WO2023050151A1 - 资源配置方法、装置及存储介质 - Google Patents

资源配置方法、装置及存储介质 Download PDF

Info

Publication number
WO2023050151A1
WO2023050151A1 PCT/CN2021/121715 CN2021121715W WO2023050151A1 WO 2023050151 A1 WO2023050151 A1 WO 2023050151A1 CN 2021121715 W CN2021121715 W CN 2021121715W WO 2023050151 A1 WO2023050151 A1 WO 2023050151A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
terminal
srs resource
resource set
side device
Prior art date
Application number
PCT/CN2021/121715
Other languages
English (en)
French (fr)
Inventor
郭胜祥
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/121715 priority Critical patent/WO2023050151A1/zh
Priority to CN202180002951.0A priority patent/CN116195216A/zh
Publication of WO2023050151A1 publication Critical patent/WO2023050151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a resource configuration method, device and storage medium.
  • the new radio (NR) system supports network-side devices to obtain downlink channel information through channel reciprocity to improve downlink data transmission performance.
  • the NR system specially designed a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the transceiver capabilities of terminals defined in Rel-15 and Rel-16 can be divided into the same number of transmitting and receiving antennas, mainly one transmit and one receive (1T1R), two transmit and two receive (2T2R), and there are more receiving antennas than transmitting antennas.
  • one transmission and two receptions (1T2R), one transmission and four receptions (1T4R), two transmissions and four receptions (2T4R) uplink transmission supports a maximum of 2 RF transmission channels.
  • Embodiments of the present disclosure provide a resource configuration method, device, and storage medium.
  • the antenna capability reported by the terminal includes a maximum number of transmission layers greater than two, and the network side device can configure an SRS resource set for it, thereby improving the performance of uplink transmission.
  • an embodiment of the present disclosure provides a resource configuration method, the method is executed by a network side device, the method includes: receiving the antenna capability reported by the terminal; wherein the antenna capability includes: the maximum number of transmission layers is greater than Two layers: configure at least one sounding reference signal SRS resource set for the terminal according to the antenna capability reported by the terminal including that the maximum number of transmission layers is greater than two layers.
  • the network-side device can receive the antenna capability reported by the terminal; wherein, the antenna capability includes: the maximum number of transmission layers is greater than two layers, and then according to the antenna capability reported by the terminal, including the maximum number of transmission layers greater than two layers, to the terminal Configure at least one sounding reference signal SRS resource set.
  • the antenna capability reported by the terminal includes a maximum number of transmission layers greater than two, and the network side device can configure an SRS resource set for it, thereby improving uplink transmission performance.
  • the embodiment of the present disclosure provides another resource configuration method, the method is executed by the terminal, and the method includes: reporting the antenna capability of the terminal to the network side device; wherein the antenna capability includes: transmitting the maximum layer The number is greater than two layers; at least one SRS resource set configured by the network side device is received.
  • the embodiment of the present disclosure provides a communication device, the communication device has some or all functions of the network side equipment in the method described in the first aspect above, for example, the function of the communication device may have part or all of the functions in the present disclosure.
  • the functions in all of the embodiments may also have the functions of implementing any one of the embodiments in the present disclosure independently.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes: a transceiver module, configured to receive the antenna capability reported by the terminal; wherein, the antenna capability includes: the maximum number of transmission layers is greater than two layers; a processing module, configured to The reported antenna capability includes transmitting antennas with a maximum number of layers greater than two, and at least one SRS resource set is configured for the terminal.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the terminal in the method example described in the second aspect above, for example, the function of the communication device may have part or all of the functions in the present disclosure.
  • the functions in all of the embodiments may also have the functions of implementing any one of the embodiments in the present disclosure independently.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the communication device includes: a transceiver module, configured to report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: the maximum number of transmission layers is greater than two layers; a processing module, configured to receive At least one SRS resource set configured by the network side device.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • the embodiment of the present disclosure provides a resource configuration system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or, the system includes the communication device described in the fifth aspect And the communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect The communication device.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal, and when the instructions are executed, the terminal is made to execute the method described in the above-mentioned first aspect.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network-side equipment, and when the instructions are executed, the network-side equipment executes the above-mentioned second aspect.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal to implement the functions involved in the first aspect, for example, determine or process the data and at least one of the information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data of the terminal.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system, which includes at least one processor and an interface, configured to support the network side device to implement the functions involved in the second aspect, for example, to determine or process the functions involved in the above method At least one of data and information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the network side device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a flow chart of a resource allocation method provided by an embodiment of the present disclosure
  • Fig. 3 is a flowchart of another resource allocation method provided by an embodiment of the present disclosure.
  • Fig. 4 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 5 is a flowchart of another resource allocation method provided by an embodiment of the present disclosure.
  • Fig. 6 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 12 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 13 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 14 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 15 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 16 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 17 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 18 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 19 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 20 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 21 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 22 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 23 is a circuit diagram of a radio frequency structure of a 3T4R terminal provided by an embodiment of the present disclosure.
  • Fig. 24 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 25 is a circuit diagram of a radio frequency structure of a 3T6R terminal provided by an embodiment of the present disclosure.
  • Fig. 26 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 27 is a circuit diagram of a radio frequency structure of a 3T8R terminal provided by an embodiment of the present disclosure.
  • FIG. 28 is a circuit diagram of another radio frequency structure of a 3T8R terminal provided by an embodiment of the present disclosure.
  • Fig. 29 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • Fig. 30 is a structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Fig. 31 is a structural diagram of another communication device provided by an embodiment of the present disclosure.
  • FIG. 32 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • a radio frequency channel is also called a radio frequency link.
  • the radio frequency link in the uplink direction of the terminal may be called a radio frequency transmission link, and the radio frequency link in the downlink direction of the terminal may be called a radio frequency reception link.
  • the baseband signal generated by the terminal at the baseband generates a radio frequency signal through the radio frequency transmission link, and transmits the radio frequency signal through the antenna.
  • the signal received by the terminal from the antenna is received through the radio frequency receiving link, and reaches the baseband for processing.
  • the RF link includes RF transceiver circuits, power amplifiers, and duplexers/filters.
  • the terminal can access multiple network-side devices, and the terminal communicates with multiple network-side devices through multiple radio frequency links.
  • One radio frequency link can correspond to one network-side device.
  • the terminal can access 2 or 4 network-side devices. equipment. Specifically, the terminal can access multiple network-side devices through DC, or access multiple network-side devices through CA.
  • the radio frequency link can be integrated in the radio frequency chip, or can also be integrated in the same chip together with the baseband processing circuit.
  • Ports are also called antenna ports.
  • radio frequency links and antennas can be abstracted into the concept of ports.
  • the terminal can use any one of the two radio frequency links to correspond to this port, or use two radio frequency links to simulate a port at the same time, depending on the terminal
  • the specific implementation on the network side is transparent to the network side equipment, and the network side equipment only needs to schedule which ports the terminal sends uplink signals on.
  • Antenna capability, antenna capability includes: number of ports, number of layers, number of radio frequency links, number of antennas, maximum number of ports, maximum number of layers, maximum number of radio frequency links or maximum number of antennas, etc.
  • the number of layers refers to the number of streams of uncorrelated signals included in the precoding of the transmitted data.
  • the terminal uses four ports to send data, but the four ports are used to send the same data, or related data, then it can be understood that the terminal uses the four ports to send first-class data, or to send a layer data.
  • four ports include port 0, port 1, port 2, and port 3.
  • the terminal uses port 0 and port 1 to send the same or related first-class data, and the terminal uses port 2 and port 3 to send the same or related another flow of data. Then it can be understood that the terminal sends two layers of data.
  • the antenna capability may be described using one of the representation forms as an example, and the method may also be applied to other representation forms of the antenna capability.
  • FIG. 1 is a schematic structural diagram of a communication system 10 provided by an embodiment of the present disclosure.
  • the communication system 10 may include, but is not limited to, a network side device and a terminal.
  • the number and shape of the devices shown in FIG. The above network side equipment, two or more terminals.
  • the communication system 10 shown in FIG. 1 includes one network side device 101 and one terminal 102 as an example.
  • long term evolution long term evolution, LTE
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network-side device 101 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network side device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a A base station or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • a base station or an access node in a wireless fidelity (wireless fidelity, WiFi) system etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network side device.
  • the network side device may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), where the CU may also be called a control unit (control unit).
  • the structure of the DU can separate the protocol layers of network-side devices, such as base stations. The functions of some protocol layers are centrally controlled by the CU, and the remaining part or all of the functions of the protocol layers are distributed in the DU, which is centrally controlled by the CU.
  • the terminal 102 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • a terminal may also be called a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • the terminal can be a car with communication function, smart car, mobile phone, wearable device, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal, augmented reality (augmented reality) , AR) terminals, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid Terminals, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • FIG. 2 is a flowchart of a resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by a network side device, and the method may include but not limited to the following steps:
  • S21 Receive the antenna capability reported by the terminal; wherein, the antenna capability includes: the maximum number of transmission layers is greater than two layers.
  • the terminal reports its antenna capability to the network side device before performing uplink transmission or in any case where its antenna capability needs to be reported again.
  • the maximum number of emission layers is more than two layers, and the maximum number of emission layers may be three layers, four layers or more than four layers.
  • the number of layers refers to the number of streams of uncorrelated signals contained in the data when the data is sent for precoding.
  • the terminal uses four antenna ports to send data, but the four antenna ports are used to send the same data, or related data, then it can be understood that the terminal uses the four antenna ports to send first-class data, or to send A layer of data.
  • the four antenna ports include port 0, port 1, port 2, and port 3. The terminal uses port 0 and port 1 to send the same or related first-class data, and the terminal uses port 2 and port 3 to send the same or related another stream of data. , then it can be understood that the terminal sends two layers of data.
  • the antenna capability reported by the terminal may also include other capability information except that the maximum number of transmission layers is greater than two layers, for example, it may also include the number of antennas and the like. It should be noted that the above examples are only for illustration, and are not intended to limit the embodiments of the present disclosure, and the embodiments of the present disclosure do not specifically limit this.
  • S22 Configure at least one sounding reference signal SRS resource set for the terminal according to the antenna capability reported by the terminal including that the maximum number of transmission layers is greater than two.
  • the SRS (sounding reference signal, sounding reference signal) resource set includes SRS resources, and the SRS resources can be time domain resources and/or frequency domain resources for the terminal to send SRS information.
  • the network side device after receiving the antenna capability reported by the terminal including the antenna capability with a maximum number of transmission layers greater than two, the network side device configures at least one SRS resource set for the terminal according to the antenna capability reported by the terminal.
  • the network-side device can configure one SRS resource set for the terminal, or configure multiple SRS resource sets for the terminal, and specifically, the number of SRS resource sets configured by the network-side device for the terminal depends on the number of SRS resource sets reported by the terminal. Ability related.
  • the terminal supports a maximum of two transmission radio frequency channels, and the network side device configures at least one SRS resource set for the terminal. After receiving the SRS resource set, the terminal sends SRS information to the network side device through the maximum 2 radio frequency transmission channels on the corresponding port. , the terminal supports maximum uplink transmission of two layers of data, the amount of data transmitted uplink is small, and the terminal application flexibility is poor.
  • the antenna capability reported by the terminal includes the maximum number of transmission layers greater than two, and the terminal can send SRS information to the network side device through more than two radio frequency transmission channels, thereby improving the capability of uplink transmission and making uplink transmission The amount of data increases, and the application of the terminal is more flexible.
  • the network side device can receive the antenna capability reported by the terminal; wherein, the antenna capability includes: the maximum number of transmission layers is greater than two layers, and then according to the antenna capability reported by the terminal including the maximum number of transmission layers greater than two layers, to the The terminal configures at least one sounding reference signal SRS resource set.
  • the antenna capability reported by the terminal includes a maximum number of transmission layers greater than two, and the network side device can configure an SRS resource set for it, thereby improving the performance of uplink transmission and increasing the amount of data transmitted in uplink.
  • FIG. 3 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by the network side device, and the method may include but not limited to the following steps:
  • S31 Receive the antenna capability reported by the terminal; wherein, the antenna capability includes: the maximum number of transmission layers is three layers 3T.
  • the terminal reports its antenna capability to the network side device before performing uplink transmission or in any case where its antenna capability needs to be reported again.
  • the antenna capability may include that the maximum number of transmission layers is three layers 3T.
  • the number of layers refers to the number of streams of uncorrelated signals contained in the data when the data is sent for precoding.
  • the terminal uses four antenna ports to send data, but the four antenna ports are used to send the same data, or related data, then it can be understood that the terminal uses the four antenna ports to send first-class data, or to send A layer of data.
  • the four antenna ports include port 0, port 1, port 2, and port 3.
  • the terminal uses port 0 and port 1 to send the same or related first-class data, and the terminal uses port 2 and port 3 to send the same or related another stream of data. , then it can be understood that the terminal sends two layers of data.
  • the antenna capability reported by the terminal includes that the maximum number of transmission layers is three layers 3T.
  • the antenna capability reported by the terminal may also include other capability information except that the maximum number of transmission layers is three layers 3T, for example, it may also include the number of antennas and the like.
  • S32 Configure at least one sounding reference signal SRS resource set for the terminal according to the antenna capability reported by the terminal including the maximum number of transmission layers of 3T.
  • the SRS (sounding reference signal, sounding reference signal) resource set includes SRS resources, and the SRS resources may be time domain resources and/or frequency domain resources for the terminal to send SRS information.
  • the network side device after receiving the antenna capability reported by the terminal, including the antenna capability with a maximum transmission layer number of 3T, configures at least one SRS resource set for the terminal according to the antenna capability reported by the terminal.
  • the network-side device can configure one SRS resource set for the terminal, or configure multiple SRS resource sets for the terminal, and specifically, the number of SRS resource sets configured by the network-side device for the terminal depends on the number of SRS resource sets reported by the terminal. Ability related.
  • the antenna capability reported by the terminal including the maximum number of transmission layers is three, and the terminal can send SRS information to the network side device through 3 radio frequency transmission channels, so as to improve the capability of uplink transmission, so that the data transmitted uplink The amount increases, and the application of the terminal is more flexible.
  • FIG. 4 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by the network side device, and the method may include but not limited to the following steps:
  • S41 Antenna capability, which also includes: the maximum number of reception layers is four layers 4R, or the maximum number of reception layers is six layers 6R, or the maximum number of reception layers is eight layers 8R.
  • the maximum number of receiving layers is four layers 4R, which means that the terminal has the ability to receive data of a maximum of four layers; the maximum number of receiving layers is six layers of 6R, which means that a terminal has the ability to receive data of a maximum of six layers; the maximum number of receiving layers is Eight-layer 8R, which means that the terminal has the ability to receive data at the maximum eight layers.
  • S41 can be implemented alone, or can be implemented in combination with any other steps in the embodiments of the present disclosure, for example, in combination with S21 and S22 and/or S31 and S32 in the embodiments of the present disclosure.
  • the disclosed embodiments do not limit this.
  • the antenna capabilities reported by the terminal include: the maximum number of transmission layers is three layers 3T, the maximum number of reception layers is four layers 4R, that is, 3T4R; or the maximum number of transmission layers is three layers 3T, and the maximum number of reception layers is six layers 6R , that is 3T6R; or the maximum number of transmission layers is three layers 3T, the maximum number of reception layers is eight layers 8R, that is, 3T8R, to inform the network side device of its antenna capability, so that the network side device can configure it according to the antenna capability reported by the terminal Corresponding SRS resource collection.
  • FIG. 5 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by a network side device, and the method may include but not limited to the following steps:
  • S51 Receive the antenna capability reported by the terminal; wherein, the antenna capability includes: 3T4R.
  • the antenna capabilities include: 3T4R, that is, the maximum number of transmission layers is three layers, 3T, and the maximum number of reception layers is four layers, 4R, which means that the terminal has the ability to transmit data of the maximum three layers and the ability to receive data of the maximum four layers.
  • S52 Configure an SRS resource set including two periodic SRS resources to the terminal, or configure an SRS resource set including two semi-persistent SRS resources to the terminal, or configure an SRS including two aperiodic SRS resources to the terminal
  • a resource set or configure an SRS resource set including two or more periodic SRS resources for the terminal, or configure an SRS resource set including two or more semi-persistent SRS resources for the terminal, or configure an SRS resource set including two or more SRS resources for the terminal
  • the network side device when the antenna capability reported by the terminal includes 3T4R, the network side device configures an SRS resource set for the terminal.
  • the SRS resource set includes two or more SRS resources, and the SRS resources can be periodic or half-time. Persistent or aperiodic SRS resources.
  • the terminal when the antenna capability reported by the terminal includes 3T4R, the terminal has at least four antennas, three radio frequency transmission channels, and four radio frequency reception channels.
  • FIG. 6 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by the network side device, and the method may include but not limited to the following steps:
  • S61 Receive the antenna capability reported by the terminal; wherein, the antenna capability includes: 3T4R.
  • the antenna capabilities include: 3T4R, that is, the maximum number of transmission layers is three layers, 3T, and the maximum number of reception layers is four layers, 4R, which means that the terminal has the ability to transmit data of the maximum three layers and the ability to receive data of the maximum four layers.
  • S62 Configure multiple SRS resource sets including one aperiodic SRS resource to the terminal, and/or configure multiple SRS resource sets including multiple aperiodic SRS resources to the terminal; where each SRS resource includes one or two SRS port.
  • the network side device when the antenna capability reported by the terminal includes 3T4R, the network side device configures multiple SRS resource sets for the terminal.
  • the SRS resource set includes two or more SRS resources, and the SRS resources can be aperiodic. SRS resources.
  • the terminal when the antenna capability reported by the terminal includes 3T4R, the terminal has at least four antennas, three radio frequency transmission channels and four radio frequency reception channels.
  • FIG. 7 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by the network side device, and the method may include but not limited to the following steps:
  • S71 Receive the antenna capability reported by the terminal; wherein, the antenna capability includes: 3T6R.
  • the antenna capabilities include: 3T6R, that is, the maximum number of transmission layers is three layers; the maximum number of reception layers is six layers;
  • S72 Configure an SRS resource set including three periodic SRS resources to the terminal, or configure an SRS resource set including three semi-persistent SRS resources to the terminal, or configure an SRS resource set including three aperiodic SRS resources to the terminal
  • a resource set or configure an SRS resource set including more than three periodic SRS resources to the terminal, or configure an SRS resource set including more than three semi-persistent SRS resources to the terminal, or configure an SRS resource set including more than three SRS resources to the terminal
  • the network side device when the antenna capability reported by the terminal includes 3T6R, the network side device configures an SRS resource set for the terminal.
  • the SRS resource set includes three or more SRS resources, and the SRS resources can be periodic or half Persistent or aperiodic SRS resources.
  • the terminal when the antenna capability reported by the terminal includes 3T6R, the terminal has at least six antennas, three radio frequency transmission channels, and six radio frequency reception channels.
  • FIG. 8 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by a network side device, and the method may include but not limited to the following steps:
  • S81 Receive the antenna capability reported by the terminal; wherein, the antenna capability includes: 3T6R.
  • the antenna capabilities include: 3T6R, that is, the maximum number of transmission layers is three layers; the maximum number of reception layers is six layers;
  • S82 Configure multiple SRS resource sets including one aperiodic SRS resource to the terminal, and/or configure multiple SRS resource sets including multiple aperiodic SRS resources to the terminal; wherein, each SRS resource includes one or two SRS port.
  • the network side device when the antenna capability reported by the terminal includes 3T6R, the network side device configures multiple SRS resource sets for the terminal.
  • the SRS resource set includes one or more SRS resources, and the SRS resources can be aperiodic SRS resource.
  • the terminal when the antenna capability reported by the terminal includes 3T6R, the terminal has at least six antennas, three radio frequency transmission channels, and six radio frequency reception channels.
  • FIG. 9 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by the network side device, and the method may include but not limited to the following steps:
  • S91 Receive the antenna capability reported by the terminal; wherein, the antenna capability includes: 3T8R.
  • the antenna capabilities include: 3T8R, that is, the maximum number of transmission layers is three layers, and the maximum number of reception layers is eight layers.
  • S92 Configure an SRS resource set including four periodic SRS resources to the terminal, or configure an SRS resource set including four semi-persistent SRS resources to the terminal, or configure an SRS including four aperiodic SRS resources to the terminal
  • a resource set or configure an SRS resource set including more than four periodic SRS resources to the terminal, or configure an SRS resource set including more than four semi-persistent SRS resources to the terminal, or configure an SRS resource set including more than four periodic SRS resources to the terminal.
  • the network side device when the antenna capability reported by the terminal includes 3T8R, the network side device configures an SRS resource set for the terminal.
  • the SRS resource set includes four or more SRS resources, and the SRS resources can be periodic or half Persistent or aperiodic SRS resources.
  • the terminal when the antenna capability reported by the terminal includes 3T8R, the terminal has at least eight antennas, three radio frequency transmission channels, and eight radio frequency reception channels.
  • FIG. 10 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by the network side device, and the method may include but not limited to the following steps:
  • S101 Receive the antenna capability reported by the terminal; wherein, the antenna capability includes: 3T8R.
  • the antenna capabilities include: 3T8R, that is, the maximum number of transmission layers is three layers, and the maximum number of reception layers is eight layers.
  • S102 Configure multiple SRS resource sets including one aperiodic SRS resource to the terminal, and/or configure multiple SRS resource sets including multiple aperiodic SRS resources to the terminal; where each SRS resource includes one or two SRS port.
  • the network side device when the antenna capability reported by the terminal includes 3T8R, the network side device configures multiple SRS resource sets for the terminal.
  • the SRS resource set includes one or more SRS resources, and the SRS resources can be aperiodic SRS resource.
  • the terminal when the antenna capability reported by the terminal includes 3T8R, the terminal has at least eight antennas, three radio frequency transmission channels, and eight radio frequency reception channels.
  • FIG. 11 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by the network side device, and the method may include but not limited to the following steps:
  • S111 Configure, to the terminal, indication information corresponding to the antenna capability reported by the terminal; wherein, the indication information indicates at least one configured SRS resource set.
  • the network side device after receiving the antenna capability reported by the terminal, configures the terminal with indication information corresponding to the antenna capability, and the indication information indicates at least one configured SRS resource set.
  • the indication information includes RRC (radio resource control, radio resource control) signaling.
  • S111 may be implemented alone, or may be implemented in combination with any other steps in the embodiments of the present disclosure, such as combining S21 and S22 and/or S31 and S22 and/or S41 and /or S51 and S52 and/or S61 and S62 and/or S71 and S72 and/or S81 and S82 and/or S91 and S92 and/or S101 and S102 are implemented together, which is not limited in this embodiment of the present disclosure.
  • FIG. 12 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S121 Report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: the maximum number of transmission layers is greater than two layers.
  • the terminal reports its antenna capability to the network side device before performing uplink transmission or in any case where its antenna capability needs to be reported again.
  • the maximum number of emission layers is greater than two layers, and the maximum number of emission layers may be three layers or four layers or more than four layers.
  • the number of layers refers to the number of streams of uncorrelated signals contained in the data when the data is sent for precoding.
  • the terminal uses four antenna ports to send data, but the four antenna ports are used to send the same data, or related data, then it can be understood that the terminal uses the four antenna ports to send first-class data, or to send A layer of data.
  • the four antenna ports include port 0, port 1, port 2, and port 3.
  • the terminal uses port 0 and port 1 to send the same or related first-class data, and the terminal uses port 2 and port 3 to send the same or related another stream of data. , then it can be understood that the terminal sends two layers of data.
  • the antenna capability reported by the terminal includes that the maximum number of transmission layers is three layers 3T.
  • the antenna capability reported by the terminal may also include other capability information except that the maximum number of transmission layers is three layers 3T, for example, it may also include the number of antennas and the like. It should be noted that the above examples are only for illustration, and are not intended to limit the embodiments of the present disclosure, and the embodiments of the present disclosure do not specifically limit this.
  • S122 Receive at least one SRS resource set configured by the network side device.
  • the SRS (sounding reference signal, sounding reference signal) resource set includes SRS resources, and the SRS resources may be time domain resources and/or frequency domain resources for the terminal to send SRS information.
  • the network side device after receiving the antenna capability reported by the terminal, including the antenna capability with a maximum transmission layer number of 3T, configures at least one SRS resource set for the terminal according to the antenna capability reported by the terminal.
  • the network-side device can configure one SRS resource set for the terminal, or configure multiple SRS resource sets for the terminal, and specifically, the number of SRS resource sets configured by the network-side device for the terminal depends on the number of SRS resource sets reported by the terminal. Ability related.
  • the terminal supports a maximum of two transmission radio frequency channels
  • the network side device configures at least one SRS resource set for the terminal, and the terminal receives the combination of SRS resources, and sends SRS information to the network side device through the maximum 2 radio frequency transmission channels on the corresponding port.
  • the terminal supports maximum uplink transmission of two layers of data. The amount of data transmitted uplink is small, and the terminal application flexibility is poor.
  • the antenna capability reported by the terminal includes the maximum number of transmission layers greater than two, and the terminal can send SRS information to the network side device through more than two radio frequency transmission channels, thereby improving the capability of uplink transmission and making uplink transmission The amount of data increases, and the application of the terminal is more flexible.
  • the network side device can receive the antenna capability reported by the terminal; wherein, the antenna capability includes: the maximum number of transmission layers is greater than two layers, and then according to the antenna capability reported by the terminal including the maximum number of transmission layers greater than two layers, to the The terminal configures at least one sounding reference signal SRS resource set.
  • the antenna capability of the terminal includes a maximum number of transmission layers greater than two, and the network side device can configure an SRS resource set for it, thereby improving the performance of uplink transmission and increasing the amount of data transmitted in uplink.
  • FIG. 13 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S131 Report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: the maximum number of transmission layers is three layers 3T.
  • the terminal reports its antenna capability to the network side device before performing uplink transmission or in any case where its antenna capability needs to be reported again.
  • the antenna capability may include that the maximum number of transmission layers is three layers 3T.
  • the number of layers refers to the number of streams of uncorrelated signals contained in the data when the data is sent for precoding.
  • the terminal uses four antenna ports to send data, but the four antenna ports are used to send the same data, or related data, then it can be understood that the terminal uses the four antenna ports to send first-class data, or to send A layer of data.
  • the four antenna ports include port 0, port 1, port 2, and port 3.
  • the terminal uses port 0 and port 1 to send the same or related first-class data, and the terminal uses port 2 and port 3 to send the same or related another stream of data. , then it can be understood that the terminal sends two layers of data.
  • the antenna capability reported by the terminal includes that the maximum number of transmission layers is three layers 3T.
  • the antenna capability reported by the terminal may also include other capability information except that the maximum number of transmission layers is three layers 3T, for example, it may also include the number of antennas and the like. It should be noted that the above examples are only for illustration, and are not intended to limit the embodiments of the present disclosure, and the embodiments of the present disclosure do not specifically limit this.
  • S132 Receive at least one SRS resource set configured by the network side device.
  • the SRS (sounding reference signal, sounding reference signal) resource set includes SRS resources, and the SRS resources may be time domain resources and/or frequency domain resources for the terminal to send SRS information.
  • the network side device after receiving the antenna capability reported by the terminal, including the antenna capability with a maximum transmission layer number of 3T, configures at least one SRS resource set for the terminal according to the antenna capability reported by the terminal.
  • the network-side device can configure one SRS resource set for the terminal, or configure multiple SRS resource sets for the terminal, and specifically, the number of SRS resource sets configured by the network-side device for the terminal depends on the number of SRS resource sets reported by the terminal. Ability related.
  • the antenna capability reported by the terminal including the maximum number of transmission layers is three, and the terminal can send SRS information to the network side device through 3 radio frequency transmission channels, so as to improve the capability of uplink transmission, so that the data transmitted uplink The amount increases, and the application of the terminal is more flexible.
  • FIG. 14 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S141 Antenna capability, further including: the maximum number of receiving layers is four layers 4R, or the maximum number of receiving layers is six layers 6R, or the maximum number of receiving layers is eight layers 8R.
  • the maximum number of receiving layers is four layers 4R, which means that the terminal has the ability to receive data of a maximum of four layers; the maximum number of receiving layers is six layers of 6R, which means that a terminal has the ability to receive data of a maximum of six layers; the maximum number of receiving layers is Eight-layer 8R, which means that the terminal has the ability to receive data at the maximum eight layers.
  • S141 may be implemented alone, or may be implemented in combination with any other steps in the embodiments of the present disclosure, for example, in combination with S111 and S112 and/or S121 and S122 in the embodiments of the present disclosure.
  • the disclosed embodiments do not limit this.
  • the antenna capabilities reported by the terminal include: the maximum number of transmission layers is three layers 3T, the maximum number of reception layers is four layers 4R, that is, 3T4R; or the maximum number of transmission layers is three layers 3T, and the maximum number of reception layers is six layers 6R , that is 3T6R; or the maximum number of transmission layers is three layers 3T, the maximum number of reception layers is eight layers 8R, that is, 3T8R, to inform the network side device of its antenna capability, so that the network side device can configure it according to the antenna capability reported by the terminal Corresponding SRS resource collection.
  • FIG. 15 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S151 Report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: 3T4R.
  • the antenna capabilities include: 3T4R, that is, the maximum number of transmission layers is three layers, 3T, and the maximum number of reception layers is four layers, 4R, which means that the terminal has the ability to transmit data of the maximum three layers and the ability to receive data of the maximum four layers.
  • S152 Receive an SRS resource set including two periodic SRS resources configured by the network side device, or receive an SRS resource set including two semi-persistent SRS resources configured by the network side device, or receive a SRS resource set configured by the network side device A set of SRS resources including two aperiodic SRS resources, or a set of SRS resources configured by the receiving network side device including more than two periodic SRS resources, or a set of SRS resources configured by the receiving network side device including more than two semi-persistent SRS resources The set of SRS resources, or a set of SRS resources configured by the receiving network side device including more than two aperiodic SRS resources; wherein, each SRS resource includes one or two SRS ports.
  • the network side device when the antenna capability reported by the terminal includes 3T4R, the network side device configures an SRS resource set for the terminal.
  • the SRS resource set includes two or more SRS resources, and the SRS resources can be periodic or half-time. Persistent or aperiodic SRS resources.
  • the terminal when the antenna capability reported by the terminal includes 3T4R, the terminal has at least four antennas, three radio frequency transmission channels, and four radio frequency reception channels.
  • FIG. 16 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S161 Report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: 3T4R.
  • the antenna capabilities include: 3T4R, that is, the maximum number of transmission layers is three layers, 3T, and the maximum number of reception layers is four layers, 4R, which means that the terminal has the ability to transmit data of the maximum three layers and the ability to receive data of the maximum four layers.
  • S162 Receive multiple SRS resource sets including one aperiodic SRS resource configured by the network side device, and/or receive multiple SRS resource sets including multiple aperiodic SRS resources configured by the network side device; wherein each SRS Resources consist of one or two SRS ports.
  • the network side device when the antenna capability reported by the terminal includes 3T4R, the network side device configures multiple SRS resource sets for the terminal.
  • the SRS resource set includes two or more SRS resources, and the SRS resources can be aperiodic. SRS resources.
  • the terminal when the antenna capability reported by the terminal includes 3T4R, the terminal has at least four antennas, three radio frequency transmission channels, and four radio frequency reception channels.
  • FIG. 17 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S171 Report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: 3T6R.
  • the antenna capabilities include: 3T6R, that is, the maximum number of transmission layers is three layers; the maximum number of reception layers is six layers;
  • S172 Receive an SRS resource set including three periodic SRS resources configured by the network side device, or receive an SRS resource set including three semi-persistent SRS resources configured by the network side device, or receive a SRS resource set configured by the network side device A set of SRS resources including three aperiodic SRS resources, or a set of SRS resources configured by the receiving network side device including more than three periodic SRS resources, or a set of SRS resources configured by the receiving network side device including more than three semi-persistent SRS resources or a SRS resource set configured by the receiving network side device including more than three aperiodic SRS resources; wherein, each SRS resource includes one or two SRS ports.
  • the network side device when the antenna capability reported by the terminal includes 3T6R, the network side device configures an SRS resource set for the terminal.
  • the SRS resource set includes three or more SRS resources, and the SRS resources can be periodic or half Persistent or aperiodic SRS resources.
  • the terminal when the antenna capability reported by the terminal includes 3T6R, the terminal has at least six antennas, three radio frequency transmission channels, and six radio frequency reception channels.
  • FIG. 18 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S181 Report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: 3T6R.
  • the antenna capabilities include: 3T6R, that is, the maximum number of transmission layers is three layers; the maximum number of reception layers is six layers;
  • S182 Receive multiple SRS resource sets including one aperiodic SRS resource configured by the network side device, and/or receive multiple SRS resource sets including multiple aperiodic SRS resources configured by the network side device; wherein each SRS Resources include one or two SRS ports.
  • the network side device when the antenna capability reported by the terminal includes 3T6R, the network side device configures multiple SRS resource sets for the terminal.
  • the SRS resource set includes one or more SRS resources, and the SRS resources can be aperiodic SRS resource.
  • the terminal when the antenna capability reported by the terminal includes 3T6R, the terminal has at least six antennas, three radio frequency transmission channels, and six radio frequency reception channels.
  • FIG. 19 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S191 Report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: 3T8R.
  • the antenna capabilities include: 3T8R, that is, the maximum number of transmission layers is three layers, and the maximum number of reception layers is eight layers.
  • S192 Receive an SRS resource set including four periodic SRS resources configured by the network side device, or receive an SRS resource set including four semi-persistent SRS resources configured by the network side device, or receive a SRS resource set configured by the network side device A set of SRS resources including four aperiodic SRS resources, or a set of SRS resources configured by the receiving network side device including more than four periodic SRS resources, or a set of SRS resources configured by the receiving network side device including more than four semi-persistent SRS resources The set of SRS resources, or a set of SRS resources configured by the receiving network side device including more than four aperiodic SRS resources; wherein, each SRS resource includes one or two SRS ports.
  • the network side device when the antenna capability reported by the terminal includes 3T8R, the network side device configures an SRS resource set for the terminal.
  • the SRS resource set includes four or more SRS resources, and the SRS resources can be periodic or half Persistent or aperiodic SRS resources.
  • the terminal when the antenna capability reported by the terminal includes 3T8R, the terminal has at least eight antennas, three radio frequency transmission channels, and eight radio frequency reception channels.
  • FIG. 20 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S201 Report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: 3T8R.
  • the antenna capabilities include: 3T8R, that is, the maximum number of transmission layers is three layers, and the maximum number of reception layers is eight layers.
  • S202 Receive multiple SRS resource sets including one aperiodic SRS resource configured by the network side device, and/or receive multiple SRS resource sets including multiple aperiodic SRS resources configured by the network side device; wherein each SRS Resources include one or two SRS ports.
  • the network side device when the antenna capability reported by the terminal includes 3T8R, the network side device configures multiple SRS resource sets for the terminal.
  • the SRS resource set includes one or more SRS resources, and the SRS resources can be aperiodic SRS resource.
  • the terminal when the antenna capability reported by the terminal includes 3T8R, the terminal has at least eight antennas, three radio frequency transmission channels, and eight radio frequency reception channels.
  • FIG. 21 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • S211 Send SRS information to the network side device.
  • the terminal after the terminal reports its antenna capability to the network-side device, and the network-side device configures at least one SRS resource set to the terminal according to the antenna capability reported by the terminal, the terminal sends an SRS resource set to the network-side device according to the received SRS resource set. Send the SRS information to inform the network side device to perform SRS measurement.
  • S211 may be implemented alone, or may be implemented in combination with any other steps in the embodiments of the present disclosure, such as combining S121 and S122 and/or S131 and S132 and/or S141 and /or S151 and S152 and/or S161 and S162 and/or S171 and S172 and/or S181 and S182 and/or S191 and S192 and/or S201 and S202 are implemented together, which is not limited in this embodiment of the present disclosure.
  • FIG. 22 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • the terminal When the antenna capability reported by the terminal includes 3T4R, the terminal includes four antennas; two of the four antennas use one radio frequency channel to transmit SRS information, and the other two antennas share one radio frequency by switching The channel sends SRS information.
  • the terminal when the antenna capability reported by the terminal includes 3T4R, the terminal includes four antennas and three radio frequency transmission channels, where two of the four antennas respectively use one radio frequency transmission channel to transmit SRS information, The other two antennas share a radio frequency transmission channel to send SRS information by switching.
  • FIG. 23 is a circuit diagram of a 3T4R terminal transmitting SRS information provided by an embodiment of the present disclosure.
  • the terminal when the antenna capabilities reported by the terminal include 3T4R, the terminal has at least four antennas (see antenna 1, antenna 2, antenna 3, and antenna 4 in Figure 23), and three radio frequency transmission channels (see Tx1, Tx2, Tx3 in 23) and four RF receiving channels (see four Rx in Figure 23).
  • the network side device configures an SRS resource set, and the SRS resource set includes four periodic SRS resources, wherein each of the four SRS resources has a port, and the four SRS resources are sent in one time slot slot , and these four SRS resources can be sent by four antennas (antenna 1, antenna 2, antenna 3, antenna 4) respectively, for example: through Tx1, Tx2, Tx3 respectively send three SRS by antenna 1, antenna 3 and antenna 4
  • Tx1 is switched to antenna 2
  • the SRS information of an SRS resource is sent by antenna 2 through Tx1.
  • the network side device configures an SRS resource set
  • the SRS resource set includes three periodic SRS resources, wherein, among the three SRS resources, one SRS resource has two ports, and the other two SRS resources Each has one port, and the SRS information of the SRS resources with two ports can be transmitted by two antennas through two radio frequency transmission channels, and the SRS information of the other two SRS resources can be transmitted by the other two antennas through the other two radio frequency transmission channels respectively.
  • the SRS resource set includes two periodic SRS resources, wherein, among the two SRS resources, each SRS resource has two ports, and the SRS information of each SRS resource can be sent by two antennas through two radio frequency transmission channels .
  • one SRS resource set is configured on the network side device, and the SRS resource set may also include four semi-persistent SRS resources, or the SRS resource set may also include four aperiodic SRS resources, or The SRS resource set may also include three semi-persistent SRS resources, or the SRS resource set may also include three aperiodic SRS resources, or the SRS resource set may also include two semi-persistent SRS resources, Alternatively, the SRS resource set may also include two aperiodic SRS resources, etc.
  • the method for the terminal to send the SRS information of the SRS resource can refer to the method for the terminal to send the SRS information of the periodic SRS resource in the above example, this disclosure The embodiment will not be repeated here.
  • the network side device configures two SRS resource sets, and the two SRS resource sets include four aperiodic SRS resources, the four SRS resources are sent in two time slots, and the four SRS The resources are sent by four antennas (antenna 1, antenna 2, antenna 3, and antenna 4) respectively, where the two SRS resource sets may have two aperiodic SRS resources for each SRS resource set, and each SRS resource includes For one port, the SRS information of two aperiodic SRS resources in each SRS resource set is sent by two antennas through two radio frequency transmission channels respectively; or, one SRS resource set has one aperiodic SRS resource, and the other There are three aperiodic SRS resources in the SRS resource set, and each resource includes a port.
  • the SRS information of an aperiodic SRS resource in one SRS resource set is sent by an antenna through a radio frequency transmission channel, and the SRS information in the other SRS resource set
  • the SRS information of the three aperiodic SRS resources is sent by the three antennas through the three radio frequency transmission channels respectively.
  • the combination of SRS resources and ports in the embodiments of the present disclosure can also be other combinations than the above example, for example: the network side device configures three SRS resource sets including one and/or multiple aperiodic SRS resources or the network side device configures The four SRS resource sets including one and/or multiple aperiodic SRS resources, etc., are not specifically limited in this embodiment of the present disclosure.
  • the combination of SRS resources and ports is only for illustration, and not as a limitation to the embodiments of the present disclosure.
  • the combination of SRS resources and ports in the embodiments of the present disclosure may also be other combinations than the above examples. Embodiments of the present disclosure do not specifically limit this.
  • S231 may be implemented alone or in combination with any other steps in the embodiments of the present disclosure, such as combining S121 and S122 and/or S131 and S132 and/or S141 in the embodiments of the present disclosure. And/or S151 and S152 and/or S161 and S162 and/or S171 and S172 and/or S181 and S182 and/or S191 and S192 and/or S201 and S202 are implemented together, which is not limited in the embodiments of the present disclosure .
  • FIG. 24 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • the terminal includes six antennas; wherein, every two antennas among the six antennas share a radio frequency channel to send SRS information by switching.
  • the terminal when the antenna capability reported by the terminal includes 3T6R, the terminal includes six antennas and three radio frequency transmission channels, wherein, every two antennas among the six antennas share one radio frequency transmission channel by switching SRS information.
  • FIG. 25 is a circuit diagram of a 3T6R terminal transmitting SRS information provided by an embodiment of the present disclosure.
  • the terminal has at least six antennas (see antenna 1, antenna 2, antenna 3, antenna 4, antenna 5, and antenna 6 in Figure 25), three RF transmit channels (see Tx1, Tx2, Tx3 in Figure 25) and six RF receive channels (see six Rx in Figure 25).
  • the network side device configures an SRS resource set, and one SRS resource set includes six periodic SRS resources, each of the six SRS resources has one port, and the six SRS resources are sent in one time slot slot,
  • the six SRS resources are sent to the terminal by six antennas (antenna 1, antenna 2, antenna 3, antenna 4, antenna 5, and antenna 6).
  • the SRS information of three SRS resources among the six SRS resources is transmitted through three
  • the radio frequency transmission channel (Tx1, Tx2, Tx3) is sent by three antennas (antenna 1, antenna 3, antenna 5), and the SRS information of the other three SRS resources is transmitted by the other three radio frequency transmission channels (Tx1, Tx2, Tx3).
  • Antennas (antenna 2, antenna 4, antenna 6) transmit.
  • the network-side device configures an SRS resource set, and an SRS resource set includes three periodic SRS resources, and each of the three SRS resources has two ports; or, the network-side device configures a SRS resource set , one SRS resource set includes four periodic SRS resources, two SRS resources among the four SRS resources each have two ports, and the other two SRS resources each have one port.
  • an SRS resource set is configured on the network side device, and the SRS resource set may also include six semi-persistent SRS resources, or the SRS resource set may also include six aperiodic SRS resources, or The SRS resource set may also include three semi-persistent SRS resources, or the SRS resource set may also include three aperiodic SRS resources, or the SRS resource set may also include four semi-persistent SRS resources, Alternatively, the SRS resource set may also include four aperiodic SRS resources, etc.
  • the way the terminal sends the SRS information of the SRS resources can refer to the way the terminal sends the SRS information of the periodic SRS resources in the above example, this disclosure The embodiment will not be repeated here.
  • the network side device configures two SRS resource sets, and the two SRS resource sets include six aperiodic SRS resources, the six SRS resources are sent in two time slots, and the six SRS
  • the SRS information of the resource is sent by six antennas (antenna 1, antenna 2, antenna 3, antenna 4, antenna 5, and antenna 6), where two SRS resource sets can have three aperiodic SRS resources, each SRS resource includes a port, and the SRS information of the three aperiodic SRS resources in each SRS resource set is sent by three antennas through three radio frequency transmission channels; or, two SRS resource sets can be There are two aperiodic SRS resources in one SRS resource set, and four aperiodic SRS resources in the other SRS resource set, and each SRS resource includes one port.
  • the network side device configures three SRS resource sets including one and/or more aperiodic SRS resources, each SRS resource set includes an aperiodic SRS resource, and each SRS resource includes Two ports, three SRS resource sets are sent in three time slots.
  • the combination of SRS resources and ports in the embodiments of the present disclosure can also be other combinations than the above example, for example: the network side device configures four SRS resource sets including one and/or multiple aperiodic SRS resources or the network side device configures five One SRS resource set including one and/or more aperiodic SRS resources, or the network side device configures six SRS resource sets including one and/or more aperiodic SRS resources, etc.
  • the combination of SRS resources and ports is only for illustration, and not as a limitation to the embodiments of the present disclosure.
  • the combination of SRS resources and ports in the embodiments of the present disclosure may also be other combinations than the above examples. Embodiments of the present disclosure do not specifically limit this.
  • S241 can be implemented alone, or can be implemented in combination with any other steps in the embodiments of the present disclosure, such as combining S121 and S122 and/or S131 and S132 and/or S141 in the embodiments of the present disclosure. And/or S151 and S152 and/or S161 and S162 and/or S171 and S172 and/or S181 and S182 and/or S191 and S192 and/or S201 and S202 are implemented together, which is not limited in the embodiments of the present disclosure .
  • FIG. 26 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal, and the method may include but not limited to the following steps:
  • the terminal includes eight antennas, and the eight antennas are divided into three antenna groups, each antenna group includes at least two antennas, and at least two antennas in each antenna group pass through The switching method shares a radio frequency channel to send SRS information.
  • the terminal when the antenna capability reported by the terminal includes 3T8R, the terminal includes eight antennas and three radio frequency transmission channels, where the eight antennas are divided into three antenna groups, and each antenna group includes at least two Antennas, at least two antennas in each antenna group share a radio frequency transmission channel to send SRS information by switching.
  • FIG. 27 is a circuit diagram of a 3T8R terminal transmitting SRS information provided by an embodiment of the present disclosure.
  • the terminal has at least eight antennas (see antenna 1, antenna 2, antenna 3, antenna 4, antenna 5, antenna 6, and antenna 7 in Figure 27, Antenna 8), three radio frequency transmission channels (see Tx1, Tx2, Tx3 in Figure 27) and eight radio frequency reception channels (see eight Rx in Figure 27).
  • the network side device configures one SRS resource set, one SRS resource set includes eight periodic SRS resources, each of the eight SRS resources has one port, and the eight SRS resources are sent in one time slot.
  • the SRS information of eight SRS resources is sent to the terminal by eight antennas (antenna 1, antenna 2, antenna 3, antenna 4, antenna 5, antenna 6, antenna 7, antenna 8), for example: SRS information of three SRS resources
  • the three antennas (antenna 1, antenna 4, and antenna 7) are sent through three radio frequency transmission channels (Tx1, Tx2, Tx3), and the SRS information of the three SRS resources is transmitted through three radio frequency transmission channels (Tx1, Tx2, Tx3).
  • Three antennas (antenna 2, antenna 5, antenna 8) transmit, and the SRS information of the remaining two SRS resources are transmitted by two antennas (antenna 3, antenna 6) through two radio frequency transmission channels (Tx1, Tx2).
  • FIG. 28 is a circuit diagram of another 3T8R terminal transmitting SRS information provided by an embodiment of the present disclosure.
  • the terminal when the antenna capability reported by the terminal includes 3T8R, the terminal has at least eight antennas (refer to antenna 1, antenna 2, antenna 3, antenna 4, antenna 5, antenna 6, antenna 7 in Figure 28, Antenna 8), three radio frequency transmission channels (see Tx1, Tx2, Tx3 in Figure 28) and four radio frequency reception channels (see eight Rx in Figure 28).
  • the network side device configures one SRS resource set, one SRS resource set includes eight periodic SRS resources, each of the eight SRS resources has one port, and the eight SRS resources are sent in one time slot.
  • the SRS information of the eight SRS resources is sent to the terminal by eight antennas (antenna 1, antenna 2, antenna 3, antenna 4, antenna 5, antenna 6, antenna 7, and antenna 8), for example: SRS information of three SRS resources
  • the three antennas (antenna 1, antenna 3, and antenna 5) are sent through three radio frequency transmission channels (Tx1, Tx2, Tx3), and the SRS information of the three SRS resources is transmitted through three radio frequency transmission channels (Tx1, Tx2, Tx3).
  • the three antennas (antenna 2, antenna 4, and antenna 6) transmit, and the remaining two SRS resources are respectively transmitted by the other two antennas (antenna 7, antenna 8) through a radio frequency transmission channel (Tx3).
  • the network side device configures one SRS resource set, one SRS resource set includes four periodic SRS resources, and each of the four SRS resources has two ports; or, the network side device configures one SRS resource Set, one SRS resource set includes six periodic SRS resources, two SRS resources in the six SRS resources each have two ports, and each of the other four SRS resources has one port.
  • one SRS resource set is configured on the network side device, and the SRS resource set may also include eight semi-persistent SRS resources, or the SRS resource set may also include eight aperiodic SRS resources, or The SRS resource set may also include four semi-persistent SRS resources, or the SRS resource set may also include four aperiodic SRS resources, or the SRS resource set may also include six semi-persistent SRS resources, Alternatively, the SRS resource set may also include six aperiodic SRS resources, etc.
  • the way the terminal sends the SRS information of the SRS resources can refer to the way the terminal sends the SRS information of the periodic SRS resources in the above example, this disclosure The embodiment will not be repeated here.
  • the network side device configures two SRS resource sets, and the two SRS resource sets include eight aperiodic SRS resources, and the eight SRS resources are sent in two time slots, and the eight SRS resources The resources are transmitted by eight antennas (antenna 1, antenna 2, antenna 3, antenna 4, antenna 5, antenna 6, antenna 7, antenna 8), where two SRS resource sets can be four for each SRS resource set.
  • each SRS resource includes a port, and the four aperiodic SRS resources in each SRS resource set are sent by four antennas through four radio frequency receiving channels; or, two SRS resource sets can be There are three aperiodic SRS resources in one SRS resource set, five aperiodic SRS resources in another SRS resource set, and each SRS resource includes one port.
  • the network side device configures four SRS resource sets, each SRS resource set includes an aperiodic SRS resource, each SRS resource includes two ports, and the four SRS resource sets are divided into four Sent in the time slot slot.
  • the combination of SRS resources and ports in the embodiments of the present disclosure may also be other combinations than the above examples, for example: the network side device configures the network side device to configure five SRS resource sets including one and/or multiple aperiodic SRS resources or The network side device configures six SRS resource sets including one and/or more aperiodic SRS resources or seven SRS resource sets including one and/or more aperiodic SRS resources or eight SRS resource sets including one and/or more An SRS resource set of aperiodic SRS resources, etc.
  • the combination of SRS resources and ports is only for illustration, and not as a limitation to the embodiments of the present disclosure.
  • the combination of SRS resources and ports in the embodiments of the present disclosure may also be other combinations than the above examples. Embodiments of the present disclosure do not specifically limit this.
  • S261 can be implemented alone, or can be implemented in combination with any other steps in the embodiments of the present disclosure, such as combining S121 and S122 and/or S131 and S132 and/or S141 in the embodiments of the present disclosure. And/or S151 and S152 and/or S161 and S162 and/or S171 and S172 and/or S181 and S182 and/or S191 and S192 and/or S201 and S202 are implemented together, which is not limited in the embodiments of the present disclosure .
  • FIG. 29 is a flowchart of another resource configuration method provided by an embodiment of the present disclosure.
  • the method is performed by the network side device, and the method may include but not limited to the following steps:
  • S291 Receive indication information from a network side device; wherein, the indication information indicates at least one configured SRS resource set.
  • the network side device after receiving the antenna capability reported by the terminal, configures the terminal with indication information corresponding to the antenna capability, and the indication information indicates at least one configured SRS resource set.
  • the indication information includes RRC (radio resource control, radio resource control) signaling.
  • S291 may be implemented alone, or may be implemented in combination with any other steps in the embodiments of the present disclosure, such as combining S121 and S122 and/or S131 and S132 and/or S141 and /or S151 and S152 and/or S161 and S162 and/or S171 and S172 and/or S181 and S182 and/or S191 and S192 and/or S201 and S202 and/or S211 and/or S221 and/or S241 and/or S261 is implemented together, which is not limited in this embodiment of the present disclosure.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device and the terminal respectively.
  • the network-side device and the terminal may include a hardware structure and a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 30 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present disclosure.
  • the communication device 1 shown in FIG. 30 may include a transceiver module 11 and a processing module 12 .
  • the transceiver module 11 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 11 can realize the sending function and/or the receiving function.
  • the communication device 1 may be a terminal, a device in a terminal, or a device that can be matched with a terminal.
  • the communication device 1 may be a network-side device, a device in the network-side device, or a device that can be matched with the network-side device.
  • the communication device 1 is a network side device:
  • the device includes: a transceiver module 11, configured to receive the antenna capability reported by the terminal; wherein, the antenna capability includes: the maximum number of transmission layers is greater than two layers; the processing module 12 is used to include the maximum number of transmission layers greater than two layers reported by the terminal.
  • the antenna capability of the terminal is configured with at least one SRS resource set.
  • the communication device 1 is a terminal:
  • the device includes: a transceiver module 11, configured to report the antenna capability of the terminal to the network side device; wherein, the antenna capability includes: the maximum number of transmission layers is greater than two layers; a processing module 12, configured to receive at least one SRS configured by the network side device Collection of resources.
  • the communication device 1 in the above embodiment the specific manner in which each module executes operations has been described in detail in the embodiment related to the method, and will not be described in detail here.
  • the communication device 1 provided in the above embodiments of the present disclosure achieves the same or similar beneficial effects as the resource configuration methods provided in some of the above embodiments, which will not be repeated here.
  • FIG. 31 is a schematic structural diagram of another communication device 1000 provided by an embodiment of the present disclosure.
  • the communication device 1000 may be a network-side device, or a terminal, or a chip, a chip system, or a processor that supports the network-side device to implement the above method, or a chip, a chip system, or a chip that supports the terminal to implement the above method. processor etc.
  • the communication device 1000 may be used to implement the methods described in the foregoing method embodiments, and for details, refer to the descriptions in the foregoing method embodiments.
  • the communication device 1000 may be a network-side device, or a terminal, or a chip, a chip system, or a processor that supports the network-side device to implement the above method, or a chip, a chip system, or a chip that supports the terminal to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • the communication device 1000 may include one or more processors 1001 .
  • the processor 1001 may be a general purpose processor or a special purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 1000 may further include one or more memories 1002, on which a computer program 1004 may be stored, and the memory 1002 executes the computer program 1004, so that the communication device 1000 executes the methods described in the foregoing method embodiments .
  • data may also be stored in the memory 1002 .
  • the communication device 1000 and the memory 1002 can be set separately or integrated together.
  • the communication device 1000 may further include a transceiver 1005 and an antenna 1006 .
  • the transceiver 1005 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1005 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1000 may further include one or more interface circuits 1007 .
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 1001 .
  • the processor 1001 runs the code instructions to enable the communication device 1000 to execute the methods described in the foregoing method embodiments.
  • the communication device 1000 is a network-side device: the transceiver 1005 is used to execute S21 in FIG. 2 ; S31 in FIG. 3 ; S41 in FIG. 4 ; S51 in FIG. 5 ; S61 in FIG. 6 ; S71 in FIG. 7 ; S81 among Fig. 8; S91 among Fig. 9; S101 among Fig. 10; S111 among Fig. 11; Processor 1001 is used to execute S22 among Fig. 2; S32 among Fig. 3; S52 among Fig. 5; Fig. 6 S62 in FIG. 7; S72 in FIG. 7; S82 in FIG. 8; S92 in FIG. 9; S102 in FIG.
  • the communication device 1000 is a terminal: the transceiver 1005 is used to execute S121 in FIG. 12 ; S131 in FIG. 13 ; S141 in FIG. 14 ; S151 in FIG. 15 ; S161 in FIG. 16 ; S171 in FIG. 17 ; S181 in FIG. 19; S201 in FIG. 20; S211 in FIG. 21; S221 in FIG. 22; S241 in FIG. 24; S261 in FIG. 26; S291 in FIG. 29; S122 in FIG. 12; S132 in FIG. 13; S152 in FIG. 15; S162 in FIG. 16; S172 in FIG. 17; S182 in FIG. 18; S192 in FIG. 19;
  • the processor 1001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1001 may store a computer program 1003, and the computer program 1003 runs on the processor 1001 to enable the communication device 1000 to execute the methods described in the foregoing method embodiments.
  • the computer program 1003 may be solidified in the processor 1001, and in this case, the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a terminal, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 31 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • FIG. 32 is a structural diagram of a chip provided in an embodiment of the present disclosure.
  • the chip 1100 includes a processor 1101 and an interface 1103 .
  • the number of processors 1101 may be one or more, and the number of interfaces 1103 may be more than one.
  • Interface 1103 configured to receive code instructions and transmit them to the processor.
  • the processor 1101 is configured to run code instructions to execute the resource configuration method as described in some of the above embodiments.
  • Interface 1103 configured to receive code instructions and transmit them to the processor.
  • the processor 1101 is configured to run code instructions to execute the resource configuration method as described in some of the above embodiments.
  • the chip 1100 also includes a memory 1102 for storing necessary computer programs and data.
  • the embodiment of the present disclosure also provides a resource configuration system, the system includes the communication device as the terminal in the embodiment of Figure 30 and the communication device as the network side device, or the system includes the communication device as the terminal in the embodiment of Figure 31 device and a communication device as a network-side device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种资源配置方法、装置及存储介质,该方法由网络侧设备执行,该方法,包括:接收终端上报的天线能力;其中,所述天线能力包括:发射最大层数大于两层;根据所述终端上报的包括发射最大层数大于两层的天线能力,向所述终端配置至少一个探测参考信号SRS资源集合。通过这种方式,终端上报的天线能力包括发射最大层数大于两层,网络侧设备可以为其配置SRS资源集合,从而能够提升上行传输的性能。

Description

资源配置方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种资源配置方法、装置及存储介质。
背景技术
新无线(new radio,NR)系统中支持网络侧设备通过信道互易获取下行信道信息以提高下行数据传输性能。为了支持各种终端收发能力下网络侧设备也能通过信道互易有效获取下行信息,NR系统特别设计了探测参考信号(sounding reference signal,SRS)。
目前,Rel-15和Rel-16中定义的终端的收发能力可以分为收发天线数目相同,主要有一发一收(1T1R)、两发两收(2T2R)、;收天线多于发天线主要有几种情况:一发两收(1T2R)、一发四收(1T4R)、两发四收(2T4R),上行传输最大支持2路射频发射通道。
发明内容
本公开实施例提供一种资源配置方法、装置及存储介质,终端上报的天线能力包括发射最大层数大于两层,网络侧设备可以为其配置SRS资源集合,从而能够提升上行传输的性能。
第一方面,本公开实施例提供一种资源配置方法,所述方法由网络侧设备执行,所述方法,包括:接收终端上报的天线能力;其中,所述天线能力包括:发射最大层数大于两层;根据所述终端上报的包括发射最大层数大于两层的天线能力,向所述终端配置至少一个探测参考信号SRS资源集合。
在该技术方案中,网络侧设备可以接收终端上报的天线能力;其中,天线能力包括:发射最大层数大于两层,进而根据终端上报的包括发射最大层数大于两层的天线能力,向终端配置至少一个探测参考信号SRS资源集合。通过这种方式,终端上报的天线能力包括发射最大层数大于两层,网络侧设备可以为其配置SRS资源集合,从而能够提升上行传输的性能。
第二方面,本公开实施例提供另一种资源配置方法,所述方法由终端执行,所述方法,包括:向网络侧设备上报终端的天线能力;其中,所述天线能力包括:发射最大层数大于两层;接收网络侧设备配置的至少一个SRS资源集合。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中网络侧设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,所述通信装置包括:收发模块,用于接收终端上报的天线能力;其中,所述天线能力包括:发射最大层数大于两层;处理模块,用于根据所述终端上报的包括发射最大层数大于两层的天线能力,向所述终端配置至少一个SRS资源集合。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例 中终端的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
在一种实现方式中,所述通信装置包括:收发模块,用于向网络侧设备上报终端的天线能力;其中,所述天线能力包括:发射最大层数大于两层;处理模块,用于接收网络侧设备配置的至少一个SRS资源集合。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种资源配置系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端所用的指令,当所述指令被执行时,使所述终端执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络侧设备所用的指令,当所述指令被执行时,使所述网络侧设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的计算机程序和数据。该芯 片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络侧设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络侧设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构图;
图2是本公开实施例提供的一种资源配置方法的流程图;
图3是本公开实施例提供的另一种资源配置方法的流程图;
图4是本公开实施例提供的又一种资源配置方法的流程图;
图5是本公开实施例提供的又一种资源配置方法的流程图;
图6是本公开实施例提供的又一种资源配置方法的流程图;
图7是本公开实施例提供的又一种资源配置方法的流程图;
图8是本公开实施例提供的又一种资源配置方法的流程图;
图9是本公开实施例提供的又一种资源配置方法的流程图;
图10是本公开实施例提供的又一种资源配置方法的流程图;
图11是本公开实施例提供的又一种资源配置方法的流程图;
图12是本公开实施例提供的又一种资源配置方法的流程图;
图13是本公开实施例提供的又一种资源配置方法的流程图;
图14是本公开实施例提供的又一种资源配置方法的流程图;
图15是本公开实施例提供的又一种资源配置方法的流程图;
图16是本公开实施例提供的又一种资源配置方法的流程图;
图17是本公开实施例提供的又一种资源配置方法的流程图;
图18是本公开实施例提供的又一种资源配置方法的流程图;
图19是本公开实施例提供的又一种资源配置方法的流程图;
图20是本公开实施例提供的又一种资源配置方法的流程图;
图21是本公开实施例提供的又一种资源配置方法的流程图;
图22是本公开实施例提供的又一种资源配置方法的流程图;
图23是本公开实施例提供的一种3T4R终端的射频结构电路图;
图24是本公开实施例提供的又一种资源配置方法的流程图;
图25是本公开实施例提供的一种3T6R终端的射频结构电路图;
图26是本公开实施例提供的又一种资源配置方法的流程图;
图27是本公开实施例提供的一种3T8R终端的射频结构电路图;
图28是本公开实施例提供的另一种3T8R终端的射频结构电路图;
图29是本公开实施例提供的又一种资源配置方法的流程图;
图30是本公开实施例提供的一种通信装置的结构图;
图31是本公开实施例提供的另一种通信装置的结构图;
图32是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本公开涉及的术语。
1、射频通道,又称射频链路,在终端的上行方向的射频链路可以称为射频发射链路,终端的下行方向上的射频链路可以称为射频接收链路。终端在基带生成的基带信号,经过射频发射链路生成射频信号,将射频信号经过天线发送。类似的,终端从天线接收的信号经过射频接收链路进行接收,到达基带进行处理。射频链路包括射频收发电路、功率放大器、和双工器/滤波器。终端可以接入多个网络侧设备,终端通过多个射频链路与多个网络侧设备进行通信,一个射频链路可以对应一个网络侧设备,例如,终端可以接入2个或4个网络侧设备。具体的,终端可以通过DC的方式接入多个网络侧设备,也可以通过CA的方式接入多个网络侧设备。射频链路可以是集成在射频芯片中,或者也可以与基带处理电路一同集成在同一芯片中。
2、端口,又称天线端口,在网络侧,射频链路和天线可以抽象为端口的概念。当终端具有N个射频链路时,该终端最多支持同时使用N个端口与网络侧设备进行通信。例如,N=2,终端具有两个射频链路,该终端最多支持同时使用两个端口与网络侧设备进行通信,实际应用中,每个射频链路对应一个端口。如果终端使用一个端口与网络侧设备进行通信,则终端可以使用两个射频链路中的任意一个链路对应到这个端口,也可以同时使用两个射频链路模拟成一个端口,这取决于终端侧的具体实现,对网络侧设备而言是透明的,网络侧设备只需要调度终端在哪些端口上发送上行信号。
3、天线能力,天线能力包括:端口数量、层数、射频链路数量、天线数量、最大端口数量、最大层数、最大射频链路数量或最大天线数量等。其中,层数指的是发送数据做预编码的时候,其中包含的互不相关的信号的流数。比如终端使用四个端口发送数据,但是使用该四个端口发送的是相同的数据,或者说是相关的数据,那么可以理解为终端使用该四个端口发送了一流数据,或者说发送了一层数据。再比如,四个端口包括端口0、端口1、端口2和端口3,终端使用端口0和端口1发送相同或相关的一流数据,终端使用端口2和端口3发送相同或相关的另一流数据,那么可以理解为终端发送两层数据。本公开实施例的描述中,涉及到天线能力可以以其中一种表现形式为例进行描述,其方法也可以应用于其它天线能力的表现形式。本公开实施例中当描述“天线能力包括”时,可以替换为“天线能力指示”,两者表述的意思等价。
为了更好的理解本公开实施例公开的一种资源配置方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统10的架构示意图。该通信系统10可包括但不限于一个网络侧设备和一个终端,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络侧设备,两个或两个以上的终端。图1所示的通信系统10以包括一个网络侧设备101和一个终端102为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term  evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络侧设备101是网络侧的一种用于发射或接收信号的实体。例如,网络侧设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络侧设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络侧设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络侧设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端102是用户侧的一种用于接收或发射信号的实体,如手机。终端也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本公开的实施例对终端所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供资源配置方法、装置及存储介质进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种资源配置方法的流程图。
如图2所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S21:接收终端上报的天线能力;其中,天线能力包括:发射最大层数大于两层。
本公开实施例中,终端在进行上行传输之前,或者需要重新上报其天线能力的任何情况下,向网络侧设备上报其天线能力。
其中,发射最大层数为大于两层,发射最大层数可以为三层或者四层或者四层以上。
可以理解的是,层数指的是发送数据做预编码的时候,其中包含的互不相关的信号的流数。比如终端使用四个天线端口发送数据,但是使用该四个天线端口发送的是相同的数据,或者说是相关的数据,那么可以理解为终端使用该四个天线端口发送了一流数据,或者说发送了一层数据。再比如,四个天线端口包括端口0、端口1、端口2和端口3,终端使用端口0和端口1发送相同或相关的一流数据,终端使用端口2和端口3发送相同或相关的另一流数据,那么可以理解为终端发送两层数据。
当然,终端上报的天线能力还可以包括除发射最大层数大于两层的其他能力信息,示例性的:还可以包括天线数量等。需要说明的是,上述示例仅作为示意,不作为对本公开实施例的限制,本公开实施例对此不作具体限制。
S22:根据终端上报的包括发射最大层数大于两层的天线能力,向终端配置至少一个探测参考信号SRS资源集合。
其中,SRS(sounding reference signal,探测参考信号)资源集合中包括SRS资源,SRS资源可以 为终端发送SRS信息的时域资源和/或频域资源。
本公开实施例中,网络侧设备在接收到终端上报的包括发射最大层数大于两层的天线能力之后,根据终端上报的天线能力,向终端配置至少一个SRS资源集合。
可以理解的是,网络侧设备可以向终端配置一个SRS资源集合,或者,向终端配置多个SRS资源集合,而具体的,网络侧设备向终端配置多少个SRS资源集合,其与终端上报的天线能力有关。
相关技术中,终端最大支持两路发射射频通道,网络侧设备向终端配置至少一个SRS资源集合,终端接收SRS资源集合之后,在对应的端口通过最大2路射频发射通道向网络侧设备发送SRS信息,终端最大支持上行传输两层数据,上行传输的数据量小,终端应用灵活性差。本公开实施例中,终端上报的天线能力,包括发射最大层数大于两层,终端能够通过大于2路的射频发射通道向网络侧设备发送SRS信息,从而能够提升上行传输的能力,使得上行传输的数据量增大,终端的应用也更加灵活。
通过实施本公开实施例,网络侧设备可以接收终端上报的天线能力;其中,天线能力包括:发射最大层数大于两层,进而根据终端上报的包括发射最大层数大于两层的天线能力,向终端配置至少一个探测参考信号SRS资源集合。通过这种方式,终端上报的天线能力包括发射最大层数大于两层,网络侧设备可以为其配置SRS资源集合,从而能够提升上行传输的性能,增大上行传输的数据量。
请参见图3,图3是本公开实施例提供的另一种资源配置方法的流程图。
如图3所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S31:接收终端上报的天线能力;其中,天线能力包括:发射最大层数为三层3T。
本公开实施例中,终端在进行上行传输之前,或者需要重新上报其天线能力的任何情况下,向网络侧设备上报其天线能力。
其中,天线能力可以包括发射最大层数为三层3T。
可以理解的是,层数指的是发送数据做预编码的时候,其中包含的互不相关的信号的流数。比如终端使用四个天线端口发送数据,但是使用该四个天线端口发送的是相同的数据,或者说是相关的数据,那么可以理解为终端使用该四个天线端口发送了一流数据,或者说发送了一层数据。再比如,四个天线端口包括端口0、端口1、端口2和端口3,终端使用端口0和端口1发送相同或相关的一流数据,终端使用端口2和端口3发送相同或相关的另一流数据,那么可以理解为终端发送两层数据。本公开实施例中,终端上报的天线能力包括发射最大层数为三层3T。
当然,终端上报的天线能力还可以包括除发射最大层数为三层3T的其他能力信息,示例性的:还可以包括天线数量等。
需要说明的是,上述示例仅作为示意,不作为对本公开实施例的限制,本公开实施例对此不作具体限制。
S32:根据终端上报的包括发射最大层数为三层3T的天线能力,向终端配置至少一个探测参考信号SRS资源集合。
其中,SRS(sounding reference signal,探测参考信号)资源集合中包括SRS资源,SRS资源可以为终端发送SRS信息的时域资源和/或频域资源。
本公开实施例中,网络侧设备在接收到终端上报的包括发射最大层数为三层3T的天线能力之后,根据终端上报的天线能力,向终端配置至少一个SRS资源集合。
可以理解的是,网络侧设备可以向终端配置一个SRS资源集合,或者,向终端配置多个SRS资源集合,而具体的,网络侧设备向终端配置多少个SRS资源集合,其与终端上报的天线能力有关。
本公开实施例中,终端上报的天线能力,包括发射最大层数为三层,终端能够通过3路射频发射通 道向网络侧设备发送SRS信息,从而能够提升上行传输的能力,使得上行传输的数据量增大,终端的应用也更加灵活。请参见图4,图4是本公开实施例提供的又一种资源配置方法的流程图。
如图4所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S41:天线能力,还包括:接收最大层数为四层4R,或者,接收最大层数为六层6R,或者,接收最大层数为八层8R。
可以理解的是,接收最大层数为四层4R,表示终端具备最大接收四层数据的能力;接收最大层数为六层6R,表示终端具备最大接收六层数据的能力;接收最大层数为八层8R,表示终端具备最大接收八层数据的能力。
需要说明的是,S41可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S21与S22和/或S31与S32一起被实施,本公开实施例并不对此做出限定。
本公开实施例中,终端上报的天线能力包括:发射最大层数为三层3T接收最大层数为四层4R,即3T4R;或者发射最大层数为三层3T接收最大层数为六层6R,即3T6R;或者发射最大层数为三层3T接收最大层数为八层8R,即3T8R,以告知网络侧设备其天线能力,以使网络侧设备能够根据终端上报的天线能力,为其配置对应的SRS资源集合。
请参见图5,图5是本公开实施例提供的又一种资源配置方法的流程图。
如图5所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S51:接收终端上报的天线能力;其中,天线能力包括:3T4R。
其中,天线能力包括:3T4R,即发射最大层数为三层3T接收最大层数为四层4R,表示终端具备最大发射三层数据的能力,以及最大接收四层数据的能力。
S52:向终端配置一个包括两个周期SRS资源的SRS资源集合,或者,向终端配置一个包括两个半持续SRS资源的SRS资源集合,或者,向终端配置一个包括两个非周期SRS资源的SRS资源集合,或者,向终端配置一个包括两个以上周期SRS资源的SRS资源集合,或者,向终端配置一个包括两个以上半持续SRS资源的SRS资源集合,或者,向终端配置一个包括两个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T4R的情况下,网络侧设备向终端配置一个SRS资源集合,SRS资源集合中包括两个或两个以上SRS资源,SRS资源可以为周期或者半持续或者非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T4R的情况下,终端具有至少四个天线、三个射频发射通道以及四个射频接收通道。
请参见图6,图6是本公开实施例提供的又一种资源配置方法的流程图。
如图6所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S61:接收终端上报的天线能力;其中,天线能力包括:3T4R。
其中,天线能力包括:3T4R,即发射最大层数为三层3T接收最大层数为四层4R,表示终端具备最大发射三层数据的能力,以及最大接收四层数据的能力。
S62:向终端配置多个包括一个非周期SRS资源的SRS资源集合,和/或,向终端配置多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T4R的情况下,网络侧设备向终端配置多个SRS资源集合,SRS资源集合中包括两个或两个以上SRS资源,SRS资源可以为非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T4R的情况下,终端具有至少四个天线、三个射频发射 通道以及四个射频接收通道。
请参见图7,图7是本公开实施例提供的又一种资源配置方法的流程图。
如图7所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S71:接收终端上报的天线能力;其中,天线能力包括:3T6R。
其中,天线能力包括:3T6R,即发射最大层数为三层3T接收最大层数为六层6R,表示终端具备最大发射三层数据的能力,以及最大接收六层数据的能力。
S72:向终端配置一个包括三个周期SRS资源的SRS资源集合,或者,向终端配置一个包括三个半持续SRS资源的SRS资源集合,或者,向终端配置一个包括三个非周期SRS资源的SRS资源集合,或者,向终端配置一个包括三个以上周期SRS资源的SRS资源集合,或者,向终端配置一个包括三个以上半持续SRS资源的SRS资源集合,或者,向终端配置一个包括三个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T6R的情况下,网络侧设备向终端配置一个SRS资源集合,SRS资源集合中包括三个或三个以上SRS资源,SRS资源可以为周期或者半持续或者非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T6R的情况下,终端具有至少六个天线、三个射频发射通道以及六个射频接收通道。
请参见图8,图8是本公开实施例提供的又一种资源配置方法的流程图。
如图8所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S81:接收终端上报的天线能力;其中,天线能力包括:3T6R。
其中,天线能力包括:3T6R,即发射最大层数为三层3T接收最大层数为六层6R,表示终端具备最大发射三层数据的能力,以及最大接收六层数据的能力。
S82:向终端配置多个包括一个非周期SRS资源的SRS资源集合,和/或,向终端配置多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T6R的情况下,网络侧设备向终端配置多个SRS资源集合,SRS资源集合中包括一个或多个SRS资源,SRS资源可以为非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T6R的情况下,终端具有至少六个天线、三个射频发射通道以及六个射频接收通道。
请参见图9,图9是本公开实施例提供的又一种资源配置方法的流程图。
如图9所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S91:接收终端上报的天线能力;其中,天线能力包括:3T8R。
其中,天线能力包括:3T8R,即发射最大层数为三层3T接收最大层数为八层8R,表示终端具备最大发射三层数据的能力,以及最大接收八层数据的能力。
S92:向终端配置一个包括四个周期SRS资源的SRS资源集合,或者,向终端配置一个包括四个半持续SRS资源的SRS资源集合,或者,向终端配置一个包括四个非周期SRS资源的SRS资源集合,或者,向终端配置一个包括四个以上周期SRS资源的SRS资源集合,或者,向终端配置一个包括四个以上半持续SRS资源的SRS资源集合,或者,向终端配置一个包括四个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T8R的情况下,网络侧设备向终端配置一个SRS资源集合,SRS资源集合中包括四个或四个以上SRS资源,SRS资源可以为周期或者半持续或者非周 期的SRS资源。
可以理解的是,终端上报的天线能力包括3T8R的情况下,终端具有至少八个天线、三个射频发射通道以及八个射频接收通道。
请参见图10,图10是本公开实施例提供的又一种资源配置方法的流程图。
如图10所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S101:接收终端上报的天线能力;其中,天线能力包括:3T8R。
其中,天线能力包括:3T8R,即发射最大层数为三层3T接收最大层数为八层8R,表示终端具备最大发射三层数据的能力,以及最大接收八层数据的能力。
S102:向终端配置多个包括一个非周期SRS资源的SRS资源集合,和/或,向终端配置多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T8R的情况下,网络侧设备向终端配置多个SRS资源集合,SRS资源集合中包括一个或多个SRS资源,SRS资源可以为非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T8R的情况下,终端具有至少八个天线、三个射频发射通道以及八个射频接收通道。
请参见图11,图11是本公开实施例提供的又一种资源配置方法的流程图。
如图11所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S111:向终端配置终端上报的天线能力对应的指示信息;其中,指示信息指示配置的至少一个SRS资源集合。
本公开实施例中,网络侧设备接收到终端上报的天线能力之后,向终端配置其天线能力对应的指示信息,指示信息指示配置的至少一个SRS资源集合。
在一些实施例中,指示信息包括RRC(radio resource control,无线资源控制)信令。
需要说明的是,S111可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S21与S22和/或S31与S22和/或S41和/或S51与S52和/或S61与S62和/或S71与S72和/或S81与S82和/或S91与S92和/或S101与S102一起被实施,本公开实施例并不对此做出限定。
请参见图12,图12是本公开实施例提供的又一种资源配置方法的流程图。
如图12所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S121:向网络侧设备上报终端的天线能力;其中,天线能力包括:发射最大层数大于两层。
本公开实施例中,终端在进行上行传输之前,或者需要重新上报其天线能力的任何情况下,向网络侧设备上报其天线能力。
其中,发射最大层数大于两层,发射最大层数可以为三层或者四层或者四层以上。
可以理解的是,层数指的是发送数据做预编码的时候,其中包含的互不相关的信号的流数。比如终端使用四个天线端口发送数据,但是使用该四个天线端口发送的是相同的数据,或者说是相关的数据,那么可以理解为终端使用该四个天线端口发送了一流数据,或者说发送了一层数据。再比如,四个天线端口包括端口0、端口1、端口2和端口3,终端使用端口0和端口1发送相同或相关的一流数据,终端使用端口2和端口3发送相同或相关的另一流数据,那么可以理解为终端发送两层数据。本公开实施例中,终端上报的天线能力包括发射最大层数为三层3T。
当然,终端上报的天线能力还可以包括除发射最大层数为三层3T的其他能力信息,示例性的:还可以包括天线数量等。需要说明的是,上述示例仅作为示意,不作为对本公开实施例的限制,本公开实 施例对此不作具体限制。
S122:接收网络侧设备配置的至少一个SRS资源集合。
其中,SRS(sounding reference signal,探测参考信号)资源集合中包括SRS资源,SRS资源可以为终端发送SRS信息的时域资源和/或频域资源。
本公开实施例中,网络侧设备在接收到终端上报的包括发射最大层数为三层3T的天线能力之后,根据终端上报的天线能力,向终端配置至少一个SRS资源集合。
可以理解的是,网络侧设备可以向终端配置一个SRS资源集合,或者,向终端配置多个SRS资源集合,而具体的,网络侧设备向终端配置多少个SRS资源集合,其与终端上报的天线能力有关。
相关技术中,终端最大支持两路发射射频通道,网络侧设备向终端配置至少一个SRS资源集合,终端接收SRS资源结合,在对应的端口通过最大2路射频发射通道向网络侧设备发送SRS信息,终端最大支持上行传输两层数据,上行传输的数据量小,终端应用灵活性差。本公开实施例中,终端上报的天线能力,包括发射最大层数大于两层,终端能够通过大于2路的射频发射通道向网络侧设备发送SRS信息,从而能够提升上行传输的能力,使得上行传输的数据量增大,终端的应用也更加灵活。
通过实施本公开实施例,网络侧设备可以接收终端上报的天线能力;其中,天线能力包括:发射最大层数大于两层,进而根据终端上报的包括发射最大层数大于两层的天线能力,向终端配置至少一个探测参考信号SRS资源集合。通过这种方式,终端的天线能力包括发射最大层数大于两层,网络侧设备可以为其配置SRS资源集合,从而能够提升上行传输的性能,增大上行传输的数据量。
请参见图13,图13是本公开实施例提供的又一种资源配置方法的流程图。
如图13所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S131:向网络侧设备上报终端的天线能力;其中,天线能力包括:发射最大层数为三层3T。
本公开实施例中,终端在进行上行传输之前,或者需要重新上报其天线能力的任何情况下,向网络侧设备上报其天线能力。
其中,天线能力可以包括发射最大层数为三层3T。
可以理解的是,层数指的是发送数据做预编码的时候,其中包含的互不相关的信号的流数。比如终端使用四个天线端口发送数据,但是使用该四个天线端口发送的是相同的数据,或者说是相关的数据,那么可以理解为终端使用该四个天线端口发送了一流数据,或者说发送了一层数据。再比如,四个天线端口包括端口0、端口1、端口2和端口3,终端使用端口0和端口1发送相同或相关的一流数据,终端使用端口2和端口3发送相同或相关的另一流数据,那么可以理解为终端发送两层数据。本公开实施例中,终端上报的天线能力包括发射最大层数为三层3T。
当然,终端上报的天线能力还可以包括除发射最大层数为三层3T的其他能力信息,示例性的:还可以包括天线数量等。需要说明的是,上述示例仅作为示意,不作为对本公开实施例的限制,本公开实施例对此不作具体限制。
S132:接收网络侧设备配置的至少一个SRS资源集合。
其中,SRS(sounding reference signal,探测参考信号)资源集合中包括SRS资源,SRS资源可以为终端发送SRS信息的时域资源和/或频域资源。
本公开实施例中,网络侧设备在接收到终端上报的包括发射最大层数为三层3T的天线能力之后,根据终端上报的天线能力,向终端配置至少一个SRS资源集合。
可以理解的是,网络侧设备可以向终端配置一个SRS资源集合,或者,向终端配置多个SRS资源集合,而具体的,网络侧设备向终端配置多少个SRS资源集合,其与终端上报的天线能力有关。
本公开实施例中,终端上报的天线能力,包括发射最大层数为三层,终端能够通过3路射频发射通道向网络侧设备发送SRS信息,从而能够提升上行传输的能力,使得上行传输的数据量增大,终端的应用也更加灵活。请参见图14,图14是本公开实施例提供的另一种资源配置方法的流程图。
如图14所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S141:天线能力,还包括:接收最大层数为四层4R,或者,接收最大层数为六层6R,或者,接收最大层数为八层8R。
可以理解的是,接收最大层数为四层4R,表示终端具备最大接收四层数据的能力;接收最大层数为六层6R,表示终端具备最大接收六层数据的能力;接收最大层数为八层8R,表示终端具备最大接收八层数据的能力。
需要说明的是,S141可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S111与S112和/或S121与S122一起被实施,本公开实施例并不对此做出限定。
本公开实施例中,终端上报的天线能力包括:发射最大层数为三层3T接收最大层数为四层4R,即3T4R;或者发射最大层数为三层3T接收最大层数为六层6R,即3T6R;或者发射最大层数为三层3T接收最大层数为八层8R,即3T8R,以告知网络侧设备其天线能力,以使网络侧设备能够根据终端上报的天线能力,为其配置对应的SRS资源集合。
请参见图15,图15是本公开实施例提供的又一种资源配置方法的流程图。
如图15所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S151:向网络侧设备上报终端的天线能力;其中,天线能力包括:3T4R。
其中,天线能力包括:3T4R,即发射最大层数为三层3T接收最大层数为四层4R,表示终端具备最大发射三层数据的能力,以及最大接收四层数据的能力。
S152:接收网络侧设备配置的一个包括两个周期SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括两个半持续SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括两个非周期SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括两个以上周期SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括两个以上半持续SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括两个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T4R的情况下,网络侧设备向终端配置一个SRS资源集合,SRS资源集合中包括两个或两个以上SRS资源,SRS资源可以为周期或者半持续或者非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T4R的情况下,终端具有至少四个天线、三个射频发射通道以及四个射频接收通道。
请参见图16,图16是本公开实施例提供的又一种资源配置方法的流程图。
如图16所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S161:向网络侧设备上报终端的天线能力;其中,天线能力包括:3T4R。
其中,天线能力包括:3T4R,即发射最大层数为三层3T接收最大层数为四层4R,表示终端具备最大发射三层数据的能力,以及最大接收四层数据的能力。
S162:接收网络侧设备配置的多个包括一个非周期SRS资源的SRS资源集合,和/或,接收网络侧设备配置的多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS 端口。
本公开实施例中,在终端上报的天线能力包括3T4R的情况下,网络侧设备向终端配置多个SRS资源集合,SRS资源集合中包括两个或两个以上SRS资源,SRS资源可以为非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T4R的情况下,终端具有至少四个天线、三个射频发射通道以及四个射频接收通道。
请参见图17,图17是本公开实施例提供的又一种资源配置方法的流程图。
如图17所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S171:向网络侧设备上报终端的天线能力;其中,天线能力包括:3T6R。
其中,天线能力包括:3T6R,即发射最大层数为三层3T接收最大层数为六层6R,表示终端具备最大发射三层数据的能力,以及最大接收六层数据的能力。
S172:接收网络侧设备配置的一个包括三个周期SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括三个半持续SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括三个非周期SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括三个以上周期SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括三个以上半持续SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括三个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T6R的情况下,网络侧设备向终端配置一个SRS资源集合,SRS资源集合中包括三个或三个以上SRS资源,SRS资源可以为周期或者半持续或者非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T6R的情况下,终端具有至少六个天线、三个射频发射通道以及六个射频接收通道。
请参见图18,图18是本公开实施例提供的又一种资源配置方法的流程图。
如图18所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S181:向网络侧设备上报终端的天线能力;其中,天线能力包括:3T6R。
其中,天线能力包括:3T6R,即发射最大层数为三层3T接收最大层数为六层6R,表示终端具备最大发射三层数据的能力,以及最大接收六层数据的能力。
S182:接收网络侧设备配置的多个包括一个非周期SRS资源的SRS资源集合,和/或,接收网络侧设备配置的多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T6R的情况下,网络侧设备向终端配置多个SRS资源集合,SRS资源集合中包括一个或多个SRS资源,SRS资源可以为非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T6R的情况下,终端具有至少六个天线、三个射频发射通道以及六个射频接收通道。
请参见图19,图19是本公开实施例提供的又一种资源配置方法的流程图。
如图19所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S191:向网络侧设备上报终端的天线能力;其中,天线能力包括:3T8R。
其中,天线能力包括:3T8R,即发射最大层数为三层3T接收最大层数为八层8R,表示终端具备最大发射三层数据的能力,以及最大接收八层数据的能力。
S192:接收网络侧设备配置的一个包括四个周期SRS资源的SRS资源集合,或者,接收网络侧设 备配置的一个包括四个半持续SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括四个非周期SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括四个以上周期SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括四个以上半持续SRS资源的SRS资源集合,或者,接收网络侧设备配置的一个包括四个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T8R的情况下,网络侧设备向终端配置一个SRS资源集合,SRS资源集合中包括四个或四个以上SRS资源,SRS资源可以为周期或者半持续或者非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T8R的情况下,终端具有至少八个天线、三个射频发射通道以及八个射频接收通道。
请参见图20,图20是本公开实施例提供的又一种资源配置方法的流程图。
如图20所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S201:向网络侧设备上报终端的天线能力;其中,天线能力包括:3T8R。
其中,天线能力包括:3T8R,即发射最大层数为三层3T接收最大层数为八层8R,表示终端具备最大发射三层数据的能力,以及最大接收八层数据的能力。
S202:接收网络侧设备配置的多个包括一个非周期SRS资源的SRS资源集合,和/或,接收网络侧设备配置的多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
本公开实施例中,在终端上报的天线能力包括3T8R的情况下,网络侧设备向终端配置多个SRS资源集合,SRS资源集合中包括一个或多个SRS资源,SRS资源可以为非周期的SRS资源。
可以理解的是,终端上报的天线能力包括3T8R的情况下,终端具有至少八个天线、三个射频发射通道以及八个射频接收通道。
请参见图21,图21是本公开实施例提供的又一种资源配置方法的流程图。
如图21所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S211:向网络侧设备发送SRS信息。
本公开实施例中,在终端向网络侧设备上报其天线能力,网络侧设备根据终端上报的天线能力,向终端配置至少一个SRS资源集合之后,终端根据接收到的SRS资源集合,向网络侧设备发送SRS信息,以告知网络侧设备进行SRS的测量。
需要说明的是,S211可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S121与S122和/或S131与S132和/或S141和/或S151与S152和/或S161与S162和/或S171与S172和/或S181与S182和/或S191与S192和/或S201与S202一起被实施,本公开实施例并不对此做出限定。
请参见图22,图22是本公开实施例提供的又一种资源配置方法的流程图。
如图22所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S221:在终端上报的天线能力包括3T4R的情况下,终端包括四个天线;其中,四个天线中的两个天线分别使用一个射频通道发射SRS信息,其余两个天线通过切换的方式共用一个射频通道发送SRS信息。
本公开实施例中,在终端上报的天线能力包括3T4R的情况下,终端包括四个天线和三个射频发射通道,其中,四个天线中的两个天线分别使用一个射频发射通道发射SRS信息,另外两个天线通过切 换的方式共用一个射频发射通道发送SRS信息。
示例性实施例中,如图23所示,图23是本公开实施例提供的一种3T4R终端发射SRS信息的电路图。
如图23所示,终端上报的天线能力包括3T4R的情况下,终端具有至少四个天线(参见图23中的天线1,天线2,天线3,天线4)、三个射频发射通道(参见图23中的Tx1,Tx2,Tx3)以及四个射频接收通道(参见图23中的四个Rx)。
示例性实施例中,网络侧设备配置一个SRS资源集合,SRS资源集合中包括四个周期的SRS资源,其中,四个SRS资源各有一个端口,这四个SRS资源在一个时隙slot内发送,且这四个SRS资源可以由四个天线(天线1,天线2,天线3,天线4)分别发送,例如:通过Tx1,Tx2,Tx3分别由天线1,天线3和天线4发送三个SRS资源的SRS信息之后,Tx1切换至天线2,通过Tx1由天线2发送一个SRS资源的SRS信息。
另一示例性实施例中,网络侧设备配置一个SRS资源集合,SRS资源集合中包括三个周期的SRS资源,其中,三个SRS资源中,一个SRS资源有两个端口,另外两个SRS资源各有一个端口,有两个端口的SRS资源的SRS信息可以通过两个射频发射通道由两个天线发送,另外两个SRS资源的SRS信息可以分别通过另外两个射频发送通道由另外两个天线发送。或者,SRS资源集合中包括两个周期的SRS资源,其中,两个SRS资源中,每个SRS资源有两个端口,每个SRS资源的SRS信息可以通过两个射频发射通道由两个天线发送。
本公开实施例中,在网络侧设备配置一个SRS资源集合,SRS资源集合中还可以是包括四个半持续的SRS资源,或者SRS资源集合中还可以是包括四个非周期的SRS资源,或者SRS资源集合中还可以是包括三个半持续的SRS资源,或者SRS资源集合中还可以是包括三个非周期的SRS资源,或者SRS资源集合中还可以是包括两个半持续的SRS资源,或者SRS资源集合中还可以是包括两个非周期的SRS资源等等,相应的,终端发送SRS资源的SRS信息的方式可参见上述示例中终端发送周期的SRS资源的SRS信息的方式,本公开实施例在此不再赘述。
另一示例性实施例中,网络侧设备配置两个SRS资源集合,两个SRS资源集合中包括有四个非周期的SRS资源,四个SRS资源在两个时隙slot内发送,四个SRS资源由四个天线(天线1,天线2,天线3,天线4)分别发送,其中,两个SRS资源集合可以为每个SRS资源集合各有两个非周期的SRS资源,每个SRS资源包括一个端口,每个SRS资源集合中的两个非周期的SRS资源的SRS信息分别通过两个射频发送通道由两个天线发送;或者,一个SRS资源集合中有一个非周期的SRS资源,另一个SRS资源集合中有三个非周期的SRS资源,每个资源包括一个端口,一个SRS资源集合的一个非周期的SRS资源的SRS信息通过一个射频发送通道由一个天线发送,另一个SRS资源集合中的三个非周期的SRS资源的SRS信息分别通过三个射频发送通道由三个天线发送。
本公开实施例中SRS资源与端口的组合还可以为上述示例外的其他组合,例如:网络侧设备配置三个包括一个和/或多个非周期的SRS资源的SRS资源集合或者网络侧设备配置四个包括一个和/或多个非周期的SRS资源的SRS资源集合等,本公开实施例对此不作具体限制。
需要说明的是,上述示例中,SRS资源与端口的组合仅作为示意,并不作为对本公开实施例的限制,本公开实施例中SRS资源与端口的组合还可以为上述示例外的其他组合,本公开实施例对此不作具体限制。
还需要说明的是,S231可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S121与S122和/或S131与S132和/或S141和/或S151与S152和/ 或S161与S162和/或S171与S172和/或S181与S182和/或S191与S192和/或S201与S202一起被实施,本公开实施例并不对此做出限定。
请参见图24,图24是本公开实施例提供的又一种资源配置方法的流程图。
如图24所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S241:在终端上报的天线能力包括3T6R的情况下,终端包括六个天线;其中,六个天线中每两个天线通过切换的方式共用一个射频通道发送SRS信息。
本公开实施例中,在终端上报的天线能力包括3T6R的情况下,终端包括六个天线和三个射频发射通道,其中,六个天线中每两个天线通过切换的方式共用一个射频发射通道发送SRS信息。
示例性实施例中,如图25所示,图25是本公开实施例提供的一种3T6R终端发射SRS信息的电路图。
如图25所示,终端上报的天线能力包括3T6R的情况下,终端具有至少六个天线(参见图25中的天线1,天线2,天线3,天线4,天线5,天线6)、三个射频发射通道(参见图25中的Tx1,Tx2,Tx3)以及六个射频接收通道(参见图25中的六个Rx)。
示例性实施例中,网络侧设备配置一个SRS资源集合,一个SRS资源集合中包括有六个周期的SRS资源,六个SRS资源各有一个端口,六个SRS资源在一个时隙slot内发送,六个SRS资源由六个天线(天线1,天线2,天线3,天线4,天线5,天线6)分别发送给终端,例如:六个SRS资源中的三个SRS资源的SRS信息通过三个射频发射通道(Tx1,Tx2,Tx3)由三个天线(天线1,天线3,天线5)发送,另外三个SRS资源的SRS信息通过三个射频发射通道(Tx1,Tx2,Tx3)由另外三个天线(天线2,天线4,天线6)发送。
另一示例性实施例中,网络侧设备配置一个SRS资源集合,一个SRS资源集合中包括有三个周期的SRS资源,三个SRS资源各有两个端口;或者,网络侧设备配置一个SRS资源集合,一个SRS资源集合中包括有四个周期的SRS资源,四个SRS资源中的两个SRS资源各有两个端口,另外两个SRS资源各有一个端口。
本公开实施例中,在网络侧设备配置一个SRS资源集合,SRS资源集合中还可以是包括六个半持续的SRS资源,或者SRS资源集合中还可以是包括六个非周期的SRS资源,或者SRS资源集合中还可以是包括三个半持续的SRS资源,或者SRS资源集合中还可以是包括三个非周期的SRS资源,或者SRS资源集合中还可以是包括四个半持续的SRS资源,或者SRS资源集合中还可以是包括四个非周期的SRS资源等等,相应的,终端发送SRS资源的SRS信息的方式可参见上述示例中终端发送周期的SRS资源的SRS信息的方式,本公开实施例在此不再赘述。
另一示例性实施例中,网络侧设备配置两个SRS资源集合,两个SRS资源集合中包括有六个非周期的SRS资源,六个SRS资源在两个时隙slot内发送,六个SRS资源的SRS信息由六个天线(天线1,天线2,天线3,天线4,天线5,天线6)分别发送,其中,两个SRS资源集合可以为每个SRS资源集合各有三个非周期的SRS资源,每个SRS资源包括一个端口,每个SRS资源集合中的三个非周期的SRS资源的SRS信息分别通过三个射频发送通道由三个天线发送;或者,两个SRS资源集合可以为一个SRS资源集合中有两个非周期的SRS资源,另一个SRS资源集合中有四个非周期的SRS资源,每个SRS资源包括一个端口。
另一示例性实施例中,网络侧设备配置三个包括一个和/或多个非周期SRS资源的SRS资源集合,每个SRS资源集合中包括有一个非周期的SRS资源,每个SRS资源包括两个端口,三个SRS资源集合在三个时隙slot内发送。
本公开实施例中SRS资源与端口的组合还可以为上述示例外的其他组合,例如:网络侧设备配置四个包括一个和/或多个非周期SRS资源的SRS资源集合或者网络侧设备配置五个包括一个和/或多个非周期SRS资源的SRS资源集合或者网络侧设备配置六个包括一个和/或多个非周期SRS资源的SRS资源集合等。
需要说明的是,上述示例中,SRS资源与端口的组合仅作为示意,并不作为对本公开实施例的限制,本公开实施例中SRS资源与端口的组合还可以为上述示例外的其他组合,本公开实施例对此不作具体限制。
还需要说明的是,S241可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S121与S122和/或S131与S132和/或S141和/或S151与S152和/或S161与S162和/或S171与S172和/或S181与S182和/或S191与S192和/或S201与S202一起被实施,本公开实施例并不对此做出限定。
请参见图26,图26是本公开实施例提供的又一种资源配置方法的流程图。
如图26所示,该方法由终端执行,该方法可以包括但不限于如下步骤:
S261:在终端上报的天线能力包括3T8R的情况下,终端包括八个天线,八个天线划分为三个天线组,每个天线组包括至少两个天线,每个天线组的至少两个天线通过切换的方式共用一个射频通道发送SRS信息。
本公开实施例中,在终端上报的天线能力包括3T8R的情况下,终端包括八个天线和三个射频发射通道,其中,八个天线划分为三个天线组,每个天线组包括至少两个天线,每个天线组的至少两个天线通过切换的方式共用一个射频发射通道发送SRS信息。
示例性实施例中,如图27所示,图27是本公开实施例提供的一种3T8R终端发射SRS信息的电路图。
如图27所示,终端上报的天线能力包括3T8R的情况下,终端具有至少八个天线(参见图27中的天线1,天线2,天线3,天线4,天线5,天线6,天线7,天线8)、三个射频发射通道(参见图27中的Tx1,Tx2,Tx3)以及八个射频接收通道(参见图27中的八个Rx)。
本公开实施例中,网络侧设备配置一个SRS资源集合,一个SRS资源集合中包括有八个周期的SRS资源,八个SRS资源各有一个端口,八个SRS资源在一个时隙slot内发送,八个SRS资源的SRS信息由八个天线(天线1,天线2,天线3,天线4,天线5,天线6,天线7,天线8)分别发送给终端,例如:三个SRS资源的SRS信息通过三个射频发射通道(Tx1,Tx2,Tx3)由三个天线(天线1,天线4,天线7)发送,三个SRS资源的SRS信息通过三个射频发射通道(Tx1,Tx2,Tx3)由三个天线(天线2,天线5,天线8)发送,剩下的两个SRS资源的SRS信息通过两个射频发射通道(Tx1,Tx2)由两个天线(天线3,天线6)发送。
另一示例性实施例中,如图28所示,图28是本公开实施例提供的另一种3T8R终端发射SRS信息的电路图。
如图28所示,终端上报的天线能力包括3T8R的情况下,终端具有至少八个天线(参见图28中的天线1,天线2,天线3,天线4,天线5,天线6,天线7,天线8)、三个射频发射通道(参见图28中的Tx1,Tx2,Tx3)以及四个射频接收通道(参见图28中的八个Rx)。
本公开实施例中,网络侧设备配置一个SRS资源集合,一个SRS资源集合中包括有八个周期的SRS资源,八个SRS资源各有一个端口,八个SRS资源在一个时隙slot内发送,八个SRS资源的SRS信息由八个天线(天线1,天线2,天线3,天线4,天线5,天线6,天线7,天线8)分别发送给终端,例如: 三个SRS资源的SRS信息通过三个射频发射通道(Tx1,Tx2,Tx3)由三个天线(天线1,天线3,天线5)发送,三个SRS资源的SRS信息通过三个射频发射通道(Tx1,Tx2,Tx3)由三个天线(天线2,天线4,天线6)发送,剩下的两个SRS资源通过一个射频发射通道(Tx3)分别由另外两个天线(天线7,天线8)发送。
另一示例性实施例中,网络侧设备配置一个SRS资源集合,一个SRS资源集合中包括有四个周期的SRS资源,四个SRS资源各有两个端口;或者,网络侧设备配置一个SRS资源集合,一个SRS资源集合中包括有六个周期的SRS资源,六个SRS资源中的两个SRS资源各有两个端口,另外四个SRS资源各有一个端口。
本公开实施例中,在网络侧设备配置一个SRS资源集合,SRS资源集合中还可以是包括八个半持续的SRS资源,或者SRS资源集合中还可以是包括八个非周期的SRS资源,或者SRS资源集合中还可以是包括四个半持续的SRS资源,或者SRS资源集合中还可以是包括四个非周期的SRS资源,或者SRS资源集合中还可以是包括六个半持续的SRS资源,或者SRS资源集合中还可以是包括六个非周期的SRS资源等等,相应的,终端发送SRS资源的SRS信息的方式可参见上述示例中终端发送周期的SRS资源的SRS信息的方式,本公开实施例在此不再赘述。
另一示例性实施例中,网络侧设备配置两个SRS资源集合,两个SRS资源集合中包括有八个非周期的SRS资源,八个SRS资源在两个时隙slot内发送,八个SRS资源由八个天线(天线1,天线2,天线3,天线4,天线5,天线6,天线7,天线8)分别发送,其中,两个SRS资源集合可以为每个SRS资源集合各有四个非周期的SRS资源,每个SRS资源包括一个端口,每个SRS资源集合中的四个非周期的SRS资源分别通过四个射频接收通道由四个天线发送;或者,两个SRS资源集合可以为一个SRS资源集合中有三个非周期的SRS资源,另一个SRS资源集合中有五个非周期的SRS资源,每个SRS资源包括一个端口。
另一示例性实施例中,网络侧设备配置四个SRS资源集合,每个SRS资源集合中包括有一个非周期的SRS资源,每个SRS资源包括两个端口,四个SRS资源集合在四个时隙slot内发送。
本公开实施例中SRS资源与端口的组合还可以为上述示例外的其他组合,例如:网络侧设备配置网络侧设备配置五个包括一个和/或多个非周期的SRS资源的SRS资源集合或者网络侧设备配置六个包括一个和/或多个非周期的SRS资源的SRS资源集合或者七个包括一个和/或多个非周期的SRS资源的SRS资源集合或者八个包括一个和/或多个非周期的SRS资源的SRS资源集合等。
需要说明的是,上述示例中,SRS资源与端口的组合仅作为示意,并不作为对本公开实施例的限制,本公开实施例中SRS资源与端口的组合还可以为上述示例外的其他组合,本公开实施例对此不作具体限制。
还需要说明的是,S261可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S121与S122和/或S131与S132和/或S141和/或S151与S152和/或S161与S162和/或S171与S172和/或S181与S182和/或S191与S192和/或S201与S202一起被实施,本公开实施例并不对此做出限定。
请参见图29,图29是本公开实施例提供的又一种资源配置方法的流程图。
如图29所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S291:接收网络侧设备的指示信息;其中,所述指示信息指示配置的至少一个SRS资源集合。
本公开实施例中,网络侧设备接收到终端上报的天线能力之后,向终端配置其天线能力对应的指示信息,指示信息指示配置的至少一个SRS资源集合。
在一些实施例中,指示信息包括RRC(radio resource control,无线资源控制)信令。
需要说明的是,S291可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S121与S122和/或S131与S132和/或S141和/或S151与S152和/或S161与S162和/或S171与S172和/或S181与S182和/或S191与S192和/或S201与S202和/或S211和/或S221和/或S241和/或S261一起被实施,本公开实施例并不对此做出限定。
上述本公开提供的实施例中,分别从网络侧设备、终端的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和终端可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图30,为本公开实施例提供的一种通信装置1的结构示意图。图30所示的通信装置1可包括收发模块11和处理模块12。收发模块11可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块11可以实现发送功能和/或接收功能。
通信装置1可以是终端,也可以是终端中的装置,还可以是能够与终端匹配使用的装置。或者,通信装置1可以是网络侧设备,也可以是网络侧设备中的装置,还可以是能够与网络侧设备匹配使用的装置。
通信装置1为网络侧设备:
该装置,包括:收发模块11,用于接收终端上报的天线能力;其中,天线能力包括:发射最大层数大于两层;处理模块12,用于根据终端上报的包括发射最大层数大于两层的天线能力,向终端配置至少一个SRS资源集合。
通信装置1为终端:
该装置,包括:收发模块11,用于向网络侧设备上报终端的天线能力;其中,天线能力包括:发射最大层数大于两层;处理模块12,用于接收网络侧设备配置的至少一个SRS资源集合。
关于上述实施例中的通信装置1,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。本公开上述实施例中提供的通信装置1,与上面一些实施例中提供的资源配置方法取得相同或相似的有益效果,此处不再赘述。
请参见图31,图31是本公开实施例提供的另一种通信装置1000的结构示意图。通信装置1000可以是网络侧设备,也可以是终端,也可以是支持网络侧设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端实现上述方法的芯片、芯片系统、或处理器等。该通信装置1000可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以是网络侧设备,也可以是终端,也可以是支持网络侧设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1000中还可以包括一个或多个存储器1002,其上可以存有计算机程序1004,存储器1002执行所述计算机程序1004,以使得通信装置1000执行上述方法实施例中描述的方法。可选的,所述存储器1002中还可以存储有数据。通信装置1000和存储器1002可以单独设置,也可以集成 在一起。
可选的,通信装置1000还可以包括收发器1005、天线1006。收发器1005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1000中还可以包括一个或多个接口电路1007。接口电路1007用于接收代码指令并传输至处理器1001。处理器1001运行所述代码指令以使通信装置1000执行上述方法实施例中描述的方法。
通信装置1000为网络侧设备:收发器1005用于执行图2中的S21;图3中的S31;图4中的S41;图5中的S51;图6中的S61;图7中的S71;图8中的S81;图9中的S91;图10中的S101;图11中的S111;处理器1001用于执行图2中的S22;图3中的S32;图5中的S52;图6中的S62;图7中的S72;图8中的S82;图9中的S92;图10中的S102。
通信装置1000为终端:收发器1005用于执行图12中的S121;图13中的S131;图14中的S141;图15中的S151;图16中的S161;图17中的S171;图18中的S181;图19中的S191;图20中的S201;;图21中的S211图22中的S221;图24中的S241;图26中的S261;图29中的S291;处理器1001用于执行图12中的S122;图13中的S132;图15中的S152;图16中的S162;图17中的S172;图18中的S182;图19中的S192;图20中的S202。
在一种实现方式中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1001可以存有计算机程序1003,计算机程序1003在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是终端,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图31的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,请参见图32,为本公开实施例中提供的一种芯片的结构图。
芯片1100包括处理器1101和接口1103。其中,处理器1101的数量可以是一个或多个,接口1103的数量可以是多个。
对于芯片用于实现本公开实施例中终端的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述的资源配置方法。
对于芯片用于实现本公开实施例中网络侧设备的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述的资源配置方法。
可选的,芯片1100还包括存储器1102,存储器1102用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种资源配置系统,该系统包括前述图30实施例中作为终端的通信装置和作为网络侧设备的通信装置,或者,该系统包括前述图31实施例中作为终端的通信装置和作为网络侧设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开 不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种资源配置方法,其特征在于,所述方法由网络侧设备执行,所述方法,包括:
    接收终端上报的天线能力;其中,所述天线能力包括:发射最大层数大于两层;
    根据所述终端上报的包括发射最大层数大于两层的天线能力,向所述终端配置至少一个探测参考信号SRS资源集合。
  2. 根据权利要求1所述的方法,其特征在于,所述发射最大层数为三层3T。
  3. 根据权利要求2所述的方法,其特征在于,所述天线能力,还包括:接收最大层数为四层4R,或者,接收最大层数为六层6R,或者,接收最大层数为八层8R。
  4. 根据权利要求3所述的方法,其特征在于,所述向所述终端配置至少一个SRS资源集合,包括:
    在所述终端上报的所述天线能力包括3T4R的情况下,
    向所述终端配置一个包括两个周期SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括两个半持续SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括两个非周期SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括两个以上周期SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括两个以上半持续SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括两个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  5. 根据权利要求3所述的方法,其特征在于,所述向所述终端配置至少一个SRS资源集合,包括:
    在所述终端上报的所述天线能力包括3T4R的情况下,
    向所述终端配置多个包括一个非周期SRS资源的SRS资源集合,
    和/或,向所述终端配置多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  6. 根据权利要求3所述的方法,其特征在于,所述向所述终端配置至少一个SRS资源集合,包括:
    在所述终端上报的所述天线能力包括3T6R的情况下,
    向所述终端配置一个包括三个周期SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括三个半持续SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括三个非周期SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括三个以上周期SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括三个以上半持续SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括三个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  7. 根据权利要求3所述的方法,其特征在于,所述向所述终端配置至少一个SRS资源集合,包括:
    在所述终端上报的所述天线能力包括3T6R的情况下,
    向所述终端配置多个包括一个非周期SRS资源的SRS资源集合,
    和/或,向所述终端配置多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  8. 根据权利要求3所述的方法,其特征在于,所述向所述终端配置至少一个SRS资源集合,包括:
    在所述终端上报的所述天线能力包括3T8R的情况下,
    向所述终端配置一个包括四个周期SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括四个半持续SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括四个非周期SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括四个以上周期SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括四个以上半持续SRS资源的SRS资源集合,
    或者,向所述终端配置一个包括四个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  9. 根据权利要求3所述的方法,其特征在于,所述向所述终端配置至少一个SRS资源集合,包括:
    在所述终端上报的所述天线能力包括3T8R的情况下,
    向所述终端配置多个包括一个非周期SRS资源的SRS资源集合,
    和/或,向所述终端配置多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述根据所述终端上报的包括发射最大层数大于两层的天线能力,向所述终端配置至少一个探测参考信号SRS资源集合,包括:
    向所述终端配置所述终端上报的天线能力对应的指示信息;其中,所述指示信息指示配置的至少一个SRS资源集合。
  11. 根据权利要求10所述的方法,其特征在于,所述指示信息,包括:无线资源控制RRC信令。
  12. 一种资源配置方法,其特征在于,所述方法由终端执行,所述方法,包括:
    向网络侧设备上报终端的天线能力;其中,所述天线能力包括:发射最大层数大于两层;
    接收网络侧设备配置的至少一个SRS资源集合。
  13. 根据权利要求12所述的方法,其特征在于,所述发射最大层数为三层3T。
  14. 根据权利要求13所述的方法,其特征在于,所述天线能力,还包括:接收最大层数为四层4R,或者,接收最大层数为六层6R,或者,接收最大层数为八层8R。
  15. 根据权利要求14所述的方法,其特征在于,所述接收网络侧设备配置的至少一个SRS资源集合,包括:
    在所述天线能力包括3T4R的情况下,
    接收所述网络侧设备配置的一个包括两个周期SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括两个半持续SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括两个非周期SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括两个以上周期SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括两个以上半持续SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括两个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  16. 根据权利要求14所述的方法,其特征在于,所述接收网络侧设备配置的至少一个SRS资源集合,包括:
    在所述天线能力包括3T4R的情况下,
    接收所述网络侧设备配置的多个包括一个非周期SRS资源的SRS资源集合,
    和/或,接收所述网络侧设备配置的多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  17. 根据权利要求14所述的方法,其特征在于,所述接收网络侧设备配置的至少一个SRS资源集合,包括:
    在所述天线能力包括3T6R的情况下,
    接收所述网络侧设备配置的一个包括三个周期SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括三个半持续SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括三个非周期SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括三个以上周期SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括三个以上半持续SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括三个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  18. 根据权利要求14所述的方法,其特征在于,所述接收网络侧设备配置的至少一个SRS资源集合,包括:
    在所述天线能力包括3T6R的情况下,
    接收所述网络侧设备配置的多个包括一个非周期SRS资源的SRS资源集合,
    和/或,接收所述网络侧设备配置的多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  19. 根据权利要求14所述的方法,其特征在于,所述接收网络侧设备配置的至少一个SRS资源集合,包括:
    在所述天线能力包括3T8R的情况下,
    接收所述网络侧设备配置的一个包括四个周期SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括四个半持续SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括四个非周期SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括四个以上周期SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括四个以上半持续SRS资源的SRS资源集合,
    或者,接收所述网络侧设备配置的一个包括四个以上非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  20. 根据权利要求14所述的方法,其特征在于,所述接收网络侧设备配置的至少一个SRS资源集合,包括:
    在所述天线能力包括3T8R的情况下,
    接收所述网络侧设备配置的多个包括一个非周期SRS资源的SRS资源集合,
    和/或,接收所述网络侧设备配置的多个包括多个非周期SRS资源的SRS资源集合;其中,每个SRS资源包括一个或两个SRS端口。
  21. 根据权利要求14至20中任一项所述的方法,其特征在于,所述方法,还包括:
    向网络侧设备发送SRS信息。
  22. 根据权利要求21所述的方法,其特征在于,所述向网络侧设备发送SRS信息,包括:
    在所述终端上报的所述天线能力包括3T4R的情况下,所述终端包括四个天线;其中,四个天线中的两个天线分别使用一个射频通道发射SRS信息,另外两个天线通过切换的方式共用一个射频通道发送SRS信息。
  23. 根据权利要求21所述的方法,其特征在于,所述向网络侧设备发送SRS信息,包括:
    在所述终端上报的所述天线能力包括3T6R的情况下,所述终端包括六个天线;其中,六个天线中每两个天线通过切换的方式共用一个射频通道发送SRS信息。
  24. 根据权利要求21所述的方法,其特征在于,所述向网络侧设备发送SRS信息,包括:
    在所述终端上报的所述天线能力包括3T8R的情况下,所述终端包括八个天线,八个天线划分为三个天线组,每个所述天线组包括至少两个天线,每个所述天线组的至少两个天线通过切换的方式共用一个射频通道发送SRS信息。
  25. 根据权利要求12至24中任一项所述的方法,其特征在于,所述接收网络侧设备配置的至少一个SRS资源集合,包括:
    接收网络侧设备的指示信息;其中,所述指示信息指示配置的至少一个SRS资源集合。
  26. 根据权利要求25所述的方法,其特征在于,所述指示信息,包括:RRC信令。
  27. 一种通信装置,其特征在于,包括:
    收发模块,用于接收终端上报的天线能力;其中,所述天线能力包括:发射最大层数大于两层;
    处理模块,用于根据所述终端上报的包括发射最大层数大于两层的天线能力,向所述终端配置至少 一个SRS资源集合。
  28. 一种通信装置,其特征在于,包括:
    收发模块,用于向网络侧设备上报终端的天线能力;其中,所述天线能力包括:发射最大层数大于两层;
    处理模块,用于接收网络侧设备配置的至少一个SRS资源集合。
  29. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至11中任一项所述的方法。
  30. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求12至26中任一项所述的方法。
  31. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至11中任一项所述的方法。
  32. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求12至26中任一项所述的方法。
  33. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至11中任一项所述的方法被实现。
  34. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求12至26中任一项所述的方法被实现。
PCT/CN2021/121715 2021-09-29 2021-09-29 资源配置方法、装置及存储介质 WO2023050151A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/121715 WO2023050151A1 (zh) 2021-09-29 2021-09-29 资源配置方法、装置及存储介质
CN202180002951.0A CN116195216A (zh) 2021-09-29 2021-09-29 资源配置方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121715 WO2023050151A1 (zh) 2021-09-29 2021-09-29 资源配置方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023050151A1 true WO2023050151A1 (zh) 2023-04-06

Family

ID=85781032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121715 WO2023050151A1 (zh) 2021-09-29 2021-09-29 资源配置方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN116195216A (zh)
WO (1) WO2023050151A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803253A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 一种信号传输方法、终端及网络设备
CN111510269A (zh) * 2019-01-11 2020-08-07 华为技术有限公司 一种通信方法及装置
CN112564871A (zh) * 2019-09-26 2021-03-26 维沃移动通信有限公司 Srs轮发配置信息的上报、配置、终端及网络侧设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803253A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 一种信号传输方法、终端及网络设备
CN111510269A (zh) * 2019-01-11 2020-08-07 华为技术有限公司 一种通信方法及装置
CN112564871A (zh) * 2019-09-26 2021-03-26 维沃移动通信有限公司 Srs轮发配置信息的上报、配置、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Discussion on SRS enhancement", 3GPP DRAFT; R1-2103155, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177955 *

Also Published As

Publication number Publication date
CN116195216A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023159449A1 (zh) 数据传输方法和装置
WO2023092467A1 (zh) 一种智能中继的波束指示方法及装置
WO2023070586A1 (zh) 物理下行共享信道pdsch配置方法及装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023050234A1 (zh) 一种探测参考信号srs资源的调整方法及其装置
WO2023050151A1 (zh) 资源配置方法、装置及存储介质
WO2023050152A1 (zh) 终端能力上报方法、装置及存储介质
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2023082287A1 (zh) 一种信息的传输方法及其装置
WO2023122990A1 (zh) 物理随机接入信道prach的传输方法和装置
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023044621A1 (zh) 一种波束测量和上报的方法及其装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2024036519A1 (zh) 一种侧行链路pdcp复用的激活方法及装置
WO2023065326A1 (zh) 一种通信模式的确定方法及其装置
WO2023065325A1 (zh) 基于轨道角动量的共享信道传输及装置
WO2023039770A1 (zh) 一种用于天线切换的探测参考信号srs触发方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021958741

Country of ref document: EP

Effective date: 20240429