units.
  • the network device indicates a third CSI RS set containing multiple CSI RS resources to the terminal device through the first indication information, and the resource unit based on which the terminal device selects the base vector is not in the third CSI RS set All CSI RS resources, then the third indication information can be sent to the terminal device to indicate which CSI RS resources are a group or indicate the group identifiers corresponding to which CSI RS resources, so that the terminal device can determine the number of CSI RS resources.
  • CSI RS resource is a resource unit.
  • the first indication information includes CSI RS set #3, where the CSI RS resources included in CSI RS set #3 are: CSI RS #1, CSI RS #2, CSI RS #3 and CSI RS #4 .
  • the third indication information indicates that CSI RS #2 and CSI RS #3 are a group or indicates the group identifier corresponding to CSI RS #2 and CSI RS #3.
  • the terminal device can determine that the CSI RS resources CSI RS #2 and CSI RS #3 are one resource unit. Then the terminal device uses CSI RS #2 and CSI RS #3 as one resource unit to perform basis vector selection.
  • the CSI RS resources CSI RS #1 and CSI RS #4 are each a resource unit, so the terminal device uses CSI RS #1 as a resource unit to perform base vector selection, and uses CSI RS #4 as a resource unit to perform base vector selection. Select; or CSI RS #1 and CSI RS #4 are used together as a resource unit, then the terminal device uses CSI RS #1 and CSI RS #4 as a resource unit to perform basis vector selection.
  • one CSI RS resource among multiple CSI RS resources included in the third CSI RS set may be determined as a resource unit.
  • the terminal device first receives a third CSI RS set containing multiple CSI RS resources indicated by the network device through the first indication information, and then indicates to the terminal device which CSI RS resources are one through the third indication information.
  • the group or the group identifier indicates which CSI RS resources correspond, so that the terminal device can determine the several CSI RS resources in the group as one resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 11 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 11, the method may include but is not limited to the following steps:
  • Step 1101 Receive first indication information sent by the network device.
  • the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected.
  • the first indication information includes a CSI RS resource, CSIRS.
  • the resource includes N first port groups, where N is a positive integer.
  • Step 1102 Determine a first port group of CSI RS resources as a resource unit.
  • the terminal device can determine a first port group of the CSI RS resource as a resource unit.
  • the first indication information includes a CSI RS resource CSI RS #3, where the number of ports included in CSI RS #3 is 32, with a total of 4 port groups. Then the terminal device can determine that each port group in CSI RS #3 is a resource unit, that is, the terminal device can select each port group as a resource unit for basis vector selection.
  • the terminal device may also receive fifth indication information sent by the network device.
  • the fifth indication information is used to indicate to the terminal device the mapping relationship between each first port group and at least one port identifier.
  • mapping relationship between each port group and port identifier can be any of the following.
  • Each port group corresponds to the same number of ports and the ports are consecutive. For example, one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, the mapping relationship 1 is specifically: ports #0 to #7 are the first port group, ports #8 to #15 are the second port group, and ports #16 to #23 are the third Port group, ports #24 to #31 are the fourth port group. Or, if it is divided into 2 port groups, the mapping relationship 1 is specifically: ports #0 to #15 are the first port group, and ports #16 to #31 are the second port group.
  • Each port group corresponds to the same number of ports and every two ports are not consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31.
  • the port ID corresponding to the i-th port is 4N+i-1, the value of i is 1, 2, 3 or 4, and N is an integer from 0 to 7, that is, mapping relationship 2:
  • Port #0, #4, #8, #12, #16, #20, #24, #28 are the first port group, ports #1, #5, #9, #13, #17, #21, # 25, #29 is the second port group, ports #2, #6, #10, #14, #18, #22, #26, #30 are the third port group, ports #3, #7, # 11, #15, #19, #23, #27, and #31 are the fourth port group.
  • the port ID corresponding to the i-th port is 2N+i-1, the value of i is 1 or 2, and N is an integer from 0 to 15, that is, mapping relationship 2:
  • the port ID is The even-numbered port group is the first port group, and the odd-numbered port ID is the second port group.
  • Each port group corresponds to the same number of ports and every two ports are consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, first group the 32 ports into a group of 8 consecutive ports. The 8 ports in each group include 4 consecutive groups of 2 ports. The 4 consecutive groups of 2 ports are divided into different groups.
  • Port group that is, mapping relationship 3: ports #0, #1, #8, #9, #16, #17, #24, #25 are the first port group, ports #2, #3, #10, # 11, #18, #19, #26, #27 are the second port group, ports #4, #5, #12, #13, #20, #21, #28, #29 are the third port group , ports #6, #7, #14, #15, #22, #23, #30, #31 are the fourth port group.
  • the 4 ports in each group include 2 consecutive groups of 2 ports, and 2 consecutive groups of 2 ports.
  • ports #0, #1, #4, #5, #8, #9, #12, #13, #16, #17, #20, #21, # 24, #25, #28, and #29 are the first port group, and the other ports are the second port group.
  • Each port group corresponds to the same number of ports and every four ports are consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, first group the 32 ports into a group of 16 consecutive ports. The 16 ports in each group include 4 consecutive 4 ports, and the 4 consecutive 4 ports are divided into different groups.
  • the port group that is, the mapping relationship 4 is: ports #0, #1, #2, #3, #16, #17, #18, #19 is the first port group, ports #4, #5, #6, #7, #20, #21, #22, #23 are the second port group, ports #8, #9, #10, #11, #24, #25, #26, #27 are the third port Group, ports #12, #13, #14, #15, #28, #29, #30, #31 are the fourth port group. Or, if divided into 2 port groups, you can first group the 32 ports into a group of 8 consecutive ports. The 8 ports in each group include 2 consecutive 4 ports and 2 consecutive 4 ports.
  • ports #0, #1, #2, #3, #8, #9, #10, #11, #16, #17, #18, #19, # 24, #25, #26, and #27 are the first port group, and the other ports are the second port group.
  • the network device first indicates a CSI RS resource containing multiple port groups to the terminal device through the first indication information, so that the terminal device can determine that a group of port groups among the multiple groups of ports is a resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 12 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 12, the method may include but is not limited to the following steps:
  • Step 1201 Receive first indication information sent by the network device.
  • the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected.
  • the first indication information includes a CSI RS resource, CSIRS.
  • the resource includes N first port groups, where N is greater than 1.
  • Step 1202 Receive fourth indication information sent by the network device.
  • the fourth indication information is used to indicate to the terminal device that at least two first port groups are one group or indicate group identifiers corresponding to at least two first port groups.
  • Step 1203 Determine at least two first port groups in a group as resource units.
  • the network device indicates a CSI RS resource containing multiple port groups to the terminal device through the first indication information, and the resource unit based on which the terminal device selects the base vector is not all the port groups of the CSI RS resource, Or, not every port group can be independently used as a resource unit, then the fourth indication information can be sent to the terminal device to indicate which port groups are one group or indicate which port groups correspond to group identifiers, so as to The terminal device can determine the several port groups as one resource unit.
  • Port group #4 of CSI RS resource #1 is used as a resource unit for basis vector selection; or port group #1 and port group #4 are used together as a resource unit, using port group #1 and port group # of CSI RS resource #1 4. Perform basis vector selection for a resource unit.
  • the network device first indicates to the terminal device a CSI RS resource containing multiple port groups through the first indication information, and then indicates to the terminal device which port groups are one group or which several port groups are indicated through the fourth indication information.
  • Group ID corresponding to each port group so that the terminal device can determine that this group of port groups is a resource unit. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • the terminal device may also determine the resource unit based on which the base vector is selected, and send the determined resource unit to the network device.
  • the method for determining the CSI feedback will be described in detail below with reference to FIGS. 13 to 16 .
  • Figure 13 is a schematic flowchart of a method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 13, the method may include but is not limited to the following steps:
  • Step 1301 Send first indication information to the network device, where the first indication information is used to indicate to the network device the resource unit based on which the base vector in the CSI feedback is selected.
  • the basis vector includes at least one of a beam basis vector and a frequency domain basis vector
  • the resource unit includes at least one of the following: one CSI reference signal RS resource, multiple CSI RS resources, and one port group of one CSI RS resource, Or multiple port groups of a CSI RS resource.
  • SD basis and FD basis can be selected based on different resource units. That is, the terminal device can respectively indicate the resource unit corresponding to the beam base vector and the resource unit corresponding to the frequency domain base vector.
  • FD basis is selected based on one CSI RS resource
  • SD basis is selected based on multiple CSI RS resources, etc. This disclosure does not limit this.
  • the first indication information includes any of the following: at least one CSIRS set identifier; at least one CSIRS resource identifier; one port group identifier of one CSI RS resource; multiple port group identifiers of one CSI RS resource.
  • the first indication information includes at least one CSI RS resource identifier
  • the first indication information indicates CSI RS resource #3, then it indicates that the terminal device performs base vector selection with CSI RS resource #3 as the resource unit.
  • the first indication information includes a port group identifier of a CSI RS resource, it represents a base vector selected by the terminal device based on the port group.
  • the first indication information includes an identifier of a port group #2 of the CSI RS resource #3, which indicates that the terminal device uses the port group #2 of the CSI RS resource #3 as a resource unit to perform base vector selection. .
  • the first indication information includes multiple port group identifiers of a CSI RS resource, it represents a base vector selected by the terminal device based on the multiple port groups.
  • the first indication information indicates that port group #2 and port group #4 of CSI RS resource #3 are one group or indicates the group corresponding to port group #2 and port group #4 of CSI RS resource #3.
  • the identifier indicates that the terminal device performs base vector selection based on port group #2 and port group #4 of CSI RS resource #3 as resource units.
  • the terminal device and the network device determine the resource unit based on which the base vector is selected, they can determine whether the selected base vector is for the TRP or the TRP group based on the corresponding relationship between the resource unit and the TRP.
  • TRP that is, for the TRP group.
  • the terminal device may send the first indication information based on CSI feedback.
  • the CSI feedback includes a first indication field and a second indication field, the first indication information is included in the first indication field, and the base vector corresponding to each resource unit is included in the second indication field.
  • the terminal device determines the resource unit based on which the base vector is selected, the size of the CSI report may change.
  • each TRP selects a basis vector independently, for example, 4 TRPs, 4 times the signaling is required. If multiple TRPs can select base vectors together, signaling can be reduced accordingly.
  • the first indication field may be used to indicate which TRPs are determined independently and which TRPs are determined jointly.
  • the second indication field then further indicates the basis vector selected for each TRP or TRP group.
  • the terminal device indicates to the network device the resource unit based on which the base vector is selected through the first indication information, so that the network device can determine the resource unit based on which the terminal device selects the base vector. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Step 1401 Receive second indication information sent by the network device, where the second indication information is used to indicate the mapping relationship between each port group identifier and the port identifier.
  • mapping relationship between each port group and port identifier can be any of the following.
  • Each port group corresponds to the same number of ports and the ports are consecutive. For example, one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, the mapping relationship 1 is specifically: ports #0 to #7 are the first port group, ports #8 to #15 are the second port group, and ports #16 to #23 are the third Port group, ports #24 to #31 are the fourth port group. Or, if it is divided into 2 port groups, the mapping relationship 1 is specifically: ports #0 to #15 are the first port group, and ports #16 to #31 are the second port group.
  • Each port group corresponds to the same number of ports and every two ports are not consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31.
  • the port ID corresponding to the i-th port is 4N+i-1, the value of i is 1, 2, 3 or 4, and N is an integer from 0 to 7, that is, mapping relationship 2:
  • Port #0, #4, #8, #12, #16, #20, #24, #28 are the first port group, ports #1, #5, #9, #13, #17, #21, # 25, #29 is the second port group, ports #2, #6, #10, #14, #18, #22, #26, #30 are the third port group, ports #3, #7, # 11, #15, #19, #23, #27, and #31 are the fourth port group.
  • the port ID corresponding to the i-th port is 2N+i-1, the value of i is 1 or 2, and N is an integer from 0 to 15, that is, mapping relationship 2:
  • the port ID is The even-numbered port group is the first port group, and the odd-numbered port ID is the second port group.
  • Each port group corresponds to the same number of ports and every two ports are consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, first group the 32 ports into a group of 8 consecutive ports. The 8 ports in each group include 4 consecutive groups of 2 ports. The 4 consecutive groups of 2 ports are divided into different groups.
  • Port group that is, mapping relationship 3: ports #0, #1, #8, #9, #16, #17, #24, #25 are the first port group, ports #2, #3, #10, # 11, #18, #19, #26, #27 are the second port group, ports #4, #5, #12, #13, #20, #21, #28, #29 are the third port group , ports #6, #7, #14, #15, #22, #23, #30, #31 are the fourth port group.
  • the 4 ports in each group include 2 consecutive groups of 2 ports, and 2 consecutive groups of 2 ports.
  • ports #0, #1, #4, #5, #8, #9, #12, #13, #16, #17, #20, #21, # 24, #25, #28, and #29 are the first port group, and the other ports are the second port group.
  • Each port group corresponds to the same number of ports and every four ports are consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, first group the 32 ports into a group of 16 consecutive ports. The 16 ports in each group include 4 consecutive 4 ports, and the 4 consecutive 4 ports are divided into different groups.
  • the port group that is, the mapping relationship 4 is: ports #0, #1, #2, #3, #16, #17, #18, #19 is the first port group, ports #4, #5, #6, #7, #20, #21, #22, #23 are the second port group, ports #8, #9, #10, #11, #24, #25, #26, #27 are the third port Group, ports #12, #13, #14, #15, #28, #29, #30, #31 are the fourth port group. Or, if divided into 2 port groups, you can first group the 32 ports into a group of 8 consecutive ports. The 8 ports in each group include 2 consecutive 4 ports and 2 consecutive 4 ports.
  • ports #0, #1, #2, #3, #8, #9, #10, #11, #16, #17, #18, #19, # 24, #25, #26, and #27 are the first port group, and the other ports are the second port group.
  • the terminal device can also determine the mapping relationship between each port group and the port identifier based on default rules.
  • the default mapping relationship includes any of the above mapping relationships 1, 2, 3, and 4.
  • mapping relationship 1 For example, the default mapping relationship is mapping relationship 1, that is, each port group contains the same number of ports and they are consecutive. Then one CSI RS resource corresponds to 32 ports, and the identifiers are #0 to #31. Then if it is divided into 4 port groups, you can determine that port IDs #0 to #7 are one port group, ports #8 to #15 are one port group, ports #16 to #23 are one port group, and ports #24 to #31 are one Port group, etc., this disclosure does not limit this.
  • Step 1402 Send first indication information to the network device, where the first indication information is used to indicate to the network device the resource unit based on which the base vector in the CSI feedback is selected.
  • step 1402 For the specific implementation of step 1402, reference can be made to the detailed description of any embodiment of the present disclosure, which will not be described again this time.
  • the terminal device indicates to the network device the resource unit based on which the base vector is selected through the first indication information, so that the network device can determine the resource unit based on which the terminal device selects the base vector. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 15 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 15, the method may include but is not limited to the following steps:
  • Step 1501 Receive first indication information sent by the terminal device, where the first indication information is used to indicate to the network device the resource unit based on which the base vector in the CSI feedback of the terminal device is based.
  • the basis vector includes at least one of a beam basis vector and a frequency domain basis vector
  • the resource unit includes any of the following: a CSI reference signal RS resource, multiple CSI RS resources, a port group of a CSI RS resource, or a Multiple port groups for CSI RS resources.
  • SD basis and FD basis can be selected based on different resource units. That is, the terminal device can respectively indicate the resource unit corresponding to the beam base vector and the resource unit corresponding to the frequency domain base vector.
  • FD basis is selected based on one CSI RS resource
  • SD basis is selected based on multiple CSI RS resources, etc. This disclosure does not limit this.
  • the first indication information includes any of the following: at least one CSIRS set identifier; at least one CSIRS resource identifier; one port group identifier of one CSI RS resource; multiple port group identifiers of one CSI RS resource.
  • the first indication information includes at least one CSIRS set identifier
  • each CSI RS set contains only one CSI RS resource
  • the terminal device is represented by a base vector selected based on one CSI RS resource in each CSI RS set.
  • each CSI RS set contains only one CSI RS resource
  • the first indication information also indicates that at least two CSI RS sets are a group or indicates the group identifiers corresponding to at least two CSI RS sets
  • the first indication information includes at least one CSI RS resource identifier
  • the first indication information indicates CSI RS resource #3, then it indicates that the terminal device performs base vector selection with CSI RS resource #3 as the resource unit.
  • the first indication information includes a port group identifier of a CSI RS resource, it represents a base vector selected by the terminal device based on the port group.
  • the first indication information includes an identifier of a port group #2 of the CSI RS resource #3, which indicates that the terminal device uses the port group #2 of the CSI RS resource #3 as a resource unit to perform base vector selection. .
  • the first indication information includes multiple port group identifiers of a CSI RS resource, it represents a base vector selected by the terminal device based on the multiple port groups.
  • the first indication information indicates that port group #2 and port group #4 of CSI RS resource #3 are one group or indicates the group corresponding to port group #2 and port group #4 of CSI RS resource #3.
  • the identifier indicates that the terminal device performs base vector selection based on port group #2 and port group #4 of CSI RS resource #3 as resource units.
  • the terminal device and the network device determine the resource unit based on which the base vector is selected, they can determine whether the selected base vector is for the TRP or the TRP group based on the corresponding relationship between the resource unit and the TRP.
  • different TRPs correspond to different CSI RS resources. If the resource unit based on when selecting the base vector is a CSI RS resource, that is, the selected base vector is for the TRP corresponding to the CSI RS resource; or, if the base vector is selected, The resource units based on the vector are multiple CSI RS resources, that is, the selected base vector is for multiple TRPs corresponding to the multiple CSI RS resources, that is, it is for the TRP group. Or, different TRPs correspond to different port groups of a CSI RS resource. If the resource unit based on when selecting a base vector is a port group of a CSI RS resource, that is, the selected base vector corresponds to a port group of the CSI RS resource.
  • TRP that is, for the TRP group.
  • the network device may determine the first indication information based on the CSI feedback sent by the terminal device.
  • the CSI feedback includes a first indication field and a second indication field, the first indication information is included in the first indication field, and the base vector corresponding to each resource unit is included in the second indication field.
  • the terminal device determines the resource unit based on which the base vector is selected, the size of the CSI report may change.
  • each TRP selects a basis vector independently, for example, 4 TRPs, 4 times the signaling is required. If multiple TRPs can select base vectors together, signaling can be reduced accordingly.
  • the first indication field may be used to indicate which TRPs are determined independently and which TRPs are determined jointly.
  • the second indication field then further indicates the basis vector selected for each TRP or TRP group.
  • the network device receives the resource unit indicated by the terminal device when selecting the base vector through the first indication information, so that the network device can determine the resource unit based on when the terminal device selects the base vector. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • Figure 16 is a schematic flowchart of another method for determining channel state information CSI feedback provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 16, the method may include but is not limited to the following steps:
  • Step 1601 Send second indication information to the terminal device, where the second indication information is used to indicate the mapping relationship between each port group identifier and the port identifier.
  • mapping relationship between each port group and port identifier can be any of the following.
  • Each port group corresponds to the same number of ports and the ports are consecutive. For example, one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, the mapping relationship 1 is specifically: ports #0 to #7 are the first port group, ports #8 to #15 are the second port group, and ports #16 to #23 are the third Port group, ports #24 to #31 are the fourth port group. Or, if it is divided into 2 port groups, the mapping relationship 1 is specifically: ports #0 to #15 are the first port group, and ports #16 to #31 are the second port group.
  • Each port group corresponds to the same number of ports and every two ports are not consecutive.
  • a CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31.
  • the port ID corresponding to the i-th port is 4N+i-1, the value of i is 1, 2, 3 or 4, and N is an integer from 0 to 7, that is, mapping relationship 2:
  • Port #0, #4, #8, #12, #16, #20, #24, #28 are the first port group, ports #1, #5, #9, #13, #17, #21, # 25, #29 is the second port group, ports #2, #6, #10, #14, #18, #22, #26, #30 are the third port group, ports #3, #7, # 11, #15, #19, #23, #27, and #31 are the fourth port group.
  • the port ID corresponding to the i-th port is 2N+i-1, the value of i is 1 or 2, and N is an integer from 0 to 15, that is, mapping relationship 2:
  • the port ID is The even-numbered port group is the first port group, and the odd-numbered port ID is the second port group.
  • Each port group corresponds to the same number of ports and every two ports are consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, first group the 32 ports into a group of 8 consecutive ports. The 8 ports in each group include 4 consecutive groups of 2 ports. The 4 consecutive groups of 2 ports are divided into different groups.
  • Port group that is, mapping relationship 3: ports #0, #1, #8, #9, #16, #17, #24, #25 are the first port group, ports #2, #3, #10, # 11, #18, #19, #26, #27 are the second port group, ports #4, #5, #12, #13, #20, #21, #28, #29 are the third port group , ports #6, #7, #14, #15, #22, #23, #30, #31 are the fourth port group.
  • the 4 ports in each group include 2 consecutive groups of 2 ports, and 2 consecutive groups of 2 ports.
  • ports #0, #1, #4, #5, #8, #9, #12, #13, #16, #17, #20, #21, # 24, #25, #28, and #29 are the first port group, and the other ports are the second port group.
  • Each port group corresponds to the same number of ports and every four ports are consecutive.
  • one CSI RS resource corresponds to 32 ports, and their identifiers are #0 to #31. If divided into 4 port groups, first group the 32 ports into a group of 16 consecutive ports. The 16 ports in each group include 4 consecutive 4 ports, and the 4 consecutive 4 ports are divided into different groups.
  • the port group that is, the mapping relationship 4 is: ports #0, #1, #2, #3, #16, #17, #18, #19 is the first port group, ports #4, #5, #6, #7, #20, #21, #22, #23 are the second port group, ports #8, #9, #10, #11, #24, #25, #26, #27 are the third port Group, ports #12, #13, #14, #15, #28, #29, #30, #31 are the fourth port group. Or, if divided into 2 port groups, you can first group the 32 ports into a group of 8 consecutive ports. The 8 ports in each group include 2 consecutive 4 ports and 2 consecutive 4 ports. divided into different port groups, that is, mapping relationship 4: ports #0, #1, #2, #3, #8, #9, #10, #1
  • the network device may not send the second indication information to the terminal device, so that the terminal device can determine the mapping relationship between each port group and the port identifier based on default rules.
  • the default mapping relationship includes any of the above mapping relationships 1, 2, 3, and 4.
  • mapping relationship 1 For example, the default mapping relationship is mapping relationship 1, that is, each port group contains the same number of ports and they are consecutive. Then one CSI RS resource corresponds to 32 ports, and the identifiers are #0 to #31. Then if it is divided into 4 port groups, you can determine that port IDs #0 to #1 are one port group, ports #8 to #15 are one port group, ports #16 to #23 are one port group, and ports #24 to #31 are one Port group, etc., this disclosure does not limit this.
  • Step 1602 Receive first indication information sent by the terminal device, where the first indication information is used to indicate to the network device the resource unit based on which the base vector in the CSI feedback is selected.
  • step 1602 For the specific implementation of step 1602, reference can be made to the detailed description of any embodiment of the present disclosure, which will not be described again this time.
  • the network device receives the resource unit indicated by the terminal device when selecting the base vector through the first indication information, so that the network device can determine the resource unit based on when the terminal device selects the base vector. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • FIG. 17 is a schematic structural diagram of a communication device 1700 provided by an embodiment of the present disclosure.
  • the communication device 1700 shown in FIG. 17 may include a transceiver module 1701.
  • the transceiving module 1701 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 1701 may implement the sending function and/or the receiving function.
  • the communication device 1700 may be a network device, a device in the network device, or a device that can be used in conjunction with the network device.
  • the communication device 1700 is on the terminal equipment side, where:
  • Transceiver module 1701 configured to send first indication information to the terminal device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected, and the base vector includes a beam base vector. and at least one of frequency domain basis vectors.
  • the resource unit includes at least one of the following: one CSI reference signal RS resource, multiple CSI RS resources, one port group of one CSI RS resource, or multiple port groups of one CSI RS resource.
  • the first indication information includes at least one first CSI RS set, and each first CSI RS set includes one CSI RS resource.
  • the first indication information is used to indicate to the terminal device that the resource unit is the one CSI RS resource included in each first CSI RS set.
  • the first indication information includes a plurality of first CSIRS sets
  • the transceiver module 1701 is further configured to send second indication information to the terminal device, where the second indication information is used to indicate to the terminal device
  • At least two first CSI RS sets are a group or indicate a group identifier corresponding to at least two first CSI RS sets.
  • the first indication information includes at least one second CSI RS set, each second CSI RS set includes one or more CSI RS resources, and the first indication information is used to indicate to the terminal device
  • the resource unit is the one or more CSI RS resources included in each second CSI RS set.
  • the first indication information includes a third CSI RS set, and the third CSI RS set includes multiple CSI RS resources.
  • the first indication information is used to indicate to the terminal device that the resource unit is one CSIRS resource among multiple CSI RS resources included in the third CSI RS set.
  • the transceiver module 1701 is also configured to send third indication information to the terminal device, where the third indication information is used to indicate to the terminal device at least two CSI RS resources in the third CSI RS set. is a group or indicates a group identifier corresponding to at least two CSI RS resources in the third CSI RS set.
  • the first indication information is used to indicate to the terminal device that the resource unit is each first port group of the CSI RS resource.
  • the N is greater than 1, and the transceiver module 1701 is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate at least two of the third instructions to the terminal device.
  • a port group is a group or indicates at least two group identifiers corresponding to the first port group.
  • the transceiver module 1701 is also configured to send fifth indication information to the terminal device.
  • the fifth indication information is used to indicate to the terminal device the relationship between each of the first port group and at least one port identifier. Mapping relations.
  • the network device sends the resource unit used to instruct the terminal device to select the basis vector to the terminal device. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • the transceiver module 1701 is configured to receive first indication information sent by the network device, where the first indication information is used to indicate to the terminal device the resource unit based on which the base vector in the CSI feedback is selected, and the base vector includes a beam base At least one of a vector and a frequency domain basis vector.
  • the resource unit includes at least one of the following: one CSI reference signal RS resource, multiple CSI RS resources, one port group of one CSI RS resource, or multiple port groups of one CSI RS resource.
  • the first indication information includes at least one first CSI RS set, and each first CSI RS set includes one CSI RS resource.
  • the processing module 1702 is configured to determine one CSI RS resource included in each first CSI RS set as the resource unit.
  • the transceiver module 1701 is further configured to: in response to the first indication information including a plurality of first CSIRS sets, receive second indication information sent by the network device, where the second indication information is used to The terminal device indicates that at least two first CSI RS sets are a group or indicates group identifiers corresponding to at least two first CSI RS sets;
  • the processing module 1702 is also configured to determine the CSI RS resources included in the at least two first CSI RS sets as the resource unit.
  • the first indication information includes at least one second CSI RS set, each second CSI RS set includes one or more CSI RS resources, and each second CSI RS set includes One or more CSI RS resources are determined as the resource unit.
  • the first indication information includes a third CSI RS set, and the third CSI RS set includes multiple CSI RS resources.
  • the processing module 1702 is also configured to determine one CSI RS resource among the plurality of CSI RS resources included in the third CSI RS set as the resource unit.
  • the transceiver module 1701 is also configured to receive third indication information sent by the network device, where the third indication information is used to indicate at least two CSI RSs in the third CSI RS set to the terminal device.
  • the resource is a group or indicates a group identifier corresponding to at least two CSI RS resources in the third CSI RS set;
  • the processing module 1702 is also configured to determine at least two CSI RS resources in the group as the resource unit.
  • the first indication information includes a CSI RS resource
  • the CSIRS resource includes N first port groups, and N is a positive integer.
  • the processing module is also configured to determine a first port group of the CSI RS resource as the resource unit.
  • the processing module 1702 is also configured to determine at least two first port groups in the group as the resource unit.
  • the transceiver module 1701 is also configured to receive fifth indication information sent by the network device, where the fifth indication information is used to indicate to the terminal device each of the first port groups and at least one port identifier. mapping relationship.
  • the terminal device receives the resource unit sent by the network device for the terminal device to determine the resource unit based on which the base vector is selected. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • the communication device 1700 may also be another terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the transceiver module 1701 is configured to send first indication information to the network device, where the first indication information is used to indicate to the network device the resource unit based on which the base vector in the CSI feedback is selected, and the base vector includes a beam. At least one of basis vectors and frequency domain basis vectors.
  • the resource unit includes at least one of the following: one CSI reference signal RS resource, multiple CSI RS resources, one port group of one CSI RS resource, or multiple port groups of one CSI RS resource.
  • the first indication information includes any of the following:
  • the transceiver module 1701 is also configured to receive second indication information sent by the network device, where the second indication information is used to indicate the mapping relationship between each port group identifier and the port identifier; or,
  • the processing module 1702 is configured to determine the mapping relationship between each port group identifier and the port identifier according to default rules.
  • the CSI feedback includes a first indication field and a second indication field, the first indication information is included in the first indication field, and the base vector corresponding to each resource unit is included in the second indication field. indicated in the domain.
  • the terminal device may send the resource unit based on which the terminal device selects the basis vector to the network device. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • the communication device 1700 may also be another network device, a device in the network device, or a device that can be used in conjunction with the network device.
  • Communication device 1700 on the network device side, where:
  • the transceiver module 1701 is configured to receive first indication information sent by the terminal device, where the first indication information is used to indicate to the network device the resource unit based on which the base vector in the CSI feedback is selected, and the base vector includes At least one of beam basis vectors and frequency domain basis vectors.
  • the first indication information includes any of the following:
  • the transceiving module 1702 is also configured to send second indication information to the terminal device, where the second indication information is used to indicate the mapping relationship between each port group identifier and the port identifier.
  • the transceiver module 1701 is also used for:
  • Receive CSI feedback sent by the terminal device wherein the CSI feedback includes a first indication field and a second indication field, the first indication information is included in the first indication field, and each resource unit corresponds to The basis vectors are contained in the second indication field.
  • the network device may receive the resource unit based on which the terminal device selects the basis vector sent by the terminal device. This ensures that the terminal device and the network device have consistent understanding of the resource units based on which basis vectors are selected in the CSI feedback, thereby improving the transmission performance of coherent joint transmission based on multiple TRPs.
  • FIG 18 is a schematic structural diagram of another communication device 1800 provided by an embodiment of the present disclosure.
  • the communication device 1800 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip, a chip system, or a processor that supports a terminal device to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1800 may include one or more processors 1801.
  • the processor 1801 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1800 may also include one or more memories 1802, on which a computer program 1804 may be stored.
  • the processor 1801 executes the computer program 1804, so that the communication device 1800 performs the steps described in the above method embodiments. method.
  • the memory 1802 may also store data.
  • the communication device 1800 and the memory 1802 can be provided separately or integrated together.
  • the communication device 1800 may also include a transceiver 1805 and an antenna 1806.
  • the transceiver 1805 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1805 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1800 may also include one or more interface circuits 1807.
  • the interface circuit 1807 is used to receive code instructions and transmit them to the processor 1801 .
  • the processor 1801 executes the code instructions to cause the communication device 1800 to perform the method described in the above method embodiment.
  • the communication device 1800 is a network device: the transceiver 1805 is used to perform step 201 in Figure 2; step 301 in Figure 3; step 401 in Figure 4, etc.
  • the communication device 1800 is a terminal device: the transceiver 1805 is used to perform step 601 in Figure 6; step 701 in Figure 7; step 801 and step 802 in Figure 8, etc.; the processor 1801 is used to perform step 701 in Figure 7 , step 803 in Figure 8, etc.
  • the communication device 1800 is another terminal device: the transceiver 1805 is used to perform step 1301 in Figure 13; steps 1401 and 1402 in Figure 14, etc.
  • the communication device 1800 is a network device: the transceiver 1805 is used to perform step 1501 in Figure 15; step 1601, step 1602, etc. in Figure 16.
  • the processor 1801 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1801 may store a computer program 1803, and the computer program 1803 runs on the processor 1801, causing the communication device 1800 to perform the method described in the above method embodiment.
  • the computer program 1803 may be solidified in the processor 1801, in which case the processor 1801 may be implemented by hardware.
  • the communication device 1800 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or an access network device (such as the terminal device in the foregoing method embodiment), but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may Not limited by Figure 9.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 19 refer to the schematic structural diagram of the chip shown in FIG. 19 .
  • the chip shown in Figure 19 includes a processor 1901 and an interface 1903.
  • the number of processors 1901 may be one or more, and the number of interfaces 1903 may be multiple.
  • Interface 1903 is used to execute step 201 in Figure 2; step 301 in Figure 3; step 401 in Figure 4, etc.
  • Interface 1903 is used to execute step 601 in Figure 6; step 701 in Figure 7; step 801 and step 802 in Figure 8, etc.
  • Interface 1903 is used to execute step 1301 in Figure 13; steps 1401 and 1402 in Figure 14, etc.
  • Interface 1903 is used to execute step 1501 in Figure 15; step 1601, step 1602 in Figure 16, etc.
  • the chip also includes a memory 1903, which is used to store necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • each table in this disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which is not limited by this disclosure.
  • it is not necessarily required to configure all the correspondences shown in each table.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this disclosure may be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种信道状态信息CSI反馈的指示的确定方法及其装置,可应用于通信技术领域,其中,由网络设备执行的方法包括:向终端设备发送第一指示信息,其中,所述第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。

Description

一种信道状态信息CSI反馈的确定方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种信道状态信息CSI反馈的确定方法及其装置。
背景技术
在针对单个发送接收点(Transmission and Reception Point,TRP)时,信道状态信息(channel state information,CSI)反馈时,需要上报终端设备基于CSI参考信号(reference signal,RS)资源选中的空间(space domain,SD)基向量basis vector和频域(frequency domain,FD)basis vector。那么在多(Multiple,M)TRP时,由于多个TRP可能所处的位置不同,在进行CSI反馈时,是针对每个TRP还是针对每个TRP组(group)反馈被选中的SD basis和/或FD basis是需要解决的问题。
发明内容
本公开实施例提供一种信道状态信息CSI反馈的确定方法及其装置。
第一方面,本公开实施例提供一种信道状态信息CSI反馈的确定方法,该方法由网络设备执行,方法包括:向终端设备发送第一指示信息,其中,所述第一指示信息用于向所述终端设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
本公开中,网络设备向终端设备指示CSI反馈中基向量选择时的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。。
第二方面,本公开实施例提供另一种信道状态信息CSI反馈的确定方法,方法由终端设备执行,方法包括:接收网络设备发送的第一指示信息,其中,所述第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
本公开中,终端设备接收网络设备发送的用于指示终端设备CSI反馈中基向量选择时的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
第三方面,本公开实施例提供另一种信道状态信息CSI反馈的确定方法,方法由终端设备执行,方法包括:向网络设备发送第一指示信息,其中,所述第一指示信息用于向所述网络设备指示终端设备CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
本公开中,终端设备向网络设备发送用于指示终端设备CSI反馈中基向量选择时的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
第四方面,本公开实施例提供另一种信道状态信息CSI反馈的确定方法,方法由网络设备执行,方法包括:接收终端设备发送的第一指示信息,其中,所述第一指示信息用于向所述网络设备指示所述终端设备CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
本公开中,网络设备接收终端设备发送的用于指示终端设备CSI反馈中基向量选择时的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
第五方面,本公开实施例提供一种通信装置,包括:
收发模块,用于向终端设备发送第一指示信息,其中,所述第一指示信息用于所述终端设备确定CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
第六方面,本公开实施例提供一种通信装置,包括:
收发模块,用于接收网络设备发送的第一指示信息,其中,所述第一指示信息用于所述终端设备确定CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
第七方面,本公开实施例提供一种通信装置,包括:
收发模块,用于向网络设备发送第一指示信息,其中,所述第一指示信息用于向所述网络设备指示终端设备CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
第八方面,本公开实施例提供一种通信装置,包括:
收发模块,用于接收终端设备发送的第一指示信息,其中,所述第一指示信息用于向所述网络设备 指示所述终端设备CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
第九方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第三方面所述的方法。
第十二方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第四方面所述的方法。
第十三方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第十四方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第十五方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第三方面所述的方法。
第十六方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第四方面所述的方法。
第十七方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十八方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第三方面所述的方法。
第二十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第四方面所述的方法。
第二十一方面,本公开实施例提供一种确定系统,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置,或者,该系统包括第十一方面所述的通信装置以及第十二方面所述的通信装置,或者,该系统包括第十三方面所述的通信装置以及第十四方面所述的通信装置,或者,该系统包括第十五方面所述的通信装置以及第十六方面所述的通信装置,或者,该系统包括第十七方面所述的通信装置以及第十八方面所述的通信装置,或者,该系统包括第十九方面所述的通信装置以及第二十方面所述的通信装置。
第二十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第二十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第二十四方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第三方面所述的方法。
第二十五方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第四方面所述的方法。
第二十六方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第二十七方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第二十八方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面所述的方法。
第二十九方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第四方面所述的方法
第三十方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面、第二方面、第三方面或第四方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第三十一方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法,或者执行上述第二方面所述的方法,或者执行上述第三方面所述的方法,或者执行上述第四方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构示意图;
图2是本公开实施例提供的一种信道状态信息CSI反馈的确定方法的流程示意图;
图3是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法的流程示意图;
图3a是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法的流程示意图;
图4是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图4a是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法的流程示意图;
图5是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图6是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图7是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图8是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图9是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图10是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图11是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图12是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图13是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图14是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图15是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图16是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法的流程示意图;
图17是本公开实施例提供的一种通信装置的结构示意图;
图18是本公开实施例提供的另一种通信装置的结构示意图;
图19是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为了便于理解,首先介绍本公开涉及的术语。
1、传输配置指示(transmission configuration indication,TCI)
用于告知终端设备物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)对应的解调参考信号,与网络设备发送的哪个同步信号块(Synchronization Signal Block,SSB)或信道状态信息参考信号(channel state information reference signal,CSIRS)为共站址;或告知终端设备物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)对应的 解调参考信号与终端发送的哪个参考信号(比如SRS)或基站发送的哪个SSB或CSIRS为共站址。其中共站址包含以下传输参数之一:平均时延,时延扩展,多普勒频移,多普勒扩展,空间关系信息,和空间接收参数。
2、发射接收节点TRP
TRP相当于传统的基站,但在一些情况下,一个小区可能不止一个trp来覆盖,而是由多个trp联合覆盖。
3、下行控制信息(downlink control information,DCI)
由下行物理控制信道(physical downlink control channel,PDCCH)承载的,网络设备发给终端设备的下行控制信息,包括上下行资源分配、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)信息、功率控制等。
4、参考信号(reference signal,RS)
参考信号就是“导频”信号,是由发射端提供给接收端用于信道估计或信道探测的一种已知信号。可以用于终端设备的相干检测和解调、波束测量、信道状态信息测量或网络设备的相干检测和监测、或信道质量测量等。
5、基向量
基向量包含SD basis和/或FD basis。SD basis,又称波束基向量或波束,即指示终端设备选中了的波束beam,比如N1*N2个端口中选择了L个波束。FD basis即指示终端设备选中的频域基向量,比如,针对N3个频域基向量,选中了其中M个频域基向量。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备,比如TRP和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11、一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11包括演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本公开中,任一个实施例提供的一种信道状态信息CSI反馈的确定方法可以单独执行,或是结合其他实施例中的可能的实现方法一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一 些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
取决于语境,如在此所使用的词语“如果”及“响应于”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在多TRP做相干联合传输(coherent joint transmission,CJT)时,由于多个TRP所处的位置可能不同,因此CSI反馈中的基向量是针对每个TRP的还是针对TRP组的,网络设备与终端设备需要理解一致,否则,可能会影响基于多TRP相干联合传输的性能。本公开提出的CSI反馈的确定方法,可以使得网络设备与终端设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图2,图2是本公开实施例提供的一种信道状态信息CSI反馈的确定方法流程示意图,该方法由网络设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤201,向终端设备发送第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位。
其中,基向量可以包括波束基向量和频域基向量的至少一种。资源单位包括以下至少一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
可选的,SD basis和FD basis可以是基于不同的资源单位选择的。即网络设备可以分别指示波束基向量对应的资源单位和频域基向量对应的资源单位。比如,FD basis基于一个CSI RS资源选择的,SD basis基于多个CSI RS选择的等等,本公开对此不做限定。
本公开中,在确定了基向量选择时基于的资源单位,即可根据资源单位与TRP的对应关系,确定选择的基向量是针对TRP的,还是针对TRP组的。
举例来说,不同TRP对应不同的CSI RS资源,若选择基向量时基于的资源单位为一个CSI RS资源,即选择的基向量是针对该一个CSI RS资源对应的TRP的;或者,若选择基向量时基于的资源单位为多个CSI RS资源,即选择的基向量是针对该多个CSI RS资源对应的多个TRP的,即是针对TRP组的。或者,不同TRP对应一个CSI RS资源的不同端口组,若选择基向量时基于的资源单位为一个CSI RS资源的一个端口组,即选择的基向量是针对该一个CSI RS资源的一个端口组对应的一个TRP的;或者,若选择基向量时基于的资源单位为一个CSI RS资源的多个端口组的,即选择的基向量是针对该多个CSI RS资源的多个端口组对应的多个TRP的,即是针对TRP组的。
本公开中,网络设备首先确定终端设备选择基向量时基于的资源单位,进而通过第一指示信息指示给终端设备。从而终端设备即可根据第一指示信息中指示的资源单位的数量和/或类型,进行基向量选择。
可选的,若第一指示信息中包括至少一个第一CSIRS集(set),每个第一CSI RS集中包含一个CSI RS资源。则该第一指示信息,可以用于向终端设备指示资源单位为每个第一CSI RS集中包含的一个CSI RS资源。或者,该第一指示信息,也可以用于向终端设备指示资源单位为至少一个第一CSI RS集中包含的全部CSI RS资源。
举例来说,第一指示信息中包含CSI RS set#1和CSI RS set#2,其中,CSI RS set#1和CSI RS set#2中分别包含一个CSI RS。那么终端设备可以确定CSI RS set#1中的一个CSI RS资源为一个资源单位,CSI RS set#2中的一个CSI RS资源也为一个资源单位。那么终端设备以CSI RS set#1中的一个CSI RS资源为一个资源单位进行基向量选择,以CSI RS set#2中的一个CSI RS资源为一个资源单位进行基向量选择。或者,终端设备,也可以确定CSI RS set#1中的一个CSI RS资源,与CSI RS set#2中的一个CSI RS资源,共两个CSI RS资源为资源单位。那么终端设备以两个CSI RS为资源单位进行基向量选择。
可选的,若第一指示信息中包括至少一个第二CSI RS集,每个第二CSI RS集中包含一个或多个CSI RS资源,则第一指示信息用于向终端设备指示资源单位为每个第二CSI RS集中包含的一个或多个CSI RS资源。
举例来说,第一指示信息中包含CSI RS set#1和CSI RS set#2,其中,CSI RS set#1中包含了CSI RS资源#1和CSI RS资源#2,CSI RS set#2中包含一个CSI RS资源#3。那么终端设备可以确定CSI RS set#1中的CSI RS资源#1和CSI RS资源#2为一个资源单位,CSI RS set#2中的一个CSI RS资源#3也为一个资源单位。那么终端设备以CSI RS资源#1和CSI RS资源#2为一个资源单位进行基向量选择,以CSI RS资源#3为一个资源单位进行基向量选择。
可选的,第一指示信息中还可以包括一个第三CSI RS集,第三CSI RS集中包含多个CSI RS资源。此时,第一指示信息,可以用于向终端设备指示资源单位为第三CSI RS集中多个CSI RS资源中的一个CSIRS资源。或者,第一指示信息,还可以用于向终端设备指示资源单位为多个CSI RS资源。
举例来说,第一指示信息中包含CSI RS set#3,其中,CSI RS set#3中包含多个CSI RS资源,比如包含CSI RS资源#1和CSI RS资源#2。那么终端设备可以确定CSI RS set#3中的每个CSI RS资源为一个资源单位,即确定CSI RS资源#1为一个资源单位,CSI RS资源#2为一个资源单位。那么终端设备以CSI RS资源#1为一个资源单位进行基向量选择,以CSI RS资源#2为一个资源单位进行基向量选择。或者,终端设备,也可以确定CSI RS set#3中的多个CSI RS资源为资源单位,即确定CSI RS资源#1和CSI RS资源#2为一个资源单位。那么终端设备以CSI RS资源#1和CSI RS资源#2为一个资源单位进行基向量选择。
可选的,第一指示信息中还可以包括一个CSI RS资源,所述CSI RS资源包括N个第一端口组,N为正整数。此时,第一指示信息,可以用于向终端设备指示资源单位为CSI RS资源的每个第一端口组。或者,第一指示信息,还可以用于向终端设备指示资源单位为CSI RS资源的全部第一端口组。
举例来说,第一指示信息中包含一个CSI RS资源CSI RS#3,其中,CSI RS #3包括的端口数目为32,共4个端口组。那么终端设备可以确定CSI RS #3中的每个端口组为一个资源单位,即终端设备可以每个端口组为一个资源单位进行基向量选择。或者,终端设备,也可以确定CSI RS #3中的4个端口组为一个资源单位,即以四个端口组为资源单位进行基向量选择。
可选的,网络设备可以将每个端口组对应的端口数量及标识发送给终端设备,或者终端设备也可以根据协议约定确定,本公开对此不做限定。
举例来说,每个端口组对应的端口数量和标识间的映射关系可以如下任一种。
映射关系1:每个端口组对应的端口数量相同且端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,则映射关系1具体为:端口#0至#7为第一个端口组,端口#8至#15为第二个端口组,端口#16至#23为第三个端口组,端口#24至#31为第四个端口组。或者,若分成2个端口组,则映射关系1具体为:端口#0至#15为第一个端口组,端口#16至#31为第二个端口组。
映射关系2:每个端口组对应的端口数量相同且每两个端口不连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,则第i个端口对应的端口标识为4N+i-1,i的取值为1,2,3或4,N为0至7的整数,即映射关系2:端口#0,#4,#8,#12,#16,#20,#24,#28为第一个端口组,端口#1,#5,#9,#13,#17,#21,#25,#29为第二个端口组,端口#2,#6,#10,#14,#18,#22,#26,#30为第三个端口组,端口#3,#7,#11,#15,#19,#23,#27,#31为第四个端口组。或者,若分成2个端口组,则第i个端口对应的端口标识为2N+i-1,i的取值为1或2,N为0至15的整数,即映射关系2:端口标识为偶数的为第一个端口组,端口标识为奇数的为第二个端口组。
映射关系3:每个端口组对应的端口数量相同且每两个端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含4组连续的2个端口,4组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#8,#9,#16,#17,#24,#25为第一个端口组,端口#2,#3,#10,#11,#18,#19,#26,#27为第二个端口组,端口#4,#5,#12,#13,#20,#21,#28,#29为第三个端口组,端口#6,#7,#14,#15,#22,#23,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续4个端口为一组,每组内的4个端口包含2组连续的2个端口,2组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#4,#5,#8,#9,#12,#13,#16,#17,#20,#21,#24,#25,#28,#29为第一个端口组,其它端口为第二个端口组。
映射关系4:每个端口组对应的端口数量相同且每四个端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续16个端口为一组,每组内的16个端口包含4个连续的4个端口,4个连续的4个端口分在不同的端口组,即映射关系4为:端口#0,#1,#2,#3,#16,#17,#18,#19为第一个端口组,端口#4,#5,#6,#7,#20,#21,#22,#23为第二个端口组,端口#8,#9,#10,#11,#24,#25,#26,#27为第三个端口组,端口#12, #13,#14,#15,#28,#29,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含2个连续的4个端口,2个连续的4个端口分在不同的端口组,即映射关系4:端口#0,#1,#2,#3,#8,#9,#10,#11,#16,#17,#18,#19,#24,#25,#26,#27为第一个端口组,其它端口为第二个端口组。
本公开中,网络设备向终端设备发送第一指示信息,以指示终端设备选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图3,图3是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由网络设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤301,向终端设备发送第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位。
其中,上述步骤301的具体实现过程,可以参在本公开任一实施例的详细描述,此处不再赘述。
步骤302,响应于第一指示信息中包括多个第一CSIRS集,向终端设备发送第二指示信息,第二指示信息用于向终端设备指示至少两个第一CSI RS集为一组或指示至少两个第一CSI RS集对应的组标识,每个第一CSI RS集中包含一个CSI RS资源。
本公开中,若网络设备通过第一指示信息,向终端设备指示了多个第一CSI RS集,且终端设备选择基向量时基于的资源单位可能是多个第一CSI RS集,那么可以再向终端设备发送第二指示信息,以指示哪几个第一CSI RS集为一组或指示哪几个第一CSI RS集对应的组标识,即让终端设备确定为一组的多个第一CSI RS集内的多个CSI RS为一个资源单位,从而终端设备即可基于为一组的该几个第一CSI RS集中的多个CSI RS资源进行基向量选择。
另外,第二指示信息中未指示的第一CSI RS集,可能每个第一CSI RS集为一个资源单位;或者第二指示信息中未指示的全部第一CSI RS集为一组,即作为一个资源单位,本公开中对此不做限定。
举例来说,第一指示信息中包括CSI RS set#1、CSI RS set#2和CSI RS set#3,其中,CSI RS set#1、CSI RS set#2和CSI RS set#3中分别包含一个CSI RS。第二指示信息指示CSI RS set#2和CSI RS set#3为一组或指示CSI RS set#2和CSI RS set#3对应的组标识。从而终端设备即可确定CSI RS set#2和CSI RS set#3中包含的共2个CSI RS资源为一个资源单位。CSI RS set#1中的一个CSI RS资源为一个资源单位。那么终端设备以CSI RS set#2和CSI RS set#3中包含的共2两个CSI RS资源为一个资源单位进行基向量选择,以CSI RS set#1中的一个CSI RS资源为一个资源单位进行基向量选择。
本公开中,网络设备通过第一指示信息向终端设备指示多个第一CSI RS资源集,进而再通过第二指示信息向终端设备指示哪几个资源集为一组或指示哪几个资源集对应的组标识,从而使得终端设备确定为一组的资源集中包含的CSI RS资源为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图3a,图3a是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由网络设备执行。如图3a所示,该方法可以包括但不限于如下步骤:
步骤303,向终端设备发送第一指示信息,第一指示信息中包括至少一个第二CSI RS集,每个第二CSI RS集中包含一个或多个CSI RS资源,第一指示信息用于向终端设备指示资源单位为每个第二CSI RS集中包含的所述一个或多个CSI RS资源。
举例来说,第一指示信息中包含CSI RS set#1和CSI RS set#2,其中,CSI RS set#1中包含了CSI RS资源#1和CSI RS资源#2,CSI RS set#2中包含一个CSI RS资源#3。那么终端设备可以确定CSI RS set#1中的CSI RS资源#1和CSI RS资源#2为一个资源单位,CSI RS set#2中的一个CSI RS资源#3也为一个资源单位。那么终端设备以CSI RS资源#1和CSI RS资源#2为一个资源单位进行基向量选择,以CSI RS资源#3为一个资源单位进行基向量选择。
本公开中,网络设备通过第一指示信息向终端设备指示至少一个包含一个或多个CSI RS资源的第二CSI RS资源集,从而使得终端设备确定每个第二CSI RS集中的一个或多个CSI RS为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。请参见图4,图4是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由网络设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤401,向终端设备发送第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位。
其中,上述步骤401的具体实现过程,可以参在本公开任一实施例的详细描述,此处不再赘述。
步骤402,响应于第一指示信息中包括一个第三CSI RS集,第三CSI RS集中包含多个CSI RS资源,向所述终端设备发送第三指示信息,所述第三指示信息用于向所述终端设备指示所述第三CSI RS集中的至少两个CSI RS资源为一组或指示所述第三CSI RS集中的至少两个CSI RS对应的组标识。
本公开中,若网络设备通过第一指示信息,向终端设备指示了一个包含多个CSI RS资源的第三CSI RS集,且终端设备选择基向量时基于的资源单位可以是第三CSI RS集中的一个或多个CSI RS资源,那么可以再向终端设备发送第三指示信息,以指示哪几个CSI RS资源为一组或指示哪几个CSI RS对应的组标识,从而终端设备即可确定该几个CSI RS资源为一个资源单位。
另外,第三指示信息中未指示的第三CSI RS集中的CSI RS资源,可能每个CSI RS资源为一个资源单位;或者第三指示信息中未指示的全部CSI RS资源为一组,即作为一个资源单位,本公开中对此不做限定。
举例来说,第一指示信息中包括CSI RS set#3,其中,CSI RS set#3中包含的CSI RS资源为:CSI RS #1、CSI RS #2、CSI RS #3和CSI RS #4。第三指示信息指示CSI RS #2和CSI RS #3为一组或指示CSI RS #2和CSI RS #3对应的组标识。从而终端设备即可确定CSI RS资源CSI RS #2和CSI RS#3为一个资源单位。那么终端设备以CSI RS #2和CS I RS#3为一个资源单位进行基向量选择。另外,CSI RS资源CSI RS #1和CSI RS #4分别各自为一个资源单位,那么终端设备以CSI RS #1为一个资源单位进行基向量选择,那么终端设备以CSI RS #4为一个资源单位进行基向量选择;或者CSI RS #1和CSI RS #4一起作为一个资源单位,那么终端设备以CSI RS #1和CSI RS#4为一个资源单位进行基向量选择。
本公开中,网络设备首先通过第一指示信息向终端设备指示一个包含多个CSI RS资源的资源集,进而再通过第三指示信息向终端设备指示哪几个CSI RS资源为一组或指示哪几个CSI RS对应的组标识,从而终端设备即可确定该一组中的几个CSI RS资源为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图4a,图4a是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由网络设备执行。如图4a所示,该方法可以包括但不限于如下步骤:
步骤403,向终端设备发送第一指示信息,第一指示信息中包括一个CSI RS资源,CSI RS资源包括N个第一端口组,N为正整数,第一指示信息用于向终端设备指示资源单位为CSI RS资源的每个第一端口组。
本公开中,若网络设备通过第一指示信息,向终端设备指示了一个包含多个端口组的CSI RS资源,那么终端设备可以确定CSI RS资源的每个第一端口组为资源单位。
举例来说,第一指示信息中包含一个CSI RS资源CSI RS#3,其中,CSI RS #3包括的端口数目为32,共4个端口组。那么终端设备可以确定CSI RS #3中的每个端口组为一个资源单位,即终端设备可以每个端口组为一个资源单位进行基向量选择。
本公开中,网络设备首先通过第一指示信息向终端设备指示一个包含多N个端口组的CSI RS资源,从而终端设备即可确定每个端口组为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图5,图5是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由网络设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤501,向终端设备发送第一指示信息,所述第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位。
步骤502,响应于第一指示信息中包括一个CSI RS资源,CSIRS资源包括多个第一端口组,向终端设备发送第四指示信息,第四指示信息用于向终端设备指示至少两个第一端口组为一组或指示至少两个第一端口组对应的组标识。
本公开中,若网络设备通过第一指示信息,向终端设备指示了一个包含多个端口组的CSI RS资源,且终端设备选择基向量时基于的资源单位并非该CSI RS资源的全部端口组,或者,并非每一个端口组都可以独立作为一个资源单位,那么可以再向终端设备发送第四指示信息,以指示哪几个端口组为一组或指示哪几个端口组对应的组标识,从而终端设备即可确定该几个端口组为一个资源单位。
另外,第四指示信息中未指示的CSI RS的端口组,可能每个端口组为一个资源单位;或者第四指示信息中未指示的全部端口组为一组,即作为一个资源单位,本公开中对此不做限定。
举例来说,第一指示信息中包括CSI RS资源#1对应的4个端口组:端口组#1、端口组#2、端口组#3及端口组#4。第四指示信息指示端口组#2和#3为一组,或指示端口组#2和#3对应的组标识。从 而终端设备即可确定CSI RS资源#1的端口组#2和端口组#3为一个资源单位。那么终端设备以CSI RS资源#1的端口组#2和端口组#3为一个资源单位进行基向量选择。另外,CSI RS资源#1中的端口组#1和端口组#4可能分别各自为一个资源单位,那么终端设备以CSI RS资源#1的端口组#1为一个资源单位进行基向量选择,以CSI RS资源#1的端口组#4为一个资源单位进行基向量选择;或者端口组#1和端口组#4一起作为一个资源单位,以CSI RS资源#1的端口组#1和端口组#4为一个资源单位进行基向量选择。
可选的,网络设备还可以向终端设备发送第五指示信息,第五指示信息用于向终端设备指示每个第一端口组与至少一个端口标识的映射关系。
举例来说,每个端口组与端口标识间的映射关系可以如下任一种。
映射关系1:每个端口组对应的端口数量相同且端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,则映射关系1具体为:端口#0至#7为第一个端口组,端口#8至#15为第二个端口组,端口#16至#23为第三个端口组,端口#24至#31为第四个端口组。或者,若分成2个端口组,则映射关系1具体为:端口#0至#15为第一个端口组,端口#16至#31为第二个端口组。
映射关系2:每个端口组对应的端口数量相同且每两个端口不连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,则第i个端口对应的端口标识为4N+i-1,i的取值为1,2,3或4,N为0至7的整数,即映射关系2:端口#0,#4,#8,#12,#16,#20,#24,#28为第一个端口组,端口#1,#5,#9,#13,#17,#21,#25,#29为第二个端口组,端口#2,#6,#10,#14,#18,#22,#26,#30为第三个端口组,端口#3,#7,#11,#15,#19,#23,#27,#31为第四个端口组。或者,若分成2个端口组,则第i个端口对应的端口标识为2N+i-1,i的取值为1或2,N为0至15的整数,即映射关系2:端口标识为偶数的为第一个端口组,端口标识为奇数的为第二个端口组。
映射关系3:每个端口组对应的端口数量相同且每两个端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含4组连续的2个端口,4组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#8,#9,#16,#17,#24,#25为第一个端口组,端口#2,#3,#10,#11,#18,#19,#26,#27为第二个端口组,端口#4,#5,#12,#13,#20,#21,#28,#29为第三个端口组,端口#6,#7,#14,#15,#22,#23,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续4个端口为一组,每组内的4个端口包含2组连续的2个端口,2组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#4,#5,#8,#9,#12,#13,#16,#17,#20,#21,#24,#25,#28,#29为第一个端口组,其它端口为第二个端口组。
映射关系4:每个端口组对应的端口数量相同且每四个端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续16个端口为一组,每组内的16个端口包含4个连续的4个端口,4个连续的4个端口分在不同的端口组,即映射关系4为:端口#0,#1,#2,#3,#16,#17,#18,#19为第一个端口组,端口#4,#5,#6,#7,#20,#21,#22,#23为第二个端口组,端口#8,#9,#10,#11,#24,#25,#26,#27为第三个端口组,端口#12,#13,#14,#15,#28,#29,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含2个连续的4个端口,2个连续的4个端口分在不同的端口组,即映射关系4:端口#0,#1,#2,#3,#8,#9,#10,#11,#16,#17,#18,#19,#24,#25,#26,#27为第一个端口组,其它端口为第二个端口组。
可选的,网络设备也可以不指示每个端口组与端口标识的映射关系,而由终端设备基于默认的映射关系确定。默认的映射关系包含上述的映射关系1,2,3,4的任一项。举例来说,默认的映射关系为映射关系1,即每个端口组包含的端口数量相同、且连续,那么一个CSI RS资源对应32个端口,标识分别为#0至#31,那么若分为4个端口组,则可以确定端口标识#0至#7为一个端口组,端口#8至#15为一个端口组,端口#16至#23为一个端口组,端口#24至#31为一个端口组,等等,本公开对此不做限定。
本公开中,网络设备首先通过第一指示信息向终端设备指示一个包含多个端口组的CSI RS资源,进而再通过第四指示信息向终端设备指示哪几个端口组为一组或指示哪几个端口组对应的组标识,从而终端设备即可确定该一组端口组为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图6,图6是本公开实施例提供的一种又一种信道状态信息CSI反馈的确定方法流程示意图,该方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤601,接收网络设备发送的第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位。
其中,基向量包括波束基向量和频域基向量的至少一种,资源单位包括以下至少一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
可选的,SD basis和FD basis可以是基于不同的资源单位选择的。即网络设备可以分别指示波束基向量对应的资源单位和频域基向量对应的资源单位。比如,FD basis基于一个CSI RS资源选择的,SD basis基于多个CSI RS选择的等等,本公开对此不做限定。
本公开中,在确定了基向量选择时基于的资源单位,即可根据资源单位与TRP的对应关系,确定选择的基向量是针对TRP的,还是针对TRP组的。
举例来说,不同TRP对应不同的CSI RS资源,若选择基向量时基于的资源单位为一个CSI RS资源,即选择的基向量是针对该一个CSI RS资源对应的TRP的;或者,若选择基向量时基于的资源单位为多个CSI RS资源,即选择的基向量是针对该多个CSI RS资源对应的多个TRP的,即是针对TRP组的。或者,不同TRP对应一个CSI RS资源的不同端口组,若选择基向量时基于的资源单位为一个CSI RS资源的一个端口组,即选择的基向量是针对该一个CSI RS资源的一个端口组对应的一个TRP的;或者,若选择基向量时基于的资源单位为一个CSI RS资源的多个端口组的,即选择的基向量是针对该多个CSI RS资源的多个端口组对应的多个TRP的,即是针对TRP组的。
本公开中,网络设备首先确定终端设备选择基向量时基于的资源单位,进而通过第一指示信息指示给终端设备。从而终端设备即可根据第一指示信息中指示的资源单位的数量和/或类型,进行基向量选择。
本公开中,终端设备接收网络设备发送的第一指示信息后,即可基于第一指示信息,确定选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图7,图7是本公开实施例提供的又一种信道状态信息CSI反馈的确定方法流程示意图,该方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤701,接收网络设备发送的第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位,第一指示信息中包括至少一个第一CSIRS集,每个第一CSI RS集中包含一个CSI RS资源。
步骤702,分别将每个第一CSI RS集中包含的一个CSI RS资源,确定为资源单位。
可选的,终端设备也可以确定资源单位为第一指示信息指示的至少一个第一CSI RS集中包含的全部CSI RS资源。
举例来说,第一指示信息中包含CSI RS set#1和CSI RS set#2,其中,CSI RS set#1和CSI RS set#2中分别包含一个CSI RS。那么终端设备可以确定CSI RS set#1中的一个CSI RS资源为一个资源单位,CSI RS set#2中的一个CSI RS资源也为一个资源单位。那么终端设备以CSI RS set#1中的一个CSI RS资源为一个资源单位进行基向量选择,以CSI RS set#2中的一个CSI RS资源为一个资源单位进行基向量选择。或者,终端设备,也可以确定CSI RS set#1中的一个CSI RS资源,与CSI RS set#2中的一个CSI RS资源,共两个CSI RS资源为资源单位。那么终端设备以两个CSI RS为资源单位进行基向量选择。
本公开中,终端设备接收网络设备发送的至少一个第一CSI RS集后,即可将每个第一CSI RS集中包含的一个CSI RS确定为选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图8,图8是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由终端设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤801,接收网络设备发送的第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位,第一指示信息中包括至多个第一CSIRS集,每个第一CSI RS集中包含一个CSI RS资源。
步骤802,接收所述网络设备发送的第二指示信息,第二指示信息用于向终端设备指示至少两个第一CSI RS集为一组或指示至少两个第一CSI RS集对应的组标识。
步骤803,将至少两个第一CSI RS集中包含的CSI RS资源确定为资源单位。
本公开中,若网络设备通过第一指示信息,向终端设备指示了多个第一CSI RS集,且终端设备选择基向量时基于的资源单位可能是多个第一CSI RS集,那么可以再向终端设备发送第二指示信息,以 指示哪几个第一CSI RS集为一组或指示哪几个第一CSI RS集对应的组标识,那么终端设备以两个CSI RS为资源单位进行基向量选择。从而终端设备即可基于为一组的该几个第一CSI RS集中的多个CSI RS资源进行基向量选择。
另外,第二指示信息中未指示的第一CSI RS集,可能每个第一CSI RS集为一个资源单位;或者第二指示信息中未指示的全部第一CSI RS集为一组,即作为一个资源单位,本公开中对此不做限定。
举例来说,第一指示信息中包括CSI RS set#1、CSI RS set#2和CSI RS set#3,其中,CSI RS set#1、CSI RS set#2和CSI RS set#3中分别包含一个CSI RS。第二指示信息指示CSI RS set#2和CSI RS set#3为一组或指示CSI RS set#2和CSI RS set#3对应的组标识。从而终端设备即可确定CSI RS set#2和CSI RS set#3中包含的共2个CSI RS资源为一个资源单位。CSI RS set#1中的一个CSI RS资源为一个资源单位。那么终端设备以CSI RS set#2和CSI RS set#3中包含的共2两个CSI RS资源为一个资源单位进行基向量选择,以CSI RS set#1中的一个CSI RS资源为一个资源单位进行基向量选择。
本公开中,终端设备通过第一指示信息接收网络设备指示的多个第一CSI RS资源集,进而再通过第二指示信息接收网络设备指示的哪几个资源集为一组或指示哪几个资源集对应的组标识,从而使得终端设备确定为一组的资源集中包含的CSI RS资源为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图9,图9是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由终端设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤901,接收网络设备发送的第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位,第一指示信息中包括至少一个第二CSI RS集,每个第二CSI RS集中包含一个或多个CSI RS资源。
步骤902,分别将每个第二CSI RS集包含的一个或多个CSI RS资源,确定为资源单位。
举例来说,第一指示信息中包含CSI RS set#1和CSI RS set#2,其中,CSI RS set#1中包含了CSI RS资源#1和CSI RS资源#2,CSI RS set#2中包含一个CSI RS资源#3。那么终端设备可以确定CSI RS set#1中的CSI RS资源#1和CSI RS资源#2为一个资源单位,CSI RS set#2中的一个CSI RS资源#3也为一个资源单位。那么终端设备以CSI RS资源#1和CSI RS资源#2为一个资源单位进行基向量选择,以CSI RS资源#3为一个资源单位进行基向量选择。
本公开中,终端设备通过第一指示信息接收网络设备指示的至少一个第二CSI RS资源集之后,即可分别将每个第二CSI集中包含的CSI资源确定为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图10,图10是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由终端设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤1001,接收网络设备发送的第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位,第一指示信息中包括一个第三CSI RS集,第三CSI RS集中包含多个CSI RS资源。
此时,终端设备可以确定资源单位为第三CSI RS集中包含的多个CSI RS资源中的一个CSIRS资源或者多个CSI RS资源。
举例来说,第一指示信息中包含CSI RS set#3,其中,CSI RS set#3中包含多个CSI RS。那么终端设备可以确定CSI RS set#3中的每个CSI RS资源为一个资源单位。或者,终端设备,也可以确定CSI RS set#3中的多个CSI RS资源为资源单位。
步骤1002,接收网络设备发送的第三指示信息,第三指示信息用于向所述终端设备指示所述第三CSI RS集中的至少两个CSI RS资源为一组或指示所述第三CSI RS集中的至少两个CSI RS资源对应的组标识。
步骤1003,将一组中的至少两个CSI RS资源,确定为资源单位。
本公开中,若网络设备通过第一指示信息,向终端设备指示了一个包含多个CSI RS资源的第三CSI RS集,且终端设备选择基向量时基于的资源单位并非第三CSI RS集中的全部CSI RS资源,那么可以再向终端设备发送第三指示信息,以指示哪几个CSI RS资源为一组或指示哪几个CSI RS资源对应的组标识,从而终端设备即可确定该几个CSI RS资源为一个资源单位。
另外,第三指示信息中未指示的第三CSI RS集中的CSI RS资源,可能每个CSI RS资源为一个资源单位;或者第三指示信息中未指示的全部CSI RS资源为一组,即作为一个资源单位,本公开中对此 不做限定。
举例来说,第一指示信息中包括CSI RS set#3,其中,CSI RS set#3中包含的CSI RS资源为:CSI RS #1、CSI RS #2、CSI RS #3和CSI RS #4。第三指示信息指示CSI RS #2和CSI RS #3为一组或指示CSI RS #2和CSI RS #3对应的组标识。从而终端设备即可确定CSI RS资源CSI RS #2和CSI RS#3为一个资源单位。那么终端设备以CSI RS #2和CS I RS#3为一个资源单位进行基向量选择。另外,CSI RS资源CSI RS #1和CSI RS #4分别各自为一个资源单位,那么终端设备以CSI RS #1为一个资源单位进行基向量选择,以CSI RS #4为一个资源单位进行基向量选择;或者CSI RS #1和CSI RS #4一起作为一个资源单位,那么终端设备以CSI RS #1和CSI RS#4为一个资源单位进行基向量选择。
可选的,可选的,若终端设备未接收到第三指示信息,则可以将第三CSI RS集中包含的多个CSI RS资源中的一个CSI RS资源,确定为资源单位。
本公开中,终端设备首先通过第一指示信息接收网络设备指示的一个包含多个CSI RS资源的第三CSI RS集,进而再通过第三指示信息向终端设备指示哪几个CSI RS资源为一组或指示哪几个CSI RS资源对应的组标识,从而终端设备即可确定该一组中的几个CSI RS资源为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图11,图11是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由终端设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤1101,接收网络设备发送的第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位,第一指示信息中包括一个CSI RS资源,CSIRS资源包括N个第一端口组,所述N为正整数。
步骤1102,将CSI RS资源的一个第一端口组,确定为资源单位。
本公开中,若网络设备通过第一指示信息,向终端设备指示了一个包含多个端口组的CSI RS资源,则终端设备可以将该CSI RS资源的一个第一端口组确定为资源单位。
举例来说,第一指示信息中包含一个CSI RS资源CSI RS#3,其中,CSI RS #3包括的端口数目为32,共4个端口组。那么终端设备可以确定CSI RS #3中的每个端口组为一个资源单位,即终端设备即可以每个端口组为一个资源单位进行基向量选择。
可选的,终端设备还可以接收网络设备发送的第五指示信息,第五指示信息用于向终端设备指示每个第一端口组与至少一个端口标识的映射关系。
举例来说,每个端口组与端口标识间的映射关系可以如下任一种。
映射关系1:每个端口组对应的端口数量相同且端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,则映射关系1具体为:端口#0至#7为第一个端口组,端口#8至#15为第二个端口组,端口#16至#23为第三个端口组,端口#24至#31为第四个端口组。或者,若分成2个端口组,则映射关系1具体为:端口#0至#15为第一个端口组,端口#16至#31为第二个端口组。
映射关系2:每个端口组对应的端口数量相同且每两个端口不连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,则第i个端口对应的端口标识为4N+i-1,i的取值为1,2,3或4,N为0至7的整数,即映射关系2:端口#0,#4,#8,#12,#16,#20,#24,#28为第一个端口组,端口#1,#5,#9,#13,#17,#21,#25,#29为第二个端口组,端口#2,#6,#10,#14,#18,#22,#26,#30为第三个端口组,端口#3,#7,#11,#15,#19,#23,#27,#31为第四个端口组。或者,若分成2个端口组,则第i个端口对应的端口标识为2N+i-1,i的取值为1或2,N为0至15的整数,即映射关系2:端口标识为偶数的为第一个端口组,端口标识为奇数的为第二个端口组。
映射关系3:每个端口组对应的端口数量相同且每两个端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含4组连续的2个端口,4组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#8,#9,#16,#17,#24,#25为第一个端口组,端口#2,#3,#10,#11,#18,#19,#26,#27为第二个端口组,端口#4,#5,#12,#13,#20,#21,#28,#29为第三个端口组,端口#6,#7,#14,#15,#22,#23,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续4个端口为一组,每组内的4个端口包含2组连续的2个端口,2组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#4,#5,#8,#9,#12,#13,#16,#17,#20,#21,#24,#25,#28,#29为第一个端口组,其它端口为第二个端口组。
映射关系4:每个端口组对应的端口数量相同且每四个端口连续。举例来说,一个CSI RS资源对 应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续16个端口为一组,每组内的16个端口包含4个连续的4个端口,4个连续的4个端口分在不同的端口组,即映射关系4为:端口#0,#1,#2,#3,#16,#17,#18,#19为第一个端口组,端口#4,#5,#6,#7,#20,#21,#22,#23为第二个端口组,端口#8,#9,#10,#11,#24,#25,#26,#27为第三个端口组,端口#12,#13,#14,#15,#28,#29,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含2个连续的4个端口,2个连续的4个端口分在不同的端口组,即映射关系4:端口#0,#1,#2,#3,#8,#9,#10,#11,#16,#17,#18,#19,#24,#25,#26,#27为第一个端口组,其它端口为第二个端口组。
可选的,网络设备也可以不指示每个端口组与端口标识的映射关系,而由终端设备基于默认的映射关系确定。默认的映射关系包含上述的映射关系1,2,3,4的任一项。举例来说,默认的映射关系为映射关系1,即每个端口组包含的端口数量相同、且连续,那么一个CSI RS资源对应32个端口,标识分别为#0至#31,那么若分为4个端口组,则可以确定端口标识#0至#1为一个端口组,端口#8至#15为一个端口组,端口#16至#23为一个端口组,端口#24至#31为一个端口组,等等,本公开对此不做限定。
本公开中,网络设备首先通过第一指示信息向终端设备指示一个包含多个端口组的CSI RS资源,从而终端设备即可确定该多组端口中的一组端口组为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图12,图12是本公开实施例提供的一种又一种信道状态信息CSI反馈的确定方法流程示意图,该方法由终端设备执行。如图12所示,该方法可以包括但不限于如下步骤:
步骤1201,接收网络设备发送的第一指示信息,其中,第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位,第一指示信息中包括一个CSI RS资源,CSIRS资源包括N个第一端口组,N大于1。
步骤1202,接收网络设备发送的第四指示信息,第四指示信息用于向终端设备指示至少两个第一端口组为一组或指示至少两个第一端口组对应的组标识。
步骤1203,将一组中的至少两个第一端口组,确定为资源单位。
本公开中,若网络设备通过第一指示信息,向终端设备指示了一个包含多个端口组的CSI RS资源,且终端设备选择基向量时基于的资源单位并非该CSI RS资源的全部端口组,或者,并非每一个端口组都可以独立作为一个资源单位,那么可以再向终端设备发送第四指示信息,以指示哪几个端口组为一组或指示哪几个端口组对应的组标识,从而终端设备即可确定该几个端口组为一个资源单位。
另外,第四指示信息中未指示的CSI RS的端口组,可能每个端口组为一个资源单位;或者第四指示信息中未指示的全部端口组为一组,即作为一个资源单位,本公开中对此不做限定。
举例来说,第一指示信息中包括CSI RS资源#1对应的4个端口组:端口组#1、端口组#2、端口组#3及端口组#4。第四指示信息指示端口组#2和#3为一组或指示端口组#2和#3对应的组标识。从而终端设备即可确定CSI RS资源#1的端口组#2和端口组#3为一个资源单位。那么终端设备以CSI RS资源#1的端口组#2和端口组#3为一个资源单位进行基向量选择。另外,CSI RS资源#1中的端口组#1和端口组#4可能分别各自为一个资源单位,那么终端设备以CSI RS资源#1的端口组#1为一个资源单位进行基向量选择,以CSI RS资源#1的端口组#4为一个资源单位进行基向量选择;或者端口组#1和端口组#4一起作为一个资源单位,以CSI RS资源#1的端口组#1和端口组#4为一个资源单位进行基向量选择。
本公开中,网络设备首先通过第一指示信息向终端设备指示一个包含多个端口组的CSI RS资源,进而再通过第四指示信息向终端设备指示哪几个端口组为一组或指示哪几个端口组对应的组标识,从而终端设备即可确定该一组端口组为一个资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
本公开中,还可以由终端设备确定选择基向量时基于的资源单位,并将确定的资源单位发送给网络设备,下面结合图13至图16,对该种CSI反馈的确定方法进行详细说明。
请参见图13,图13是本公开实施例提供的一种信道状态信息CSI反馈的确定方法流程示意图,该方法由终端设备执行。如图13所示,该方法可以包括但不限于如下步骤:
步骤1301,向网络设备发送第一指示信息,其中,第一指示信息用于向所述网络设备指示CSI反馈中的基向量选择时基于的资源单位。
其中,基向量包括波束基向量和频域基向量的至少一种,所述资源单位包括以下至少一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个 端口组。
可选的,SD basis和FD basis可以是基于不同的资源单位选择的。即终端设备可以分别指示波束基向量对应的资源单位和频域基向量对应的资源单位。比如,FD basis基于一个CSI RS资源选择的,SD basis基于多个CSI RS选择的等等,本公开对此不做限定。
可选的,第一指示信息中包括以下任一项:至少一个CSIRS集标识;至少一个CSIRS资源标识;一个CSI RS资源的一个端口组标识;一个CSI RS资源的多个端口组标识。
举例来说,若第一指示信息中包括至少一个CSI RS集标识,则表征终端设备是基于该至少一个CSIRSset标识中的CSIRS资源(一个或多个)选择的基向量。具体的,若每个CSI RS集都只包含一个CSI RS资源,则表征终端设备是基于每个CSI RS集中的一个CSI RS资源选择的基向量。进一步,若每个CSI RS集只包含一个CSI RS资源,且第一指示信息还指示了至少两个CSI RS集为一组或指示了至少两个CSI RS集对应的组标识,则表征终端设备是基于组内的至少两个CSI RS集包含的至少两个CSI RS资源选择的基向量。若每个CSI RS集包含一个或多个CSI RS资源,则表征终端设备是基于每个CSI RS集中的一个或多个CSI RS资源选择的基向量。
或者,若第一指示信息中包括至少一个CSI RS资源标识,则表征终端设备是基于该至少一个CSIRS资源(一个或多个)选择的基向量。举例来说,若第一指示信息还指示了CSI RS资源#1和CSI RS资源#2为一组或指示了CSI RS资源#1和CSI RS资源#2对应的组标识,那么则表征终端设备是以CSI RS资源#1和CSI资源#2为资源单位进行的基向量选择。或者,若第一指示信息中指示了CSI RS资源#3,那么则表征终端设备是以CSI RS资源#3为资源单位进行的基向量选择。
或者,若第一指示信息中包括一个CSI RS资源的一个端口组标识,则表征终端设备基于该一个端口组选择的基向量。举例来说,第一指示信息中包括CSI RS资源#3的一个端口组#2的标识,则表征该终端设备是以CSI RS资源#3的端口组#2为资源单位,进行的基向量选择。
或者,若第一指示信息中包括一个CSI RS资源的多个端口组标识,则表征终端设备基于该多个端口组选择的基向量。举例来说,第一指示信息中指示了CSI RS资源#3的端口组#2和端口组#4为一组或指示了CSI RS资源#3的端口组#2和端口组#4对应的组标识,则表征该终端设备是以CSI RS资源#3的端口组#2和端口组#4为资源单位,进行的基向量选择。
本公开中,终端设备和网络设备在确定了基向量选择时基于的资源单位,即可根据资源单位与TRP的对应关系,确定选择的基向量是针对TRP的,还是针对TRP组的。
举例来说,不同TRP对应不同的CSI RS资源,若选择基向量时基于的资源单位为一个CSI RS资源,即选择的基向量是针对该一个CSI RS资源对应的TRP的;或者,若选择基向量时基于的资源单位为多个CSI RS资源,即选择的基向量是针对该多个CSI RS资源对应的多个TRP的,即是针对TRP组的。或者,不同TRP对应一个CSI RS资源的不同端口组,若选择基向量时基于的资源单位为一个CSI RS资源的一个端口组,即选择的基向量是针对该一个CSI RS资源的一个端口组对应的一个TRP的;或者,若选择基向量时基于的资源单位为一个CSI RS资源的多个端口组的,即选择的基向量是针对该多个CSI RS资源的多个端口组对应的多个TRP的,即是针对TRP组的。
可选的,终端设备可以基于CSI反馈发送第一指示信息。
可选的,CSI反馈中包含第一指示域及第二指示域,第一指示信息包含于第一指示域中,每个资源单位对应的基向量包含于第二指示域中。
由于由终端设备确定选择基向量时基于的资源单位的情况下,CSI上报的尺寸(size)可能会有变化。此时,如果每个TRP都独立选择基向量的话,比如4个TRP,需要4倍的信令。若有多个TRP可以一起选择基向量,则可以相应的减少信令。但是为了方便基站解码CSI反馈的信令,可以通过第一指示域来指示哪些TRP是独立确定,哪些TRP是联合确定。然后第二指示域再进一步指示每个TRP或TRP组选择的基向量。
本公开中,终端设备通过第一指示信息向网络设备指示选择基向量时基于的资源单位,从而网络设备即可确定终端设备选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图14,图14是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由终端设备执行。如图14所示,该方法可以包括但不限于如下步骤:
步骤1401,接收所述网络设备发送的第二指示信息,其中所述第二指示信息用于指示每个端口组标识与端口标识间的映射关系。
举例来说,每个端口组与端口标识间的映射关系可以如下任一种。
映射关系1:每个端口组对应的端口数量相同且端口连续。举例来说,一个CSI RS资源对应32个 端口,标识分别为#0至#31。若分成4个端口组,则映射关系1具体为:端口#0至#7为第一个端口组,端口#8至#15为第二个端口组,端口#16至#23为第三个端口组,端口#24至#31为第四个端口组。或者,若分成2个端口组,则映射关系1具体为:端口#0至#15为第一个端口组,端口#16至#31为第二个端口组。
映射关系2:每个端口组对应的端口数量相同且每两个端口不连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,则第i个端口对应的端口标识为4N+i-1,i的取值为1,2,3或4,N为0至7的整数,即映射关系2:端口#0,#4,#8,#12,#16,#20,#24,#28为第一个端口组,端口#1,#5,#9,#13,#17,#21,#25,#29为第二个端口组,端口#2,#6,#10,#14,#18,#22,#26,#30为第三个端口组,端口#3,#7,#11,#15,#19,#23,#27,#31为第四个端口组。或者,若分成2个端口组,则第i个端口对应的端口标识为2N+i-1,i的取值为1或2,N为0至15的整数,即映射关系2:端口标识为偶数的为第一个端口组,端口标识为奇数的为第二个端口组。
映射关系3:每个端口组对应的端口数量相同且每两个端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含4组连续的2个端口,4组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#8,#9,#16,#17,#24,#25为第一个端口组,端口#2,#3,#10,#11,#18,#19,#26,#27为第二个端口组,端口#4,#5,#12,#13,#20,#21,#28,#29为第三个端口组,端口#6,#7,#14,#15,#22,#23,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续4个端口为一组,每组内的4个端口包含2组连续的2个端口,2组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#4,#5,#8,#9,#12,#13,#16,#17,#20,#21,#24,#25,#28,#29为第一个端口组,其它端口为第二个端口组。
映射关系4:每个端口组对应的端口数量相同且每四个端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续16个端口为一组,每组内的16个端口包含4个连续的4个端口,4个连续的4个端口分在不同的端口组,即映射关系4为:端口#0,#1,#2,#3,#16,#17,#18,#19为第一个端口组,端口#4,#5,#6,#7,#20,#21,#22,#23为第二个端口组,端口#8,#9,#10,#11,#24,#25,#26,#27为第三个端口组,端口#12,#13,#14,#15,#28,#29,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含2个连续的4个端口,2个连续的4个端口分在不同的端口组,即映射关系4:端口#0,#1,#2,#3,#8,#9,#10,#11,#16,#17,#18,#19,#24,#25,#26,#27为第一个端口组,其它端口为第二个端口组。
可选的,终端设备也可以基于默认规则,确定每个端口组与端口标识间的映射关系。默认的映射关系包含上述的映射关系1,2,3,4的任一项。
举例来说,默认的映射关系为映射关系1,即每个端口组包含的端口数量相同、且连续,那么一个CSI RS资源对应32个端口,标识分别为#0至#31,那么若分为4个端口组,则可以确定端口标识#0至#7为一个端口组,端口#8至#15为一个端口组,端口#16至#23为一个端口组,端口#24至#31为一个端口组,等等,本公开对此不做限定。
步骤1402,向网络设备发送第一指示信息,其中,所述第一指示信息用于向所述网络设备指示CSI反馈中的基向量选择时基于的资源单位。
其中,步骤1402的具体实现方式,可以参照本公开任一实施例的详细描述,此次不再赘述。
本公开中,终端设备通过第一指示信息向网络设备指示选择基向量时基于的资源单位,从而网络设备即可确定终端设备选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图15,图15是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由网络设备执行。如图15所示,该方法可以包括但不限于如下步骤:
步骤1501,接收终端设备发送的第一指示信息,其中,第一指示信息用于向所述网络设备指示所述终端设备CSI反馈中的基向量选择时基于的资源单位。
其中,基向量包括波束基向量和频域基向量的至少一种,资源单位包括以下任一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
可选的,SD basis和FD basis可以是基于不同的资源单位选择的。即终端设备可以分别指示波束基向量对应的资源单位和频域基向量对应的资源单位。比如,FD basis基于一个CSI RS资源选择的,SD basis基于多个CSI RS选择的等等,本公开对此不做限定。
可选的,第一指示信息中包括以下任一项:至少一个CSIRS集标识;至少一个CSIRS资源标识;一 个CSI RS资源的一个端口组标识;一个CSI RS资源的多个端口组标识。
举例来说,若第一指示信息中包括至少一个CSI RS集标识,则表征终端设备是基于该至少一个CSIRSset标识中的CSIRS资源(一个或多个)选择的基向量。具体的,若每个CSI RS集都只包含一个CSI RS资源,则表征终端设备是基于每个CSI RS集中的一个CSI RS资源选择的基向量。进一步,若每个CSI RS集只包含一个CSI RS资源,且第一指示信息还指示了至少两个CSI RS集为一组或指示了至少两个CSI RS集对应的组标识,则表征终端设备是基于组内的至少两个CSI RS集包含的至少两个CSI RS资源选择的基向量。若每个CSI RS集包含一个或多个CSI RS资源,则表征终端设备是基于每个CSI RS集中的一个或多个CSI RS资源选择的基向量。
或者,若第一指示信息中包括至少一个CSI RS资源标识,则表征终端设备是基于该至少一个CSIRS资源(一个或多个)选择的基向量。举例来说,若第一指示信息还指示了CSI RS资源#1和CSI RS资源#2为一组或指示了CSI RS资源#1和CSI RS资源#2对应的组标识,那么则表征终端设备是以CSI RS资源#1和CSI资源#2为资源单位进行的基向量选择。或者,若第一指示信息中指示了CSI RS资源#3,那么则表征终端设备是以CSI RS资源#3为资源单位进行的基向量选择。
或者,若第一指示信息中包括一个CSI RS资源的一个端口组标识,则表征终端设备基于该一个端口组选择的基向量。举例来说,第一指示信息中包括CSI RS资源#3的一个端口组#2的标识,则表征该终端设备是以CSI RS资源#3的端口组#2为资源单位,进行的基向量选择。
或者,若第一指示信息中包括一个CSI RS资源的多个端口组标识,则表征终端设备基于该多个端口组选择的基向量。举例来说,第一指示信息中指示了CSI RS资源#3的端口组#2和端口组#4为一组或指示了CSI RS资源#3的端口组#2和端口组#4对应的组标识,则表征该终端设备是以CSI RS资源#3的端口组#2和端口组#4为资源单位,进行的基向量选择。
本公开中,终端设备和网络设备在确定了基向量选择时基于的资源单位,即可根据资源单位与TRP的对应关系,确定选择的基向量是针对TRP的,还是针对TRP组的。
举例来说,不同TRP对应不同的CSI RS资源,若选择基向量时基于的资源单位为一个CSI RS资源,即选择的基向量是针对该一个CSI RS资源对应的TRP的;或者,若选择基向量时基于的资源单位为多个CSI RS资源,即选择的基向量是针对该多个CSI RS资源对应的多个TRP的,即是针对TRP组的。或者,不同TRP对应一个CSI RS资源的不同端口组,若选择基向量时基于的资源单位为一个CSI RS资源的一个端口组,即选择的基向量是针对该一个CSI RS资源的一个端口组对应的一个TRP的;或者,若选择基向量时基于的资源单位为一个CSI RS资源的多个端口组的,即选择的基向量是针对该多个CSI RS资源的多个端口组对应的多个TRP的,即是针对TRP组的。
可选的,网络设备可以基于终端设备发送的CSI反馈,确定第一指示信息。
可选的,CSI反馈中包含第一指示域及第二指示域,第一指示信息包含于第一指示域中,每个资源单位对应的基向量包含于第二指示域中。
由于由终端设备确定选择基向量时基于的资源单位的情况下,CSI上报的尺寸(size)可能会有变化。此时,如果每个TRP都独立选择基向量的话,比如4个TRP,需要4倍的信令。若有多个TRP可以一起选择基向量,则可以相应的减少信令。但是为了方便基站解码CSI反馈的信令,可以通过第一指示域来指示哪些TRP是独立确定,哪些TRP是联合确定。然后第二指示域再进一步指示每个TRP或TRP组选择的基向量。
本公开中,网络设备通过第一指示信息接收终端设备指示的选择基向量时基于的资源单位,从而网络设备即可确定终端设备选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图16,图16是本公开实施例提供的另一种信道状态信息CSI反馈的确定方法流程示意图,该方法由网络设备执行。如图16所示,该方法可以包括但不限于如下步骤:
步骤1601,向所述终端设备发送第二指示信息,其中所述第二指示信息用于指示每个端口组标识与端口标识间的映射关系。
举例来说,每个端口组与端口标识间的映射关系可以如下任一种。
映射关系1:每个端口组对应的端口数量相同且端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,则映射关系1具体为:端口#0至#7为第一个端口组,端口#8至#15为第二个端口组,端口#16至#23为第三个端口组,端口#24至#31为第四个端口组。或者,若分成2个端口组,则映射关系1具体为:端口#0至#15为第一个端口组,端口#16至#31为第二个端口组。
映射关系2:每个端口组对应的端口数量相同且每两个端口不连续。举例来说,一个CSI RS资源 对应32个端口,标识分别为#0至#31。若分成4个端口组,则第i个端口对应的端口标识为4N+i-1,i的取值为1,2,3或4,N为0至7的整数,即映射关系2:端口#0,#4,#8,#12,#16,#20,#24,#28为第一个端口组,端口#1,#5,#9,#13,#17,#21,#25,#29为第二个端口组,端口#2,#6,#10,#14,#18,#22,#26,#30为第三个端口组,端口#3,#7,#11,#15,#19,#23,#27,#31为第四个端口组。或者,若分成2个端口组,则第i个端口对应的端口标识为2N+i-1,i的取值为1或2,N为0至15的整数,即映射关系2:端口标识为偶数的为第一个端口组,端口标识为奇数的为第二个端口组。
映射关系3:每个端口组对应的端口数量相同且每两个端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含4组连续的2个端口,4组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#8,#9,#16,#17,#24,#25为第一个端口组,端口#2,#3,#10,#11,#18,#19,#26,#27为第二个端口组,端口#4,#5,#12,#13,#20,#21,#28,#29为第三个端口组,端口#6,#7,#14,#15,#22,#23,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续4个端口为一组,每组内的4个端口包含2组连续的2个端口,2组连续的2个端口分在不同的端口组,即映射关系3:端口#0,#1,#4,#5,#8,#9,#12,#13,#16,#17,#20,#21,#24,#25,#28,#29为第一个端口组,其它端口为第二个端口组。
映射关系4:每个端口组对应的端口数量相同且每四个端口连续。举例来说,一个CSI RS资源对应32个端口,标识分别为#0至#31。若分成4个端口组,先将32个端口分组,每连续16个端口为一组,每组内的16个端口包含4个连续的4个端口,4个连续的4个端口分在不同的端口组,即映射关系4为:端口#0,#1,#2,#3,#16,#17,#18,#19为第一个端口组,端口#4,#5,#6,#7,#20,#21,#22,#23为第二个端口组,端口#8,#9,#10,#11,#24,#25,#26,#27为第三个端口组,端口#12,#13,#14,#15,#28,#29,#30,#31为第四个端口组。或者,若分成2个端口组,则可以先将32个端口分组,每连续8个端口为一组,每组内的8个端口包含2个连续的4个端口,2个连续的4个端口分在不同的端口组,即映射关系4:端口#0,#1,#2,#3,#8,#9,#10,#1
可选的,网络设备也可以不向终端设备发送第二指示信息,从而终端设备可以基于默认规则,确定每个端口组与端口标识间的映射关系。默认的映射关系包含上述的映射关系1,2,3,4的任一项。
举例来说,默认的映射关系为映射关系1,即每个端口组包含的端口数量相同、且连续,那么一个CSI RS资源对应32个端口,标识分别为#0至#31,那么若分为4个端口组,则可以确定端口标识#0至#1为一个端口组,端口#8至#15为一个端口组,端口#16至#23为一个端口组,端口#24至#31为一个端口组,等等,本公开对此不做限定。
步骤1602,接收终端设备发送的第一指示信息,其中,第一指示信息用于向所述网络设备指示CSI反馈中的基向量选择时基于的资源单位。
其中,步骤1602的具体实现方式,可以参照本公开任一实施例的详细描述,此次不再赘述。
本公开中,网络设备通过第一指示信息接收终端设备指示的选择基向量时基于的资源单位,从而网络设备即可确定终端设备选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
请参见图17,为本公开实施例提供的一种通信装置1700的结构示意图。图17所示的通信装置1700可包括收发模块1701。收发模块1701可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1701可以实现发送功能和/或接收功能。
可以理解的是,通信装置1700可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置1700在终端设备侧,其中:
收发模块1701,用于向终端设备发送第一指示信息,其中,所述第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
可选的,所述资源单位包括以下至少一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
可选的,所述第一指示信息中包括至少一个第一CSIRS集,每个所述第一CSI RS集中包含一个CSI RS资源。
可选的,所述第一指示信息用于向终端设备指示所述资源单位为每个所述第一CSI RS集中包含的所述一个CSI RS资源。
可选的,所述第一指示信息中包括多个第一CSIRS集,收发模块1701还用于向所述终端设备发送第二指示信息,所述第二指示信息用于向所述终端设备指示至少两个第一CSI RS集为一组或指示至少 两个第一CSI RS集对应的组标识。
可选的,所述第一指示信息中包括至少一个第二CSI RS集,每个所述第二CSI RS集中包含一个或多个CSI RS资源,所述第一指示信息用于向终端设备指示所述资源单位为每个第二CSI RS集中包含的所述一个或多个CSI RS资源。
可选的,所述第一指示信息中包括一个第三CSI RS集,所述第三CSI RS集中包含多个CSI RS资源。
可选的,所述第一指示信息用于向终端设备指示所述资源单位为所述第三CSI RS集中包含的多个CSI RS资源中的一个CSIRS资源。
可选的,收发模块1701,还用于向所述终端设备发送第三指示信息,所述第三指示信息用于向所述终端设备指示所述第三CSI RS集中的至少两个CSI RS资源为一组或指示所述第三CSI RS集中的至少两个CSI RS资源对应的组标识。
可选的,所述第一指示信息中包括一个CSI RS资源,所述CSI RS资源包括N个第一端口组,所述N为正整数。
可选的,所述第一指示信息用于向终端设备指示所述资源单位为所述CSI RS资源的每个第一端口组。
可选的,所述N大于1,所述收发模块1701,还用于向所述终端设备发送第四指示信息,所述第四指示信息用于向所述终端设备指示至少两个所述第一端口组为一组或指示至少两个所述第一端口组对应的组标识。
可选的,收发模块1701,还用于向所述终端设备发送第五指示信息,所述第五指示信息用于向所述终端设备指示每个所述第一端口组与至少一个端口标识的映射关系。
本公开中,网络设备向终端设备发送用于指示终端设备选择基向量时的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
需要说明的是,上述装置实施例是基于方法实施例得到的,具体的说明可以参见方法实施例部分,此处不再赘述。
可以理解的是,通信装置1700可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置1700,在终端设备侧,其中:
收发模块1701,用于接收网络设备发送的第一指示信息,其中,所述第一指示信息用于向终端设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
可选的,所述资源单位包括以下至少一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
可选的,所述第一指示信息中包括至少一个第一CSIRS集,每个所述第一CSI RS集中包含一个CSI RS资源。
可选的,处理模块1702,用于分别将每个所述第一CSI RS集中包含的一个CSI RS资源,确定为所述资源单位。
可选的,收发模块1701,还用于:响应于所述第一指示信息中包括多个第一CSIRS集,接收所述网络设备发送的第二指示信息,所述第二指示信息用于向所述终端设备指示至少两个第一CSI RS集为一组或指示至少两个第一CSI RS集对应的组标识;
处理模块1702,还用于将所述至少两个第一CSI RS集中包含的CSI RS资源确定为所述资源单位。
可选的,所述第一指示信息中包括至少一个第二CSI RS集,每个所述第二CSI RS集中包含一个或多个CSI RS资源,分别将每个所述第二CSI RS集包含的一个或多个CSI RS资源,确定为所述资源单位。
可选的,所述第一指示信息中包括一个第三CSI RS集,所述第三CSI RS集中包含多个CSI RS资源。
可选的,处理模块1702,还用于将所述第三CSI RS集中包含所述多个CSI RS资源中的一个CSI RS资源,确定为所述资源单位。
可选的,收发模块1701,还用于接收所述网络设备发送的第三指示信息,所述第三指示信息用于向所述终端设备指示所述第三CSI RS集中的至少两个CSI RS资源为一组或指示所述第三CSI RS集中的至少两个CSI RS资源对应的组标识;
处理模块1702,还用于将所述一组中的至少两个CSI RS资源,确定为所述资源单位。
可选的,所述第一指示信息中包括一个CSI RS资源,所述CSIRS资源包括N个第一端口组,所述N为正整数。
可选的,处理模块还用于将所述CSI RS资源的一个第一端口组,确定为所述资源单位。
可选的,收发模块1701,还用于:响应于所述N大于1,接收所述网络设备发送的第四指示信息,所述第四指示信息用于向所述终端设备指示至少两个所述第一端口组为一组或指示至少两个所述第一端口组对应的组标识;
处理模块1702,还用于将所述一组中的至少两个第一端口组,确定为所述资源单位。
可选的,收发模块1701,还用于接收所述网络设备发送的第五指示信息,所述第五指示信息用于向所述终端设备指示每个所述第一端口组与至少一个端口标识的映射关系。
本公开中,终端设备接收网络设备发送的用于终端设备确定选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
可以理解的是,通信装置1700,还可以是另一种终端设备,也可以是该终端设备中的装置,还可以是能够与该终端设备匹配使用的装置。
通信装置1700,在终端设备侧,其中:
收发模块1701,用于向网络设备发送第一指示信息,其中,所述第一指示信息用于向所述网络设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
可选的,所述资源单位包括以下至少一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
可选的,所述第一指示信息中包括以下任一项:
至少一个CSIRS集标识;
至少一个CSIRS资源标识;
一个CSI RS资源的一个端口组标识;
一个CSI RS资源的多个端口组标识。
可选的,收发模块1701,还用于接收所述网络设备发送的第二指示信息,其中所述第二指示信息用于指示每个端口组标识与端口标识间的映射关系;或者,
处理模块1702,用于根据默认规则,确定每个端口组标识与端口标识间的映射关系。
可选的,所述CSI反馈中包含第一指示域及第二指示域,所述第一指示信息包含于所述第一指示域中,每个资源单位对应的基向量包含于所述第二指示域中。
本公开中,终端设备可以向网络设备发送终端设备选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
可以理解的是,通信装置1700,还可以是另一种网络设备,也可以是该网络设备中的装置,还可以是能够与该网络设备匹配使用的装置。
通信装置1700,在网络设备侧,其中:
收发模块1701,用于接收终端设备发送的第一指示信息,其中,所述第一指示信息用于向所述网络设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
可选的,所述资源单位包括以下任一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
可选的,所述第一指示信息中包括以下任一项:
至少一个CSIRS集标识;
至少一个CSIRS资源标识;
一个CSI RS资源的一个端口组标识;
一个CSI RS资源的多个端口组标识。
可选的,收发模块1702,还用于向所述终端设备发送第二指示信息,其中所述第二指示信息用于指示每个端口组标识与端口标识间的映射关系。
可选的,收发模块1701,还用于:
接收所述终端设备发送的CSI反馈,其中,所述CSI反馈中包含第一指示域及第二指示域,所述 第一指示信息包含于所述第一指示域中,每个资源单位对应的基向量包含于所述第二指示域中。
本公开中,网络设备可以接收终端设备发送的终端设备选择基向量时基于的资源单位。由此,保证了终端设备与网络设备对CSI反馈中基向量选择时基于的资源单位的理解保持一致,从而提高了基于多TRP的相干联合传输的传输性能。
需要说明的是,上述装置实施例是基于方法实施例得到的,具体的说明可以参见方法实施例部分,此处不再赘述。
请参见图18,图18是本公开实施例提供的另一种通信装置1800的结构示意图。通信装置1800可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1800可以包括一个或多个处理器1801。处理器1801可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1800中还可以包括一个或多个存储器1802,其上可以存有计算机程序1804,处理器1801执行所述计算机程序1804,以使得通信装置1800执行上述方法实施例中描述的方法。可选的,所述存储器1802中还可以存储有数据。通信装置1800和存储器1802可以单独设置,也可以集成在一起。
可选的,通信装置1800还可以包括收发器1805、天线1806。收发器1805可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1805可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1800中还可以包括一个或多个接口电路1807。接口电路1807用于接收代码指令并传输至处理器1801。处理器1801运行所述代码指令以使通信装置1800执行上述方法实施例中描述的方法。
通信装置1800为网络设备:收发器1805用于执行图2中的步骤201;图3中的步骤301;图4中的步骤401等。
通信装置1800为终端设备:收发器1805用于执行图6中的步骤601;图7中的步骤701;图8中的步骤801和步骤802等;处理器1801用于执行图7中的步骤701,图8中的步骤803等。
或者,通信装置1800为另一种终端设备:收发器1805用于执行图13中的步骤1301;图14中的步骤1401和1402等。
通信装置1800为网络设备:收发器1805用于执行图15中的步骤1501;图16中的步骤1601、步骤1602等。
在一种实现方式中,处理器1801中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1801可以存有计算机程序1803,计算机程序1803在处理器1801上运行,可使得通信装置1800执行上述方法实施例中描述的方法。计算机程序1803可能固化在处理器1801中,该种情况下,处理器1801可能由硬件实现。
在一种实现方式中,通信装置1800可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者接入网设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图9的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图19所示的芯片的结构示意图。图19所示的芯片包括处理器1901和接口1903。其中,处理器1901的数量可以是一个或多个,接口1903的数量可以是多个。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1903,用于执行图2中的步骤201;图3中的步骤301;图4中的步骤401等。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1903,用于执行图6中的步骤601;图7中的步骤701;图8中的步骤801和步骤802等。
对于芯片用于实现本公开实施例中另一种终端设备的功能的情况:
接口1903,用于执行图13中的步骤1301;图14中的步骤1401和1402等。
对于芯片用于实现本公开实施例中另一种网络设备的功能的情况:
接口1903,用于执行图15中的步骤1501;图16中的步骤1601、步骤1602等。
可选的,芯片还包括存储器1903,存储器1903用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种信道状态信息CSI反馈的确定方法,其特征在于,由网络设备执行,所述方法包括:
    向终端设备发送第一指示信息,其中,所述第一指示信息用于向所述终端设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
  2. 如权利要求1所述的方法,其特征在于,所述资源单位包括以下至少一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
  3. 如权利要求1所述的方法,其特征在于,
    所述第一指示信息中包括至少一个第一CSIRS集,每个所述第一CSI RS集中包含一个CSI RS资源。
  4. 如权利要求3所述的方法,其特征在于,
    所述第一指示信息用于向所述终端设备指示所述资源单位为每个所述第一CSI RS集中包含的所述一个CSI RS资源。
  5. 如权利要求3所述的方法,其特征在于,还包括:
    响应于所述第一指示信息中包括多个第一CSIRS集,向所述终端设备发送第二指示信息,所述第二指示信息用于向所述终端设备指示至少两个第一CSI RS集为一组或指示至少两个第一CSI RS集对应的组标识。
  6. 如权利要求1所述的方法,其特征在于,
    所述第一指示信息中包括至少一个第二CSI RS集,每个所述第二CSI RS集中包含一个或多个CSI RS资源,所述第一指示信息用于向所述终端设备指示所述资源单位为每个第二CSI RS集中包含的所述一个或多个CSI RS资源。
  7. 如权利要求1所述的方法,其特征在于,
    所述第一指示信息中包括一个第三CSI RS集,所述第三CSI RS集中包含多个CSI RS资源。
  8. 如权利要求7所述的方法,其特征在于,
    所述第一指示信息用于向所述终端设备指示所述资源单位为所述第三CSI RS集中的所述多个CSI RS资源中的一个CSIRS资源。
  9. 如权利要求7所述的方法,其特征在于,还包括:
    向所述终端设备发送第三指示信息,所述第三指示信息用于向所述终端设备指示所述第三CSI RS集中的至少两个CSI RS资源为一组或指示所述第三CSI RS集中的至少两个CSI RS资源对应的组标识。
  10. 如权利要求1所述的方法,其特征在于,
    所述第一指示信息中包括一个CSI RS资源,所述CSI RS资源包括N个第一端口组,所述N为正整数。
  11. 如权利要求10所述的方法,其特征在于,
    所述第一指示信息用于向所述终端设备指示所述资源单位为所述CSI RS资源的每个第一端口组。
  12. 如权利要求10所述的方法,其特征在于,还包括:
    响应于所述N大于1,向所述终端设备发送第四指示信息,所述第四指示信息用于向所述终端设备指示至少两个所述第一端口组为一组或指示至少两个所述第一端口组对应的组标识。
  13. 如权利要求10所述的方法,其特征在于,
    向所述终端设备发送第五指示信息,所述第五指示信息用于向所述终端设备指示每个所述第一端口组与至少一个端口标识的映射关系。
  14. 一种信道状态信息CSI反馈的确定方法,其特征在于,由终端设备执行,所述方法包括:
    接收网络设备发送的第一指示信息,其中,所述第一指示信息用于向所述终端设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
  15. 如权利要求14所述的方法,其特征在于,所述资源单位包括以下至少一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
  16. 如权利要求14所述的方法,其特征在于,所述第一指示信息中包括至少一个第一CSIRS集,每个所述第一CSI RS集中包含一个CSI RS资源。
  17. 如权利要求16所述的方法,其特征在于,还包括:
    分别将每个所述第一CSI RS集中包含的一个CSI RS资源,确定为所述资源单位。
  18. 如权利要求16所述的方法,其特征在于,还包括:
    所述第一指示信息中包括多个第一CSIRS集,接收所述网络设备发送的第二指示信息,所述第二指示信息用于向所述终端设备指示至少两个第一CSI RS集为一组或指示至少两个第一CSI RS集对应 的组标识;
    将所述至少两个第一CSI RS集中包含的CSI RS资源确定为所述资源单位。
  19. 如权利要求14所述的方法,其特征在于,还包括:
    所述第一指示信息中包括至少一个第二CSI RS集,每个所述第二CSI RS集中包含一个或多个CSI RS资源,分别将每个所述第二CSI RS集包含的一个或多个CSI RS资源,确定为所述资源单位。
  20. 如权利要求14所述的方法,其特征在于,
    所述第一指示信息中包括一个第三CSI RS集,所述第三CSI RS集中包含多个CSI RS资源。
  21. 如权利要求20所述的方法,其特征在于,还包括:
    将所述第三CSI RS集中包含所述多个CSI RS资源中的一个CSI RS资源,确定为所述资源单位。
  22. 如权利要求20所述的方法,其特征在于,还包括:
    接收所述网络设备发送的第三指示信息,所述第三指示信息用于向所述终端设备指示所述第三CSI RS集中的至少两个CSI RS资源为一组或指示所述第三CSI RS集中的至少两个CSI RS资源对应的组标识;
    将所述一组中的至少两个CSI RS资源,确定为所述资源单位。
  23. 如权利要求14所述的方法,其特征在于,
    所述第一指示信息中包括一个CSI RS资源,所述CSIRS资源包括N个第一端口组,所述N为正整数。
  24. 如权利要求23所述的方法,其特征在于,还包括:
    将所述CSI RS资源的一个第一端口组,确定为所述资源单位。
  25. 如权利要求23所述的方法,其特征在于,还包括:
    所述N大于1,接收所述网络设备发送的第四指示信息,所述第四指示信息用于向所述终端设备指示至少两个所述第一端口组为一组或指示至少两个所述第一端口组对应的组标识;
    将所述一组中的至少两个第一端口组,确定为所述资源单位。
  26. 如权利要求14所述的方法,其特征在于,
    接收所述网络设备发送的第五指示信息,所述第五指示信息用于向所述终端设备指示每个所述第一端口组与至少一个端口标识的映射关系。
  27. 一种信道状态信息CSI反馈的确定方法,其特征在于,由终端设备执行,所述方法包括:
    向网络设备发送第一指示信息,其中,所述第一指示信息用于向所述网络设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
  28. 如权利要求27所述的方法,其特征在于,所述资源单位包括以下至少一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
  29. 如权利要求27所述的方法,其特征在于,所述第一指示信息中包括以下任一项:
    至少一个CSIRS集标识;
    至少一个CSIRS资源标识;
    一个CSI RS资源的一个端口组标识;
    一个CSI RS资源的多个端口组标识。
  30. 如权利要求29所述的方法,其特征在于,还包括:
    接收所述网络设备发送的第二指示信息,其中所述第二指示信息用于指示每个端口组标识与端口标识间的映射关系;或者,
    根据默认规则,确定每个端口组标识与端口标识间的映射关系。
  31. 如权利要求27所述的方法,其特征在于,所述CSI反馈中包含第一指示域及第二指示域,所述第一指示信息包含于所述第一指示域中,每个资源单位对应的基向量包含于所述第二指示域中。
  32. 一种信道状态信息CSI反馈的确定方法,其特征在于,由网络设备执行,所述方法包括:
    接收终端设备发送的第一指示信息,其中,所述第一指示信息用于向所述网络设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
  33. 如权利要求32所述的方法,其特征在于,所述资源单位包括以下任一项:一个CSI参考信号RS资源,多个CSI RS资源,一个CSI RS资源的一个端口组,或一个CSI RS资源的多个端口组。
  34. 如权利要求32所述的方法,其特征在于,所述第一指示信息中包括以下任一项:
    至少一个CSIRS集标识;
    至少一个CSIRS资源标识;
    一个CSI RS资源的一个端口组标识;
    一个CSI RS资源的多个端口组标识。
  35. 如权利要求34所述的方法,其特征在于,还包括:
    向所述终端设备发送第二指示信息,其中所述第二指示信息用于指示每个端口组标识与端口标识间的映射关系。
  36. 如权利要求32所述的方法,其特征在于,所述接收终端设备发送的第一指示信息,包括:
    接收所述终端设备发送的CSI反馈,其中,所述CSI反馈中包含第一指示域及第二指示域,所述第一指示信息包含于所述第一指示域中,每个资源单位对应的基向量包含于所述第二指示域中。
  37. 一种通信装置,其特征在于,包括:
    收发模块,用于向终端设备发送第一指示信息,其中,所述第一指示信息用于向所述终端设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
  38. 一种通信装置,其特征在于,包括:
    收发模块,用于接收网络设备发送的第一指示信息,其中,所述第一指示信息用于向所述终端设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
  39. 一种通信装置,其特征在于,包括:
    收发模块,用于向网络设备发送第一指示信息,其中,所述第一指示信息用于向所述网络设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种。
  40. 一种通信装置,其特征在于,包括:
    收发模块,用于接收终端设备发送的第一指示信息,其中,所述第一指示信息用于向所述网络设备指示CSI反馈中的基向量选择时基于的资源单位,所述基向量包括波束基向量和频域基向量的至少一种,所述。
  41. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至13中任一项所述的方法,或者执行如权利要求14至26中任一项所述的方法,或者执行如权利要求27至31中任一项所述的方法,或者执行如权利要求32至36中任一项所述的方法。
  42. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至13中任一项所述的方法被实现,或者使如权利要求14至26中任一项所述的方法被实现,或者使如权利要求27至31中任一项所述的方法被实现,或者使如权利要求32至36中任一项所述的方法被实现。
PCT/CN2022/102072 2022-06-28 2022-06-28 一种信道状态信息csi反馈的确定方法及其装置 WO2024000202A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002161.7A CN115336221B (zh) 2022-06-28 2022-06-28 一种信道状态信息csi反馈的确定方法及其装置
PCT/CN2022/102072 WO2024000202A1 (zh) 2022-06-28 2022-06-28 一种信道状态信息csi反馈的确定方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102072 WO2024000202A1 (zh) 2022-06-28 2022-06-28 一种信道状态信息csi反馈的确定方法及其装置

Publications (1)

Publication Number Publication Date
WO2024000202A1 true WO2024000202A1 (zh) 2024-01-04

Family

ID=83915443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102072 WO2024000202A1 (zh) 2022-06-28 2022-06-28 一种信道状态信息csi反馈的确定方法及其装置

Country Status (2)

Country Link
CN (1) CN115336221B (zh)
WO (1) WO2024000202A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365939A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种配置信息的方法、装置及系统
WO2022017511A1 (en) * 2020-07-24 2022-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for random access procedure
CN114499780A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 一种csi-rs增强传输方法及装置
CN114557014A (zh) * 2022-01-13 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质
CN115190498A (zh) * 2021-04-02 2022-10-14 大唐移动通信设备有限公司 增强的csi-rs传输、发送反馈信息的方法、装置、设备及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126038A1 (en) * 2005-05-27 2006-11-30 Nokia Corporation Assignment of sub-channels to channels in a multi transmission-channel system
US9288021B2 (en) * 2008-05-02 2016-03-15 Qualcomm Incorporated Method and apparatus for uplink ACK/NACK resource allocation
CN114557073A (zh) * 2019-11-29 2022-05-27 中兴通讯股份有限公司 用于无线信道参考信号传输和信道状态信息反馈的方法
CN113840324B (zh) * 2020-06-24 2024-01-30 华为技术有限公司 一种测量上报方法及装置
WO2022009151A1 (en) * 2020-07-10 2022-01-13 Telefonaktiebolaget Lm Ericsson (Publ) Shared csi-rs for partial-reciprocity based csi feedback

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365939A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种配置信息的方法、装置及系统
WO2022017511A1 (en) * 2020-07-24 2022-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for random access procedure
CN114499780A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 一种csi-rs增强传输方法及装置
CN115190498A (zh) * 2021-04-02 2022-10-14 大唐移动通信设备有限公司 增强的csi-rs传输、发送反馈信息的方法、装置、设备及介质
CN114557014A (zh) * 2022-01-13 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115336221B (zh) 2024-02-13
CN115336221A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2024000203A1 (zh) 一种传输配置指示tci状态使用时间的确定方法及其装置
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024026799A1 (zh) 数据传输方法和装置
WO2024026701A1 (zh) 一种信道占用时间cot的共享方法及其装置
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024026801A1 (zh) 一种侧行链路sl波束配置方法、装置、设备及存储介质
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2022261915A1 (zh) 一种通信方法及其装置
WO2024000202A1 (zh) 一种信道状态信息csi反馈的确定方法及其装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023206565A1 (zh) 探测参考信号srs的传输方法、srs资源配置方法及其装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2024021130A1 (zh) 一种信道估计方法及其装置
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024000200A1 (zh) 一种混合自动重传请求harq反馈的确定方法及其装置
WO2023206572A1 (zh) 小区状态配置方法及其装置
WO2023173257A1 (zh) 一种请求系统信息的方法及其装置
WO2023168576A1 (zh) 确定探测参考信号srs资源配置信息的方法及其装置
WO2024016137A1 (zh) 一种预编码信息的接收发送方法及其装置
WO2024026889A1 (zh) 一种数据类型确定方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948322

Country of ref document: EP

Kind code of ref document: A1