WO2023159449A1 - 数据传输方法和装置 - Google Patents

数据传输方法和装置 Download PDF

Info

Publication number
WO2023159449A1
WO2023159449A1 PCT/CN2022/077780 CN2022077780W WO2023159449A1 WO 2023159449 A1 WO2023159449 A1 WO 2023159449A1 CN 2022077780 W CN2022077780 W CN 2022077780W WO 2023159449 A1 WO2023159449 A1 WO 2023159449A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
gap
configuration information
subbands
size
Prior art date
Application number
PCT/CN2022/077780
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/077780 priority Critical patent/WO2023159449A1/zh
Priority to CN202280000455.6A priority patent/CN114667755A/zh
Publication of WO2023159449A1 publication Critical patent/WO2023159449A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present disclosure relates to the technical field of communications, and in particular, to a data transmission method and device.
  • Duplex mode enhancement is an important content being studied by 3GPP (The 3rd Generation Partnership Project, the third generation partnership project). The main idea is to simultaneously transmit and receive data in one time slot.
  • the full-duplex scheme transmits uplink data and downlink data on different subbands, and how to determine the configuration of subbands to realize the transmission of uplink data and downlink data on different subbands is an urgent problem to be solved.
  • Embodiments of the present disclosure provide a data transmission method and device. By determining subband configuration information, a terminal device can implement subband-based full-duplex operation and effectively avoid interference between subbands.
  • an embodiment of the present disclosure provides a data transmission method, the method is executed by a terminal device, and the method includes: determining subband configuration information; performing uplink data on multiple different subbands according to the subband configuration information And/or transmission of downlink data; wherein, the subband configuration information includes at least one of the following configuration information indicating the plurality of subbands:
  • Gap position configuration wherein the gap Gap position configuration is used to indicate the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent to it.
  • the terminal device can transmit uplink data and/or downlink data on different multiple subbands according to the determined subband configuration information, and can realize full-duplex operation based on subbands, avoiding inter-subband interference.
  • an embodiment of the present disclosure provides another data transmission method, which is executed by a network-side device, and the method includes: determining subband configuration information; wherein, the subband configuration information includes the following indicating multiple subbands At least one configuration information:
  • Gap position configuration wherein, the gap Gap position configuration is used to indicate the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent to it.
  • the terminal device can transmit uplink data and/or downlink data on different multiple subbands according to the determined subband configuration information, and can realize full-duplex operation based on subbands, avoiding inter-subband interference.
  • the embodiment of the present disclosure provides a communication device, which has some or all functions of the terminal device in the method described in the first aspect above, for example, the functions of the communication device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes: a processing module, configured to determine subband configuration information, and perform uplink data and/or downlink data transmission on multiple different subbands according to the subband configuration information;
  • the subband configuration information includes at least one of the following configuration information indicating the plurality of subbands:
  • Gap position configuration wherein the gap Gap position configuration is used to indicate the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent to it.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the network side equipment in the method example described in the second aspect above, for example, the function of the communication device can have the functions of the communication device in the present disclosure.
  • the functions in some or all of the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the communication device includes: a processing module configured to determine subband configuration information; wherein the subband configuration information includes at least one of the following configuration information indicating multiple subbands:
  • Gap position configuration wherein the gap Gap position configuration is used to indicate the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent to it.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a data transmission system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or, the system includes the communication device described in the fifth aspect And the communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect The communication device.
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store the instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network-side equipment, and when the instructions are executed, the network-side equipment executes the above-mentioned second aspect.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system, which includes at least one processor and an interface, configured to support the network side device to implement the functions involved in the second aspect, for example, to determine or process the functions involved in the above method At least one of data and information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the network side device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a data transmission method provided by an embodiment of the present disclosure
  • Fig. 3 is a flowchart of another data transmission method provided by an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of another data transmission method provided by an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of another data transmission method provided by an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of another communication device provided by an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of a chip provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a communication system 1 provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network side device and a terminal device.
  • the number and shape of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or two The above network side equipment, two or more terminal equipment.
  • the communication system 1 shown in FIG. 1 includes one network side device 11 and one terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network-side device 11 in the embodiments of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network side device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a A base station or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • a base station or an access node in a wireless fidelity (wireless fidelity, WiFi) system etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network side device.
  • the network side device may be composed of a central unit (CU) and a distributed unit (DU), wherein the CU may also be called a control unit, and the CU-
  • the structure of the DU can separate the protocol layers of network-side devices, such as base stations.
  • the functions of some protocol layers are centrally controlled by the CU, and the remaining part or all of the functions of the protocol layers are distributed in the DU, which is centrally controlled by the CU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a flowchart of a data transmission method provided by an embodiment of the present disclosure.
  • the method is performed by a terminal device, and the method may include but not limited to the following steps:
  • the terminal device determines subband configuration information.
  • the subband configuration information may include at least one of the following configuration information indicating multiple subbands: subband size, subband number, subband frequency domain position, and gap Gap position configuration.
  • the subband size is the size of the frequency range used by the terminal device for uplink data transmission and/or downlink data transmission
  • the number of subbands is the frequency range used by the terminal device for uplink data transmission and downlink data transmission.
  • the number of frequency ranges, the subband frequency domain position is the position in the frequency domain of the frequency range used by the terminal device for uplink data transmission and downlink data transmission
  • the gap Gap position configuration is used to indicate the subband for uplink data transmission and its adjacent Gap in the frequency domain of the subband for downlink data transmission.
  • the subband size unit may be an absolute frequency unit, such as MHz, Hz, etc., or a logical size unit, such as: one or more RB (resource block, resource block), RB sets, etc.
  • the terminal device can determine the subband configuration information according to the protocol agreement, or can determine the subband configuration information by receiving the configuration information of the network side device, or can also determine the subband configuration information jointly according to the protocol agreement and receiving the configuration information of the network side device Subband configuration information.
  • the terminal device may determine one or more configuration information according to the subband configuration information including the size of the subband indicating multiple subbands, the number of subbands, the position of the frequency domain of the subband, and the configuration of the gap Gap position. Additional configuration information. For example, the number of subbands or the frequency domain position of the subbands may be determined according to the size of the subbands indicated in the subband configuration information. For example, the size of the subband or the frequency domain position of the subband may be determined according to the number of subbands indicated in the subband configuration information. For example, the number of subbands, or the size of the subband, or the configuration of the Gap position may be determined according to the frequency domain position of the subband indicated in the subband configuration information.
  • the determination of the subband configuration information by the terminal device includes subband sizes indicating multiple subbands
  • the terminal device can determine its corresponding system bandwidth, and can determine the number of subbands allowed in the system bandwidth according to the system bandwidth and the subband size, Therefore, the number of subbands is determined; further, in the case of determining the system bandwidth, the number of subbands, and the size of the subbands, the frequency domain position of each subband can be determined.
  • the terminal device can also determine other information except the system bandwidth, for example, for the bandwidth part BWP (Bandwidth Part, bandwidth part) of the terminal device, in the case of determining that the subband configuration information includes subband sizes indicating multiple subbands, Determine the number of sub-bands, the frequency domain position of the sub-bands, and the like.
  • BWP Bandwidth Part, bandwidth part
  • the terminal device when the terminal device determines that the subband configuration information includes the number of subbands indicating multiple subbands, it can also determine the subband size, subband Band frequency domain location, etc.
  • the terminal device when the terminal device determines that the subband configuration information includes subband frequency domain positions indicating multiple subbands, it can also directly determine the number of subbands, subband Band size, Gap position configuration, etc.
  • the terminal device when the terminal device determines that the subband configuration information includes the subband size indicating multiple subbands and the configuration of the gap Gap position, it can also directly determine the subband according to the determined system bandwidth or bandwidth part BWP number, sub-band frequency domain location, etc.
  • the terminal device can determine the subband configuration information according to the agreement and/or receive the configuration information of the network side device, and can directly determine the subband configuration information including the subband size and the number of subbands indicating multiple subbands , subband frequency domain position, and one or more configuration information in the gap Gap position configuration, directly determine the specific value of the subband size, and/or the specific value of the number of subbands, and/or the specific value of the subband frequency domain position Specific values, and/or specific values of the size of the gap Gap and the position of the gap Gap in the gap Gap position configuration, or, determine the configurable value of the sub-band size, and/or the configurable value of the number of sub-bands, and/or A configurable value of the frequency domain position of the subband, and/or a configurable value of the size of the gap Gap and the position of the gap Gap in the configuration of the gap Gap position.
  • the subband size determined by the terminal device can be determined as a different value according to different situations, and the specific subband size can be determined according to the configuration situation to meet different requirements. demand.
  • determine the configurable value of the number of subbands, and/or the configurable value of the frequency domain position of the subband, and/or the configurable value of the size of the gap Gap and the position of the gap Gap in the configuration of the gap Gap position which can also satisfy different needs.
  • the terminal device determines the subband configuration information. In the case of determining the gap Gap position configuration, it can determine the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent to it, so that the terminal When the device is transmitting uplink data and downlink data, there is a gap between the subbands for uplink data transmission and the subbands for downlink data transmission, which can effectively avoid interference between uplink and downlink subbands.
  • the terminal device transmits uplink data and/or downlink data on multiple different subbands according to the subband configuration information.
  • the terminal device after the terminal device determines the subband configuration information, it can transmit uplink data and downlink data on different subbands according to the subband configuration information, and can also transmit uplink data or downlink data according to the subband configuration information. transmission.
  • the terminal device determines the subband configuration information, and transmits uplink data and/or downlink data on multiple different subbands according to the subband configuration information, wherein the subband configuration information includes a number indicating multiple subbands One or more configuration information in the subband size, subband number, subband frequency domain position and gap Gap position configuration; the gap Gap position configuration is used to indicate the subband for uplink data transmission and its adjacent downlink data transmission The gap Gap of the subband in the frequency domain, so that the terminal device can transmit uplink data and/or downlink data on different multiple subbands, and the subband for uplink data transmission and its adjacent downlink data transmission There is a gap in the subband in the frequency domain, which can realize full-duplex operation based on the subband and effectively avoid interference between the subbands.
  • the subband size is a fixed value or a configurable value.
  • the subband size can be a fixed value, or can also be a configurable value, wherein the subband size can be determined according to the protocol agreement or the network side device configuration, and the subband size can be determined according to the protocol agreement or the network side device configuration.
  • the size is a fixed value, or a configurable value configured to meet certain rules.
  • determining the subband configuration information includes: determining a bandwidth part BWP for the terminal device; receiving second indication information sent by the network side device, wherein the second indication information It is used to indicate the frequency range of multiple subbands on the BWP; according to the second indication information, determine the subband size of each subband as the frequency range.
  • the second indication information may be system information, RRC (Radio Resource Control, radio resource control) signaling, MAC CE (media access control control element, media access control element) or physical layer signaling, etc.
  • RRC Radio Resource Control, radio resource control
  • MAC CE media access control control element, media access control element
  • physical layer signaling etc.
  • the terminal device determines the BWP (Bandwidth Part, bandwidth part) for the terminal device, receives the second indication information sent by the network side device, and the second The indication information indicates frequency ranges of multiple subbands on the BWP; according to the second indication information, determine that the subband size of each subband is the frequency range indicated by the second indication information.
  • BWP Bandwidth Part, bandwidth part
  • the terminal device determines that the BWP of the bandwidth part for the terminal device is 100 MHz, and the terminal device receives the second indication information from the network side device, and the second indication information indicates that the frequency range of multiple subbands on the BWP is 20 MHz, then the terminal device can according to The second indication information determines that the subband size of each subband is 20MHz.
  • determining the subband configuration information includes: determining the system bandwidth; and determining the corresponding subband size according to the correspondence between the system bandwidth and the subband size.
  • the subband size is a configurable value, and after the terminal device accesses the system, the subband size can be determined according to the correspondence between the system bandwidth and the subband size.
  • subband size system bandwidth 20MHz 100MHz 40MHz 100MHz ... ...
  • determining the subband configuration information includes: determining the system operating frequency range; and determining the corresponding subband size according to the correspondence between the system operating frequency range and the subband size.
  • the size of the subband is a configurable value. After the terminal device accesses the system, the size of the subband can be determined according to the corresponding relationship between the operating frequency range of the system and the size of the subband.
  • determining the subband configuration information includes: determining the system bandwidth; and determining the subband size according to the number of subbands and the system bandwidth.
  • the system bandwidth is determined, and the size of the subband is determined according to the number of subbands and the system bandwidth.
  • the size of the subband is determined to be 20MHz, or, when the number of subbands is determined to be 5, When the system bandwidth is 200MHz, according to the number of subbands and the system bandwidth, the subband size is determined to be 40MHz.
  • the number of subbands is a fixed value or a configurable value.
  • the number of subbands can be a fixed value, or can also be a configurable value, wherein the number of subbands can be determined according to the protocol agreement or the configuration of the network side device, and according to the protocol agreement or the configuration of the network side device
  • the number of subbands is a fixed value, or a configurable value configured to meet certain rules.
  • determining the subband configuration information includes: determining the bandwidth part BWP for the terminal device; receiving third indication information sent by the network side device; wherein, the third indication The information is used to indicate the number of multiple subbands on the BWP; the number of subbands is determined to be the number indicated by the third indication information.
  • the third indication information may be system information, RRC (Radio Resource Control, radio resource control) signaling, MAC CE (media access control control element, media access control element) or physical layer signaling, etc.
  • RRC Radio Resource Control, radio resource control
  • MAC CE media access control control element, media access control element
  • physical layer signaling etc.
  • the terminal device determines the BWP (Bandwidth Part, bandwidth part) for the terminal device, and receives the third indication information sent by the network side device , the third indication information is used to indicate the number of multiple subbands on the BWP; according to the third indication information, determine that the number of subbands is the number indicated by the third indication information.
  • BWP Bandwidth Part, bandwidth part
  • the terminal device determines that the BWP of the bandwidth part for the terminal device is 100 MHz, and the terminal device receives the third indication information from the network side device, and the third indication information indicates that the number of subbands of the multiple subbands on the BWP is 5, then the terminal The device may determine that the number of subbands is five according to the third indication information.
  • determining the subband configuration information includes: determining the bandwidth part BWP for the terminal device; determining the subband frequency of each subband according to the position of the BWP, the size of the subband and the number of subbands, and according to preset rules domain location.
  • the frequency range of each sub-band in the position of the BWP can be determined sequentially from high to low. Subband frequency domain location.
  • the preset rule may also be to sequentially determine the subband frequency domain position of each subband according to the frequency range from low to high in the BWP position.
  • determining the subband configuration information includes: determining the bandwidth part BWP for the terminal device; determining a reference point; receiving fourth indication information sent by the network side device; wherein, the fourth indication information indicates the relative reference of each subband The offset of the point; according to the position of the BWP, the reference point, the offset of each subband relative to the reference point, and the size of the subband, the subband frequency domain position of each subband is determined.
  • the fourth indication information may be system information, RRC (Radio Resource Control, radio resource control) signaling, MAC CE (media access control control element, media access control element) or physical layer signaling, etc.
  • RRC Radio Resource Control, radio resource control
  • MAC CE media access control control element, media access control element
  • physical layer signaling etc.
  • the terminal device determines the reference point, which may be determined according to the agreement or configuration information sent by the network side device, and the reference point is an absolute frequency value.
  • the terminal device after determining the reference point and BWP, obtains the offset of each subband relative to the reference point according to the fourth indication information sent by the network side device, and then can determine the size of each subband on the basis of the known subband size. frequency domain location.
  • the size of the gap Gap and the position of the gap are fixed values or configurable values.
  • the size of the gap Gap and the position of the Gap can be fixed values, or can also be configurable values, wherein the size of the gap Gap and the position of the Gap can be determined according to the agreement or the configuration of the network side equipment , according to the protocol agreement or the configuration of the network side device, the size and position of the gap Gap is a fixed value, or a configurable value that satisfies a certain rule is configured.
  • FIG. 3 is a flowchart of another data transmission method provided by an embodiment of the present disclosure.
  • the method is performed by the terminal device, and the method may include but not limited to the following steps:
  • the terminal device determines the subband configuration information; wherein, the terminal device determines the subband configuration information according to the agreement, and/or, the terminal device receives the first indication information sent by the network side device, and determines the subband according to the first indication information Configuration information, wherein the first indication information includes subband configuration information.
  • the subband configuration information may include at least one of the following configuration information indicating multiple subbands: subband size, subband number, subband frequency domain position, and gap Gap position configuration.
  • the terminal device may determine the subband configuration information according to the agreement, or may determine the subband configuration information by receiving the first indication information from the network side device, or may also determine the subband configuration information according to the protocol agreement and receive the first indication information from the network side device.
  • the indication information jointly determines the subband configuration information.
  • the terminal device transmits uplink data and/or downlink data on multiple different subbands according to the subband configuration information.
  • the terminal device receives the first instruction information sent by the network side device according to the agreement and/or, and determines the subband configuration information according to the first instruction information, which may be to determine the subband size and the number of subbands according to the agreement , one or more of the subband frequency domain position and the gap Gap position configuration, or, according to the first indication information, determine the subband size, the number of subbands, the subband frequency domain position and the gap Gap position configuration.
  • One or more of the subband size, subband number, subband frequency domain position and gap Gap position configuration can also be determined according to the protocol agreement and the first indication information of the network side device at the same time. .
  • the first indication information may be system information, RRC (Radio Resource Control, radio resource control) signaling, MAC CE (media access control control element, media access control element) or physical layer signaling, etc.
  • RRC Radio Resource Control, radio resource control
  • MAC CE media access control control element, media access control element
  • physical layer signaling etc.
  • the subband size is a fixed value or a configurable value.
  • determining the subband configuration information includes: determining the bandwidth part BWP for the terminal device; receiving the second indication information sent by the network side device; wherein, the second indication information It is used to indicate the frequency range of multiple subbands on the BWP; according to the second indication information, determine that the subband size of each subband is the frequency range indicated by the second indication information.
  • determining the subband configuration information includes: determining the system bandwidth; and determining the corresponding subband size according to the correspondence between the system bandwidth and the subband size.
  • determining the subband configuration information includes: determining the system operating frequency range; and determining the corresponding subband size according to the correspondence between the system operating frequency range and the subband size.
  • determining the subband configuration information includes: determining the system bandwidth; and determining the subband size according to the number of subbands and the system bandwidth.
  • the number of subbands is a fixed value or a configurable value.
  • determining the subband configuration information includes: determining the bandwidth part BWP for the terminal device; receiving third indication information sent by the network side device; wherein, the third indication The information is used to indicate the number of multiple subbands on the BWP; the number of subbands is determined to be the number indicated by the third indication information.
  • determining the subband configuration information includes: determining the bandwidth part BWP for the terminal device; determining the subband frequency of each subband according to the position of the BWP, the size of the subband and the number of subbands, and according to preset rules domain location.
  • determining the subband configuration information includes: determining the bandwidth part BWP for the terminal device; determining a reference point; receiving fourth indication information sent by the network side device; wherein, the fourth indication information indicates the relative reference of each subband The offset of the point; according to the position of the BWP, the reference point, the offset of each subband relative to the reference point, and the size of the subband, the subband frequency domain position of each subband is determined.
  • the size of the gap Gap and the position of the gap are fixed values or configurable values.
  • FIG. 4 is a flowchart of another data transmission method provided by an embodiment of the present disclosure.
  • the method is performed by the network side device, and the method may include but not limited to the following steps:
  • the network side device determines subband configuration information.
  • the subband configuration information may include at least one of the following configuration information indicating multiple subbands: subband size, subband number, subband frequency domain position, and gap Gap position configuration.
  • the gap Gap position configuration is used to indicate the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent thereto.
  • the subband size is the size of the frequency range used by the terminal device for uplink data transmission and downlink data transmission
  • the number of subbands is the number of frequency ranges used by the terminal device for uplink data transmission and downlink data transmission
  • the subband frequency domain The position is the position in the frequency domain of the frequency range used by the terminal device for uplink data transmission and downlink data transmission
  • the Gap position configuration is used to indicate the subband for uplink data transmission and the subband for adjacent downlink data transmission in the frequency domain The gap on the gap.
  • the subband size unit may be an absolute frequency unit, such as MHz, Hz, etc., or a logical size unit, such as: one or more RB (resource block, resource block), RB sets, etc.
  • the terminal device may determine one or more configuration information according to the subband configuration information including the size of the subband indicating multiple subbands, the number of subbands, the position of the frequency domain of the subband, and the configuration of the gap Gap position. Additional configuration information. For example, the number of subbands or the frequency domain position of the subbands may be determined according to the size of the subbands indicated in the subband configuration information. For example, the size of the subband or the frequency domain position of the subband may be determined according to the number of subbands indicated in the subband configuration information. For example, the number of subbands, or the size of the subband, or the configuration of the Gap position may be determined according to the frequency domain position of the subband indicated in the subband configuration information.
  • the determination of the subband configuration information by the terminal device includes subband sizes indicating multiple subbands
  • the terminal device can determine its corresponding system bandwidth, and can determine the number of subbands allowed in the system bandwidth according to the system bandwidth and the subband size, Therefore, the number of subbands is determined; further, in the case of determining the system bandwidth, the number of subbands, and the size of the subbands, the frequency domain position of each subband can be determined.
  • the terminal device can also determine other information except the system bandwidth, for example, for the bandwidth part BWP (Bandwidth Part, bandwidth part) of the terminal device, in the case of determining that the subband configuration information includes subband sizes indicating multiple subbands, Determine the number of sub-bands, the frequency domain position of the sub-bands, and the like.
  • BWP Bandwidth Part, bandwidth part
  • the terminal device when the terminal device determines that the subband configuration information includes the number of subbands indicating multiple subbands, it can also determine the subband size, subband Band frequency domain location, etc.
  • the terminal device when the terminal device determines that the subband configuration information includes subband frequency domain positions indicating multiple subbands, it can also directly determine the number of subbands, subband Band size, Gap position configuration, etc.
  • the terminal device when the terminal device determines that the subband configuration information includes the subband size indicating multiple subbands and the configuration of the gap Gap position, it can also directly determine the subband according to the determined system bandwidth or bandwidth part BWP number, sub-band frequency domain location, etc.
  • the terminal device can determine the subband configuration information according to the agreement and/or receive the configuration information of the network side device, and can directly determine the subband configuration information including the subband size and the number of subbands indicating multiple subbands , subband frequency domain position, and one or more configuration information in the gap Gap position configuration, directly determine the specific value of the subband size, and/or the specific value of the number of subbands, and/or the specific value of the subband frequency domain position Specific values, and/or specific values of the size of the gap Gap and the position of the gap Gap in the gap Gap position configuration, or, determine the configurable value of the sub-band size, and/or the configurable value of the number of sub-bands, and/or A configurable value of the frequency domain position of the subband, and/or a configurable value of the size of the gap Gap and the position of the gap Gap in the configuration of the gap Gap position.
  • the subband size determined by the terminal device can be determined as a different value according to different situations, and the specific subband size can be determined according to the configuration situation to meet different requirements. demand.
  • determine the configurable value of the number of subbands, and/or the configurable value of the frequency domain position of the subband, and/or the configurable value of the size of the gap Gap and the position of the gap Gap in the configuration of the gap Gap position which can also satisfy different needs.
  • the terminal device determines the subband configuration information. In the case of determining the gap Gap position configuration, it can determine the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent to it, so that the terminal When the device is transmitting uplink data and downlink data, there is a gap between the subbands for uplink data transmission and the subbands for downlink data transmission, which can effectively avoid interference between uplink and downlink subbands.
  • the terminal device determines subband configuration information, so as to transmit uplink data and/or downlink data on multiple different subbands according to the subband configuration information, wherein the subband configuration information includes: subband One or more of the size, the number of subbands, the subband frequency domain position, and the gap Gap position configuration; the gap Gap position configuration is used to indicate the subband for uplink data transmission and the subband for adjacent downlink data transmission in frequency Gap on the domain, so that the terminal device can transmit uplink data and/or downlink data on different multiple subbands, and the subband for uplink data transmission and the subband for adjacent downlink data transmission are in the frequency domain There is a gap Gap on the network, which can realize full-duplex operation based on sub-bands and effectively avoid interference between sub-bands.
  • the subband configuration information includes: subband One or more of the size, the number of subbands, the subband frequency domain position, and the gap Gap position configuration; the gap Gap position configuration is used to indicate the subband for uplink data transmission
  • the subband size is a fixed value or a configurable value.
  • the method further includes: sending second indication information to the terminal device, where the second indication information is used to indicate the number of subbands on the BWP of the terminal device Frequency Range.
  • the number of subbands is a fixed value or a configurable value.
  • the method further includes: sending third indication information to the terminal device, where the third indication information is used to indicate the number of subbands on the BWP of the terminal device number.
  • the method further includes: sending fourth indication information to the terminal device, where the fourth indication information is used to indicate the offset of each subband relative to the reference point.
  • the size of the gap Gap and the position of the gap are fixed values or configurable values.
  • FIG. 5 is a flowchart of another data transmission method provided by an embodiment of the present disclosure.
  • the method is performed by a network side device, and the method may include but not limited to the following steps:
  • the network side device sends first indication information to the terminal device, where the first indication information includes subband configuration information.
  • the network side device determines subband configuration information according to the first indication information.
  • the subband configuration information may include at least one of the following configuration information indicating multiple subbands: subband size, subband number, subband frequency domain position, and gap Gap position configuration.
  • the gap Gap position configuration is used to indicate the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent thereto.
  • the subband configuration information includes configuration information indicating multiple subbands: one or more of the subband size, subband number, subband frequency domain position and gap Gap position configuration, and the terminal device receives the network
  • the first indication information sent by the side device determines the subband configuration information according to the first indication information.
  • the subband size is a fixed value or a configurable value.
  • the method further includes: sending second indication information to the terminal device, where the second indication information is used to indicate the number of subbands on the BWP of the terminal device Frequency Range.
  • the number of subbands is a fixed value or a configurable value.
  • the method further includes: sending third indication information to the terminal device, where the third indication information is used to indicate the number of subbands on the BWP of the terminal device number.
  • the method further includes: sending fourth indication information to the terminal device, where the fourth indication information is used to indicate the offset of each subband relative to the reference point.
  • the size of the gap Gap and the position of the gap are fixed values or configurable values.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device and the terminal device respectively.
  • the network-side device and the terminal device may include a hardware structure and a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 6 is a schematic structural diagram of a communication device 10 provided by an embodiment of the present disclosure.
  • the communication device 10 shown in FIG. 6 may include a transceiver module 101 and a processing module 102.
  • the transceiver module 101 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 101 can realize the sending function and/or the receiving function.
  • the communication device 10 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched with the terminal device.
  • the communication device 10 is a terminal device:
  • the apparatus includes: a processing module 102, configured to determine subband configuration information, where the subband configuration information includes at least one of the following configuration information indicating the plurality of subbands:
  • the gap Gap position configuration wherein the gap Gap position configuration is used to indicate the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent to it.
  • the transceiver module 101 is configured to transmit uplink data and/or downlink data on multiple different subbands according to subband configuration information.
  • the processing module 102 is configured to determine the subband configuration information according to the agreement; and/or, receive the first indication information sent by the network side device, and determine the subband configuration information according to the first indication information, wherein , the first indication information includes subband configuration information.
  • the subband size is a fixed value or a configurable value.
  • the processing module 102 when the subband size is a configurable value, the processing module 102 is used to determine the bandwidth part BWP for the terminal device; the transceiver module 101 is also used to receive the second indication information sent by the network side device, wherein , the second indication information is used to indicate the frequency range of multiple subbands on the BWP; the processing module 102 is further configured to determine the subband size of each subband to be the frequency range indicated by the second indication information according to the second indication information.
  • the processing module 102 is further configured to determine the system bandwidth; and determine the corresponding subband size according to the correspondence between the system bandwidth and the subband size.
  • the processing module 102 is further configured to determine the system operating frequency range; and determine the corresponding subband size according to the correspondence between the system operating frequency range and the subband size.
  • the processing module 102 is further configured to determine the system bandwidth; determine the subband size according to the number of subbands and the system bandwidth.
  • the number of subbands is a fixed value or a configurable value.
  • the processing module 102 when the number of subbands is a configurable value, is also used to determine the bandwidth part BWP for the terminal device; the transceiver module 101 is also used to receive the third indication information sent by the network side device , wherein the third indication information indicates the number of multiple subbands on the BWP; the processing module 102 is further configured to determine the number of subbands as the number indicated by the third indication information according to the third indication information.
  • the processing module 102 is also used to determine the bandwidth part BWP for the terminal device; according to the position of the BWP, the size of the subband and the number of subbands, and according to the preset rules, determine the subband frequency domain of each subband Location.
  • the processing module 102 is also used to determine the bandwidth part BWP for the terminal device; determine the reference point; the transceiver module 101 is also used to receive the fourth indication information sent by the network side device, where the fourth indication information Indicate the offset of each subband relative to the reference point; the processing module 102 is also used to determine the subband frequency domain of each subband according to the position of the BWP, the reference point, and the offset and subband size of each subband relative to the reference point Location.
  • the size of the gap Gap and the position of the gap are fixed values or configurable values.
  • FIG. 6 is a schematic structural diagram of another communication device 10 provided by an embodiment of the present disclosure.
  • the communication device 10 shown in FIG. 6 may include a transceiver module 101 and a processing module 102 .
  • the transceiver module 101 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 101 can realize the sending function and/or the receiving function.
  • the communication device 10 may be a network-side device, may also be a device in the network-side device, and may also be a device that can be matched and used with the network-side device.
  • the communication device 10 is a network side device:
  • the device includes: a processing module 102, configured to determine subband configuration information; wherein the subband configuration information includes at least one of the following configuration information indicating multiple subbands:
  • the gap Gap position configuration wherein the gap Gap position configuration is used to indicate the gap Gap in the frequency domain between the subband for uplink data transmission and the subband for downlink data transmission adjacent to it.
  • the transceiving module 101 is configured to send first indication information to the terminal device, where the first indication information includes the subband configuration information.
  • the subband size is a fixed value or a configurable value.
  • the transceiver module 101 when the subband size is a configurable value, is configured to send second indication information to the terminal device, where the second indication information is used to indicate the number of subbands on the BWP of the terminal device Frequency Range.
  • the number of subbands is a fixed value or a configurable value.
  • the transceiver module 101 when the subband size is a configurable value, is configured to send third indication information to the terminal device, where the third indication information is used to indicate the number of subbands on the BWP of the terminal device number.
  • the transceiving module 101 is configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate the offset of each subband relative to the reference point.
  • the size of the gap Gap and the position of the gap are fixed values or configurable values.
  • the communication device 10 provided in the above embodiments of the present disclosure achieves the same or similar beneficial effects as those of the data transmission methods in some of the above embodiments, which will not be repeated here.
  • FIG. 7 is a schematic structural diagram of another communication device 1000 provided by an embodiment of the present disclosure.
  • the communication device 1000 may be a network-side device, or a terminal device, or a chip, a chip system, or a processor that supports the network-side device to implement the above method, or a chip or a chip system that supports the terminal device to implement the above method , or processor, etc.
  • the communication device 1000 may be used to implement the methods described in the foregoing method embodiments, and for details, refer to the descriptions in the foregoing method embodiments.
  • the communication device 1000 may include one or more processors 1001 .
  • the processor 1001 may be a general purpose processor or a special purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 1000 may further include one or more memories 1002, on which a computer program 1004 may be stored, and the memory 1002 executes the computer program 1004, so that the communication device 1000 executes the methods described in the foregoing method embodiments .
  • data may also be stored in the memory 1002 .
  • the communication device 1000 and the memory 1002 can be set separately or integrated together.
  • the communication device 1000 may further include a transceiver 1005 and an antenna 1006 .
  • the transceiver 1005 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1005 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1000 may further include one or more interface circuits 1007 .
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 1001 .
  • the processor 1001 runs the code instructions to enable the communication device 1000 to execute the methods described in the foregoing method embodiments.
  • the communication device 1000 is a terminal device: the processor 1001 is used to execute S21 in FIG. 2 ; S31 in FIG. 3 ; the transceiver 1005 is used to execute S22 in FIG. 2 ; and S32 in FIG. 3 .
  • the communication apparatus 1000 is a network side device: the transceiver 1005 is used to execute S4 in FIG. 4 ; S51 in FIG. 5 ; and the processor 1001 is used to execute S51 in FIG. 5 .
  • the processor 1001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1001 may store a computer program 1003, and the computer program 1003 runs on the processor 1001 to enable the communication device 1000 to execute the methods described in the foregoing method embodiments.
  • the computer program 1003 may be solidified in the processor 1001, and in this case, the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 7 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • FIG. 8 is a structural diagram of a chip provided in an embodiment of the present disclosure.
  • the chip 1100 includes a processor 1101 and an interface 1103 .
  • the number of processors 1101 may be one or more, and the number of interfaces 1103 may be more than one.
  • Interface 1103 configured to receive code instructions and transmit them to the processor.
  • the processor 1101 is configured to run code instructions to execute the data transmission method as described in some of the above embodiments.
  • Interface 1103 configured to receive code instructions and transmit them to the processor.
  • the processor 1101 is configured to run code instructions to execute the data transmission methods described in some of the above embodiments.
  • the chip 1100 also includes a memory 1102 for storing necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for updating location information.
  • the system includes the communication device as the terminal device and the communication device as the network side device in the embodiment of FIG.
  • the communication device of the equipment and the communication device of the network side equipment are included in the embodiment of FIG.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which realizes the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also use other names that the communication device can understand, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种数据传输方法和装置,该方法包括:终端设备确定子带配置信息;根据子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输;其中,子带配置信息,包括指示多个子带的以下至少一个配置信息:子带大小;子带个数;子带频域位置;以及间隙Gap位置配置,其中,间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。通过实施本公开实施例,可以实现基于子带的全双工操作,避免子带间的干扰。

Description

数据传输方法和装置 技术领域
本公开涉及通信技术领域,尤其涉及一种数据传输方法和装置。
背景技术
双工模式增强是3GPP(The 3rd Generation Partnership ProjeCt,第三代合作伙伴项目)正在研究的重要内容,主要思想是在一个时隙内同时进行数据的收发。
相关技术中,全双工方案在不同子带上进行上行数据和下行数据的传输,如何确定子带配置以实现在不同子带上进行上行数据和下行数据的传输为亟需解决的问题。
发明内容
本公开实施例提供一种数据传输方法和装置,终端设备通过确定子带配置信息,可以在实现基于子带的全双工操作,并有效的避免子带间的干扰。
第一方面,本公开实施例提供一种数据传输方法,该方法由终端设备执行,该方法包括:确定子带配置信息;根据所述子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输;其中,所述子带配置信息,包括指示所述多个子带的以下至少一个配置信息:
子带大小;
子带个数;
子带频域位置;以及
间隙Gap位置配置,其中,所述间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
在该技术方案中,终端设备能够根据确定的子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输,可以实现基于子带的全双工操作,避免子带间的干扰。
第二方面,本公开实施例提供另一种数据传输方法,该方法由网络侧设备执行,该方法包括:确定子带配置信息;其中,所述子带配置信息,包括指示多个子带的以下至少一个配置信息:
子带大小;
子带个数;
子带频域位置;以及
间隙Gap位置配置;其中,所述间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
在该技术方案中,终端设备能够根据确定的子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输,可以实现基于子带的全双工操作,避免子带间的干扰。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,所述通信装置包括:处理模块,用于确定子带配置信息,根据所述子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输;其中,所述子带配置信息,包括指示所述多个子带的以下至少一个配置信息:
子带大小;
子带个数;
子带频域位置;以及
间隙Gap位置配置,其中,所述间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络侧设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
在一种实现方式中,所述通信装置包括:处理模块,用于确定子带配置信息;其中,所述子带配置信息,包括指示多个子带的以下至少一个配置信息:
子带大小;
子带个数;
子带频域位置;以及
间隙Gap位置配置,其中,所述间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的 方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种数据传输系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络侧设备所用的指令,当所述指令被执行时,使所述网络侧设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络侧设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络侧设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构图;
图2是本公开实施例提供的一种数据传输方法的流程图;
图3是本公开实施例提供的另一种数据传输方法的流程图;
图4是本公开实施例提供的又一种数据传输方法的流程图;
图5是本公开实施例提供的又一种数据传输方法的流程图;
图6是本公开实施例提供的一种通信装置的结构图;
图7是本公开实施例提供的另一种通信装置的结构图;
图8是本公开实施例提供的一种芯片的结构图。
具体实施方式
为了更好的理解本公开实施例公开的一种数据传输方法和装置,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统1的架构示意图。该通信系统可包括但不限于一个网络侧设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络侧设备,两个或两个以上的终端设备。图1所示的通信系统1以包括一个网络侧设备11和一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络侧设备11是网络侧的一种用于发射或接收信号的实体。例如,网络侧设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络侧设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络侧设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络侧设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的一种数据传输方法和装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种数据传输方法的流程图。
如图2所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S21:终端设备确定子带配置信息。其中,子带配置信息可包括指示多个子带的以下至少一个配置信息:子带大小、子带个数、子带频域位置、以及间隙Gap位置配置。
其中,在本公开实施例之中,子带大小为终端设备用于上行数据传输和/或下行数据传输的频率范围的大小,子带个数为终端设备用于上行数据传输和下行数据传输的频率范围的个数,子带频域位置为终端设备用于上行数据传输和下行数据传输的频率范围在频域上的位置,间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
本公开实施例中,子带大小的单位可以为绝对的频率大小单位,例如:MHz,Hz等,还可以为逻辑的大小单位,例如:一个或多个RB(resource block,资源块)、RB sets等。
本公开实施例中,终端设备可以根据协议约定确定子带配置信息,也可以通过接收网络侧设备的配置信息确定子带配置信息,或者还可以根据协议约定和接收网络侧设备的配置信息共同确定子带配置信息。
本公开实施例中,终端设备可以根据子带配置信息包括指示多个子带的子带大小、子带个数、子带频域位置、以及间隙Gap位置配置中的一个或多个配置信息,确定其他的配置信息。例如可以根据子带配置信息之中指示的子带大小去确定子带个数,或者子带频域位置。例如可以根据子带配置信息之中指示的子带个数去确定子带大小,或者子带频域位置。例如可以根据子带配置信息之中指示的子带频域位置去确定子带个数,或者子带大小,或者间隙Gap位置配置。
示例性的,终端设备确定子带配置信息包括指示多个子带的子带大小,终端设备能够确定其对应的系统带宽,根据系统带宽和子带大小,能够确定系统带宽中允许的子带个数,从而确定子带个数;进一步的,在确定系统带宽、子带个数和子带大小的情况下,可以确定每个子带的子带频域位置。
当然,终端设备还可以确定除系统带宽以外的其他信息,例如针对终端设备的带宽部分BWP(Bandwidth Part,带宽部分),在确定子带配置信息包括指示多个子带的子带大小的情况下,确定子带个数、子带频域位置等。
需要说明的是,本公开实施例中,终端设备确定子带配置信息包括指示多个子带的子带个数的情况下,还能够根据确定的系统带宽或带宽部分BWP,确定子带大小、子带频域位置等。或者,本公开实施例中,终端设备确定子带配置信息包括指示多个子带的子带频域位置的情况下,还能够根据确定的系统带宽或带宽部分BWP,直接确定子带个数、子带大小、间隙Gap位置配置等。或者,本公开实施例中,终端设备确定子带配置信息包括指示多个子带的子带大小、间隙Gap位置配置的情况下,还能够根据根据确定的系统带宽或带宽部分BWP,直接确定子带个数、子带频域位置等。
本公开实施例中,终端设备可以根据协议约定和/或接收网络侧设备的配置信息,确定子带配置信息,可以直接确定子带配置信息包括指示多个子带的子带大小、子带个数、子带频域位置、以及间隙Gap位置配置中的一个或多个配置信息,直接确定子带大小的具体数值,和/或子带个数的具体数值,和/或子带频域位置的具体数值,和/或间隙Gap位置配置中间隙Gap的大小和间隙Gap的位置的具体数值,或者,确定子带大小的可配置值,和/或子带个数的可配置值,和/或子带频域位置的可配置值,和/或间隙Gap位置配置中间隙Gap的大小和间隙Gap的位置的可配置值。
可以理解的是,在确定子带大小的可配置值的情况下,终端设备确定的子带大小可根据不同情况确定为不同的数值,具体子带大小可根据配置的情况进行确定,以满足不同的需求。同理确定子带个数的 可配置值,和/或子带频域位置的可配置值,和/或间隙Gap位置配置中间隙Gap的大小和间隙Gap的位置的可配置值,同样能够满足不同的需求。
其中,终端设备确定子带配置信息,在确定间隙Gap位置配置的情况下,可以确定上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap,从而,终端设备在进行进行上行数据和下行数据的传输时,上行数据传输的子带与下行数据传输的子带存在间隙Gap,可以有效的避免上行和下行子带间的干扰。
S22:终端设备根据子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输。
本公开实施例中,终端设备确定子带配置信息之后,能够根据子带配置信息,在不同的子带上进行上行数据和下行数据的传输,还能够根据子带配置信息进行上行数据或下行数据的传输。
本公开实施例中,终端设备确定子带配置信息,根据子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输,其中,子带配置信息,包括指示多个子带的子带大小、子带个数、子带频域位置和间隙Gap位置配置中的一个或多个配置信息;间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap,从而终端设备能够在不同的多个子带上进行上行数据和/或下行数据的传输,且进行上行数据传输的子带和与其相邻的下行数据传输的子带在频域上存在间隙Gap,可以实现基于子带的全双工操作,并有效的避免子带间的干扰。
在一些实施例中,子带大小为固定值或者可配置值。
本公开实施例中,子带大小可以为固定值,或者还可以为可配置值,其中,子带大小可以根据协议约定或者网络侧设备配置进行确定,根据协议约定或者网络侧设备配置的子带大小为固定值,或者配置的满足一定规律的可配置值。
在一些实施例中,当子带大小为可配置值时,确定子带配置信息,包括:确定针对终端设备的带宽部分BWP;接收网络侧设备发送的第二指示信息,其中,第二指示信息用于指示BWP上多个子带的频率范围;根据第二指示信息,确定每个子带的子带大小为频率范围。
本公开实施例中,第二指示信息可以为系统信息、RRC(Radio Resource Control,无线资源控制)信令、MAC CE(mediaaccess control control element,媒体接入控制控制元素)或者物理层信令等。
本公开实施例中,当子带大小为可配置值时,确定子带大小,终端设备确定针对终端设备的BWP(Bandwidth Part,带宽部分),接收网络侧设备发送的第二指示信息,第二指示信息指示BWP上多个子带的频率范围;根据第二指示信息,确定每个子带的子带大小为第二指示信息指示的频率范围。
示例性的,终端设备确定针对终端设备的带宽部分BWP为100MHz,终端设备接收网络侧设备的第二指示信息,第二指示信息指示BWP上多个子带的频率范围为20MHz,则终端设备可以根据第二指示信息确定每个子带的子带大小为20MHz。
在一些实施例中,当子带大小为可配置值时,确定子带配置信息,包括:确定系统带宽;根据系统带宽与子带大小的对应关系,确定对应的子带大小。
本公开实施例中,子带大小为可配置值,终端设备接入系统之后,可以根据系统带宽与子带大小的对应关系,确定子带大小。
示例性的,如下表1所示:
子带大小 系统带宽
20MHz 100MHz
40MHz 100MHz
... ...
表1
需要说明的,上述示例仅作为示意,不作为对本公开实施例的具体限制,上述子带大小和系统带宽的对应关系还可以为上述示例外的其他对应关系。
在一些实施例中,当子带大小为可配置值时,确定子带配置信息,包括:确定系统工作频率范围;根据系统工作频率范围与子带大小的对应关系,确定对应的子带大小。
本公开实施例中,子带大小为可配置值,终端设备接入系统之后,可以根据系统工作频率范围与子带大小的对应关系,确定子带大小。
示例性的,如下表2所示:
子带大小 系统工作频率范围
20MHz FR1
40MHz FR2
... ...
表2
需要说明的,上述示例仅作为示意,不作为对本公开实施例的具体限制,上述子带大小和系统工作频率范围的对应关系还可以为上述示例外的其他对应关系。
在一些实施例中,当子带大小为可配置值时,确定子带配置信息,包括:确定系统带宽;根据子带个数和系统带宽,确定子带大小。
本公开实施例中,在确定系统支持的子带个数的情况下,确定系统带宽,根据子带个数和系统带宽,确定子带大小。
示例性的,在确定子带个数为5个,系统带宽为100MHz的情况下,根据子带个数和系统带宽,确定子带大小为20MHz,或者,在确定子带个数为5个,系统带宽为200MHz的情况下,根据子带个数和系统带宽,确定子带大小为40MHz。
在一些实施例中,子带个数为固定值或者可配置值。
本公开实施例中,子带个数可以为固定值,或者还可以为可配置值,其中,子带个数可以根据协议约定或者网络侧设备配置进行确定,根据协议约定或者网络侧设备配置的子带个数为固定值,或者配置的满足一定规律的可配置值。
在一些实施例中,当子带个数为可配置值时,确定子带配置信息,包括:确定针对终端设备的带宽部分BWP;接收网络侧设备发送的第三指示信息;其中,第三指示信息用于指示BWP上的多个子带的个数;确定子带个数为第三指示信息指示的个数。
本公开实施例中,第三指示信息可以为系统信息、RRC(Radio Resource Control,无线资源控制)信令、MAC CE(mediaaccess control control element,媒体接入控制控制元素)或者物理层信令等。
本公开实施例中,当子带个数为可配置值时,确定子带个数,终端设备在确定针对终端设备的BWP(Bandwidth Part,带宽部分),接收网络侧设备发送的第三指示信息,第三指示信息用于指示BWP上 的多个子带的个数;根据第三指示信息,确定子带个数为第三指示信息指示的个数。
示例性的,终端设备确定针对终端设备的带宽部分BWP为100MHz,终端设备接收网络侧设备的第三指示信息,第三指示信息指示BWP上多个子带的子带个数为5个,则终端设备可以根据第三指示信息确定子带个数为5个。
在一些实施例中,确定子带配置信息,包括:确定针对终端设备的带宽部分BWP;根据BWP的位置、子带大小和子带个数,并按照预设规则,确定每个子带的子带频域位置。
本公开实施例中,根据BWP的位置,在已知子带个数和子带大小的情况下,按照预设规则,可以为在BWP的位置中按照频率范围从高到低,依次确定每个子带的子带频域位置。
其中,预设规则还可以为在BWP的位置中按照频率范围从低到高,依次确定每个子带的子带频域位置。
在一些实施例中,确定子带配置信息,包括:确定针对终端设备的带宽部分BWP;确定参考点;接收网络侧设备发送的第四指示信息;其中,第四指示信息指示每个子带相对参考点的偏移量;根据BWP的位置、参考点和每个子带相对参考点的偏移量和子带大小,确定每个子带的子带频域位置。
本公开实施例中,第四指示信息可以为系统信息、RRC(Radio Resource Control,无线资源控制)信令、MAC CE(mediaaccess control control element,媒体接入控制控制元素)或者物理层信令等。
本公开实施例中,终端设备确定参考点,可以为根据协议约定或者接收网络侧设备发送的配置信息确定参考点,参考点为一个绝对的频率值。
其中,终端设备在确定参考点、BWP之后,根据网络侧设备发送的第四指示信息,获取每个子带相对参考点的偏移量,进而在已知子带大小的基础上,能够确定每个子带的频域位置。
在一些实施例中,间隙Gap的大小和Gap的位置为固定值或可配置值。
本公开实施例中,间隙Gap的大小和Gap的位置可以分别为固定值,或者还可以分别为可配置值,其中,间隙Gap的大小和Gap的位置可以根据协议约定或者网络侧设备配置进行确定,根据协议约定或者网络侧设备配置的间隙Gap的大小和Gap的位置为固定值,或者配置的满足一定规律的可配置值。
请参见图3,图3是本公开实施例提供的另一种数据传输方法的流程图。
如图3所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S31:终端设备确定子带配置信息;其中,终端设备根据协议约定确定子带配置信息,和/或,终端设备接收网络侧设备发送的第一指示信息,根据所述第一指示信息确定子带配置信息,其中,第一指示信息包括子带配置信息。其中,子带配置信息可包括指示多个子带的以下至少一个配置信息:子带大小、子带个数、子带频域位置、以及间隙Gap位置配置。
本公开实施例中,终端设备可以根据协议约定确定子带配置信息,也可以通过接收网络侧设备的第一指示信息确定子带配置信息,或者还可以根据协议约定和接收网络侧设备的第一指示信息共同确定子带配置信息。
S32:终端设备根据子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输。
其中,终端设备根据协议约定,和/或,接收网络侧设备发送的第一指示信息,根据第一指示信息,确定子带配置信息,可以为,根据协议约定确定子带大小、子带个数、子带频域位置和间隙Gap位置配置中的一个或多个,或者,还可以为根据第一指示信息,确定子带大小、子带个数、子带频域位置和间隙Gap位置配置中的一个或多个,或者,还可以为同时根据协议约定和网络侧设备的第一指示信息确定 子带大小、子带个数、子带频域位置和间隙Gap位置配置中的一个或多个。
本公开实施例中,第一指示信息可以为系统信息、RRC(Radio Resource Control,无线资源控制)信令、MAC CE(mediaaccess control control element,媒体接入控制控制元素)或者物理层信令等。
在一些实施例中,子带大小为固定值或者可配置值。
在一些实施例中,当子带大小为可配置值时,确定子带配置信息,包括:确定针对终端设备的带宽部分BWP;接收网络侧设备发送的第二指示信息;其中,第二指示信息用于指示BWP上多个子带的频率范围;根据第二指示信息,确定每个子带的子带大小为第二指示信息指示的频率范围。
在一些实施例中,当子带大小为可配置值时,确定子带配置信息,包括:确定系统带宽;根据系统带宽与子带大小的对应关系,确定对应的子带大小。
在一些实施例中,当子带大小为可配置值时,确定子带配置信息,包括:确定系统工作频率范围;根据系统工作频率范围与子带大小的对应关系,确定对应的子带大小。
在一些实施例中,当子带大小为可配置值时,确定子带配置信息,包括:确定系统带宽;根据子带个数和系统带宽,确定子带大小。
在一些实施例中,子带个数为固定值或者可配置值。
在一些实施例中,当子带个数为可配置值时,确定子带配置信息,包括:确定针对终端设备的带宽部分BWP;接收网络侧设备发送的第三指示信息;其中,第三指示信息用于指示BWP上的多个子带的个数;确定子带个数为第三指示信息指示的个数。
在一些实施例中,确定子带配置信息,包括:确定针对终端设备的带宽部分BWP;根据BWP的位置、子带大小和子带个数,并按照预设规则,确定每个子带的子带频域位置。
在一些实施例中,确定子带配置信息,包括:确定针对终端设备的带宽部分BWP;确定参考点;接收网络侧设备发送的第四指示信息;其中,第四指示信息指示每个子带相对参考点的偏移量;根据BWP的位置、参考点和每个子带相对参考点的偏移量和子带大小,确定每个子带的子带频域位置。
在一些实施例中,间隙Gap的大小和Gap的位置为固定值或可配置值。
需要说明的是,本公开实施例中S31和S32的相关描述可以参见上述示例的S21和S22中的相关描述,此处不再赘述。
请参见图4,图4是本公开实施例提供的又一种数据传输方法的流程图。
如图4所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S4:网络侧设备确定子带配置信息。其中,子带配置信息可包括指示多个子带的以下至少一个配置信息:子带大小、子带个数、子带频域位置、以及间隙Gap位置配置。
其中,在本公开实施例之中,间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
其中,子带大小为终端设备用于上行数据传输和下行数据传输的频率范围的大小,子带个数为终端设备用于上行数据传输和下行数据传输的频率范围的个数,子带频域位置为终端设备用于上行数据传输和下行数据传输的频率范围在频域上的位置,间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
本公开实施例中,子带大小的单位可以为绝对的频率大小单位,例如:MHz,Hz等,还可以为逻辑的大小单位,例如:一个或多个RB(resource block,资源块)、RB sets等。
本公开实施例中,终端设备可以根据子带配置信息包括指示多个子带的子带大小、子带个数、子带频域位置、以及间隙Gap位置配置中的一个或多个配置信息,确定其他的配置信息。例如可以根据子带配置信息之中指示的子带大小去确定子带个数,或者子带频域位置。例如可以根据子带配置信息之中指示的子带个数去确定子带大小,或者子带频域位置。例如可以根据子带配置信息之中指示的子带频域位置去确定子带个数,或者子带大小,或者间隙Gap位置配置。
示例性的,终端设备确定子带配置信息包括指示多个子带的子带大小,终端设备能够确定其对应的系统带宽,根据系统带宽和子带大小,能够确定系统带宽中允许的子带个数,从而确定子带个数;进一步的,在确定系统带宽、子带个数和子带大小的情况下,可以确定每个子带的子带频域位置。
当然,终端设备还可以确定除系统带宽以外的其他信息,例如针对终端设备的带宽部分BWP(Bandwidth Part,带宽部分),在确定子带配置信息包括指示多个子带的子带大小的情况下,确定子带个数、子带频域位置等。
需要说明的是,本公开实施例中,终端设备确定子带配置信息包括指示多个子带的子带个数的情况下,还能够根据确定的系统带宽或带宽部分BWP,确定子带大小、子带频域位置等。或者,本公开实施例中,终端设备确定子带配置信息包括指示多个子带的子带频域位置的情况下,还能够根据确定的系统带宽或带宽部分BWP,直接确定子带个数、子带大小、间隙Gap位置配置等。或者,本公开实施例中,终端设备确定子带配置信息包括指示多个子带的子带大小、间隙Gap位置配置的情况下,还能够根据根据确定的系统带宽或带宽部分BWP,直接确定子带个数、子带频域位置等。
本公开实施例中,终端设备可以根据协议约定和/或接收网络侧设备的配置信息,确定子带配置信息,可以直接确定子带配置信息包括指示多个子带的子带大小、子带个数、子带频域位置、以及间隙Gap位置配置中的一个或多个配置信息,直接确定子带大小的具体数值,和/或子带个数的具体数值,和/或子带频域位置的具体数值,和/或间隙Gap位置配置中间隙Gap的大小和间隙Gap的位置的具体数值,或者,确定子带大小的可配置值,和/或子带个数的可配置值,和/或子带频域位置的可配置值,和/或间隙Gap位置配置中间隙Gap的大小和间隙Gap的位置的可配置值。
可以理解的是,在确定子带大小的可配置值的情况下,终端设备确定的子带大小可根据不同情况确定为不同的数值,具体子带大小可根据配置的情况进行确定,以满足不同的需求。同理确定子带个数的可配置值,和/或子带频域位置的可配置值,和/或间隙Gap位置配置中间隙Gap的大小和间隙Gap的位置的可配置值,同样能够满足不同的需求。
其中,终端设备确定子带配置信息,在确定间隙Gap位置配置的情况下,可以确定上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap,从而,终端设备在进行进行上行数据和下行数据的传输时,上行数据传输的子带与下行数据传输的子带存在间隙Gap,可以有效的避免上行和下行子带间的干扰。
本公开实施例中,终端设备确定子带配置信息,以根据子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输,其中,子带配置信息,包括:子带大小、子带个数、子带频域位置和间隙Gap位置配置中的一个或多个;间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap,从而终端设备能够在不同的多个子带上进行上行数据和/或下行数据的传输,且进行上行数据传输的子带和与其相邻的下行数据传输的子带在频域上存在间隙Gap,可以实现基于子带的全双工操作,并有效的避免子带间的干扰。
在一些实施例中,子带大小为固定值或者可配置值。
在一些实施例中,当子带大小为可配置值时,方法,还包括:向终端设备发送第二指示信息,其中,第二指示信息用于指示针对终端设备的BWP上的多个子带的频率范围。
在一些实施例中,子带个数为固定值或者可配置值。
在一些实施例中,当子带大小为可配置值时,方法,还包括:向终端设备发送第三指示信息,其中,第三指示信息用于指示针对终端设备的BWP上的多个子带的个数。
在一些实施例中,该方法,还包括:向终端设备发送第四指示信息,其中,第四指示信息用于指示每个子带相对参考点的偏移量。
在一些实施例中,间隙Gap的大小和Gap的位置为固定值或可配置值。
需要说明的是,本公开实施例中S4的相关描述可以参见上述示例的S21和S22中的相关描述,此处不再赘述。
请参见图5,图5是本公开实施例提供的又一种数据传输方法的流程图。
如图5所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S51:网络侧设备向终端设备发送第一指示信息,其中,第一指示信息包括子带配置信息。
S52:网络侧设备根据第一指示信息,确定子带配置信息。其中,子带配置信息可包括指示多个子带的以下至少一个配置信息:子带大小、子带个数、子带频域位置、以及间隙Gap位置配置。
其中,在本公开实施例之中,间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
本公开实施例中,子带配置信息,包括指示多个子带的配置信息:子带大小、子带个数、子带频域位置和间隙Gap位置配置中的一个或多个,终端设备接收网络侧设备发送的第一指示信息,根据第一指示信息,确定子带配置信息。
在一些实施例中,子带大小为固定值或者可配置值。
在一些实施例中,当子带大小为可配置值时,方法,还包括:向终端设备发送第二指示信息,其中,第二指示信息用于指示针对终端设备的BWP上的多个子带的频率范围。
在一些实施例中,子带个数为固定值或者可配置值。
在一些实施例中,当子带大小为可配置值时,方法,还包括:向终端设备发送第三指示信息,其中,第三指示信息用于指示针对终端设备的BWP上的多个子带的个数。
在一些实施例中,该方法,还包括:向终端设备发送第四指示信息,其中,第四指示信息用于指示每个子带相对参考点的偏移量。
在一些实施例中,间隙Gap的大小和Gap的位置为固定值或可配置值。
需要说明的是,本公开实施例中S51和S52的相关描述可以参见上述示例的S21和S22中的相关描述,此处不再赘述。
上述本公开提供的实施例中,分别从网络侧设备、终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图6,为本公开实施例提供的一种通信装置10的结构示意图。图6所示的通信装置10可包括收 发模块101和处理模块102。收发模块101可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块101可以实现发送功能和/或接收功能。
通信装置10可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置10为终端设备:
该装置,包括:处理模块102,用于确定子带配置信息,其中,子带配置信息,包括指示所述多个子带的以下至少一个配置信息:
子带大小;
子带个数;
子带频域位置;以及
间隙Gap位置配置,其中,间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
收发模块101,用于根据子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输。
在一些实施例中,处理模块102,用于根据协议约定确定子带配置信息;和/或,接收网络侧设备发送的第一指示信息,根据所述第一指示信息确定子带配置信息,其中,第一指示信息包括子带配置信息。
在一些实施例中,子带大小为固定值或者可配置值。
在一些实施例中,当子带大小为可配置值时,处理模块102,用于确定针对终端设备的带宽部分BWP;收发模块101,还用于接收网络侧设备发送的第二指示信息,其中,第二指示信息用于指示BWP上多个子带的频率范围;处理模块102,还用于根据第二指示信息,确定每个子带的子带大小为第二指示信息指示的频率范围。
在一些实施例中,当子带大小为可配置值时,处理模块102,还用于确定系统带宽;根据系统带宽与子带大小的对应关系,确定对应的子带大小。
在一些实施例中,当子带大小为可配置值时,处理模块102,还用于确定系统工作频率范围;根据系统工作频率范围与子带大小的对应关系,确定对应的子带大小。
在一些实施例中,当子带大小为可配置值时,处理模块102,还用于确定系统带宽;根据子带个数和系统带宽,确定子带大小。
在一些实施例中,子带个数为固定值或者可配置值。
在一些实施例中,当子带个数为可配置值时,处理模块102,还用于确定针对终端设备的带宽部分BWP;收发模块101,还用于接收网络侧设备发送的第三指示信息,其中,第三指示信息指示BWP上多个子带的个数;处理模块102,还用于根据第三指示信息,确定子带个数为第三指示信息指示的个数。
在一些实施例中,处理模块102,还用于确定针对终端设备的带宽部分BWP;根据BWP的位置、子带大小和子带个数,并按照预设规则,确定每个子带的子带频域位置。
在一些实施例中,处理模块102,还用于确定针对终端设备的带宽部分BWP;确定参考点;收发模块101,还用于接收网络侧设备发送的第四指示信息,其中,第四指示信息指示每个子带相对参考点的偏移量;处理模块102,还用于根据BWP的位置、参考点和每个子带相对参考点的偏移量和子带大小,确定每个子带的子带频域位置。
在一些实施例中,间隙Gap的大小和Gap的位置为固定值或可配置值。
请继续参见图6,为本公开实施例提供的另一种通信装置10的结构示意图。图6所示的通信装置10可包括收发模块101和处理模块102。收发模块101可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块101可以实现发送功能和/或接收功能。
通信装置10可以是网络侧设备,也可以是网络侧设备中的装置,还可以是能够与网络侧设备匹配使用的装置。
通信装置10为网络侧设备:
该装置,包括:处理模块102,用于确定子带配置信息;其中,子带配置信息,包括指示多个子带的以下至少一个配置信息:
子带大小;
子带个数;
子带频域位置;以及
间隙Gap位置配置,其中,间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
在一些实施例中,收发模块101,用于向终端设备发送第一指示信息,其中,第一指示信息包括所述子带配置信息。
在一些实施例中,子带大小为固定值或者可配置值。
在一些实施例中,当子带大小为可配置值时,收发模块101,用于向终端设备发送第二指示信息,其中,第二指示信息用于指示针对终端设备的BWP上多个子带的频率范围。
在一些实施例中,子带个数为固定值或者可配置值。
在一些实施例中,当子带大小为可配置值时,收发模块101,用于向终端设备发送第三指示信息,其中,第三指示信息用于指示针对终端设备的BWP上多个子带的个数。
在一些实施例中,收发模块101,用于向终端设备发送第四指示信息,其中,第四指示信息用于指示每个子带相对参考点的偏移量。
在一些实施例中,间隙Gap的大小和Gap的位置为固定值或可配置值。
关于上述实施例中的通信装置10,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开上述实施例中提供的通信装置10,与上面一些实施例中数据传输方法取得相同或相似的有益效果,此处不再赘述。
请参见图7,图7是本公开实施例提供的另一种通信装置1000的结构示意图。通信装置1000可以是网络侧设备,也可以是终端设备,也可以是支持网络侧设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该通信装置1000可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1000中还可以包括一个或多个存储器1002,其上可以存有计算机程序1004,存储 器1002执行所述计算机程序1004,以使得通信装置1000执行上述方法实施例中描述的方法。可选的,所述存储器1002中还可以存储有数据。通信装置1000和存储器1002可以单独设置,也可以集成在一起。
可选的,通信装置1000还可以包括收发器1005、天线1006。收发器1005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1000中还可以包括一个或多个接口电路1007。接口电路1007用于接收代码指令并传输至处理器1001。处理器1001运行所述代码指令以使通信装置1000执行上述方法实施例中描述的方法。
通信装置1000为终端设备:处理器1001用于执行图2中的S21;图3中的S31;收发器1005用于执行图2中的S22;图3中的S32。
通信装置1000为网络侧设备:收发器1005用于执行图4中的S4;图5中的S51;处理器1001用于执行图5中的S51。
在一种实现方式中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1001可以存有计算机程序1003,计算机程序1003在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图7的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,请参见图8,为本公开实施例中提供的一种芯片的结构图。
芯片1100包括处理器1101和接口1103。其中,处理器1101的数量可以是一个或多个,接口1103的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述数据传输方法。
对于芯片用于实现本公开实施例中网络侧设备的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述的数据传输方法。
可选的,芯片1100还包括存储器1102,存储器1102用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种位置信息更新系统,该系统包括前述图6实施例中作为终端设备的通信装置和作为网络侧设备的通信装置,或者,该系统包括前述图7实施例中作为终端设备的通信装置和作为网络侧设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D” 等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种数据传输方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    确定子带配置信息;
    根据所述子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输;
    其中,所述子带配置信息,包括指示所述多个子带的以下至少一个配置信息:
    子带大小;
    子带个数;
    子带频域位置;以及
    间隙Gap位置配置,其中,所述间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
  2. 根据权利要求1所述的方法,其特征在于,所述确定子带配置信息,包括以下至少一种:
    根据协议约定确定子带配置信息;以及
    接收网络侧设备发送的第一指示信息,根据所述第一指示信息确定子带配置信息,其中,所述第一指示信息包括所述子带配置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述子带大小为固定值或者可配置值。
  4. 根据权利要求3所述的方法,其特征在于,当所述子带大小为可配置值时,所述确定子带配置信息,包括:
    确定针对所述终端设备的带宽部分BWP;
    接收所述网络侧设备发送的第二指示信息,其中,所述第二指示信息用于指示所述BWP上多个子带的频率范围;
    根据所述第二指示信息,确定每个所述子带的所述子带大小为所述频率范围。
  5. 根据权利要求3所述的方法,其特征在于,当所述子带大小为可配置值时,所述确定子带配置信息,包括:
    确定系统带宽;
    根据所述系统带宽与所述子带大小的对应关系,确定对应的所述子带大小。
  6. 根据权利要求3所述的方法,其特征在于,当所述子带大小为可配置值时,所述确定子带配置信息,包括:
    确定系统工作频率范围;
    根据所述系统工作频率范围与所述子带大小的对应关系,确定对应的所述子带大小。
  7. 根据权利要求3所述的方法,其特征在于,当所述子带大小为可配值时,所述确定子带配置信 息,包括:
    确定系统带宽;
    根据所述子带个数和所述系统带宽,确定所述子带大小。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述子带个数为固定值或者可配置值。
  9. 根据权利要求8所述的方法,其特征在于,当所述子带个数为可配置值时,所述确定子带配置信息,包括:
    确定针对所述终端设备的BWP;
    接收所述网络侧设备发送的第三指示信息,其中,所述第三指示信息用于指示所述BWP上多个子带的个数;
    确定所述子带个数为所述第三指示信息指示的所述个数。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述确定子带配置信息,包括:
    确定针对所述终端设备的带宽部分BWP;
    根据所述BWP的位置、所述子带大小和所述子带个数,并按照预设规则,确定每个子带的所述子带频域位置。
  11. 根据权利要求1至9中任一项所述的方法,其特征在于,所述确定子带配置信息,包括:
    确定针对所述终端设备的带宽部分BWP;
    确定参考点;
    接收所述网络侧设备发送的第四指示信息,其中,所述第四指示信息用于指示每个子带相对所述参考点的偏移量;
    根据所述BWP的位置、所述参考点和每个所述子带相对所述参考点的所述偏移量和所述子带大小,确定每个子带的所述子带频域位置。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,间隙Gap的大小和Gap的位置为固定值或可配置值。
  13. 一种数据传输方法,其特征在于,所述方法由网络侧设备执行,所述方法包括:
    确定子带配置信息;
    其中,所述子带配置信息,包括指示多个子带的以下至少一个配置信息:
    子带大小;
    子带个数;
    子带频域位置;以及
    间隙Gap位置配置,其中,所述间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
  14. 根据权利要求13所述的方法,其特征在于,所述确定子带配置信息,包括:
    向终端设备发送第一指示信息,其中,所述第一指示信息包括所述子带配置信息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述子带大小为固定值或者可配置值。
  16. 根据权利要求15所述的方法,其特征在于,当所述子带大小为可配置值时,所述方法还包括:
    向终端设备发送第二指示信息,其中,所述第二指示信息用于指示针对所述终端设备的BWP上多个子带的频率范围。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述子带个数为固定值或者可配置值。
  18. 根据权利要求17所述的方法,其特征在于,当所述子带大小为可配置值时,所述方法,还包括:
    向终端设备发送第三指示信息,其中,所述第三指示信息用于指示针对所述终端设备的BWP上多个子带的个数。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述方法,还包括:
    向终端设备发送第四指示信息,其中,所述第四指示信息用于指示每个子带相对参考点的偏移量。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,间隙Gap的大小和Gap的位置为固定值或可配置值。
  21. 一种通信装置,其特征在于,包括:
    处理模块,用于确定子带配置信息;
    收发模块,用于根据所述子带配置信息,在不同的多个子带上进行上行数据和/或下行数据的传输;
    其中,所述子带配置信息,包括指示所述多个子带的以下至少一个配置信息:
    子带大小;
    子带个数;
    子带频域位置;以及
    间隙Gap位置配置;所述间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
  22. 一种通信装置,其特征在于,包括:
    处理模块,用于确定子带配置信息;
    其中,所述子带配置信息,包括指示多个子带的以下至少一个配置信息:
    子带大小;
    子带个数;
    子带频域位置;以及
    间隙Gap位置配置,其中,所述间隙Gap位置配置用于指示上行数据传输的子带和与其相邻的下行数据传输的子带在频域上的间隙Gap。
  23. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至20中任一项所述的方法。
  24. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法,或用于运行所述代码指令以执行如权利要求13至20中任一项所述的方法。
  25. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中任一项所述的方法被实现,或当所述指令被执行时,使如权利要求13至20中任一项所述的方法被实现。
PCT/CN2022/077780 2022-02-24 2022-02-24 数据传输方法和装置 WO2023159449A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/077780 WO2023159449A1 (zh) 2022-02-24 2022-02-24 数据传输方法和装置
CN202280000455.6A CN114667755A (zh) 2022-02-24 2022-02-24 数据传输方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077780 WO2023159449A1 (zh) 2022-02-24 2022-02-24 数据传输方法和装置

Publications (1)

Publication Number Publication Date
WO2023159449A1 true WO2023159449A1 (zh) 2023-08-31

Family

ID=82038379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077780 WO2023159449A1 (zh) 2022-02-24 2022-02-24 数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN114667755A (zh)
WO (1) WO2023159449A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029787A1 (ko) * 2022-08-02 2024-02-08 주식회사 케이티 무선 통신 시스템에서 전이중통신(full duplex)을 위한 서브밴드 설정 방법 및 장치
CN115868232A (zh) * 2022-09-19 2023-03-28 北京小米移动软件有限公司 子带配置方法及装置
CN117998635A (zh) * 2022-11-07 2024-05-07 北京紫光展锐通信技术有限公司 双工操作区域的确定方法、装置及用户设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158874A (zh) * 2010-02-12 2011-08-17 华为技术有限公司 信道测量的方法和装置
CN107771409A (zh) * 2015-06-25 2018-03-06 英特尔Ip公司 5g网络中的动态分区资源分配
CN111294185A (zh) * 2019-04-30 2020-06-16 北京展讯高科通信技术有限公司 Pmi反馈、子带配置方法及装置、基站、用户设备、介质
WO2021096612A1 (en) * 2019-11-14 2021-05-20 Qualcomm Incorporated Configurations for full-duplex communication systems
CN113366770A (zh) * 2019-01-31 2021-09-07 高通股份有限公司 具有频域中的差分相位反馈的码本设计

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158874A (zh) * 2010-02-12 2011-08-17 华为技术有限公司 信道测量的方法和装置
CN107771409A (zh) * 2015-06-25 2018-03-06 英特尔Ip公司 5g网络中的动态分区资源分配
CN113366770A (zh) * 2019-01-31 2021-09-07 高通股份有限公司 具有频域中的差分相位反馈的码本设计
CN111294185A (zh) * 2019-04-30 2020-06-16 北京展讯高科通信技术有限公司 Pmi反馈、子带配置方法及装置、基站、用户设备、介质
WO2021096612A1 (en) * 2019-11-14 2021-05-20 Qualcomm Incorporated Configurations for full-duplex communication systems

Also Published As

Publication number Publication date
CN114667755A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2023159449A1 (zh) 数据传输方法和装置
WO2023130322A1 (zh) 确定共享信道占用时间的方法及其装置
WO2023019411A1 (zh) 一种下行控制信息的对齐方法及其装置
WO2023201497A1 (zh) 一种确定非授权频谱中频域资源的方法及装置
WO2023201753A1 (zh) 一种终端能力上报方法、确定方法及其装置
WO2023206034A1 (zh) 混合自动重传请求harq反馈的处理方法及其装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2023060491A1 (zh) 一种多载波聚合能力的上报方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2023102945A1 (zh) 测量间隔配置方法及装置
WO2023122990A1 (zh) 物理随机接入信道prach的传输方法和装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2023039770A1 (zh) 一种用于天线切换的探测参考信号srs触发方法及其装置
WO2023155206A1 (zh) 联合信道估计的最大持续时间的上报方法及其装置
WO2023123476A1 (zh) 一种时域资源传输位置的确定方法和装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023082287A1 (zh) 一种信息的传输方法及其装置
WO2023279306A1 (zh) 频带分组方法及装置
WO2024036519A1 (zh) 一种侧行链路pdcp复用的激活方法及装置
WO2023050152A1 (zh) 终端能力上报方法、装置及存储介质
WO2023050151A1 (zh) 资源配置方法、装置及存储介质
WO2023155205A1 (zh) 一种侧行链路干扰消除的方法及其装置
WO2023010428A1 (zh) 准共址配置方法、准共址qcl信息确定方法及其装置