WO2023092468A1 - 一种智能中继服务链路的波束指示方法及其装置 - Google Patents

一种智能中继服务链路的波束指示方法及其装置 Download PDF

Info

Publication number
WO2023092468A1
WO2023092468A1 PCT/CN2021/133574 CN2021133574W WO2023092468A1 WO 2023092468 A1 WO2023092468 A1 WO 2023092468A1 CN 2021133574 W CN2021133574 W CN 2021133574W WO 2023092468 A1 WO2023092468 A1 WO 2023092468A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification
beams
indication information
rrc message
information
Prior art date
Application number
PCT/CN2021/133574
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180004048.8A priority Critical patent/CN114270910B/zh
Priority to PCT/CN2021/133574 priority patent/WO2023092468A1/zh
Publication of WO2023092468A1 publication Critical patent/WO2023092468A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a beam indication method and device for an intelligent relay service link.
  • a smart repeater (smart repeater), or a smart metasurface (reconfigurable intelligence surface, RIS) is usually used to expand cell coverage.
  • the smart repeater or RIS needs to be responsible for the feedback link (feed link) with the network equipment, also known as the backhaul link (backhaul link), and the service link (service link) with the terminal equipment.
  • the beam characteristics used by the smart repeater or RIS are similar to those of the terminal equipment.
  • the beam characteristics used by the smart repeater or RIS are similar to those of the network equipment, and the beamforming requirements of the network equipment need to be met.
  • Embodiments of the present disclosure provide a beam indication method and device for an intelligent relay service link, which can be applied in the field of communication technologies.
  • an embodiment of the present disclosure provides a method for indicating a beam of an intelligent relay service link, the method is performed by an intelligent relay, and the method includes: receiving a radio resource control RRC message, wherein the RRC message is used for Configuring the beam information corresponding to the service link service link for the intelligent relay.
  • the intelligent relay can communicate with the terminal device based on the configured beam information by receiving the RRC message sent by the network device for configuring the information of the beam corresponding to the service link.
  • the information of the beam includes at least one of the following:
  • the temporal characteristics of the beam are the temporal characteristics of the beam.
  • the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message.
  • DCI In response to receiving the first indication information through the downlink control information DCI, determine a time domain position corresponding to a first number of time units after receiving the DCI as the starting position of the at least one beam;
  • the medium access control MAC control unit CE In response to receiving the first indication information through the medium access control MAC control unit CE, determine the time domain position corresponding to the second number of time units after sending the acknowledgment signaling to the network device, which is the starting point of the at least one beam Location.
  • Values of the first number of time units and the second number of time units are determined according to an instruction of the network device.
  • the determining the values of the first number of time units and the second number of time units according to the agreement and the type of the at least one beam includes:
  • the second indication information is used to indicate the beam type used by the smart relay.
  • third indication information is used to indicate at least one beam in at least one beam triggered or activated by the first indication information.
  • the first indication information, the second indication information, and the third indication information respectively include at least one of the following:
  • an embodiment of the present disclosure provides another method for indicating a beam of an intelligent relay service link, the method is executed by a network device, and the method includes: sending a radio resource control RRC message to the intelligent relay, wherein the The RRC message is used to configure beam information corresponding to the service link for the intelligent relay.
  • the network device sends an RRC message to the smart relay for configuring beam information corresponding to the service link, so that the smart relay can communicate with the terminal device based on the configured beam information.
  • the beam information includes at least one of the following:
  • the temporal characteristics of the beam are the temporal characteristics of the beam.
  • the medium access control MAC control unit CE In response to sending the first indication information through the medium access control MAC control unit CE, determine that the starting position of the at least one beam is a second number of time units after receiving the acknowledgment signaling sent by the smart relay The corresponding time domain position.
  • the determining the value of the first number of time units or the second number of time units according to the agreement and the type of the at least one beam includes:
  • the first indication information respectively includes at least one of the following:
  • the determining the value of the first preset parameter in the RRC message according to whether the beam to be configured is a periodic beam includes:
  • the beam to be configured is a periodic beam, determine that the value of the first preset parameter in the RRC message is a first value;
  • the beam to be configured is an aperiodic beam
  • the embodiment of the present disclosure provides a communication device, which has some or all functions of intelligent relay in the method described in the first aspect above, for example, the function of the communication device may have part or all of the functions in the present disclosure.
  • the functions in all of the embodiments may also have the functions of implementing any one of the embodiments in the present disclosure independently.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the network device in the method example described in the second aspect above, for example, the function of the communication device may have some of the functions in the present disclosure Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present disclosure alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned intelligent relay, and when the instructions are executed, the method described in the above-mentioned first aspect is implemented.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned network device, and when the instructions are executed, the method described in the above-mentioned second aspect is implemented.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system, which includes at least one processor and an interface, configured to support an intelligent relay to implement the functions involved in the first aspect, for example, to determine or process the functions involved in the above method At least one of data and information.
  • the chip system further includes a memory, and the memory is used to store computer programs and data necessary for the intelligent relay.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure
  • Fig. 4 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure.
  • Fig. 12 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure.
  • Fig. 13 is a schematic flowchart of a beam indication method for an intelligent relay service link provided by another embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • the intelligent relay can be any network device capable of amplifying signals in a directional manner, or a terminal device capable of amplifying signals in a directional manner.
  • Smart metasurface RIS also known as "reconfigurable smart surface” or “smart reflective surface”. From the outside, RIS is a flat sheet. However, it can be flexibly deployed in the wireless communication propagation environment, and realize the manipulation of the frequency, phase, polarization and other characteristics of reflected or refracted electromagnetic waves, so as to achieve the purpose of reshaping the wireless channel. Specifically, RIS can reflect the signal incident on its surface to a specific direction through precoding technology, thereby enhancing the signal strength at the receiving end and realizing channel control.
  • the smart relay refers to the smart repeater and the RIS.
  • Radio resource control also known as radio resource management or radio resource allocation
  • RRC radio resource control
  • radio resource management also known as radio resource management or radio resource allocation
  • MAC CE is a way of exchanging control information between UE and the network outside of radio resource control (radio resource control, RRC) messages and non-access stratum (non access stratum, NAS) messages. It exchanges information about MAC Layer control information.
  • RRC radio resource control
  • NAS non-access stratum
  • DCI Downlink Control Information
  • DCI is the control information related to the physical downlink shared channel (PUSCH, PDSCH) transmitted on the physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • DCI information include information such as resource block (resource block, RB) allocation , Modulation method and so on. Only when the terminal correctly decodes the DCI information, can it correctly process PDSCH data or PUSCH data.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device, a terminal device, and an intelligent relay.
  • the number and configuration of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two One or more network devices, two or more terminal devices, and two or more intelligent relays.
  • the communication system shown in FIG. 1 includes a network device 11 , a terminal device 12 , and an intelligent relay 13 .
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • the intelligent relay 13 in the embodiment of the present disclosure is an entity for transmitting or receiving signals between a network device and a terminal device.
  • an intelligent relay can be a network unit, a terminal device with a relay function, or an intelligent metasurface RIS.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the intelligent relay device.
  • FIG. 2 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by an intelligent relay. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 21 receiving a radio resource control RRC message, wherein the RRC message is used to configure beam information corresponding to the service link service link for the intelligent relay.
  • the beam characteristics used by the intelligent relay are similar to those of the terminal equipment, and in the service link, the beam characteristics used by the intelligent relay are similar to those of the network equipment, which needs to meet
  • the requirements for beamforming that is, the beamforming of the serving link is different from the technology instructing the terminal device how to beamform in the related art. Therefore, in the present disclosure, the information of the beam corresponding to the service link is configured for the intelligent relay through the network device, so that the intelligent relay can communicate with the terminal device based on the beam information corresponding to the service link.
  • the beam information may include at least one of the following: an identification (identification, ID) of a group of beams; identifications of multiple groups of beams; an identification of a beam; identifications of multiple beams; and the time characteristics of the beam.
  • ID identification
  • the beam information may include at least one of the following: an identification (identification, ID) of a group of beams; identifications of multiple groups of beams; an identification of a beam; identifications of multiple beams; and the time characteristics of the beam.
  • the beam identifier can be any information that can uniquely determine the beam, which can be a Transmission Configuration Indicator (TCI) identifier or spatial relation information (Spatial relation info), or a reference signal identifier, etc.
  • TCI Transmission Configuration Indicator
  • spatial relation info spatial relation info
  • the beam ID can be indicated by a reference signal.
  • a reference signal ID can be included in the DCI to represent a beam ID.
  • the reference signal ID can be the channel state information reference signal resource identifier (CSI-RS resource ID, CRI), sounding signal resource identifier (SRS-resource ID, SRI) or synchronization signal block sequence number (SS block index, SSBI).
  • the reference signal ID may be configured in the TCI
  • the DCI includes the TCI
  • the reference signal ID corresponding to the type D quasi-co-location (quasico-location, QCL) parameter qcl-type-D in the TCI indicates the beam ID.
  • the aforementioned reference signal may be a periodic reference signal configured by RRC, an aperiodic reference signal or a semi-static reference signal. The present disclosure does not limit this.
  • the starting position and period of the beam can be indicated by the time unit, for example, the starting position of the beam can be the time domain position corresponding to the xth time unit after receiving the RRC message, or the use period of the beam is Y time units, etc., which are not limited in the present disclosure.
  • the time unit may be a time slot, a mini-slot, a symbol, etc., which may be stipulated by an agreement, and this disclosure does not limit it.
  • the identifier of the beam configuration is the identifier when the network device configures the beam to the intelligent relay through the RRC.
  • the identifier of a beam configuration may correspond to one or more of the following parameter groups: a group of beam identifiers, a beam cycle period, and the starting position of the beam; or, a beam identifier, a beam cycle period, and the starting position of the beam; or , a group of beam identifiers and a beam cycle period; or, a beam identifier and a beam cycle period; or, a group of beam identifiers.
  • the time characteristic of the beam is used to indicate that the currently configured beam is: a periodic beam, a semi-static beam, or an aperiodic beam, etc., which is not limited in the present disclosure.
  • the intelligent relay can communicate with the terminal device based on the configured beam information by receiving the RRC message sent by the network device for configuring the information of the beam corresponding to the service link.
  • FIG. 3 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by an intelligent relay. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 31 receiving a radio resource control RRC message, wherein the RRC message is used to configure beam information corresponding to the service link service link for the intelligent relay.
  • Step 32 Determine the period of the configured beam according to the value of the first preset parameter in the RRC message.
  • the first preset parameter in the RRC message may be set to represent the period of the configured beams. Therefore, after receiving the RRC message, the intelligent relay can analyze the RRC message to determine the period of the configured beam.
  • the period of the configured beam is determined to be the first value according to the value of the first preset parameter in the RRC message, it may be determined that the beam configured by the network device for the serving link is a periodic beam, and then the intelligent The relay can use the beams cyclically based on the cycle corresponding to the configured beams.
  • the period of the configured beam is determined to be the second value according to the value of the first preset parameter in the RRC message, it may be determined that the configured beam is an aperiodic beam.
  • the first value and the second value can be set as required, and the first value and the second value are different.
  • the first value is an actual period value
  • the second value is 0, or the second value is NULL, etc., which is not limited in the present disclosure.
  • the period corresponding to the aperiodic beam may not be included in the RRC message.
  • the first preset parameter value corresponding to the aperiodic beam may also be set as the second value.
  • the value of the first preset parameter is one.
  • the value of the first preset parameter can be one or multiple, that is, the values of the first preset parameters corresponding to multiple beams can be the same or different . The present disclosure does not limit this.
  • Step 33 Determine the starting position of the configured beam according to the value of the second preset parameter in the RRC message.
  • the RRC message sent by the network device may include the corresponding starting position of each beam, while for semi-static beam cycles, semi-static fixed beam indications, For dynamic beam rotation and dynamic beam indication, the RRC message may not include the corresponding starting position of the beam. However, in order to ensure the consistency of the beam configuration, in the present disclosure, the value of the second preset parameter in the RRC message may be set to represent the starting position of the configured beam.
  • the value of the second preset parameter may be the starting position of the periodic beam cycle and the periodic fixed beam, or may be 0 or null, which is not limited in the present disclosure.
  • the value of the second preset parameter is one.
  • the value of the second preset parameter may be one or multiple, that is, the values of the first preset parameter corresponding to multiple beams may be the same or different. The present disclosure does not limit this.
  • the beam information configured in the RRC message includes at least an identifier, period, and starting position of a group of beams.
  • the beam information configured in the RRC message includes at least one beam identifier, period, and starting position.
  • the beam information configured in the RRC message includes at least an identifier and period of a group of beams.
  • the beam information configured in the RRC message includes at least one beam identifier and period.
  • the beam information configured in the RRC message includes at least a group of beam identifiers.
  • the intelligent relay first receives the RRC message sent by the network device for configuring the information of the beam corresponding to the service link, and then determines the period of the configured beam according to the value of the first preset parameter in the RRC message, Determine the starting position of the configured beam according to the value of the second preset parameter in the RRC message.
  • the smart relay can realize the beam transmission and reception requirements of the smart relay similar to network equipment according to the beam cycle and starting position, which not only ensures the reliable use of the smart relay, but also provides conditions for expanding the coverage of the service cell. The reliable transmission of information is guaranteed.
  • Fig. 4 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by an intelligent relay. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 41 receiving a radio resource control RRC message, wherein the RRC message is used to configure beam information corresponding to the service link service link for the intelligent relay.
  • step 41 for a specific implementation form of step 41, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details will not be repeated here.
  • Step 42 receiving first indication information, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message.
  • the beam information configured in the RRC message does not include the start time corresponding to each beam. Therefore, the first indication information can be used for the RRC message. At least one of the configured beams is activated or triggered, and then the activated or triggered beam is sent to the terminal device to ensure communication with the terminal device.
  • the first indication information may include at least one of the following:
  • the network device may send the first indication information to the smart relay through the DCI, or may send the first indication information to the smart relay through the MACCE, which is not limited in the present disclosure.
  • the smart relay when the smart relay is a network device, the smart relay may receive the first indication information through downlink control information DCI.
  • the intelligent relay may receive the first indication information through the medium access control MAC control unit CE.
  • the network device triggers at least one beam in the beams configured by the RRC message through the DCI, which can save resources and improve the efficiency of beam configuration.
  • the smart relay is a terminal device with a relay function
  • DCI is used to indicate at least one of the beams configured by the RRC message, it cannot be accurately determined. Whether the beam is activated will also increase the DCI overhead.
  • MACCE has good scalability, and MACCE has corresponding confirmation signaling, which can confirm whether the beam is activated. Therefore, the network device activates at least one of the beams configured by the RRC message through the MACCE, which can ensure the reliability of the information. transmission.
  • the smart relay first receives the RRC message sent by the network device to configure the information of the beam corresponding to the service link for the smart relay, and then receives the triggered or activated beam configured by the RRC message sent by the network device After receiving the first indication information of the at least one beam, the at least one beam activated or triggered based on the first indication information can communicate with the terminal device.
  • realizing the beam transmission and reception requirements of the smart relay similar to network equipment not only ensures the reliable use of the smart relay, provides conditions for expanding the coverage of the serving cell, but also ensures the reliable transmission of information.
  • FIG. 5 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by an intelligent relay. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 51 receiving a radio resource control RRC message, wherein the RRC message is used to configure the beam information corresponding to the service link service link for the intelligent relay.
  • Step 52 receiving first indication information, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message.
  • step 51 and step 52 reference may be made to the detailed descriptions in other embodiments of the present disclosure, which will not be repeated here.
  • Step 53 Receive third indication information, where the third indication information is used to indicate at least one beam in at least one beam triggered or activated by the first indication information.
  • the RRC message configured by the network device does not include the use time information corresponding to each aperiodic beam, therefore, the intelligent relay requires the network device to send a third indication message to the The beam configured by the RRC message is triggered by at least one beam in at least one beam that has been activated by the MAC CE, and then the triggered beam is sent to the terminal device to ensure communication with the terminal device.
  • the third indication information may include at least one of the following:
  • the intelligent relay may receive the third indication information through downlink control information DCI.
  • the intelligent relay first receives the RRC message sent by the network device for configuring the information of the beam corresponding to the service link, and then receives the first message of at least one of the beams sent by the network device for activating the beam configured by the RRC message
  • the indication information finally receiving third indication information sent by the network device and used to indicate at least one beam in the at least one beam activated by the first indication information. Therefore, the smart relay can communicate with the terminal device according to the beam indicated by the third indication information, so as to realize the beam sending and receiving requirements of the smart relay similar to network equipment, which not only ensures the reliable use of the smart relay, but also expands the coverage of the service cell. Conditions are provided and reliable transmission of information is guaranteed.
  • FIG. 6 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by an intelligent relay. As shown in Figure 6, the method may include but not limited to the following steps:
  • Step 61 Receive an RRC message, wherein the RRC message is used to configure at least the beam information corresponding to the service link for the smart relay.
  • step 61 for the specific implementation form of step 61, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details will not be repeated here.
  • Step 62 Receive second indication information, where the second indication information is used to indicate the type of beam used by the smart relay.
  • the second indication information may include at least one of the following:
  • the second instruction information may also include:
  • the type of the beam may include uplink and downlink of the beam.
  • the uplink of the beam can include receiving on the service link and sending on the backhaul link; the downlink of the beam can include receiving on the backhual link and sending on the service link.
  • the intelligent relay can determine the beam sending and receiving conditions of the two links according to the received TDD information.
  • the second indication information may be indicated through RRC signaling or dynamic signaling, which is not limited in the present disclosure.
  • the type of beam used by the smart relay can be indicated at the same time when the network device configures the information of the beam corresponding to the service link for the smart relay, or can be indicated separately after the beam configuration is performed. This disclosure There is no limit to this.
  • Step 63 Receive first indication information through DCI, where the first indication information is used to trigger at least one beam in the beams configured by the RRC message.
  • step 63 for the specific implementation form of step 63, reference may be made to the detailed descriptions in other embodiments of the present disclosure, which will not be repeated here.
  • Step 64 Determine the time domain position corresponding to the first number of time units after receiving the DCI as the starting position of at least one beam.
  • the time unit may be a time slot, a mini-slot, a symbol, etc., which may be determined through a protocol agreement, or may also be indicated by a network device, which is not limited in the present disclosure.
  • the intelligent relay may determine the value of the first number of time units according to an instruction of the network device.
  • the smart relay may also determine the value of the first number of time units according to the agreement and the type of at least one beam.
  • the smart relay can use the starting position of the beam to communicate with the terminal device.
  • the intelligent relay first receives the RRC message sent by the network device for configuring the information of the beam corresponding to the service link, and then receives the second indication sent by the network device for indicating the type of the beam configured by RRC information, and then receive the first indication information of at least one of the beams used to trigger the RRC message configuration sent by the network device through the DCI, and finally determine that after receiving the first number of time units of the DCI, it is the start of at least one beam Location.
  • the smart relay can send the corresponding beam according to the starting position of the beam, so as to realize the beam sending and receiving requirements of the relay similar to network equipment, not only ensuring It ensures the reliable use of intelligent relays, provides conditions for expanding the coverage of serving cells, and ensures reliable transmission of information.
  • FIG. 7 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by an intelligent relay. As shown in Figure 7, the method may include but not limited to the following steps:
  • Step 71 Receive a radio resource control RRC message, wherein the RRC message is used to configure beam information corresponding to the service link for the intelligent relay.
  • Step 72 Receive second indication information, where the second indication information is used to indicate the type of beam used by the smart relay.
  • Step 73 The medium access control MAC control unit CE receives first indication information, where the first indication information is used to activate at least one beam in the beams configured by the RRC message.
  • the type of beam used by the smart relay can be indicated at the same time when the network device configures the information of the beam corresponding to the service link for the smart relay, or can be indicated separately after beam configuration; or, The type of the beam can also be indicated synchronously when the beam is activated for the smart relay by using the MAC CE, or can also be indicated separately from the MAC CE, which is not limited in this disclosure.
  • Step 74 Determine the time domain position corresponding to the second number of time units after sending the acknowledgment signaling to the network device as the starting position of at least one beam.
  • the time unit may be a time slot, a mini-slot, a symbol, etc., which may be stipulated in a protocol, or may also be determined according to an instruction of a network device, which is not limited in the present disclosure.
  • the intelligent relay may determine the value of the second number of time units according to an instruction of the network device.
  • the smart relay can also determine the value of the second number of time units according to the agreement and the type of at least one beam.
  • the intelligent relay determines the value of the second number of time units, it can determine the second number of time units after sending the confirmation signaling to the network device according to the value of the second number of time units
  • the corresponding time domain position is the starting position of at least one beam, and then the corresponding beam can be sent at the starting position of the beam.
  • the intelligent relay first receives the RRC message sent by the network device for configuring the information of the beam corresponding to the service link, and then receives the second indication information sent by the network device for indicating the type of the beam configured by the RRC, Receiving the first indication information of at least one of the beams used to trigger the RRC message configuration sent by the network device through the MACCE, and finally determining the time domain position corresponding to the second number of time units after sending the confirmation signaling to the network device, is the starting position of at least one beam.
  • the smart relay can send the corresponding beam according to the starting position of the beam, so as to realize the beam transmitting and receiving requirements of the relay similar to network equipment, not only It ensures the reliable use of the intelligent relay, provides conditions for expanding the coverage of the serving cell, and ensures the reliable transmission of information.
  • FIG. 8 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by an intelligent relay. As shown in Figure 8, the method may include but not limited to the following steps:
  • Step 81 Send a radio resource control RRC message to the intelligent relay, where the RRC message is used to configure beam information corresponding to the service link for the intelligent relay.
  • the beam characteristics used by the intelligent relay are similar to those of the terminal equipment, and in the service link, the beam characteristics used by the intelligent relay are similar to those of the network equipment, which needs to meet
  • the requirements for beamforming that is, the beamforming of the serving link is different from the technology instructing the terminal device how to beamform in the related art. Therefore, in the present disclosure, the information of the beam corresponding to the service link is configured for the intelligent relay through the network device, so that the intelligent relay can communicate with the terminal device based on the beam information corresponding to the service link.
  • the beam information may include at least one of the following: an identification (identification, ID) of a group of beams; identifications of multiple groups of beams; an identification of a beam; identifications of multiple beams; and the time characteristics of the beam.
  • ID identification
  • the beam information may include at least one of the following: an identification (identification, ID) of a group of beams; identifications of multiple groups of beams; an identification of a beam; identifications of multiple beams; and the time characteristics of the beam.
  • the beam identifier can be any information that can uniquely determine the beam, which can be a Transmission Configuration Indicator (TCI) identifier or spatial relation information (Spatial relation info), or a reference signal identifier, etc.
  • TCI Transmission Configuration Indicator
  • spatial relation info spatial relation info
  • the beam ID can be indicated by a reference signal.
  • a reference signal ID can be included in the DCI to represent a beam ID.
  • the reference signal ID can be the channel state information reference signal resource identifier (CSI-RS resource ID, CRI), sounding signal resource identifier (SRS-resource ID, SRI) or synchronization signal block sequence number (SSblock index, SSBI).
  • the reference signal ID configuration may be placed in the TCI, the DCI includes the TCI, and the reference signal ID corresponding to the type D quasi-co-location (quasico-location, QCL) parameter qcl-type-D in the TCI indicates the beam ID.
  • the aforementioned reference signal may be a periodic reference signal configured by RRC, an aperiodic reference signal or a semi-static reference signal. The present disclosure does not limit this.
  • the starting position and period of the beam can be indicated by time units, for example, the starting position of the beam is the xth time unit after receiving the RRC indication, or the use period of the beam is Y time units, etc., the present disclosure There is no limit to this.
  • the time unit may be a time slot, a mini-slot, a symbol, etc., which may be stipulated by an agreement, and this disclosure does not limit it.
  • the identifier of the beam configuration is the identifier when the network device configures the beam to the intelligent relay through the RRC.
  • the identifier of a beam configuration may correspond to one or more of the following parameter groups: a group of beam identifiers, a beam cycle period, and the starting position of the beam; or, a beam identifier, a beam cycle period, and the starting position of the beam; or , a group of beam identifiers and a beam cycle period; or, a beam identifier and a beam cycle period; or, a group of beam identifiers.
  • the time characteristic of the beam is used to indicate that the currently configured beam is: a periodic beam, a semi-static beam, or an aperiodic beam, etc., which is not limited in the present disclosure.
  • the network device sends an RRC message for configuring beam information corresponding to the service link to the smart relay, so that the smart relay can communicate with the terminal device based on the configured beam information.
  • the requirements of beam transmission and reception for smart relays similar to network equipment are realized, which not only ensures the reliable use of smart relays, provides conditions for expanding the coverage of service cells, but also ensures reliable transmission of information.
  • FIG. 9 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 9, the method may include but not limited to the following steps:
  • Step 91 Determine the value of the first preset parameter in the RRC message according to whether the beam to be configured is a periodic beam.
  • the first preset parameter in the RRC message may be set to represent the period of the configured beams. Therefore, after receiving the RRC message, the intelligent relay can analyze the RRC message to determine the period of the configured beam.
  • the beam to be configured is a periodic beam
  • the beam to be configured is an aperiodic beam
  • it is determined that the value of the first preset parameter in the RRC message is the second value.
  • the first value and the second value can be set as required, and the first value and the second value are different.
  • the first value is an actual period value
  • the second value is 0, or the second value is NULL, etc., which is not limited in the present disclosure.
  • the value of the first preset parameter is one.
  • the value of the first preset parameter can be one or multiple, that is, the values of the first preset parameters corresponding to multiple beams can be the same or different . The present disclosure does not limit this.
  • Step 92 Determine the value of the second preset parameter in the RRC message according to the starting position of the beam to be configured.
  • the RRC message sent by the network device may include the corresponding starting position of each beam, while for semi-static beam cycles, semi-static fixed beam indications, For dynamic beam rotation and dynamic beam indication, the RRC message may not include the corresponding starting position of the beam. However, in order to ensure the consistency of the beam configuration, in the present disclosure, the value of the second preset parameter in the RRC message may be set to represent the starting position of the configured beam.
  • the value of the second preset parameter may be the starting position of the periodic beam cycle and the periodic fixed beam, or may be 0 or null, which is not limited in the present disclosure.
  • the value of the second preset parameter is one.
  • the value of the second preset parameter may be one or multiple, that is, the values of the first preset parameter corresponding to multiple beams may be the same or different. The present disclosure does not limit this.
  • the beam information configured in the RRC message includes at least an identifier, period, and starting position of a group of beams.
  • the beam information configured in the RRC message includes at least one beam identifier, period, and starting position.
  • the beam information configured in the RRC message includes at least an identifier and period of a group of beams.
  • the beam information configured in the RRC message includes at least one beam identifier and period.
  • the beam information configured in the RRC message includes at least a group of beam identifiers.
  • Step 93 Send a radio resource control RRC message to the intelligent relay, where the RRC message is used to configure beam information corresponding to the service link for the intelligent relay.
  • step 93 for the specific implementation form of step 93, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details will not be repeated here.
  • the network device first determines the value of the first preset parameter in the RRC message according to whether the beam to be configured is a periodic beam, and then determines the value of the first preset parameter in the RRC message according to the starting position of the beam to be configured. 2. Values of preset parameters, and finally send an RRC message for configuring the information of the beam corresponding to the service link to the intelligent relay. Therefore, the smart relay can realize the beam sending and receiving requirements of the smart relay similar to network equipment according to the beam period and starting position, which not only ensures the reliable use of the smart relay, but also provides conditions for expanding the coverage of the service cell, and ensures reliable transmission of information.
  • FIG. 10 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 10, the method may include but not limited to the following steps:
  • Step 101 sending a radio resource control RRC message to the intelligent relay, wherein the RRC message is used to configure beam information corresponding to the service link service link for the intelligent relay.
  • step 101 for the specific implementation form of step 101, reference may be made to the detailed descriptions in other embodiments of the present disclosure, which will not be repeated here.
  • Step 102 sending first indication information to the intelligent relay, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message.
  • the beam information configured in the RRC message does not include the start time corresponding to each beam. Therefore, the network device can use the first indication information for At least one of the beams configured by the RRC message is activated or triggered, so that the intelligent relay can send the activated or triggered beam to the terminal device, so as to ensure communication with the terminal device.
  • the first indication information may include at least one of the following:
  • the network device may send the first indication information to the smart relay through the DCI, or may send the first indication information to the smart relay through the MACCE, which is not limited in the present disclosure.
  • the smart relay when the smart relay is a network device, the smart relay may receive the first indication information through downlink control information DCI.
  • the intelligent relay may receive the first indication information through the medium access control MAC control unit CE.
  • the network device triggers at least one beam in the beams configured by the RRC message through the DCI, which can save resources and improve the efficiency of beam configuration.
  • the smart relay is a terminal device with a relay function
  • DCI is used to indicate at least one of the beams configured by the RRC message, it cannot be accurately determined. Whether the beam is activated will also increase the DCI overhead.
  • MACCE has good scalability, and MACCE has corresponding confirmation signaling, which can confirm whether the beam is activated. Therefore, the network device activates at least one of the beams configured by the RRC message through the MACCE, which can ensure the reliability of the information. transmission.
  • the network device first sends to the smart relay an RRC message for configuring the information of the beam corresponding to the service link, and then sends to the smart relay a message for triggering or activating at least one of the beams configured in the RRC message The first instruction message. Therefore, after receiving the first indication information of at least one beam configured in the trigger or activation RRC message sent by the network device, the smart relay can communicate with the terminal device based on the at least one beam activated or triggered by the first indication information. Communication, so as to realize the beam transmission and reception requirements of intelligent relays similar to network equipment, not only ensure the reliable use of intelligent relays, provide conditions for expanding the coverage of service cells, but also ensure reliable transmission of information.
  • FIG. 11 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 11, the method may include but not limited to the following steps:
  • Step 111 sending a radio resource control RRC message to the intelligent relay, wherein the RRC message is used to configure beam information corresponding to the service link for the intelligent relay.
  • Step 112 sending first indication information to the intelligent relay, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message.
  • step 111 and step 112 reference may be made to the detailed descriptions in other embodiments of the present disclosure, which will not be described in detail here.
  • Step 113 Send third indication information to the smart relay, where the third indication information is used to indicate at least one beam in at least one beam triggered or activated by the first indication information.
  • the RRC message configured by the network device does not include the use time information corresponding to each aperiodic beam, therefore, the network device needs to send a third indication message to the intelligent relay Trigger at least one of the beams configured by the RRC message or at least one of the beams activated by the MAC CE, and then the intelligent relay can send the triggered beam to the terminal device to ensure communication with the terminal device.
  • the third indication information may include at least one of the following:
  • the network device may send the third indication information through downlink control information DCI.
  • the network device first sends to the smart relay an RRC message for configuring the information of the beam corresponding to the service link, and then sends to the smart relay a message for triggering or activating at least one of the beams configured in the RRC message
  • the first indication information and finally sending third indication information for indicating at least one beam in at least one beam triggered or activated by the first indication information to the intelligent relay. Therefore, the smart relay can communicate with the terminal device according to the beam indicated by the third indication information, so as to realize the beam sending and receiving requirements of the smart relay similar to network equipment, which not only ensures the reliable use of the smart relay, but also expands the coverage of the service cell. Conditions are provided and reliable transmission of information is guaranteed.
  • FIG. 12 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 12, the method may include but not limited to the following steps:
  • Step 121 sending a radio resource control RRC message to the intelligent relay, where the RRC message is used to configure beam information corresponding to the service link service link for the intelligent relay.
  • step 121 for a specific implementation form of step 121, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • Step 122 Send second indication information to the intelligent relay, where the second indication information is used to indicate the type of beam used by the intelligent relay.
  • the second indication information may include at least one of the following:
  • the second instruction information may also include:
  • the type of the beam may include uplink and downlink of the beam.
  • the uplink of the beam can include receiving on the service link and sending on the backhaul link; the downlink of the beam can include receiving on the backhual link and sending on the service link.
  • the second indication information may be indicated through RRC signaling or dynamic signaling, which is not limited in the present disclosure.
  • the type of beam used by the smart relay can be indicated at the same time when the network device configures the information of the beam corresponding to the service link for the smart relay, or can be indicated separately after the beam configuration is performed. This disclosure There is no limit to this.
  • Step 123 Send first indication information through downlink control information DCI, where the first indication information is used to trigger at least one beam in the beams configured by the RRC message.
  • step 123 for a specific implementation form of step 123, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • Step 124 determine the starting position of at least one beam as the time domain position corresponding to the first number of time units after sending the DCI.
  • the time unit may be a time slot, a mini-slot, a symbol, etc., which may be determined through a protocol agreement, which is not limited in the present disclosure.
  • the network device may determine the value of the first number of time units according to the protocol agreement and the type of at least one beam.
  • the network device may send the value of the first number of time units to the smart relay, so that the smart relay value to determine the starting position of at least one beam.
  • the network device can accurately determine the status of the smart relay and the terminal device based on the determined starting position of the service link, and then perform service scheduling on the smart relay and the terminal device according to the status of the smart relay and the terminal device , thus effectively avoiding scheduling errors.
  • the network device first sends an RRC message to the smart relay to configure the information of the beam corresponding to the service link, and then sends the second indication information to the smart relay to indicate the type of the beam configured by the RRC, and then Send the first indication information of at least one of the beams used to trigger the RRC message configuration to the smart relay through the DCI, and finally determine that the starting position of the at least one beam is the time domain corresponding to the first number of time units after sending the DCI Location.
  • realizing the beam transmission and reception requirements of the smart relay similar to network equipment not only ensures the reliable use of the smart relay, provides conditions for expanding the coverage of the serving cell, but also ensures the reliable transmission of information.
  • FIG. 13 is a schematic flowchart of a method for indicating a beam of an intelligent relay service link provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 13, the method may include but not limited to the following steps:
  • Step 131 sending a radio resource control RRC message to the intelligent relay, wherein the RRC message is used to configure beam information corresponding to the service link service link for the intelligent relay.
  • Step 132 Send second indication information to the intelligent relay, where the second indication information is used to indicate the type of beam used by the intelligent relay.
  • Step 133 Send the first indication information through the MAC CE, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message.
  • step 131 to step 133 reference may be made to the detailed description in other embodiments of the present disclosure, which will not be described in detail here.
  • the type of beam used by the smart relay can be indicated at the same time when the network device configures the information of the beam corresponding to the service link for the smart relay, or can be indicated separately after beam configuration; or, The type of the beam can also be indicated synchronously when the beam is activated for the smart relay by using the MAC CE, or can also be indicated separately from the MAC CE, which is not limited in this disclosure.
  • Step 134 Determine the starting position of at least one beam as the time domain position corresponding to the second number of time units after receiving the acknowledgment signaling sent by the smart relay.
  • the time unit may be a time slot, a mini-slot, a symbol, etc., which may be stipulated in a protocol, or may also be determined according to an instruction of a network device, which is not limited in the present disclosure.
  • the network device may determine the value of the second number of time units according to a protocol agreement and a type of at least one beam.
  • the network device may send the value of the second number of time units to the smart relay, so that the smart relay value to determine the starting position of at least one beam.
  • the intelligent relay will return the confirmation signaling corresponding to the MAC CE message, and the network device can determine that the starting position of at least one beam is after receiving the confirmation signaling The time domain position corresponding to the second number of time units of the time unit, and then the network device can send the corresponding beam to the intelligent relay at the starting position of at least one beam.
  • the network device first sends an RRC message to the smart relay to configure the information of the beam corresponding to the service link, and then sends the second indication information to the smart relay to indicate the type of the beam configured by the RRC, and then Send the first indication information of at least one beam in the beams used to trigger the RRC message configuration to the intelligent relay through the MAC CE, and finally determine that the starting position of at least one beam is the first after receiving the confirmation signaling sent by the intelligent relay
  • the time domain position corresponding to the two number of time units.
  • the beam indication can be completed by configuring one or more sets of periodic beams for the smart repeater through the network device.
  • the specific configuration parameters include at least one set of beam IDs.
  • the period and the starting position of the beam; the beam ID can be indicated by a reference signal ID, and the reference signal can be QCL to an existing reference signal ID.
  • the network device can configure beam information corresponding to the service link for the smart relay through RRC signaling. That is, an RRC message is sent to the intelligent relay, where the RRC message is used to configure the beam information corresponding to the service link service link for the intelligent relay.
  • the beam information includes at least a set of beam identifiers, periods, and starting positions.
  • the network device On the backhaul link, it is mainly used for the network device to scan the beam of the smart repeater side.
  • the beam indication can be completed by configuring one or more sets of periodic reference signals for the smart repeater on the network device.
  • the specific configuration parameters include at least one set of reference signals. Time-frequency position, period and starting position.
  • the network device can configure parameters for the intelligent relay through RRC signaling.
  • the service link part is to configure a set of periodic beam cycles for the smart repeater through RRC signaling.
  • the specific configuration parameters of each set include at least a set of beam ID, period and beam start position; the beam ID can be passed QCL indicates to any existing reference signal ID. That is, the reference signal ID can be configured in the TCI, the DCI includes the TCI, and the reference signal ID corresponding to the type D quasi-co-location (quasico-location, QCL) parameter qcl-type-D in the TCI indicates the beam ID.
  • each group configuration is at least It includes a beam ID, period and the starting position of the beam; the beam ID can be indicated by QCL to any existing reference signal ID.
  • the network device sends an RRC message to the smart relay, where the RRC message is used to configure the beam information corresponding to the service link for the smart relay.
  • the beam information includes at least a beam identifier, a period, and a starting position of the beam.
  • the beam selected by the network device can be maintained to maintain the backhaul link.
  • the beam indication can be completed by configuring one or more periodic beams and MAC CE/DCI triggering for the smart repeater through the network device.
  • Specific parameters of the RRC include at least one set of beam IDs and periods.
  • the network device may send the first indication information to the smart repeater, for triggering or activating at least one of the beams configured in the RRC message.
  • the network device may send the first indication information to the smart repeater through MAC CE or DCI, and the smart repeater sends a reference signal after receiving the first indication information.
  • the first indication information includes an indication of one or more groups of periodic beams.
  • the network device first sends an RRC message to the smart relay.
  • the RRC message is used to configure the information of the beam corresponding to the service link for the smart relay.
  • the beam information includes at least the identification and period of a group of beams.
  • the network device can pass the MAC
  • the CE or the DCI sends the first indication information to the smart relay, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message.
  • the network device may send the first indication information to the smart repeater through the MAC CE.
  • the network device triggers at least one beam in the beams configured by the RRC message through the DCI, which can save resources and improve the efficiency of beam configuration.
  • the beam indication can be that the network device first configures one or more sets of periodic beams for the smart repeater through the RRC message, and then sends the first indication information to the smart repeater through the MAC CE or DCI to trigger or activate the beam configured in the RRC message at least one beam of .
  • the beam information included in the RRC message includes at least a beam ID and a period.
  • the smart repeater sends the reference signal after receiving the first indication information sent by the network device.
  • the first indication information sent through MAC CE or DCI includes at least an indication of one or more groups of periodic beams.
  • the network device first sends an RRC message to the smart relay.
  • the RRC message is used to configure the information of the beam corresponding to the service link for the smart relay.
  • the beam information includes at least the identification and period of one beam.
  • the network device can pass MAC CE , or the DCI sends the first indication information to the smart relay, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message.
  • the network device may send the first indication information to the smart repeater through the MAC CE.
  • the network device triggers at least one beam in the beams configured by the RRC message through the DCI, which can save resources and improve the efficiency of beam configuration.
  • CSI-RS Channel State Information Resource Config
  • its beam indication can configure a group or Multiple groups of beams, or at least one beam activated by the first indication information sent by the MAC CE, and then send third indication information to the smart repeater to indicate at least one beam in the at least one beam activated by the MAC CE.
  • the network device may send third indication information to the smart repeater through the DCI. After receiving the third indication information, the smart repeater sends a corresponding beam according to the beam information indicated by the third indication information.
  • the network device first sends an RRC message to the smart relay.
  • the RRC message is used to configure the beam information corresponding to the service link for the smart relay.
  • the relay sends first indication information, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message, and finally the network device sends third indication information to the smart relay through DCI, where the third indication The information is used to indicate at least one beam in at least one beam activated by the MAC CE.
  • the beam indication can be configured for the network device to configure one or more sets of beams for the smart repeater through the RRC message, or the network device can send it through the MAC CE At least one beam activated by the first indication information, and then the network device sends the third indication information to the smart repeater through DCI to trigger at least one of the beams configured by the RRC message, or at least one of the at least one beam activated by the MAC CE a beam. After receiving the third indication information, the smart repeater sends a corresponding beam according to the beam information indicated by the third indication information.
  • the network device first sends an RRC message to the smart relay.
  • the RRC message is used to configure the beam information corresponding to the service link for the smart relay.
  • the relay sends first indication information, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message, and finally the network device sends third indication information to the smart relay through DCI, where the third indication The information is used to indicate at least one beam in at least one beam activated by the MAC CE.
  • RRC can configure at least one or more of the following parameters for each beam configuration beam configuration: (1) a group of beam IDs/a beam ID, period, Starting position; (2) a group of beam IDs/a beam ID, period; (3) a group of beam IDs. That is, the beam information may include at least one of the following: an identification (identification, ID) of a group of beams; identifications of multiple groups of beams; an identification of a beam; identifications of multiple beams; a period; a starting position of a beam; time characteristics.
  • ID identification
  • the MAC CE can activate a beam configuration, and the specific content is the beam configuration ID of the beam configuration.
  • the MAC CE can also activate one or part of beams in a group of beams in a beam configuration, the specific content is beam configuration ID, beam ID;
  • DCI can trigger a beam configuration, and the specific content is beam configuration ID; DCI can also trigger a beam in a group of beams in a beam configuration, and the specific content is beam configuration ID, beam ID; DCI can also trigger MAC A beam in at least one beam activated by the CE, the specific content is the beam ID.
  • the continuous use time of each beam in the RRC configuration is a time unit by default, such as a time slot slot or a symbol symbol, and the smart repeater uses the beams in sequence according to the order in which the beam IDs appear; it can also be used in RRC
  • the period is indicated in the message. If a period is indicated, the smart repeater uses the beams sequentially according to the specified period.
  • the network device only configures a set of beam configurations for the smart repeater, the beam configuration ID can be omitted.
  • the time characteristic of the beam can be further added, such as periodic beam, semi-static beam or aperiodic beam, to indicate the time characteristic of the beam, and then indicate the behavior of the smart repeater to use the beam.
  • the network device can send the second indication information to the smart repeater to indicate to the smart repeater
  • the second indication information may include TDD information and Slot format information.
  • the network device may indicate to send the second indication information through RRC signaling or dynamic signaling.
  • the types of beams may include uplink and downlink. Among them, the uplink can be received on the service link and sent on the backhaul link; the downlink can be received on the backhual link and sent on the service link.
  • the smart repeater when using MAC CE to activate a certain beam or a group of beams, the smart repeater feeds back to the network device the time domain position corresponding to the second number of time units after confirming the ack signaling, which is the start of the beam Location.
  • the intelligent relay can determine the value of the second number of time units according to the instruction of the network device. Alternatively, the smart relay can also determine the value of the second number of time units according to the agreement and the type of at least one beam.
  • the smart repeater when the DCI is used to trigger at least one of the beams configured by the RRC message, the smart repeater starts sending at the time domain position corresponding to the first number of time units after receiving the signaling.
  • the intelligent relay can determine the value of the first number of time units according to an instruction of the network device or a protocol agreement.
  • the first number of time units includes at least the beam switching time of the smart repeater and the uplink transmission preparation time; the smart repeater feeds back the M slot of the ack signaling for the DCI to the network device and then starts sending, and the smart relay can follow the instructions of the network device Or as agreed in the protocol, determine the value of the first number of time units.
  • M slot includes at least the beam switching time of the smart repeater.
  • the values of the first number of time units and the second number of time units include at least the beam switching time on the service link and uplink transmission Preparation time.
  • the values of the first number of time units and the second number of time units at least include the beam switching time on the service link.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of network devices and terminal devices respectively.
  • the network device and the terminal device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 14 is a schematic structural diagram of a communication device 140 provided by an embodiment of the present disclosure.
  • the communication device 140 shown in FIG. 14 may include a processing module 1401 and a transceiver module 1402 .
  • the transceiver module 1402 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 1402 can realize the sending function and/or the receiving function.
  • the communication device 140 may be a terminal device, may also be a device in an intelligent relay, and may also be a device that can be matched and used with the intelligent relay.
  • the communication device 140 on the intelligent relay side, the device includes:
  • the transceiver module 1402 is configured to receive a radio resource control RRC message, wherein the RRC message is used to configure beam information corresponding to the service link service link for the intelligent relay.
  • the beam information includes at least one of the following:
  • the temporal characteristics of the beam are the temporal characteristics of the beam.
  • the transceiver module 1402 is also specifically used for:
  • the first indication information is received, where the first indication information is used to trigger or activate at least one beam in the beams configured by the RRC message.
  • a processing module 1402 is also included, specifically for:
  • the medium access control MAC control unit CE In response to receiving the first indication information through the medium access control MAC control unit CE, determine the time domain position corresponding to the second number of time units after sending the acknowledgment signaling to the network device, as the starting position of at least one beam.
  • processing module 1402 is also specifically used for:
  • values of the first number of time units and the second number of time units are determined.
  • processing module 1402 is specifically used for:
  • the transceiver module 1402 is also specifically used for:
  • the second indication information is received, where the second indication information is used to indicate the type of the beam used by the smart relay.
  • the transceiver module 1402 is also specifically used for:
  • third indication information is used to indicate at least one beam in the at least one beam triggered or activated by the first indication information.
  • the first indication information, the second indication information, and the third indication information respectively include at least one of the following:
  • processing module 1402 is also specifically used for:
  • processing module 1402 is also specifically configured to: determine the configuration of the configured beam according to the value of the second preset parameter in the RRC message
  • the intelligent relay can communicate with the terminal device based on the configured beam information by receiving the RRC message sent by the network device for configuring the information of the beam corresponding to the service link.
  • the communication device 140 may be a network device, may also be a device in the network device, and may also be a device that can be matched and used with the network device.
  • the communication device 140 on the network device side, the device includes:
  • the transceiver module 1402 is configured to send a radio resource control RRC message to the intelligent relay, where the RRC message is used to configure beam information corresponding to the service link for the intelligent relay.
  • the beam information includes at least one of the following:
  • the temporal characteristics of the beam are the temporal characteristics of the beam.
  • the transceiver module 1402 is also specifically used for:
  • a processing module 1402 is also included, specifically for:
  • the MAC control unit CE In response to sending the first indication information through the MAC control unit CE, determine that the starting position of at least one beam is the time domain position corresponding to the second number of time units after receiving the acknowledgment signaling sent by the smart relay.
  • processing module 1402 is also specifically used for:
  • processing module 1402 is also specifically used for:
  • the transceiver module 1402 is also specifically used for:
  • the transceiver module 1402 is also specifically used for:
  • the first indication information, the second indication information, and the third indication information respectively include at least one of the following:
  • processing module 1402 is also specifically used for:
  • processing module 1402 is also specifically used for:
  • the beam to be configured is a periodic beam
  • the value of the first preset parameter in the RRC message is a second value.
  • processing module 1402 is also specifically used for:
  • the network device sends an RRC message for configuring the beam information corresponding to the service link to the smart relay, so that the smart relay can communicate with the terminal device based on the configured beam information.
  • FIG. 15 is a schematic structural diagram of another communication device 150 provided by an embodiment of the present disclosure.
  • the communication device 150 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 150 may include one or more processors 1501 .
  • the processor 1501 may be a general purpose processor or a special purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 150 may further include one or more memories 1502, on which a computer program 1504 may be stored, and the processor 1501 executes the computer program 1504, so that the communication device 150 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1502 .
  • the communication device 150 and the memory 1502 can be set separately or integrated together.
  • the communication device 150 may further include a transceiver 1505 and an antenna 1506 .
  • the transceiver 1505 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1505 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 150 may further include one or more interface circuits 1507 .
  • the interface circuit 1507 is used to receive code instructions and transmit them to the processor 1501 .
  • the processor 1501 runs the code instructions to enable the communication device 150 to execute the methods described in the foregoing method embodiments.
  • the communication device 150 is an intelligent relay: the processor 1501 is used to execute steps 31 and 32 in FIG. 3 ; step 64 in FIG. 6 , and so on.
  • the transceiver 1505 is used to execute step 21 in FIG. 2; step 31 in FIG. 3; step 41 and step 42 in FIG. 4; or step 51, step 52 and step 53 in FIG. 5 and so on.
  • the communication device 150 is a network device: the processor 1501 is configured to execute steps 91 and 92 in FIG. 9 ; step 124 in FIG. 12 ; or step 134 in FIG. 13 , and so on.
  • the transceiver 1505 is used to execute step 81 in FIG. 8; step 93 in FIG. 9; step 101, step 102 in FIG. 10 and so on.
  • the processor 1501 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1501 may store a computer program 1503 , and the computer program 1503 runs on the processor 1501 to enable the communication device 150 to execute the methods described in the foregoing method embodiments.
  • the computer program 1503 may be solidified in the processor 1501, and in this case, the processor 1501 may be implemented by hardware.
  • the communication device 150 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 15 .
  • the communication means may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 16 refer to the schematic structural diagram of the chip shown in FIG. 16 .
  • the chip 160 shown in FIG. 16 includes a processor 1601 and an interface 1602 .
  • the number of processors 1601 may be one or more, and the number of interfaces 1602 may be more than one.
  • the processor 1601 is configured to execute step 31 and step 32 in FIG. 3 ; step 64 in FIG. 6 , and so on.
  • the interface 1602 is used to execute step 21 in FIG. 2; step 31 in FIG. 3; step 41 and step 42 in FIG. 4; or step 51, step 52 and step 53 in FIG. 5, etc.
  • the processor 1601 is configured to execute step 91 and step 92 in FIG. 9 ; step 124 in FIG. 12 ; or step 134 in FIG. 13 , and so on.
  • the interface 1602 is used to execute step 81 in FIG. 8 ; step 93 in FIG. 9 ; step 101 and step 102 in FIG. 10 , and so on.
  • the chip further includes a memory 1603 for storing necessary computer programs and data.
  • the embodiment of the present disclosure also provides a communication system, which includes the communication device as the terminal device and the communication device as the network device in the aforementioned embodiment of Figure 14, or the system includes the communication device as the terminal device in the aforementioned embodiment of Figure 15 devices and communication devices as network devices.
  • the present disclosure also provides a computer-readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • first, second, and third may be used in the embodiment of the present application to describe various information, such information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • second information may also be called first information.
  • the words “if” and “if” may be construed as “at” or “when” or “in response to a determination” or "under circumstances”.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种智能中继服务链路的波束指示方法及其装置,可应用于通信技术领域,其中,由智能中继执行的方法包括:接收无线资源控制RRC消息,其中,所述RRC消息用于为所述智能中继配置服务链路service link对应的波束的信息。由此,实现了智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。

Description

一种智能中继服务链路的波束指示方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种智能中继服务链路的波束指示方法及其装置。
背景技术
在通信系统中,通常采用智能中继(smart repeater),或者,智能超表面(reconfigurable intelligence surface,RIS)来扩大小区覆盖范围。smart repeater或RIS需要负责与网络设备间的反馈链路(feed link)又称为回程链路(backhaul link),以及与终端设备间的服务链路(service link)。
在回程链路中,smart repeater或RIS使用的波束特征与终端设备相似,在服务链路中,smart repeater或RIS使用的波束特征与网络设备相似,需要满足网络设备的波束赋形的要求。
发明内容
本公开实施例提供一种智能中继服务链路的波束指示方法及其装置,可应用于通信技术领域中。
第一方面,本公开实施例提供一种智能中继服务链路的波束指示方法,所述方法由智能中继执行,该方法包括:接收无线资源控制RRC消息,其中,所述RRC消息用于为所述智能中继配置服务链路service link对应的波束的信息。
本公开实施例中,智能中继通过接收网络设备发送的用于配置service link对应的波束的信息的RRC消息,进而可以基于配置的波束信息与终端设备进行通信。由此,实现了智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
所述波束的信息包括以下至少一项:
一组波束的标识;
多组波束的标识;
一个波束的标识;
多个波束的标识;
周期;
波束的起始位置;
波束的时间特性。
可选的,还包括:
接收第一指示信息,其中,所述第一指示信息用于触发或激活所述RRC消息配置的波束中的至少一个波束。
可选的,还包括:
响应于通过下行控制信息DCI接收所述第一指示信息,确定接收到所述DCI之后的第一数量个时间单元对应的时域位置,为所述至少一个波束的起始位置;
或者,
响应于通过媒体接入控制MAC控制单元CE接收所述第一指示信息,确定向网络设备发送确认信令之后的第二数量个时间单元对应的时域位置,为所述至少一个波束的起始位置。
可选的,还包括:
可选的,还包括:
根据协议约定及所述至少一个波束的类型,确定所述第一数量个时间单元及所述第二数量个时间单元的取值;
或者,
根据网络设备的指示,确定所述第一数量个时间单元及所述第二数量个时间单元的取值。
可选的,所述根据协议约定及所述至少一个波束的类型,确定所述第一数量个时间单元及所述第二 数量个时间单元的取值,包括:
响应于所述至少一个波束的类型变化,确定所述第一数量个时间单元及所述第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
信号处理时延;
频域转换时延;
上行定时提前时延;
上行准备时延;
天线切换时延;
波束切换时延。
可选的,还包括:
接收第二指示信息,其中,所述第二指示信息用于指示所述智能中继使用的波束的类型。
可选的,还包括:
接收第三指示信息,其中,所述第三指示信息用于指示所述第一指示信息触发或激活的至少一个波束中的至少一个波束。
可选的,所述第一指示信息、第二指示信息及所述第三指示信息中分别包括以下至少一项:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,还包括:
根据所述RRC消息中第一预设参数的取值,确定配置的波束的周期。
可选的,还包括:
根据所述RRC消息中第二预设参数的取值,确定配置的波束的起始位置。
第二方面,本公开实施例提供另一种智能中继服务链路的波束指示方法,所述方法由网络设备执行,该方法包括:向智能中继发送无线资源控制RRC消息,其中,所述RRC消息用于为所述智能中继配置服务链路service link对应的波束的信息。
本公开实施例中,网络设备向智能中继发送发送的用于配置service link对应的波束的信息的RRC消息,进而使智能中继可以基于配置的波束信息与终端设备进行通信。由此,实现了智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
可选的,所述波束的信息包括以下至少一项:
一组波束的标识;
多组波束的标识;
一个波束的标识;
多个波束的标识;
周期;
波束的起始位置;
波束的时间特性。
可选的,还包括:
向所述智能中继发送第一指示信息,其中,所述第一指示信息用于触发或激活所述RRC消息配置的波束中的至少一个波束。
可选的,还包括:
响应于通过下行控制信息DCI发送所述第一指示信息,确定所述至少一个波束的起始位置为发送所述DCI之后的第一数量个时间单元对应的时域位置;
或者,
响应于通过媒体接入控制MAC控制单元CE发送所述第一指示信息,确定所述至少一个波束的起始位置为接收到所述智能中继发送的确认信令之后的第二数量个时间单元对应的时域位置。
可选的,还包括:
根据协议约定及所述至少一个波束的类型,确定所述第一数量个时间单元或所述第二数量个时间单 元的取值。
可选的,所述根据协议约定及所述至少一个波束的类型,确定所述第一数量个时间单元或所述第二数量个时间单元的取值,包括:
响应于所述至少一个波束的类型变化,确定所述第一数量个时间单元及所述第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
信号处理时延;
频域转换时延;
上行定时提前时延;
上行准备时延;
天线切换时延;
波束切换时延。
可选的,还包括:
向所述智能中继发送第二指示信息,其中,所述第二指示信息用于指示所述智能中继使用的波束的类型。
可选的,还包括:
向所述智能中继发送第三指示信息,其中,所述第三指示信息用于指示所述第一指示信息触发或激活的至少一个波束中的至少一个波束。
可选的,所述第一指示信息分别包括以下至少一项:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,还包括:
根据待配置的波束是否为周期性波束,确定所述RRC消息中第一预设参数的取值。
可选的,所述根据待配置的波束是否为周期性波束,确定所述RRC消息中第一预设参数的取值,包括:
响应于所述待配置的波束为周期性波束,确定所述RRC消息中第一预设参数的取值为第一数值;
或者,响应于所述待配置的波束为非周期性波束,确定所述RRC消息中第一预设参数的取值为第二数值。
可选的,还包括:
根据待配置的波束的起始位置,确定所述RRC消息中第二预设参数的取值。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中智能中继的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收 代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述智能中继所用的指令,当所述指令被执行时,使上述第一方面所述的方法被实现。
第十三方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使上述第二方面所述的方法被实现。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持智能中继实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存智能中继必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构示意图;
图2是本公开一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图3是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图4是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图5是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图6是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图7是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图8是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图9是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图10是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图11是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图12是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图13是本公开另一实施例提供的一种智能中继服务链路的波束指示方法的流程示意图;
图14是本公开一实施例的通信装置的结构示意图;
图15是本公开另一实施例的通信装置的结构示意图;
图16是本公开一实施例的芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
为了便于理解,首先介绍本申请涉及的术语。
1、智能中继(smart repeater)
智能中继,可以为任意一种至少能定向放大信号的网络设备,或者,具有定向放大信号功能的终端设备。
2、智能超表面(Reconfigurable intelligence surface,RIS)
智能超表面RIS,也被称为“可重构智能表面”或者“智能反射表面”。从外表上看,RIS是一张平平无奇的薄板。但是,它可以灵活部署在无线通信传播环境中,并实现对反射或者折射电磁波的频率、相位、极化等特征的操控,从而达到重塑无线信道的目的。具体地说,RIS可以通过预编码技术,将入射到其表面的信号反射到特定的方向,从而增强接收端信号强度,实现对信道的控制。
由于smart repeater和RIS在网络交互时具有类似的特性,因此,本公开中,智能中继,代指smart repeater和RIS。
3、无线资源控制(Radio Resource Control,RRC)
无线资源控制(radio resource control,RRC),又称为无线资源管理或者无线资源分配,是指通过一定的策略和手段进行无线资源管理、控制和调度,在满足服务质量的要求下,尽可能地充分利用有限的无线网络资源,确保到达规划的覆盖区域,尽可能地提高业务容量和资源利用率。
4、媒体接入控制(medium access control,MAC)控制单元(Control Element,CE)
MAC CE是在无线资源控制(radio resource control,RRC)消息和非接入层(non access stratum,NAS)消息之外,UE和网络之间的交换控制信息的一个途径,它交换的是关于MAC层的控制信息。
5、下行控制信息(Downlink Control Information,DCI)
DCI为在物理下行控制信道(Physical Downlink Control Channel,PDCCH)传输的、与物理上下行共享信道(PUSCH、PDSCH)相关的控制信息,这些DCI信息包含了诸如资源块(resource block,RB)分配信息、调制方式等等若干相关内容。终端只有正确的解码到了DCI信息,才能正确的处理PDSCH数据或PUSCH数据。
为了更好的理解本公开实施例公开的一种智能中继服务链路的波束指示方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备、一个终端设备、一个智能中继,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备,两个或两个以上的智能中继。图1所示的通信系统以包括一个网络设备11、一个终端设备12、一个智能中继13。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU 的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本公开实施例中的智能中继13是网络设备与终端设备之间用于发射或接收信号的实体。例如,智能中继可以为网络单元,也可以为具有中继功能的终端设备,还可以为智能超表面RIS。本公开的实施例对智能中继设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的智能中继服务链路的波束指示方法及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由智能中继执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤21,接收无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
可以理解的是,在智能中继的回程链路中,智能中继使用的波束特征与终端设备相似,在服务链路中,智能中继使用的波束特征与网络设备相似,需要满足网络设备的波束赋形的要求,即服务链路的波束赋形与相关技术中指示终端设备如何波束赋形的技术不同。因此,本公开中,通过网络设备为智能中继配置服务链路service link对应的波束的信息,从而使智能中继可以基于服务链路对应的波束信息与终端设备进行通信。
可选的,波束的信息可以包括以下至少一项:一组波束的标识(identification,ID);多组波束的标识;一个波束的标识;多个波束的标识;周期;波束的起始位置;及波束的时间特性。
其中,波束的标识可以为任一可以唯一确定波束的信息,其可以为传输配置指示(Transmission Configuration Indicator,TCI)标识或者空间关系信息(Spatial relation info),或者参考信号标识等。比如,波束ID,可以通过参考信号来指示,以在DCI中进行波束指示为例,可以在DCI里包含一个参考信号ID用以表示一个波束ID,参考信号ID可以是信道状态信息参考信号资源标识(CSI-RS resource ID,CRI),探测信号资源标识(SRS-resource ID,SRI)或者同步信号块序号(SS block index,SSBI)。或者,可以把参考信号ID配置在TCI中,DCI中包含该TCI,TCI中D类准共址(quasico-location,QCL)参数qcl-type-D对应的参考信号ID表示波束ID。上述参考信号可以是RRC配置的一个周期性参考信号,非周期性参考信号或者半静态参考信号。本公开对此不做限定。
其中,波束的起始位置及周期可以通过时间单元指示,比如,波束的起始位置可以为接收到RRC消息之后的第x个时间单元对应的时域位置,或者波束的使用周期为Y个时间单元等等,本公开对此不做限定。其中,时间单元,可以为时隙,微时隙,符号等等,其可以通过协议约定的,本公开对此不做限定。
其中,波束配置的标识,为网络设备通过RRC向智能中继进行波束配置时的标识。一个波束配置的标识可以对应以下参数组中的一个或多个:一组波束标识、波束循环周期、波束的的起始位置;或者,一个波束标识、波束循环周期、波束的起始位置;或者,一组波束标识、波束循环周期;或者,一个波束标识、波束循环周期;或者,一组波束标识。
另外,波束的时间特性,用于表示当前配置的波束为:周期性波束、半静态波束或非周期性波束等等,本公开对此不做限定。
本公开实施例中,智能中继通过接收网络设备发送的用于配置service link对应的波束的信息的RRC消息,进而可以基于配置的波束信息与终端设备进行通信。由此,实现了智能中继类似网络设备的 波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图3,图3是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由智能中继执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤31,接收无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
其中,步骤31的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
步骤32,根据RRC消息中第一预设参数的取值,确定配置的波束的周期。
需要说明的是,为了满足不同类型波束配置的一致性,本公开中,可以设置RRC消息中第一预设参数用于表征配置的波束的周期。从而智能中继在接收到RRC消息后,即可对该RRC消息进行解析,以确定配置的波束的周期。
可选的,在根据RRC消息中第一预设参数的取值,确定配置的波束的周期为第一数值的情况下,可以确定网络设备为服务链路配置的波束为周期性波束,进而智能中继可以基于配置波束对应的周期,循环使用波束。
或者,在根据RRC消息中第一预设参数的取值,确定配置的波束的周期为第二数值的情况下,可以确定配置的波束为非周期性波束。
其中,第一数值和第二数值可以根据需要设置、且第一数值与第二数值取值不同。比如,第一数值为实际的周期值,第二数值为0,或者,第二数值为空(NULL)等等,本公开对此不做限定。
可以理解的是,对于非周期性波束,RRC消息中可以不包含非周期性波束对应的周期。但是,为了保证波束配置的标识的一致性,也可以将非周期性波束对应的第一预设参数值设置为第二数值。
需要说明的是,在RRC消息中包含一个波束的情况下,第一预设参数的取值为一个。在RRC消息中包含多个波束的情况下,第一预设参数的取值可以为一个,也可以为多个,即多个波束对应的第一预设参数的取值可以相同,也可以不同。本公开对此不做限定。
步骤33,根据RRC消息中第二预设参数的取值,确定配置的波束的起始位置。
可以理解的是,对于周期性波束循环及周期性固定波束而言,网络设备发送的RRC消息中可以包含每个波束的对应的起始位置,而对于半静态波束循环、半静态固定波束指示、动态波束循环、及动态波束指示,RRC消息中可以不包含波束对应的起始位置。但是,为了保证波束配置的一致性,本公开中,可以设置RRC消息中的第二预设参数的取值,用于表征配置的波束的起始位置。
可选的,第二预设参数的取值,可以为周期性波束循环及周期性固定波束的起始位置,或者也可以为0或者空,本公开对此不做限定。
需要说明的是,在RRC消息中包含一个波束的情况下,第二预设参数的取值为一个。在RRC消息中包含多个波束的情况下,第二预设参数的取值可以为一个也可以为多个,即多个波束对应的第一预设参数的取值可以相同,也可以不同。本公开对此不做限定。
即,对于周期性波束循环,RRC消息配置的波束的信息中至少包含一组波束的标识,周期以及起始位置。而对于周期性固定波束指示,RRC消息配置的波束的信息中至少包含一个波束的标识,周期以及起始位置。
或者,对于半静态波束循环,RRC消息配置的波束的信息中至少包含一组波束的标识及周期。而对于半静态固定波束指示,RRC消息配置的波束的信息中至少包含一个波束的标识及周期。或者,对于动态波束循环及动态波束指示,RRC消息配置的波束的信息中至少包含一组波束的标识。
本公开实施例中,智能中继先接收网络设备发送的用于配置service link对应的波束的信息的RRC消息,之后根据RRC消息中第一预设参数的取值,确定配置的波束的周期,根据RRC消息中第二预设参数的取值,确定配置的波束的起始位置。由此,智能中继即可根据波束的周期及起始位置,实现智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图4,下面以半静态波束循环、及半静态固定波束指示场景为例,对本公开提供的智能中继服务链路的波束指示方法进行说明。图4是本公开实施例提供的一种智能中继服务链路的波束指示方法 的流程示意图,该方法由智能中继执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤41,接收无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
其中,步骤41的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
步骤42,接收第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束。
可以理解的是,对于半静态波束循环、及半静态固定波束指示而言,RRC消息配置的波束信息中不包含每个波束对应的起始时间,因此,可以通过第一指示信息,对RRC消息配置的波束中的至少一个波束进行激活或触发,进而向终端设备发送被激活或触发的波束,以保证与终端设备的通信。
可选的,第一指示信息中可以包括以下至少一项:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,网络设备可以通过DCI向智能中继发送第一指示信息,也可以通过MACCE向智能中继发送第一指示信息,本公开对此不做限定。
可选的,在智能中继为网络设备的情况下,智能中继可以通过下行控制信息DCI接收第一指示信息。
或者,在智能中继为具有中继功能的终端设备的情况下,智能中继可以通过媒体接入控制MAC控制单元CE接收第一指示信息。
可以理解的是,在智能中继为网络单元的情况下,由于网络单元中不存在数据的传输,不需要指示传输数据所使用的域,所以DCI的开销较小。因此,网络设备通过DCI触发RRC消息配置的波束中的至少一个波束,可以节省资源,提高波束配置的效率。
而在智能中继为具有中继功能的终端设备的情况下,具有中继功能的终端设备中可能存在数据的传输,若用DCI指示RRC消息配置的波束中的至少一个波束,不能准确地确定波束是否激活,还会增加DCI的开销。但是,MACCE具有良好的扩展性,且MACCE有与之对应的确认信令,可以确认波束是否激活,因此,网络设备通过MAC CE激活RRC消息配置的波束中的至少一个波束,可以保证信息的可靠传输。
本公开实施例中,智能中继先接收网络设备发送的用于为智能中继配置service link对应的波束的信息的RRC消息,之后在接收网络设备发送的触发或激活RRC消息配置的波束中的至少一个波束的第一指示信息后,即可基于第一指示信息激活或触发的至少一个波束与终端设备进行通信。由此,实现智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图5,下面以动态波束循环、或动态波束指示场景为例,对本公开提供的智能中继服务链路的波束指示方法进行说明。图5是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由智能中继执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤51,接收无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
步骤52,接收第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束。
其中,步骤51及步骤52的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
步骤53,接收第三指示信息,其中,第三指示信息用于指示第一指示信息触发或激活的至少一个波束中的至少一个波束。
可以理解的是,对于动态波束循环、及动态波束指示,网络设备配置的RRC消息中不包含每个非周期性波束对应的使用时间信息,因此,智能中继需要网络设备发送第三指示消息对RRC消息配置的波束或通过MAC CE已经激活的至少一个波束中的至少一个波束进行触发,进而向终端设备发送被触发的波束,以保证与终端设备的通信。
可选的,第三指示信息中可以包括以下至少一项:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,智能中继可以通过下行控制信息DCI接收第三指示信息。
本公开实施例中,智能中继先接收网络设备发送的用于配置service link对应的波束的信息的RRC消息,之后接收网络设备发送的用于激活RRC消息配置的波束中的至少一个波束的第一指示信息,最后接收网络设备发送的用于指示第一指示信息激活的至少一个波束中的至少一个波束的第三指示信息。由此,智能中继可以根据第三指示信息指示的波束与终端设备进行通信,从而实现智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图6,图6是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由智能中继执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤61,接收RRC消息,其中,RRC消息用于为智能中继配置至少在service link对应的波束的信息。
其中,步骤61的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
步骤62,接收第二指示信息,其中,第二指示信息用于指示智能中继使用的波束的类型。
可选的,第二指示信息中可以包括以下至少一项:
时分双工(Time Division Duplex,TDD)信息;
时隙类型(Slot format)信息。
可选的,第二指示信息中还可以包括:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,波束的类型可以包括波束的上行和下行。波束的上行可以包括service link上接收,backhaul link上发送;波束的下行可以包括backhual link上接收,service link上发送。智能中继可以根据接收到的TDD信息确定两条链路的波束收发情况。
可选的,第二指示信息可以通过RRC信令或者动态信令指示,本公开对此不做限制。
需要说明的是,智能中继使用的波束的类型,可以在网络设备为智能中继配置service link对应的波束的信息时,同时指示,也可以在进行了波束配置后,再单独指示,本公开对此不做限定。
步骤63,通过DCI接收第一指示信息,其中,第一指示信息用于触发RRC消息配置的波束中的至少一个波束。
其中,步骤63的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
步骤64,确定接收到DCI之后的第一数量个时间单元对应的时域位置,为至少一个波束的起始位置。
其中,时间单元,可以为时隙,微时隙,符号等等,其可以通过协议约定确定,或者,也可以由网络设备指示,本公开对此不做限定。
可选的,智能中继可以根据网络设备的指示,确定第一数量个时间单元的取值。或者,智能中继也可以协议约定及至少一个波束的类型,确定第一数量个时间单元的取值。
可选的,响应于至少一个波束的类型变化,确定第一数量个时间单元的取值大于或等于以下协议约定的至少一项:
信号处理时延;
频域转换时延;
上行定时提前时延;
上行准备时延;
天线切换时延;
波束切换时延。
可以理解的是,智能中继在确定了至少一个波束的起始位置,进而可以该波束的起始位置,利用该波束与终端设备进行通信。
本公开的一个实施例中,智能中继先接收网络设备发送的用于配置service link对应的波束的信息的RRC消息,之后接收网络设备发送的用于指示RRC配置的波束的类型的第二指示信息,再通过DCI接收网络设备发送的用于触发RRC消息配置的波束中的至少一个波束的第一指示信息,最后确定接收到DCI的第一数量个时间单元之后,为至少一个波束的起始位置。由此,智能中继在确定了DCI触发的至少一个波束对应的起始位置之后,即可根据该波束的起始位置发送对应的波束,从而实现中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图7,图7是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由智能中继执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤71,接收无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
步骤72,接收第二指示信息,其中,第二指示信息用于指示智能中继使用的波束的类型。
步骤73,通过媒体接入控制MAC控制单元CE接收第一指示信息,其中,第一指示信息用于激活RRC消息配置的波束中的至少一个波束。
其中,步骤71至步骤73的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
需要说明的是,智能中继使用的波束的类型,可以在网络设备为智能中继配置service link对应的波束的信息时,同时指示,也可以在进行了波束配置后,再单独指示;或者,波束的类型,也可以在利用MAC CE为智能中继激活波束时,同步指示,或者,也可以与MAC CE分开指示,本公开对此不做限定。
步骤74,确定向网络设备发送确认信令之后的第二数量个时间单元对应的时域位置,为至少一个波束的起始位置。
其中,时间单元,可以为时隙,微时隙,符号等等,其可以通过协议约定,或者,也可以根据网络设备指示确定,本公开对此不做限定。
可选的,智能中继可以根据网络设备的指示,确定第二数量个时间单元的取值。或者,智能中继也可以协议约定及至少一个波束的类型,确定第二数量个时间单元的取值。
可选的,响应于至少一个波束的类型变化,确定第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
信号处理时延;
频域转换时延;
上行定时提前时延;
上行准备时延;
天线切换时延;
波束切换时延。
可以理解的是,智能中继在确定了第二数量个时间单元的取值之后,即可根据第二数量个时间单元的取值确定向网络设备发送确认信令之后的第二数量个时间单元对应的时域位置,为至少一个波束的起始位置,进而可以在该波束的起始位置,发送对应的波束。
本公开实施例中,智能中继先接收网络设备发送的用于配置service link对应的波束的信息的RRC消息,之后接收网络设备发送的用于指示RRC配置的波束的类型的第二指示信息,再通过MACCE接收网络设备发送的用于触发RRC消息配置的波束中的至少一个波束的第一指示信息,最后确定向网络设备发送确认信令之后的第二数量个时间单元对应的时域位置,为至少一个波束的起始位置。由此,智能中继在确定了MAC CE激活的至少一个波束对应的起始位置之后,即可根据该波束的起始位置发送对应的波束,从而实现中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图8,图8是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由智能中继执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤81,向智能中继发送无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
可以理解的是,在智能中继的回程链路中,智能中继使用的波束特征与终端设备相似,在服务链路中,智能中继使用的波束特征与网络设备相似,需要满足网络设备的波束赋形的要求,即服务链路的波束赋形与相关技术中指示终端设备如何波束赋形的技术不同。因此,本公开中,通过网络设备为智能中继配置服务链路service link对应的波束的信息,从而使智能中继可以基于服务链路对应的波束信息与终端设备进行通信。
可选的,波束的信息可以包括以下至少一项:一组波束的标识(identification,ID);多组波束的标识;一个波束的标识;多个波束的标识;周期;波束的起始位置;及波束的时间特性。
其中,波束的标识可以为任一可以唯一确定波束的信息,其可以为传输配置指示(Transmission Configuration Indicator,TCI)标识或者空间关系信息(Spatial relation info),或者参考信号标识等。比如,波束ID,可以通过参考信号来指示,以在DCI中进行波束指示为例,可以在DCI里包含一个参考信号ID用以表示一个波束ID,参考信号ID可以是信道状态信息参考信号资源标识(CSI-RS resource ID,CRI),探测信号资源标识(SRS-resource ID,SRI)或者同步信号块序号(SSblock index,SSBI)。或者,可以把参考信号ID配置放在TCI中,DCI中包含该TCI,TCI中D类准共址(quasico-location,QCL)参数qcl-type-D对应的参考信号ID表示波束ID。上述参考信号可以是RRC配置的一个周期性参考信号,非周期性参考信号或者半静态参考信号。本公开对此不做限定。
其中,波束的起始位置及周期可以通过时间单元指示,比如,波束的起始位置为接收到RRC指示后的第x个时间单元,或者波束的使用周期为Y个时间单元等等,本公开对此不做限定。其中,时间单元,可以为时隙,微时隙,符号等等,其可以通过协议约定的,本公开对此不做限定。
其中,波束配置的标识,为网络设备通过RRC向智能中继进行波束配置时的标识。一个波束配置的标识可以对应以下参数组中的一个或多个:一组波束标识、波束循环周期、波束的的起始位置;或者,一个波束标识、波束循环周期、波束的起始位置;或者,一组波束标识、波束循环周期;或者,一个波束标识、波束循环周期;或者,一组波束标识。
另外,波束的时间特性,用于表示当前配置的波束为:周期性波束、半静态波束或非周期性波束等等,本公开对此不做限定。
通过实施本公开实施例,网络设备向智能中继发送发送的用于配置service link对应的波束的信息的RRC消息,进而使智能中继可以基于配置的波束信息与终端设备进行通信。由此,实现了智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图9,图9是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由网络设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤91,根据待配置的波束是否为周期性波束,确定RRC消息中第一预设参数的取值。
需要说明的是,为了满足不同类型波束配置的一致性,本公开中,可以设置RRC消息中第一预设参数用于表征配置的波束的周期。从而智能中继在接收到RRC消息后,即可对该RRC消息进行解析,以确定配置的波束的周期。
可选的,在待配置的波束为周期性波束的情况下,确定RRC消息中第一预设参数的取值为第一数值。
或者,在待配置的波束为非周期性波束的情况下,确定RRC消息中第一预设参数的取值为第二数值。
其中,第一数值和第二数值可以根据需要设置、且第一数值与第二数值取值不同。比如,第一数值为实际的周期值,第二数值为0,或者,第二数值为空(NULL)等等,本公开对此不做限定。
需要说明的是,在RRC消息中包含一个波束的情况下,第一预设参数的取值为一个。在RRC消息中包含多个波束的情况下,第一预设参数的取值可以为一个,也可以为多个,即多个波束对应的第一预设参数的取值可以相同,也可以不同。本公开对此不做限定。
步骤92,根据待配置的波束的起始位置,确定RRC消息中第二预设参数的取值。
可以理解的是,对于周期性波束循环及周期性固定波束而言,网络设备发送的RRC消息中可以包含每个波束的对应的起始位置,而对于半静态波束循环、半静态固定波束指示、动态波束循环、及动态波束指示,RRC消息中可以不包含波束对应的起始位置。但是,为了保证波束配置的一致性,本公开中,可以设置RRC消息中的第二预设参数的取值,用于表征配置的波束的起始位置。
可选的,第二预设参数的取值,可以为周期性波束循环及周期性固定波束的起始位置,或者也可以为0或者空,本公开对此不做限定。
需要说明的是,在RRC消息中包含一个波束的情况下,第二预设参数的取值为一个。在RRC消息中包含多个波束的情况下,第二预设参数的取值可以为一个也可以为多个,即多个波束对应的第一预设参数的取值可以相同,也可以不同。本公开对此不做限定。
即,对于周期性波束循环,RRC消息配置的波束的信息中至少包含一组波束的标识,周期以及起始位置。而对于周期性固定波束指示,RRC消息配置的波束的信息中至少包含一个波束的标识,周期以及起始位置。
或者,对于半静态波束循环,RRC消息配置的波束的信息中至少包含一组波束的标识及周期。而对于半静态固定波束指示,RRC消息配置的波束的信息中至少包含一个波束的标识及周期。或者,对于动态波束循环及动态波束指示,RRC消息配置的波束的信息中至少包含一组波束的标识。
步骤93,向智能中继发送无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
其中,步骤93的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
通过实施本公开实施例,网络设备先根据待配置的波束是否为周期性波束,确定RRC消息中第一预设参数的取值,之后根据待配置的波束的起始位置,确定RRC消息中第二预设参数的取值,最后向智能中继发送用于配置service link对应的波束的信息的RRC消息。由此,智能中继可以根据波束的周期及起始位置,实现智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图10,下面以半静态波束循环、及半静态固定波束指示场景为例,对本公开提供的智能中继服务链路的波束指示方法进行说明。图10是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由网络设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤101,向智能中继发送无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
其中,步骤101的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
步骤102,向智能中继发送第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束。
可以理解的是,对于半静态波束循环、及半静态固定波束指示而言,RRC消息配置的波束信息中不包含每个波束对应的起始时间,因此,网络设备可以通过第一指示信息,对RRC消息配置的波束中的至少一个波束进行激活或触发,进而使智能中继可以向终端设备发送被激活或触发的波束,以保证与终端设备的通信。
可选的,第一指示信息中可以包括以下至少一项:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,网络设备可以通过DCI向智能中继发送第一指示信息,也可以通过MACCE向智能中继发送第一指示信息,本公开对此不做限定。
可选的,在智能中继为网络设备的情况下,智能中继可以通过下行控制信息DCI接收第一指示信息。
或者,在智能中继为具有中继功能的终端设备的情况下,智能中继可以通过媒体接入控制MAC控制单元CE接收第一指示信息。
可以理解的是,在智能中继为网络单元的情况下,由于网络单元中不存在数据的传输,不需要指示传输数据所使用的域,所以DCI的开销较小。因此,网络设备通过DCI触发RRC消息配置的波束中的至少一个波束,可以节省资源,提高波束配置的效率。
而在智能中继为具有中继功能的终端设备的情况下,具有中继功能的终端设备中可能存在数据的传输,若用DCI指示RRC消息配置的波束中的至少一个波束,不能准确地确定波束是否激活,还会增加DCI的开销。但是,MACCE具有良好的扩展性,且MACCE有与之对应的确认信令,可以确认波束是否激活,因此,网络设备通过MAC CE激活RRC消息配置的波束中的至少一个波束,可以保证信息的可靠传 输。
本公开实施例中,网络设备先向智能中继发送用于配置service link对应的波束的信息的RRC消息,之后向智能中继发送用于触发或激活RRC消息配置的波束中的至少一个波束的第一指示信息。由此,智能中继在接收网络设备发送的触发或激活RRC消息配置的波束中的至少一个波束的第一指示信息后,即可基于第一指示信息激活或触发的至少一个波束与终端设备进行通信,从而实现智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图11,下面以动态波束循环、或动态波束指示场景为例,对本公开提供的智能中继服务链路的波束指示方法进行说明。图11是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由网络设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤111,向智能中继发送无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
步骤112,向智能中继发送第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束。
其中,步骤111及步骤112的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
步骤113,向智能中继发送第三指示信息,其中,第三指示信息用于指示第一指示信息触发或激活的至少一个波束中的至少一个波束。
可以理解的是,对于动态波束循环、及动态波束指示,网络设备配置的RRC消息中不包含每个非周期性波束对应的使用时间信息,因此,网络设备需要向智能中继发送第三指示消息对RRC消息配置的波束或通过MAC CE已经激活的至少一个波束中的至少一个波束进行触发,进而智能中继可以向终端设备发送被触发的波束,以保证与终端设备的通信。
可选的,第三指示信息中可以包括以下至少一项:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,网络设备可以通过下行控制信息DCI发送第三指示信息。
本公开实施例中,网络设备先向智能中继发送用于配置service link对应的波束的信息的RRC消息,之后向智能中继发送用于触发或激活RRC消息配置的波束中的至少一个波束的第一指示信息,最后向智能中继发送用于指示第一指示信息触发或激活的至少一个波束中的至少一个波束的第三指示信息。由此,智能中继可以根据第三指示信息指示的波束与终端设备进行通信,从而实现智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图12,图12是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由网络设备执行。如图12所示,该方法可以包括但不限于如下步骤:
步骤121,向智能中继发送无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
其中,步骤121的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
步骤122,向智能中继发送第二指示信息,其中,第二指示信息用于指示智能中继使用的波束的类型。
可选的,第二指示信息中可以包括以下至少一项:
时分双工(Time Division Duplex,TDD)信息;
时隙类型(Slot format)信息。
可选的,第二指示信息中还可以包括:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,波束的类型可以包括波束的上行和下行。波束的上行可以包括service link上接收,backhaul link上发送;波束的下行可以包括backhual link上接收,service link上发送。
可选的,第二指示信息可以通过RRC信令或者动态信令指示,本公开对此不做限制。
需要说明的是,智能中继使用的波束的类型,可以在网络设备为智能中继配置service link对应的波束的信息时,同时指示,也可以在进行了波束配置后,再单独指示,本公开对此不做限定。
步骤123,通过下行控制信息DCI发送第一指示信息,其中,第一指示信息用于触发RRC消息配置的波束中的至少一个波束。
其中,步骤123的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
步骤124,确定至少一个波束的起始位置为发送DCI之后的第一数量个时间单元对应的时域位置。
其中,时间单元,可以为时隙,微时隙,符号等等,其可以通过协议约定确定,本公开对此不做限定。
可选的,网络设备可以根据协议约定及至少一个波束的类型,确定第一数量个时间单元的取值。
可选的,网络设备在确定第一数量个时间单元的取值之后,可以将第一数量个时间单元的取值发送给智能中继,以使智能中继根据第一数量个时间单元的取值,确定至少一个波束的起始位置。
可选的,响应于至少一个波束的类型变化,确定第一数量个时间单元的取值大于或等于以下协议约定的至少一项:
信号处理时延;
频域转换时延;
上行定时提前时延;
上行准备时延;
天线切换时延;
波束切换时延。
本公开中,网络设备可以基于确定的服务链路的起始位置,准确确定智能中继及终端设备的状态,进而根据智能中继及终端设备的状态,对智能中继及终端设备进行业务调度,从而有效避免了调度错误。
本公开实施例中,网络设备先向智能中继发送用于配置service link对应的波束的信息的RRC消息,之后向智能中继发送用于指示RRC配置的波束的类型的第二指示信息,再通过DCI向智能中继发送用于触发RRC消息配置的波束中的至少一个波束的第一指示信息,最后确定至少一个波束的起始位置为发送DCI之后的第一数量个时间单元对应的时域位置。由此,实现智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图13,图13是本公开实施例提供的一种智能中继服务链路的波束指示方法的流程示意图,该方法由网络设备执行。如图13所示,该方法可以包括但不限于如下步骤:
步骤131,向智能中继发送无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
步骤132,向智能中继发送第二指示信息,其中,第二指示信息用于指示智能中继使用的波束的类型。
步骤133,通过MAC CE发送所述第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束。
其中,步骤131至步骤133的具体实现形式,可参照本公开其他各实施例中的详细描述,此处不再详细赘述。
需要说明的是,智能中继使用的波束的类型,可以在网络设备为智能中继配置service link对应的波束的信息时,同时指示,也可以在进行了波束配置后,再单独指示;或者,波束的类型,也可以在利用MAC CE为智能中继激活波束时,同步指示,或者,也可以与MAC CE分开指示,本公开对此不做限定。
步骤134,确定至少一个波束的起始位置为接收到智能中继发送的确认信令之后的第二数量个时间单元对应的时域位置。
其中,时间单元,可以为时隙,微时隙,符号等等,其可以通过协议约定,或者,也可以根据网络设备指示确定,本公开对此不做限定。
可选的,网络设备可以协议约定及至少一个波束的类型,确定第二数量个时间单元的取值。
可选的,网络设备在确定第二数量个时间单元的取值之后,可以将第二数量个时间单元的取值发送给智能中继,以使智能中继根据第二数量个时间单元的取值,确定至少一个波束的起始位置。
可选的,响应于至少一个波束的类型变化,确定第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
信号处理时延;
频域转换时延;
上行定时提前时延;
上行准备时延;
天线切换时延;
波束切换时延。
可以理解的是,网络设备在向智能中继发送MAC CE消息之后,智能中继会返回MAC CE消息对应的确认信令,网络设备可以确定至少一个波束的起始位置为接收到确认信令之后的第二数量个时间单元对应的时域位置,进而网络设备可以在至少一个波束的起始位置向智能中继发送对应的波束。
本公开实施例中,网络设备先向智能中继发送用于配置service link对应的波束的信息的RRC消息,之后向智能中继发送用于指示RRC配置的波束的类型的第二指示信息,再通过MAC CE向智能中继发送用于触发RRC消息配置的波束中的至少一个波束的第一指示信息,最后确定至少一个波束的起始位置为接收到智能中继发送的确认信令之后的第二数量个时间单元对应的时域位置。由此,实现了智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
本公开实施例中,对于周期性波束循环而言:
在service link上,比如,用于系统信息广播,周期性参考信号发送,其波束指示可以通过网络设备为smart repeater配置一组或多组周期性波束完成,具体配置参数至少包括一组波束ID,周期以及波束的起始位置;波束ID可以通过一个参考信号ID指示,该参考信号可以QCL到某个已有的参考信号ID。网络设备可以通过RRC信令为智能中继配置service link对应的波束的信息。即向智能中继发送RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。波束的信息,至少包含一组波束的标识,周期以及起始位置。
在backhaul link上,主要用于网络设备对smart repeater侧的波束扫描,其波束指示可以通过网络设备为smart repeater配置一组或多组周期性参考信号完成,具体配置参数至少包括一组参考信号的时频位置,周期以及起始位置。网络设备可以通过RRC信令为智能中继配置参数。
可选的,service link部分,即通过RRC信令为smart repeater配置一组周期性波束循环,每组配置的具体配置参数至少包括一组波束ID,周期以及波束的起始位置;波束ID可以通过QCL到任一已有的参考信号ID进行指示。即可以把参考信号ID配置放在TCI中,DCI中包含该TCI,TCI中D类准共址(quasico-location,QCL)参数qcl-type-D对应的参考信号ID表示波束ID。
本公开实施例中,对于周期性固定波束指示而言:
在service link上,比如,用于接收固定的上行数据业务(configured grant type-1),其波束指示通过网络为smart repeater配置一组或多组周期性波束完成,每组配置的具体配置参数至少包括一个波束ID,周期以及波束的起始位置;波束ID可以通过QCL到任一已有的参考信号ID进行指示。
即网络设备向智能中继发送RRC消息,其中,RRC消息用于为智能中继配置service link对应的波束的信息。波束的信息中至少包含一个波束的标识,周期以及波束的起始位置。
在backhaul link上,因为smart repeater本身不产生业务,也没有移动性,所以在没有外界干扰的情况下,可以保持网络设备选定的波束维持backhual link即可。
本公开实施例中,对于半静态波束循环而言:
在service link上,比如用于半静态参考信号发送,其波束指示可以通过网络设备为smart repeater配置一组或多组周期性波束及MAC CE/DCI触发的方式完成。RRC的具体参数至少包括一组波束ID及周期。之后,网络设备可以向smart repeater发送第一指示信息,用于触发或激活RRC消息中配置的波束中的至少一个波束。可选的,网络设备可以通过MAC CE、或DCI向smart repeater发送第 一指示信息,smart repeater在收到第一指示信息后发送参考信号。当smart repeater被配置了多组周期性波束时,第一指示信息中包含对其中一组或多组的周期性波束的指示。
即网络设备先向智能中继发送RRC消息,其中,RRC消息用于为智能中继配置service link对应的波束的信息,波束信息中至少包含一组波束的标识及周期,之后网络设备可以通过MAC CE、或DCI向智能中继发送第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束。
可选的,当smart repeater是具有中继repeater功能的终端设备时,网络设备可以通过MAC CE向智能中继发送第一指示信息。
可选的,当smart repeater是网络单元时,由于网络单元中不存在数据的传输,不需要指示传输数据所使用的域,所以DCI的开销较小。因此,网络设备通过DCI触发RRC消息配置的波束中的至少一个波束,可以节省资源,提高波束配置的效率。
本公开实施例中,对于半静态固定波束指示而言:
在service link上,比如,用于半静态业务发送半静态调度(Semi-Persistent Scheduling,SPS)物理下行共享信道(Physical Downlink Shared CHannel,PDSCH),用于半静态业务接收CG type-2。其波束指示可以为网络设备先通过RRC消息为smart repeater配置一组或多组周期性波束,之后通过MAC CE或DCI向smart repeater发送第一指示信息,以触发或激活RRC消息中配置的波束中的至少一个波束。RRC消息中包含的波束的信息至少包括一个波束ID,周期。smart repeater在收到网络设备发送的第一指示信息后发送参考信号。当smart repeater被配置了多组周期性波束时,通过MAC CE或DCI发送的第一指示信息中至少包含对其中一组或多组的周期性波束的指示。
即网络设备先向智能中继发送RRC消息,其中,RRC消息用于为智能中继配置service link对应的波束的信息,波束信息中至少包含一个波束的标识及周期,之后网络设备可以通过MAC CE、或DCI向智能中继发送第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束。
可选的,当smart repeater是具有中继repeater功能的终端设备时,网络设备可以通过MAC CE向智能中继发送第一指示信息。
可选的,当smart repeater是网络单元时,由于网络单元中不存在数据的传输,不需要指示传输数据所使用的域,所以DCI的开销较小。因此,网络设备通过DCI触发RRC消息配置的波束中的至少一个波束,可以节省资源,提高波束配置的效率。
本公开实施例中,对于动态波束循环而言:
在service link上,比如,用于发送非周期信道状态信息参考信号(Channel State InformationResource Config,CSI-RS)(波束循环),其波束指示可以为网络设备先通过RRC消息为smart repeater配置一组或多组波束,或者通过MAC CE发送的第一指示信息激活的至少一个波束,之后向smart repeater发送第三指示信息,以指示MAC CE激活的至少一个波束中的至少一个波束。网络设备可以通过DCI向smart repeater发送第三指示信息。smart repeater收到第三指示信息后,根据第三指示信息指示的波束信息,发送相应的波束。
即网络设备先向智能中继发送RRC消息,其中,RRC消息用于为智能中继配置service link对应的波束的信息,波束信息中至少包含一组波束的标识,之后网络设备可以通过MAC CE智能中继发送第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束,最后网络设备通过DCI向智能中继发送第三指示信息,其中,第三指示信息用于指示MAC CE激活的至少一个波束中的至少一个波束。
本公开实施例中,对于动态波束指示而言:
在service link上,用于动态业务调度或者非周期CSI-RS(波束固定),其波束指示可以为网络设备先通过RRC消息为smart repeater配置一组或多组波束,或者网络设备通过MAC CE发送的第一指示信息激活的至少一个波束,之后网络设备通过DCI向smart repeater发送第三指示信息,以触发RRC消息配置的波束中的至少一个波束,或通过MAC CE激活的至少一个波束中的至少一个波束。smart repeater收到第三指示信息之后,根据第三指示信息指示的波束信息,发送相应的波束。
即网络设备先向智能中继发送RRC消息,其中,RRC消息用于为智能中继配置service link对应的波束的信息,波束信息中至少包含一组波束的标识,之后网络设备可以通过MAC CE智能中继发送第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束,最后网络设 备通过DCI向智能中继发送第三指示信息,其中,第三指示信息用于指示MAC CE激活的至少一个波束中的至少一个波束。
本公开实施例中,对于smart repeter的service link上的波束配置:RRC可以为每个波束配置beam configuration配置至少以下参数中一个或多个:(1)一组波束ID/一个波束ID,周期,起始位置;(2)一组波束ID/一个波束ID,周期;(3)一组波束ID。即波束的信息可以包括以下至少一项:一组波束的标识(identification,ID);多组波束的标识;一个波束的标识;多个波束的标识;周期;波束的起始位置;及波束的时间特性。
本公开实施例中,MAC CE可以激活一个beam configuration,具体内容为波束配置的标识beam configuration ID。MAC CE也可以激活一个beam configuration中一组波束中的一个或部分波束,具体内容为beam configuration ID,beam ID;
本公开实施例中,DCI可以触发一个beam configuration,具体内容为beam configuration ID;DCI还可以触发一个beamconfiguration中一组波束中的一个波束,具体内容为beam configuration ID,beam ID;DCI也可以触发MAC CE激活的至少一个波束中的一个波束,具体内容为beam ID。
本公开实施例中,为了满足不同类型波束配置的一致性,可以通过将周期设为NULL的方式表示没有周期,将起始位置相关参数设置为NULL的方式表示没有起始位置,由此,可以将RRC消息的beam configuration统一化。
本公开实施例中,RRC配置中每个波束持续使用的时间,默认是一个时间单元,比如一个时隙slot或,一个符号symbol,smart repeater根据波束ID出现的顺序依次使用波束;也可以在RRC消息中对周期进行指示。如果指示了周期,smart repeater按照指定的周期依次使用波束。可选的,如果网络设备仅为smart repeater配置了一组beam configuration,那么beam configuration ID可省略。
可选的,在RRC配置中,还可以进一步增加波束的时间特性,如,周期性波束、半静态波束或非周期性波束,来指示波束的时间特性,进而指示smart repeater使用波束的行为。
需要说明的是,本公开中提到的波束指示不区分发送,还是接收,对于波束赋形成的波束是用于发送还是接收,网络设备可以通过向smart repeater发送第二指示信息,以指示smart repeater使用的波束的类型。第二指示信息中可以包括TDD信息、Slot format信息。网络设备可以通过RRC信令或者动态信令指示发送第二指示信息。可选的,波束的类型可以包括上行和下行。其中,上行可以对应service link上接收,backhaul link上发送;而下行可以对应backhual link上接收,service link上发送。
本公开实施例中,当使用MAC CE激活某个波束或一组波束时,smart repeater向网络设备反馈确认ack信令之后的第二数量个时间单元对应的时域位置,为该波束的起始位置。智能中继可以根据网络设备的指示,确定第二数量个时间单元的取值。或者,智能中继也可以协议约定及至少一个波束的类型,确定第二数量个时间单元的取值。
本公开实施例中,当使用DCI触发RRC消息配置的波束中的至少一个波束时,smart repeater在收到该信令之后第一数量个时间单元对应的时域位置,开始发送。智能中继可以根据网络设备的指示或协议约定,确定第一数量个时间单元的取值。第一数量个时间单元中至少包括smart repeater的波束切换时间和上行发射准备时间;smart repeater向网络设备反馈针对该DCI的ack信令的M slot之后开始发送,智能中继可以根据网络设备的指示或协议约定,确定第一数量个时间单元的取值。M slot至少包括smart repeater的波束切换时间。
可选的,如果波束的类型为上行(service link上接收,backhaul link上发送),第一数量个时间单元及第二数量个时间单元的取值至少包括service link上的波束切换时间和上行发射准备时间。
可选的,如果波束的类型为下行(backhual link上接收,service link上发送),第一数量个时间单元及第二数量个时间单元的取值至少包括service link上的波束切换时间。
上述本公开提供的实施例中,分别从网络设备、终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图14,为本公开实施例提供的一种通信装置140的结构示意图。图14所示的通信装置140可包括处理模块1401和收发模块1402。
收发模块1402可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接 收功能,收发模块1402可以实现发送功能和/或接收功能。
可以理解的是,通信装置140可以是终端设备,也可以是智能中继中的装置,还可以是能够与智能中继匹配使用的装置。
通信装置140,在智能中继侧,该装置,包括:
收发模块1402,用于接收无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
可选的,波束的信息包括以下至少一项:
一组波束的标识;
多组波束的标识;
一个波束的标识;
多个波束的标识;
周期;
波束的起始位置;
波束的时间特性。
可选的,收发模块1402,还具体用于:
接收第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束。
可选的,还包括处理模块1402,具体用于:
响应于通过下行控制信息DCI接收第一指示信息,确定接收到DCI之后的第一数量个时间单元对应的时域位置,为至少一个波束的起始位置;
或者,
响应于通过媒体接入控制MAC控制单元CE接收第一指示信息,确定向网络设备发送确认信令之后的第二数量个时间单元对应的时域位置,为至少一个波束的起始位置。
可选的,处理模块1402,还具体用于:
根据协议约定及至少一个波束的类型,确定第一数量个时间单元及第二数量个时间单元的取值;
或者,
根据网络设备的指示,确定第一数量个时间单元及第二数量个时间单元的取值。
可选的,处理模块1402,具体用于:
响应于至少一个波束的类型变化,确定第一数量个时间单元及第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
信号处理时延;
频域转换时延;
上行定时提前时延;
上行准备时延;
天线切换时延;
波束切换时延。
可选的,收发模块1402,还具体用于:
接收第二指示信息,其中,第二指示信息用于指示智能中继使用的波束的类型。
可选的,收发模块1402,还具体用于:
接收第三指示信息,其中,第三指示信息用于指示第一指示信息触发或激活的至少一个波束中的至少一个波束。
可选的,第一指示信息、第二指示信息及第三指示信息中分别包括以下至少一项:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,处理模块1402,还具体用于:
根据RRC消息中第一预设参数的取值,确定配置的波束的周期。
可选的,处理模块1402,还具体用于:根据RRC消息中第二预设参数的取值,确定配置的波束的
起始位置。
本公开提供的通信装置,智能中继通过接收网络设备发送的用于配置service link对应的波束的信息的RRC消息,进而可以基于配置的波束信息与终端设备进行通信。由此,实现了智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
可以理解的是,通信装置140可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置140,在网络设备侧,该装置,包括:
收发模块1402,用于向智能中继发送无线资源控制RRC消息,其中,RRC消息用于为智能中继配置服务链路service link对应的波束的信息。
可选的,波束的信息包括以下至少一项:
一组波束的标识;
多组波束的标识;
一个波束的标识;
多个波束的标识;
周期;
波束的起始位置;
波束的时间特性。
可选的,收发模块1402,还具体用于:
向智能中继发送第一指示信息,其中,第一指示信息用于触发或激活RRC消息配置的波束中的至少一个波束。
可选的,还包括处理模块1402,具体用于:
响应于通过下行控制信息DCI发送第一指示信息,确定至少一个波束的起始位置为发送DCI之后的第一数量个时间单元对应的时域位置;
或者,
响应于通过媒体接入控制MAC控制单元CE发送第一指示信息,确定至少一个波束的起始位置为接收到智能中继发送的确认信令之后的第二数量个时间单元对应的时域位置。
可选的,处理模块1402,还具体用于:
根据协议约定及至少一个波束的类型,确定第一数量个时间单元或第二数量个时间单元的取值。
可选的,处理模块1402,还具体用于:
响应于至少一个波束的类型变化,确定第一数量个时间单元及第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
信号处理时延;
频域转换时延;
上行定时提前时延;
上行准备时延;
天线切换时延;
波束切换时延。
可选的,收发模块1402,还具体用于:
向智能中继发送第二指示信息,其中,第二指示信息用于指示智能中继使用的波束的类型。
可选的,收发模块1402,还具体用于:
向智能中继发送第三指示信息,其中,第三指示信息用于指示第一指示信息触发或激活的至少一个波束中的至少一个波束。
可选的,第一指示信息、第二指示信息及第三指示信息中分别包括以下至少一项:
波束配置的标识;
多组波束的标识;
一组波束的标识;
多个波束的标识;及一个波束的标识。
可选的,处理模块1402,还具体用于:
根据待配置的波束是否为周期性波束,确定RRC消息中第一预设参数的取值。
可选的,处理模块1402,还具体用于:
响应于待配置的波束为周期性波束,确定RRC消息中第一预设参数的取值为第一数值;
或者,响应于待配置的波束为非周期性波束,确定RRC消息中第一预设参数的取值为第二数值。
可选的,处理模块1402,还具体用于:
根据待配置的波束的起始位置,确定RRC消息中第二预设参数的取值。
本公开提供的通信装置,网络设备向智能中继发送发送的用于配置service link对应的波束的信息的RRC消息,进而使智能中继可以基于配置的波束信息与终端设备进行通信。由此,实现了智能中继类似网络设备的波束收发要求,不仅保证了智能中继的可靠使用,为扩大服务小区覆盖范围提供了条件,而且保证了信息的可靠传输。
请参见图15,图15是本公开实施例提供的另一种通信装置150的结构示意图。通信装置150可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置150可以包括一个或多个处理器1501。处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置150中还可以包括一个或多个存储器1502,其上可以存有计算机程序1504,处理器1501执行所述计算机程序1504,以使得通信装置150执行上述方法实施例中描述的方法。可选的,所述存储器1502中还可以存储有数据。通信装置150和存储器1502可以单独设置,也可以集成在一起。
可选的,通信装置150还可以包括收发器1505、天线1506。收发器1505可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置150中还可以包括一个或多个接口电路1507。接口电路1507用于接收代码指令并传输至处理器1501。处理器1501运行所述代码指令以使通信装置150执行上述方法实施例中描述的方法。
通信装置150为智能中继:处理器1501用于执行图3中的步骤31、步骤32;图6中的步骤64等等。收发器1505用于执行图2中的步骤21;图3中的步骤31;图4中的步骤41、步骤42;或图5中的步骤51、步骤52及步骤53等等。
通信装置150为网络设备:处理器1501用于执行图9中的步骤91、步骤92;图12中的步骤124;或图13中的步骤134等等。收发器1505用于执行图8中的步骤81;图9中的步骤93;图10中的步骤101、步骤102等等。
在一种实现方式中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1501可以存有计算机程序1503,计算机程序1503在处理器1501上运行,可使得通信装置150执行上述方法实施例中描述的方法。计算机程序1503可能固化在处理器1501中,该种情况下,处理器1501可能由硬件实现。
在一种实现方式中,通信装置150可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置可以是独立的设备或者可以是较大设 备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图16所示的芯片的结构示意图。图16所示的芯片160包括处理器1601和接口1602。其中,处理器1601的数量可以是一个或多个,接口1602的数量可以是多个。
对于芯片用于实现本公开实施例中智能中继的功能的情况:
处理器1601,用于执行图3中的步骤31、步骤32;图6中的步骤64等等。
接口1602,用于执行图2中的步骤21;图3中的步骤31;图4中的步骤41、步骤42;或图5中的步骤51、步骤52及步骤53等等。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
处理器1601,用于执行图9中的步骤91、步骤92;图12中的步骤124;或图13中的步骤134等等。
接口1602,用于执行图8中的步骤81;图9中的步骤93;图10中的步骤101、步骤102等等。
可选的,芯片还包括存储器1603,存储器1603用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信系统,该系统包括前述图14实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图15实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本公开还提供一种计算机可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“在……情况下”。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种智能中继服务链路的波束指示方法,其特征在于,所述方法由智能中继执行,所述方法包括:
    接收无线资源控制RRC消息,其中,所述RRC消息用于为所述智能中继配置服务链路service link对应的波束的信息。
  2. 如权利要求1所述的方法,其特征在于,所述波束的信息包括以下至少一项:
    一组波束的标识;
    多组波束的标识;
    一个波束的标识;
    多个波束的标识;
    周期;
    波束的起始位置;
    波束的时间特性。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    接收第一指示信息,其中,所述第一指示信息用于触发或激活所述RRC消息配置的波束中的至少一个波束。
  4. 如权利要求3所述的方法,其特征在于,还包括:
    响应于通过下行控制信息DCI接收所述第一指示信息,确定接收到所述DCI之后的第一数量个时间单元对应的时域位置,为所述至少一个波束的起始位置;
    或者,
    响应于通过媒体接入控制MAC控制单元CE接收所述第一指示信息,确定向网络设备发送确认信令之后的第二数量个时间单元对应的时域位置,为所述至少一个波束的起始位置。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    响应于所述至少一个波束的类型变化,确定所述第一数量个时间单元及所述第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
    信号处理时延;
    频域转换时延;
    上行定时提前时延;
    上行准备时延;
    天线切换时延;
    波束切换时延。
  6. 如权利要求3-5任一所述的方法,其特征在于,所述第一指示信息包括以下至少一项:
    波束配置的标识;
    多组波束的标识;
    一组波束的标识;
    多个波束的标识;及一个波束的标识。
  7. 一种智能中继服务链路的波束指示方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向智能中继发送无线资源控制RRC消息,其中,所述RRC消息用于为所述智能中继配置服务链路service link对应的波束的信息。
  8. 如权利要求7所述的方法,其特征在于,所述波束的信息包括以下至少一项:
    一组波束的标识;
    多组波束的标识;
    一个波束的标识;
    多个波束的标识;
    周期;
    波束的起始位置;
    波束的时间特性。
  9. 如权利要求7所述的方法,其特征在于,还包括:
    向所述智能中继发送第一指示信息,其中,所述第一指示信息用于触发或激活所述RRC消息配置的波束中的至少一个波束。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    响应于通过下行控制信息DCI发送所述第一指示信息,确定所述至少一个波束的起始位置为发送所述DCI之后的第一数量个时间单元对应的时域位置;
    或者,
    响应于通过媒体接入控制MAC控制单元CE发送所述第一指示信息,确定所述至少一个波束的起始位置为接收到所述智能中继发送的确认信令之后的第二数量个时间单元对应的时域位置。
  11. 如权利要求10所述的方法,其特征在于,还包括:
    响应于所述至少一个波束的类型变化,确定所述第一数量个时间单元及所述第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
    信号处理时延;
    频域转换时延;
    上行定时提前时延;
    上行准备时延;
    天线切换时延;
    波束切换时延。
  12. 如权利要求9-11任一所述的方法,其特征在于,所述第一指示信息包括以下至少一项:
    波束配置的标识;
    多组波束的标识;
    一组波束的标识;
    多个波束的标识;及一个波束的标识。
  13. 一种通信装置,其特征在于,所述装置在智能中继侧,所述装置包括:
    收发模块,用于接收无线资源控制RRC消息,其中,所述RRC消息用于为所述智能中继配置服务链路service link对应的波束的信息。
  14. 如权利要求13所述的装置,其特征在于,所述波束的信息包括以下至少一项:
    一组波束的标识;
    多组波束的标识;
    一个波束的标识;
    多个波束的标识;
    周期;
    波束的起始位置;
    波束的时间特性。
  15. 如权利要求13所述的装置,其特征在于,所述收发模块,还具体用于:
    接收第一指示信息,其中,所述第一指示信息用于触发或激活所述RRC消息配置的波束中的至少一个波束。
  16. 如权利要求15所述的装置,其特征在于,还包括处理模块,具体用于:
    响应于通过下行控制信息DCI接收所述第一指示信息,确定接收到所述DCI之后的第一数量个时间单元对应的时域位置,为所述至少一个波束的起始位置;
    或者,
    响应于通过媒体接入控制MAC控制单元CE接收所述第一指示信息,确定向网络设备发送确认信令之后的第二数量个时间单元对应的时域位置,为所述至少一个波束的起始位置。
  17. 如权利要求16所述的装置,其特征在于,所述处理模块,具体用于:
    响应于所述至少一个波束的类型变化,确定所述第一数量个时间单元及所述第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
    信号处理时延;
    频域转换时延;
    上行定时提前时延;
    上行准备时延;
    天线切换时延;
    波束切换时延。
  18. 如权利要求15-17任一所述的装置,其特征在于,所述第一指示信息包括以下至少一项:
    波束配置的标识;
    多组波束的标识;
    一组波束的标识;
    多个波束的标识;及一个波束的标识。
  19. 一种通信装置,其特征在于,所述装置在网络设备侧,所述装置包括:
    收发模块,用于向智能中继发送无线资源控制RRC消息,其中,所述RRC消息用于为所述智能中继配置服务链路service link对应的波束的信息。
  20. 如权利要求19所述的装置,其特征在于,所述波束的信息包括以下至少一项:
    一组波束的标识;
    多组波束的标识;
    一个波束的标识;
    多个波束的标识;
    周期;
    波束的起始位置;
    波束的时间特性。
  21. 如权利要求19所述的装置,其特征在于,所述收发模块,还具体用于:
    向所述智能中继发送第一指示信息,其中,所述第一指示信息用于触发或激活所述RRC消息配置的波束中的至少一个波束。
  22. 如权利要求21所述的装置,其特征在于,还包括处理模块,具体用于:
    响应于通过下行控制信息DCI发送所述第一指示信息,确定所述至少一个波束的起始位置为发送所述DCI之后的第一数量个时间单元对应的时域位置;
    或者,
    响应于通过媒体接入控制MAC控制单元CE发送所述第一指示信息,确定所述至少一个波束的起始位置为接收到所述智能中继发送的确认信令之后的第二数量个时间单元对应的时域位置。
  23. 如权利要求22所述的装置,其特征在于,所述处理模块,还具体用于:
    响应于所述至少一个波束的类型变化,确定所述第一数量个时间单元及所述第二数量个时间单元的取值大于或等于以下协议约定的至少一项:
    信号处理时延;
    频域转换时延;
    上行定时提前时延;
    上行准备时延;
    天线切换时延;
    波束切换时延。
  24. 如权利要求21-23任一所述的装置,其特征在于,所述第一指示信息、第二指示信息及所述第三指示信息中分别包括以下至少一项:
    波束配置的标识;
    多组波束的标识;
    一组波束的标识;
    多个波束的标识;及一个波束的标识。
  25. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至6中任一项所述的方法。
  26. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求7至12中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至6中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求7至12中任一项所述的方法。
  29. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现。
  30. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求7至12中任一项所述的方法被实现。
PCT/CN2021/133574 2021-11-26 2021-11-26 一种智能中继服务链路的波束指示方法及其装置 WO2023092468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004048.8A CN114270910B (zh) 2021-11-26 2021-11-26 一种智能中继服务链路的波束指示方法及其装置
PCT/CN2021/133574 WO2023092468A1 (zh) 2021-11-26 2021-11-26 一种智能中继服务链路的波束指示方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133574 WO2023092468A1 (zh) 2021-11-26 2021-11-26 一种智能中继服务链路的波束指示方法及其装置

Publications (1)

Publication Number Publication Date
WO2023092468A1 true WO2023092468A1 (zh) 2023-06-01

Family

ID=80833583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133574 WO2023092468A1 (zh) 2021-11-26 2021-11-26 一种智能中继服务链路的波束指示方法及其装置

Country Status (2)

Country Link
CN (1) CN114270910B (zh)
WO (1) WO2023092468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116634567A (zh) * 2023-07-25 2023-08-22 华南理工大学 波束管理方法、装置和智能超表面中继系统

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197101A1 (en) * 2022-04-11 2023-10-19 Qualcomm Incorporated Controlling a reconfigurable intelligent surface using a weighting matrix
WO2023201714A1 (en) * 2022-04-22 2023-10-26 Lenovo (Beijing) Limited Method and apparatus of beam determination
US20230345262A1 (en) * 2022-04-26 2023-10-26 Kt Corporation Method and apparatus for relaying radio signal in wireless network
WO2023209048A1 (en) * 2022-04-26 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Configuration of dynamic behavior of spatial filter in repeater-assisted networks
CN117014052A (zh) * 2022-04-28 2023-11-07 华为技术有限公司 控制中继的方法和装置
CN117119473A (zh) * 2022-05-12 2023-11-24 维沃移动通信有限公司 无线辅助设备的波束控制方法、装置及网络侧设备
CN115242278B (zh) * 2022-06-22 2024-08-16 杭州腓腓科技有限公司 基于可重构折射超表面的无线通信方法及中继装置
WO2024000193A1 (zh) * 2022-06-28 2024-01-04 北京小米移动软件有限公司 一种中继通信方法、装置、设备及存储介质
CN117527159A (zh) * 2022-07-25 2024-02-06 维沃移动通信有限公司 回传链路的传输配置确定方法、装置、中继设备及网络侧设备
CN117560736A (zh) * 2022-08-01 2024-02-13 大唐移动通信设备有限公司 确定回程转发链路波束的方法、设备、装置及存储介质
WO2024031314A1 (zh) * 2022-08-09 2024-02-15 北京小米移动软件有限公司 回程链路的波束确定方法、装置、介质及产品
WO2024031435A1 (zh) * 2022-08-10 2024-02-15 富士通株式会社 信息指示方法、转发器和网络设备
CN117676888A (zh) * 2022-08-12 2024-03-08 华为技术有限公司 中继通信方法、通信系统及通信装置
WO2024031704A1 (zh) * 2022-08-12 2024-02-15 北京小米移动软件有限公司 回传链路的波束指示方法、装置及存储介质
WO2024060246A1 (en) * 2022-09-23 2024-03-28 Nec Corporation Method, device and computer storage medium of communication
WO2024065170A1 (en) * 2022-09-27 2024-04-04 Lenovo (Beijing) Limited Method and apparatus of radio resource determination
WO2024065414A1 (zh) * 2022-09-29 2024-04-04 富士通株式会社 转发器接入链路的转发方法及装置
CN117858192A (zh) * 2022-09-29 2024-04-09 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质
WO2024065819A1 (zh) * 2022-09-30 2024-04-04 北京小米移动软件有限公司 一种中继通信方法、装置及存储介质
CN116097699A (zh) * 2022-09-30 2023-05-09 北京小米移动软件有限公司 波束应用方法、装置、存储介质及芯片
WO2024082193A1 (zh) * 2022-10-19 2024-04-25 北京小米移动软件有限公司 一种波束确定方法、装置、设备及存储介质
WO2024098208A1 (zh) * 2022-11-07 2024-05-16 北京小米移动软件有限公司 波束指示方法及装置
WO2024138342A1 (en) * 2022-12-26 2024-07-04 Nec Corporation Methods, devices and computer storage media of communication
CN116017485A (zh) * 2022-12-30 2023-04-25 京信网络系统股份有限公司 波束控制方法、装置、系统、通信设备和存储介质
CN118301765A (zh) * 2023-01-04 2024-07-05 华为技术有限公司 一种中继的通信方法及装置
WO2024152174A1 (zh) * 2023-01-16 2024-07-25 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
CN116391430A (zh) * 2023-02-16 2023-07-04 北京小米移动软件有限公司 一种传输配置信息的方法、装置以及可读存储介质
CN118524401A (zh) * 2023-02-17 2024-08-20 大唐移动通信设备有限公司 波束配置参数的确定、指示方法及装置
CN118524538A (zh) * 2023-02-17 2024-08-20 华为技术有限公司 中继传输方法、通信装置及通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373667A (zh) * 2017-11-21 2020-07-03 高通股份有限公司 用于无线通信的动态波束管理
CN111684849A (zh) * 2018-05-10 2020-09-18 索尼公司 电子装置、无线通信方法和计算机可读介质
US20200366363A1 (en) * 2019-05-16 2020-11-19 Qualcomm Incorporated Joint beam management for backhaul links and access links
WO2021007833A1 (en) * 2019-07-18 2021-01-21 Qualcomm Incorporated Beamforming determination for iab system with full duplex
CN113286366A (zh) * 2020-02-20 2021-08-20 上海华为技术有限公司 波束管理方法,波束管理系统以及相关设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259952B (zh) * 2020-02-07 2022-07-15 维沃移动通信有限公司 波束指示方法、装置、设备及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373667A (zh) * 2017-11-21 2020-07-03 高通股份有限公司 用于无线通信的动态波束管理
CN111684849A (zh) * 2018-05-10 2020-09-18 索尼公司 电子装置、无线通信方法和计算机可读介质
US20200366363A1 (en) * 2019-05-16 2020-11-19 Qualcomm Incorporated Joint beam management for backhaul links and access links
WO2021007833A1 (en) * 2019-07-18 2021-01-21 Qualcomm Incorporated Beamforming determination for iab system with full duplex
CN113286366A (zh) * 2020-02-20 2021-08-20 上海华为技术有限公司 波束管理方法,波束管理系统以及相关设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116634567A (zh) * 2023-07-25 2023-08-22 华南理工大学 波束管理方法、装置和智能超表面中继系统
CN116634567B (zh) * 2023-07-25 2023-12-12 华南理工大学 波束管理方法、装置和智能超表面中继系统

Also Published As

Publication number Publication date
CN114270910B (zh) 2024-09-13
CN114270910A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2023092468A1 (zh) 一种智能中继服务链路的波束指示方法及其装置
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023092467A1 (zh) 一种智能中继的波束指示方法及装置
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2023164952A1 (zh) 一种智能中继的控制方法及其装置
WO2023164951A1 (zh) 一种智能中继时分复用图样的确定方法及其装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
US20240163895A1 (en) Method and apparatus for adjusting maximum number of transport layers
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2023050234A1 (zh) 一种探测参考信号srs资源的调整方法及其装置
CN115191145A (zh) 一种多prach传输方法及其装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2024092834A1 (zh) 切换时延的确定方法和装置
WO2023039770A1 (zh) 一种用于天线切换的探测参考信号srs触发方法及其装置
WO2023004796A1 (zh) 混合自动重传请求反馈方法及装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024016137A1 (zh) 一种预编码信息的接收发送方法及其装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2023050392A1 (zh) 混合自动重传请求harq的发送方法、接收方法及装置
WO2023092495A1 (zh) 参考信号配置方法及装置
US20240323929A1 (en) Method for determining transmission configuration indication state, and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202447048625

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021965202

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021965202

Country of ref document: EP

Effective date: 20240626