WO2023206565A1 - 探测参考信号srs的传输方法、srs资源配置方法及其装置 - Google Patents

探测参考信号srs的传输方法、srs资源配置方法及其装置 Download PDF

Info

Publication number
WO2023206565A1
WO2023206565A1 PCT/CN2022/090773 CN2022090773W WO2023206565A1 WO 2023206565 A1 WO2023206565 A1 WO 2023206565A1 CN 2022090773 W CN2022090773 W CN 2022090773W WO 2023206565 A1 WO2023206565 A1 WO 2023206565A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
parameter
bandwidth
frequency domain
cell
Prior art date
Application number
PCT/CN2022/090773
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001373.3A priority Critical patent/CN117322093A/zh
Priority to PCT/CN2022/090773 priority patent/WO2023206565A1/zh
Publication of WO2023206565A1 publication Critical patent/WO2023206565A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method for transmitting a sounding reference signal SRS, an SRS resource configuration method, and a device thereof.
  • Cooperative multi-point transmission technology can improve cell edge coverage and provide balanced service quality for all users in the service area.
  • multi-point cooperative transmission includes coherent cooperative transmission (Coherent Joint Transmission, referred to as: CJT) and non-coherent cooperative transmission (Non-Coherent Joint Transmission, referred to as: NCJT).
  • CJT coherent cooperative transmission
  • NCJT Non-Coherent Joint Transmission
  • TDD Time Division Duplexing
  • multiple cooperating TRPs Transmission and Reception Points
  • the current user's uplink channel to multiple TRPs can be estimated by sending the sounding reference signal (Sounding Reference Signal, referred to as SRS) to each TRP from the terminal equipment.
  • SRS Sounding Reference Signal
  • the SRS transmission of users in edge cells is usually interfered by the SRS transmission of center users in adjacent cells, resulting in poor uplink channel estimation performance.
  • Embodiments of the present application provide a method for transmitting a sounding reference signal SRS, an SRS resource configuration method and a device thereof.
  • a sounding reference signal SRS By defining the frequency domain location where the terminal equipment transmits the SRS is associated with the cell identification ID of the cell where the terminal equipment is located, different cells can be configured Users in the cell transmit SRS at different frequency domain locations, which avoids interference between users in adjacent cells transmitting SRS, thereby improving the accuracy of uplink channel estimation.
  • embodiments of the present application provide a method for transmitting a sounding reference signal SRS.
  • the method is executed by a terminal device.
  • the method includes:
  • the SRS is transmitted at a determined frequency domain location.
  • the frequency domain position occupied by the SRS can be determined based on the cell ID of the cell where the terminal equipment is located, so that in the Transmitting SRS at a determined frequency domain position allows users in different cells to transmit SRS at different frequency domain positions, avoiding interference between users in adjacent cells transmitting SRS, thereby improving the accuracy of uplink channel estimation.
  • the configuration parameters of the SRS resource include at least one of the following:
  • Offset position n shift relative to the reference point
  • Frequency hopping configuration parameter b hop
  • determining the frequency domain position occupied by the SRS based on the configuration parameters of the SRS resource and the cell ID of the cell where the terminal device is located includes:
  • the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal equipment is located determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • the starting position within a bandwidth of m SRS, b is determined according to the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal device is located.
  • the parameters are determined according to the SRS bandwidth parameter B SRS , the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , and the scaling factor P F of the partial frequency domain transmission bandwidth size.
  • the cell ID, the parameter k hop and the scaling factor P F determine the starting position within the bandwidth size m SRS,b during the partial frequency domain transmission.
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • k F is the parameter configured by the network side device; the parameter k hop is the parameter function; N ID is the cell ID of the cell where the terminal equipment is located; P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function.
  • determining the frequency domain position occupied by the SRS based on the configuration parameters of the SRS resource and the cell ID of the cell where the terminal device is located includes:
  • the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , the scaling factor P F of the partial frequency domain transmission bandwidth size and the cell identity of the cell where the terminal device is located. ID, determine parameters
  • the parameter k hop and the scaling factor P F determine the starting position within the bandwidth size m SRS,b during the partial frequency domain transmission.
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ indicates that the index is max(b′-1,0)
  • the first bandwidth in the frequency domain bandwidth layer includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the size of the partial frequency domain transmission bandwidth scale factor; mod is the remainder function;
  • is the continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • the starting position within the bandwidth size is m SRS, b
  • the calculation formula is as follows:
  • N ID is the cell ID of the cell where the terminal equipment is located.
  • determining the frequency domain position occupied by the SRS based on the configuration parameters of the SRS resource and the cell ID of the cell where the terminal device is located includes:
  • the SRS bandwidth parameter B SRS and the frequency hopping configuration parameter b hop determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission.
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • n shift is the offset position of the relative reference point; is the number of subcarriers included in a resource block RB; is the offset value of the SRS resource corresponding to the i-th SRS port within a comb; p i is the antenna port index corresponding to the i-th SRS port; is the offset value of the positioned SRS resource at different symbols within a comb; N ID is the cell ID of the cell where the terminal equipment is located; K TC is the comb value; mod is the remainder function.
  • the calculation formula is as follows:
  • the transmission comb offset value is the port number of SRS resources;
  • the cycle offset value configured for the network side device;
  • the maximum number of cycle offsets configured for the network side device.
  • determining the frequency domain position occupied by the SRS based on the configuration parameters of the SRS resource and the cell ID of the cell where the terminal device is located includes:
  • the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal equipment is located determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • the starting position within a bandwidth of m SRS, b is determined according to the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal device is located.
  • the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , the scaling factor P F of the partial frequency domain transmission bandwidth size and the cell identity of the cell where the terminal device is located. ID, determine parameters
  • the cell ID, the parameter k hop and the scaling factor P F determine the starting position within the bandwidth size m SRS,b during the partial frequency domain transmission.
  • the parameters The calculation formula is as follows:
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ indicates that the index is max(b′-1,0)
  • the first bandwidth in the frequency domain bandwidth layer includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the size of the partial frequency domain transmission bandwidth scale factor; mod is the remainder function;
  • is the continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • the SRS resource is configured as a positioning resource, and the cell ID value of the cell where the terminal device is located is 0; or the SRS resource is configured as a non-positioning resource, and the cell ID value of the cell where the terminal device is located is 0.
  • the identification ID value is equal to described The cell ID value configured for the network side device.
  • embodiments of the present application provide another sounding reference signal SRS resource configuration method.
  • the method is executed by a network side device.
  • the method includes:
  • the configuration parameter of the SRS resource is used by the terminal device to determine the frequency domain position occupied by the SRS based on the configuration parameter and the cell identification ID of the cell where the terminal device is located.
  • the configuration parameters of the SRS resource include at least one of the following:
  • Offset position n shift relative to the reference point
  • Frequency hopping configuration parameter b hop
  • embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
  • the functions of the communication device may have some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes: a transceiver module, configured to receive the configuration parameters of the sounding reference signal SRS resource sent by the network side device; and a processing module, configured to receive the configuration parameters of the SRS resource according to the configuration parameters of the SRS resource and the configuration parameters of the cell where the terminal device is located.
  • the cell identification ID determines the frequency domain position occupied by the SRS; the transceiver module is also used to transmit the SRS at the determined frequency domain position.
  • the configuration parameters of the SRS resource include at least one of the following:
  • Offset position n shift relative to the reference point
  • Frequency hopping configuration parameter b hop
  • the processing module is specifically used to:
  • the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal equipment is located determine the starting position within the bandwidth size n SRS,b during partial frequency domain transmission
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • the processing module is specifically used to:
  • the parameters are determined according to the SRS bandwidth parameter B SRS , the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , and the scaling factor P F of the partial frequency domain transmission bandwidth size.
  • the cell ID, the parameter k hop and the scaling factor P F determine the starting position within the bandwidth size m SRS,b during the partial frequency domain transmission.
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • k F is the parameter configured by the network side device; the parameter k hop is the parameter function; N ID is the cell ID of the cell where the terminal equipment is located; P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function.
  • the processing module is specifically used to:
  • the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , the scaling factor P F of the partial frequency domain transmission bandwidth size and the cell identity of the cell where the terminal device is located. ID, determine parameters
  • the parameter k hop and the scaling factor P F determine the starting position within the bandwidth size m SRS,b during the partial frequency domain transmission.
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ indicates that the index is max(b′-1,0)
  • the first bandwidth in the frequency domain bandwidth layer includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the size of the partial frequency domain transmission bandwidth scale factor; mod is the remainder function;
  • is the continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • N ID is the cell ID of the cell where the terminal device is located.
  • the processing module is specifically used to:
  • the SRS bandwidth parameter B SRS and the frequency hopping configuration parameter b hop determine the starting position within the bandwidth size m SRS, b during partial frequency domain transmission.
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • n shift is the offset position of the relative reference point; is the number of subcarriers included in a resource block RB; is the offset value of the SRS resource corresponding to the i-th SRS port within a comb; p i is the antenna port index corresponding to the i-th SRS port; is the offset value of the positioned SRS resource at different symbols within a comb; N ID is the cell ID of the cell where the terminal equipment is located; K TC is the comb value; mod is the remainder function.
  • the calculation formula is as follows:
  • the transmission comb offset value is the port number of SRS resources;
  • the cycle offset value configured for the network side device;
  • the maximum number of cycle offsets configured for the network side device.
  • the processing module is specifically used to:
  • the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal equipment is located determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • the starting position within the bandwidth size is m SRS, b
  • the starting position of each hop and the parameters Determine the frequency domain position occupied by the SRS.
  • the processing module is specifically used to:
  • the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , the scaling factor P F of the partial frequency domain transmission bandwidth size and the cell identity of the cell where the terminal device is located. ID, determine parameters
  • the cell ID, the parameter k hop and the scaling factor P F determine the starting position within the bandwidth size m SRS,b during the partial frequency domain transmission.
  • the parameters The calculation formula is as follows:
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ indicates that the index is max(b′-1,0)
  • the first bandwidth in the frequency domain bandwidth layer includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the size of the partial frequency domain transmission bandwidth scale factor; mod is the remainder function;
  • is the continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • the SRS resources are configured as positioning resources, and the cell ID value of the cell where the terminal device is located is 0; or the SRS resources are configured as non-positioning resources, and the cell where the terminal device is located
  • the cell identification ID value is equal to described
  • embodiments of the present application provide another communication device that has part or all of the functions of the network side device in the method example described in the second aspect.
  • the functions of the communication device may include the functions of the communication device in the present application.
  • the functions in some or all of the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the communication device includes: a processing module configured to configure sounding reference signal SRS resources and configuration parameters of the SRS resources for the terminal equipment; wherein the configuration parameters of the SRS resources are used by the terminal equipment according to The configuration parameters and the cell identification ID of the cell where the terminal equipment is located determine the frequency domain position occupied by the SRS.
  • the configuration parameters of the SRS resource include at least one of the following:
  • SRS bandwidth parameter B SRS SRS frequency domain position parameter n RRC ; offset position n shift relative to the reference point; node parameter N b in the tree structure of SRS bandwidth configuration; frequency hopping configuration parameter b hop ; parameter k F.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present application provide a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect. the above-mentioned communication device.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network-side device. When the instructions are executed, the network-side device is caused to execute the above-mentioned second aspect. Methods.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the network side device to implement the functions involved in the second aspect, for example, determining or processing the functions involved in the above method. At least one of data and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network side device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a sounding reference signal SRS transmission method provided by an embodiment of the present application
  • Figure 3 is a flow chart of a method for determining the frequency domain position occupied by an SRS provided by an embodiment of the present application
  • Figure 4 is an example diagram of edge user equipment and central user equipment in adjacent cells transmitting SRS at different frequency domain locations according to the embodiment of the present application; wherein, the edge user equipment and the central user equipment are in different cells respectively;
  • Figure 5 is a flow chart of another method for determining the frequency domain position occupied by an SRS provided by an embodiment of the present application
  • Figure 6 is a flow chart of another method for determining the frequency domain position occupied by an SRS provided by an embodiment of the present application.
  • Figure 7 is an example diagram of the edge user equipment and the center user equipment transmitting SRS at different offset positions of a comb when the transmission comb in a resource block RB is 8 according to the embodiment of the present application; wherein, the edge user equipment and the center user equipment The devices are in different cells, and the two cells are adjacent cells;
  • Figure 8 is a flow chart of another method for determining the frequency domain position occupied by an SRS provided by an embodiment of the present application.
  • Figure 9 is a flow chart of a sounding reference signal SRS resource configuration method provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of this application, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as "when” or "when” or “in response to determining.”
  • Cooperative multi-point transmission technology can improve cell edge coverage and provide balanced service quality for all users in the service area.
  • multi-point cooperative transmission includes coherent cooperative transmission (Coherent Joint Transmission, referred to as: CJT) and non-coherent cooperative transmission (Non-Coherent Joint Transmission, referred to as: NCJT).
  • CJT coherent cooperative transmission
  • NCJT Non-Coherent Joint Transmission
  • multiple cooperating TRPs Transmission and Reception Points
  • the current user's uplink channel to multiple TRPs can be estimated by sending the sounding reference signal (Sounding Reference Signal, referred to as SRS) to each TRP from the terminal equipment.
  • SRS Sounding Reference Signal
  • multiple TRPs correspond to one or more network-side devices.
  • multiple TRPs correspond to one network-side device. That is to say, the network-side device can be configured with multiple TRPs.
  • the SRS transmission of users in edge cells is usually interfered by the SRS transmission of center users in adjacent cells, resulting in poor uplink channel estimation performance.
  • the present application provides a method for transmitting the sounding reference signal SRS, an SRS resource configuration method and a device thereof.
  • the frequency domain location where the terminal equipment transmits the SRS is associated with the cell identification ID of the cell where the terminal equipment is located, it can be achieved Users in different cells transmit SRS at different frequency domain locations, which avoids interference between users in adjacent cells transmitting SRS, thereby improving the accuracy of uplink channel estimation.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network side device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes one network side device 101 and two terminal devices 102 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network side device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network side device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other future mobile communication systems.
  • eNB evolved base station
  • TRP transmission reception point
  • gNB next generation base station
  • WiFi wireless fidelity
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network side equipment.
  • the network-side equipment may be composed of a centralized unit (central unit, CU) and a distributed unit (DU), where the CU may also be called a control unit (control unit), using CU-
  • the structure of DU can separate the protocol layers of network-side equipment, such as base stations, with some protocol layer functions placed under centralized control by the CU, while the remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • Figure 2 is a schematic flowchart of a method for transmitting a sounding reference signal SRS provided by an embodiment of the present application.
  • the method for transmitting the sounding reference signal SRS provided by the embodiment of the present application can be performed by the terminal device. That is to say, the method of transmitting the sounding reference signal SRS provided by the embodiment of the present application can be described from the terminal equipment side.
  • the terminal device may be any terminal device in any cell.
  • the terminal device may be the terminal device of an edge user in a certain cell, or the terminal device may also be a terminal device in a cell adjacent to the certain cell. Terminal equipment for central users.
  • the method may include but is not limited to the following steps:
  • step 201 configuration parameters of SRS resources sent by the network side device are received.
  • the configuration parameters of the SRS resource may be configured by the network side device for the terminal device.
  • the network side device can configure SRS resources and configuration parameters of the SRS resources for the terminal device.
  • the terminal device can receive the SRS resource configured from the network side device and the configuration parameters of the SRS resource.
  • This configuration parameter can be understood as a parameter used by the terminal device to determine the frequency domain position occupied by the SRS to be transmitted.
  • step 202 the frequency domain position occupied by the SRS is determined based on the configuration parameters of the SRS resource and the cell ID of the cell where the terminal device is located.
  • the cell ID of the cell where the terminal device is located may be configured by the network side device.
  • the frequency domain location where the terminal device transmits SRS can be defined to be associated with the cell ID of the cell where the terminal device is located, so that the terminal device can determine SRS occupancy based on the configuration parameters of the SRS resource and the cell ID of the cell where the terminal device is located. frequency domain position.
  • step 203 the SRS is transmitted at the determined frequency domain position.
  • the terminal device may transmit the SRS at the determined frequency domain position.
  • the frequency domain position occupied by the SRS can be determined according to the cell ID of the cell where the terminal equipment is located, so that the SRS can be transmitted at the determined frequency domain position, so that user equipment in different cells can transmit at different frequency domain positions.
  • SRS avoids interference between SRS transmissions by user equipment in adjacent cells, thereby improving the accuracy of uplink channel estimation.
  • the network side device when the network side device configures SRS resources for a terminal device, it will also configure corresponding configuration parameters for the terminal device.
  • the configuration parameters of the SRS resource may include at least one of the following 1) to 6):
  • the configuration parameters of the SRS resource at least include: SRS bandwidth parameter B SRS ; SRS frequency domain position parameter n RRC ; offset position n shift relative to the reference point; node parameters in the tree structure of SRS bandwidth configuration N b ; Frequency hopping configuration parameter b hop ; Parameter k F .
  • B SRS is used to determine the length parameter information of the frequency domain bandwidth occupied by the SRS on one time domain symbol, that is, the tree shape corresponding to the frequency domain bandwidth occupied by the SRS on one time domain symbol. Structural level.
  • N b can be understood as the number of branch nodes included in the b-th layer of the b-1 layer node in the tree structure of the SRS bandwidth configuration.
  • N b 1 .
  • b hop is used for SRS frequency hopping, and b hop ⁇ ⁇ 0,1,2,3 ⁇ .
  • the rounding range of the parameter k F is k F ⁇ 0,1,..., PF -1 ⁇ , where PF represents the scaling factor of the partial frequency domain transmission bandwidth.
  • each element in the above-mentioned Table 1 exists independently. These elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on the same time as shown in the table. exist. The value of each element does not depend on the value of any other element in Table 1. Therefore, those skilled in the art can understand that the value of each element in Table 1 is an independent embodiment.
  • the PF can also be configured with other values (such as 1 or 2 or 4). When the PF is configured with other values (such as 1 or 2 or 4), k hop is defined as The functions and existing mapping relationships are consistent with the existing technology and will not be described again here. It should be noted that the embodiments of the present disclosure include multiple tables, and each of them is similar to Table 1. It is a combination of multiple independent embodiments into the same table, and each of these tables is An element should also be considered an independent embodiment
  • the parameter k hop is the same as the There is a mapping relationship, where the mapping relationship can be a one-to-one mapping, such as
  • this application associates the frequency domain location where the terminal equipment transmits SRS with the cell ID of the cell where the terminal equipment is located, so that users in different cells transmit SRS at different frequency domain locations.
  • the frequency domain position at which the SRS is transmitted is defined as: when the SRS is transmitted in a partial frequency domain bandwidth, the offset position of the partial frequency domain transmission of the SRS is a function of the cell ID.
  • This definition method indicates that the offset position of the partial frequency domain transmission SRS is associated with the cell ID.
  • the terminal device can determine the starting position within the bandwidth of m SRS,b during partial frequency domain transmission based on the cell ID of the cell where it is located. Then use this part of the frequency domain to transmit the starting position within the bandwidth of m SRS,b To determine the frequency domain position occupied by the SRS.
  • Figure 3 please refer to Figure 3.
  • Figure 3 is a flow chart of a method for determining the frequency domain position occupied by an SRS provided in an embodiment of the present application. It should be noted that the method of determining the frequency domain position occupied by the SRS in the embodiment of the present application can be executed by the terminal device. As shown in Figure 3, the method may include but is not limited to the following steps:
  • step 301 according to the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal device is located, determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the SRS bandwidth parameter B SRS configured on the network side device and the cell ID of the cell where the terminal device is located can be used to calculate the starting position within the bandwidth of m SRS, b during this part of the frequency domain transmission.
  • the bandwidth size m SRS, b may be obtained by performing a table lookup based on the values of B SRS and b. For example, as shown in Table 2 below, it is the SRS bandwidth configuration, which includes the mapping relationship between the SRS bandwidth configuration, B SRS , b and N b .
  • the parameters can be determined based on the SRS bandwidth parameter B SRS , the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , and the scaling factor P F of the partial frequency domain transmission bandwidth size. and according to parameters and scaling factor P F , determine the parameter k hop , and according to the SRS bandwidth parameter B SRS , cell ID, parameter k hop and scaling factor P F , determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • this parameter The calculation formula can be expressed as follows:
  • n SRS is the count of frequency hopping times in the SRS resource
  • B SRS is the SRS bandwidth parameter
  • b hop is the frequency hopping configuration parameter
  • N b′ indicates that the index is max(b′
  • the first bandwidth in the frequency domain bandwidth layer of -1,0) includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value
  • P F is partial frequency domain transmission
  • mod is the remainder function
  • is the continuous multiplication operation.
  • the terminal equipment can determine the starting position within the bandwidth size m SRS, b during partial frequency domain transmission based on the SRS bandwidth parameter B SRS , cell ID, parameter k hop and scaling factor P F
  • step 302 determine the starting position of each hop according to the SRS bandwidth parameter B SRS , bandwidth size m SRS,b , SRS frequency domain position parameter n RRC and node parameter N b in the tree structure of SRS bandwidth configuration.
  • the starting position of each hop can be The calculation formula is used to calculate the starting position of each hop.
  • the starting position of each hop The calculation formula can be expressed as follows:
  • m SRS, b is the bandwidth size, which means the bandwidth size of SRS in each hop, which can be obtained by checking the above table 2 based on the values of B SRS and b; n b represents the index of the frequency domain position.
  • N b is determined by the network side device configuration and can be used to represent the number of branch nodes included in the b-th layer node in the tree structure of the SRS bandwidth configuration; N b′ represents the index max(b′ The first bandwidth in the frequency domain bandwidth layer of -1,0) includes the number of bandwidths in the frequency domain bandwidth layer with index b', and max() is the function that takes the maximum value; is a function that rounds down.
  • step 303 determine the parameters based on the offset position n shift relative to the reference point and the transmission comb offset parameter of the SRS resource.
  • the parameters Indicates that the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset.
  • this parameter The calculation formula can be expressed as follows:
  • n shift is the offset position relative to the reference point; It is the number of subcarriers included in a resource block RB, and the number can be 12; is the offset value of the SRS resource corresponding to the i-th SRS port within a comb; p i is the antenna port index corresponding to the i-th SRS port; is the offset value of the positioned SRS resource at different symbols within a comb; N ID is the cell ID of the cell where the terminal equipment is located; K TC is the comb value; mod is the remainder function.
  • the parameters can be calculated based on the above formula (5) according to the offset position n shift relative to the reference point configured by the network side device and the transmission comb offset parameter of the SRS resource. value.
  • the Can be based on the number of ports of the SRS resource Cycle offset value and the maximum number of cycle offsets to make sure. As an example, this can be determined by the following formula (6) value:
  • step 304 according to the starting position within the bandwidth size m SRS,b during partial frequency domain transmission Starting position of each jump and parameters Determine the frequency domain position occupied by the SRS.
  • the starting position within the bandwidth size m SRS,b can be Starting position of each jump and parameters Perform summation and determine the obtained sum value as the frequency domain position occupied by the SRS.
  • the calculation formula for the frequency domain position occupied by the SRS can be expressed as follows:
  • UE1 is an edge user equipment in cell 1
  • UE2 is a central user equipment in cell 2
  • cell 1 and cell 2 are adjacent cells.
  • UE1 and UE2 respectively send SRS to the network side device at the same time.
  • the value of and UE2 value and then use the above formula (3) and formula (4) to calculate the value of UE1 respectively.
  • value and UE2 value use the above formula (5) and formula (6) to calculate the value of UE1
  • the value of and UE2 value using UE1’s value, UE1 value and UE1 value, calculate the frequency domain position occupied by UE1 transmitting SRS, and use UE2’s value, UE2 value and UE2 The value of , calculates the frequency domain position occupied by UE2 transmitting SRS. As shown in Figure 4, the frequency domain position occupied by UE1 transmitting SRS and the frequency domain position occupied by UE2 transmitting SRS determined using the embodiment of the present application in the first four hops are shown.
  • the offset position of the SRS transmitted through part of the frequency domain is associated with the cell ID, so that the terminal device can determine the frequency domain position occupied by the SRS based on the cell ID of the cell where the terminal device is located, so that in the determined frequency domain Transmitting SRS at different locations allows user equipment in different cells to transmit SRS at different frequency domain locations, avoiding interference between user equipment transmitting SRS in adjacent cells, thereby improving the accuracy of uplink channel estimation.
  • the frequency domain position at which the SRS is transmitted is defined as: when the SRS is transmitted in a partial frequency domain bandwidth, the offset position of the partial frequency domain transmission of the SRS is a function of the cell ID.
  • This definition method indicates that the offset position of the partial frequency domain transmission SRS is associated with the cell ID.
  • the terminal device can determine the parameters based on the cell ID of the cell where it is located. so that according to this parameter Determine the frequency domain position occupied by the SRS.
  • Figure 5 is a flow chart of another method for determining the frequency domain position occupied by an SRS provided in an embodiment of the present application. It should be noted that the method of determining the frequency domain position occupied by the SRS in the embodiment of the present application can be executed by the terminal device. As shown in Figure 5, the method may include but is not limited to the following steps:
  • step 501 according to the SRS bandwidth parameter B SRS , the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , the scaling factor P F of the partial frequency domain transmission bandwidth size and the cell ID of the cell where the terminal device is located , determine the parameters
  • this parameter The calculation formula can be expressed as follows:
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ represents the frequency domain bandwidth layer with index max(b′-1,0)
  • the first bandwidth includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function ;
  • is a continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • the frequency hopping configuration parameter b hop , the frequency domain location count n SRS within the SRS resource, the scaling factor P F of the partial frequency domain transmission bandwidth size, and the cell identification ID of the cell where the terminal device is located, based on The above formula (8) calculates this parameter value.
  • step 502 according to the parameters and the scaling factor P F to determine the parameter k hop .
  • the parameter k hop is the parameter function, which can be calculated based on the above parameters
  • the value of the parameter k hop is obtained by looking up the table and the value of P F .
  • the parameters can be calculated according to the above formula (8)
  • the value of and the value of P F are obtained by looking up Table 1 to obtain the value of the parameter k hop .
  • step 503 according to the SRS bandwidth parameter B SRS , parameter k hop and scale factor P F , determine the starting position within the bandwidth size m SRS, b during partial frequency domain transmission.
  • the starting position within the bandwidth of m SRS, b during frequency domain transmission of this part can be calculated using a formula value.
  • the The calculation formula can be associated with the cell identification ID of the cell where the terminal device is located, or the The calculation formula may not be related to the cell identification ID of the cell where the terminal device is located.
  • the starting position within the bandwidth size is m SRS, b
  • b the starting position within the bandwidth size
  • the starting position within the bandwidth size is m SRS, b
  • the calculation formula is as follows:
  • step 504 determine the starting position of each hop according to the SRS bandwidth parameter B SRS , bandwidth size m SRS,b , SRS frequency domain position parameter n RRC and node parameter N b in the tree structure of SRS bandwidth configuration.
  • step 504 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • step 505 determine the parameters based on the offset position n shift relative to the reference point and the transmission comb offset parameter of the SRS resource.
  • step 505 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • the parameters can be calculated using the above formula (5) value.
  • step 506 according to the starting position within the bandwidth size m SRS,b during partial frequency domain transmission Starting position of each jump and parameters Determine the frequency domain position occupied by the SRS.
  • step 506 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • the offset position of the SRS transmitted through part of the frequency domain is associated with the cell ID, so that the terminal device can determine the frequency domain position occupied by the SRS based on the cell ID of the cell where the terminal device is located, so that in the determined frequency domain Transmitting SRS at different locations allows user equipment in different cells to transmit SRS at different frequency domain locations, avoiding interference between user equipment transmitting SRS in adjacent cells, thereby improving the accuracy of uplink channel estimation.
  • the frequency domain position where SRS is transmitted is defined as: the SRS transmission offset value within a comb is a function of the cell ID.
  • This definition method indicates that within a comb, users in different cells transmit SRS at different locations within a comb through offsets.
  • the terminal device can determine the parameters based on the cell ID of the cell where it is located. in order to take advantage of this parameter Determine the frequency domain position occupied by the SRS.
  • FIG. 6 is a flow chart of another method for determining the frequency domain position occupied by an SRS provided by an embodiment of the present application. It should be noted that the method of determining the frequency domain position occupied by the SRS in the embodiment of the present application can be executed by the terminal device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • step 601 according to the SRS bandwidth parameter B SRS and the frequency hopping configuration parameter b hop , determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission.
  • step 601 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • the above formula (9) can be used to calculate value.
  • step 602 determine the starting position of each hop according to the SRS bandwidth parameter B SRS , bandwidth size m SRS,b , SRS frequency domain position parameter n RRC and node parameter N b in the tree structure of SRS bandwidth configuration.
  • step 602 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • step 603 the parameters are determined based on the offset position n shift relative to the reference point, the transmission comb offset parameter of the SRS resource and the cell ID of the cell where the terminal equipment is located.
  • this parameter Indicates that the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset.
  • this parameter The calculation formula can be expressed as follows:
  • n shift is the offset position relative to the reference point; is the number of subcarriers included in a resource block RB; is the offset value of the SRS resource corresponding to the i-th SRS port within a comb; p i is the antenna port index corresponding to the i-th SRS port; is the offset value of the positioned SRS resource at different symbols within a comb; N ID is the cell ID of the cell where the terminal equipment is located; K TC is the comb value; mod is the remainder function.
  • the transmission comb offset value is the port number of SRS resources;
  • the cycle offset value configured for the network side device;
  • the maximum number of cycle offsets configured for network-side devices.
  • the transmission comb offset value can be used Number of ports for SRS resources Cycle offset value and the maximum number of cycle offsets Based on the above calculation formula to determine the value, then, according to the value, the offset position n shift relative to the reference point, the transmission comb offset parameter of the SRS resource and the cell ID of the cell where the terminal equipment is located, the parameters are calculated based on the above formula (10) value.
  • step 604 according to the starting position within the bandwidth size m SRS,b during partial frequency domain transmission Starting position of each jump and parameters Determine the frequency domain position occupied by the SRS.
  • step 604 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • UE1 is the edge user equipment in cell 1
  • UE2 is the central user equipment in cell 2
  • cell 1 and cell 2 are adjacent cells.
  • the network side equipment base station configures SRS resources of one port for UE1 and UE2 respectively.
  • the comb value of the SRS resources is configured as 4, and the comb offset value is configured within a comb range.
  • the offset position of SRS transmission within a comb is associated with the cell ID, so that the terminal device can determine the frequency domain position occupied by the SRS based on the cell ID of the cell where the terminal device is located, so that the determined frequency can be Transmitting SRS at different frequency domain locations allows user equipment in different cells to transmit SRS at different frequency domain locations, avoiding interference between user equipment in adjacent cells transmitting SRS, thereby improving the accuracy of uplink channel estimation.
  • the frequency domain position where SRS is transmitted is defined as: the offset position of partial frequency domain transmission of SRS and the SRS transmission offset value within a comb are both functions of the cell ID.
  • This definition method indicates that the starting position of SRS frequency domain transmission is jointly determined by the frequency domain offset of partial frequency domain transmission and the frequency domain offset within a comb, where the frequency domain offset of partial frequency domain transmission and the frequency domain offset within a comb Offsets are associated with cell IDs.
  • the terminal device can determine the parameters based on the cell ID of the cell where it is located. And based on the cell ID of the cell where it is located, it determines the starting position within the bandwidth of m SRS, b during partial frequency domain transmission.
  • FIG. 8 is a flow chart of yet another method for determining the frequency domain position occupied by an SRS provided in an embodiment of the present application. It should be noted that the method of determining the frequency domain position occupied by the SRS in the embodiment of the present application can be executed by the terminal device. As shown in Figure 8, the method may include but is not limited to the following steps:
  • step 801 according to the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal device is located, determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the starting position within the bandwidth size is m SRS, b
  • b the starting position within the bandwidth size
  • the parameters can be determined based on the SRS bandwidth parameter B SRS , the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , and the scaling factor P F of the partial frequency domain transmission bandwidth size.
  • parameters and scaling factor P F determine the parameter k hop ; according to the SRS bandwidth parameter B SRS , cell ID, parameter k hop and scaling factor P F , determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the SRS bandwidth parameter B SRS , the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , the scaling factor P F of the partial frequency domain transmission bandwidth size and the terminal equipment The cell ID of the community where the community is located to determine the parameters. According to parameters and scaling factor P F , determine the parameter k hop ; according to the SRS bandwidth parameter B SRS , cell ID, parameter k hop and scaling factor P F , determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission Optionally, in this implementation, this parameter The calculation formula can be expressed as follows:
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ represents the frequency domain bandwidth layer with index max(b′-1,0)
  • the first bandwidth includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function ;
  • is a continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • step 801 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • step 802 determine the starting position of each hop according to the SRS bandwidth parameter B SRS , bandwidth size m SRS,b , SRS frequency domain position parameter n RRC and node parameter N b in the tree structure of SRS bandwidth configuration.
  • step 802 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • step 803 determine the parameters according to the offset position n shift relative to the reference point, the transmission comb offset parameter of the SRS resource and the cell ID of the cell where the terminal equipment is located.
  • this parameter Indicates that the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset.
  • this parameter The calculation formula can be expressed as follows:
  • step 803 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • step 804 according to the starting position within the bandwidth size m SRS,b during partial frequency domain transmission, Starting position of each jump and parameters Determine the frequency domain position occupied by the SRS.
  • step 804 can be implemented in any manner in the embodiments of the present application.
  • the embodiments of the present application do not limit this and will not be described again.
  • the offset position of partial frequency domain transmission of SRS and the SRS transmission offset value within a comb are associated with the cell ID, so that the terminal device can determine the SRS occupancy based on the cell ID of the cell where the terminal device is located.
  • Frequency domain position in order to transmit SRS at the determined frequency domain position, so that user equipment in different cells transmits SRS at different frequency domain positions, avoiding interference between user equipment in adjacent cells transmitting SRS, thus enabling Improve the accuracy of uplink channel estimation.
  • SRS resources can be divided into positioning resources and non-positioning resources, and the non-positioning resources can be SRS resources used for estimation.
  • any method in the embodiments of the present application can be used to determine the frequency domain position occupied by the SRS, wherein the frequency domain position occupied by the SRS is calculated.
  • N ID is 0, that is, the cell ID value of the cell where the terminal device is located is 0.
  • any method in the embodiments of the present application can be used to determine the frequency domain location of the SRS resources, where , in the formula used to calculate the frequency domain position occupied by the SRS That is, the cell ID value of the cell where the terminal device is located is equal to in, The cell ID value configured for the network side device.
  • Figure 9 is a flow chart of a sounding reference signal SRS resource configuration method provided by an embodiment of the present application. It should be noted that the sounding reference signal SRS resource configuration method in the embodiment of the present application can be applied to network side equipment. As shown in Figure 9, the method may include but is not limited to the following steps.
  • step 901 configure SRS resources and configuration parameters of the SRS resources for the terminal device.
  • the configuration parameters of the SRS resource can be used by the terminal device to determine the frequency domain position occupied by the SRS based on the configuration parameters and the cell identification ID of the cell where the terminal device is located.
  • the determination method of the frequency domain position occupied by the SRS can be implemented by any method in the embodiments of the present application. The embodiments of the present application do not limit this and will not be described again.
  • the network side device can configure SRS resources and configuration parameters of the SRS resources for the terminal device.
  • the terminal device can receive the SRS resource configured from the network side device and the configuration parameters of the SRS resource.
  • This configuration parameter can be understood as a parameter used by the terminal device to determine the frequency domain position occupied by the SRS to be transmitted.
  • the configuration parameters of the SRS resource may include at least one of the following: SRS bandwidth parameter B SRS ; SRS frequency domain position parameter n RRC ; offset position n shift relative to the reference point; SRS bandwidth configuration tree Node parameter N b in the type structure; frequency hopping configuration parameter b hop ; parameter k F .
  • the network side device configures the SRS resources and the configuration parameters of the SRS resources for the terminal device, so that the terminal device can determine the frequency domain position occupied by the SRS according to the cell ID of the cell where it is located, and perform the operation in the determined frequency domain. Transmitting SRS at different locations allows user equipment in different cells to transmit SRS at different frequency domain locations, avoiding interference between user equipment transmitting SRS in adjacent cells, thereby improving the accuracy of uplink channel estimation.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of terminal equipment and network side equipment respectively.
  • the network side device and the terminal device may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 shown in FIG. 10 may include a transceiver module 1001 and a processing module 1002.
  • the transceiving module 1001 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 1001 may implement the sending function and/or the receiving function.
  • the communication device 1000 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 1000 may be a network-side device, a device in a network-side device, or a device that can be used in conjunction with the network-side device.
  • the communication device 1000 is a terminal device: in one implementation, the communication device 1000 includes: a transceiver module 1001, configured to receive the configuration parameters of the sounding reference signal SRS resource sent by the network side device; and a processing module 1002, configured to configure the SRS resource according to the SRS resource.
  • the configuration parameters and the cell ID of the cell where the terminal equipment is located determine the frequency domain position occupied by the SRS; the transceiver module 1001 is also used to transmit the SRS at the determined frequency domain position.
  • the configuration parameters of the SRS resource include at least one of the following:
  • SRS bandwidth parameter B SRS SRS frequency domain position parameter n RRC ; offset position n shift relative to the reference point; node parameter N b in the tree structure of SRS bandwidth configuration; frequency hopping configuration parameter b hop ; parameter k F.
  • processing module 1002 is specifically used to:
  • the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal equipment is located determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • processing module 1002 is specifically used to:
  • the parameters are determined according to the SRS bandwidth parameter B SRS , the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , and the scaling factor P F of the partial frequency domain transmission bandwidth size.
  • SRS bandwidth parameter B SRS cell ID, parameter k hop and scaling factor P F , determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • k F is the parameter configured by the network side device; the parameter k hop is the parameter function; N ID is the cell ID of the cell where the terminal device is located; P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function.
  • processing module 1002 is specifically used to:
  • parameter k hop and scaling factor P F determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission.
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ represents the frequency domain bandwidth layer with index max(b′-1,0)
  • the first bandwidth includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function ;
  • is a continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • N ID is the cell ID of the cell where the terminal device is located.
  • processing module 1002 is specifically used to:
  • the SRS bandwidth parameter B SRS and the frequency hopping configuration parameter b hop determine the starting position within the bandwidth size m SRS, b during partial frequency domain transmission.
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • n shift is the offset position relative to the reference point; is the number of subcarriers included in a resource block RB; is the offset value of the SRS resource corresponding to the i-th SRS port within a comb; p i is the antenna port index corresponding to the i-th SRS port; is the offset value of the positioned SRS resource at different symbols within a comb; N ID is the cell ID of the cell where the terminal equipment is located; K TC is the comb value; mod is the remainder function.
  • the transmission comb offset value is the port number of SRS resources;
  • the cycle offset value configured for the network side device;
  • the maximum number of cycle offsets configured for network-side devices.
  • processing module 1002 is specifically used to:
  • the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal equipment is located determine the starting position within the bandwidth size m SRS, b during partial frequency domain transmission
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • processing module 1002 is specifically used to:
  • SRS bandwidth parameter B SRS cell ID, parameter k hop and scaling factor P F , determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the parameters The calculation formula is as follows:
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ represents the frequency domain bandwidth layer with index max(b′-1,0)
  • the first bandwidth includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function ;
  • is a continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • the SRS resources are configured as positioning resources, and the cell ID value of the cell where the terminal device is located is 0; or the SRS resources are configured as non-positioning resources, and the cell ID value of the cell where the terminal device is located is equal to The cell ID value configured for the network side device.
  • the communication device 1000 is a network-side device: in one implementation, the communication device 1000 includes: a processing module 1002 configured to configure the sounding reference signal SRS resource and the configuration parameters of the SRS resource for the terminal device; wherein the configuration parameter of the SRS resource is used for The terminal device determines the frequency domain position occupied by the SRS based on the configuration parameters and the cell identification ID of the cell where the terminal device is located.
  • a processing module 1002 configured to configure the sounding reference signal SRS resource and the configuration parameters of the SRS resource for the terminal device; wherein the configuration parameter of the SRS resource is used for
  • the terminal device determines the frequency domain position occupied by the SRS based on the configuration parameters and the cell identification ID of the cell where the terminal device is located.
  • the configuration parameters of the SRS resource include at least one of the following:
  • SRS bandwidth parameter B SRS SRS frequency domain position parameter n RRC ; offset position n shift relative to the reference point; node parameter N b in the tree structure of SRS bandwidth configuration; frequency hopping configuration parameter b hop ; parameter k F.
  • FIG 11 is a schematic structural diagram of another communication device 1100 provided by an embodiment of the present application.
  • the communication device 1100 may be a network-side device, a terminal device, a chip, a chip system, a processor, etc. that supports a network-side device to implement the above method, or a chip or a chip system that supports a terminal device to implement the above method. , or processor, etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1100 may include one or more processors 1101.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1100 may also include one or more memories 1102, on which a computer program 1104 may be stored.
  • the processor 1101 executes the computer program 1104, so that the communication device 1100 performs the steps described in the above method embodiments. method.
  • the memory 1102 may also store data.
  • the communication device 1100 and the memory 1102 can be provided separately or integrated together.
  • the communication device 1100 may also include a transceiver 1105 and an antenna 1106.
  • the transceiver 1105 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1105 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1100 may also include one or more interface circuits 1107.
  • the interface circuit 1107 is used to receive code instructions and transmit them to the processor 1101 .
  • the processor 1101 executes the code instructions to cause the communication device 1100 to perform the method described in the above method embodiment.
  • the communication device 1100 is a terminal device: the processor 1101 is used to execute step 202 in Figure 2; execute step 301, step 302, step 303 and step 304 in Figure 3; execute step 501, step 502 and step 503 in Figure 5 , step 504, step 505 and step 506; execute step 601, step 602, step 603 and step 604 in Figure 6; execute step 801, step 802, step 803 and step 804 in Figure 8.
  • the transceiver 1105 is used to perform steps 201 and 203 in FIG. 2 .
  • the communication device 1100 is a network-side device: the processor 1101 is used to execute step 901 in Figure 9 .
  • the processor 1101 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1101 may store a computer program, and the computer program running on the processor 1101 may cause the communication device 1100 to perform the method described in the above method embodiment.
  • the computer program may be solidified in the processor 1101, in which case the processor 1101 may be implemented by hardware.
  • the communication device 1100 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network side device or a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 11 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip 1200 shown in FIG. 12 refers to the schematic structural diagram of the chip 1200 shown in FIG. 12 .
  • the chip 1200 shown in FIG. 12 includes a processor 1201 and an interface 1202.
  • the number of processors 1201 may be one or more, and the number of interfaces 1202 may be multiple.
  • the interface 1202 is used to receive the configuration parameters of the sounding reference signal SRS resource sent by the network side device; the processor 1201 is used to determine the frequency domain position occupied by the SRS according to the configuration parameters of the SRS resource and the cell identification ID of the cell where the terminal device is located; The interface 1202 is also used to transmit SRS at a determined frequency domain location.
  • the configuration parameters of the SRS resource include at least one of the following:
  • SRS bandwidth parameter B SRS SRS frequency domain position parameter b RRC ; offset position n shift relative to the reference point; node parameter N b in the tree structure of SRS bandwidth configuration; frequency hopping configuration parameter b hop ; parameter k F.
  • the processor 1201 is specifically used to:
  • the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal equipment is located determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • the processor 1201 is specifically used to:
  • the parameters are determined according to the SRS bandwidth parameter B SRS , the frequency hopping configuration parameter b hop , the count of frequency domain positions within the SRS resource n SRS , and the scaling factor P F of the partial frequency domain transmission bandwidth size.
  • SRS bandwidth parameter B SRS cell ID, parameter k hop and scaling factor P F , determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the starting position within the bandwidth size is m SRS, b
  • the calculation formula is as follows:
  • k F is the parameter configured by the network side device; the parameter k hop is the parameter function; N ID is the cell ID of the cell where the terminal device is located; P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function.
  • the processor 1201 is specifically used to:
  • parameter k hop and scaling factor P F determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission.
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ represents the frequency domain bandwidth layer with index max(b′-1,0)
  • the first bandwidth includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function ;
  • is a continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • N ID is the cell ID of the cell where the terminal device is located.
  • the processor 1201 is specifically used to:
  • the SRS bandwidth parameter B SRS and the frequency hopping configuration parameter b hop determine the starting position within the bandwidth size m SRS, b during partial frequency domain transmission.
  • the parameters are determined according to the offset position m shift relative to the reference point, the transmission comb offset parameter of the SRS resource and the cell ID of the cell where the terminal equipment is located.
  • parameter The SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • n shift is the offset position relative to the reference point; is the number of subcarriers included in a resource block RB; is the offset value of the SRS resource corresponding to the i-th SRS port within a comb; p i is the antenna port index corresponding to the i-th SRS port; is the offset value of the positioned SRS resource at different symbols within a comb; N ID is the cell ID of the cell where the terminal equipment is located; k TC is the comb value; mod is the remainder function.
  • the transmission comb offset value is the port number of SRS resources;
  • the cycle offset value configured for the network side device;
  • the maximum number of cycle offsets configured for network-side devices.
  • the processor 1201 is specifically used to:
  • the SRS bandwidth parameter B SRS and the cell ID of the cell where the terminal equipment is located determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the SRS resource corresponding to the SRS port corresponding to the antenna port index p i is at the starting position of the bandwidth configured to transmit SRS, and then the frequency domain starting position after the first comb is offset;
  • the processor 1201 is specifically used to:
  • SRS bandwidth parameter B SRS cell ID, parameter k hop and scaling factor P F , determine the starting position within the bandwidth size m SRS,b during partial frequency domain transmission
  • the parameters The calculation formula is as follows:
  • n SRS is the count of frequency domain positions within the SRS resource;
  • B SRS is the SRS bandwidth parameter;
  • b hop is the frequency hopping configuration parameter;
  • N b′ represents the frequency domain bandwidth layer with index max(b′-1,0)
  • the first bandwidth includes the number of bandwidths in the frequency domain bandwidth layer with index b', max() is the function that takes the maximum value;
  • P F is the scaling factor of the partial frequency domain transmission bandwidth; mod is the remainder function ;
  • is a continuous multiplication operation;
  • N ID is the cell ID of the cell where the terminal device is located.
  • the starting position within the bandwidth size is m SRS,b
  • the calculation formula is as follows:
  • the SRS resources are configured as positioning resources, and the cell ID value of the cell where the terminal device is located is 0; or the SRS resources are configured as non-positioning resources, and the cell ID value of the cell where the terminal device is located is equal to The cell ID value configured for the network side device.
  • the processor 1201 is configured to configure sounding reference signal SRS resources and configuration parameters of the SRS resources for the terminal equipment; wherein, the configuration parameters of the SRS resources are used by the terminal equipment to determine the frequency occupied by the SRS based on the configuration parameters and the cell identification ID of the cell where the terminal equipment is located. domain location.
  • the configuration parameters of the SRS resource include at least one of the following:
  • SRS bandwidth parameter B SRS SRS frequency domain position parameter n RRC ; offset position n shift relative to the reference point; node parameter N b in the tree structure of SRS bandwidth configuration; frequency hopping configuration parameter b hop ; parameter k F.
  • the chip also includes a memory 1203, which is used to store necessary computer programs and data.
  • Embodiments of the present application also provide a communication system that includes a communication device as a terminal device in the embodiment of FIG. 10 and a communication device as a network-side device, or the system includes a communication device as a terminal device in the embodiment of FIG. 11 A communication device and a communication device as a network side device.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which when executed by a computer implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种探测参考信号SRS的传输方法及其装置,该方法包括:终端设备接收来自网络侧设备的SRS资源的配置参数(201);终端设备根据SRS资源的配置信息和终端设备所在小区的小区标识I D,确定SRS占有的频域位置(202);终端设备在确定的频域位置上传输SRS(203)。通过实施本申请实施例,可以使得不同小区内的用户在不同的频域位置传输SRS,避免了相邻小区内用户传输SRS之间的干扰,从而可以提升上行信道估计的精度。

Description

探测参考信号SRS的传输方法、SRS资源配置方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种探测参考信号SRS的传输方法、SRS资源配置方法及其装置。
背景技术
多点协作传输技术可以改善小区边缘覆盖,为服务区内各用户提供均衡的服务质量。其中,多点协作传输包含相干协作传输(Coherent Joint Transmission,简称:CJT)和非相干协作传输(Non-Coherent Joint Transmission,简称:NCJT)。在TDD(Time Division Duplexing,时分双工)系统中采用CJT方式传输时,协作的多个TRP(Transmission and Reception Point,发送接收点)需要获得边缘用户的准确的上行信道信息。当前用户到多个TRP的上行信道可通过终端设备向各TRP发送探测参考信号(Sounding Reference Signal,简称SRS)估计得到。
但是,边缘小区用户SRS的传输通常会受到相邻小区中心用户传输SRS的干扰,导致上行信道估计性能变差。
发明内容
本申请实施例提供一种探测参考信号SRS的传输方法、SRS资源配置方法及其装置,通过定义终端设备传输SRS的频域位置与该终端设备所在小区的小区标识ID相关联,可以使得不同小区内的用户在不同的频域位置传输SRS,避免了相邻小区内用户传输SRS之间的干扰,从而可以提升上行信道估计的精度。
第一方面,本申请实施例提供一种探测参考信号SRS的传输方法,所述方法由终端设备执行,所述方法包括:
接收网络侧设备发送的SRS资源的配置参数;
根据所述SRS资源的配置参数和所述终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置;
在确定的频域位置上传输所述SRS。
在该技术方案中,通过定义终端设备传输SRS的频域位置与该终端设备所在小区的小区标识ID相关联,从而可以根据终端设备所在小区的小区ID确定SRS占有的频域位置,以便在该确定的频域位置上传输SRS,使得不同小区内的用户在不同的频域位置传输SRS,避免了相邻小区内用户传输SRS之间的干扰,从而可以提升上行信道估计的精度。
在一种实现方式中,所述SRS资源的配置参数包括以下至少一项:
SRS带宽参数B SRS
SRS频域位置参数n RRC
相对参考点的偏移位置n shift
SRS带宽配置的树型结构中节点参数N b
跳频配置参数b hop
参数k F
在一种可能的实现方式中,所述根据所述SRS资源的配置参数和所述终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置,包括:
根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000001
根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000002
根据所述相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000003
所述参数
Figure PCTCN2022090773-appb-000004
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000005
所述每跳起始位置
Figure PCTCN2022090773-appb-000006
和所述 参数
Figure PCTCN2022090773-appb-000007
确定所述SRS占有的频域位置。
在一种可能的实现方式中,所述根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000008
包括:
根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,和部分频域传输带宽大小的比例因子P F,确定参数
Figure PCTCN2022090773-appb-000009
根据所述参数
Figure PCTCN2022090773-appb-000010
和所述比例因子P F,确定参数k hop
根据所述SRS带宽参数B SRS,所述小区ID,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000011
可选地,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000012
的计算公式表示如下:
Figure PCTCN2022090773-appb-000013
其中,
Figure PCTCN2022090773-appb-000014
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000015
为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000016
的函数;N ID为所述终端设备所在小区的小区ID;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数。
在一种可能的实现方式中,所述根据所述SRS资源的配置参数和所述终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置,包括:
根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和所述终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000017
根据所述参数
Figure PCTCN2022090773-appb-000018
和所述比例因子P F,确定参数k hop
根据所述SRS带宽参数B SRS,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000019
根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000020
根据所述相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000021
根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000022
所述每跳起始位置
Figure PCTCN2022090773-appb-000023
和所述参数
Figure PCTCN2022090773-appb-000024
确定所述SRS占有的频域位置。
可选地,所述参数
Figure PCTCN2022090773-appb-000025
的计算公式表示如下:
Figure PCTCN2022090773-appb-000026
其中,n SRS为所述SRS资源内频域位置的计数;B SRS为所述SRS带宽参数;b hop为所述跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为所述终端设备所在小区的小区ID。
可选地,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000027
的计算公式表示如下:
Figure PCTCN2022090773-appb-000028
其中,
Figure PCTCN2022090773-appb-000029
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000030
为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;所述参数k hop为所述参数
Figure PCTCN2022090773-appb-000031
的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;N ID为所述终端设备所在小区的小区ID。
在一种可能的实现方式中,所述根据所述SRS资源的配置参数和所述终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置,包括:
根据所述SRS带宽参数B SRS和所述跳频配置参数b hop,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000032
根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000033
根据所述相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和所述终端设备所在小区的小区ID,确定参数
Figure PCTCN2022090773-appb-000034
所述参数
Figure PCTCN2022090773-appb-000035
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000036
所述每跳起始位置
Figure PCTCN2022090773-appb-000037
和所述参数
Figure PCTCN2022090773-appb-000038
确定所述SRS占有的频域位置。
可选地,所述参数
Figure PCTCN2022090773-appb-000039
的计算公式表示如下:
Figure PCTCN2022090773-appb-000040
其中,n shift为所述相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000041
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000042
为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000043
为定位的SRS资源在一个comb内不同符号处的偏移值;N ID为所述终端设备所在小区的小区ID;K TC为comb值;mod为求余函数。
可选地,所述
Figure PCTCN2022090773-appb-000044
的计算公式表示如下:
Figure PCTCN2022090773-appb-000045
或者,
Figure PCTCN2022090773-appb-000046
其中,
Figure PCTCN2022090773-appb-000047
为传输梳comb偏移值;
Figure PCTCN2022090773-appb-000048
为SRS资源的端口数;
Figure PCTCN2022090773-appb-000049
为所述网络侧设备配置的循环偏移值;
Figure PCTCN2022090773-appb-000050
为所述网络侧设备配置的最大循环偏移个数。
在一种可能的实现方式中,所述根据所述SRS资源的配置参数和所述终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置,包括:
根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000051
根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000052
根据所述相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和所述终端设备所在小区的小区ID,确定参数
Figure PCTCN2022090773-appb-000053
所述参数
Figure PCTCN2022090773-appb-000054
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000055
所述每跳起始位置
Figure PCTCN2022090773-appb-000056
和所述参数
Figure PCTCN2022090773-appb-000057
确定所述SRS占有的频域位置。
在一种可能的实现方式中,所述根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000058
包括:
根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和所述终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000059
根据所述参数
Figure PCTCN2022090773-appb-000060
和所述比例因子P F,确定参数k hop
根据所述SRS带宽参数B SRS,所述小区ID,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000061
在一种实现方式中,所述参数
Figure PCTCN2022090773-appb-000062
的计算公式表示如下:
Figure PCTCN2022090773-appb-000063
其中,n SRS为所述SRS资源内频域位置的计数;B SRS为所述SRS带宽参数;b hop为所述跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为所述终端设备所在小区的小区ID。
可选地,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000064
的计算公式表示如下:
Figure PCTCN2022090773-appb-000065
所述参数
Figure PCTCN2022090773-appb-000066
的计算公式表示如下:
Figure PCTCN2022090773-appb-000067
其中,
Figure PCTCN2022090773-appb-000068
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000069
为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000070
的函数;N ID为所述终端设备所在小区的小区ID;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;n shift为所述相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000071
为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000072
为定位的SRS资源在一个comb内不同符号处的偏移值;K TC为comb值。
在一种实现方式中,所述部分频域传输带宽大小的比例因子P F可配置的值扩展为8;其中,所述比例因子P F=8时,所述参数k hop与所述
Figure PCTCN2022090773-appb-000073
存在映射关系。
在一种实现方式中,所述SRS资源配置为定位资源,所述终端设备所在小区的小区标识ID值为0;或者,所述SRS资源配置为非定位资源,所述终端设备所在小区的小区标识ID值等于
Figure PCTCN2022090773-appb-000074
所述
Figure PCTCN2022090773-appb-000075
为所述网络侧设备配置的小区ID值。
第二方面,本申请实施例提供另一种探测参考信号SRS资源配置方法,所述方法由网络侧设备执行,所述方法包括:
为终端设备配置SRS资源和所述SRS资源的配置参数;
其中,所述SRS资源的配置参数用于所述终端设备根据所述配置参数和所述终端设备所在小区的小区标识ID确定所述SRS占有的频域位置。
在一种实现方式中,所述SRS资源的配置参数包括以下至少一项:
SRS带宽参数B SRS
SRS频域位置参数n RRC
相对参考点的偏移位置n shift
SRS带宽配置的树型结构中节点参数N b
跳频配置参数b hop
参数k F
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,通信装置包括:收发模块,用于接收网络侧设备发送的探测参考信号SRS资源的配置参数;处理模块,用于根据所述SRS资源的配置参数和终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置;所述收发模块,还用于在确定的频域位置上传输所述SRS。
在一种实现方式中,所述SRS资源的配置参数包括以下至少一项:
SRS带宽参数B SRS
SRS频域位置参数n RRC
相对参考点的偏移位置n shift
SRS带宽配置的树型结构中节点参数N b
跳频配置参数b hop
参数k F
在一种可能的实现方式中,所述处理模块具体用于:
根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为n SRS,b内的起始位置
Figure PCTCN2022090773-appb-000076
根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000077
根据所述相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000078
所述参数
Figure PCTCN2022090773-appb-000079
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000080
所述每跳起始位置
Figure PCTCN2022090773-appb-000081
和所述 参数
Figure PCTCN2022090773-appb-000082
确定所述SRS占有的频域位置。
在一种可能的实现方式中,所述处理模块具体用于:
根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,和部分频域传输带宽大小的比例因子P F,确定参数
Figure PCTCN2022090773-appb-000083
根据所述参数
Figure PCTCN2022090773-appb-000084
和所述比例因子P F,确定参数k hop
根据所述SRS带宽参数B SRS,所述小区ID,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000085
可选地,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000086
的计算公式表示如下:
Figure PCTCN2022090773-appb-000087
其中,
Figure PCTCN2022090773-appb-000088
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000089
为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000090
的函数;N ID为所述终端设备所在小区的小区ID;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数。
在一种可能的实现方式中,所述处理模块具体用于:
根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和所述终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000091
根据所述参数
Figure PCTCN2022090773-appb-000092
和所述比例因子P F,确定参数k hop
根据所述SRS带宽参数B SRS,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000093
根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000094
根据所述相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000095
根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000096
所述每跳起始位置
Figure PCTCN2022090773-appb-000097
和所述参数
Figure PCTCN2022090773-appb-000098
确定所述SRS占有的频域位置。
可选地,所述参数
Figure PCTCN2022090773-appb-000099
的计算公式表示如下:
Figure PCTCN2022090773-appb-000100
其中,n SRS为所述SRS资源内频域位置的计数;B SRS为所述SRS带宽参数;b hop为所述跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为所述终端设备所在小区的小区ID。
可选地,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000101
的计算公式表示如下:
Figure PCTCN2022090773-appb-000102
其中,
Figure PCTCN2022090773-appb-000103
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000104
为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;所述参数k hop为所述参数
Figure PCTCN2022090773-appb-000105
的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;N ID为所述终端设备所在小区的小区ID。
在一种可能的实现方式中,所述处理模块具体用于:
根据所述SRS带宽参数B SRS和所述跳频配置参数b hop,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000106
根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000107
根据所述相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和所述终端设备所在小区的小区ID,确定参数
Figure PCTCN2022090773-appb-000108
所述参数
Figure PCTCN2022090773-appb-000109
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000110
所述每跳起始位置
Figure PCTCN2022090773-appb-000111
和所述参数
Figure PCTCN2022090773-appb-000112
确定所述SRS占有的频域位置。
可选地,所述参数
Figure PCTCN2022090773-appb-000113
的计算公式表示如下:
Figure PCTCN2022090773-appb-000114
其中,n shift为所述相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000115
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000116
为第i 个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000117
为定位的SRS资源在一个comb内不同符号处的偏移值;N ID为所述终端设备所在小区的小区ID;K TC为comb值;mod为求余函数。
可选地,所述
Figure PCTCN2022090773-appb-000118
的计算公式表示如下:
Figure PCTCN2022090773-appb-000119
或者,
Figure PCTCN2022090773-appb-000120
其中,
Figure PCTCN2022090773-appb-000121
为传输梳comb偏移值;
Figure PCTCN2022090773-appb-000122
为SRS资源的端口数;
Figure PCTCN2022090773-appb-000123
为所述网络侧设备配置的循环偏移值;
Figure PCTCN2022090773-appb-000124
为所述网络侧设备配置的最大循环偏移个数。
在一种可能的实现方式中,所述处理模块具体用于:
根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000125
根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000126
根据所述相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和所述终端设备所在小区的小区ID,确定参数
Figure PCTCN2022090773-appb-000127
所述参数
Figure PCTCN2022090773-appb-000128
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000129
所述每跳起始位置
Figure PCTCN2022090773-appb-000130
和所述参数
Figure PCTCN2022090773-appb-000131
确定所述SRS占有的频域位置。
在一种可能的实现方式中,所述处理模块具体用于:
根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和所述终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000132
根据所述参数
Figure PCTCN2022090773-appb-000133
和所述比例因子P F,确定参数k hop
根据所述SRS带宽参数B SRS,所述小区ID,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000134
在一种实现方式中,所述参数
Figure PCTCN2022090773-appb-000135
的计算公式表示如下:
Figure PCTCN2022090773-appb-000136
其中,n SRS为所述SRS资源内频域位置的计数;B SRS为所述SRS带宽参数;b hop为所述跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为所述终端设备所在小区的小区ID。
可选地,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000137
的计算公式表示如下:
Figure PCTCN2022090773-appb-000138
所述参数
Figure PCTCN2022090773-appb-000139
的计算公式表示如下:
Figure PCTCN2022090773-appb-000140
其中,
Figure PCTCN2022090773-appb-000141
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000142
为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000143
的函数;N ID为所述终端设备所在小区的小区ID;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;n shift为所述相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000144
为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000145
为定位的SRS资源在一个comb内不同符号处的偏移值;K TC为comb值。
在一种实现方式中,所述部分频域传输带宽大小的比例因子P F可配置的值扩展为8;其中,所述比 例因子P F=8时,所述参数k hop与所述
Figure PCTCN2022090773-appb-000146
存在映射关系。
在一种可能的实现方式中,所述SRS资源配置为定位资源,所述终端设备所在小区的小区标识ID值为0;或者,所述SRS资源配置为非定位资源,所述终端设备所在小区的小区标识ID值等于
Figure PCTCN2022090773-appb-000147
所述
Figure PCTCN2022090773-appb-000148
为所述网络侧设备配置的小区ID值。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络侧设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
在一种实现方式中,通信装置包括:处理模块,用于为终端设备配置探测参考信号SRS资源和所述SRS资源的配置参数;其中,所述SRS资源的配置参数用于所述终端设备根据所述配置参数和所述终端设备所在小区的小区标识ID确定所述SRS占有的频域位置。
在一种可能的实现方式中,所述SRS资源的配置参数包括以下至少一项:
SRS带宽参数B SRS;SRS频域位置参数n RRC;相对参考点的偏移位置n shift;SRS带宽配置的树型结构中节点参数N b;跳频配置参数b hop;参数k F
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络侧设备所用的指令,当所述指令被执行时,使所述网络侧设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络侧设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络侧设备必要的计算机程序 和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种探测参考信号SRS的传输方法的流程示意图;
图3为本申请实施例提供的一种确定SRS占有的频域位置的方法的流程图;
图4为本申请实施例的相邻小区内的边缘用户设备和中心用户设备在不同的频域位置传输SRS的示例图;其中,边缘用户设备和中心用户设备分别为不同小区;
图5为本申请实施例提供的另一种确定SRS占有的频域位置的方法的流程图;
图6为本申请实施例提供的另一种确定SRS占有的频域位置的方法的流程图;
图7为本申请实施例的在一个资源块RB内传输梳comb为8时,边缘用户设备和中心用户设备在一个comb不同的偏移位置传输SRS的示例图;其中,边缘用户设备和中心用户设备分别为不同小区,且这两个小区为相邻小区;
图8为本申请实施例提供的又一种确定SRS占有的频域位置的方法的流程图;
图9是本申请实施例提供的一种探测参考信号SRS资源配置方法的流程图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的另一种通信装置的结构示意图;
图12是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
多点协作传输技术可以改善小区边缘覆盖,为服务区内各用户提供均衡的服务质量。其中,多点协作传输包含相干协作传输(Coherent Joint Transmission,简称:CJT)和非相干协作传输(Non-Coherent Joint Transmission,简称:NCJT)。在TDD(Time Division Duplexing,时分双工)系统中采用CJT方式传输时,协作的多个TRP(Transmission and Reception Point,发送接收点)需要获得边缘用户的准确的上行信道信息。当前用户到多个TRP的上行信道可通过终端设备向各TRP发送探测参考信号(Sounding Reference Signal,简称SRS)估计得到。其中,多个TRP对应一个或多个网络侧设备,例如多个TRP对应一个网络侧设备,也就是说网络侧设备可以配置有多个TRP。
但是,边缘小区用户SRS的传输通常会受到相邻小区中心用户传输SRS的干扰,导致上行信道估计 性能变差。
为此,本申请提供了一种探测参考信号SRS的传输方法、SRS资源配置方法及其装置,通过定义终端设备传输SRS的频域位置与该终端设备所在小区的小区标识ID相关联,可以使得不同小区内的用户在不同的频域位置传输SRS,避免了相邻小区内用户传输SRS之间的干扰,从而可以提升上行信道估计的精度。
为了更好的理解本申请实施例公开的一种探测参考信号SRS的传输方法、SRS资源配置方法及其装置,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络侧设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络侧设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络侧设备101和两个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络侧设备101是网络侧的一种用于发射或接收信号的实体。例如,网络侧设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络侧设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络侧设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络侧设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的探测参考信号SRS的传输方法、SRS资源配置方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种探测参考信号SRS的传输方法的流程示意图。需要说明的是,本申请实施例提供的探测参考信号SRS的传输方法可由终端设备执行,也就是说,本申请实施例提供的探测参考信号SRS的传输方法可从终端设备侧进行描述。其中,该终端设备可以是任意一个小区内任一终端设备,例如,该终端设备可以是某小区中边缘用户的终端设备,或者,该终端设备还可以是与该某小区相邻的小区中的中心用户的终端设备。如图2所示,该方法可以包括但不限于如下步骤:
在步骤201中,接收网络侧设备发送的SRS资源的配置参数。
可以理解,该SRS资源的配置参数可以是由网络侧设备为终端设备配置的。在一种实现方式种,网络侧设备可以为终端设备配置SRS资源和该SRS资源的配置参数。终端设备可以接收来自于网络侧设备配置的SRS资源和该SRS资源的配置参数。该配置参数可理解为在终端设备确定待传输SRS所占有的频域位置而使用的参数。
在步骤202中,根据SRS资源的配置参数和终端设备所在小区的小区标识ID,确定SRS占有的频域位置。
其中,在本申请的实施例中,该终端设备所在小区的小区ID可以是由网络侧设备配置的。
可选地,可以定义终端设备传输SRS的频域位置与该终端设备所在小区的小区标识ID相关联,以 便终端设备可以根据SRS资源的配置参数和该终端设备所在小区的小区ID,确定SRS占有的频域位置。
在步骤203中,在确定的频域位置上传输SRS。
可选地,终端设备在确定SRS占有的频域位置之后,可以在该确定的频域位置上传输SRS。
通过实施本申请实施例,可以根据终端设备所在小区的小区ID确定SRS占有的频域位置,以便在该确定的频域位置上传输SRS,使得不同小区内的用户设备在不同的频域位置传输SRS,避免了相邻小区内用户设备传输SRS之间的干扰,从而可以提升上行信道估计的精度。
需要说明的是,网络侧设备为终端设备配置SRS资源时,也会为该终端设备配置相应的配置参数。在本申请的一些实施例种,该SRS资源的配置参数至少可以包括以下1)至6)中的至少一项:
1)SRS带宽参数B SRS
2)SRS频域位置参数n RRC
3)相对参考点的偏移位置n shift
4)SRS带宽配置的树型结构中节点参数N b
5)跳频配置参数b hop
6)参数k F
在一种实现方式中,该SRS资源的配置参数至少包括:SRS带宽参数B SRS;SRS频域位置参数n RRC;相对参考点的偏移位置n shift;SRS带宽配置的树型结构中节点参数N b;跳频配置参数b hop;参数k F
其中,在本申请的实施例中,B SRS是用于确定SRS在一个时域符号上占有的频域带宽长度参数信息,也即SRS在一个时域符号上占有的频域带宽对应的树型结构等级。
其中,在本申请的实施例中,N b可理解为SRS带宽配置的树型结构中第b-1层节点在第b层所包含的分支节点的数目,b=0时,N b=1。
其中,在本申请的实施例中,b hop用于SRS跳频,b hop∈{0,1,2,3}。
其中,在本申请的实施例中,参数k F的取整范围为k F∈{0,1,…,P F-1},其中,P F表示部分频域传输带宽大小的比例因子。该P F的默认值可为1,该默认值不需要网络侧设备配置;或者,该P F的值还可以由网络侧设备通过RRC信令配置给该终端设备,可配的值为2或4或8,也就是说,在本申请的实施例中,该P F可配置的值扩展为8,用于确定SRS的部分频域传输的偏移位置的参数k hop,其中参数k hop定义为参数
Figure PCTCN2022090773-appb-000149
的函数,当P F=8时,k hop定义为
Figure PCTCN2022090773-appb-000150
的函数并存在下表所示的映射关系可如下表格1所示。
表格1:P F=8时,k hop定义为
Figure PCTCN2022090773-appb-000151
的函数并存在下表所示的映射关系
Figure PCTCN2022090773-appb-000152
可以理解的是,上述的表格1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表格1中任何其他元素值。因此本领域内技术人员可以理解,该表格1中的每一个元素的取值都是一个独立的实施例。还可以理解的是,该P F还可配置其他值(如1或2或4),在P F配置为其他值(如1或2或4)时,k hop定义为
Figure PCTCN2022090773-appb-000153
的函数并存在的映射关系与现有技术一致,在此不再赘述。需要说明的是,本公开实施例中包括多个表格,而其中的每一个表格都与表格1相似的,是将多个独立的实施例合并在了同一张表格中,而这些表格中的每一个元素也应当被认为是一个独立的实施例
可选地,在本申请的一些实施例中,比例因子P F=8时,参数k hop与所述
Figure PCTCN2022090773-appb-000154
存在映射关系,其中,该映射关系可以是一一映射,比如
Figure PCTCN2022090773-appb-000155
需要说明的是,本申请通过定义终端设备传输SRS的频域位置与该终端设备所在小区的小区标识ID相关联,来使得不同小区内的用户在不同的频域位置传输SRS。
在一种实现方式中,将传输SRS的频域位置定义为:在部分频域带宽发送SRS时,SRS的部分频域传输的偏移位置为小区ID的函数。该定义方法表示部分频域传输SRS的偏移位置与小区ID相关联。在 这种定义方法中,终端设备可以根据自身所在小区的小区ID来确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000156
进而利用该部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000157
来确定SRS占有的频域位置。可选地,在本申请的一些实施例中,请参见图3,图3为本申请实施例提供的一种确定SRS占有的频域位置的方法的流程图。需要说明的是,本申请实施例的确定SRS占有的频域位置的方法可由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
在步骤301中,根据SRS带宽参数B SRS和终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000158
可选地,可以利用网络侧设备配置的SRS带宽参数B SRS和终端设备所在小区的小区ID,计算该部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000159
其中,在本申请的一些实施例中,该带宽大小m SRS,b可以是根据B SRS和b的值进行查表而得到的。例如,如下面表格2所示,为SRS带宽配置,其中包含SRS带宽配置、B SRS、b和N b间的映射关系。
表格2:SRS宽度配置
Figure PCTCN2022090773-appb-000160
在一种实现方式中,可以根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,和部分频域传输带宽大小的比例因子P F,确定参数
Figure PCTCN2022090773-appb-000161
并根据参数
Figure PCTCN2022090773-appb-000162
和比例因子P F,确定参数k hop,以及根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000163
在一种可选的实现方式中,该参数
Figure PCTCN2022090773-appb-000164
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000165
其中,
Figure PCTCN2022090773-appb-000166
为一个资源块RB内包含子载波的个数;n SRS为SRS资源内跳频次数的计数;B SRS为SRS带宽参数;b hop为跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算。作为一种示例,当P F=8时,k hop定义为
Figure PCTCN2022090773-appb-000167
的函数并存在的映射关系可如上述表格1所示。
可选地,可以根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,和部分频域传输带宽大小的比例因子P F,基于上述公式(1)计算出参数
Figure PCTCN2022090773-appb-000168
的值。参数k hop为参数
Figure PCTCN2022090773-appb-000169
的函数,可以根据上述计算出的参数
Figure PCTCN2022090773-appb-000170
的值和P F的值通过查表而得到该参数k hop的值。这样,终端设备可以根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000171
在一种可选的实现方式中,该部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000172
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000173
其中,
Figure PCTCN2022090773-appb-000174
为一个资源块RB内包含子载波的个数,该个数可为12;
Figure PCTCN2022090773-appb-000175
为索引b=B SRS时每跳的SRS带宽;参数k hop为参数
Figure PCTCN2022090773-appb-000176
的函数;N ID为终端设备所在小区的小区ID;P F为部分频域传输带宽大小的比例因子;k F为网络侧设备配置的参数,取整范围为k F∈{0,1,…,P F-1};mod为求余函数。作为一种示例,当P F=8时,k hop定义为
Figure PCTCN2022090773-appb-000177
的函数并存在的映射关系可如上述表格1所示。
例如,可以根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,基于上述公式(2)计算出
Figure PCTCN2022090773-appb-000178
的值,即部分频域传输时在带宽大小为m SRS,b内的起始位置。
在步骤302中,根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000179
在一种实现方式中,可以基于每跳起始位置
Figure PCTCN2022090773-appb-000180
的计算公式来计算每跳起始位置。其中,在本申请的一些实施例中,该每跳起始位置
Figure PCTCN2022090773-appb-000181
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000182
其中,m SRS,b为带宽大小,即表示SRS在每跳的带宽大小,可以是根据B SRS和b的值进行查上述表格2而得到的;n b表示频域位置的索引,当SRS不跳频时,
Figure PCTCN2022090773-appb-000183
当SRS跳频时,由下述公式(4)确定:
Figure PCTCN2022090773-appb-000184
其中,
Figure PCTCN2022090773-appb-000185
其中,N b由网络侧设备配置确定,可用于表示SRS带宽配置的树型结构中第b-1层节点在第b层所包含的分支节点的数目;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;
Figure PCTCN2022090773-appb-000186
为向下取整的函数。
在步骤303中,根据相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000187
其中,在本申请的实施例中,参数
Figure PCTCN2022090773-appb-000188
表示天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置。
在本申请的一些实施例中,该参数
Figure PCTCN2022090773-appb-000189
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000190
其中,n shift为相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000191
为一个资源块RB内包含子载波的个数,该个数可为12;
Figure PCTCN2022090773-appb-000192
为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000193
为定位的SRS资源在一个comb内不同符号处的偏移值;N ID为终端设备所在小区的小区ID;K TC为comb值;mod为求余函数。
例如,可根据网络侧设备配置的相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,基于上述公式(5)计算出参数
Figure PCTCN2022090773-appb-000194
的值。
在本申请的实施例中,该
Figure PCTCN2022090773-appb-000195
可以根据SRS资源的端口数
Figure PCTCN2022090773-appb-000196
循环偏移值
Figure PCTCN2022090773-appb-000197
和最大循环偏移个数
Figure PCTCN2022090773-appb-000198
来确定。作为一种示例,可由下述公式(6)来确定该
Figure PCTCN2022090773-appb-000199
的值:
Figure PCTCN2022090773-appb-000200
其中,
Figure PCTCN2022090773-appb-000201
为传输梳comb偏移值。
在步骤304中,根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000202
每跳起始位置
Figure PCTCN2022090773-appb-000203
和参数
Figure PCTCN2022090773-appb-000204
确定SRS占有的频域位置。
在一种实现方式中,可以将部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000205
每跳起始位置
Figure PCTCN2022090773-appb-000206
和参数
Figure PCTCN2022090773-appb-000207
进行求和,将得到的和值确定为SRS占有的频域位置。作为一种示例,该SRS占有的频域位置的计算公式可表示如下:
Figure PCTCN2022090773-appb-000208
其中,
Figure PCTCN2022090773-appb-000209
为SRS占有的频域位置;
Figure PCTCN2022090773-appb-000210
可利用上述公式(5)和公式(6)计算得到;
Figure PCTCN2022090773-appb-000211
可利用上述公式(3)和公式(4)计算得到;
Figure PCTCN2022090773-appb-000212
可利用上述公式(1)和公式(2)计算得到。
举例而言,以UE1为小区1内的边缘用户设备,UE2为小区2内的中心用户设备,小区1和小区2 为相邻的小区。小区内的网络侧设备(如基站)给UE1配置的小区ID为5,给UE2配置的小区ID为6,即N ID,1=5,N ID,2=6。UE1和UE2分别同时向网络侧设备发送SRS。假设网络侧设备通过信令配置的P F=4,SRS在大小为
Figure PCTCN2022090773-appb-000213
内的部分频域带宽大小
Figure PCTCN2022090773-appb-000214
为上传输。若给UE1和U2配置的k F均为0,可以根据上述公式(1)和公式(2)分别计算出UE1的
Figure PCTCN2022090773-appb-000215
的值和UE2的
Figure PCTCN2022090773-appb-000216
的值,进而利用上述公式(3)和公式(4)分别计算出UE1的
Figure PCTCN2022090773-appb-000217
值和UE2的
Figure PCTCN2022090773-appb-000218
值,利用上述公式(5)和公式(6)计算出UE1的
Figure PCTCN2022090773-appb-000219
的值和UE2的
Figure PCTCN2022090773-appb-000220
的值,利用UE1的
Figure PCTCN2022090773-appb-000221
的值、UE1的
Figure PCTCN2022090773-appb-000222
值和UE1的
Figure PCTCN2022090773-appb-000223
的值,计算UE1传输SRS占有的频域位置,利用UE2的
Figure PCTCN2022090773-appb-000224
的值、UE2的
Figure PCTCN2022090773-appb-000225
值和UE2的
Figure PCTCN2022090773-appb-000226
的值,计算UE2传输SRS占有的频域位置。如图4所示,给出了前4跳时采用本申请实施例确定的UE1传输SRS占有的频域位置和UE2传输SRS占有的频域位置。
通过实施本申请实施例,通过部分频域传输SRS的偏移位置与小区ID相关联,使得终端设备可以根据终端设备所在小区的小区ID确定SRS占有的频域位置,以便在该确定的频域位置上传输SRS,使得不同小区内的用户设备在不同的频域位置传输SRS,避免了相邻小区内用户设备传输SRS之间的干扰,从而可以提升上行信道估计的精度。
在一种实现方式中,将传输SRS的频域位置定义为:在部分频域带宽发送SRS时,SRS的部分频域传输的偏移位置为小区ID的函数。该定义方法表示部分频域传输SRS的偏移位置与小区ID相关联。在这种定义方法中,终端设备可以根据自身所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000227
以便根据该参数
Figure PCTCN2022090773-appb-000228
确定SRS占有的频域位置。可选地,在本申请的一些实施例中,请参见图5,图5为本申请实施例提供的另一种确定SRS占有的频域位置的方法的流程图。需要说明的是,本申请实施例的确定SRS占有的频域位置的方法可由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
在步骤501中,根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000229
在一种可选的实现方式中,该参数
Figure PCTCN2022090773-appb-000230
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000231
其中,n SRS为SRS资源内频域位置的计数;B SRS为SRS带宽参数;b hop为跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为终端设备所在小区的小区ID。作为一种示例,当P F=8时,k hop定义为
Figure PCTCN2022090773-appb-000232
的函数并存在的映射关系可如上述表格1所示。
例如,可根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和终端设备所在小区的小区标识ID,基于上述公式(8)计算出该参数
Figure PCTCN2022090773-appb-000233
的值。
在步骤502中,根据参数
Figure PCTCN2022090773-appb-000234
和比例因子P F,确定参数k hop
可选地,参数k hop为参数
Figure PCTCN2022090773-appb-000235
的函数,可以根据上述计算出的参数
Figure PCTCN2022090773-appb-000236
的值和P F的值通过查表而得到该参数k hop的值。例如,可以根据上述公式(8)计算出的参数
Figure PCTCN2022090773-appb-000237
的值和P F的值通过查找表格1而得到该参数k hop的值。
在步骤503中,根据SRS带宽参数B SRS,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000238
可选地,可以根据SRS带宽参数B SRS,参数k hop和比例因子P F,利用公式计算出该部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000239
的值。其中,该
Figure PCTCN2022090773-appb-000240
的计算公式可以与与终端设备所在小区的小区标识ID相关联,或者,该
Figure PCTCN2022090773-appb-000241
的计算公式可以与与终端设备所在小区的小区标识ID不相关。
在一种实现方式中,该部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000242
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000243
其中,
Figure PCTCN2022090773-appb-000244
为一个资源块RB内包含子载波的个数,该个数可为12;
Figure PCTCN2022090773-appb-000245
为索引b=B SRS时每跳的SRS带宽;参数k hop为参数
Figure PCTCN2022090773-appb-000246
的函数;P F为部分频域传输带宽大小的比例因子;k F为网络侧设备配置的参数,取整范围为k F∈{0,1,…,P F-1};mod为求余函数。作为一种示例,当P F=8时,k hop定义为
Figure PCTCN2022090773-appb-000247
的函数并存在的映射关系可如上述表格1所示。
例如,可以根据SRS带宽参数B SRS,参数k hop和比例因子P F,基于上述公式(9)计算出
Figure PCTCN2022090773-appb-000248
的值,即部分频域传输时在带宽大小为m SRS,b内的起始位置。
在另一种实现方式中,该部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000249
的计算公式表示如下:
Figure PCTCN2022090773-appb-000250
其中,
Figure PCTCN2022090773-appb-000251
为一个资源块RB内包含子载波的个数,该个数可为12;
Figure PCTCN2022090773-appb-000252
为索引b=B SRS时每跳的SRS带宽;参数k hop为参数
Figure PCTCN2022090773-appb-000253
的函数;N ID为终端设备所在小区的小区ID;P F为部分频域传输带宽大小的比例因子;k F为网络侧设备配置的参数,取整范围为k F∈{0,1,…,P F-1};mod为求余函数。作为一种示例,当P F=8时,k hop定义为
Figure PCTCN2022090773-appb-000254
的函数并存在的映射关系可如上述表格1所示。
例如,可以根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,基于上述公式(2)计算出
Figure PCTCN2022090773-appb-000255
的值,即部分频域传输时在带宽大小为m SRS,b内的起始位置。
在步骤504中,根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000256
在本申请的实施例中,步骤504可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤505中,根据相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000257
在本申请的实施例中,步骤505可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。例如,可以利用上述公式(5)计算出参数
Figure PCTCN2022090773-appb-000258
的值。
在步骤506中,根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000259
每跳起始位置
Figure PCTCN2022090773-appb-000260
和参数
Figure PCTCN2022090773-appb-000261
确定SRS占有的频域位置。
在本申请的实施例中,步骤506可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
通过实施本申请实施例,通过部分频域传输SRS的偏移位置与小区ID相关联,使得终端设备可以根据终端设备所在小区的小区ID确定SRS占有的频域位置,以便在该确定的频域位置上传输SRS,使得不同小区内的用户设备在不同的频域位置传输SRS,避免了相邻小区内用户设备传输SRS之间的干扰,从而可以提升上行信道估计的精度。
在一种实现方式中,将传输SRS的频域位置定义为:在一个comb内SRS传输偏移值为小区ID的函数。该定义方法表示在一个comb内,不同小区的用户在通过偏移在一个comb内不同的位置传输SRS。在这种定义方法中,终端设备可以根据自身所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000262
以便利用该参数
Figure PCTCN2022090773-appb-000263
确定SRS占有的频域位置。可选地,在本申请的一些实施例中,请参见图6,图6为本申请实施例提供的另一种确定SRS占有的频域位置的方法的流程图。需要说明的是,本申请实施例的确定SRS占有的频域位置的方法可由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
在步骤601中,根据SRS带宽参数B SRS和跳频配置参数b hop,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000264
在本申请的实施例中,步骤601可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。例如,可以利用上述公式(9)计算出
Figure PCTCN2022090773-appb-000265
的值。
在步骤602中,根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000266
在本申请的实施例中,步骤602可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤603中,根据相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和终端设备所在小区的小区ID,确定参数
Figure PCTCN2022090773-appb-000267
其中,在本申请的实施例中,该参数
Figure PCTCN2022090773-appb-000268
表示天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置。
在一种实现方式中,该参数
Figure PCTCN2022090773-appb-000269
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000270
其中,n shift为相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000271
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000272
为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000273
为 定位的SRS资源在一个comb内不同符号处的偏移值;N ID为终端设备所在小区的小区ID;K TC为comb值;mod为求余函数。
其中,在本申请的实施例中,该
Figure PCTCN2022090773-appb-000274
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000275
或者,
Figure PCTCN2022090773-appb-000276
其中,
Figure PCTCN2022090773-appb-000277
为传输梳comb偏移值;
Figure PCTCN2022090773-appb-000278
为SRS资源的端口数;
Figure PCTCN2022090773-appb-000279
为网络侧设备配置的循环偏移值;
Figure PCTCN2022090773-appb-000280
为网络侧设备配置的最大循环偏移个数。
可选地,可以利用传输梳comb偏移值
Figure PCTCN2022090773-appb-000281
SRS资源的端口数
Figure PCTCN2022090773-appb-000282
循环偏移值
Figure PCTCN2022090773-appb-000283
和最大循环偏移个数
Figure PCTCN2022090773-appb-000284
基于上述
Figure PCTCN2022090773-appb-000285
的计算公式,确定出该
Figure PCTCN2022090773-appb-000286
的值,然后,根据该
Figure PCTCN2022090773-appb-000287
的值、相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和终端设备所在小区的小区ID,基于上述公式(10)计算出参数
Figure PCTCN2022090773-appb-000288
的值。
在步骤604中,根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000289
每跳起始位置
Figure PCTCN2022090773-appb-000290
和参数
Figure PCTCN2022090773-appb-000291
确定SRS占有的频域位置。
在本申请的实施例中,步骤604可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
举例而言,以UE1为小区1内的边缘用户设备,UE2为小区2内的中心用户设备,小区1和小区2为相邻的小区。小区内的网络侧设备(如基站)给UE1配置的小区ID为5,给UE2配置的小区ID为6,即N ID,1=5,N ID,2=6。网络侧设备基站给UE1和UE2分别配置了一个端口的SRS资源,SRS资源的comb值均配置为4,并且在一个comb范围内配置的comb偏移值
Figure PCTCN2022090773-appb-000292
由于配置的SRS为非用于定位的SRS,因此,
Figure PCTCN2022090773-appb-000293
根据上述公式(10)可知
Figure PCTCN2022090773-appb-000294
的值为1和2,利用本申请实施例的方法分别计算UE1的SRS占有的频域位置和UE2的SRS占有的频域位置。如图7所示,给出了在一个资源块RB内comb为8时,UE1和UE2在一个comb不同的偏移位置传输SRS。
通过实施本申请实施例,通过SRS传输在一个comb内的偏移位置与小区ID相关联,使得终端设备可以根据终端设备所在小区的小区ID确定SRS占有的频域位置,以便在该确定的频域位置上传输SRS,使得不同小区内的用户设备在不同的频域位置传输SRS,避免了相邻小区内用户设备传输SRS之间的干扰,从而可以提升上行信道估计的精度。
在一种实现方式中,将传输SRS的频域位置定义为:SRS的部分频域传输的偏移位置和在一个comb内SRS传输偏移值均为小区ID的函数。该定义方法表示SRS频域传输起始位置由部分频域传输的频域偏移和一个comb内的频域偏移共同确定,其中,部分频域传输的频域偏移和comb内的频域偏移均与小区ID相关联。在这种定义方法中,终端设备可以根据自身所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000295
并根据自身所在小区的小区ID来确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000296
以便利用该参数
Figure PCTCN2022090773-appb-000297
和该
Figure PCTCN2022090773-appb-000298
确定SRS占有的频域位置。可选地,在本申请的一些实施例中,请参见图8,图8为本申请实施例提供的又一种确定SRS占有的频域位置的方法的流程图。需要说明的是,本申请实施例的确定SRS占有的频域位置的方法可由终端设备执行。如图8所示,该方法可以包括但不限于如下步骤:
在步骤801中,根据SRS带宽参数B SRS和终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000299
在一种实现方式中,该部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000300
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000301
在一种可能的实现方式中,可以根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的 计数n SRS,和部分频域传输带宽大小的比例因子P F,确定参数
Figure PCTCN2022090773-appb-000302
根据参数
Figure PCTCN2022090773-appb-000303
和比例因子P F,确定参数k hop;根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000304
在另一种可能的实现方式中,可以根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000305
根据参数
Figure PCTCN2022090773-appb-000306
和比例因子P F,确定参数k hop;根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000307
可选地,在该实施方式中,该参数
Figure PCTCN2022090773-appb-000308
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000309
其中,n SRS为SRS资源内频域位置的计数;B SRS为SRS带宽参数;b hop为跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为终端设备所在小区的小区ID。
在本申请的实施例中,步骤801可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤802中,根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000310
在本申请的实施例中,步骤802可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤803中,根据相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和终端设备所在小区的小区ID,确定参数
Figure PCTCN2022090773-appb-000311
其中,在本申请的实施例中,该参数
Figure PCTCN2022090773-appb-000312
表示天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置。
在一种实现方式中,该参数
Figure PCTCN2022090773-appb-000313
的计算公式可表示如下:
Figure PCTCN2022090773-appb-000314
在本申请的实施例中,步骤803可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤804中,根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000315
每跳起始位置
Figure PCTCN2022090773-appb-000316
和参数
Figure PCTCN2022090773-appb-000317
确定SRS占有的频域位置。
在本申请的实施例中,步骤804可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
通过实施本申请实施例,通过SRS的部分频域传输的偏移位置和在一个comb内SRS传输偏移值均与小区ID相关联,使得终端设备可以根据终端设备所在小区的小区ID确定SRS占有的频域位置,以便在该确定的频域位置上传输SRS,使得不同小区内的用户设备在不同的频域位置传输SRS,避免了相邻小区内用户设备传输SRS之间的干扰,从而可以提升上行信道估计的精度。
需要说明的是,SRS资源可分为定位资源和非定位资源,该非定位资源可为用于估计的SRS资源。在本申请的一些实施例中,针对SRS资源配置为定位资源的情况,可采用本申请的各实施例中的任一种方式来确定SRS占有的频域位置,其中,计算该SRS占有的频域位置所采用的公式中N ID为0,也即终端设备所在小区的小区标识ID值为0。
在本申请的一些实施例中,针对SRS资源配置为非定位资源(如用于估计的SRS资源),可采用本申请的各实施例中任一种方式来确定SRS资源的频域位置,其中,计算该SRS占有的频域位置所采用的公式中
Figure PCTCN2022090773-appb-000318
也即终端设备所在小区的小区标识ID值等于
Figure PCTCN2022090773-appb-000319
其中,
Figure PCTCN2022090773-appb-000320
为网络侧设备配置的小区ID值。
可以理解,上述实施例是从终端设备侧描述本申请实施例的探测参考信号SRS的传输方法的实现方式。本申请实施例还提出了一种探测参考信号SRS资源配置方法,下面将从网络侧设备描述该探测参考信号SRS资源配置方法的实现方式。请参见图9,图9是本申请实施例提供的一种探测参考信号SRS资源配置方法的流程图。需要说明的是,本申请实施例的探测参考信号SRS资源配置方法可应用于网络侧 设备。如图9所示,该方法可以包括但不限于如下步骤。
在步骤901中,为终端设备配置SRS资源和SRS资源的配置参数。
其中,在本申请的实施例中,该SRS资源的配置参数可以用于终端设备根据配置参数和终端设备所在小区的小区标识ID确定SRS占有的频域位置。其中,该SRS占有的频域位置的确定方式可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
可选地,网络侧设备可以为终端设备配置SRS资源和该SRS资源的配置参数。终端设备可以接收来自于网络侧设备配置的SRS资源和该SRS资源的配置参数。该配置参数可理解为在终端设备确定待传输SRS所占有的频域位置而使用的参数。
在一种实现方式中,该SRS资源的配置参数至少可以包括以下至少一项:SRS带宽参数B SRS;SRS频域位置参数n RRC;相对参考点的偏移位置n shift;SRS带宽配置的树型结构中节点参数N b;跳频配置参数b hop;参数k F
通过实施本申请实施例,通过网络侧设备为终端设备配置SRS资源和SRS资源的配置参数,以便终端设备可以根据自身所在小区的小区ID确定SRS占有的频域位置,并在该确定的频域位置上传输SRS,可以使得不同小区内的用户设备在不同的频域位置传输SRS,避免了相邻小区内用户设备传输SRS之间的干扰,从而可以提升上行信道估计的精度。
上述本申请提供的实施例中,分别从终端设备、网络侧设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络侧设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图10,为本申请实施例提供的一种通信装置1000的结构示意图。图10所示的通信装置1000可包括收发模块1001和处理模块1002。收发模块1001可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1001可以实现发送功能和/或接收功能。
通信装置1000可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置1000可以是网络侧设备,也可以是网络侧设备中的装置,还可以是能够与网络侧设备匹配使用的装置。
通信装置1000为终端设备:在一种实现方式中,通信装置1000包括:收发模块1001,用于接收网络侧设备发送的探测参考信号SRS资源的配置参数;处理模块1002,用于根据SRS资源的配置参数和终端设备所在小区的小区标识ID,确定SRS占有的频域位置;收发模块1001,还用于在确定的频域位置上传输SRS。
在一种实现方式中,SRS资源的配置参数包括以下至少一项:
SRS带宽参数B SRS;SRS频域位置参数n RRC;相对参考点的偏移位置n shift;SRS带宽配置的树型结构中节点参数N b;跳频配置参数b hop;参数k F
在一种可能的实现方式中,处理模块1002具体用于:
根据SRS带宽参数B SRS和终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000321
根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000322
根据相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000323
参数
Figure PCTCN2022090773-appb-000324
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000325
每跳起始位置
Figure PCTCN2022090773-appb-000326
和参数
Figure PCTCN2022090773-appb-000327
确定SRS占有的频域位置。
在一种可能的实现方式中,处理模块1002具体用于:
根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,和部分频域传输带宽大小的比例因子P F,确定参数
Figure PCTCN2022090773-appb-000328
根据参数
Figure PCTCN2022090773-appb-000329
和比例因子P F,确定参数k hop
根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000330
可选地,部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000331
的计算公式表示如下:
Figure PCTCN2022090773-appb-000332
其中,
Figure PCTCN2022090773-appb-000333
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000334
为索引b=B SRS时每跳的SRS带宽;k F为网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000335
的函数;N ID为终端设备所在小区的小区ID;P F为部分频域传输带宽大小的比例因子;mod为求余函数。
在一种可能的实现方式中,处理模块1002具体用于:
根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000336
根据参数
Figure PCTCN2022090773-appb-000337
和比例因子P F,确定参数k hop
根据SRS带宽参数B SRS,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000338
根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000339
根据相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000340
根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000341
每跳起始位置
Figure PCTCN2022090773-appb-000342
和参数
Figure PCTCN2022090773-appb-000343
确定SRS占有的频域位置。
可选地,参数
Figure PCTCN2022090773-appb-000344
的计算公式表示如下:
Figure PCTCN2022090773-appb-000345
其中,n SRS为SRS资源内频域位置的计数;B SRS为SRS带宽参数;b hop为跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为终端设备所在小区的小区ID。
可选地,部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000346
的计算公式表示如下:
Figure PCTCN2022090773-appb-000347
其中,
Figure PCTCN2022090773-appb-000348
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000349
为索引b=B SRS时每跳的SRS带宽;k F为网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000350
的函数;P F为部分频域传输带宽大小的比例因子;mod为求余函数;N ID为终端设备所在小区的小区ID。
在一种可能的实现方式中,处理模块1002具体用于:
根据SRS带宽参数B SRS和跳频配置参数b hop,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000351
根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000352
根据相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和终端设备所在小区的小区ID,确定参数
Figure PCTCN2022090773-appb-000353
参数
Figure PCTCN2022090773-appb-000354
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000355
每跳起始位置
Figure PCTCN2022090773-appb-000356
和参数
Figure PCTCN2022090773-appb-000357
确定SRS占有的频域位置。
可选地,参数
Figure PCTCN2022090773-appb-000358
的计算公式表示如下:
Figure PCTCN2022090773-appb-000359
其中,n shift为相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000360
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000361
为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000362
为定位的SRS资源在一个comb内不同符号处的偏移值;N ID为终端设备所在小区的小区ID;K TC为comb值;mod为求余函数。
可选地,
Figure PCTCN2022090773-appb-000363
的计算公式表示如下:
Figure PCTCN2022090773-appb-000364
或者,
Figure PCTCN2022090773-appb-000365
其中,
Figure PCTCN2022090773-appb-000366
为传输梳comb偏移值;
Figure PCTCN2022090773-appb-000367
为SRS资源的端口数;
Figure PCTCN2022090773-appb-000368
为网络侧设备配置的循环偏移值;
Figure PCTCN2022090773-appb-000369
为网络侧设备配置的最大循环偏移个数。
在一种可能的实现方式中,处理模块1002具体用于:
根据SRS带宽参数B SRS和终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000370
根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000371
根据相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和终端设备所在小区的小区ID,确定参数
Figure PCTCN2022090773-appb-000372
参数
Figure PCTCN2022090773-appb-000373
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000374
每跳起始位置
Figure PCTCN2022090773-appb-000375
和参数
Figure PCTCN2022090773-appb-000376
确定SRS占有的频域位置。
在一种可能的实现方式中,处理模块1002具体用于:
根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000377
根据参数
Figure PCTCN2022090773-appb-000378
和比例因子P F,确定参数k hop
根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000379
在一种实现方式中,参数
Figure PCTCN2022090773-appb-000380
的计算公式表示如下:
Figure PCTCN2022090773-appb-000381
其中,n SRS为SRS资源内频域位置的计数;B SRS为SRS带宽参数;b hop为跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为终端设备所在小区的小区ID。
可选地,部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000382
的计算公式表示如下:
Figure PCTCN2022090773-appb-000383
参数
Figure PCTCN2022090773-appb-000384
的计算公式表示如下:
Figure PCTCN2022090773-appb-000385
其中,
Figure PCTCN2022090773-appb-000386
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000387
为索引b=B SRS时每跳的SRS带宽;k F为网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000388
的函数;N ID为终端设备所在小区的小区ID;P F为部分频域传输带宽大小的比例因子;mod为求余函数;n shift为相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000389
为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000390
为定位的SRS资源在一个comb内不同符号处的偏移值;K TC为comb值。
在一种实现方式中,部分频域传输带宽大小的比例因子P F可配置的值扩展为8;其中,所述比例因子P F=8时,参数k hop
Figure PCTCN2022090773-appb-000391
存在映射关系。
在一种可能的实现方式中,SRS资源配置为定位资源,终端设备所在小区的小区标识ID值为0;或 者,SRS资源配置为非定位资源,终端设备所在小区的小区标识ID值等于
Figure PCTCN2022090773-appb-000392
为网络侧设备配置的小区ID值。
通信装置1000为网络侧设备:在一种实现方式中,通信装置1000包括:处理模块1002用于为终端设备配置探测参考信号SRS资源和SRS资源的配置参数;其中,SRS资源的配置参数用于终端设备根据配置参数和终端设备所在小区的小区标识ID确定SRS占有的频域位置。
在一种可能的实现方式中,SRS资源的配置参数包括以下至少一项:
SRS带宽参数B SRS;SRS频域位置参数n RRC;相对参考点的偏移位置n shift;SRS带宽配置的树型结构中节点参数N b;跳频配置参数b hop;参数k F
请参见图11,图11是本申请实施例提供的另一种通信装置1100的结构示意图。通信装置1100可以是网络侧设备,也可以是终端设备,也可以是支持网络侧设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1100可以包括一个或多个处理器1101。处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1100中还可以包括一个或多个存储器1102,其上可以存有计算机程序1104,处理器1101执行所述计算机程序1104,以使得通信装置1100执行上述方法实施例中描述的方法。可选的,所述存储器1102中还可以存储有数据。通信装置1100和存储器1102可以单独设置,也可以集成在一起。
可选的,通信装置1100还可以包括收发器1105、天线1106。收发器1105可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1105可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1100中还可以包括一个或多个接口电路1107。接口电路1107用于接收代码指令并传输至处理器1101。处理器1101运行所述代码指令以使通信装置1100执行上述方法实施例中描述的方法。
通信装置1100为终端设备:处理器1101用于执行图2中的步骤202;执行图3中的步骤301、步骤302、步骤303和步骤304;执行图5中的步骤501、步骤502、步骤503、步骤504、步骤505和步骤506;执行图6中的步骤601、步骤602、步骤603和步骤604;执行图8中的步骤801、步骤802、步骤803和步骤804。收发器1105用于执行图2中的步骤201和步骤203。
通信装置1100为网络侧设备:处理器1101用于执行图9中的步骤901。
在一种实现方式中,处理器1101中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1101可以存有计算机程序,计算机程序在处理器1101上运行,可使得通信装置1100执行上述方法实施例中描述的方法。计算机程序可能固化在处理器1101中,该种情况下,处理器1101可能由硬件实现。
在一种实现方式中,通信装置1100可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络侧设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络侧设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图12所示的芯片1200的结构示意图。图12所示的芯片1200包括处理器1201和接口1202。其中,处理器1201的数量可以是一个或多个,接口1202的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口1202,用于接收网络侧设备发送的探测参考信号SRS资源的配置参数;处理器1201,用于根据SRS资源的配置参数和终端设备所在小区的小区标识ID,确定SRS占有的频域位置;接口1202,还用于在确定的频域位置上传输SRS。
在一种实现方式中,SRS资源的配置参数包括以下至少一项:
SRS带宽参数B SRS;SRS频域位置参数b RRC;相对参考点的偏移位置n shift;SRS带宽配置的树型结构中节点参数N b;跳频配置参数b hop;参数k F
在一种可能的实现方式中,处理器1201具体用于:
根据SRS带宽参数B SRS和终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000393
根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000394
根据相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000395
参数
Figure PCTCN2022090773-appb-000396
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000397
每跳起始位置
Figure PCTCN2022090773-appb-000398
和参数
Figure PCTCN2022090773-appb-000399
确定SRS占有的频域位置。
在一种可能的实现方式中,处理器1201具体用于:
根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,和部分频域传输带宽大小的比例因子P F,确定参数
Figure PCTCN2022090773-appb-000400
根据参数
Figure PCTCN2022090773-appb-000401
和比例因子P F,确定参数k hop
根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000402
可选地,部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000403
的计算公式表示如下:
Figure PCTCN2022090773-appb-000404
其中,
Figure PCTCN2022090773-appb-000405
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000406
为索引b=B SRS时每跳的SRS带宽;k F为网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000407
的函数;N ID为终端设备所在小区的小区ID;P F为部分频域传输带宽大小的比例因子;mod为求余函数。
在一种可能的实现方式中,处理器1201具体用于:
根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000408
根据参数
Figure PCTCN2022090773-appb-000409
和比例因子P F,确定参数k hop
根据SRS带宽参数B SRS,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000410
根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000411
根据相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
Figure PCTCN2022090773-appb-000412
根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000413
每跳起始位置
Figure PCTCN2022090773-appb-000414
和参数
Figure PCTCN2022090773-appb-000415
确定SRS占有的频域位置。
可选地,参数
Figure PCTCN2022090773-appb-000416
的计算公式表示如下:
Figure PCTCN2022090773-appb-000417
其中,n SRS为SRS资源内频域位置的计数;B SRS为SRS带宽参数;b hop为跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为终端设备所在小区的小区ID。
可选地,部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000418
的计算公式表示如下:
Figure PCTCN2022090773-appb-000419
其中,
Figure PCTCN2022090773-appb-000420
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000421
为索引b=B SRS时每跳的SRS带宽;k F为网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000422
的函数;P F为部分频域传输带宽大小的比例因子;mod为求余函数;N ID为终端设备所在小区的小区ID。
在一种可能的实现方式中,处理器1201具体用于:
根据SRS带宽参数B SRS和跳频配置参数b hop,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000423
根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000424
根据相对参考点的偏移位置m shift,SRS资源的传输梳comb偏移参数和终端设备所在小区的小区ID,确定参数
Figure PCTCN2022090773-appb-000425
参数
Figure PCTCN2022090773-appb-000426
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000427
每跳起始位置
Figure PCTCN2022090773-appb-000428
和参数
Figure PCTCN2022090773-appb-000429
确定SRS占有的频域位置。
可选地,参数
Figure PCTCN2022090773-appb-000430
的计算公式表示如下:
Figure PCTCN2022090773-appb-000431
其中,n shift为相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000432
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000433
为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000434
为定位的SRS资源在一个comb内不同符号处的偏移值;N ID为终端设备所在小区的小区ID;k TC为comb值;mod为求余函数。
可选地,
Figure PCTCN2022090773-appb-000435
的计算公式表示如下:
Figure PCTCN2022090773-appb-000436
或者,
Figure PCTCN2022090773-appb-000437
其中,
Figure PCTCN2022090773-appb-000438
为传输梳comb偏移值;
Figure PCTCN2022090773-appb-000439
为SRS资源的端口数;
Figure PCTCN2022090773-appb-000440
为网络侧设备配置的循环偏移值;
Figure PCTCN2022090773-appb-000441
为网络侧设备配置的最大循环偏移个数。
在一种可能的实现方式中,处理器1201具体用于:
根据SRS带宽参数B SRS和终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000442
根据SRS带宽参数B SRS,带宽大小m SRS,b,SRS频域位置参数n RRC和SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
Figure PCTCN2022090773-appb-000443
根据相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和终端设备所在小区的小区ID, 确定参数
Figure PCTCN2022090773-appb-000444
参数
Figure PCTCN2022090773-appb-000445
为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
根据部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000446
每跳起始位置
Figure PCTCN2022090773-appb-000447
和参数
Figure PCTCN2022090773-appb-000448
确定SRS占有的频域位置。
在一种可能的实现方式中,处理器1201具体用于:
根据SRS带宽参数B SRS,跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和终端设备所在小区的小区标识ID,确定参数
Figure PCTCN2022090773-appb-000449
根据参数
Figure PCTCN2022090773-appb-000450
和比例因子P F,确定参数k hop
根据SRS带宽参数B SRS,小区ID,参数k hop和比例因子P F,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000451
在一种实现方式中,参数
Figure PCTCN2022090773-appb-000452
的计算公式表示如下:
Figure PCTCN2022090773-appb-000453
其中,n SRS为SRS资源内频域位置的计数;B SRS为SRS带宽参数;b hop为跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为终端设备所在小区的小区ID。
可选地,部分频域传输时在带宽大小为m SRS,b内的起始位置
Figure PCTCN2022090773-appb-000454
的计算公式表示如下:
Figure PCTCN2022090773-appb-000455
参数
Figure PCTCN2022090773-appb-000456
的计算公式表示如下:
Figure PCTCN2022090773-appb-000457
其中,
Figure PCTCN2022090773-appb-000458
为一个资源块RB内包含子载波的个数;
Figure PCTCN2022090773-appb-000459
为索引b=B SRS时每跳的SRS带宽;k F为网络侧设备配置的参数;参数k hop为参数
Figure PCTCN2022090773-appb-000460
的函数;N ID为终端设备所在小区的小区ID;P F为部分频域传输带宽大小的比例因子;mod为求余函数;n shift为相对参考点的偏移位置;
Figure PCTCN2022090773-appb-000461
为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
Figure PCTCN2022090773-appb-000462
为定位的SRS资源在一个comb内不同符号处的偏移值;K TC为comb值。
在一种实现方式中,部分频域传输带宽大小的比例因子P F可配置的值扩展为8;其中,所述比例因子P F=8时,参数k hop
Figure PCTCN2022090773-appb-000463
存在映射关系。
在一种可能的实现方式中,SRS资源配置为定位资源,终端设备所在小区的小区标识ID值为0;或者,SRS资源配置为非定位资源,终端设备所在小区的小区标识ID值等于
Figure PCTCN2022090773-appb-000464
为网络侧设备配置的小区ID值。
对于芯片用于实现本申请实施例中网络侧设备的功能的情况:
处理器1201,用于为终端设备配置探测参考信号SRS资源和SRS资源的配置参数;其中,SRS资源的配置参数用于终端设备根据配置参数和终端设备所在小区的小区标识ID确定SRS占有的频域位置。
在一种可能的实现方式中,SRS资源的配置参数包括以下至少一项:
SRS带宽参数B SRS;SRS频域位置参数n RRC;相对参考点的偏移位置n shift;SRS带宽配置的树型结构中节点参数N b;跳频配置参数b hop;参数k F
可选的,芯片还包括存储器1203,存储器1203用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种通信系统,该系统包括前述图10实施例中作为终端设备的通信装置和作为网络侧设备的通信装置,或者,该系统包括前述图11实施例中作为终端设备的通信装置和作为网络侧设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的 功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种探测参考信号SRS的传输方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收网络侧设备发送的SRS资源的配置参数;
    根据所述SRS资源的配置参数和所述终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置;
    在确定的频域位置上传输所述SRS。
  2. 如权利要求1所述的方法,其特征在于,所述SRS资源的配置参数包括以下至少一项:
    SRS带宽参数B SRS
    SRS频域位置参数n RRC
    相对参考点的偏移位置n shift
    SRS带宽配置的树型结构中节点参数N b
    跳频配置参数b hop
    参数k F
  3. 如权利要求2所述的方法,其特征在于,所述根据所述SRS资源的配置参数和所述终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置,包括:
    根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100001
    根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
    Figure PCTCN2022090773-appb-100002
    根据所述相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
    Figure PCTCN2022090773-appb-100003
    所述参数
    Figure PCTCN2022090773-appb-100004
    为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
    根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100005
    所述每跳起始位置
    Figure PCTCN2022090773-appb-100006
    和所述参数
    Figure PCTCN2022090773-appb-100007
    确定所述SRS占有的频域位置。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100008
    包括:
    根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,和部分频域传输带宽大小的比例因子P F,确定参数
    Figure PCTCN2022090773-appb-100009
    根据所述参数
    Figure PCTCN2022090773-appb-100010
    和所述比例因子P F,确定参数k hop
    根据所述SRS带宽参数B SRS,所述小区ID,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100011
  5. 如权利要求4所述的方法,其特征在于,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100012
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100013
    其中,
    Figure PCTCN2022090773-appb-100014
    为一个资源块RB内包含子载波的个数;
    Figure PCTCN2022090773-appb-100015
    为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;参数k hop为参数
    Figure PCTCN2022090773-appb-100016
    的函数;N ID为所述终端设备所在小区的小区ID;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数。
  6. 如权利要求2所述的方法,其特征在于,所述根据所述SRS资源的配置参数和所述终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置,包括:
    根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和所述终端设备所在小区的小区标识ID,确定参数
    Figure PCTCN2022090773-appb-100017
    根据所述参数
    Figure PCTCN2022090773-appb-100018
    和所述比例因子P F,确定参数k hop
    根据所述SRS带宽参数B SRS,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100019
    根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
    Figure PCTCN2022090773-appb-100020
    根据所述相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
    Figure PCTCN2022090773-appb-100021
    根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100022
    所述每跳起始位置
    Figure PCTCN2022090773-appb-100023
    和所述参数
    Figure PCTCN2022090773-appb-100024
    确定所述SRS占有的频域位置。
  7. 如权利要求6所述的方法,其特征在于,所述参数
    Figure PCTCN2022090773-appb-100025
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100026
    其中,n SRS为所述SRS资源内频域位置的计数;B SRS为所述SRS带宽参数;b hop为所述跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为所述终端设备所在小区的小区ID。
  8. 如权利要求6或7所述的方法,其特征在于,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100027
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100028
    其中,
    Figure PCTCN2022090773-appb-100029
    为一个资源块RB内包含子载波的个数;
    Figure PCTCN2022090773-appb-100030
    为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;所述参数k hop为所述参数
    Figure PCTCN2022090773-appb-100031
    的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;N ID为所述终端设备所在小区的小区ID。
  9. 如权利要求2所述的方法,其特征在于,所述根据所述SRS资源的配置参数和所述终端设备所 在小区的小区标识ID,确定所述SRS占有的频域位置,包括:
    根据所述SRS带宽参数B SRS和所述跳频配置参数b hop,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100032
    根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
    Figure PCTCN2022090773-appb-100033
    根据所述相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和所述终端设备所在小区的小区ID,确定参数
    Figure PCTCN2022090773-appb-100034
    所述参数
    Figure PCTCN2022090773-appb-100035
    为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
    根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100036
    所述每跳起始位置
    Figure PCTCN2022090773-appb-100037
    和所述参数
    Figure PCTCN2022090773-appb-100038
    确定所述SRS占有的频域位置。
  10. 如权利要求9所述的方法,其特征在于,所述参数
    Figure PCTCN2022090773-appb-100039
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100040
    其中,n shift为所述相对参考点的偏移位置;
    Figure PCTCN2022090773-appb-100041
    为一个资源块RB内包含子载波的个数;
    Figure PCTCN2022090773-appb-100042
    为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
    Figure PCTCN2022090773-appb-100043
    为定位的SRS资源在一个comb内不同符号处的偏移值;N ID为所述终端设备所在小区的小区ID;K TC为comb值;mod为求余函数。
  11. 如权利要求10所述的方法,其特征在于,所述
    Figure PCTCN2022090773-appb-100044
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100045
    或者,
    Figure PCTCN2022090773-appb-100046
    其中,
    Figure PCTCN2022090773-appb-100047
    为传输梳comb偏移值;
    Figure PCTCN2022090773-appb-100048
    为SRS资源的端口数;
    Figure PCTCN2022090773-appb-100049
    为所述网络侧设备配置的循环偏移值;
    Figure PCTCN2022090773-appb-100050
    为所述网络侧设备配置的最大循环偏移个数。
  12. 如权利要求2所述的方法,其特征在于,所述根据所述SRS资源的配置参数和所述终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置,包括:
    根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100051
    根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
    Figure PCTCN2022090773-appb-100052
    根据所述相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和所述终端设备所在小区的小区ID,确定参数
    Figure PCTCN2022090773-appb-100053
    所述参数
    Figure PCTCN2022090773-appb-100054
    为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
    根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100055
    所述每跳起始位置
    Figure PCTCN2022090773-appb-100056
    和所述参数
    Figure PCTCN2022090773-appb-100057
    确定所述SRS占有的频域位置。
  13. 如权利要求12所述的方法,其特征在于,所述根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100058
    包括:
    根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和所述终端设备所在小区的小区标识ID,确定参数
    Figure PCTCN2022090773-appb-100059
    根据所述参数
    Figure PCTCN2022090773-appb-100060
    和所述比例因子P F,确定参数k hop
    根据所述SRS带宽参数B SRS,所述小区ID,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100061
  14. 如权利要求13所述的方法,其特征在于,所述参数
    Figure PCTCN2022090773-appb-100062
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100063
    其中,n SRS为所述SRS资源内频域位置的计数;B SRS为所述SRS带宽参数;b hop为所述跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为所述终端设备所在小区的小区ID。
  15. 如权利要求12至14中任一项所述的方法,其特征在于,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100064
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100065
    所述参数
    Figure PCTCN2022090773-appb-100066
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100067
    其中,
    Figure PCTCN2022090773-appb-100068
    为一个资源块RB内包含子载波的个数;
    Figure PCTCN2022090773-appb-100069
    为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;参数k hop为参数
    Figure PCTCN2022090773-appb-100070
    的函数;N ID为所述终端设备所在小区的小区ID;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;n shift为所述相对参考点的偏移位置;
    Figure PCTCN2022090773-appb-100071
    为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
    Figure PCTCN2022090773-appb-100072
    为定位的SRS资源在一个comb内不同符号处的偏移值;K TC为comb值。
  16. 如权利要求4至15中任一项所述的方法,其特征在于,所述部分频域传输带宽大小的比例因子P F可配置的值扩展为8;其中,所述比例因子P F=8时,所述参数k hop与所述
    Figure PCTCN2022090773-appb-100073
    存在映射关系。
  17. 如权利要求1至16中任一项所述的方法,其特征在于,
    所述SRS资源配置为定位资源,所述终端设备所在小区的小区标识ID值为0;
    或者,所述SRS资源配置为非定位资源,所述终端设备所在小区的小区标识ID值等于
    Figure PCTCN2022090773-appb-100074
    所述
    Figure PCTCN2022090773-appb-100075
    为所述网络侧设备配置的小区ID值。
  18. 一种探测参考信号SRS资源配置方法,其特征在于,所述方法由网络侧设备执行,所述方法包括:
    为终端设备配置SRS资源和所述SRS资源的配置参数;
    其中,所述SRS资源的配置参数用于所述终端设备根据所述配置参数和所述终端设备所在小区的小区标识ID确定所述SRS占有的频域位置。
  19. 如权利要求18所述的方法,其特征在于,所述SRS资源的配置参数包括以下至少一项:
    SRS带宽参数B SRS
    SRS频域位置参数n RRC
    相对参考点的偏移位置n shift
    SRS带宽配置的树型结构中节点参数N b
    跳频配置参数b hop
    参数k F
  20. 一种通信装置,其特征在于,包括:
    收发模块,用于接收网络侧设备发送的探测参考信号SRS资源的配置参数;
    处理模块,用于根据所述SRS资源的配置参数和终端设备所在小区的小区标识ID,确定所述SRS占有的频域位置;
    所述收发模块,还用于在确定的频域位置上传输所述SRS。
  21. 如权利要求20所述的通信装置,其特征在于,所述SRS资源的配置参数包括以下至少一项:
    SRS带宽参数B SRS
    SRS频域位置参数n RRC
    相对参考点的偏移位置n shift
    SRS带宽配置的树型结构中节点参数N b
    跳频配置参数b hop
    参数k F
  22. 如权利要求21所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100076
    根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
    Figure PCTCN2022090773-appb-100077
    根据所述相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
    Figure PCTCN2022090773-appb-100078
    所述参数
    Figure PCTCN2022090773-appb-100079
    为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
    根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100080
    所述每跳起始位置
    Figure PCTCN2022090773-appb-100081
    和所述参数
    Figure PCTCN2022090773-appb-100082
    确定所述SRS占有的频域位置。
  23. 如权利要求22所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,和部分频域传输带宽大小的比例因子P F,确定参数
    Figure PCTCN2022090773-appb-100083
    根据所述参数
    Figure PCTCN2022090773-appb-100084
    和所述比例因子P F,确定参数k hop
    根据所述SRS带宽参数B SRS,所述小区ID,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100085
  24. 如权利要求23所述的通信装置,其特征在于,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100086
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100087
    其中,
    Figure PCTCN2022090773-appb-100088
    为一个资源块RB内包含子载波的个数;
    Figure PCTCN2022090773-appb-100089
    为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;参数k hop为参数
    Figure PCTCN2022090773-appb-100090
    的函数;N ID为所述终端设备所在小区的小区ID;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数。
  25. 如权利要求21所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和所述终端设备所在小区的小区标识ID,确定参数
    Figure PCTCN2022090773-appb-100091
    根据所述参数
    Figure PCTCN2022090773-appb-100092
    和所述比例因子P F,确定参数k hop
    根据所述SRS带宽参数B SRS,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100093
    根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
    Figure PCTCN2022090773-appb-100094
    根据所述相对参考点的偏移位置n shift和SRS资源的传输梳comb偏移参数,确定参数
    Figure PCTCN2022090773-appb-100095
    根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100096
    所述每跳起始位置
    Figure PCTCN2022090773-appb-100097
    和所述参数
    Figure PCTCN2022090773-appb-100098
    确定所述SRS占有的频域位置。
  26. 如权利要求25所述的通信装置,其特征在于,所述参数
    Figure PCTCN2022090773-appb-100099
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100100
    其中,n SRS为所述SRS资源内频域位置的计数;B SRS为所述SRS带宽参数;b hop为所述跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为所述终端设备所在小区的小区ID。
  27. 如权利要求25或26所述的通信装置,其特征在于,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100101
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100102
    其中,
    Figure PCTCN2022090773-appb-100103
    为一个资源块RB内包含子载波的个数;
    Figure PCTCN2022090773-appb-100104
    为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;所述参数k hop为所述参数
    Figure PCTCN2022090773-appb-100105
    的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;N ID为所述终端设备所在小区的小区ID。
  28. 如权利要求21所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述SRS带宽参数B SRS和所述跳频配置参数b hop,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100106
    根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
    Figure PCTCN2022090773-appb-100107
    根据所述相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和所述终端设备所在小区的小区ID,确定参数
    Figure PCTCN2022090773-appb-100108
    所述参数
    Figure PCTCN2022090773-appb-100109
    为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
    根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100110
    所述每跳起始位置
    Figure PCTCN2022090773-appb-100111
    和所述参数
    Figure PCTCN2022090773-appb-100112
    确定所述SRS占有的频域位置。
  29. 如权利要求28所述的通信装置,其特征在于,所述参数
    Figure PCTCN2022090773-appb-100113
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100114
    其中,n shift为所述相对参考点的偏移位置;
    Figure PCTCN2022090773-appb-100115
    为一个资源块RB内包含子载波的个数;
    Figure PCTCN2022090773-appb-100116
    为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
    Figure PCTCN2022090773-appb-100117
    为定位的SRS资源在一个comb内不同符号处的偏移值;N ID为所述终端设备所在小区的小区ID;K TC为comb值;mod为求余函数。
  30. 如权利要求29所述的通信装置,其特征在于,所述
    Figure PCTCN2022090773-appb-100118
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100119
    或者,
    Figure PCTCN2022090773-appb-100120
    其中,
    Figure PCTCN2022090773-appb-100121
    为传输梳comb偏移值;
    Figure PCTCN2022090773-appb-100122
    为SRS资源的端口数;
    Figure PCTCN2022090773-appb-100123
    为所述网络侧设备配置的循环偏移值;
    Figure PCTCN2022090773-appb-100124
    为所述网络侧设备配置的最大循环偏移个数。
  31. 如权利要求21所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述SRS带宽参数B SRS和所述终端设备所在小区的小区ID,确定部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100125
    根据所述SRS带宽参数B SRS,所述带宽大小m SRS,b,所述SRS频域位置参数n RRC和所述SRS带宽配置的树型结构中节点参数N b,确定每跳起始位置
    Figure PCTCN2022090773-appb-100126
    根据所述相对参考点的偏移位置n shift,SRS资源的传输梳comb偏移参数和所述终端设备所在小区的小区ID,确定参数
    Figure PCTCN2022090773-appb-100127
    所述参数
    Figure PCTCN2022090773-appb-100128
    为天线端口索引为p i对应的SRS端口所对应的SRS资源在所配置发送SRS的带宽起始位置处,再对第一个comb进行偏移后的频域起始位置;
    根据所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100129
    所述每跳起始位置
    Figure PCTCN2022090773-appb-100130
    和所述参数
    Figure PCTCN2022090773-appb-100131
    确定所述SRS占有的频域位置。
  32. 如权利要求31所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述SRS带宽参数B SRS,所述跳频配置参数b hop,SRS资源内频域位置的计数n SRS,部分频域传输带宽大小的比例因子P F和所述终端设备所在小区的小区标识ID,确定参数
    Figure PCTCN2022090773-appb-100132
    根据所述参数
    Figure PCTCN2022090773-appb-100133
    和所述比例因子P F,确定参数k hop
    根据所述SRS带宽参数B SRS,所述小区ID,所述参数k hop和所述比例因子P F,确定所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100134
  33. 如权利要求32所述的通信装置,其特征在于,所述参数
    Figure PCTCN2022090773-appb-100135
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100136
    其中,n SRS为所述SRS资源内频域位置的计数;B SRS为所述SRS带宽参数;b hop为所述跳频配置参数;N b′表示索引为max(b′-1,0)的频域带宽层中的第一个带宽包括的索引为b′的频域带宽层中的带宽个数,max()为取最大值的函数;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;∏为连乘运算;N ID为所述终端设备所在小区的小区ID。
  34. 如权利要求31至33中任一项所述的通信装置,其特征在于,所述部分频域传输时在带宽大小为m SRS,b内的起始位置
    Figure PCTCN2022090773-appb-100137
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100138
    所述参数
    Figure PCTCN2022090773-appb-100139
    的计算公式表示如下:
    Figure PCTCN2022090773-appb-100140
    其中,
    Figure PCTCN2022090773-appb-100141
    为一个资源块RB内包含子载波的个数;
    Figure PCTCN2022090773-appb-100142
    为索引b=B SRS时每跳的SRS带宽;k F为所述网络侧设备配置的参数;参数k hop为参数
    Figure PCTCN2022090773-appb-100143
    的函数;N ID为所述终端设备所在小区的小区ID;P F为所述部分频域传输带宽大小的比例因子;mod为求余函数;n shift为所述相对参考点的偏移位置;
    Figure PCTCN2022090773-appb-100144
    为第i个SRS端口对应的SRS资源在一个comb内的偏移值;p i为第i个SRS端口对应的天线端口索引;
    Figure PCTCN2022090773-appb-100145
    为定位的SRS资源在一个comb内不同符号处的偏移值;K TC为comb值。
  35. 如权利要求23至34中任一项所述的通信装置,其特征在于,所述部分频域传输带宽大小的比例因子P F可配置的值扩展为8;其中,所述比例因子P F=8时,所述参数k hop与所述
    Figure PCTCN2022090773-appb-100146
    存在映射关系。
  36. 如权利要求20至35中任一项所述的通信装置,其特征在于,
    所述SRS资源配置为定位资源,所述终端设备所在小区的小区标识ID值为0;
    或者,所述SRS资源配置为非定位资源,所述终端设备所在小区的小区标识ID值等于
    Figure PCTCN2022090773-appb-100147
    所述
    Figure PCTCN2022090773-appb-100148
    为所述网络侧设备配置的小区ID值。
  37. 一种通信装置,其特征在于,包括:
    处理模块,用于为终端设备配置探测参考信号SRS资源和所述SRS资源的配置参数;
    其中,所述SRS资源的配置参数用于所述终端设备根据所述配置参数和所述终端设备所在小区的小区标识ID确定所述SRS占有的频域位置。
  38. 如权利要求37所述的通信装置,其特征在于,所述SRS资源的配置参数包括以下至少一项:
    SRS带宽参数B SRS
    SRS频域位置参数n RRC
    相对参考点的偏移位置n shift
    SRS带宽配置的树型结构中节点参数N b
    跳频配置参数b hop
    参数k F
  39. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至17中任一项所述的方法。
  40. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求18或19所述的方法。
  41. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至17中任一项所述的方法被实现。
  42. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求18或19所述的方法被实现。
PCT/CN2022/090773 2022-04-29 2022-04-29 探测参考信号srs的传输方法、srs资源配置方法及其装置 WO2023206565A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001373.3A CN117322093A (zh) 2022-04-29 2022-04-29 探测参考信号srs的传输方法、srs资源配置方法及其装置
PCT/CN2022/090773 WO2023206565A1 (zh) 2022-04-29 2022-04-29 探测参考信号srs的传输方法、srs资源配置方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090773 WO2023206565A1 (zh) 2022-04-29 2022-04-29 探测参考信号srs的传输方法、srs资源配置方法及其装置

Publications (1)

Publication Number Publication Date
WO2023206565A1 true WO2023206565A1 (zh) 2023-11-02

Family

ID=88516969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090773 WO2023206565A1 (zh) 2022-04-29 2022-04-29 探测参考信号srs的传输方法、srs资源配置方法及其装置

Country Status (2)

Country Link
CN (1) CN117322093A (zh)
WO (1) WO2023206565A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931957A (zh) * 2009-06-22 2010-12-29 大唐移动通信设备有限公司 一种控制下行测量参考信号干扰的方法和设备
CN106375074A (zh) * 2015-07-21 2017-02-01 中兴通讯股份有限公司 一种测量参考信号的传输方法及系统
CN110768768A (zh) * 2018-07-27 2020-02-07 上海华为技术有限公司 探测参考信号的资源配置方法及通信装置
CN111865545A (zh) * 2020-04-14 2020-10-30 中兴通讯股份有限公司 Srs的传输方法、装置、系统、存储介质及电子装置
US20210144574A1 (en) * 2019-11-08 2021-05-13 Samsung Electronics Co., Ltd. Method and apparatus for performing dynamic cross-link interference measurement and reporting in next-generation mobile communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931957A (zh) * 2009-06-22 2010-12-29 大唐移动通信设备有限公司 一种控制下行测量参考信号干扰的方法和设备
CN106375074A (zh) * 2015-07-21 2017-02-01 中兴通讯股份有限公司 一种测量参考信号的传输方法及系统
CN110768768A (zh) * 2018-07-27 2020-02-07 上海华为技术有限公司 探测参考信号的资源配置方法及通信装置
US20210144574A1 (en) * 2019-11-08 2021-05-13 Samsung Electronics Co., Ltd. Method and apparatus for performing dynamic cross-link interference measurement and reporting in next-generation mobile communication system
CN111865545A (zh) * 2020-04-14 2020-10-30 中兴通讯股份有限公司 Srs的传输方法、装置、系统、存储介质及电子装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On SRS configuration for UL RTOA measurements", 3GPP DRAFT; R1-121784 ON SRS CONFIGURATION FOR UL RTOA MEASUREMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Jeju Island, Korea; 20120326 - 20120330, 23 March 2012 (2012-03-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050600067 *
ERICSSON: "Remaining last issues on CLI", 3GPP DRAFT; R2-2001621, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Elbonia; 20200226 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051849912 *

Also Published As

Publication number Publication date
CN117322093A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023245521A1 (zh) 一种控制资源的位置信息的确定方法及其装置
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024000203A1 (zh) 一种传输配置指示tci状态使用时间的确定方法及其装置
WO2023206565A1 (zh) 探测参考信号srs的传输方法、srs资源配置方法及其装置
WO2024021130A1 (zh) 一种信道估计方法及其装置
WO2024000202A1 (zh) 一种信道状态信息csi反馈的确定方法及其装置
WO2024031577A1 (zh) 时域资源分配方法、装置、设备及存储介质
WO2024031578A1 (zh) 信道发送方法、信道接收方法、装置、设备及存储介质
WO2024000133A1 (zh) 一种测量配置方法、装置、设备及存储介质
WO2023178622A1 (zh) 一种dmrs端口指示方法及其装置
WO2023168611A1 (zh) 一种附加解调参考信号dmrs的发送方法及其装置
WO2024031714A1 (zh) 定位方法及其装置
WO2023212881A1 (zh) 解调参考信号dmrs的传输方法和装置
WO2023197121A1 (zh) 一种发送直连测距信号的方法及装置
WO2023240418A1 (zh) 一种多小区调度的调度信息的检测方法及其装置
WO2024031485A1 (zh) 一种传输方法及其装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023082287A1 (zh) 一种信息的传输方法及其装置
WO2024065103A1 (zh) 一种上行功率控制方法及其装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001373.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939409

Country of ref document: EP

Kind code of ref document: A1