WO2023004653A1 - 一种时隙结构的配置方法及其装置 - Google Patents

一种时隙结构的配置方法及其装置 Download PDF

Info

Publication number
WO2023004653A1
WO2023004653A1 PCT/CN2021/109082 CN2021109082W WO2023004653A1 WO 2023004653 A1 WO2023004653 A1 WO 2023004653A1 CN 2021109082 W CN2021109082 W CN 2021109082W WO 2023004653 A1 WO2023004653 A1 WO 2023004653A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
uplink
frequency interval
carrier
candidate
Prior art date
Application number
PCT/CN2021/109082
Other languages
English (en)
French (fr)
Inventor
郭胜祥
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002287.XA priority Critical patent/CN115885559A/zh
Priority to PCT/CN2021/109082 priority patent/WO2023004653A1/zh
Publication of WO2023004653A1 publication Critical patent/WO2023004653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular to a method and device for configuring a time slot structure.
  • Embodiments of the present application provide a method and device for configuring a time slot structure, which can be used to improve transmission efficiency and spectrum utilization efficiency.
  • an embodiment of the present application provides a method for configuring a time slot structure, which is executed by a terminal device.
  • the method includes: when the terminal device supports simultaneous uplink and downlink transmission, sending a message for configuring the terminal device to the network device The reference frequency interval of the uplink and downlink time slot structure.
  • the method further includes: sending indication information to the network device to indicate whether the terminal device supports simultaneous uplink and downlink transmission.
  • the sending the reference frequency interval used to configure the uplink and downlink time slot structure of the terminal device to the network device includes: sending the frequency type supported by the terminal device to the network device, wherein, There is a mapping relationship between the frequency type and the reference frequency interval.
  • the embodiment of the present application provides another method for configuring a time slot structure, which is performed by a network device, and the method includes:
  • the method further includes: selecting a component carrier from candidate carriers for the terminal device to perform carrier aggregation according to the reference frequency interval, and configuring the uplink and downlink time slot structure for the component carrier .
  • the selecting a component carrier from candidate carriers for the terminal device to perform carrier aggregation according to the reference frequency interval, and configuring the uplink and downlink time slot structure for the component carrier includes: obtaining A candidate frequency interval between the candidate carrier and the main carrier; in response to the existence of a target candidate carrier whose candidate frequency interval is greater than the reference frequency interval among the candidate carriers, select the component carrier from the target candidate carrier , and configure different uplink and downlink time slot structures for the component carrier; or, in response to the fact that the target candidate carrier does not exist in the candidate carrier, select the component carrier according to the channel quality of the channel corresponding to the candidate carrier , and configure the same uplink and downlink time slot structures for the component carriers.
  • the method further includes: acquiring traffic of the terminal device; and configuring the uplink and downlink time slot structure for the terminal device according to the reference frequency interval and the traffic.
  • configuring the uplink and downlink time slot structure for the terminal device according to the reference frequency interval and the traffic volume includes: determining the distance between the candidate carrier and the main carrier of the terminal device candidate frequency interval; in response to the traffic volume being greater than a set threshold, select a target candidate carrier whose candidate frequency interval is greater than the reference frequency interval from the candidate carriers as the component carrier, and set the target candidate carrier for the component carrier Different uplink and downlink time slot structures are configured.
  • the method further includes: in response to the target candidate carrier not existing in the candidate carrier and/or the traffic volume being less than the set threshold, according to the channel of the channel corresponding to the candidate carrier The quality selects the component carrier, and configures the same uplink and downlink time slot structure for the component carrier.
  • the method further includes: receiving indication information sent by the terminal device for indicating whether the terminal device supports simultaneous uplink and downlink transmission.
  • the receiving the reference frequency interval sent by the terminal device for configuring the uplink and downlink time slot structure of the terminal device when it supports simultaneous uplink and downlink transmission includes: receiving the reference frequency interval sent by the terminal device The frequency type supported by the terminal device; querying the mapping relationship between the frequency type and the frequency interval, and obtaining the frequency interval matching the frequency type supported by the terminal device as the reference frequency interval.
  • the embodiment of this application provides a communication device, which has some or all functions of the terminal equipment in the method described in the first aspect above, for example, the functions of the communication device may have part or all of the functions in this application
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present application.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the embodiment of the present application provides another communication device, which can implement some or all of the functions of the network equipment in the method example described in the second aspect above, for example, the functions of the communication device can have some of the functions in this application Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present application alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may also include a storage module, which is used for coupling with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • the embodiment of the present application provides a time slot structure configuration system
  • the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or, the system includes the communication device described in the fifth aspect
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to realize the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to realize the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for configuring a time slot structure provided in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for configuring a time slot structure provided in an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for configuring a time slot structure provided in an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for configuring a time slot structure provided in an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a method for configuring a time slot structure provided in an embodiment of the present application
  • FIG. 6(a) is a schematic diagram of a time slot structure provided by an embodiment of the present application.
  • FIG. 6(b) is a schematic diagram of a time slot structure provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for configuring a time slot structure provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Frequency band refers to the frequency bandwidth occupied by a signal; when used to describe a channel, bandwidth refers to the maximum frequency bandwidth of a signal that can effectively pass through the channel.
  • bandwidth is also known as the frequency width, and the unit is Hertz (Hz).
  • Frequency bands are a central concept in fields such as information theory, radio, communications, signal processing, and spectroscopy.
  • bandwidth is the frequency range occupied by the modulated carrier
  • a time slot is the smallest unit of circuit switched summary information transfer.
  • a time slot can be understood as a channel. Multiple people share a resource, which is processed in a time-sharing manner. One time slot is equivalent to one channel.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 101 and one terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • side link in this embodiment of the present application may also be referred to as a side link or a through link.
  • the network device 101 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a method for configuring a time slot structure provided by an embodiment of the present application. As shown in Figure 2, the method is executed by the terminal device, and may include but not limited to the following steps:
  • Step S201 When the terminal device supports simultaneous uplink and downlink transmission, send to the network device a reference frequency interval for configuring the uplink and downlink time slot structure of the terminal device.
  • Terminal equipment transmits uplink information or data with network equipment through physical uplink channels, and transmits downlink information or data with network equipment through physical downlink channels.
  • the terminal device introduces the capability of simultaneously supporting uplink and downlink transmission, that is, the terminal device can support simultaneous uplink and downlink transmission.
  • the terminal equipment supports simultaneous uplink and downlink transmission, it is also necessary to send frequency interval information to the network equipment so that the network equipment can receive
  • the frequency interval information configures the uplink and downlink time slot structure of the terminal equipment, so that the two frequency bands can transmit data/or information according to the configured uplink and downlink time slot structure, and reduce the impact between the two frequency bands as much as possible.
  • the terminal device sends to the network device the reference frequency interval used to configure the uplink and downlink time slot structure of the terminal device.
  • the terminal device directly sends the reference time slot interval to the network device; in some implementations, the terminal device sends instruction information to the network device to instruct the network device to determine the reference frequency interval, and the network device can obtain the reference frequency according to the instruction information interval.
  • FIG. 3 is a schematic flowchart of a method for configuring a time slot structure provided in an embodiment of the present application. As shown in Figure 3, the method is performed by a network device, and may include but not limited to the following steps:
  • S301 Send indication information to a network device to indicate whether the terminal device supports simultaneous uplink and downlink transmission.
  • the terminal device in order to obtain whether the terminal device has the capability of simultaneously supporting uplink and downlink transmission, the terminal device sends indication information for indicating whether the terminal device supports simultaneous uplink and downlink transmission to the network device.
  • the indication information sent by the terminal device to indicate whether the terminal device supports simultaneous uplink and downlink transmission is 1 bit.
  • the terminal device In response to the fact that the terminal device does not have the capability of simultaneously supporting uplink and downlink transmission, the terminal device sends indication information for indicating that the terminal device does not support simultaneous uplink and downlink transmission to the network device.
  • the terminal device In response to the fact that the terminal device has the capability of simultaneously supporting uplink and downlink transmission, sending indication information for instructing the terminal device to support simultaneous uplink and downlink transmission to the network device.
  • the indication information used to indicate whether the terminal device supports simultaneous uplink and downlink transmission may not be sent.
  • the terminal device does not send indication information to indicate whether the terminal device supports simultaneous uplink and downlink transmission, and the default is that the terminal device does not have the ability to support simultaneous uplink and downlink transmission; in some implementations, the terminal device does not send indication information for indicating Indicates whether the terminal device supports simultaneous uplink and downlink transmission. By default, the terminal device has the ability to support both uplink and downlink transmission.
  • the terminal device When the terminal device supports simultaneous uplink and downlink transmission, send to the network device a reference frequency interval for configuring the uplink and downlink time slot structure of the terminal device.
  • the terminal device sends to the network device the reference frequency interval used to configure the uplink and downlink time slot structure of the terminal device.
  • the terminal device directly sends the reference time slot interval to the network device; in some implementations, the terminal device sends instruction information to the network device to instruct the network device to determine the reference frequency interval, and the network device can obtain the reference frequency according to the instruction information interval.
  • the terminal device may send the frequency type supported by the terminal device to the network device, where the frequency type supported by the terminal device is used as indication information for instructing the network device to determine the reference frequency interval.
  • the network device can obtain the reference frequency interval corresponding to the frequency type supported by the terminal device according to the mapping relationship.
  • the reference frequency interval corresponding to the frequency type is obtained according to the mapping relationship is 80MHz; if the frequency type supported by the terminal device is Class 2, then according to the mapping The reference frequency interval corresponding to the relationship acquisition and frequency type is 60MHz; the frequency type supported by the terminal device is Class 3, and the reference frequency interval corresponding to the frequency type is obtained according to the mapping relationship is 40MHz.
  • each element and each corresponding relationship in Table 1 exists independently; these elements and corresponding relationships are exemplarily listed in the same table, but it does not represent all elements, Correspondence must exist simultaneously according to those shown in Table 1.
  • the value of each element and each corresponding relationship does not depend on any other element value or corresponding relationship in Table 1. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 1 is an independent embodiment.
  • FIG. 4 is a schematic flowchart of a method for configuring a time slot structure provided by an embodiment of the present application. As shown in Figure 4, the method is performed by a network device, and may include but not limited to the following steps:
  • S401 Receive a reference frequency interval for configuring an uplink and downlink time slot structure of the terminal device sent by the terminal device when it supports simultaneous uplink and downlink transmission.
  • the network equipment receives the reference frequency interval sent by the terminal equipment, so that the network equipment can receive information based on the frequency interval received by the terminal equipment.
  • the received frequency interval information configures the uplink and downlink time slot structure of the terminal equipment.
  • the network device directly receives the reference time slot interval sent by the terminal device; in some implementations, the terminal device sends instruction information to the network device to instruct the network device to determine the reference frequency interval, and the network device obtains the reference frequency according to the instruction information interval.
  • the network device directly receives the reference frequency interval sent by the terminal device and used to configure the uplink and downlink time slot structure of the terminal device.
  • the network device receives indication information sent by the terminal device for instructing the network device to determine the reference frequency interval, and the network device may obtain the reference frequency interval according to the indication information.
  • the network device receives the frequency type supported by the terminal device sent by the terminal device, where the frequency type supported by the terminal device is used as indication information for instructing the network device to determine the reference frequency interval.
  • the network device can obtain the reference frequency interval corresponding to the frequency type supported by the terminal device according to the mapping relationship.
  • the network device receives the frequency type supported by the terminal device sent by the terminal device is Class 1, then the reference frequency interval corresponding to the frequency type obtained according to the mapping relationship is 80MHz; the network device receives the frequency type sent by the terminal device If the frequency type supported by the terminal equipment is Class 2, then the reference frequency interval corresponding to the frequency type is obtained according to the mapping relationship.
  • the reference frequency interval corresponding to the frequency type is 40MHz.
  • S402. Configure uplink and downlink time slot structures according to the reference frequency interval.
  • the reference frequency interval is compared with the candidate frequency interval, and the uplink and downlink time slot structures are configured according to the comparison result.
  • the candidate frequency interval may be a preset threshold, or the frequency interval between the candidate carrier and the main carrier.
  • the traffic volume of the terminal equipment will also affect the uplink and downlink transmission efficiency, thereby affecting the spectrum efficiency. Therefore, in some implementations, the uplink and downlink time slot structure may also be configured according to the reference frequency interval and the current traffic volume of the terminal equipment.
  • FIG. 5 is a schematic flowchart of a method for configuring a time slot structure provided by an embodiment of the present application. As shown in Figure 5, the method is performed by a network device, and may include but not limited to the following steps:
  • S501 Receive indication information sent by a terminal device and used to indicate whether the terminal device supports simultaneous uplink and downlink transmission.
  • the network device in order to obtain whether the terminal device has the capability of simultaneously supporting uplink and downlink transmission, receives indication information sent by the terminal device for indicating whether the terminal device supports simultaneous uplink and downlink transmission.
  • the network device accepts the indication information sent by the terminal device to indicate that the terminal device does not support simultaneous uplink and downlink transmission. At this time, the network device configures the carrier to work on the same uplink and downlink transmission. gap structure.
  • the network device accepts the indication information sent by the terminal device for instructing the terminal device to support simultaneous uplink and downlink transmission, and may also receive the uplink and downlink transmission information sent by the terminal device for configuring the terminal device.
  • Reference frequency spacing for the row slot structure is not limited to the fact that the terminal device has the ability to support uplink and downlink transmission at the same time.
  • FIG. 6 is a schematic flowchart of a method for configuring a time slot structure provided by an embodiment of the present application. As shown in Figure 6, the method is performed by a network device, and may include but not limited to the following steps:
  • step S601 For the content of step S601, reference may be made to the relevant introduction of the above-mentioned embodiments, which will not be repeated here.
  • S602. According to the reference frequency interval, select a component carrier from candidate carriers for the terminal device to perform carrier aggregation, and configure an uplink and downlink time slot structure for the component carrier.
  • multiple component carriers are selected from the candidate carriers for the terminal equipment, and multiple continuous or non-contiguous component carriers are subjected to carrier aggregation, so as to aggregate into a larger band.
  • Each component carrier has its own independent transmission channel, configure the uplink and downlink time slot structure for the component carrier, and determine the type of information transmitted by Orthogonal Frequency Division Multiplexing (OFDM) symbols in the slot class, that is, configure It is best to use OFDM symbols for transmitting uplink information and OFDM symbols for transmitting downlink information.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a static uplink and downlink time slot structure is configured for the component carrier
  • a dynamic uplink and downlink time slot structure is configured for the component carrier
  • the frequency interval between the candidate carrier and the main carrier is acquired as the candidate frequency interval, and in response to the existence of a target candidate carrier whose candidate frequency interval is greater than the reference frequency interval among the candidate carriers, that is, the candidate frequency interval meets the usage requirements,
  • component carriers are selected from target candidate carriers, and different uplink and downlink time slot structures are configured for the component carriers; as shown in Figure 6(a), for example, there are 14 OFDM symbols in a single time slot, and the component carrier 1 configures OFDM symbols identified as 4, 7, and 10 to transmit uplink information, and the remaining OFDM symbols transmit downlink information; component carrier 2 configures OFDM symbols identified as 1, 5, and 9 to transmit uplink information, and the remaining OFDM symbols transmit downlink information.
  • the transmission of uplink information and the reception of downlink information may be carried out at the same time. Since the frequency band interval is relatively large, the transmission of uplink information will not affect the reception of downlink information.
  • the frequency interval between the candidate carrier and the main carrier is obtained as the candidate frequency interval, and in response to the fact that there is no target candidate carrier in the candidate carrier, it is necessary to constrain the uplink and downlink time slot structure, that is, according to the candidate carrier
  • the candidate carriers can be sorted according to the channel quality, optionally, the candidate carrier corresponding to the channel quality within the preset range can be selected as the component carrier , optionally, a candidate carrier with better channel quality can also be selected as a component carrier, and then configure the same uplink and downlink time slot structure for the component carrier; 10 OFDM symbols transmit uplink information, and the remaining OFDM symbols transmit downlink information.
  • uplink information can be transmitted or downlink information can be received at the same time. Therefore, the transmission of uplink information It will not affect the reception of downlink information.
  • a component carrier is selected from candidate carriers for the terminal device to perform carrier aggregation, and an uplink and downlink time slot structure is configured for the component carrier.
  • carrier aggregation Carrier aggregate, CA
  • CA Carrier aggregate
  • FIG. 7 is a schematic flowchart of a method for configuring a time slot structure provided by an embodiment of the present application. As shown in Figure 7, the method is performed by a network device, and may include but not limited to the following steps:
  • step S701 reference may be made to the relevant introduction of the above-mentioned embodiments, which will not be repeated here.
  • the traffic volume refers to the data volume of all information transmitted in the communication system or communication network.
  • the transmission channel may be congested, and in severe cases, the system may be paralyzed. Therefore, the embodiment of the present application also needs to refer to the business volume of the terminal equipment. Quantity size to configure the uplink and downlink time slot structure.
  • the response to the traffic volume is greater than the set threshold, that is, the traffic volume that the terminal equipment needs to transmit is relatively large.
  • a target candidate carrier whose candidate frequency interval is greater than the reference frequency interval is selected from the candidate carriers as component carriers, and different uplink and downlink time slot structures are configured for the component carriers.
  • the component carrier in response to the fact that there is no target candidate carrier among the candidate carriers, that is, the candidate frequency interval is not greater than the reference frequency interval, the component carrier is selected according to the channel quality of the channel corresponding to the candidate carrier, for example, the candidate carrier can be selected according to the channel quality Carriers are sorted.
  • candidate carriers corresponding to channel quality within a preset range may be selected as component carriers.
  • candidate carriers with better channel quality may also be selected as component carriers.
  • the component carrier in response to the traffic volume being less than the set threshold, that is, the amount of data to be transmitted by the terminal device is small, the component carrier is selected according to the channel quality of the channel corresponding to the candidate carrier, and the same uplink and downlink are configured for the component carrier slot structure.
  • a component carrier in response to the fact that there is no target candidate carrier among the candidate carriers and the traffic volume is less than a set threshold, a component carrier is selected according to the channel quality of the channel corresponding to the candidate carrier, and the same uplink and downlink time slot structure is configured for the component carriers.
  • a component carrier is selected from candidate carriers for the terminal device to perform carrier aggregation, and an uplink and downlink time slot structure is configured for the component carrier.
  • carrier aggregation Carrier aggregate, CA
  • CA Carrier aggregate
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the network device and the first terminal device respectively.
  • the network device and the first terminal device may include a hardware structure and a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module .
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 8 is a schematic structural diagram of a communication device 80 provided in an embodiment of the present application.
  • the communication device 80 shown in FIG. 8 may include a transceiver module 801 and a processing module 802 .
  • the transceiver module 801 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 801 can realize the sending function and/or the receiving function.
  • the communication device 80 may be a terminal device (such as the first terminal device in the foregoing method embodiments), may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device 80 may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device 80 is a terminal device (such as the first terminal device in the foregoing method embodiments), including:
  • the transceiver module 801 is configured to send to the network device a reference frequency interval for configuring the uplink and downlink time slot structure of the terminal device when the terminal device supports simultaneous uplink and downlink transmission.
  • the transceiver module 801 is further configured to: send indication information for indicating whether the terminal equipment supports simultaneous uplink and downlink transmission to the network equipment.
  • the transceiver module 801 is further configured to: send the frequency type supported by the terminal device to the network device, where there is a mapping relationship between the frequency type and the reference frequency interval.
  • the communication device 80 is a network device, including:
  • the transceiver module 801 is configured to receive the reference frequency interval for configuring the uplink and downlink time slot structure of the terminal device sent by the terminal device when it supports simultaneous uplink and downlink transmission;
  • the processing module 802 is configured to configure an uplink and downlink time slot structure according to the reference frequency interval.
  • the processing module 802 is further configured to: select a component carrier from candidate carriers for the terminal device to perform carrier aggregation according to the reference frequency interval, and configure an uplink and downlink time slot structure for the component carrier.
  • the processing module 802 is further configured to: obtain a candidate frequency interval between the candidate carrier and the main carrier; in response to the existence of a target candidate carrier whose candidate frequency interval is greater than the reference frequency interval in the candidate carrier, select a component carrier from the target candidate carrier, and
  • the component carriers are configured with different uplink and downlink time slot structures; or, in response to the fact that there is no target candidate carrier among the candidate carriers, the component carrier is selected according to the channel quality of the channel corresponding to the candidate carrier, and the same uplink and downlink time slot structure is configured for the component carriers.
  • the processing module 802 is further configured to: acquire the service volume of the terminal equipment; and configure the uplink and downlink time slot structure for the terminal equipment according to the reference frequency interval and the service volume.
  • the processing module 802 is further configured to: determine the candidate frequency interval between the candidate carrier of the terminal device and the main carrier; in response to the traffic volume being greater than the set threshold, select a target candidate carrier whose candidate frequency interval is greater than the reference frequency interval from the candidate carriers as component carrier, and configure different uplink and downlink time slot structures for the component carrier.
  • the processing module 802 is further configured to: in response to the fact that there is no target candidate carrier among the candidate carriers and/or the traffic volume is less than a set threshold, select a component carrier according to the channel quality of the channel corresponding to the candidate carrier, and configure the same uplink and downlink timing for the component carrier gap structure.
  • the transceiver module 801 is further configured to: receive indication information sent by the terminal device and used to indicate whether the terminal device supports simultaneous uplink and downlink transmission.
  • the transceiver module 801 is also used to: receive the frequency type supported by the terminal device sent by the terminal device; query the mapping relationship between the frequency type and the frequency interval, and obtain the frequency interval matching the frequency type supported by the terminal device as a reference frequency interval.
  • FIG. 9 is a schematic structural diagram of another communication device 90 provided in an embodiment of the present application.
  • the communication device 90 may be a network device, or a terminal device (such as the first terminal device in the foregoing method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or a A chip, chip system, or processor that supports the terminal device to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 90 may include one or more processors 901 .
  • the processor 901 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 90 may further include one or more memories 902, on which a computer program 904 may be stored, and the processor 901 executes the computer program 904, so that the communication device 90 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 902 .
  • the communication device 90 and the memory 902 can be set separately or integrated together.
  • the communication device 90 may further include a transceiver 905 and an antenna 906 .
  • the transceiver 905 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 905 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 90 may further include one or more interface circuits 907 .
  • the interface circuit 907 is used to receive code instructions and transmit them to the processor 901 .
  • the processor 901 runs the code instructions to enable the communication device 90 to execute the methods described in the foregoing method embodiments.
  • the communication device 90 is a terminal device (such as the first terminal device in the foregoing method embodiment): the transceiver 905 is used to execute step S201 in FIG. 2 , and step S301 and step S302 in FIG. 3 .
  • the communication device 90 is a network device: the transceiver 905 is used to execute step S401 in FIG. 4 , step S501 in FIG. 5 , step S601 in FIG. 6 , and step S701 in FIG. 7 .
  • the processor 901 is configured to execute step S402 in FIG. 4 , step S602 in FIG. 6 , and step S702 and step S703 in FIG. 7 .
  • the processor 901 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 901 may store a computer program 903, and the computer program 903 runs on the processor 901, and may cause the communication device 90 to execute the methods described in the foregoing method embodiments.
  • the computer program 903 may be solidified in the processor 901, and in this case, the processor 901 may be implemented by hardware.
  • the communication device 90 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiments), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device can be Not limited by Figure 9.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 10 includes a processor 1001 and an interface 1002 .
  • the number of processors 1001 may be one or more, and the number of interfaces 1002 may be more than one.
  • the chip is used to implement the functions of the terminal device in the embodiment of the present application (such as the first terminal device in the foregoing method embodiment):
  • the interface 1002 is configured to execute step S201 in FIG. 2 .
  • the interface 1002 is configured to execute step S401 in FIG. 4 , step S501 in FIG. 5 , step S601 in FIG. 6 , and step S701 in FIG. 7 .
  • the chip further includes a memory 1003 for storing necessary computer programs and data.
  • the embodiment of the present application also provides a system for determining the duration of the side link.
  • the system includes the communication device as the terminal device (such as the first terminal device in the method embodiment above) in the embodiment of FIG. 7 and the communication device as the network device.
  • the system includes a communication device serving as a terminal device (such as the first terminal device in the foregoing method embodiment) and a communication device serving as a network device in the foregoing embodiment in FIG. 9 .
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种时隙结构的配置方法及其装置,可以应用于通信系统中,该方法由终端设备执行,包括:在终端设备支持同时上下行传输时,向网络设备发送用于配置所述终端设备的上下行时隙结构的参考频率间隔。通过实施本申请实施例,可以提高频谱效率及传输效率,避免资源浪费。通过这种方式,可以避免两个频带或两个载波相隔较近时,一个频带的上行信息发射影响另一个频带的下行信息接收,从而有利于保证上下行信息传输的准确性。

Description

一种时隙结构的配置方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种时隙结构的配置方法及其装置。
背景技术
相关技术中,由于射频硬件的限制,两个频带(band)或者两个载波相隔较近时,一个band的上行发射信息会影响另一个band的下行接受信息,这在一定程度上减低了传输效率及频谱使用效率。
发明内容
本申请实施例提供一种时隙结构的配置方法及其装置,可以用于提高传输效率及频谱使用效率。
第一方面,本申请实施例提供一种时隙结构的配置方法,由终端设备执行,该方法包括:在所述终端设备支持同时上下行传输时,向网络设备发送用于配置所述终端设备的上下行时隙结构的参考频率间隔。
通过实施本申请实施例,可以提高频谱效率及传输效率,避免资源浪费。通过这种方式,可以避免两个频带或两个载波相隔较近时,一个频带的上行信息发射影响另一个频带的下行信息接收,从而有利于保证上下行信息传输的准确性。
在一种实现方式中,所述方法还包括:向所述网络设备发送用于指示所述终端设备是否支持同时上下行传输的指示信息。
在一种实现方式中,所述向网络设备发送用于配置所述终端设备的上下行时隙结构的参考频率间隔,包括:向所述网络设备发送所述终端设备支持的频率类型,其中,所述频率类型与所述参考频率间隔之间存在映射关系。
第二方面,本申请实施例提供另一种时隙结构的配置方法,由网络设备执行,该方法包括:
接收终端设备在支持同时上下行传输时发送的用于配置所述终端设备的上下行时隙结构的参考频率间隔;
根据所述参考频率间隔配置所述上下行时隙结构。
通过实施本申请实施例,可以提高频谱效率及传输效率,避免资源浪费。通过这种方式,可以避免两个频带或两个载波相隔较近时,一个频带的上行信息发射影响另一个频带的下行信息接收,从而有利于保证上下行信息传输的准确性。
在一种实现方式中,所述方法还包括:根据所述参考频率间隔,为所述终端设备从候选载波中选取分量载波进行载波聚合,并为所述分量载波配置所述上下行时隙结构。
在一种实现方式中,所述根据所述参考频率间隔,为所述终端设备从候选载波中选取分量载波进行载波聚合,并为所述分量载波配置所述上下行时隙结构,包括:获取所述候选载波与主载波之间的候选频率间隔;响应于所述候选载波中存在所述候选频率间隔大于所述参考频率间隔的目标候选载波,从所述目标候选载波中选取所述分量载波,并为所述 分量载波配置不同的所述上下行时隙结构;或者,响应于所述候选载波中未存在所述目标候选载波,按照所述候选载波对应信道的信道质量选取所述分量载波,并为所述分量载波配置相同的所述上下行时隙结构。
在一种实现方式中,所述方法还包括:获取所述终端设备的业务量;根据所述参考频率间隔和所述业务量,为所述终端设备配置所述上下行时隙结构。
在一种实现方式中,所述根据所述参考频率间隔和所述业务量,为所述终端设备配置所述上下行时隙结构,包括:确定所述终端设备的候选载波与主载波之间的候选频率间隔;响应于所述业务量大于设定阈值,从所述候选载波中选取所述候选频率间隔大于所述参考频率间隔的目标候选载波作为所述分量载波,并为所述分量载波配置不同的所述上下行时隙结构。
在一种实现方式中,所述方法还包括:响应于所述候选载波中未存在所述目标候选载波和/或所述业务量小于所述设定阈值,按照所述候选载波对应信道的信道质量选取所述分量载波,并为所述分量载波配置相同的所述上下行时隙结构。
在一种实现方式中,所述方法还包括:接收所述终端设备发送的用于指示所述终端设备是否支持同时上下行传输的指示信息。
在一种实现方式中,所述接收终端设备在支持同时上下行传输时发送的用于配置所述终端设备的上下行时隙结构的参考频率间隔,包括:接收所述终端设备发送的所述终端设备支持的频率类型;查询频率类型与频率间隔之间存在映射关系,获取与所述终端设备支持的频率类型匹配的频率间隔,作为所述参考频率间隔。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模 块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种时隙结构的配置系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据 和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种时隙结构的配置方法的流程示意图;
图3是本申请实施例提供的一种时隙结构的配置方法的流程示意图;
图4是本申请实施例提供的一种时隙结构的配置方法的流程示意图;
图5是本申请实施例提供的一种时隙结构的配置方法的流程示意图;
图6是本申请实施例提供的一种时隙结构的配置方法的流程示意图;
图6(a)是本申请实施例提供的一种时隙结构示意图;
图6(b)是本申请实施例提供的一种时隙结构示意图;
图7是本申请实施例提供的一种时隙结构的配置方法的流程示意图;
图8为本申请一实施例的通信装置的结构示意图;
图9是本申请一实施例的通信装置的结构示意图;
图10是本申请一实施例的芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
1、频带(band)
频带,即带宽,指信号所占据的频带宽度;在被用来描述信道时,带宽是指能够有效通过该信道的信号的最大频带宽度。对于模拟信号而言,带宽又称为频宽,以赫兹(Hz)为单位。
频带在信息论、无线电、通信、信号处理和波谱学等领域都是一个核心概念。例如在无线电通信中,带宽是调制载波占据的频率范围
2、时隙(slot)
时隙是电路交换汇总信息传送的最小单位。时隙可以理解为通道,多人共用一个资源,采用分时的方法处理,1个时隙相当于1个通道。
为了更好的理解本申请实施例公开的一种确定侧链路时长的方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的时隙结构的配置方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种时隙结构的配置方法的流程示意图。如图2所示,该方法由终端设备执行,可以包括但不限于如下步骤:
步骤S201:在终端设备支持同时上下行传输时,向网络设备发送用于配置终端设备的上下行时隙结构的参考频率间隔。
终端设备通过物理上行信道与网络设备传输上行信息或数据,通过物理下行信道与网 络设备传输下行信息或数据。为了支持更高的传输频率,终端设备引入了同时支持上下行传输的能力,也就是说,终端设备可以支持同时上下行传输。
为避免一个频带中的上行信息发射影响另一个频带中的下行信息接收,提高频谱效率,在终端设备支持同时上下行传输时,还需向网络设备发送频率间隔信息,以便于网络设备根据收到的频率间隔信息配置终端设备的上下行时隙结构,以便于两个频带按照配置的上下行时隙结构上进行数据/或信息的传输,尽可能地降低两个频段之间的影响。
终端设备向网络设备发送用于配置终端设备的上下行时隙结构的参考频率间隔。在一些实现中,终端设备直接向网络设备发送参考时隙间隔;在一些实现中,终端设备向网络设备发送用于指示网络设备确定参考频率间隔的指示信息,网络设备可以根据指示信息获取参考频率间隔。
通过实施本申请实施例,可以提高频谱效率及传输效率,避免资源浪费。通过这种方式,可以避免两个band或两个载波相隔较近时,一个band的上行信息发射影响另一个band的下行信息接收,从而有利于保证上下行信息传输的准确性。
请参见图3,图3是本申请实施例提供的一种时隙结构的配置方法的流程示意图。如图3所示,该方法由网络设备执行,可以包括但不限于如下步骤:
S301,向网络设备发送用于指示终端设备是否支持同时上下行传输的指示信息。
在一些实现中,为获取终端设备是否具有同时支持上下行传输的能力,终端设备向网络设备发送用于指示终端设备是否支持同时上下行传输的指示信息。本申请实施例中,终端设备发送的用于指示终端设备是否支持同时上下行传输的指示信息为1bit。
响应于终端设备不具有同时支持上下行传输的能力,终端设备向网络设备发送用于指示终端设备不支持同时上下行传输的指示信息。
响应于终端设备具有同时支持上下行传输的能力,向网络设备发送用于指示终端设备支持同时上下行传输的指示信息。
可选地,为了减小计算量,还可以不发送用于指示终端设备是否支持同时上下行传输的指示信息。在一些实现中,终端设备不发送用于指示终端设备是否支持同时上下行传输的指示信息,默认为终端设备不具有同时支持上下行传输的能力;在一些实现中,终端设备不发送用于指示终端设备是否支持同时上下行传输的指示信息,默认为终端设备具有同时支持上下行传输的能力。
S302,在终端设备支持同时上下行传输时,向网络设备发送用于配置终端设备的上下行时隙结构的参考频率间隔。
终端设备向网络设备发送用于配置终端设备的上下行时隙结构的参考频率间隔。在一些实现中,终端设备直接向网络设备发送参考时隙间隔;在一些实现中,终端设备向网络设备发送用于指示网络设备确定参考频率间隔的指示信息,网络设备可以根据指示信息获取参考频率间隔。在一些实现中,终端设备可以向网络设备发送终端设备支持的频率类型,其中,该终端设备所支持的频率类型,作为用于指示网络设备确定参考频率间隔的指示信息。
可选地,预先配置或者协议约定终端设备支持的频率类型与参考频率间隔之间存在映射关系,不同的频率类型对应不同的参考频率间隔。相应地,网络设备可以根据映射关系 获取与终端设备支持的频率类型对应的参考频率间隔。
举例说明,如表1所示,例如,终端设备支持的频率类型为Class 1,则根据映射关系获取与频率类型对应的参考频率间隔为80MHz;终端设备支持的频率类型为Class 2,则根据映射关系获取与频率类型对应的参考频率间隔为60MHz;终端设备支持的频率类型为Class 3,则根据映射关系获取与频率类型对应的参考频率间隔为40MHz。
频率类型 参考频率间隔
Class 1 80MHz
Class 2 60MHz
Class 3 40MHz
….
表1
可以理解的是,表1中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表格1中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表1中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表1中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
通过实施本申请实施例,可以提高频谱效率及传输效率,避免资源浪费,有利于保证上下行信息传输的准确性。
请参见图4,图4是本申请实施例提供的一种时隙结构的配置方法的流程示意图。如图4所示,该方法由网络设备执行,可以包括但不限于如下步骤:
S401,接收终端设备在支持同时上下行传输时发送的用于配置终端设备的上下行时隙结构的参考频率间隔。
为避免一个频带中的上行信息发射影响另一个频带中的下行信息接收,提高频谱效率,终端设备在支持同时上下行传输时,网络设备接收终端设备发送的参考频率间隔,以便于网络设备根据收到的频率间隔信息配置终端设备的上下行时隙结构。
在一些实现中,网络设备直接接收终端设备发送的参考时隙间隔;在一些实现中,终端设备向网络设备发送用于指示网络设备确定参考频率间隔的指示信息,网络设备根据指示信息获取参考频率间隔。
在一些实现中,网络设备直接接收终端设备发送的用于配置终端设备的上下行时隙结构的参考频率间隔。在一些实现中,网络设备接收终端设备发送的用于指示网络设备确定参考频率间隔的指示信息,网络设备可以根据指示信息获取参考频率间隔。在一些实现中,网络设备接收终端设备发送的终端设备支持的频率类型,其中,该终端设备所支持的频率类型,作为用于指示网络设备确定参考频率间隔的指示信息。
可选地,预先配置或者协议约定终端设备支持的频率类型与参考频率间隔之间存在映射关系,不同的频率类型对应不同的参考频率间隔。相应地,网络设备可以根据映射关系获取与终端设备支持的频率类型对应的参考频率间隔。
举例说明,如表1所示,例如,网络设备接收终端设备发送的终端设备支持的频率类型为Class 1,则根据映射关系获取与频率类型对应的参考频率间隔为80MHz;网络设备接 收终端设备发送的终端设备支持的频率类型为Class 2,则根据映射关系获取与频率类型对应的参考频率间隔为60MHz;网络设备接收终端设备发送的终端设备支持的频率类型为Class 3,则根据映射关系获取与频率类型对应的参考频率间隔为40MHz。
S402,根据参考频率间隔配置上下行时隙结构。
在一些实现中,将参考频率间隔与候选频率间隔作对比,根据对比结果配置上下行时隙结构。可选地,候选频率间隔可以是预设阈值,也可以是候选载波与主载波之间的频率间隔。
可选地,终端设备的业务量也会影响上下行传输效率,进而影响频谱效率,因此,在一些实现中,还可以根据参考频率间隔以及当前终端设备的业务量配置上下行时隙结构。
通过实施本申请实施例,可以提高频谱效率及传输效率,避免资源浪费。通过这种方式,可以避免两个band或两个载波相隔较近时,一个band的上行信息发射影响另一个band的下行信息接收,从而有利于保证上下行信息传输的准确性。
请参见图5,图5是本申请实施例提供的一种时隙结构的配置方法的流程示意图。如图5所示,该方法由网络设备执行,可以包括但不限于如下步骤:
S501,接收终端设备发送的用于指示终端设备是否支持同时上下行传输的指示信息。
本申请实施例中,为获取终端设备是否具有同时支持上下行传输的能力,网络设备接受终端设备发送的用于指示终端设备是否支持同时上下行传输的指示信息。
响应于终端设备不具有同时支持上下行传输的能力,网络设备接受终端设备发送的用于指示终端设备不支持同时上下行传输的指示信息,此时,网络设备配置载波工作在相同的上下行时隙结构。
响应于终端设备具有同时支持上下行传输的能力,网络设备接受终端设备发送的用于指示终端设备支持同时上下行传输的指示信息,并且还可以接收到终端设备发送的用于配置终端设备的上下行时隙结构的参考频率间隔。
通过实施本申请实施例,可以提高频谱效率及传输效率,避免资源浪费,有利于保证上下行信息传输的准确性。
请参见图6,图6是本申请实施例提供的一种时隙结构的配置方法的流程示意图。如图6所示,该方法由网络设备执行,可以包括但不限于如下步骤:
S601,接收终端设备在支持同时上下行传输时发送的用于配置终端设备的上下行时隙结构的参考频率间隔。
关于步骤S601的内容可以参见上述实施例的相关介绍,此处不再赘述。
S602,根据参考频率间隔,为终端设备从候选载波中选取分量载波进行载波聚合,并为分量载波配置上下行时隙结构。
根据参考频率间隔,为终端设备从候选载波中选取多个分量载波,将多个连续或非连续的分量载波进行载波聚合,以聚合成更大的band。各个分量载波有各自独立的传输信道,为分量载波配置上下行时隙结构,确定slot类中的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号传输的信息类型,也就是说,配置好用于传输上行信息的OFDM符号,以及用于传输下行信息的OFDM符号。
可选地,响应于当前系统为LTE系统,则为分量载波配置静态的上下行时隙结构,响 应于当前系统为NR系统,为则为分量载波配置动态的上下行时隙结构。
在一些实现中,获取候选载波与主载波之间的频率间隔作为候选频率间隔,响应于候选载波中存在候选频率间隔大于参考频率间隔的目标候选载波,也就是说,候选频率间隔满足使用需求,为了提高频谱效率,从目标候选载波中选取分量载波,并为分量载波配置不同的上下行时隙结构;如图6(a)所示,例如,单个时隙中具有14个OFDM符号,分量载波1配置标识为4、7、10的OFDM符号传输上行信息,其余OFDM符号传输下行信息,分量载波2配置标识为1、5、9的OFDM符号传输上行信息,其余OFDM符号传输下行信息,此时,上行信息发射与下行信息的接收可能同时进行,由于频带间隔较大,因此,上行信息的发射不会影响到下行信息的接收。
在一些实现中,获取候选载波与主载波之间的频率间隔作为候选频率间隔,响应于候选载波中未存在目标候选载波,则需要对上下行时隙结构进行约束,也就是说,按照候选载波对应信道的信道质量选取分量载波,如图6(b)所示,例如,可以按照信道质量对候选载波进行排序,可选地,可以选取预设范围内的信道质量对应的候选载波作为分量载波,可选地,还可以选取信道质量较好的候选载波作为分量载波,进而为分量载波配置相同的上下行时隙结构;例如,将分量载波1、分量载波2各自配置标识为4、7、10的OFDM符号传输上行信息,其余OFDM符号传输下行信息,此时,由于时隙结构相同,帧结构也相同,可以同时进行上行信息的发射或同时进行下行信息的接收,因此,上行信息的发射不会影响到下行信息的接收。
本申请实施例中,根据参考频率间隔,为终端设备从候选载波中选取分量载波进行载波聚合,并为分量载波配置上下行时隙结构。使用载波聚合(Carrier aggrega,CA)可以增加传输带宽,从而提高传输比特速率,提高频谱效率,避免资源浪费,有利于保证上下行信息传输的准确性。
终端设备的业务量也是影响传输效率的因素之一,业务量较大时会降低传输效率,因此,本申请实施例对于上下行时隙结构的配置,还需要考虑终端设备的业务量。请参见图7,图7是本申请实施例提供的一种时隙结构的配置方法的流程示意图。如图7所示,该方法由网络设备执行,可以包括但不限于如下步骤:
S701,接收终端设备在支持同时上下行传输时发送的用于配置终端设备的上下行时隙结构的参考频率间隔。
关于步骤S701的内容可以参见上述实施例的相关介绍,此处不再赘述。
S702,获取终端设备的业务量。
业务量是指通信系统或通信网络中传输的所有信息的数据量,业务量较大时可能会导致传输信道拥塞,严重时可能会导致系统瘫痪,因此本申请实施例还需参考终端设备的业务量大小,以配置上下行时隙结构。
S703,根据参考频率间隔和业务量,为终端设备配置上下行时隙结构。
确定终端设备的候选载波与主载波之间的候选频率间隔,在一些实现中,响应于业务量大于设定阈值,也就是说,终端设备需要传输的业务量较大,为提高传输效率,需要从候选载波中选取候选频率间隔大于参考频率间隔的目标候选载波作为分量载波,并为分量载波配置不同的上下行时隙结构。
在一些实现中,响应于候选载波中未存在目标候选载波,也就是说,候选频率间隔不大于参考频率间隔,则按照候选载波对应信道的信道质量选取分量载波,例如,可以按照信道质量对候选载波进行排序,可选地,可以选取预设范围内的信道质量对应的候选载波作为分量载波,可选地,还可以选取信道质量较好的候选载波作为分量载波。
在一些实现中,响应于业务量小于设定阈值,也就是说,终端设备需要传输的数据量较小,则按照候选载波对应信道的信道质量选取分量载波,并为分量载波配置相同的上下行时隙结构。
在一些实现中,响应于候选载波中未存在目标候选载波且业务量小于设定阈值,按照候选载波对应信道的信道质量选取分量载波,并为分量载波配置相同的上下行时隙结构。
本申请实施例中,根据参考频率间隔,为终端设备从候选载波中选取分量载波进行载波聚合,并为分量载波配置上下行时隙结构。使用载波聚合(Carrier aggrega,CA)可以增加传输带宽,从而提高传输比特速率,提高频谱效率,避免资源浪费,有利于保证上下行信息传输的准确性。
上述本申请提供的实施例中,分别从网络设备、第一终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和第一终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图8,为本申请实施例提供的一种通信装置80的结构示意图。图8所示的通信装置80可包括收发模块801和处理模块802。收发模块801可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块801可以实现发送功能和/或接收功能。
通信装置80可以是终端设备(如前述方法实施例中的第一终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置80可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置80为终端设备(如前述方法实施例中的第一终端设备),包括:
收发模块801,用于在终端设备支持同时上下行传输时,向网络设备发送用于配置终端设备的上下行时隙结构的参考频率间隔。
收发模块801,还用于:向网络设备发送用于指示终端设备是否支持同时上下行传输的指示信息。
收发模块801,还用于:向网络设备发送终端设备支持的频率类型,其中,频率类型与参考频率间隔之间存在映射关系。
通过实施本申请实施例,可以提高频谱效率及传输效率,避免资源浪费。通过这种方式,可以避免两个band或两个载波相隔较近时,一个band的上行信息发射影响另一个band的下行信息接收,从而有利于保证上下行信息传输的准确性。
通信装置80为网络设备,包括:
收发模块801,用于接收终端设备在支持同时上下行传输时发送的用于配置终端设备的上下行时隙结构的参考频率间隔;
处理模块802,用于根据参考频率间隔配置上下行时隙结构。
处理模块802,还用于:根据参考频率间隔,为终端设备从候选载波中选取分量载波进行载波聚合,并为分量载波配置上下行时隙结构。
处理模块802,还用于:获取候选载波与主载波之间的候选频率间隔;响应于候选载波中存在候选频率间隔大于参考频率间隔的目标候选载波,从目标候选载波中选取分量载波,并为分量载波配置不同的上下行时隙结构;或者,响应于候选载波中未存在目标候选载波,按照候选载波对应信道的信道质量选取分量载波,并为分量载波配置相同的上下行时隙结构。
处理模块802,还用于:获取终端设备的业务量;根据参考频率间隔和业务量,为终端设备配置上下行时隙结构。
处理模块802,还用于:确定终端设备的候选载波与主载波之间的候选频率间隔;响应于业务量大于设定阈值,从候选载波中选取候选频率间隔大于参考频率间隔的目标候选载波作为分量载波,并为分量载波配置不同的上下行时隙结构。
处理模块802,还用于:响应于候选载波中未存在目标候选载波和/或业务量小于设定阈值,按照候选载波对应信道的信道质量选取分量载波,并为分量载波配置相同的上下行时隙结构。
收发模块801,还用于:接收终端设备发送的用于指示终端设备是否支持同时上下行传输的指示信息。
收发模块801,还用于:接收终端设备发送的终端设备支持的频率类型;查询频率类型与频率间隔之间存在映射关系,获取与终端设备支持的频率类型匹配的频率间隔,作为参考频率间隔。
通过实施本申请实施例,可以提高频谱效率及传输效率,避免资源浪费。通过这种方式,可以避免两个band或两个载波相隔较近时,一个band的上行信息发射影响另一个band的下行信息接收,从而有利于保证上下行信息传输的准确性。
请参见图9,图9是本申请实施例提供的另一种通信装置90的结构示意图。通信装置90可以是网络设备,也可以是终端设备(如前述方法实施例中的第一终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置90可以包括一个或多个处理器901。处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置90中还可以包括一个或多个存储器902,其上可以存有计算机程序904,处理器901执行所述计算机程序904,以使得通信装置90执行上述方法实施例中描述的方法。可选的,所述存储器902中还可以存储有数据。通信装置90和存储器902可以单独设置,也可以集成在一起。
可选的,通信装置90还可以包括收发器905、天线906。收发器905可以称为收发单 元、收发机、或收发电路等,用于实现收发功能。收发器905可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置90中还可以包括一个或多个接口电路907。接口电路907用于接收代码指令并传输至处理器901。处理器901运行所述代码指令以使通信装置90执行上述方法实施例中描述的方法。
通信装置90为终端设备(如前述方法实施例中的第一终端设备):收发器905用于执行图2中的步骤S201,图3中的步骤S301、步骤S302。
通信装置90为网络设备:收发器905用于执行图4中的步骤S401,图5中的步骤S501,图6中的步骤S601,图7中的步骤S701。处理器901用于执行图4中的步骤S402,图6中的步骤S602,图7中的步骤S702、步骤S703。
在一种实现方式中,处理器901中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器901可以存有计算机程序903,计算机程序903在处理器901上运行,可使得通信装置90执行上述方法实施例中描述的方法。计算机程序903可能固化在处理器901中,该种情况下,处理器901可能由硬件实现。
在一种实现方式中,通信装置90可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图9的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、 车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图10所示的芯片的结构示意图。图10所示的芯片包括处理器1001和接口1002。其中,处理器1001的数量可以是一个或多个,接口1002的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备(如前述方法实施例中的第一终端设备)的功能的情况:
接口1002,用于执行图2中的步骤S201。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1002,用于执行图4中的步骤S401,图5中的步骤S501,图6中的步骤S601,图7中的步骤S701。
可选的,芯片还包括存储器1003,存储器1003用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种确定侧链路时长的系统,该系统包括前述图7实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述图9实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种时隙结构的配置方法,其特征在于,由终端设备执行,所述方法包括:
    在所述终端设备支持同时上下行传输时,向网络设备发送用于配置所述终端设备的上下行时隙结构的参考频率间隔。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送用于指示所述终端设备是否支持同时上下行传输的指示信息。
  3. 根据权利要求1所述的方法,其特征在于,所述向网络设备发送用于配置所述终端设备的上下行时隙结构的参考频率间隔,包括:
    向所述网络设备发送所述终端设备支持的频率类型,其中,所述频率类型与所述参考频率间隔之间存在映射关系。
  4. 一种时隙结构的配置方法,其特征在于,由网络设备执行,所述方法包括:
    接收终端设备在支持同时上下行传输时发送的用于配置所述终端设备的上下行时隙结构的参考频率间隔;
    根据所述参考频率间隔配置所述上下行时隙结构。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    根据所述参考频率间隔,为所述终端设备从候选载波中选取分量载波进行载波聚合,并为所述分量载波配置所述上下行时隙结构。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述参考频率间隔,为所述终端设备从候选载波中选取分量载波进行载波聚合,并为所述分量载波配置所述上下行时隙结构,包括:
    获取所述候选载波与主载波之间的候选频率间隔;
    响应于所述候选载波中存在所述候选频率间隔大于所述参考频率间隔的目标候选载波,从所述目标候选载波中选取所述分量载波,并为所述分量载波配置不同的所述上下行时隙结构;或者,
    响应于所述候选载波中未存在所述目标候选载波,按照所述候选载波对应信道的信道质量选取所述分量载波,并为所述分量载波配置相同的所述上下行时隙结构。
  7. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    获取所述终端设备的业务量;
    根据所述参考频率间隔和所述业务量,为所述终端设备配置所述上下行时隙结构。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述参考频率间隔和所述业务 量,为所述终端设备配置所述上下行时隙结构,包括:
    确定所述终端设备的候选载波与主载波之间的候选频率间隔;
    响应于所述业务量大于设定阈值,从所述候选载波中选取所述候选频率间隔大于所述参考频率间隔的目标候选载波作为所述分量载波,并为所述分量载波配置不同的所述上下行时隙结构。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    响应于所述候选载波中未存在所述目标候选载波和/或所述业务量小于所述设定阈值,按照所述候选载波对应信道的信道质量选取所述分量载波,并为所述分量载波配置相同的所述上下行时隙结构。
  10. 根据权利要求4-9任一项所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的用于指示所述终端设备是否支持同时上下行传输的指示信息。
  11. 根据权利要求4-9任一项所述的方法,其特征在于,所述接收终端设备在支持同时上下行传输时发送的用于配置所述终端设备的上下行时隙结构的参考频率间隔,包括:
    接收所述终端设备发送的所述终端设备支持的频率类型;
    查询所述频率类型与频率间隔之间存在映射关系,获取与所述终端设备支持的频率类型匹配的频率间隔,作为所述参考频率间隔。
  12. 一种通信装置,其特征在于,包括:
    收发模块,用于在所述终端设备支持同时上下行传输时,向网络设备发送用于配置所述终端设备的上下行时隙结构的参考频率间隔。
  13. 根据权利要求12所述的通信装置,其特征在于,所述收发模块,还用于:
    向所述网络设备发送用于指示所述终端设备是否支持同时上下行传输的指示信息。
  14. 根据权利要求12所述的通信装置,其特征在于,所述收发模块,还用于:
    向所述网络设备发送所述终端设备支持的频率类型,其中,所述频率类型与所述参考频率间隔之间存在映射关系。
  15. 一种通信装置,其特征在于,所述通信装置包括:
    收发模块,用于接收终端设备在支持同时上下行传输时发送的用于配置所述终端设备的上下行时隙结构的参考频率间隔;
    处理模块,用于根据所述参考频率间隔配置所述上下行时隙结构。
  16. 根据权利要求15所述的通信装置,其特征在于,所述处理模块,还用于:
    根据所述参考频率间隔,为所述终端设备从候选载波中选取分量载波进行载波聚合,并为所述分量载波配置所述上下行时隙结构。
  17. 根据权利要求16所述的通信装置,其特征在于,所述处理模块,还用于:
    获取所述候选载波与主载波之间的候选频率间隔;
    响应于所述候选载波中存在所述候选频率间隔大于所述参考频率间隔的目标候选载波,从所述目标候选载波中选取所述分量载波,并为所述分量载波配置不同的所述上下行时隙结构;或者,
    响应于所述候选载波中未存在所述目标候选载波,按照所述候选载波对应信道的信道质量选取所述分量载波,并为所述分量载波配置相同的所述上下行时隙结构。
  18. 根据权利要求15所述的通信装置,其特征在于,所述处理模块,还用于:
    获取所述终端设备的业务量;
    根据所述参考频率间隔和所述业务量,为所述终端设备配置所述上下行时隙结构。
  19. 根据权利要求18所述的通信装置,其特征在于,所述处理模块,还用于:
    确定所述终端设备的候选载波与主载波之间的候选频率间隔;
    响应于所述业务量大于设定阈值,从所述候选载波中选取所述候选频率间隔大于所述参考频率间隔的目标候选载波作为所述分量载波,并为所述分量载波配置不同的所述上下行时隙结构。
  20. 根据权利要求18所述的通信装置,其特征在于,所述处理模块,还用于:
    响应于所述候选载波中未存在所述目标候选载波和/或所述业务量小于所述设定阈值,按照所述候选载波对应信道的信道质量选取所述分量载波,并为所述分量载波配置相同的所述上下行时隙结构。
  21. 根据权利要求15-20任一项所述的通信装置,其特征在于,所述收发模块,还用于:
    接收所述终端设备发送的用于指示所述终端设备是否支持同时上下行传输的指示信息。
  22. 根据权利要求15-20任一项所述的通信装置,其特征在于,所述收发模块,还用于:
    接收所述终端设备发送的所述终端设备支持的频率类型;
    查询所述频率类型与频率间隔之间存在映射关系,获取与所述终端设备支持的频率类型匹配的频率间隔,作为所述参考频率间隔。
  23. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储 有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1-3中任一项所述的方法。
  24. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求4-11任一项所述的方法。
  25. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至3中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求4-11任一项所述的方法。
  27. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至3中任一项所述的方法被实现。
  28. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求4-11任一项所述的方法被实现。
PCT/CN2021/109082 2021-07-28 2021-07-28 一种时隙结构的配置方法及其装置 WO2023004653A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002287.XA CN115885559A (zh) 2021-07-28 2021-07-28 一种时隙结构的配置方法及其装置
PCT/CN2021/109082 WO2023004653A1 (zh) 2021-07-28 2021-07-28 一种时隙结构的配置方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109082 WO2023004653A1 (zh) 2021-07-28 2021-07-28 一种时隙结构的配置方法及其装置

Publications (1)

Publication Number Publication Date
WO2023004653A1 true WO2023004653A1 (zh) 2023-02-02

Family

ID=85085996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109082 WO2023004653A1 (zh) 2021-07-28 2021-07-28 一种时隙结构的配置方法及其装置

Country Status (2)

Country Link
CN (1) CN115885559A (zh)
WO (1) WO2023004653A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802816A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 信息传输方法及设备
US20190182021A1 (en) * 2016-08-11 2019-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Network Node, Wireless Device and Methods Therein Relating to Time Division Duplex Configurations for Narrowband Internet of Things
US20200275439A1 (en) * 2017-09-08 2020-08-27 Huawei Technologies Co., Ltd. Slot format indication method, device, and system
CN111988848A (zh) * 2019-05-22 2020-11-24 华为技术有限公司 时隙格式指示的方法和通信装置
US20210120522A1 (en) * 2018-04-13 2021-04-22 Kt Corporation Method and device for performing positioning in next generation wireless network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182021A1 (en) * 2016-08-11 2019-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Network Node, Wireless Device and Methods Therein Relating to Time Division Duplex Configurations for Narrowband Internet of Things
US20200275439A1 (en) * 2017-09-08 2020-08-27 Huawei Technologies Co., Ltd. Slot format indication method, device, and system
CN109802816A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 信息传输方法及设备
US20210120522A1 (en) * 2018-04-13 2021-04-22 Kt Corporation Method and device for performing positioning in next generation wireless network
CN111988848A (zh) * 2019-05-22 2020-11-24 华为技术有限公司 时隙格式指示的方法和通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On Frame Structure for NR in Unlicensed Spectrum", 3GPP DRAFT; R1-1805009 ON FRAME STRUCTURE FOR NR IN UNLICENSED SPECTRUM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 7 April 2018 (2018-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051414332 *
MEDIATEK INC.: "Discussion on slot structure and channel format", 3GPP DRAFT; R1-1609555_DISCUSSION ON SLOT STRUCTURE AND CHANNEL FORMAT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Lisbon, Portugal; 20161010 - 20161014, 1 October 2016 (2016-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051159622 *

Also Published As

Publication number Publication date
CN115885559A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023159449A1 (zh) 数据传输方法和装置
WO2023245521A1 (zh) 一种控制资源的位置信息的确定方法及其装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2023201497A1 (zh) 一种确定非授权频谱中频域资源的方法及装置
WO2023050234A1 (zh) 一种探测参考信号srs资源的调整方法及其装置
WO2023060491A1 (zh) 一种多载波聚合能力的上报方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2024065103A1 (zh) 一种上行功率控制方法及其装置
WO2023197121A1 (zh) 一种发送直连测距信号的方法及装置
WO2023231037A1 (zh) 一种数据链路层l2的缓冲器大小的确定方法及其装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2022226847A1 (zh) 一种直连测距的资源复用方法及其装置
WO2023231036A1 (zh) 一种传输块的处理方法及其装置
WO2024021130A1 (zh) 一种信道估计方法及其装置
WO2024036519A1 (zh) 一种侧行链路pdcp复用的激活方法及装置
WO2022252022A1 (zh) 一种组网的方法及其装置
WO2024045078A1 (zh) 一种终端处理能力的上报方法、数据处理方法及其装置
WO2023155206A1 (zh) 联合信道估计的最大持续时间的上报方法及其装置
WO2023044628A1 (zh) 一种测量gap的调度方法及其装置
WO2023082287A1 (zh) 一种信息的传输方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE