WO2023092467A1 - 一种智能中继的波束指示方法及装置 - Google Patents

一种智能中继的波束指示方法及装置 Download PDF

Info

Publication number
WO2023092467A1
WO2023092467A1 PCT/CN2021/133573 CN2021133573W WO2023092467A1 WO 2023092467 A1 WO2023092467 A1 WO 2023092467A1 CN 2021133573 W CN2021133573 W CN 2021133573W WO 2023092467 A1 WO2023092467 A1 WO 2023092467A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
link
information
beams
relay
Prior art date
Application number
PCT/CN2021/133573
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180004107.1A priority Critical patent/CN116508373A/zh
Priority to PCT/CN2021/133573 priority patent/WO2023092467A1/zh
Publication of WO2023092467A1 publication Critical patent/WO2023092467A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a beam indication method and device for an intelligent relay.
  • a smart repeater or a smart metasurface (reconfigurable intelligence surface, RIS) is usually used to expand the coverage of a cell.
  • the smart repeater or RIS needs to be responsible for the feedback link (feeder link) with the network equipment, also known as the backhaul link (backhaul link), and the service link with the terminal equipment.
  • Embodiments of the present disclosure provide a beam indication method and device for an intelligent relay, and the relay can only send and receive information according to the beam indicated by the network device using the corresponding beam.
  • an embodiment of the present disclosure provides a beam indication method for an intelligent relay, the method is executed by a network device, and the method includes: scrambling the downlink control information DCI by using a preset wireless network temporary identifier RNTI, wherein the The DCI is at least used to indicate the information of the beam to be used by the intelligent relay; and the scrambled DCI is sent to the intelligent relay.
  • the network device scrambles the DCI used to indicate the beam to be used by the smart relay through the preset wireless network temporary identifier RNTI, and then sends the scrambled DCI to the smart relay. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay.
  • the use provides conditions for expanding the coverage of the serving cell.
  • the beam information includes at least one of the following:
  • the identifier of the beam is any of the following:
  • An identifier of a group of beams wherein two beams in the group of beams respectively correspond to a service link and a feedback link;
  • the DCI is scrambled by using the preset RNTI.
  • the DCI is scrambled by using the cell radio network temporary identifier C-RNTI.
  • the beam usage time information is at least one of the following: the starting position of the beam, the usage duration of the beam, and the sequence number of the time domain scheduling table corresponding to the beam.
  • Radio resource control RRC message Sending a radio resource control RRC message, wherein the RRC includes at least one time-domain scheduling table.
  • the DCI further includes frequency domain information for indicating the beam to be used by the smart relay.
  • an embodiment of the present disclosure provides a beam indication method for an intelligent relay, the method is executed by an intelligent relay, and the method includes: receiving downlink control information DCI scrambled by a preset wireless network temporary identifier RNTI, wherein , the DCI is at least used to indicate information of beams to be used by the smart relay.
  • the smart relay receives the downlink control information DCI scrambled by the preset wireless network temporary identifier RNTI sent by the network device, wherein the DCI is at least used to indicate the information of the beam to be used by the smart relay. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay. The use provides conditions for expanding the coverage of the serving cell.
  • the beam information includes at least one of the following:
  • the identifier of the beam is any of the following:
  • An identifier of a group of beams wherein two beams in the group of beams respectively correspond to a service link and a feedback link;
  • the link corresponding to the beam to be used is a serving link.
  • the DCI is scrambled by the CRNTI of the cell, determine that the link corresponding to the beam to be used is a feedback link.
  • the beam usage time information is at least one of the following: the starting position of the beam, the usage duration of the beam, and the sequence number of the time domain scheduling table corresponding to the beam.
  • Radio resource control RRC message wherein the RRC includes at least one time-domain scheduling table.
  • the frequency domain information included in the DCI determine the used frequency domain corresponding to the beam to be used.
  • an embodiment of the present disclosure provides a communication device, which, on the network device side, includes:
  • a processing module configured to scramble downlink control information DCI by using a preset wireless network temporary identifier RNTI, where the DCI is at least used to indicate information about beams to be used by the smart relay;
  • a transceiver module configured to send the scrambled DCI to the intelligent relay.
  • the beam information includes at least one of the following:
  • the identifier of the beam is any of the following:
  • An identifier of a group of beams wherein two beams in the group of beams respectively correspond to a service link and a feedback link;
  • processing module is also used for:
  • processing module is specifically used for:
  • the DCI is scrambled by using the preset RNTI.
  • processing module is specifically used for:
  • the DCI is scrambled by the cell radio network temporary identifier C RNTI.
  • the beam usage time information is at least one of the following: the starting position of the beam, the usage duration of the beam, and the sequence number of the time domain scheduling table corresponding to the beam.
  • the transceiver module is also used for:
  • Radio resource control RRC message Sending a radio resource control RRC message, wherein the RRC includes at least one time-domain scheduling table.
  • an embodiment of the present disclosure provides a communication device, on the side of an intelligent relay, including:
  • the transceiver module is configured to receive the downlink control information DCI scrambled by the preset wireless network temporary identifier RNTI, wherein the DCI is at least used to indicate the information of the beam to be used by the smart relay.
  • the beam information includes at least one of the following:
  • the identifier of the beam is any of the following:
  • An identifier of a group of beams wherein two beams in the group of beams respectively correspond to a service link and a feedback link;
  • a processing module configured to determine the link corresponding to the beam to be used according to the value of the preset bit in the DCI.
  • processing module is specifically used for:
  • the link corresponding to the beam to be used is a serving link.
  • processing module is also used for:
  • the DCI is scrambled by the CRNTI of the cell, determine that the link corresponding to the beam to be used is a feedback link.
  • the beam usage time information is at least one of the following: the starting position of the beam, the usage duration of the beam, and the sequence number of the time domain scheduling table corresponding to the beam.
  • the transceiver module is also used for:
  • Radio resource control RRC message wherein the RRC includes at least one time-domain scheduling table.
  • processing module is also used for:
  • the frequency domain information included in the DCI determine the used frequency domain corresponding to the beam to be used.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a beam indicating system for an intelligent relay, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or, the system includes the communication device described in the fifth aspect
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store the instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a beam indication method for an intelligent relay provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a beam indication method for an intelligent relay provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic flow diagram of a new intelligent relay beam indication method provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic flow diagram of a new intelligent relay beam indication method provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic flow diagram of a new intelligent relay beam indication method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic flow diagram of a beam indication method for a new intelligent relay provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • DCI Downlink control information
  • DCI Downlink control information
  • RB resource block
  • MCS Modulation and Coding Scheme
  • Radio network temporary identifier (RNTI)
  • a radio network temporary identifier is a unique identifier of a terminal in a long term evolution (LTE) wireless network.
  • DCI downlink control information
  • UE user equipment
  • RRC radio resource control
  • the intelligent relay can be any network device capable of amplifying signals in a directional manner, or a terminal device capable of amplifying signals in a directional manner.
  • Smart metasurface RIS also known as "reconfigurable smart surface” or “smart reflective surface”. From the outside, RIS is a flat sheet. However, it can be flexibly deployed in the wireless communication propagation environment, and realize the manipulation of the frequency, phase, polarization and other characteristics of reflected or refracted electromagnetic waves, so as to achieve the purpose of reshaping the wireless channel. Specifically, RIS can reflect the signal incident on its surface to a specific direction through precoding technology, thereby enhancing the signal strength at the receiving end and realizing channel control.
  • the smart relay refers to the smart repeater and the RIS.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device, an intelligent relay, and a terminal device.
  • the number and shape of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two One or more network devices, two or more intelligent relays, and two or more terminal devices.
  • the communication system shown in FIG. 1 includes a network device 11 , a terminal device 12 and an intelligent relay 13 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in the NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • the intelligent relay 13 in the embodiment of the present disclosure may be any network device that can at least amplify signals directionally.
  • the intelligent relay needs to be responsible for two links, namely service link (service link) and feeder link (feeder link). Therefore, a new DCI format needs to be designed to support the base station to indicate beam information to the smart relay mobile terminal, so as to complete the beam management of the service link between the smart relay and the terminal equipment, and the feeder link between the smart relay and the base station beam management.
  • a beam indicating method and device for an intelligent relay provided in the present disclosure will be described in detail below with reference to the accompanying drawings.
  • FIG. 2 is a schematic flowchart of a beam indication method for an intelligent relay provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 201 scrambling the downlink control information DCI by using the preset wireless network temporary identifier RNTI, wherein the DCI is at least used to indicate the information of the beam to be used by the smart relay.
  • the preset RNTI may be any agreed scrambling method for performing beam indication for the intelligent relay.
  • it may be a new RNTI type, or may be a reused existing RNTI type, which is not limited in the present disclosure.
  • the beam to be used by the smart relay may be a beam corresponding to the feedback link, or a beam corresponding to the service link, and the like.
  • the beam information may include: beam identification (identification, ID), beam use time information, link corresponding to the beam, and beam configuration ID, etc., which is not limited in the present disclosure.
  • the identifier of the beam may be any information that can uniquely determine the beam, which may be a TCI identifier, or a reference signal identifier, and the like.
  • the beam ID can be indicated by a reference signal.
  • a reference signal ID can be included in the DCI to represent a beam ID.
  • the reference signal ID can be channel state information reference signal resource indication CRI (CSI-RS resource indicator), sounding signal resource indication SRI (SRS-resource indicator) or synchronization signal block number SSBI (SS block index).
  • the reference signal ID may be configured in the TCI
  • the DCI includes the TCI
  • the reference signal ID corresponding to the type D quasi-co-location (quasico-location, QCL) parameter qcl-type-D in the TCI indicates the beam ID.
  • the aforementioned reference signal may be a periodic reference signal configured by RRC, an aperiodic reference signal or a semi-static reference signal. The present disclosure does not limit this.
  • the beam IDs mentioned below can all be indicated by the reference signal mentioned in this paragraph, so when the beam ID is mentioned, it can be equivalent to CRI, SRI, or TCI, etc. The following descriptions all use the beam ID.
  • the use time information of the beam is at least one of the following items: the starting position of the beam, the use duration of the beam, and the serial number of the time-domain scheduling table corresponding to the beam.
  • the starting position and usage duration of the beam can be indicated by time units, for example, the starting position of the beam is the xth time unit after receiving the DCI indication, or the usage duration of the beam is Y time units, etc. , which is not limited in the present disclosure.
  • the time unit may be a time slot, a mini-slot, a symbol, etc., which may be indicated by a network device or agreed by a protocol, which is not limited in the present disclosure.
  • the link corresponding to the beam is used to indicate the link using the beam.
  • the link corresponding to the beam can be indicated by using different DCI scrambling methods, or can also be indicated by introducing a new bit into the DCI.
  • the DCI is scrambled by the cell RNTI (C-RNTI)
  • C-RNTI cell RNTI
  • SR-RNTI preset smart relay
  • the value of the newly introduced bit in DCI when the value of the newly introduced bit in DCI is 1, it means that the link corresponding to the beam is a feedback link, and when the value is 0, it means that the corresponding link is a service link; or, the value of the newly introduced bit is When the value is 0, it means that the link corresponding to the beam is a serving link, when the value is 1, it means that the corresponding link is a feedback link, and so on, which is not limited in this disclosure.
  • the identifier of the beam configuration is the identifier when the network device configures the beam to the intelligent relay through the RRC.
  • a beam configuration identifier may correspond to one or more of the following parameter groups: a group of beam identifiers, beam cycle periods, and beam start positions; or, a beam identifier, beam cycle period, and beam start position; Or, a group of beam identifiers and a beam cycle period; or, a beam identifier and a beam cycle period; or, a group of beam identifiers. Therefore, by indicating an identifier of a beam configuration, the DCI can indicate one or more of the above groups of parameters.
  • Step 202 sending the scrambled DCI to the intelligent relay.
  • the smart relay can monitor the channel and use the corresponding RNTI to decode the DCI, obtain the information of the beam to be used by the smart relay, and follow the The beam information is used to receive and send signals on the corresponding link.
  • the network device scrambles the DCI used to indicate the beam to be used by the smart relay through the preset wireless network temporary identifier RNTI, and then sends the scrambled DCI to the smart relay. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay.
  • the use provides conditions for expanding the coverage of the serving cell.
  • FIG. 3 is a schematic flowchart of another beam indication method for an intelligent relay provided by an embodiment of the present disclosure. As shown in Figure 3, the method may be performed by a network device, and the method may include but not limited to the following steps:
  • Step 301 sending a radio resource control RRC message, wherein the RRC includes at least one time-domain scheduling table.
  • the time-domain scheduling table may contain many rows, and each row includes a corresponding start time and duration of a beam or a group of beams, and a corresponding index number. This disclosure does not limit this.
  • the network device can configure one or more time-domain scheduling tables in the RRC parameter, and then send the RRC message to the intelligent relay.
  • Step 302 scrambling the downlink control information DCI by using the preset wireless network temporary identifier RNTI, wherein the DCI is used to indicate the information of the beam to be used by the smart relay.
  • the network device since the network device has configured the time-domain scheduling table through the RRC message, the network device can indicate to the intelligent relay in the form of the sequence number of the time-domain scheduling table corresponding to the beam usage time information through DCI Beam usage time information.
  • the network device may configure a certain index number in the time-domain scheduling table in the DCI.
  • the intelligent relay can query and obtain the use time information corresponding to the beam from the time domain scheduling table carried in the RRC information according to the index number in the DCI information.
  • the network device may also configure the name of any time-domain scheduling table and any index number included in the DCI.
  • the intelligent relay can determine the corresponding time-domain scheduling table in the RRC information according to the table name in the DCI information, and according to the index in the DCI information The serial number and the time-domain scheduling table determine the use time information corresponding to the beam.
  • the network device may also directly indicate the use time information of the beam in the DCI.
  • the network device may directly configure the initial position of the beam and the usage duration information of the beam in any fixed format in the DCI information.
  • the fixed format may be: any beam ID, the starting position of the corresponding beam, and the information combination of the usage duration of the beam, etc. This disclosure does not limit this.
  • the smart relay receives the DCI information directly used to indicate the beam, it can determine the ID of the beam to be used, and combine the relationship between any beam ID, the starting position of the corresponding beam, and the use duration of the beam , the usage time information of any beam can be determined.
  • Step 303 sending the scrambled DCI to the intelligent relay.
  • step 303 for a specific implementation process of step 303, reference may be made to the detailed description of any embodiment of the present disclosure, and details are not repeated here.
  • the preset wireless network after the network device sends a radio resource control RRC message including at least one time-domain scheduling table to the intelligent relay, the preset wireless network temporarily identifies the RNTI pair to indicate the DCI of the beam to be used by the intelligent relay Perform scrambling, and then send the scrambled DCI to the smart relay. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay.
  • the use provides conditions for expanding the coverage of the serving cell.
  • FIG. 4 is a schematic flowchart of another beam indication method for an intelligent relay provided by an embodiment of the present disclosure. As shown in Figure 4, the method may be performed by a network device, and the method may include but not limited to the following steps:
  • Step 401 according to the link corresponding to the beam to be used, determine the value of the preset bit in the DCI.
  • any bit in the DCI may be used to indicate the link corresponding to the beam.
  • the value of this bit can be determined to be 0, and if the link corresponding to the beam is a feedback link, the value of this bit can be determined is 1; or, if the link corresponding to the beam is a serving link, it can be determined that the bit value is 1, and if the link corresponding to the beam is a feedback link, it can be determined that the bit value is 0, and so on. No limit.
  • the corresponding scrambling mode may also be determined according to the link type corresponding to the beam.
  • the scrambling method can be determined as the cell radio network temporary identifier C-RNTI, and when the link corresponding to the beam to be used is a service link , it can be determined that the scrambling mode is the RNTI associated with the intelligent relay.
  • the network device can use the corresponding RNTI to scramble the DCI.
  • the intelligent relay can use the corresponding RNTI to decode the DCI information, and obtain the beam indication information of the corresponding link.
  • Step 402 scrambling the downlink control information DCI by using the preset wireless network temporary identifier RNTI, wherein the DCI is at least used to indicate the information of the beam to be used by the smart relay.
  • the DCI also includes frequency domain information for indicating the beam to be used by the smart relay.
  • the frequency domain information of the beam is used to indicate the frequency domain in which the beam is used.
  • the smart relay uses the beam in the frequency domain indicated by the frequency domain information of the beam.
  • the DCI received by the smart relay indicates a frequency domain ID, and the smart relay moves the signal to the frequency position indicated by the frequency domain ID, and uses the beam ID indicated in the DCI to transmit and receive.
  • Step 403 sending the scrambled DCI to the intelligent relay.
  • step 403 for a specific implementation process of step 403, reference may be made to the detailed description of any embodiment of the present disclosure, and details are not repeated here.
  • the RNTI pair is used to indicate the DCI of the beam to be used by the intelligent relay through the preset wireless network temporary identification Perform scrambling, and then send the scrambled DCI to the smart relay. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay.
  • the use provides conditions for expanding the coverage of the serving cell.
  • FIG. 5 is a schematic flowchart of another beam indication method for an intelligent relay provided by an embodiment of the present disclosure. As shown in Figure 5, the method may be performed by an intelligent relay, and the method may include but not limited to the following steps:
  • Step 501 receiving downlink control information DCI scrambled by a preset wireless network temporary identifier RNTI, wherein the DCI is at least used to indicate the information of the beam to be used by the smart relay.
  • the preset RNTI may be any agreed scrambling method for performing beam indication for the intelligent relay.
  • it may be a new RNTI type, or may be a reused existing RNTI type, which is not limited in the present disclosure.
  • the beam to be used by the smart relay may be a beam corresponding to the feedback link, or a beam corresponding to the service link, and the like.
  • the beam information may include: beam identification (identification, ID), beam use time information, link corresponding to the beam, and beam configuration ID, etc., which is not limited in the present disclosure.
  • the identifier of the beam may be any information that can uniquely determine the beam, which may be a TCI identifier, or a reference signal identifier, and the like.
  • the beam ID can be indicated by a reference signal.
  • a reference signal ID can be included in the DCI to represent a beam ID.
  • the reference signal ID can be the channel state information reference signal resource identifier CRI (CSI-RS resource ID), sounding signal resource identifier SRI (SRS-resource ID) or synchronization signal block number SSBI (SS block index).
  • the reference signal ID may be configured in the TCI
  • the DCI includes the TCI
  • the reference signal ID corresponding to the type D quasi-co-location (quasico-location, QCL) parameter qcl-type-D in the TCI indicates the beam ID.
  • the aforementioned reference signal may be a periodic reference signal configured by RRC, an aperiodic reference signal or a semi-static reference signal. The present disclosure does not limit this.
  • the use time information of the beam is at least one of the following items: the starting position of the beam, the use duration of the beam, and the serial number of the time-domain scheduling table corresponding to the beam.
  • the starting position and usage duration of the beam can be indicated by time units, for example, the starting position of the beam is the xth time unit after receiving the DCI indication, or the usage duration of the beam is Y time units, etc. , which is not limited in the present disclosure.
  • the time unit may be a time slot, a mini-slot, a symbol, etc., which may be indicated by a network device or agreed by a protocol, which is not limited in the present disclosure.
  • the link corresponding to the beam is used to indicate the link using the beam.
  • the link corresponding to the beam can be indicated by using different DCI scrambling methods, or can also be indicated by introducing a new bit into the DCI.
  • the DCI is scrambled by the cell RNTI (C-RNTI)
  • C-RNTI cell RNTI
  • SR-RNTI preset smart relay
  • the value of the newly introduced bit in DCI when the value of the newly introduced bit in DCI is 1, it means that the link corresponding to the beam is a feedback link, and when the value is 0, it means that the corresponding link is a service link; or, the value of the newly introduced bit is When the value is 0, it means that the link corresponding to the beam is a serving link, when the value is 1, it means that the corresponding link is a feedback link, and so on, which is not limited in this disclosure.
  • the identifier of the beam configuration is the identifier when the network device configures the beam to the intelligent relay through the RRC.
  • a beam configuration identifier may correspond to one or more of the following parameter groups: a group of beam identifiers, beam cycle periods, and beam start positions; or, a beam identifier, beam cycle period, and beam start position; Or, a group of beam identifiers and a beam cycle period; or, a beam identifier and a beam cycle period; or, a group of beam identifiers. Therefore, by indicating an identifier of a beam configuration, the DCI can indicate one or more of the above groups of parameters.
  • the smart relay can monitor the channel and use the corresponding RNTI to decode the DCI, obtain the information of the beam to be used by the smart relay, and follow the The beam information is used to receive and send signals on the corresponding link.
  • the smart relay receives the downlink control information DCI scrambled by the preset wireless network temporary identifier RNTI sent by the network device, wherein the DCI is at least used to indicate the information of the beam to be used by the smart relay. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay. The use provides conditions for expanding the coverage of the serving cell.
  • FIG. 6 is a schematic flowchart of another beam indication method for an intelligent relay provided by an embodiment of the present disclosure. As shown in Figure 6, the method may be performed by an intelligent relay, and the method may include but not limited to the following steps:
  • Step 601 receiving a radio resource control RRC message, wherein the RRC includes at least one time-domain scheduling table.
  • the time-domain scheduling table may contain many rows, and each row includes a corresponding start time and duration of a beam or a group of beams, and a corresponding index number. This disclosure does not limit this.
  • the network device can configure one or more time-domain scheduling tables in the RRC parameter, and then send the RRC message to the intelligent relay.
  • the intelligent relay can receive the radio resource control RRC message sent by the network device by monitoring the channel.
  • Step 602 Receive the downlink control information DCI scrambled by the preset wireless network temporary identifier RNTI, wherein the DCI is at least used to indicate the information of the beam to be used by the smart relay.
  • the use of the beam can be determined by indicating the serial number of the time-domain scheduling table corresponding to the use time information of the beam in the DCI time information.
  • the network device may configure a certain index number in the time-domain scheduling table in the DCI.
  • the intelligent relay can query and obtain the use time information corresponding to the beam from the time domain scheduling table carried in the RRC information according to the index number in the DCI information.
  • the network device may also configure the name of any time-domain scheduling table and any index number included in the DCI.
  • the intelligent relay can determine the corresponding time-domain scheduling table in the RRC information according to the table name in the DCI information, and according to the index in the DCI information The serial number and the time-domain scheduling table determine the use time information corresponding to the beam.
  • the network device may also directly indicate the use time information of the beam in the DCI.
  • the network device may directly configure the initial position of the beam and the usage duration information of the beam in any fixed format in the DCI information.
  • the fixed format may be: any beam ID, the starting position of the corresponding beam, and the information combination of the usage duration of the beam, etc. This disclosure does not limit this.
  • the smart relay receives the DCI information directly used to indicate the beam, it can determine the ID of the beam to be used, and combine the relationship between any beam ID, the starting position of the corresponding beam, and the use duration of the beam , the usage time information of any beam can be determined.
  • the link corresponding to the beam may also be included in the DCI to indicate the link using the beam.
  • the link corresponding to the beam can be indicated by using different DCI scrambling methods, or can also be indicated by introducing a new bit into the DCI.
  • the intelligent relay may receive the downlink control information DCI scrambled by the preset wireless network temporary identifier RNTI after receiving the radio resource control RRC message including at least one time-domain scheduling table sent by the network device. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay. The use provides conditions for expanding the coverage of the serving cell.
  • FIG. 7 is a schematic flowchart of another beam indication method for an intelligent relay provided by an embodiment of the present disclosure. As shown in Figure 7, the method may be performed by an intelligent relay, and the method may include but not limited to the following steps:
  • Step 701 receiving the downlink control information DCI scrambled by the preset wireless network temporary identifier RNTI, wherein the DCI is at least used to indicate the information of the beam to be used by the smart relay.
  • the DCI also includes frequency domain information for indicating the beam to be used by the smart relay.
  • the frequency domain information of the beam is used to indicate the frequency domain in which the beam is used.
  • the smart relay uses the beam in the frequency domain indicated by the frequency domain information of the beam.
  • the DCI received by the smart relay indicates a frequency domain ID, and the smart relay moves the signal to the frequency position indicated by the frequency domain ID, and uses the beam ID indicated in the DCI to transmit and receive.
  • Step 702 Determine the link corresponding to the beam to be used according to the value of the preset bit in the wireless network temporary identifier RNTI and/or DCI.
  • the intelligent relay after receiving the DCI, can determine the link corresponding to the beam to be used according to the value of the preset bit in the DCI. For example, when the value of the preset bit is the first value, it is determined that the link corresponding to the beam to be used is the feedback link; The link corresponding to the beam is the serving link.
  • the first value may be a preset value corresponding to the feedback link
  • the second value may be a preset value corresponding to the service link
  • the first value and the second value may be 0 and 1, or 1, respectively. and 0, which are not limited in the present disclosure.
  • the link corresponding to the beam to be used may also be determined according to the DCI scrambling manner. For example, in the case that the DCI is scrambled by the preset RNTI, it may be determined that the link corresponding to the beam to be used is the serving link, or, in the case that the DCI is scrambled by the cell C-RNTI, it may be determined that the link to be used is The link corresponding to the beam is the feedback link.
  • the intelligent relay after receiving the downlink control information DCI sent by the network device and scrambled by the preset wireless network temporary identifier RNTI, the intelligent relay determines the corresponding beam to be used according to the value of the preset bit in the DCI. link. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay. The use provides conditions for expanding the coverage of the serving cell.
  • the intelligent relay needs to use a specific beam within a continuous period.
  • the beam information indicated in the DCI sent by the network device to the intelligent relay may include a beam ID, beam usage time information, etc.
  • the usage time information of the beam indicated in the DCI may be the starting position of a specific beam, or may also be a sequence number of a time domain scheduling table, where the sequence number of the time domain scheduling table corresponds to the RRC configured A time information in the time domain schedule table.
  • the beam information indicated in the DCI sent by the network device to the intelligent relay can also be a beam configuration ID, and the beam configuration ID corresponds to a beam ID configured by an RRC and the usage time information of the beam, etc.
  • the present disclosure does not limit this.
  • the intelligent relay needs to use a certain beam in a certain period of time.
  • the beam information indicated in the DCI sent by the network device to the intelligent relay may include a beam Configuration ID, where the beam configuration ID may correspond to a semi-static beam ID configured by RRC and a usage period of the beam.
  • the beam information indicated in the DCI sent by the network device to the intelligent relay may also include a semi-static beam ID and usage time information of the semi-static beam ID.
  • the usage time information of the beam indicated in the DCI may be the starting position of a specific beam, or may also be a sequence number of a time domain scheduling table, where the sequence number of the time domain scheduling table corresponds to the RRC configured A time information in the time domain schedule table.
  • the network device uses the beam indicated by the DCI for beam scanning, and the information of the beam indicated in the DCI may include the ID of the beam, and optionally, the number of reuses of the beam.
  • the ID of the beam may be an identifier configured for the beam, or an identifier of a group of beams, or an identifier of a beam, and so on.
  • the identifier of the beam configuration may correspond to an aperiodic beam ID set configured by RRC, or the beam configuration ID may correspond to a semi-static beam ID set configured by RRC.
  • the beam reuse times may be implicitly indicated by the time information of the beam, for example, the intelligent relay repeatedly sends the beam within the time indicated by the sequence number of the time domain scheduling table.
  • the DCI indicates the ID of a group of beams.
  • the smart relay can send multiple beams respectively corresponding to the set of beam IDs sequentially or cyclically, so as to support the terminal device to select a beam with better communication quality of the smart relay.
  • the intelligent relay device receives the DCI containing the identifier of the beam configuration sent by the network device, it can determine the list of beams to be used according to the identifier of the beam configuration, and then cyclically send the beams to the terminal device according to the beam list.
  • the terminal device can respectively detect each beam in the beam list, so as to select a beam with better communication capability.
  • the order of sending beams can be consistent with the order of beams in the RRC configuration.
  • the smart relay switches beams in each time unit, and the time unit can be a slot. This patent does not limit the granularity of the time unit.
  • the DCI indicates a beam ID
  • the smart relay can support the terminal device to select a beam with better communication quality by repeatedly sending the beam corresponding to the beam ID.
  • the network device can configure the identifier of the beam configuration in the DCI as the ID of the aperiodic reference signal set including only the beam.
  • the network device can determine the beam information in the DCI as the beam ID and its time information.
  • the smart relay can send the beam to the terminal device in a circular manner.
  • the terminal device can divide the detection beam into multiple narrow detection beams based on the beam with better communication capability of the intelligent relay.
  • the terminal device can use each narrow detection beam separately, and communicate with the beam used by the intelligent relay in time division to detect the communication capability corresponding to each narrow detection beam, so that the narrow detection beam with better communication capability can
  • the beam is determined to be a beam with better communication capability.
  • the network device can realize the beam indication of the intelligent relay through the following process:
  • the network device sends the DCI to the intelligent relay device after scrambling the DCI through the preset RNTI.
  • the type of DCI may be 2-x.
  • a smart relay or a terminal device with a smart relay function can monitor the scrambled DCI through the preset RNTI, and after receiving the DCI, the information of the beam to be used in the DCI can be applied to the feedback link and/or or service link.
  • the DCI may be located in a special search space (specific search space) of the terminal device, that is, the relay device or a terminal device with an intelligent relay function blindly detects the DCI in the special search space of the terminal device.
  • the DCI may also be located in a public search space, which is not limited in the present disclosure.
  • DCI must at least support the function of beam indication during dynamic scheduling, and for dynamic scheduling services, at least beam information and beam usage time information are required. Specifically, it can be achieved in the following ways:
  • the use time information can be indicated in the DCI, for example, time information such as the starting position and the use time length can be indicated in the DCI.
  • DCI contains at least the following items:
  • a group of beams can be targeted (one for the serving link and one for the feedback link).
  • 1 bit can be newly introduced in the DCI to indicate whether it is for the feedback link or the feedback link; or it can be distinguished by RNTI, C-RNTI indicates the feedback link, and the preset RNTI indicates a serving link.
  • the smart relay starts to use the indicated beam after receiving the time unit indicated by the starting position of the DCI beam, and the usage time is indicated by the usage time of the beam unit of time.
  • the time unit can be a slot (slot) or a symbol (symbol).
  • RRC defines a time-domain scheduling table, such as the start and duration table (start symbol and the number of consecutive symbols for PDSCH, SLIV), SLIV table
  • start and duration table start symbol and the number of consecutive symbols for PDSCH, SLIV
  • SLIV table The index number of the beam can be placed in the DCI and indicated together with the beam, indicating the use time (start time, time length) of the beam.
  • DCI contains at least the following items:
  • a group of beams can be targeted (one for the serving link and one for the feedback link).
  • 1 bit can be newly introduced in the DCI to indicate whether it is for the feedback link or the feedback link; or it can be distinguished by RNTI, C-RNTI indicates the feedback link, and the preset RNTI indicates a serving link.
  • the DCI may also support the function of triggering aperiodic beams.
  • the DCI includes at least the following items:
  • the beam indication mode of mode 1 can be preferentially selected.
  • the DCI includes at least the following items:
  • the DCI indicates the identifier of the beam configuration, where the beam configuration can be configured by the RRC, and includes only one beam identifier and the number of times the beam is repeatedly sent.
  • Method 2 The beam ID and the number of repeated transmissions of the beam are directly indicated in the DCI.
  • the beam indication mode of mode 2 may be preferentially selected.
  • the smart relay when the smart relay receives the beam ID, it uses the beams in sequence according to the beam ID.
  • the beam usage granularity defaults to a time unit, such as a slot/symbol, or other time units indicated by the base station.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present disclosure.
  • the communication device 800 shown in FIG. 8 may include a processing module 801 and a transceiver module 802 .
  • the transceiver module 802 may include a sending module and/or a receiving module, the sending module is used to implement a sending function, the receiving module is used to implement a receiving function, and the transceiver module 802 may implement a sending function and/or a receiving function.
  • the communication device 800 may be a network device, a device in the network device, or a device that can be matched with the network device.
  • the communication device 800 is on the network equipment side, wherein:
  • the processing module 801 is configured to scramble downlink control information DCI by using a preset wireless network temporary identifier RNTI, where the DCI is at least used to indicate information about beams to be used by the smart relay;
  • the transceiver module 802 is configured to send the scrambled DCI to the smart relay.
  • the beam information includes at least one of the following:
  • the identifier of the beam is any of the following:
  • An identifier of a group of beams wherein two beams in the group of beams respectively correspond to a service link and a feedback link;
  • processing module 801 is also used for:
  • processing module 801 is specifically used for:
  • the DCI is scrambled by using the preset RNTI.
  • processing module 801 is specifically used for:
  • the DCI is scrambled by the cell radio network temporary identifier C RNTI.
  • the beam usage time information is at least one of the following items: the starting position of the beam, the usage duration of the beam, and the sequence number of the time-domain scheduling table corresponding to the beam.
  • transceiver module 802 is also used for:
  • Radio resource control RRC message Sending a radio resource control RRC message, wherein the RRC includes at least one time-domain scheduling table.
  • the DCI further includes frequency domain information for indicating the beam to be used by the smart relay.
  • the network device scrambles the DCI used to indicate the beam to be used by the smart relay through the preset wireless network temporary identifier RNTI, and then sends the scrambled DCI to the smart relay. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay.
  • the use provides conditions for expanding the coverage of the serving cell.
  • the communication device 800 may be an intelligent relay, may also be a device in an intelligent relay, and may also be a device that can be matched and used with an access network device.
  • the communication device 800 on the intelligent relay side, wherein:
  • the transceiver module 802 is configured to receive downlink control information DCI scrambled by a preset wireless network temporary identifier RNTI, wherein the DCI is at least used to indicate information of beams to be used by the smart relay.
  • the beam information includes at least one of the following:
  • the identifier of the beam is any of the following:
  • An identifier of a group of beams wherein two beams in the group of beams respectively correspond to a service link and a feedback link;
  • the communication device above also includes:
  • the processing module 801 is configured to determine the link corresponding to the beam to be used according to the RNTI and/or the value of the preset bit in the DCI.
  • processing module 801 is specifically used for:
  • the link corresponding to the beam to be used is a serving link.
  • processing module 801 is also used for:
  • the DCI is scrambled by the CRNTI of the cell, determine that the link corresponding to the beam to be used is a feedback link.
  • the beam usage time information is at least one of the following items: the starting position of the beam, the usage duration of the beam, and the sequence number of the time-domain scheduling table corresponding to the beam.
  • transceiver module 802 is also used for:
  • Radio resource control RRC message wherein the RRC includes at least one time-domain scheduling table.
  • processing module 801 is also used for:
  • the frequency domain information included in the DCI determine the used frequency domain corresponding to the beam to be used.
  • the smart relay receives the downlink control information DCI scrambled by the preset wireless network temporary identifier RNTI sent by the network device, wherein the DCI is at least used to indicate the information of the beam to be used by the smart relay. Therefore, by using the preset RNTI known by the smart relay to scramble the DCI to indicate the beam to the smart relay, the smart relay can effectively manage the beams of different links and ensure the reliability of the smart relay. The use provides conditions for expanding the coverage of the serving cell.
  • FIG. 9 is a schematic structural diagram of another communication device 900 provided by an embodiment of the present disclosure.
  • the communication device 900 may be a network device, or an intelligent relay, or a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip or a chip system that supports an intelligent relay to implement the above method , or processor, etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 900 may include one or more processors 901 .
  • the processor 901 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 900 may further include one or more memories 902, on which a computer program 904 may be stored, and the processor 901 executes the computer program 904, so that the communication device 900 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 902 .
  • the communication device 900 and the memory 902 can be set separately or integrated together.
  • the communication device 900 may further include a transceiver 905 and an antenna 906 .
  • the transceiver 905 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 905 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 900 may further include one or more interface circuits 907 .
  • the interface circuit 907 is used to receive code instructions and transmit them to the processor 901 .
  • the processor 901 runs the code instructions to enable the communication device 900 to execute the methods described in the foregoing method embodiments.
  • the communication device 900 is a network device: the processor 901 is configured to execute step 201 in FIG. 2 ; step 301 and step 302 in FIG. 3 ; and step 401 and step 402 in FIG. 4 .
  • the communication device 900 is an intelligent relay: the transceiver 905 is used to execute step 501 in FIG. 5 ; steps 601 and 602 in FIG. 6 ; and step 701 in FIG. 7 .
  • the processor 901 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 901 may store a computer program 903, and the computer program 903 runs on the processor 901 to enable the communication device 900 to execute the methods described in the foregoing method embodiments.
  • the computer program 903 may be solidified in the processor 901, and in this case, the processor 901 may be implemented by hardware.
  • the communication device 900 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or an intelligent relay, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 9 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 10 includes a processor 1001 and an interface 1003 .
  • the number of processors 1001 may be one or more, and the number of interfaces 1003 may be more than one.
  • the interface 1003 is configured to execute step 202 in FIG. 2 ; step 301 and step 303 in FIG. 3 ; or step 401 and step 403 in FIG. 4 .
  • the interface 1003 is configured to execute step 501 in FIG. 5 ; steps 601 and 602 in FIG. 6 ; and step 701 in FIG. 7 .
  • the chip further includes a memory 1003 for storing necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Abstract

本公开实施例公开了一种智能中继的波束指示方法,可应用于通信技术领域,其中,由智能中继执行的方法包括:接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,DCI至少用于指示智能中继待使用的波束的信息。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。

Description

一种智能中继的波束指示方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种智能中继的波束指示方法及装置。
背景技术
随着通信技术的不断发展,基于运营商的频谱需求日渐增加。相关技术中,通常采用智能中继smart repeater,或者,智能超表面(reconfigurable intelligence surface,RIS)来扩大小区覆盖范围。smart repeater或RIS需要负责与网络设备间的反馈链路(feeder link)又称为回程链路(backhaul link),以及与终端设备间的服务链路。
发明内容
本公开实施例提供一种智能中继的波束指示方法及装置,只能中继可以根据网络设备指示的波束,利用相应的波束进行信息的发送和接收。
第一方面,本公开实施例提供一种智能中继的波束指示方法,该方法由网络设备执行,方法包括:通过预设的无线网络临时标识RNTI对下行控制信息DCI进行加扰,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息;向所述智能中继发送加扰后的DCI。
本公开中,网络设备通过预设的无线网络临时标识RNTI对用于指示智能中继待使用的波束的DCI进行加扰,之后再向智能中继发送加扰后的DCI。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
可选的,所述波束的信息包括以下至少一项:
波束的标识;
波束的使用时间信息;
波束对应的链路;及,
波束配置的标识。
可选的,所述波束的标识为以下任一项:
一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
一个波束的标识;
多个波束的标识。
可选的,还包括:
根据所述待使用的波束对应的链路,确定所述DCI中预设比特的取值。
可选的,还包括:
在所述待使用的波束对应的链路为服务链路的情况下,通过所述预设的RNTI对所述DCI进行加扰。
可选的,还包括:
在所述待使用的波束对应的链路为反馈链路的情况下,通过小区无线网络临时标识C-RNTI对所述DCI进行加扰。
可选的,所述波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
可选的,还包括:
发送无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
可选的,所述DCI中还包含用于指示所述智能中继所述待使用的波束的频域信息。
第二方面,本公开实施例提供一种智能中继的波束指示方法,该方法由智能中继执行,方法包括:接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息。
本公开中,智能中继通过接收网络设备发送的,由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,DCI至少用于指示智能中继待使用的波束的信息。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
可选的,所述波束的信息包括以下至少一项:
波束的标识;
波束的使用时间信息;
波束对应的链路;及,
波束配置的标识。
可选的,所述波束的标识为以下任一项:
一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
一个波束的标识;
多个波束的标识。
可选的,还包括:
根据所述无线网络临时标识RNTI和\或所述DCI中预设比特的取值,确定所述待使用的波束对应的链路。
可选的,还包括:
在所述预设比特的取值为第一数值的情况下,确定所述待使用的波束对应的链路为反馈链路;
在所述预设比特的取值为第二数值的情况下,确定所述待使用的波束对应的链路为服务链路。
可选的,还包括:
在所述DCI为由预设的RNTI加扰的情况下,确定所述待使用的波束对应的链路为服务链路;
或者,
在所述DCI为由小区C RNTI加扰的情况下,确定所述待使用的波束对应的链路为反馈链路。
可选的,所述波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
可选的,还包括:
接收无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
可选的,还包括:
根据所述DCI中包含的频域信息,确定所述待使用的波束对应的使用频域。
第三方面,本公开实施例提供一种通信装置,在网络设备侧,包括:
处理模块,用于通过预设的无线网络临时标识RNTI对下行控制信息DCI进行加扰,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息;
收发模块,用于向所述智能中继发送加扰后的DCI。
可选的,所述波束的信息包括以下至少一项:
波束的标识;
波束的使用时间信息;
波束对应的链路;及,
波束配置的标识。
可选的,所述波束的标识为以下任一项:
一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
一个波束的标识;
多个波束的标识。
可选的,所述处理模块,还用于:
根据所述待使用的波束对应的链路,确定所述DCI中预设比特的取值。
可选的,所述处理模块,具体用于:
在所述待使用的波束对应的链路为服务链路的情况下,通过所述预设的RNTI对所述DCI进行加扰。
可选的,所述处理模块,具体用于:
在所述待使用的波束对应的链路为反馈链路的情况下,通过小区无线网络临时标识C RNTI对所述DCI进行加扰。
可选的,所述波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
可选的,所述收发模块,还用于:
发送无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
可选的,所述DCI中还包含用于指示所述智能中继所述待使用的波束的频域信息。
第四方面,本公开实施例提供一种通信装置,在智能中继侧,包括:
收发模块,用于接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息。
可选的,所述波束的信息包括以下至少一项:
波束的标识;
波束的使用时间信息;
波束对应的链路;及,
波束配置的标识。
可选的,所述波束的标识为以下任一项:
一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
一个波束的标识;
多个波束的标识。
可选的,还包括:
处理模块,用于根据所述DCI中预设比特的取值,确定所述待使用的波束对应的链路。
可选的,所述处理模块,具体用于:
在所述预设比特的取值为第一数值的情况下,确定所述待使用的波束对应的链路为反馈链路;
在所述预设比特的取值为第二数值的情况下,确定所述待使用的波束对应的链路为服务链路。
可选的,所述处理模块,还用于:
在所述DCI为由预设的RNTI加扰的情况下,确定所述待使用的波束对应的链路为服务链路;
或者,
在所述DCI为由小区C RNTI加扰的情况下,确定所述待使用的波束对应的链路为反馈链路。
可选的,所述波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
可选的,所述收发模块,还用于:
接收无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
可选的,所述处理模块,还用于:
根据所述DCI中包含的频域信息,确定所述待使用的波束对应的使用频域。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收 代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种智能中继的波束指示系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构示意图;
图2是本公开实施例提供的一种智能中继的波束指示方法的流程示意图;
图3是本公开实施例提供的一种智能中继的波束指示方法的流程示意图;
图4是本公开实施例提供的一种新智能中继的波束指示方法的流程示意图;
图5是本公开实施例提供的一种新智能中继的波束指示方法的流程示意图;
图6是本公开实施例提供的一种新智能中继的波束指示方法的流程示意图;
图7是本公开实施例提供的一种新智能中继的波束指示方法的流程示意图;
图8是本公开实施例提供的一种通信装置的结构示意图;
图9是本公开实施例提供的另一种通信装置的结构示意图;
图10是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本公开涉及的术语。
1、下行链路控制信息(downlink control information,DCI)
下行链路控制信息(downlink control information,DCI)是调度下行链路数据信道或上行链路数据信道的特殊信息集,DCI信息包含了诸如资源块(resource block,RB)分配信息、调制与编码策略 (Modulation and Coding Scheme,MCS)等等若干相关内容。终端只有正确的解码到了DCI信息,才能正确的处理下行链路数据或上行链路数据。
2、无线网络临时标识(radio network temporary identifier,RNTI)
无线网络临时标识(radio network temporary identifier,RNTI)是终端在长期演进(long term evolution,LTE)无线网络内的唯一标识。主要有两类用途:第一用途为用于加扰下行控制信息(downlink control information,DCI),用户设备(user equipment,UE)只有使用正确的RNTI才能对接收到的消息解码。第二用途为基站用于识别UE,UE可以通过发送的无线资源控制(radio resource control,RRC)信息,传输自己专用的RNTI值。
3、智能中继(smart repeater)
智能中继,可以为任意一种至少能定向放大信号的网络设备,或者,具有定向放大信号功能的终端设备。
4、智能超表面(reconfigurable intelligence surface,RIS)
智能超表面RIS,也被称为“可重构智能表面”或者“智能反射表面”。从外表上看,RIS是一张平平无奇的薄板。但是,它可以灵活部署在无线通信传播环境中,并实现对反射或者折射电磁波的频率、相位、极化等特征的操控,从而达到重塑无线信道的目的。具体地说,RIS可以通过预编码技术,将入射到其表面的信号反射到特定的方向,从而增强接收端信号强度,实现对信道的控制。
由于smart repeater和RIS在网络交互时具有类似的特性,因此,本公开中,智能中继,代指smart repeater和RIS。
为了更好的理解本公开实施例公开的一种智能中继的波束指示方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备、一个智能中继和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的智能中继,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11、一个终端设备12和一个智能中继13为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本公开实施例中的智能中继13可以为任意一种至少能定向放大信号的网络设备。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
通常,智能中继需要负责两条链路,即服务链路(service link)和馈线链路(feeder link)。因此,需要设计新的DCI格式来支持基站向智能中继移动终端指示波束信息,以完成智能中继和终端设备之间服务链路的波束管理,及智能中继和基站之间的馈线链路的波束管理。下面结合附图对本公开所提供的一种智能中继的波束指示方法及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种智能中继的波束指示方法的流程示意图,该方法由网络设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤201,通过预设的无线网络临时标识RNTI对下行控制信息DCI进行加扰,其中,DCI至少用于指示智能中继待使用的波束的信息。
其中,预设的RNTI,可以为任一约定的用于为智能中继进行波束指示时的加扰方式。比如可以为新的RNTI类型,或者,也可以为复用的已有的RNTI类型,本公开对此不做限定。
另外,智能中继待使用的波束可以为反馈链路对应的波束,或者服务链路对应的波束等。
可选的,波束的信息可以包括:波束的标识(identification,ID),波束的使用时间信息,波束对应的链路,及波束配置的标识等,本公开对此不做限定。
其中,波束的标识可以为任一可以唯一确定波束的信息,其可以为TCI标识,或者参考信号标识等。比如,波束ID,可以通过参考信号来指示,以在DCI中进行波束指示为例,可以在DCI里包含一个参考信号ID用以表示一个波束ID,参考信号ID可以是信道状态信息参考信号资源指示CRI(CSI-RS resource indicator),探测信号资源指示SRI(SRS-resource indicator)或者同步信号块序号SSBI(SS block index)。或者,可以把参考信号ID配置在TCI中,DCI中包含该TCI,TCI中D类准共址(quasico-location,QCL)参数qcl-type-D对应的参考信号ID表示波束ID。上述参考信号可以是RRC配置的一个周期性参考信号,非周期性参考信号或者半静态参考信号。本公开对此不做限定。以下提到的波束ID皆可用本段提到的参考信号来指示,因此提到波束ID时可以等同于CRI或者SRI或者TCI等,以下描述均使用波束ID。
另外,波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
其中,波束的起始位置及使用时长等,可以通过时间单元指示,比如,波束的起始位置为接收到DCI指示后的第x个时间单元,或者波束的使用时长为Y个时间单元等等,本公开对此不做限定。其中,时间单元,可以为时隙,微时隙,符号等等,其可以是网络设备指示的也可以是通过协议约定的,本公开对此不做限定。
可选的,波束对应的链路用于指示使用该波束的链路。波束对应的链路,可以通过不同的DCI加扰方式指示,或者也可以在DCI中引入新的比特bit来指示。
比如,DCI通过小区RNTI(C-RNTI)加扰,则表示该DCI指示的波束对应的链路为反馈链路,DCI通过预设的智能中继(SR-RNTI)加扰,则表示该DCI指示的波束对应的链路为服务链路等等。
或者,DCI中新引入的bit取值为1时,表示波束对应的链路为反馈链路,取值为0时,表示对应的链路为服务链路;或者,新引入的bit取值为0时,表示波束对应的链路为服务链路,取值为1时,表示对应的链路为反馈链路,等等,本公开对此不做限定。
其中,波束配置的标识,为网络设备通过RRC向智能中继进行波束配置时的标识。一个波束配置的标识可以对应以下参数组中的一个或多个:一组波束标识、波束循环周期、波束的的起始位置;或者,一个波束标识、波束循环周期、波束的的起始位置;或者,一组波束标识、波束循环周期;或者,一个波束标识、波束循环周期;或者,一组波束标识。从而,DCI通过指示一个波束配置的标识,即可指示以上各组参数中的一个或多个。
步骤202,向智能中继发送加扰后的DCI。本公开中,网络设备向智能中继发送加扰后的DCI后,智能中继可以通过监听信道,并利用相应的RNTI,对DCI进行解码,获取智能中继待使用的波束的信息,并按照波束的信息,在相应的链路上,进行信号的接收和发送。
本公开中,网络设备通过预设的无线网络临时标识RNTI对用于指示智能中继待使用的波束的DCI进行加扰,之后再向智能中继发送加扰后的DCI。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
请参见图3,图3是本公开实施例提供的另一种智能中继的波束指示方法流程示意图。如图3所示,该方法可以由网络设备执行,该方法可以包括但不限于如下步骤:
步骤301,发送无线资源控制RRC消息,其中,RRC中包含至少一个时域调度表格。
其中,时域调度表格中,可以包含很多行,每一行包括一个波束或者一组波束对应的起始时间和持续时长,及对应的索引序号等。本公开对此不作限制。
本公开中,网络设备可以在RRC参数中配置一个或多个时域调度表格,然后,将此RRC消息发送给智能中继。
步骤302,通过预设的无线网络临时标识RNTI对下行控制信息DCI进行加扰,其中,DCI用于指示智能中继待使用的波束的信息。
其中,上述步骤302的具体实现形式,可参照本公开任一实施例的详细描述,此处不再赘述。
需要说明的是,由于网络设备已经通过RRC消息配置了时域调度表格,因此,网络设备可以通过DCI指示与波束的使用时间信息对应的时域调度表格的序号的形式,来向智能中继指示波束的使用时间信息。
比如,网络设备可以将时域调度表格中的某一索引序号,配置在DCI中。智能中继在接受到RRC信息及DCI信息后,即可根据DCI信息中的索引序号,从RRC信息所携带的时域调度表格中,查询并获取波束对应的使用时间信息。
可选的,若网络设备通过RRC消息配置了多个时域调度表格,则网络设备还可以将任一时域调度表格名称及其包含的任一索引序号,配置在DCI中。智能中继在接收到包含此时域调度表格的RRC信息及DCI信息后,即可根据DCI信息中的表格名称,在RRC信息中,确定对应的时域调度表格,并根据DCI信息中的索引序号和此时域调度表格,确定波束对应的使用时间信息。
或者,网络设备还可以在DCI中直接指示波束的使用时间信息。比如,网络设备可以将波束的起始位置及波束的使用时长信息,按照任一固定格式,直接配置在DCI信息中。其中,固定格式可以为:任一波束ID,和其对应的波束的起始位置,及波束的使用时长信息组合等。本公开对此不作限制。当智能中继接收到直用于接指示波束的DCI信息后,即可确定待使用波束ID,并根据任一波束ID与和其对应的波束的起始位置,及波束的使用时长信息组合关系,即可确定任一波束的使用时间信息。
步骤303,向智能中继发送加扰后的DCI。
本实施例中,步骤303的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,网络设备可以在向智能中继发送包含至少一个时域调度表格的无线资源控制RRC消息后,通过预设的无线网络临时标识RNTI对用于指示智能中继待使用的波束的DCI进行加扰,然后再向智能中继发送加扰后的DCI。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
请参见图4,图4是本公开实施例提供的另一种智能中继的波束指示方法流程示意图。如图4所示,该方法可以由网络设备执行,该方法可以包括但不限于如下步骤:
步骤401,根据待使用的波束对应的链路,确定DCI中预设比特的取值。
本公开中,可以用DCI中任一比特位,指示波束所对应的链路。比如,当使用DCI中1bit指示波束对应的链路时,如果波束对应的链路为服务链路,可以确定此比特值为0,如果波束对应的链路为反馈链路,可以确定此比特值为1;或者,如果波束对应的链路为服务链路,可以确定此比特值为1,如果波束对应的链路为反馈链路,可以确定此比特值为0,等等,本公开对此不做限定。
可选的,还可以根据波束对应的链路类型,确定其对应的加扰方式。比如,在待使用的波束对应的链路为反馈链路的情况下,可以确定加扰方式为小区无线网络临时标识C-RNTI,在待使用的波束对应的链路为服务链路的情况下,可以确定加扰方式为智能中继关联的RNTI。之后,网络设备即可利用相应的RNTI,对DCI进行加扰。由此,智能中继即可利用相应的RNTI解码DCI信息,获取相应链路的波束指示信息。
步骤402,通过预设的无线网络临时标识RNTI对下行控制信息DCI进行加扰,其中,DCI至少用于指示智能中继待使用的波束的信息。
其中,上述步骤402的具体实现形式,可参照本公开任一实施例的详细描述,此处不再赘述。
可选的,DCI中还包含用于指示智能中继待使用的波束的频域信息。其中,波束的频域信息,用于指示使用该波束的频域。由此,智能中继即在波束的频域信息指示的频域内,使用该波束。比如,智能中继收到的DCI中指示了一个频域ID,智能中继将信号搬移到该频域ID指示的频率位置上,并使用DCI中指示的波束ID进行收发。
步骤403,向智能中继发送加扰后的DCI。
本实施例中,步骤403的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,网络设备在根据待使用的波束对应的链路,确定DCI中预设比特的取值后,通过预设的无线网络临时标识RNTI对用于指示智能中继待使用的波束的DCI进行加扰,然后再向智能中继发送加扰后的DCI。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
请参见图5,图5是本公开实施例提供的另一种智能中继的波束指示方法流程示意图。如图5所示,该方法可以由智能中继执行,该方法可以包括但不限于如下步骤:
步骤501,接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,DCI至少用于指示智能中继待使用的波束的信息。
其中,预设的RNTI,可以为任一约定的用于为智能中继进行波束指示时的加扰方式。比如可以为新的RNTI类型,或者,也可以为复用的已有的RNTI类型,本公开对此不做限定。
另外,智能中继待使用的波束可以为反馈链路对应的波束,或者服务链路对应的波束等。
可选的,波束的信息可以包括:波束的标识(identification,ID),波束的使用时间信息,波束对应的链路,及波束配置的标识等,本公开对此不做限定。
其中,波束的标识可以为任一可以唯一确定波束的信息,其可以为TCI标识,或者参考信号标识等。比如,波束ID,可以通过参考信号来指示,以在DCI中进行波束指示为例,可以在DCI里包含一个参考信号ID用以表示一个波束ID,参考信号ID可以是信道状态信息参考信号资源标识CRI(CSI-RS resource ID),探测信号资源标识SRI(SRS-resource ID)或者同步信号块序号SSBI(SS block index)。或者,可以把参考信号ID配置在TCI中,DCI中包含该TCI,TCI中D类准共址(quasico-location,QCL)参数qcl-type-D对应的参考信号ID表示波束ID。上述参考信号可以是RRC配置的一个周期性参考信号,非周期性参考信号或者半静态参考信号。本公开对此不做限定。
另外,波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
其中,波束的起始位置及使用时长等,可以通过时间单元指示,比如,波束的起始位置为接收到DCI指示后的第x个时间单元,或者波束的使用时长为Y个时间单元等等,本公开对此不做限定。其中,时间单元,可以为时隙,微时隙,符号等等,其可以是网络设备指示的也可以是通过协议约定的,本公开对此不做限定。
可选的,波束对应的链路用于指示使用该波束的链路。波束对应的链路,可以通过不同的DCI加扰方式指示,或者也可以在DCI中引入新的比特bit来指示。
比如,DCI通过小区RNTI(C-RNTI)加扰,则表示该DCI指示的波束对应的链路为反馈链路,DCI通过预设的智能中继(SR-RNTI)加扰,则表示该DCI指示的波束对应的链路为服务链路等等。
或者,DCI中新引入的bit取值为1时,表示波束对应的链路为反馈链路,取值为0时,表示对应的链路为服务链路;或者,新引入的bit取值为0时,表示波束对应的链路为服务链路,取值为1时,表示对应的链路为反馈链路,等等,本公开对此不做限定。
其中,波束配置的标识,为网络设备通过RRC向智能中继进行波束配置时的标识。一个波束配置的标识可以对应以下参数组中的一个或多个:一组波束标识、波束循环周期、波束的的起始位置;或者,一个波束标识、波束循环周期、波束的的起始位置;或者,一组波束标识、波束循环周期;或者,一个波束标识、波束循环周期;或者,一组波束标识。从而,DCI通过指示一个波束配置的标识,即可指示以上各组参数中的一个或多个。
本公开中,网络设备向智能中继发送加扰后的DCI后,智能中继可以通过监听信道,并利用相应的RNTI,对DCI进行解码,获取智能中继待使用的波束的信息,并按照波束的信息,在相应的链路上,进行信号的接收和发送。
本公开中,智能中继通过接收网络设备发送的,由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,DCI至少用于指示智能中继待使用的波束的信息。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
请参见图6,图6是本公开实施例提供的另一种智能中继的波束指示方法流程示意图。如图6所示, 该方法可以由智能中继执行,该方法可以包括但不限于如下步骤:
步骤601,接收无线资源控制RRC消息,其中,RRC中包含至少一个时域调度表格。
其中,时域调度表格中,可以包含很多行,每一行包括一个波束或者一组波束对应的起始时间和持续时长,及对应的索引序号等。本公开对此不作限制。
本公开中,网络设备可以在RRC参数中配置一个或多个时域调度表格,然后,将此RRC消息发送给智能中继。智能中继可以通过监听信道,接收网络设备发送的无线资源控制RRC消息。
步骤602,接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,DCI至少用于指示智能中继待使用的波束的信息。
其中,上述步骤602的具体实现形式,可参照本公开任一实施例的详细描述,此处不再赘述。
需要说明的是,由于智能中继已经接收网络设备发送的包含时域调度表格的RRC消息,因此,可以通过DCI中指示与波束的使用时间信息对应的时域调度表格的序号,确定波束的使用时间信息。
比如,网络设备可以将时域调度表格中的某一索引序号,配置在DCI中。智能中继在接受到RRC信息及DCI信息后,即可根据DCI信息中的索引序号,从RRC信息所携带的时域调度表格中,查询并获取波束对应的使用时间信息。
可选的,若网络设备通过RRC消息配置了多个时域调度表格,则网络设备还可以将任一时域调度表格名称及其包含的任一索引序号,配置在DCI中。智能中继在接收到包含此时域调度表格的RRC信息及DCI信息后,即可根据DCI信息中的表格名称,在RRC信息中,确定对应的时域调度表格,并根据DCI信息中的索引序号和此时域调度表格,确定波束对应的使用时间信息。
或者,网络设备还可以在DCI中直接指示波束的使用时间信息。比如,网络设备可以将波束的起始位置及波束的使用时长信息,按照任一固定格式,直接配置在DCI信息中。其中,固定格式可以为:任一波束ID,和其对应的波束的起始位置,及波束的使用时长信息组合等。本公开对此不作限制。当智能中继接收到直用于接指示波束的DCI信息后,即可确定待使用波束ID,并根据任一波束ID与和其对应的波束的起始位置,及波束的使用时长信息组合关系,即可确定任一波束的使用时间信息。
可选的,DCI中还可以包含波束对应的链路用于指示使用该波束的链路。波束对应的链路,可以通过不同的DCI加扰方式指示,或者也可以在DCI中引入新的比特bit来指示。
本公开中,智能中继可以在接收网络设备发送的包含至少一个时域调度表格的无线资源控制RRC消息后,再接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
请参见图7,图7是本公开实施例提供的另一种智能中继的波束指示方法流程示意图。如图7所示,该方法可以由智能中继执行,该方法可以包括但不限于如下步骤:
步骤701,接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,DCI至少用于指示智能中继待使用的波束的信息。
其中,上述步骤701的具体实现形式,可参照本公开任一实施例的详细描述,此处不再赘述。
可选的,DCI中还包含用于指示智能中继待使用的波束的频域信息。其中,波束的频域信息,用于指示使用该波束的频域。由此,智能中继即在波束的频域信息指示的频域内,使用该波束。比如,智能中继收到的DCI中指示了一个频域ID,智能中继将信号搬移到该频域ID指示的频率位置上,并使用DCI中指示的波束ID进行收发。
步骤702,根据无线网络临时标识RNTI和\或DCI中预设比特的取值,确定待使用的波束对应的链路。
本公开中,智能中继在接收到DCI后,可以根据DCI中预设比特的取值,确定待使用的波束对应的链路。比如,在预设比特的取值为第一数值的情况下,确定待使用的波束对应的链路为反馈链路;在预设比特的取值为第二数值的情况下,确定待使用的波束对应的链路为服务链路。其中,第一数值可以为预设的与反馈链路对应的数值,第二数值可以为预设的与服务链路对应的数值,第一数值和第二数值可以分别为0和1,或者1和0,本公开对此不作限制。
可选的,还可以根据DCI的加扰方式,确定待使用的波束对应的链路。比如,在DCI为由预设的RNTI加扰的情况下,可以确定待使用的波束对应的链路为服务链路,或者,在DCI为由小区C-RNTI加扰的情况下,确定待使用的波束对应的链路为反馈链路。
本公开中,智能中继在接收网络设备发送的由预设的无线网络临时标识RNTI加扰后的下行控制信 息DCI后,再根据DCI中预设比特的取值,确定待使用的波束对应的链路。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
下面结合不同的应用场景,对本公开中的智能中继的波束指示方法中DCI指示的波束的信息的具体内容,进行进一步说明。
举例来说,在动态调度业务,智能中继需要在一个持续时段内使用某个特定的波束,此时,网络设备向智能中继发送的DCI中指示的波束信息,可以包括一个波束ID、波束的使用时间信息等。可以理解的是,DCI中指示的波束的使用时间信息,可以是具体的波束的起始位置,或者还可以为一个时域调度表格的序号,其中,该时域调度表格的序号对应RRC配置的时域调度表格中的一个时间信息。
或者,在动态调度业务,网络设备向智能中继发送的DCI中指示的波束信息也可以为一个波束配置ID,该波束配置ID对应一个RRC配置的一个波束ID和波束的使用时间信息等等,本公开对此不做限定。
另外,在半静态调度业务的场景下,智能中继需要在一段时间内以一定的周期使用某个波束,此时,网络设备向智能中继发送的DCI中指示的波束信息,可以包括一个波束配置ID,其中,该波束配置ID可以对应一个RRC配置的半静态的波束ID及该波束的使用周期。
或者,在半静态调度业务的场景下,网络设备向智能中继发送的DCI中指示的波束信息中,也可以包括一个半静态的波束ID及该半静态的波束ID的使用时间信息等等。可以理解的是,DCI中指示的波束的使用时间信息,可以是具体的波束的起始位置,或者还可以为一个时域调度表格的序号,其中,该时域调度表格的序号对应RRC配置的时域调度表格中的一个时间信息。
再者,在波束循环场景中,网络设备通过DCI指示的波束用于波束扫描,DCI中指示的波束的信息,可以包括波束的ID,可选的,还可以包括波束的重复使用次数。此时,波束的ID,可以为波束配置的标识,或者一组波束的标识,或者一个波束的标识等等。其中,波束配置的标识,可以对应一个RRC配置的非周期的波束ID集合,或者,该波束配置ID可以对应一个RRC配置的半静态的波束ID集合。本公开对此不做限定。另外,波束的重复使用次数可以由波束的时间信息隐性的指示,比如智能中继在时域调度表格序号指示的时间内重复发送该波束。
举例来说,比如终端设备选择智能中继侧波束时,DCI中指示的为一组波束的ID。智能中继可以通过依次或循环发送该一组波束ID分别对应的多个波束,支持终端设备选择一个智能中继通信质量较好的波束。比如,智能中继设备接收到网络设备发送的包含波束配置的标识的DCI后,即可根据波束配置的标识,确定待使用的波束列表,然后按照波束列表再向终端设备循环发送波束。终端设备即可分别对波束列表中各个波束进行检测,以选择一个通信能力较好的波束。其中,发送波束的顺序可以和RRC配置中的波束顺序一致,智能中继在每个时间单元切换波束,时间单元可以是slot,本专利对时间单元的颗粒度不做限制。
又如,DCI中指示的为一个波束的ID,智能中继可以通过重复发送该一个波束ID对应的波束,支持终端设备选择一个自身通信质量较好的波束。比如,在确定智能中继通信能力较好的波束之后,网络设备即可将DCI中的波束配置的标识,配置为只包含此波束的非周期的参考信号集合的ID。或者,在确定智能中继能力较好的波束之后,网络设备即可将DCI中的波束信息确定为该波束ID及其时间信息。智能中继在接收到此DCI信息后,即可向终端设备循环发送此波束。终端设备在智能中继通信能力较好的波束基础上,可以将检测波束分成多个窄的检测波束。然后终端设备可以分别使用每个窄的检测波束,分时与智能中继使用的波束进行通信,以检测每个窄的检测波束所对应的通信能力,从而可以将通信能力较好的窄的检测波束,确定为自身通信能力较好的波束。
下面对智能中继的波束指示方法作进一步说明,本公开中,网络设备可通过以下过程实现智能中继的波束指示:
首先,网络设备通过预设的RNTI加扰DCI后,将此DCI发送给智能中继设备。其中,DCI的类型可以为2-x。智能中继或者具有智能中继功能的终端设备可以监听通过预设的RNTI加扰DCI,在收到该DCI后,即可将该DCI中的待使用的波束的信息应用在反馈链路和/或服务链路上。
可选的,该DCI可以位于终端设备的特殊搜索空间(specific search space)内,即中继设备或者具有智能中继功能的终端设备在终端设备的特殊搜索空间中盲检该DCI。或者,该DCI还可以位于公共搜索空间内,本公开对此不做限定。
具体的,DCI至少要支持动态调度时波束指示的功能,而针对动态调度业务,至少需要波束信息和 波束使用时间信息。具体可通过以下方式实现:
方式一,使用时间信息可以在DCI中指示,比如起始位置,使用的时间长度等时间信息可以在DCI中指示。DCI中至少包含以下项:
1、波束的标识
可以针对一组波束(一个对应于服务链路,一个对应于反馈链路)。
可以分别针对服务链路或者反馈链路,此时可以在DCI中可以新引入1bit来指示是针对反馈链路的还是反馈链路;或者通过RNTI区分,C-RNTI指示反馈链路,预设的RNTI指示服务链路。
2、波束的起始位置和/或波束的使用时长,智能中继在收到该DCI的波束的起始位置所指示的时间单位后开始使用指示的波束,使用时长为波束的使用时长所指示的时间单位。时间单位可以是时隙(slot)或者符号(symbol)。
方式二,可以在RRC参数配置上行和/或下行时域调度表格,比如RRC定义一个时域调度表格,比如开始和持续时间表格(start symbol and the number of consecutive symbols for PDSCH,SLIV),SLIV表格的索引序号可以放在DCI中于波束一起指示,表示波束的使用时间(起始时间,时间长度)。DCI中至少包含以下项:
1、波束的标识
可以针对一组波束(一个对应于服务链路,一个对应于反馈链路)。
可以分别针对服务链路或者反馈链路,此时可以在DCI中可以新引入1bit来指示是针对反馈链路的还是反馈链路;或者通过RNTI区分,C-RNTI指示反馈链路,预设的RNTI指示服务链路。
2、时域调度表格的索引序号
本公开中,DCI还可以支持触发非周期波束的功能。
可选的,在一组波束循环发送,用以支持终端设备选择智能中继的波束场景中,DCI中至少包含以下项:
方式一,DCI中指示波束配置的标识,其中该波束配置可以由RRC配置的,且包含多个波束标识,
方式二,DCI中指示多个波束ID。
在一组波束循环发送,用以支持终端设备选择智能中继的波束场景中,可以优先选择方式一的波束指示方式。
可选的,在一个波束重复发送,用以支持终端设备选择自己的波束场景中,DCI中至少包含以下项:
方式一,DCI中指示波束配置的标识,其中该波束配置可以由RRC配置的,其中仅包含一个波束标识,以及该波束重复发送的次数。
方式二:DCI中直接指示该波束ID,以及该波束的重复发送次数。
在一个波束重复发送,用以支持终端设备选择自己的波束场景中,可以优先选择方式二的波束指示方式。
以上,当智能中继收到波束ID时,按照波束ID顺序使用这些波束,波束使用粒度默认是一个时间单元,比如一个slot/symbol,或者基站指示的其他时间单元。
请参见图8,为本公开实施例提供的一种通信装置800的结构示意图。图8所示的通信装置800可包括处理模块801和收发模块802。收发模块802可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块802可以实现发送功能和/或接收功能。
可以理解的是,通信装置800可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置800在网络设备侧,其中:
处理模块801,用于通过预设的无线网络临时标识RNTI对下行控制信息DCI进行加扰,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息;
收发模块802,用于向所述智能中继发送加扰后的DCI。
可选的,波束的信息包括以下至少一项:
波束的标识;
波束的使用时间信息;
波束对应的链路;及,
波束配置的标识。
可选的,波束的标识为以下任一项:
一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
一个波束的标识;
多个波束的标识。
可选的,上述处理模块801,还用于:
根据所述待使用的波束对应的链路,确定所述DCI中预设比特的取值。
可选的,上述处理模块801,具体用于:
在所述待使用的波束对应的链路为服务链路的情况下,通过所述预设的RNTI对所述DCI进行加扰。
可选的,上述处理模块801,具体用于:
在所述待使用的波束对应的链路为反馈链路的情况下,通过小区无线网络临时标识C RNTI对所述DCI进行加扰。
可选的,波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
可选的,上述收发模块802,还用于:
发送无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
可选的,所述DCI中还包含用于指示所述智能中继所述待使用的波束的频域信息。
本公开中,网络设备通过预设的无线网络临时标识RNTI对用于指示智能中继待使用的波束的DCI进行加扰,之后再向智能中继发送加扰后的DCI。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
可以理解的是,通信装置800可以是智能中继,也可以是智能中继中的装置,还可以是能够与接入网设备匹配使用的装置。
通信装置800,在智能中继侧,其中:
收发模块802,用于接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息。
可选的,波束的信息包括以下至少一项:
波束的标识;
波束的使用时间信息;
波束对应的链路;及,
波束配置的标识。
可选的,波束的标识为以下任一项:
一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
一个波束的标识;
多个波束的标识。
上述通信装置,还包括:
处理模块801,用于根据所述无线网络临时标识RNTI和\或所述DCI中预设比特的取值,确定所述待使用的波束对应的链路。
可选的,上述处理模块801,具体用于:
在所述预设比特的取值为第一数值的情况下,确定所述待使用的波束对应的链路为反馈链路;
在所述预设比特的取值为第二数值的情况下,确定所述待使用的波束对应的链路为服务链路。
可选的,上述处理模块801,还用于:
在所述DCI为由预设的RNTI加扰的情况下,确定所述待使用的波束对应的链路为服务链路;
或者,
在所述DCI为由小区C RNTI加扰的情况下,确定所述待使用的波束对应的链路为反馈链路。
可选的,波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
可选的,上述收发模块802,还用于:
接收无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
可选的,上述处理模块801,还用于:
根据所述DCI中包含的频域信息,确定所述待使用的波束对应的使用频域。
本公开中,智能中继通过接收网络设备发送的,由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,DCI至少用于指示智能中继待使用的波束的信息。由此,通过采用智能中继已知的预设的RNTI对DCI进行加扰来向智能中继进行波束指示,实现智能中继对不同链路的波束的有效管理,保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件。
请参见图9,图9是本公开实施例提供的另一种通信装置900的结构示意图。通信装置900可以是网络设备,也可以是智能中继,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持智能中继实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置900可以包括一个或多个处理器901。处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置900中还可以包括一个或多个存储器902,其上可以存有计算机程序904,处理器901执行所述计算机程序904,以使得通信装置900执行上述方法实施例中描述的方法。可选的,所述存储器902中还可以存储有数据。通信装置900和存储器902可以单独设置,也可以集成在一起。
可选的,通信装置900还可以包括收发器905、天线906。收发器905可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器905可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置900中还可以包括一个或多个接口电路907。接口电路907用于接收代码指令并传输至处理器901。处理器901运行所述代码指令以使通信装置900执行上述方法实施例中描述的方法。
通信装置900为网络设备:处理器901用于执行图2中的步骤201;图3中的步骤301、步骤302;图4中的步骤401、步骤402。
通信装置900为智能中继:收发器905用于执行图5中的步骤501;图6中的步骤601、步骤602;图7中的步骤701。
在一种实现方式中,处理器901中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器901可以存有计算机程序903,计算机程序903在处理器901上运行,可使得通信装置900执行上述方法实施例中描述的方法。计算机程序903可能固化在处理器901中,该种情况下,处理器901可能由硬件实现。
在一种实现方式中,通信装置900可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者智能中继,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图9的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、 网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图10所示的芯片的结构示意图。图10所示的芯片包括处理器1001和接口1003。其中,处理器1001的数量可以是一个或多个,接口1003的数量可以是多个。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1003,用于执行图2中的步骤202;图3中的步骤301、步骤303;或图4中的步骤401、步骤403。
对于芯片用于实现本公开实施例中智能中继的功能的情况:
接口1003,用于执行图5中的步骤501;图6中的步骤601、步骤602;图7中的步骤701。
可选的,芯片还包括存储器1003,存储器1003用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具 体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种智能中继的波束指示方法,其特征在于,由智能中继执行,所述方法包括:
    接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息。
  2. 如权利要求1所述的方法,其特征在于,所述波束的信息包括以下至少一项:
    波束的标识;
    波束的使用时间信息;
    波束对应的链路;
    波束配置的标识。
  3. 如权利要求2所述的方法,其特征在于,所述波束的标识为以下任一项:
    一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
    一个波束的标识;
    多个波束的标识。
  4. 如权利要求2或3所述的方法,其特征在于,还包括:
    根据所述无线网络临时标识RNTI和\或所述DCI中预设比特的取值,确定所述待使用的波束对应的链路。
  5. 如权利要求2-4任一所述的方法,其特征在于,所述波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
  6. 如权利要求5所述的方法,其特征在于,还包括:
    接收无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
  7. 一种智能中继的波束指示方法,其特征在于,由网络设备执行,所述方法包括:
    通过预设的无线网络临时标识RNTI对下行控制信息DCI进行加扰,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息;
    向所述智能中继发送加扰后的DCI。
  8. 如权利要求7所述的方法,其特征在于,所述波束的信息包括以下至少一项:
    波束的标识;
    波束的使用时间信息;
    波束对应的链路;及,
    波束配置的标识。
  9. 如权利要求8所述的方法,其特征在于,所述波束的标识为以下任一项:
    一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
    一个波束的标识;
    多个波束的标识。
  10. 如权利要求8或9所述的方法,其特征在于,还包括:
    根据所述待使用的波束对应的链路,确定所述DCI中预设比特的取值。
  11. 如权利要求8或9所述的方法,其特征在于,所述通过预设的无线网络临时标识RNTI对下行控制信息DCI进行加扰,包括:
    在所述待使用的波束对应的链路为服务链路的情况下,通过所述预设的RNTI对所述DCI进行加扰。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    在所述待使用的波束对应的链路为反馈链路的情况下,通过小区无线网络临时标识C RNTI对所述DCI进行加扰。
  13. 如权利要求8-12任一所述的方法,其特征在于,所述波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
  14. 如权利要求13所述的方法,其特征在于,还包括:
    发送无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
  15. 如权利要求1-8任一所述的方法,其特征在于,所述DCI中还包含用于指示所述智能中继所述待使用的波束的频域信息。
  16. 一种通信装置,其特征在于,所述装置包括:
    收发模块,用于接收由预设的无线网络临时标识RNTI加扰后的下行控制信息DCI,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息。
  17. 如权利要求16所述的装置,其特征在于,所述波束的信息包括以下至少一项:
    波束的标识;
    波束的使用时间信息;
    波束对应的链路;及,
    波束配置的标识。
  18. 如权利要求17所述的装置,其特征在于,所述波束的标识为以下任一项:
    一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
    一个波束的标识;
    多个波束的标识。
  19. 如权利要求17或18所述的方法,其特征在于,还包括:
    处理模块,用于根据所述无线网络临时标识RNTI和\或所述DCI中预设比特的取值,确定所述待使用的波束对应的链路。
  20. 如权利要求17-19任一所述的装置,其特征在于,所述波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
  21. 如权利要求20所述的装置,其特征在于,所述收发模块,还用于:
    接收无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
  22. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于通过预设的无线网络临时标识RNTI对下行控制信息DCI进行加扰,其中,所述DCI至少用于指示所述智能中继待使用的波束的信息;
    收发模块,用于向所述智能中继发送加扰后的DCI。
  23. 如权利要求20所述的装置,其特征在于,所述波束的信息包括以下至少一项:
    波束的标识;
    波束的使用时间信息;
    波束对应的链路;及,
    波束配置的标识。
  24. 如权利要求23所述的装置,其特征在于,所述波束的标识为以下任一项:
    一组波束的标识,其中,所述一组波束中的两个波束分别与服务链路及反馈链路对应;
    一个波束的标识;
    多个波束的标识。
  25. 如权利要求23或24所述的装置,其特征在于,所述处理模块,还用于:
    根据所述待使用的波束对应的链路,确定所述DCI中预设比特的取值。
  26. 如权利要求23或24所述的装置,其特征在于,所述处理模块,具体用于:
    在所述待使用的波束对应的链路为服务链路的情况下,通过所述预设的RNTI对所述DCI进行加扰。
  27. 如权利要求26所述的装置,其特征在于,所述处理模块,具体用于:
    在所述待使用的波束对应的链路为反馈链路的情况下,通过小区无线网络临时标识C RNTI对所述DCI进行加扰。
  28. 如权利要求23-27任一所述的装置,其特征在于,所述波束的使用时间信息为以下至少一项:波束的起始位置,波束的使用时长以及波束对应的时域调度表格的序号。
  29. 如权利要求28所述的装置,其特征在于,所述收发模块,还用于:
    发送无线资源控制RRC消息,其中,所述RRC中包含至少一个时域调度表格。
  30. 如权利要求20-29任一所述的方法,其特征在于,所述DCI中还包含用于指示所述智能中继所述待使用的波束的频域信息。
  31. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至6中任一项所述的方法。
  32. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求7至15中任一项所述的方法。
  33. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现。
  34. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求7至15中任一项所述的方法被实现。
PCT/CN2021/133573 2021-11-26 2021-11-26 一种智能中继的波束指示方法及装置 WO2023092467A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004107.1A CN116508373A (zh) 2021-11-26 2021-11-26 一种智能中继的波束指示方法及装置
PCT/CN2021/133573 WO2023092467A1 (zh) 2021-11-26 2021-11-26 一种智能中继的波束指示方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133573 WO2023092467A1 (zh) 2021-11-26 2021-11-26 一种智能中继的波束指示方法及装置

Publications (1)

Publication Number Publication Date
WO2023092467A1 true WO2023092467A1 (zh) 2023-06-01

Family

ID=86538646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133573 WO2023092467A1 (zh) 2021-11-26 2021-11-26 一种智能中继的波束指示方法及装置

Country Status (2)

Country Link
CN (1) CN116508373A (zh)
WO (1) WO2023092467A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116634567A (zh) * 2023-07-25 2023-08-22 华南理工大学 波束管理方法、装置和智能超表面中继系统
CN116647916A (zh) * 2023-07-25 2023-08-25 华南理工大学 中继通信方法、装置和智能超表面中继器
WO2023209048A1 (en) * 2022-04-26 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Configuration of dynamic behavior of spatial filter in repeater-assisted networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811097A (zh) * 2017-05-02 2018-11-13 华为技术有限公司 资源指示方法及通信设备
CN109391445A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种pdsch接收信息的指示方法、数据接收方法及装置
WO2021120083A1 (en) * 2019-12-19 2021-06-24 Qualcomm Incorporated Beam indication for downlink control information scheduled sidelink transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811097A (zh) * 2017-05-02 2018-11-13 华为技术有限公司 资源指示方法及通信设备
CN109391445A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种pdsch接收信息的指示方法、数据接收方法及装置
WO2021120083A1 (en) * 2019-12-19 2021-06-24 Qualcomm Incorporated Beam indication for downlink control information scheduled sidelink transmission

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209048A1 (en) * 2022-04-26 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Configuration of dynamic behavior of spatial filter in repeater-assisted networks
CN116634567A (zh) * 2023-07-25 2023-08-22 华南理工大学 波束管理方法、装置和智能超表面中继系统
CN116647916A (zh) * 2023-07-25 2023-08-25 华南理工大学 中继通信方法、装置和智能超表面中继器
CN116634567B (zh) * 2023-07-25 2023-12-12 华南理工大学 波束管理方法、装置和智能超表面中继系统
CN116647916B (zh) * 2023-07-25 2023-12-15 华南理工大学 中继通信方法、装置和智能超表面中继器

Also Published As

Publication number Publication date
CN116508373A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2023092468A1 (zh) 一种智能中继服务链路的波束指示方法及其装置
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023092467A1 (zh) 一种智能中继的波束指示方法及装置
CN113892276A (zh) 一种信息传输方法和装置
EP4322648A1 (en) Time-domain resource allocation method and apparatus
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023164952A1 (zh) 一种智能中继的控制方法及其装置
CN114667755A (zh) 数据传输方法和装置
WO2023164951A1 (zh) 一种智能中继时分复用图样的确定方法及其装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2023019410A1 (zh) 一种传输下行控制信息dci的方法及其装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2024086979A1 (zh) 一种传输配置指示tci状态的确定方法及装置
WO2023155205A1 (zh) 一种侧行链路干扰消除的方法及其装置
WO2023122990A1 (zh) 物理随机接入信道prach的传输方法和装置
CN115191145B (zh) 一种多prach传输方法及其装置
EP4354942A1 (en) Information acquisition method and apparatus, and storage medium
WO2023102689A1 (zh) 一种基于四步随机接入的第三条消息重复的覆盖增强方法
WO2023123475A1 (zh) 一种fbe的cot的共享方法及其装置
WO2024011637A1 (zh) 一种轨道角动量oam模态切换方法、装置、设备及存储介质
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2024087035A1 (zh) 终端能力上报方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004107.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965201

Country of ref document: EP

Kind code of ref document: A1