WO2024031435A1 - 信息指示方法、转发器和网络设备 - Google Patents

信息指示方法、转发器和网络设备 Download PDF

Info

Publication number
WO2024031435A1
WO2024031435A1 PCT/CN2022/111451 CN2022111451W WO2024031435A1 WO 2024031435 A1 WO2024031435 A1 WO 2024031435A1 CN 2022111451 W CN2022111451 W CN 2022111451W WO 2024031435 A1 WO2024031435 A1 WO 2024031435A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
information
transponder
access link
repeater
Prior art date
Application number
PCT/CN2022/111451
Other languages
English (en)
French (fr)
Inventor
张磊
蒋琴艳
田妍
王昕�
Original Assignee
富士通株式会社
张磊
蒋琴艳
田妍
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张磊, 蒋琴艳, 田妍, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2022/111451 priority Critical patent/WO2024031435A1/zh
Publication of WO2024031435A1 publication Critical patent/WO2024031435A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology.
  • 5G farth generation mobile communication technology
  • 5G systems are also deployed on new spectrum, the frequency of which is significantly higher than the traditional telecommunications spectrum used by 3G and 4G systems.
  • 5G systems can be deployed in millimeter wave bands (28GHz, 38GHz, 60GHz and beyond, etc.).
  • Radio frequency repeaters RF Relay/Repeater
  • Radio frequency transponders are widely used in the actual deployment of 3G systems and 4G systems.
  • a radio frequency transponder is a device that amplifies and forwards signals between network equipment and terminal equipment in the radio frequency domain.
  • radio frequency transponders to enhance coverage is one of the feasible solutions.
  • traditional forwarders do not have the ability to communicate with network devices and cannot adjust forwarding according to the actual network conditions. Therefore, although such a transponder is configured in a 5G system, it can help enhance signal strength to a certain extent, but it is not flexible enough to cope with complex environmental changes.
  • forwarding The efficiency and forwarding effect are poor.
  • embodiments of the present application provide an information indication method, a transponder, and a network device.
  • the repeater has the ability to communicate with network equipment, and can better enhance signal coverage and respond to environmental changes under network configuration (for example, reducing interference to other network equipment and terminal equipment during forwarding, etc.), thus improving the overall network transmission efficiency.
  • an information indication method including:
  • the transponder obtains the first information
  • the transponder determines to use the first beam to receive or transmit on the access (AC) link at the first time based on at least the first information and/or the communication standard definition rule.
  • a transponder including:
  • an acquisition unit that obtains the first information
  • a determining unit that determines to use the first beam to receive or transmit on the access link at the first time based on at least the first information and/or the communication standard definition rule.
  • an information indication method including:
  • the network device sends the first information to the repeater
  • the transponder determines to use the first beam to receive or transmit on the access (AC) link at the first time based on at least the first information and/or the communication standard definition rule.
  • a network device including:
  • a sending unit that sends the first information to the transponder
  • the transponder determines to use the first beam to receive or transmit on the access link at the first time based on at least the first information and/or the communication standard definition rule.
  • a communication system including:
  • the repeater determines to use the first beam to receive or transmit on the access link at the first time based on at least the first information and/or the communication standard definition rule.
  • the transponder obtains the first information; the transponder determines to use the first beam at the first time in the access (AC) based on at least the first information and/or the communication standard definition rules. ) link to receive or send.
  • the repeater can determine the forwarding of the AC link based on the first information and/or communication standard definition rules, which can better enhance signal coverage and respond to changes in the environment and main services in the cell, thereby improving the transmission of the entire network. efficiency.
  • Figure 1 is a schematic diagram of the application scenario of the embodiment of the present application.
  • FIG. 2 is a schematic diagram of the NCR according to the embodiment of the present application.
  • Figure 3 is a schematic diagram of NCR forwarding according to the embodiment of the present application.
  • Figure 4 is another schematic diagram of NCR forwarding according to the embodiment of the present application.
  • Figure 5 is a schematic diagram of the information indication method according to the embodiment of the present application.
  • Figure 6 is a schematic diagram of a transponder according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of information indication according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of network equipment according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to the communication protocol at any stage.
  • it can include but is not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and the future. 5G, New Wireless (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transceiver node (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • Base stations may include but are not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), IAB host, etc., and may also include Remote Radio Head (RRH) , Remote Radio Unit (RRU, Remote Radio Unit), relay or low-power node (such as femto, pico, etc.).
  • Node B Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • IAB host etc.
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay or low-power node such as femto, pico, etc.
  • base station may include some or all of their functions, each of which may provide communications coverage to a specific geographic area.
  • the term “cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to a device that accesses a communication network through a network device and receives network services, and may also be called a "Terminal Equipment” (TE, Terminal Equipment).
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. wait.
  • Terminal devices may include, but are not limited to, the following devices: Cellular Phone, Personal Digital Assistant (PDA), wireless modem, wireless communication device, handheld device, machine-type communication device, laptop computer, cordless phone , smartphones, smart watches, digital cameras, and more.
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine-type communication device
  • laptop computer machine-type communication device
  • cordless phone smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • RF repeater was introduced in 3GPP Rel-17 research to forward transmissions between terminal equipment (UE) and network equipment (base station).
  • UE terminal equipment
  • base station network equipment
  • the RF repeater introduced in Rel-17 is transparent, that is, the network equipment and terminal equipment do not know the existence of RF repeater.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a network device such as a 5G base station gNB 101, a repeater (Repeater) 102 and a terminal device (such as a UE )103 is taken as an example, and the application is not limited to this.
  • the terminal device 103 establishes a connection with the network device 101 and communicates with it.
  • the channel/signal transmitted between the terminal device 103 and the network device 101 is forwarded via the repeater 102 .
  • the channel/signal interaction between the network device 101, the terminal device 103 and the transponder 102 all adopt beam-based receiving and transmitting methods.
  • the network device 101 may have a cell/carrier, and the network device 101, the transponder 102 and the terminal device 103 may forward/communicate in the cell; but the application is not limited thereto.
  • the network device 101 may also have other cell/carrier.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC highly reliable low-latency communications
  • V2X vehicle-to-everything
  • Traditional transponders do not have the ability to communicate with network devices. Therefore, although traditional transponders can help enhance signal strength, they are not flexible enough to cope with complex environmental changes.
  • Traditional transponders are deployed in 5G networks (especially in high-frequency (5G network) may cause unnecessary interference to other network equipment and/or terminal equipment, thereby reducing the transmission efficiency (for example, throughput) of the entire network.
  • the network device needs to assist the transponder and be able to configure the forwarding of the transponder according to the network conditions.
  • NCR network-controlled repeater
  • FIG. 2 is a schematic diagram of the NCR according to the embodiment of the present application.
  • NCR 202 is configured between network device 201 and terminal device 203.
  • NCR 202 may include the following two modules/components: the mobile terminal of the transponder (NCR-MT) and the forwarding module of the transponder (NCR-Fwd); the NCR-Fwd may also be called the routing unit of the NCR-RU (NCR-RU).
  • NCR-MT is used to communicate with network equipment
  • NCR-Fwd is used to forward signals between network equipment and terminal equipment.
  • the NCR in the embodiment of this application can have three links: control link (C-link), backhaul link (BH link) for forwarding) and access Link (access link, AC link).
  • C-link is used for communication between NCR and network equipment.
  • BH link is used by the repeater to receive the signal to be forwarded from the network device, or to forward the signal from the terminal device to the network device.
  • AC link is used by the repeater to forward signals from network devices to terminal devices, or to receive signals to be forwarded from terminal devices.
  • Figure 3 is a schematic diagram of NCR forwarding according to an embodiment of the present application. As shown in Figure 3, the repeater uses transmit beams on the AC link to forward signals from network devices.
  • Figure 4 is another schematic diagram of NCR forwarding according to an embodiment of the present application. As shown in Figure 4, the repeater uses a receive beam on the AC link to receive the signal for forwarding to the network device.
  • the inventor found that there is currently no specific solution for how the transponder determines the beam and other information of the AC link. That is, how the transponder determines the forwarding information (beam, time, signal direction, etc.) of the AC link has become an urgent problem to be solved.
  • the transponder can communicate with the network device, and the transponder can receive the communication channel/signal sent by the network device, and demodulate/decode the channel/signal, thereby obtaining the communication channel/signal sent by the network device to the transponder.
  • Information this signal processing process is referred to as "communication” below.
  • the transponder can also forward the channel/signal transmitted between the network device and the terminal device.
  • the transponder does not demodulate/decode the channel/signal, but can perform amplification and other processing. This signal processing process is referred to as “forwarding” below.
  • “Communication” and “forwarding” are collectively referred to as "transmission”.
  • the channel/signal for direct communication between a network device and a repeater or between a third device (such as a terminal device) and a repeater can be called a communication signal.
  • the repeater needs to be encoded. and/or modulation, when receiving communication signals, the transponder needs to decode and/or demodulate.
  • the channel/signal forwarded through the repeater can be called a forwarded signal.
  • the repeater can perform signal processing such as amplification on the forwarded signal, but it will not perform decoding and/or demodulation.
  • a repeater can also be expressed as a repeater, a radio frequency repeater, a repeater, or a radio frequency repeater; or it can also be expressed as a repeater node, a repeater node, or a repeater node; or It can also be expressed as an intelligent repeater, an intelligent repeater, an intelligent repeater, an intelligent repeater node, an intelligent repeater node, an intelligent repeater node, etc., and the application is not limited thereto.
  • the network device may be a device in the serving cell of the terminal device, or may be a device in the cell where the transponder is located, or may be a device in the serving cell of the transponder, or it may be the parent node of the transponder. node), this application does not limit the name of the transponder. As long as the device can realize the above functions, it is included in the scope of the transponder of this application.
  • a beam can also be expressed as a lobe, a reference signal (RS, reference signal), a transmission configuration indication (TCI, a transmission configuration indication), a spatial domain filter (spatial domain filter), etc.; or, It can also be expressed as beam index, lobe index, reference signal index, transmission configuration indication index, spatial filter index, etc.
  • the above-mentioned reference signals are, for example, channel state information reference signal (CSI-RS, channel state information reference signal), sounding reference signal (SRS, sounding reference signal), RS used by the transponder, RS sent by the transponder, etc.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • RS sounding reference signal
  • the embodiment of the present application provides an information indication method, which is explained from the side of the transponder.
  • Figure 5 is a schematic diagram of an information indication method according to an embodiment of the present application. As shown in Figure 5, the method includes:
  • the transponder obtains the first information
  • the transponder determines to use the first beam to receive or transmit on the access (AC) link at the first time based on at least the first information and/or the communication standard definition rule.
  • the repeater can determine the forwarding of the AC link based on the first information and/or communication standard definition rules, which can better enhance signal coverage and respond to changes in the environment and main services in the cell, thereby improving the transmission of the entire network. efficiency.
  • the repeater determines the first beam and/or the first time according to at least one of the following: communication standard definition rules, dynamic signaling, semi-static signaling, operations management and maintenance (OAM) configuration information .
  • the first beam may be determined by the NCR itself through predetermined rules in the standard protocol.
  • the NCR sets the number of beams for AC link forwarding when it leaves the factory, and then the NCR selects one of the multiple beams.
  • the NCR determines the first beam by receiving system information and/or using some other information. Determining the first beam based on standard predefined rules or factory settings can help reduce the complexity of NCR and reduce the cost of NCR equipment. For example, this embodiment can be applied to a periodically transmitted public signal or the like.
  • the network side configures/indicates the first beam for NCR.
  • the first beam may be indicated through dynamic signaling, the first beam may be indicated through semi-static signaling, or the first beam may be indicated through OAM configuration information.
  • Configuring/instructing the first beam for NCR on the network side can provide better flexibility, so that the network side can configure/instruct the first beam for NCR according to actual needs.
  • this embodiment can be applied to aperiodic signals and the like.
  • the first time includes at least one time unit that is continuous in the time domain, or the at least one time unit is discontinuous in the time domain.
  • the time unit is, for example, a subframe, a time slot, a symbol, a mini-slot, etc.
  • the first information is carried by semi-static signaling, and/or the first information is configured by an OAM entity, and/or the first information is carried by a physical downlink control channel (PDCCH) or Dynamic signaling bearer.
  • PDCH physical downlink control channel
  • Dynamic signaling bearer a physical downlink control channel
  • the first information is used to indicate the first time, and/or the first information is used to indicate the first beam, and/or the first information is used to indicate The repeater receives or transmits on the access link.
  • the flexibility of the first information indication facilitates the reuse of existing signaling and/or indication information in the 5G system in different application scenarios. This can reduce standardization work, accelerate the standardization process, help speed up industrial upgrading, and make telecommunications faster and better. Industry adapts to emerging applications and emerging fields.
  • the first beam is determined by the NCR according to predefined rules, and the first time is indicated by the first information (for example, by receiving dynamic signaling, semi-static signaling or OAM configuration).
  • the first time is determined by the NCR according to predefined rules, and the first beam is indicated through the first information (for example, by receiving dynamic signaling, semi-static signaling or OAM configuration).
  • both the first beam and the first time are determined by the NCR according to predefined rules, and the transponder is instructed to use the first information (for example, by receiving dynamic signaling, semi-static signaling or OAM configuration) on the access link.
  • the transponder is instructed to use the first information (for example, by receiving dynamic signaling, semi-static signaling or OAM configuration) on the access link.
  • OAM configuration for example, by receiving dynamic signaling, semi-static signaling or OAM configuration
  • the indication of the first beam is based on a beam index, and/or the indication of the first beam is based on a synchronization signal block (SSB) index, and/or the indication of the first beam is based on a reference Signal index.
  • the indication of the first beam is based on the beam index or may be the beam number of the AC link.
  • the indication of the first beam may be based on an SSB index or a reference signal index, or the first beam may be named after an SSB index or a reference signal index.
  • the indication of the first beam may be an indication of a beam index corresponding to the first beam, and/or an indication of an SSB index corresponding to the first beam, and/or an indication of an SSB index corresponding to the first beam.
  • Reference signal index There is a one-to-one correspondence between the beam and the beam index (or SSB index, or reference signal index). The corresponding relationship between the beam and the beam index (or SSB index, or reference signal index) may be determined by the transponder, or indicated by the network side transponder.
  • the re-transponder will be reset and/or reconfigured and/or re-instructed and/or It will not change again before reboot or next boot.
  • the first information is used to instruct the transponder to use the first beam to receive or transmit on the access link at the first time.
  • the first time, the first beam and the forwarding direction are all indicated by the first information.
  • the first information is used to indicate the first time and the first beam; the transponder obtains second information, and the second information is at least used by the transponder to determine where the The first beam is used to receive or transmit on the access link at the first time.
  • the second information is carried by dynamic signaling and/or semi-static signaling, and/or the second information is configured by an OAM entity.
  • the first time and the first beam are indicated by the first information, and other information (such as forwarding direction, etc.) are indicated by the second information.
  • the second information at least indicates that the first time includes an uplink time unit and/or a downlink time unit and/or a flexible time unit.
  • the second information includes time division duplex (TDD) uplink and downlink configuration information.
  • TDD time division duplex
  • the network side when the network side indicates a beam, it may also indicate the forwarding direction of the beam.
  • the transmission and reception of the AC link are consistent, that is to say, the uplink or downlink beam forwarding is consistent.
  • the network side does not specify whether the beam is uplink or downlink, for example, it only indicates one beam (for example, indicating the index of the beam), the network side and the NCR will not have any ambiguity about which beam the beam is.
  • the NCR can also determine/determine the propagation direction of the signal that the indicated beam is used to forward in combination with other information (for example, TDD config). With this implementation, repeated instructions can be reduced.
  • the repeater determines to use the first beam for reception on the access link in the uplink time unit of the first time.
  • the repeater determines to use the first beam to transmit on the access link in the downlink time unit of the first time.
  • the repeater determines to use the first beam to receive or transmit on the access link during at least one flexible time unit of the first time.
  • the repeater determines that there is no reception and no transmission on the access link during at least one flexible time unit of the first time.
  • the first information is used to indicate a first time, the first time being related to the first signal.
  • the first signal is not generated by the transponder, and/or the transponder does not demodulate and decode the first signal. That is, the first signal is the aforementioned forwarding signal.
  • the first information indicates the time when the common signal is forwarded (the first time), and the first beam is determined by the NCR itself, or determined according to predefined rules, or determined randomly.
  • the repeater does not perform signal processing such as demodulation on the signal it forwards.
  • the repeater only amplifies the signal it forwards.
  • the beam performance used by the transponder on the AC link can be evaluated by measurements by third-party equipment (such as terminal equipment) and/or by network side measurements. Repeaters do not make any measurements on the signals they repeat. Therefore, the specific correspondence between the name of the beam and the beam will not affect the instructions and configuration of the forwarding behavior of the transponder on the network side.
  • the NCR determines the beam by itself, which can reduce the instruction/configuration signaling overhead on the network side and reduce the complexity on the network side.
  • the transponder determines the first beam, the first beam is related to the first signal; the transponder determines to use the first beam at the first time at the The access link receives or sends the first signal.
  • the first signal at least includes an SSB with index n; the first information includes system information, and the first time at least includes a time unit corresponding to the SSB index n.
  • the repeater determines the SSB index n for transmitting on the access link.
  • the SSB index n is configured or indicated by the network side, and/or the SSB index n is predefined by a communication standard, and/or the SSB index n is preset on the transponder. Inside.
  • the repeater determines the first beam for transmitting the SSB with index n on the access link.
  • the repeater determines a number N of SSBs sent on the access link and/or an index for N SSBs sent on the access link, the SSB index n being the One of the indexes of the N SSBs; the number N of SSBs and/or the indexes of the N SSBs are preset, or the number N of SSBs and/or the indexes of the N SSBs are predefined by the communication standard, or, The number N of SSBs and/or the indexes of N SSBs are configured or indicated by the network side for the forwarder.
  • the value of the SSB number N is preset, and the repeater reports the SSB number N to the network side. And, the network side configures/indicates the indexes of the N SSBs for the forwarder.
  • the repeater determines N beams for transmitting the N SSBs on the access link, and determines a corresponding relationship between the N beams and the N SSBs.
  • N can also be the number of beams used to forward SSB, and/or N can also be the number of forwarding beams supported by the transponder on the AC link, and/or N can also be the number of beams used by the transponder on the AC link. Number of forwarding beams.
  • the transponder determines the N beams used to transmit the N SSBs on the access link according to network side configurations and/or instructions, or the transponder determines the beams used to transmit the N SSBs based on communication standard definition rules. to transmit the N beams of the N SSBs on the access link, or the transponder determines by itself the N beams for transmitting the N SSBs on the access link.
  • the communication standard defines a rule that the SSB with the smaller index number corresponds to the beam with the smaller index number.
  • the first beam corresponds one-to-one to the SSB index n, and the one-to-one correspondence remains unchanged until the repeater is restarted and/or reconfigured. This can avoid ambiguity when the network side configures/instructs the AC link to forward beams for NCR.
  • NCR determines the beam to use by itself and does not change it after it is determined.
  • the first time also includes a time unit or a random access opportunity (RACH occasion) for sending a random access preamble (RACH preamble) corresponding to the SSB index n.
  • the first signal also includes using the time domain and/or frequency domain resources corresponding to the time unit for transmitting the random access preamble (RACH preamble) or the random access opportunity (RACH occasion) corresponding to the SSB index n. signal for transmission.
  • the first signal includes, or is associated with, at least one of the following signals or channels or information:
  • SIB System Information Block
  • MIB Master Information Block
  • Msg1 random access channel, RACH
  • Physical downlink control channel used to schedule (or trigger) Msg1 and/or Msg2 and/or Msg3 and/or Msg4 and/or Msg5,
  • PDSCH Physical downlink shared channel
  • PUSCH Physical uplink shared channel
  • CSIRS Channel State Information Reference Signal
  • SRS Sounding Reference Signal
  • BFR Beam Failure Recovery
  • PUCCH Physical uplink control channel
  • BFR beam failure recovery
  • Physical uplink control channel used to carry ACK/NACK information
  • Physical uplink control channel used to carry SR.
  • the repeater determines to use the first beam to receive or transmit the first signal on the access link at the first time based on at least the first information.
  • the first information includes location information in the time domain and/or frequency domain where the first signal is located, and/or the first information is carried by one or more signalings.
  • the first information at least includes system information; the repeater determines at least based on the first information to receive or send a signal related to the first signal at the first time.
  • the first information, the first beam, the first time, etc. are schematically described above, and the present application is not limited thereto.
  • NCR Since the AC link is the forwarding link of NCR, NCR may or may not know what signal it forwards. Or, in other words, even if the NCR does not know what signal it is forwarding, it does not affect the NCR's ability to forward the signal.
  • the network side configures NCR to forward signals in the specified transmission direction (such as uplink or downlink, or from the network side to the terminal side or from the terminal side to the network side) at a specified time and using a specified beam.
  • the specified transmission direction such as uplink or downlink, or from the network side to the terminal side or from the terminal side to the network side
  • the complexity of the communication protocol is reduced, and the implementation cost of NCR is reduced, which helps to increase the cost performance of NCR equipment so that NCR equipment can serve better and more actual network services.
  • NCR can also identify the type of signal it forwards.
  • the signal is a public signal (such as SS, SSB, SIB, MIB, RACH, etc.) or other signals (such as a certain signal served by the NCR).
  • SS public signal
  • SSB satellite
  • SIB SIB
  • MIB Magnetic Ink Characteristics
  • RACH Radio Access Management Function
  • NCR equipment with this capability can independently obtain relevant information for signal forwarding to a certain extent, thus reducing the complexity of network side equipment, reducing the cost of network equipment, and also reducing the interaction between the network side and NCR. Configuration information, thereby allowing more time domain/frequency domain/air domain resources to be used to transmit business data and thereby improving spectrum usage efficiency.
  • NCR avoids or handles configuration conflicts such as beam indication in the AC link.
  • the repeater obtains third information, the third information is related to a second time, the second time at least partially overlaps with the first time;
  • the third information is also used to indicate the second beam forwarded by the repeater on the access link, and/or the third information is also used to indicate the at least partially overlapping time, the second beam.
  • the repeater is in the forwarding direction of the access link, and/or the third information is also used to indicate the transmission direction and/or switch status related to the at least partially overlapping time.
  • the following is a schematic description of the situation in which the second beam is different from the first beam, that is, the beams conflict.
  • the following is an example of introducing the concept of priority in conflict resolution.
  • the priority of the first beam is higher than or equal to the priority of the second beam; the application is not limited thereto.
  • the third information is at least used to instruct the repeater to use the second beam to forward on the access link at the second time, and the forwarding direction is consistent with that of the repeater.
  • the forwarding directions determined at the first time are consistent or inconsistent, and the transponder uses the first beam to receive or transmit on the access link at the first time.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the third information is used to indicate that the transponder is on the access link at the first time.
  • the second time uses the second beam to receive on the access link, and the transponder uses the first beam to receive on the access link at the first time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the third information is used to instruct the transponder to transmit on the access link at the first time.
  • the second time uses the second beam to transmit on the access link, and the transponder uses the first beam to transmit on the access link at the first time.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the third information is used to instruct the transponder to perform reception on the access link at the first time.
  • the second time uses the second beam to transmit on the access link, and the transponder uses the first beam to receive on the access link at the first time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the third information is used to instruct the transponder to transmit on the access link at the first time.
  • the second time uses the second beam to receive on the access link, and the transponder uses the first beam to send on the access link at the first time.
  • the priority of the first beam is configured and/or indicated by the network side, or the priority of the first beam is defined by a communication standard, or the priority of the first beam is determined by the forwarding The device is determined based on at least the first information.
  • the priority of at least one time unit included in the first time is higher than or equal to the preset priority, or higher than or equal to the priority of any time unit in the second time, or , higher than or equal to the priority of any time unit in the at least partially overlapping time.
  • the forwarding priority associated with the first time determined by the repeater is higher than or equal to the forwarding priority associated with the second time.
  • the priority of the time unit is configured and/or indicated by the network side, or the priority of the time unit is defined by a communication standard, or the priority of the time unit is at least determined by a signal related to the time unit. .
  • the third information is also used to indicate the second beam that the repeater forwards on the access link, wherein the third information indicates that the repeater forwards the second beam on the access link.
  • the second beam is used to receive or transmit a second signal on the access link; the priority of the second signal is lower than or equal to the priority of the first signal.
  • the transponder determines that the transponder priority associated with the first signal is higher than or equal to the transponder priority associated with the second signal.
  • the priority of the first signal and/or the second signal is defined by a communication standard, or the priority of the first signal and/or the second signal is configured by the network side and /or instructions.
  • the first signal has the highest priority.
  • the priority of the first signal is equal to or higher than the priority of other signals received or sent by the NCR on the AC link; or the priority of the first signal is equal to or higher than the priority of the NCR on the AC link during the first time.
  • Other signals received or sent on the road; or, the priority of the signals received or sent by the NCR on the AC link is divided into M levels, and the priority of the first signal is the highest level.
  • the first information is carried by semi-static signaling and/or configured by the OAM entity
  • the third information is carried by dynamic signaling.
  • the priority of the first information carried by semi-static signaling or OAM configuration is higher than or equal to the priority of the third information carried by dynamic signaling.
  • the forwarding priority related to the first information carried by semi-static signaling or configured by OAM is higher than or equal to the forwarding priority related to the third information carried by dynamic signaling.
  • Semi-static signaling can be used to indicate forwarding related to more important, periodically transmitted or received public signals, such as SSB signals, SIB signals, and signals that may include RACH.
  • the dynamic signaling bearer may be used to indicate forwarding related to dynamic or relatively dynamic data, such as PDSCH and/or PUSCH of terminal equipment served by NCR, etc.
  • the first information is carried by dynamic signaling
  • the third information is carried by semi-static signaling and/or indicated by OAM, or the third information is carried by dynamic signaling
  • Semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • information can be rewritten through dynamic signaling. For example, using this method can ensure that the more important signals to be forwarded are forwarded reliably and efficiently.
  • the network side can use dynamic signaling to rewrite the forwarding configuration/instructions to ensure that the URLLC service signal is forwarded reliably and in a timely manner.
  • the first information is carried by semi-static signaling
  • the third information is carried by semi-static signaling and/or is carried by OAM indication and/or dynamic signaling
  • the semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • the information can be rewritten (or updated, or reconfigured, etc.) through semi-static signaling.
  • the network side when the network side adjusts the transmission of periodically transmitted public signals, the network side can be allowed to rewrite the forwarding configuration of the periodically transmitted public signals so that the repeater can adapt to the forwarding of the adjusted public signals.
  • the third information is also used to indicate the transmission direction and/or switching status related to the at least partially overlapping time, wherein the third information is at least used to indicate the at least partially overlapping time.
  • the transponder uses the first beam to receive or transmit on the access link at the first time.
  • the transponder determines to use the first beam to perform reception (uplink) on the access link at the first time, and the third information is at least used to indicate one of the at least partially overlapping times.
  • the time unit is the downstream time unit or the flexible time unit.
  • the transponder determines to use the first beam to transmit (downlink) on the access link at the first time, and the third information is at least used to indicate the at least partially overlapping time.
  • a time unit is an upstream time unit or a flexible time unit.
  • the repeater does not receive and/or transmit on the access link within a time unit in which the signal transmission directions are inconsistent.
  • the transponder determines to use the first beam to perform reception (uplink) on the access link at the first time, and the third information is at least used to indicate the time unit included in the first time.
  • One of the time units is a downlink time unit or a flexible time unit; the transponder does not receive in the downlink time unit or the flexible time unit, or does not receive in the first time.
  • the transponder determines to use the first beam to transmit (downlink) on the access link at the first time, and the third information is at least used to indicate the time included in the first time.
  • One time unit in the unit is an uplink time unit or a flexible time unit; the transponder does not transmit in the uplink time unit or flexible time unit, or does not transmit in the first time.
  • the following is a schematic explanation of the OFF time situation, that is, a conflict between the forwarding time and the OFF time.
  • the third information is at least used to indicate that at least one of the time units included in the first time is not used for receiving or sending.
  • the at least one time unit not used for receiving or sending is an OFF time unit, or a sleep/dormancy time unit, or a null time unit.
  • the transponder uses the first beam to receive or transmit on the access link at the first time. For example, since the first signal is very important for the initial access of the terminal device, it still needs to be forwarded even in the OFF state.
  • the repeater does not receive and/or transmit on the access link during the time unit indicated as not for receiving or transmitting.
  • NCR does not forward data during the OFF time, which can improve energy saving efficiency.
  • the third information is carried by signaling, which signaling is at least used to indicate an OFF time.
  • the signaling is also used to indicate the TDD UL DL configuration, and the OFF is a state of the time unit in the TDD UL DL configuration.
  • the signaling is dedicated signaling used to indicate the OFF time.
  • the signaling is DRX signaling.
  • the signaling is also used to indicate an uplink time unit, and/or a downlink time unit, and/or a flexible time unit.
  • the signaling is at least used to indicate TDD UL DL configuration.
  • the transponder obtains fourth information related to a third time that at least partially overlaps with the first time.
  • the fourth information is at least used to instruct the repeater to receive a signal from the network side or send a signal to the network side on the control link at the third time.
  • the repeater receives a signal from the network side or sends a generated signal to the network side at the control link at the third time.
  • NCR prioritizes ensuring connections with network devices to avoid affecting AC link forwarding due to unreliable connections to the network side.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the transponder is on the access link at the first time.
  • the third time is used to receive on the control link; the transponder does not receive on the access link during the at least partially overlapping time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to transmit on the access link at the first time.
  • the third time transmits on the control link; the repeater does not transmit on the access link at the at least partially overlapping time.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to perform reception on the access link at the first time.
  • the third time is used to receive on the control link; the said transponder does not receive on the said first time on the access link.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to transmit on the access link at the first time.
  • the third time transmits on the control link; the transponder does not transmit on the access link at the first time.
  • the transponder uses the first beam to receive or transmit on the access link at the first time.
  • NCR gives priority to ensuring the stability of the AC link and helps protect the transmission of high-priority terminal devices, such as terminal devices with URLLC services.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the transponder is on the access link at the first time.
  • the third time receives the signal from the network side on the control link; the transponder does not receive the signal from the network side on the control link at at least partially overlapping time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to transmit on the access link at the first time.
  • the third time sends a signal to the network side on the control link; the repeater does not send a signal to the network side on the control link at at least partially overlapping times.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to perform reception on the access link at the first time.
  • the third time receives the signal from the network side on the control link; the transponder does not receive the signal from the network side on the control link at the third time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to transmit on the access link at the first time.
  • the third time sends a signal to the network side on the control link; the transponder does not send a signal to the network side on the control link at the third time.
  • the fourth information is used to instruct the repeater to generate and send at least one of the following signals to the network side at the third time:
  • the fourth information is used to indicate that the repeater receives at least one of the following signals from the network side at the third time:
  • the signal is demodulated or decoded by the transponder.
  • NCR network side and forwarders can also follow certain policies or behaviors.
  • the network side does not send indication information that is inconsistent with the first information
  • the network side does not instruct the transponder to use a beam other than the first beam to transmit or receive at the first time.
  • the network side does not indicate that the first time is the OFF time.
  • the network side when the first information is at least used to instruct the transponder to use the first beam to receive on the access link at the first time, the network side does not indicate the The first time mentioned above includes downstream time units and/or flexible time units.
  • the network side when the first information is at least used to instruct the transponder to use the first beam to transmit on the access link at the first time, the network side does not indicate the The first time includes an uplink time unit and/or a flexible time unit.
  • the repeater does not expect to be indicated indication information that is inconsistent with the first information
  • the transponder is not expected to be instructed to transmit or receive using a beam other than the first beam at the first time.
  • the repeater does not wish to be indicated that the first time is an OFF time.
  • the repeater when the first information is at least used to instruct the repeater to use the first beam to receive on the access link at the first time, the repeater does not It is desirable to be indicated that the first time includes downlink time units and/or flexible time units.
  • the repeater when the first information is at least used to instruct the repeater to use the first beam to transmit on the access link at the first time, the repeater does not It is desirable to be indicated that the first time includes uplink time units and/or flexible time units.
  • this may be expressed as the priority of beams: one part of the beam has a higher priority than another part.
  • beams used to forward certain signals have high priority.
  • the beam used to forward high-priority signals such as SSB is high.
  • the network side configures a part of the beams to have a high priority, such as specifying a part of the beam scheduling index; or the network side configures or indicates the priority of a beam.
  • the beam priority of certain signaling indications is high, for example, the beam priority of OAM configuration is high, and or, the beam priority of semi-static indication is high, and or, the beam priority of dynamic indication is high.
  • this can be expressed as the priority of the forwarded signal: the forwarded signal itself has priority.
  • signals that may have higher priority include at least one of the following: SS, SSB, SIB, MIB, RACH, PDCCH used to schedule Msg2 and or Msg3 and or Msg4 and or Msg5, used to carry Msg2 and or Msg4 PDSCH, PUSCH, CSIRS, SRS, etc. used to carry Msg3 and or Msg5.
  • SS SS
  • SSB SSB
  • SIB Session Initishaw
  • NCR can identify a signal with a higher priority. If the beam used to forward the signal conflicts with other beams, NCR will use the beam used to forward the signal to transmit and/or receive.
  • NCR can distinguish between a signal with a higher priority and some or all other signals, and then the beam used to forward the signal is different from other beams (for example, used to forward some or all other signals, or it is not certain that the signal it forwards is When beams collide, NCR uses the beam that forwards the signal for transmission and/or reception.
  • the signal used by the terminal device served by NCR to report BFR may also have a higher priority. This allows the network side to receive the BFR from the terminal side in time and process it appropriately to avoid further larger incidents. Link failure, etc.
  • the signal priority is indicated by the network side.
  • it may be expressed as indication/configuration information or signaling priority.
  • the beam priority configured by the OAM is high, and/or the beam priority of the semi-static indication is high, and/or the beam priority of the dynamic indication is high.
  • the important signals in the above examples are mostly related to key processes and capabilities such as initial access, channel tracking, and channel measurement of the served terminal equipment. Therefore, semi-static signaling or signaling configured by OAM may have higher priority.
  • the network side may send dynamic signaling to indicate a new transmission beam for NCR.
  • the priority may be divided into three categories. For example, the beam used for forwarding SSB, etc. has the highest priority, the priority of dynamic rewriting is second, and the priority of other indications is lower.
  • the forwarding direction has priority
  • beam conflicts may occur between uplink forwarding and downlink forwarding.
  • Downlink forwarding beams may be given higher priority.
  • the network side has a higher priority, which can ensure the services of more terminal devices served by the network device.
  • the uplink forwarding beam can be given priority, so that the network side can promptly obtain the information requested or reported by the terminal equipment served by the NCR.
  • it may be expressed as the priority of the time unit/time period for the beam to be used or forwarded.
  • NCR can determine (based on received instructions or self-obtained system information) at which times more important signals may need to be forwarded. These times or time periods have higher priorities, and the beams related to these times or time periods are in Has higher priority in beam collisions.
  • the transponder obtains the first information; the transponder determines to use the first beam to receive on the access (AC) link at the first time based on at least the first information and/or communication standard definition rules. Or send it.
  • the repeater can determine the forwarding of the AC link based on the first information and/or communication standard definition rules, which can better enhance signal coverage and respond to changes in the environment and main services in the cell, thereby improving the transmission of the entire network. efficiency.
  • the embodiment of the present application provides a transponder.
  • the transponder may be, for example, the aforementioned NCR, or it may be a network device or terminal device with a forwarding function, or it may be one or more devices configured in the NCR, network device, or terminal device. some parts or components.
  • FIG. 6 is a schematic diagram of a transponder according to an embodiment of the present application. Since the problem-solving principle of this transponder is the same as the method of the first embodiment, its specific implementation can refer to the first embodiment. The contents are the same. No further explanation will be given.
  • the transponder 600 in this embodiment of the present application includes:
  • Obtaining unit 601 which obtains the first information
  • the determining unit 602 determines to use the first beam to receive or transmit on the access (AC) link at the first time based on at least the first information and/or the communication standard definition rule.
  • the determining unit 602 determines the first beam and/or the first time according to at least one of the following: communication standard definition rules, dynamic signaling, semi-static signaling, operation management and maintenance (OAM) ) configuration information.
  • communication standard definition rules dynamic signaling
  • semi-static signaling semi-static signaling
  • OAM operation management and maintenance
  • the first time includes at least one time unit, and the at least one time unit is continuous or discontinuous in the time domain.
  • the first information is carried by semi-static signaling, and/or the first information is configured by an OAM entity, and/or the first information is carried by PDCCH or dynamic signaling.
  • the first information is used to indicate the first time, and/or the first information is used to indicate the first beam, and/or the first information is used to indicate The repeater receives or transmits on the access link.
  • the indication of the first beam is based on a beam index, and/or the indication of the first beam is based on a synchronization signal block (SSB) index, and/or the indication of the first beam is based on a reference Signal index.
  • SSB synchronization signal block
  • the first information is used to instruct the transponder to use the first beam to receive or transmit on the access link at the first time.
  • the first information is used to indicate the first time and the first beam
  • the obtaining unit 601 also obtains second information, which is at least used by the determining unit 602 to determine to use the first beam to receive or transmit on the access link at the first time.
  • the second information at least indicates that the first time includes an uplink time unit and/or a downlink time unit and/or a flexible time unit.
  • the second information includes time division duplex (TDD) uplink and downlink configuration information, the second information is carried by dynamic signaling and/or semi-static signaling, and/or, the second information Configured by the OAM entity.
  • TDD time division duplex
  • the determining unit 602 determines to use the first beam for reception on the access link in the uplink time unit of the first time, and/or,
  • the determining unit 602 determines to use the first beam to transmit on the access link in the downlink time unit of the first time, and/or,
  • the determining unit 602 determines to use the first beam to receive or transmit on the access link in at least one flexible time unit of the first time, and/or,
  • the determining unit 602 determines that no reception and no transmission are performed on the access link during at least one flexible time unit of the first time.
  • the first information is used to indicate the first time, and the first time is related to the first signal.
  • the first signal is not generated by the transponder, and/or the transponder does not demodulate and decode the first signal.
  • the determining unit 602 determines the first beam, and the first beam is related to the first signal; the determining unit 602 determines to use the first beam at the first time.
  • the access link receives or sends the first signal.
  • the first signal includes at least an SSB with index n;
  • the first information includes system information, and the first time at least includes the time unit corresponding to the SSB index n.
  • the determining unit 602 determines the SSB index n for transmitting on the access link.
  • the SSB index n is configured or indicated by the network side, and/or the SSB index n is predefined by a communication standard, and/or the SSB index n is preset on the transponder. Inside.
  • the determining unit 602 determines the first beam used to transmit the SSB with index n on the access link.
  • the determining unit 602 determines the number N of SSBs sent on the access link and/or the index of N SSBs, and the SSB index n is one of the indexes of the N SSBs. ;
  • the number N of SSBs and/or the indexes of N SSBs are preset, or the number N of SSBs and/or the indexes of N SSBs are predefined by the communication standard, or the number N and/or the number N of SSBs
  • the index of each SSB is configured or indicated by the network side for the forwarder.
  • the value of the number N of SSBs is preset, wherein the forwarder reports the number N of SSBs to the network side; the network side configures/instructs the N number of SSBs for the forwarder. Index of SSB.
  • the determining unit 602 determines N beams used to transmit N SSBs on the access link, and determines the corresponding relationship between the N beams and the N SSBs.
  • the determining unit 602 determines the N beams used to transmit the N SSBs on the access link according to network side configurations and/or instructions, or the determining unit 602 determines the N beams according to the communication standard. Define rules to determine the N beams used to send the N SSBs on the access link, or the determining unit 602 determines the N beams used to send the N SSBs on the access link by itself. beam.
  • the first beam corresponds to the SSB index n one-to-one, and the one-to-one correspondence remains unchanged until the repeater is restarted and/or reconfigured.
  • the first time also includes a time unit or a random access opportunity (RACH occasion) for sending a random access preamble (RACH preamble) corresponding to the SSB index n;
  • RACH occasion a time unit or a random access opportunity for sending a random access preamble (RACH preamble) corresponding to the SSB index n;
  • the first signal also includes using the time domain and/or frequency domain resources corresponding to the time unit for transmitting the random access preamble (RACH preamble) or the random access opportunity (RACH occasion) corresponding to the SSB index n. signal for transmission.
  • RACH preamble random access preamble
  • RACH occasion random access opportunity
  • the first signal includes, or is associated with, at least one of the following signals or channels or information:
  • SIB System Information Block
  • MIB Master Information Block
  • Msg1 random access channel, RACH
  • Physical downlink control channel used to schedule (or trigger) Msg1 and/or Msg2 and/or Msg3 and/or Msg4 and/or Msg5,
  • PDSCH Physical downlink shared channel
  • PUSCH Physical uplink shared channel
  • CSIRS Channel State Information Reference Signal
  • SRS Sounding Reference Signal
  • BFR Beam Failure Recovery
  • PUCCH Physical uplink control channel
  • BFR beam failure recovery
  • Physical uplink control channel used to carry ACK/NACK information
  • Physical uplink control channel used to carry SR.
  • the determining unit 602 determines to use the first beam to receive or transmit the first signal on the access link at the first time based on at least the first information.
  • the first information includes location information in the time domain and/or frequency domain where the first signal is located, and/or the first information is carried by one or more signalings.
  • the first information includes at least system information
  • the determining unit 602 determines to receive or send a signal related to the first signal at the first time according to at least the first information.
  • the obtaining unit 601 obtains third information, the third information is related to a second time, and the second time at least partially overlaps with the first time;
  • the third information is also used to indicate the second beam forwarded by the repeater on the access link, and/or the third information is also used to indicate the at least partially overlapping time, the second beam.
  • the repeater is in the forwarding direction of the access link, and/or the third information is also used to indicate the transmission direction and/or switch status related to the at least partially overlapping time.
  • the second beam is different from the first beam, and/or,
  • the forwarding direction within the at least partially overlapping time period is inconsistent with the forwarding direction on the access link within the first time period determined by the repeater, and/or,
  • the at least partially overlapping time-related transmission directions and/or switch states are inconsistent with the direction of forwarding on the access link at the first time determined by the repeater.
  • the third information is at least used to instruct the repeater to use the second beam to forward on the access link at the second time, and the forwarding direction is consistent with that of the repeater.
  • the forwarding directions determined at the first time are consistent or inconsistent, and the second beam is the same as or different from the first beam;
  • the repeater 600 also includes:
  • the forwarding unit 603 uses the first beam to receive or transmit on the access link at the first time.
  • the determining unit 602 determines to use the first beam to perform reception on the access link at the first time based on at least the first information, and the third information is used to indicate that the The transponder uses the second beam to receive on the access link at the second time,
  • the forwarding unit 603 uses the first beam to receive on the access link at the first time.
  • the determining unit 602 determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the third information is used to indicate that the The transponder uses the second beam to transmit on the access link at the second time,
  • the forwarding unit 603 uses the first beam to transmit on the access link at the first time.
  • the determining unit 602 determines to use the first beam to perform reception on the access link at the first time based on at least the first information, and the third information is used to indicate that the The transponder uses the second beam to transmit on the access link at the second time,
  • the forwarding unit 603 uses the first beam to receive on the access link at the first time.
  • the determining unit 602 determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the third information is used to indicate that the The transponder uses the second beam to receive on the access link at the second time,
  • the forwarding unit 603 uses the first beam to transmit on the access link at the first time.
  • the priority of the first beam is higher than or equal to the priority of the second beam.
  • the priority of the first beam is configured and/or indicated by the network side, or the priority of the first beam is defined by a communication standard, or the priority of the first beam is determined by the forwarding The device is determined based on at least the first information.
  • the priority of at least one time unit included in the first time is higher than or equal to the preset priority, or higher than or equal to the priority of any time unit in the second time, or , higher than or equal to the priority of any time unit in the at least partially overlapping time.
  • the priority of the time unit is configured and/or indicated by the network side, or the priority of the time unit is defined by a communication standard, or the priority of the time unit is at least equal to the time unit. Relevant signals identified.
  • the third information is also used to indicate the second beam that the repeater forwards on the access link, wherein,
  • the third information indicates that the transponder uses the second beam to receive or send a second signal on the access link at the second time; the priority of the second signal is lower than or equal to the The priority of the first signal.
  • the priority of the first signal and/or the second signal is defined by a communication standard, or the priority of the first signal and/or the second signal is configured by the network side and /or instructions.
  • the first signal has the highest priority.
  • the first information is carried by semi-static signaling and/or configured by the OAM entity, and the third information is carried by dynamic signaling.
  • the first information is carried by dynamic signaling
  • the third information is carried by semi-static signaling and/or is carried by dynamic signaling and/or is indicated by OAM;
  • the semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • the first information is carried by semi-static signaling
  • the third information is carried by semi-static signaling and/or indicated by OAM and/or carried by dynamic signaling
  • the semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • the third information is also used to indicate the transmission direction and/or switching status related to the at least partial overlap time, wherein,
  • the third information is at least used to indicate the signal transmission direction of one time unit of the at least partially overlapping time; wherein the signal transmission direction of one time unit and the signal transmission direction determined by the transponder according to the first information are The signal transmission direction on the access link using the first beam at the first time is inconsistent.
  • the forwarding unit 603 uses the first beam to receive or transmit on the access link at the first time.
  • the determining unit 602 determines to use the first beam to receive (uplink) on the access link at the first time, and the third information is at least used to indicate that at least part of One time unit in the overlap time is a downstream time unit or a flexible time unit.
  • the determining unit 602 determines to use the first beam to transmit (downlink) on the access link at the first time, and the third information is at least used to indicate that at least part of One time unit in the overlap time is an upstream time unit or a flexible time unit.
  • the forwarding unit 603 does not receive and/or transmit on the access link within the time unit when the signal transmission directions are inconsistent.
  • the determining unit 602 determines to use the first beam to perform reception (uplink) on the access link at the first time, and the third information is at least used to indicate the first One of the time units included in the time is a downstream time unit or a flexible time unit;
  • the forwarding unit 603 does not receive in the downlink time unit or flexible time unit, or does not receive in the first time.
  • the determining unit 602 determines to use the first beam to transmit (downlink) on the access link at the first time, and the third information is at least used to indicate the first One of the time units included in the time is an uplink time unit or a flexible time unit;
  • the forwarding unit 603 does not transmit in the uplink time unit or flexible time unit, or does not transmit in the first time.
  • the third information is at least used to indicate that at least one of the time units included in the first time is not used for receiving or sending.
  • the forwarding unit 603 uses the first beam to receive or transmit on the access link at the first time.
  • the forwarding unit 603 does not receive and/or transmit on the access link within the time unit that is indicated as not being used for receiving or transmitting.
  • the third information is carried by signaling, which signaling is at least used to indicate an OFF time.
  • the signaling is also used to indicate an uplink time unit, and/or a downlink time unit, and/or a flexible time unit.
  • the at least one time unit not used for receiving or transmitting is an OFF time unit, or a sleep/dormancy time unit, or a null time unit.
  • the obtaining unit 601 obtains fourth information, the fourth information is related to a third time, and the third time at least partially overlaps with the first time.
  • the fourth information is at least used to instruct the repeater to receive a signal from the network side or send a signal to the network side on the control link at the third time.
  • the forwarding unit 603 receives the signal from the network side on the control link at the third time or sends the generated signal to the network side.
  • the repeater determines to use the first beam to receive on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the The repeater receives on the control link at the third time;
  • the forwarding unit 603 does not receive on the access link during the at least partial overlap time.
  • the determining unit 602 determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the The transponder transmits on the control link at the third time;
  • the forwarding unit 603 does not transmit on the access link at the at least partially overlapping time.
  • the determining unit 602 determines to use the first beam to perform reception on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the The transponder receives on the control link at the third time;
  • the forwarding unit 603 does not receive on the access link at the first time.
  • the determining unit 602 determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the The transponder transmits on the control link at the third time;
  • the forwarding unit 603 does not transmit on the access link at the first time.
  • the forwarding unit 603 uses the first beam to receive or transmit on the access link at the first time.
  • the determining unit 602 determines to use the first beam to perform reception on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the The repeater receives a signal from the network side on the control link at the third time;
  • the forwarding unit 603 does not receive signals from the network side on the control link at at least partially overlapping times.
  • the determining unit 602 determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the The repeater sends a signal to the network side on the control link at the third time;
  • the forwarding unit 603 does not send signals to the network side on the control link at at least partially overlapping times.
  • the determining unit 602 determines to use the first beam to perform reception on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the The repeater receives a signal from the network side on the control link at the third time;
  • the forwarding unit 603 does not receive the signal from the network side on the control link at the third time.
  • the determining unit 602 determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to indicate that the The repeater sends a signal to the network side on the control link at the third time;
  • the forwarding unit 603 does not send a signal to the network side on the control link at the third time.
  • the fourth information is used to instruct the repeater to generate and send at least one of the following signals to the network side at the third time:
  • the fourth information is used to indicate that the repeater receives at least one of the following signals from the network side at the third time:
  • the signal is demodulated or decoded by the transponder.
  • the repeater does not expect to be indicated indication information that is inconsistent with the first information
  • the transponder is not expected to be instructed to transmit or receive using a beam other than the first beam at the first time.
  • the repeater does not wish to be indicated that the first time is an OFF time.
  • the repeater when the first information is at least used to instruct the repeater to use the first beam to receive on the access link at the first time, the repeater does not Desiring to be instructed that said first time includes downlink time units and/or flexible time units;
  • a time includes uplink time units and/or flexible time units.
  • FIG. 6 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of this application is not limited to this.
  • the transponder obtains the first information; the transponder determines to use the first beam to receive on the access (AC) link at the first time based on at least the first information and/or communication standard definition rules. Or send it.
  • the repeater can determine the forwarding of the AC link based on the first information and/or communication standard definition rules, which can better enhance signal coverage and respond to changes in the environment and main services in the cell, thereby improving the transmission of the entire network. efficiency.
  • the embodiment of the present application provides an information indication method, which is explained from the side of the network device, and the same content as the embodiment of the first aspect will not be described again.
  • Figure 7 is a schematic diagram of an information indication method according to an embodiment of the present application. As shown in Figure 7, the method includes:
  • the network device sends the first information to the forwarder
  • the transponder determines to use the first beam to receive or transmit on the access (AC) link at the first time based on at least the first information and/or the communication standard definition rule.
  • the network device may send forwarding signals (for example, the destination is the terminal device and forwarded by the repeater) and/or communication signals (for example, the destination is the repeater) to the repeater, or the network device may also Receive a forwarded signal (eg, generated and sent by a terminal device and forwarded by the repeater) and/or a communication signal (eg, generated and sent by the repeater) from the repeater.
  • forwarding signals for example, the destination is the terminal device and forwarded by the repeater
  • communication signals for example, the destination is the repeater
  • the network device may also Receive a forwarded signal (eg, generated and sent by a terminal device and forwarded by the repeater) and/or a communication signal (eg, generated and sent by the repeater) from the repeater.
  • the first time includes at least one time unit, and the at least one time unit is continuous or discontinuous in the time domain.
  • the first information is carried by semi-static signaling, and/or the first information is configured by an OAM entity, and/or the first information is carried by PDCCH or dynamic signaling.
  • the first information is used to indicate the first time, and/or the first information is used to indicate the first beam, and/or the first information is used to indicate The repeater receives or transmits on the access link.
  • the indication of the first beam is based on a beam index, and/or the indication of the first beam is based on a synchronization signal block (SSB) index, and/or the indication of the first beam is based on a reference Signal index.
  • SSB synchronization signal block
  • the first information is used to instruct the transponder to use the first beam to receive or transmit on the access link at the first time.
  • the first information is used to indicate the first time and the first beam
  • the network device sends second information to the transponder, where the second information is at least used by the transponder to determine to use the first beam to receive or perform reception on the access link at the first time. send.
  • the second information at least indicates that the first time includes an uplink time unit and/or a downlink time unit and/or a flexible time unit.
  • the second information includes time division duplex (TDD) uplink and downlink configuration information, the second information is carried by dynamic signaling and/or semi-static signaling, and/or, the second information Configured by the OAM entity.
  • TDD time division duplex
  • the first information is used to indicate the first time, and the first time is related to the first signal.
  • the first signal is not generated by the transponder, and/or the transponder does not demodulate and decode the first signal.
  • the network device sends third information to the repeater, the third information being related to a second time, the second time at least partially overlapping the first time;
  • the third information is also used to indicate the second beam forwarded by the repeater on the access link, and/or the third information is also used to indicate the at least partially overlapping time, the second beam.
  • the repeater is in the forwarding direction of the access link, and/or the third information is also used to indicate the transmission direction and/or switch status related to the at least partially overlapping time.
  • the second beam is different from the first beam, and/or,
  • the forwarding direction within the at least partially overlapping time period is inconsistent with the forwarding direction on the access link within the first time period determined by the repeater, and/or,
  • the at least partially overlapping time-related transmission directions and/or switching states are inconsistent with the direction of forwarding on the access link at the first time determined by the repeater.
  • the first information is carried by semi-static signaling and/or configured by the OAM entity, and the third information is carried by dynamic signaling.
  • the first information is carried by dynamic signaling
  • the third information is carried by semi-static signaling and/or is carried by dynamic signaling and/or is indicated by OAM;
  • the semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • the first information is carried by semi-static signaling
  • the third information is carried by semi-static signaling and/or indicated by OAM and/or carried by dynamic signaling
  • the semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • the network device sends fourth information to the repeater, the fourth information being related to a third time, the third time at least partially overlapping the first time.
  • the fourth information is at least used to instruct the repeater to receive a signal from the network side or send a signal to the network side on the control link at the third time.
  • the fourth information is used to instruct the repeater to generate and send at least one of the following signals to the network side at the third time:
  • the fourth information is used to indicate that the repeater receives at least one of the following signals from the network side at the third time:
  • the signal is demodulated or decoded by the transponder.
  • the network side does not send indication information that is inconsistent with the first information
  • the network side does not instruct the transponder to use a beam other than the first beam to transmit or receive at the first time.
  • the network side does not indicate that the first time is the OFF time.
  • the network side when the first information is at least used to instruct the transponder to use the first beam to receive on the access link at the first time, the network side does not indicate the The first time mentioned above includes downward time units and/or flexible time units;
  • the network side does not indicate that the first time includes uplink Time units and/or flexible time units.
  • the network device sends first information to the repeater; the repeater determines to use the first beam in the access (AC) chain at the first time based on at least the first information and/or communication standard definition rules. channel to receive or send.
  • the repeater can determine the forwarding of the AC link based on the first information and/or communication standard definition rules, which can better enhance signal coverage and respond to changes in the environment and main services in the cell, thereby improving the transmission of the entire network. efficiency.
  • An embodiment of the present application provides a network device.
  • Figure 8 is a schematic diagram of a network device according to an embodiment of the present application. Since the problem-solving principle of the network device is the same as the method of the embodiment of the third aspect, its specific implementation can refer to the embodiment of the third aspect. The content is the same. No further explanation will be given.
  • the network device 800 in this embodiment of the present application includes:
  • the transponder determines to use the first beam to receive or transmit on the access link at the first time based on at least the first information and/or the communication standard definition rule.
  • the network device may send forwarding signals (for example, the destination is the terminal device and forwarded by the repeater) and/or communication signals (for example, the destination is the repeater) to the repeater, or the network device may also Receive a forwarded signal (eg, generated and sent by a terminal device and forwarded by the repeater) and/or a communication signal (eg, generated and sent by the repeater) from the repeater.
  • forwarding signals for example, the destination is the terminal device and forwarded by the repeater
  • communication signals for example, the destination is the repeater
  • the network device may also Receive a forwarded signal (eg, generated and sent by a terminal device and forwarded by the repeater) and/or a communication signal (eg, generated and sent by the repeater) from the repeater.
  • the sending unit 801 sends second information to the transponder, and the second information is at least used for the transponder to determine to use the first beam at the first time at the interface. into the link to receive or send.
  • the sending unit 801 sends third information to the transponder, the third information is related to a second time, and the second time at least partially overlaps with the first time;
  • the third information is also used to indicate the second beam forwarded by the repeater on the access link, and/or the third information is also used to indicate the at least partially overlapping time, the second beam.
  • the repeater is in the forwarding direction of the access link, and/or the third information is also used to indicate the transmission direction and/or switch status related to the at least partially overlapping time.
  • the sending unit 801 sends fourth information to the transponder, the fourth information is related to a third time, and the third time at least partially overlaps with the first time.
  • the fourth information is at least used to instruct the repeater to receive a signal from the network side or send a signal to the network side on the control link at the third time.
  • the network device 800 in the embodiment of the present application may also include other components or modules.
  • the specific content of these components or modules reference may be made to related technologies.
  • FIG. 8 only illustrates the connection relationships or signal directions between various components or modules, but those skilled in the art should know that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the network device sends first information to the repeater; the repeater determines to use the first beam in the access (AC) chain at the first time based on at least the first information and/or communication standard definition rules. channel to receive or send.
  • the repeater can determine the forwarding of the AC link based on the first information and/or communication standard definition rules, which can better enhance signal coverage and respond to changes in the environment and main services in the cell, thereby improving the transmission of the entire network. efficiency.
  • Figure 1 is a schematic diagram of the communication system of the embodiment of the present application.
  • the communication system 100 includes a network device 101, a transponder 102 and a terminal device 103.
  • Figure 1 only takes a network device, a repeater and a terminal device as an example for illustration, but the embodiment of the present application is not limited thereto.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC highly reliable low-latency communications
  • V2X vehicle-to-everything
  • An embodiment of the present application also provides an electronic device.
  • the electronic device is, for example, a repeater or a network device.
  • FIG. 9 is a schematic diagram of the structure of an electronic device according to an embodiment of the present application.
  • the electronic device 900 may include a processor 910 (eg, a central processing unit CPU) and a memory 920 ; the memory 920 is coupled to the processor 910 .
  • the memory 920 can store various data; in addition, it also stores an information processing program 930, and the program 930 is executed under the control of the processor 910.
  • the processor 910 may be configured to execute a program to implement the information indicating method as described in the embodiment of the first aspect.
  • the processor 910 may be configured to perform the following control: obtain the first information; determine to use the first beam in the access (AC) link at the first time based on at least the first information and/or the communication standard definition rule. To receive or to send.
  • AC access
  • the processor 910 may be configured to execute a program to implement the information indicating method as described in the embodiment of the third aspect.
  • the processor 910 may be configured to perform the following control: sending the first information to the transponder; causing the transponder to determine to use the first beam at the first time based on at least the first information and/or the communication standard definition rule. Receive or transmit on the access (AC) link.
  • AC access
  • the electronic device 900 may also include a transceiver 940 and an antenna 950 , etc.; the functions of the above components are similar to those in the prior art and will not be described again here. It is worth noting that the electronic device 900 does not necessarily include all components shown in FIG. 9 ; in addition, the electronic device 900 may also include components not shown in FIG. 9 , and reference may be made to the prior art.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a transponder, the program causes the computer to execute the information indication method described in the embodiment of the first aspect in the transponder.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program causes the computer to execute the information indication method described in the embodiment of the first aspect in the transponder.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a network device, the program causes the computer to execute the information indication method described in the embodiment of the third aspect in the network device.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the information indication method described in the embodiment of the third aspect in a network device.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • This application also involves storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings may be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors combined with DSP communications, or any other such configuration.
  • An information indication method including:
  • the transponder obtains the first information
  • the transponder determines to use the first beam to receive or transmit on the access (AC) link at the first time based on at least the first information and/or the communication standard definition rule.
  • the transponder determines the first beam and/or the first time according to at least one of the following: communication standard definition rules, dynamic signaling, semi-static signaling, and operation management and maintenance (OAM) configuration information.
  • communication standard definition rules dynamic signaling, semi-static signaling, and operation management and maintenance (OAM) configuration information.
  • OAM operation management and maintenance
  • the first time includes at least one time unit, and the at least one time unit is continuous or discontinuous in the time domain.
  • the first information is carried by semi-static signaling, and/or the first information is configured by an OAM entity, and/or the first information is carried by PDCCH or dynamic signaling.
  • the first information is used to indicate the first time, and/or the first information is used to indicate the first beam, and/or the first information is used to indicate where the transponder is located. Use the access link described above to receive or send.
  • the indication of the first beam is based on a beam index, and/or the indication of the first beam is based on a synchronization signal block (SSB) index, and/or the indication of the first beam is based on a reference signal index.
  • SSB synchronization signal block
  • the first information is used to instruct the transponder to use the first beam to receive or transmit on the access link at the first time.
  • the first information is used to indicate the first time and the first beam; the method further includes:
  • the transponder obtains second information, and the second information is at least used by the transponder to determine to use the first beam to receive or transmit on the access link at the first time.
  • the second information at least indicates that the first time includes an uplink time unit and/or a downlink time unit and/or a flexible time unit.
  • the second information includes time division duplex (TDD) uplink and downlink configuration information, the second information is carried by dynamic signaling and/or semi-static signaling, and/or the second information is configured by an OAM entity.
  • TDD time division duplex
  • the transponder determines to use the first beam to receive on the access link in the uplink time unit of the first time, and/or,
  • the transponder determines to use the first beam to transmit on the access link in the downlink time unit of the first time, and/or,
  • the transponder determines to use the first beam to receive or transmit on the access link in at least one flexible time unit of the first time, and/or,
  • the repeater determines that no reception and no transmission are performed on the access link during at least one flexible time unit of the first time.
  • the first information is used to indicate the first time, and the first time is related to the first signal.
  • the transponder determines the first beam, the first beam being associated with the first signal
  • the transponder determines to use the first beam to receive or transmit the first signal on the access link at the first time.
  • the first signal includes at least an SSB with index n;
  • the first information includes system information, and the first time at least includes the time unit corresponding to the SSB index n.
  • the repeater determines the SSB index n for transmitting on the access link.
  • the SSB index n is configured or indicated by the network side, and/or the SSB index n is predefined by a communication standard, and/or the SSB index n is preset in the transponder.
  • the transponder determines the first beam for transmitting the SSB with index n on the access link.
  • the repeater determines a number N of SSBs and/or an index of N SSBs to be sent on the access link, where the SSB index n is one of the indices of the N SSBs;
  • the number N of SSBs and/or the indexes of N SSBs are preset, or the number N of SSBs and/or the indexes of N SSBs are predefined by the communication standard, or the number N and/or the number N of SSBs
  • the index of each SSB is configured or indicated by the network side for the forwarder.
  • the value of the number N of SSBs is preset, wherein the method further includes:
  • the forwarder reports the SSB number N to the network side.
  • the transponder determines N beams used to transmit the N SSBs on the access link, and determines a corresponding relationship between the N beams and the N SSBs.
  • the transponder determines the N beams used to transmit the N SSBs on the access link according to network side configurations and/or instructions, or the transponder determines the N beams used to transmit the N SSBs on the access link according to communication standard definition rules.
  • the access link sends N beams of the N SSBs, or the transponder determines by itself the N beams used to send the N SSBs on the access link.
  • the first beam has a one-to-one correspondence with the SSB index n, and the one-to-one correspondence remains unchanged until the transponder is restarted and/or reconfigured.
  • the first time also includes a time unit or a random access opportunity (RACH occasion) for sending a random access preamble (RACH preamble) corresponding to the SSB index n;
  • RACH occasion a time unit or a random access opportunity (RACH occasion) for sending a random access preamble (RACH preamble) corresponding to the SSB index n;
  • the first signal also includes using the time domain and/or frequency domain resources corresponding to the time unit for transmitting the random access preamble (RACH preamble) or the random access opportunity (RACH occasion) corresponding to the SSB index n. signal for transmission.
  • RACH preamble random access preamble
  • RACH occasion random access opportunity
  • the first signal includes at least one of the following signals or channels or information, or the first signal is related to at least one of the following signals or channels or information:
  • SIB System Information Block
  • MIB Master Information Block
  • Msg1 random access channel, RACH
  • Physical downlink control channel used to schedule (or trigger) Msg1 and/or Msg2 and/or Msg3 and/or Msg4 and/or Msg5,
  • PDSCH Physical downlink shared channel
  • PUSCH Physical uplink shared channel
  • CSIRS Channel State Information Reference Signal
  • SRS Sounding Reference Signal
  • BFR Beam Failure Recovery
  • PUCCH Physical uplink control channel
  • BFR beam failure recovery
  • Physical uplink control channel used to carry ACK/NACK information
  • Physical uplink control channel used to carry SR.
  • the transponder determines to use the first beam to receive or transmit the first signal on the access link at the first time based on at least the first information.
  • the first information at least includes system information; the method further includes:
  • the transponder determines to receive or send a signal related to the first signal at the first time based on at least the first information.
  • the transponder obtains third information, the third information is related to a second time, and the second time at least partially overlaps with the first time;
  • the third information is also used to indicate the second beam forwarded by the repeater on the access link, and/or the third information is also used to indicate the at least partially overlapping time, the second beam.
  • the repeater is in the forwarding direction of the access link, and/or the third information is also used to indicate the transmission direction and/or switch status related to the at least partially overlapping time.
  • the second beam is different from the first beam, and/or,
  • the forwarding direction within the at least partially overlapping time period is inconsistent with the forwarding direction on the access link within the first time period determined by the repeater, and/or,
  • the at least partially overlapping time-related transmission directions and/or switching states are inconsistent with the direction of forwarding on the access link at the first time determined by the repeater.
  • the third information is at least used to instruct the transponder to use the second beam to forward on the access link at the second time, and the forwarding direction is consistent with the forwarding direction of the transponder at the first time.
  • the determined forwarding directions are consistent or inconsistent, and the second beam is the same as or different from the first beam; the method further includes:
  • the transponder uses the first beam to receive or transmit on the access link at the first time.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the third information is used to instruct the transponder to perform reception on the access link at the first time. using the second beam for reception on the access link at the second time,
  • the transponder uses the first beam to receive on the access link at the first time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the third information is used to instruct the transponder to transmit on the access link at the first time. Use the second beam to transmit on the access link at the second time,
  • the transponder uses the first beam to transmit on the access link at the first time.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the third information is used to instruct the transponder to perform reception on the access link at the first time. Use the second beam to transmit on the access link at the second time,
  • the transponder uses the first beam to receive on the access link at the first time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the third information is used to instruct the transponder to transmit on the access link at the first time. using the second beam for reception on the access link at the second time,
  • the transponder uses the first beam to transmit on the access link at the first time.
  • the priority of the first beam is configured and/or indicated by the network side, or the priority of the first beam is defined by a communication standard, or the priority of the first beam
  • the priority of is determined by the repeater based on at least the first information.
  • the third information is also used to indicate the second beam forwarded by the repeater on the access link, wherein,
  • the third information indicates that the transponder uses the second beam to receive or send a second signal on the access link at the second time; the priority of the second signal is lower than or equal to the The priority of the first signal.
  • the semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • the semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • the third information is also used to indicate the transmission direction and/or switching status related to the at least partially overlapping time, wherein,
  • the third information is at least used to indicate the signal transmission direction of one time unit of the at least partially overlapping time; wherein the signal transmission direction of one time unit and the signal transmission direction determined by the transponder according to the first information are The signal transmission direction on the access link using the first beam at the first time is inconsistent.
  • the transponder uses the first beam to receive or transmit on the access link at the first time.
  • the transponder determines to use the first beam to perform reception (uplink) on the access link at the first time, and the third information is at least used to indicate a time unit in the at least partially overlapping time. It is a downlink time unit or a flexible time unit.
  • the transponder determines to use the first beam to transmit (downlink) on the access link at the first time, and the third information is at least used to indicate a time unit in the at least partially overlapping time. It is an uplink time unit or a flexible time unit.
  • the transponder does not receive and/or transmit on the access link within a time unit in which the signal transmission directions are inconsistent.
  • the transponder determines to use the first beam to receive (uplink) on the access link at the first time, and the third information is at least used to indicate the time unit included in the first time.
  • a time unit is a downstream time unit or a flexible time unit;
  • the transponder does not receive in the downlink time unit or flexible time unit, or does not receive in the first time.
  • the transponder determines to use the first beam to transmit (downlink) on the access link at the first time, and the third information is at least used to indicate the time unit included in the first time.
  • a time unit is an uplink time unit or a flexible time unit;
  • the transponder does not transmit in the uplink time unit or flexible time unit, or does not transmit in the first time.
  • the transponder uses the first beam to receive or transmit on the access link at the first time.
  • the repeater does not receive and/or transmit on the access link during the time unit indicated as not for receiving or transmitting.
  • the third information is carried by signaling, and the signaling is at least used to indicate an off (OFF) time.
  • the signaling is also used to indicate the uplink time unit, and/or the downlink time unit, and/or the flexible time unit.
  • the transponder obtains fourth information, the fourth information being related to a third time, the third time at least partially overlapping the first time.
  • the fourth information is at least used to instruct the repeater to receive a signal from the network side or send a signal to the network side on the control link at the third time.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to perform reception on the access link at the first time.
  • Receive at the control link at three times;
  • the repeater does not receive on the access link during the at least partial overlap time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to transmit on the access link at the first time. Three times are sent on the control link;
  • the repeater does not transmit on the access link at the at least partially overlapping times.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to perform reception on the access link at the first time.
  • Receive at the control link at three times;
  • the repeater is not receiving on the access link at the first time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to transmit on the access link at the first time. Three times are sent on the control link;
  • the repeater does not transmit on the access link at the first time.
  • the transponder uses the first beam to receive or transmit on the access link at the first time.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to perform reception on the access link at the first time.
  • the repeater does not receive signals from the network side on the control link at at least partially overlapping times.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to transmit on the access link at the first time. Send a signal to the network side on the control link at three times;
  • the repeater does not send signals on the control link to the network side at at least partially overlapping times.
  • the transponder determines to use the first beam to receive on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to perform reception on the access link at the first time.
  • the repeater does not receive signals from the network side on the control link at the third time.
  • the transponder determines to use the first beam to transmit on the access link at the first time based on at least the first information, and the fourth information is used to instruct the transponder to transmit on the access link at the first time. Send a signal to the network side on the control link at three times;
  • the repeater does not send a signal to the network side on the control link at the third time.
  • the signal is demodulated or decoded by the transponder.
  • a time includes downward time units and/or flexible time units
  • a time includes uplink time units and/or flexible time units.
  • An information indicating method comprising:
  • the network device sends the first information to the repeater
  • the transponder determines to use the first beam to receive or transmit on the access (AC) link at the first time based on at least the first information and/or the communication standard definition rule.
  • the first time includes at least one time unit, and the at least one time unit is continuous or discontinuous in the time domain.
  • the first information is carried by semi-static signaling, and/or the first information is configured by an OAM entity, and/or the first information is carried by PDCCH or dynamic signaling.
  • the first information is used to indicate the first time, and/or the first information is used to indicate the first beam, and/or the first information is used to indicate where the transponder is located. Use the access link described above to receive or send.
  • the indication of the first beam is based on a beam index, and/or the indication of the first beam is based on a synchronization signal block (SSB) index, and/or the indication of the first beam is based on a reference signal index.
  • SSB synchronization signal block
  • the first information is used to instruct the transponder to use the first beam to receive or transmit on the access link at the first time.
  • the first information is used to indicate the first time and the first beam; the method further includes:
  • the second information at least indicates that the first time includes an uplink time unit and/or a downlink time unit and/or a flexible time unit.
  • the second information includes time division duplex (TDD) uplink and downlink configuration information, the second information is carried by dynamic signaling and/or semi-static signaling, and/or the second information is configured by an OAM entity.
  • TDD time division duplex
  • the first information is used to indicate the first time, and the first time is related to the first signal.
  • the third information is also used to indicate the second beam forwarded by the repeater on the access link, and/or the third information is also used to indicate the at least partially overlapping time, the second beam.
  • the repeater is in the forwarding direction of the access link, and/or the third information is also used to indicate the transmission direction and/or switch status related to the at least partially overlapping time.
  • the second beam is different from the first beam, and/or,
  • the forwarding direction within the at least partially overlapping time period is inconsistent with the forwarding direction on the access link within the first time period determined by the repeater, and/or,
  • the at least partially overlapping time-related transmission directions and/or switching states are inconsistent with the direction of forwarding on the access link at the first time determined by the repeater.
  • the semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • the semi-static signaling includes MAC CE and/or RRC signaling
  • the transponder receives the third information before receiving the first information.
  • Fourth information is sent to the transponder, the fourth information being related to a third time, the third time at least partially overlapping the first time.
  • the signal is demodulated or decoded by the transponder.
  • the network side does not indicate that the first time includes downlink. time units and/or flexible time units;
  • the network side does not indicate that the first time includes uplink Time units and/or flexible time units.
  • a transponder comprising a memory and a processor
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement the information indication method as described in any one of appendices 1 to 76 .
  • a network device including a memory and a processor, the memory stores a computer program, the processor is configured to execute the computer program to implement the information indication method as described in any one of appendices 77 to 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信息指示方法、转发器和网络设备。所述方法包括:转发器获得第一信息;所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入链路进行接收或者进行发送。

Description

信息指示方法、转发器和网络设备 技术领域
本申请涉及通信技术领域。
背景技术
与传统的3G(第三代移动通信技术)、4G(第四代移动通信技术)系统相比,5G(第五代移动通信技术)系统能够提供更大的带宽以及更高的数据率,并且能够支持更多类型的终端和垂直业务。
为此,除了传统电信频谱以外,5G系统也被部署在新频谱上,新频谱的频率明显高于3G和4G系统使用的传统电信频谱。例如,5G系统可以部署在毫米波波段(28GHz,38GHz,60GHz以及以上等等)。
根据无线信号的传播规律,其所在载波的频率越高、信号在传播过程中遇到的衰落越严重。因此,实际部署中,5G系统比以往的3G、4G系统更需要小区覆盖增强方法,特别是部署在毫米波频段的5G系统。如何更好地增强5G系统小区覆盖,成为亟待解决的问题。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
为了更好的解决蜂窝移动通信系统在实际部署中的覆盖问题,采用射频转发器(RF Relay/Repeater)放大和转发终端设备与网络设备之间的通信信号,是比较常用的部署手段。射频转发器在3G系统和4G系统的实际部署中具有较为广泛的应用。通常来说,射频转发器是一种在射频域放大和转发网络设备与终端设备往来信号的设备。
发明人发现,针对5G系统在部署中遇到的覆盖问题,采用射频转发器进行覆盖增强是可行的解决方案之一。但是,传统转发器不具备与网络设备通信的能力,无法根据网络的实际情况对转发进行调整。因此,这样的转发器配置在5G系统中,虽然 能够一定程度帮助增强信号强度,但是不够灵活而无法应对复杂的环境变化,与在3G系统和4G系统中部署的同类型射频转发器相比转发效率和转发效果欠佳。
针对上述问题的至少之一,本申请实施例提供了一种信息指示方法、转发器和网络设备。转发器具有与网络设备通信的能力,能够在网络配置下更好地加强信号覆盖并应对环境变化(例如,在转发中减少对其它网络设备和终端设备的干扰等),由此能够提高整个网络的传输效率。
根据本申请实施例的一方面,提供一种信息指示方法,包括:
转发器获得第一信息;
所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。
根据本申请实施例的另一方面,提供一种转发器,包括:
获取单元,其获得第一信息;
确定单元,其至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入链路进行接收或者进行发送。
根据本申请实施例的另一方面,提供一种信息指示方法,包括:
网络设备向转发器发送第一信息;
其中,所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。
根据本申请实施例的另一方面,提供一种网络设备,包括:
发送单元,其向转发器发送第一信息;
其中,所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入链路进行接收或者进行发送。
根据本申请实施例的另一方面,提供一种通信系统,包括:
网络设备,其向转发器发送第一信息;以及
转发器,其至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入链路进行接收或者进行发送。
本申请实施例的有益效果之一在于:转发器获得第一信息;所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。由此,转发器能够基于第一信息和/或通信标准定义规则 确定AC链路的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本申请实施例的应用场景的一示意图;
图2是本申请实施例的NCR的一示意图;
图3是本申请实施例的NCR转发的一示意图;
图4是本申请实施例的NCR转发的另一示意图;
图5是本申请实施例的信息指示方法的一示意图;
图6是本申请实施例的转发器的一示意图;
图7是本申请实施例的信息指示的一示意图;
图8是本申请实施例的网络设备的一示意图;
图9是本申请实施例的电子设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、收发节点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),IAB宿主等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
为了增强覆盖,3GPP Rel-17研究中引入RF repeater来转发终端设备(UE)和网络设备(基站)之间的传输。对于网络设备和终端设备来说,Rel-17中引入的RF repeater是透明的,即网络设备和终端设备并不知道RF repeater的存在。
图1是本申请实施例的应用场景的一示意图,如图1所示,为了方便说明,以一个网络设备(例如5G基站gNB)101、一个转发器(Repeater)102和一个终端设备(例如UE)103为例进行说明,本申请不限于此。
如图1所示,终端设备103与网络设备101建立连接并与其通信。为了增加通信质量,终端设备103与网络设备101之间传输的信道/信号经由转发器102进行转发。网络设备101,终端设备103与转发器102之间的信道/信号交互均采用基于波束的接收和发送方法。
如图1所示,网络设备101可以具有小区/载波,网络设备101、转发器102和终 端设备103可以在该小区进行转发/通信;但本申请不限于此,例如网络设备101还可以具有其他小区/载波。
在本申请实施例中,网络设备和终端设备之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
传统转发器不具备与网络设备通信的能力,因此,传统转发器虽然能够帮助增强信号强度,但是不够灵活而无法应对复杂的环境变化,将传统转发器部署在5G网络(特别是部署在高频的5G网络)中可能引起对其它网络设备和/或终端设备的不必要的干扰,进而降低整个网络的传输效率(例如,吞吐量)。为了使得转发器的转发能够更为灵活以适应5G网络的特点,网络设备需要对转发器进行协助,并能够根据网络情况对转发器的转发进行配置。
3GPP Rel-18为了增强NR的覆盖,提出网络控制转发器(NCR,Network-controlled repeater)的方案,为网络设备与终端设备之间的信号进行转发。NCR通过控制链路可以与网络设备进行直接通信以辅助NCR的转发操作。
图2是本申请实施例的NCR的一示意图。如图2所示,NCR 202被配置在网络设备201和终端设备203之间。NCR 202可以包括如下两个模块/部件:转发器的移动终端(NCR-MT)和转发器的转发模块(NCR-Fwd);NCR-Fwd也可称为NCR-RU的路由单元(NCR-RU)。NCR-MT用于与网络设备通信,NCR-Fwd用于转发往来于网络设备和终端设备之间的信号。
如图2所示,本申请实施例的NCR可以具有3个链路:控制链路(control link,C-link),用于转发的回传链路(backhaul link,BH link))和接入链路(access link,AC link)。其中,C-link用于NCR与网络设备之间的通信。BH link用于转发器从网络设备接收待转发信号,或者,向网络设备转发来自终端设备的信号。AC link用于转发器向终端设备转发来自网络设备的信号,或者,接收来自终端设备的待转发信号。
发明人认识到,5G系统相对于以前的3G、4G系统等更为复杂,例如,能够支持更多种类的业务和终端类型,又例如,需要被部署在多种频段和场景等。与传统的RF repeater相比,NCR需要具备基于波束的功能。
图3是本申请实施例的NCR转发的一示意图。如图3所示,转发器在AC链路 使用发送波束将来自网络设备的信号转发出去。图4是本申请实施例的NCR转发的另一示意图。如图4所示,转发器在AC链路使用接收波束来接收用于转发给网络设备的信号。
但是,发明人发现:转发器如何确定AC链路的波束等信息,目前没有具体方案。即,转发器如何确定AC链路的转发信息(波束、时间、信号方向等)成为亟待解决的问题。
此外,在服务过程中,不同业务类型、终端类型的冲突也被允许,并且提供了系统的冲突解决方案。例如,当一个对可靠性和时延要求都很高的URLLC业务到达的时候,进行中的eMBB业务数据的传输可能被打断或者被放弃,以便让优先级更高的URLLC业务数据能够被及时、可靠地传输。除此以外,由于5G系统功能先进而复杂,因此网络侧在进行配置和调度的时候,可能会有重配置、以及改写等操作。NCR的主要目的是为了覆盖网络信号质量不佳的区域,被NCR服务的终端可以是各种各样的终端,因此,由NCR转发的网络侧与终端侧交互的信号可能具有不同的优先级等。
鉴于以上的理解,发明人还认为,考虑NCR在AC链路中如何避免或者处理波束指示等配置的冲突,是在设计服务于5G网络的NCR的过程中,进一步亟待解决的问题。
下面结合附图对本申请实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
在本申请实施例中,转发器可以与网络设备通信,转发器可以接收网络设备发送的通信信道/信号,并进行信道/信号的解调/解码,由此获得网络设备发给该转发器的信息,以下将该信号处理过程称为“通信”。转发器还可以转发网络设备和终端设备之间传输的信道/信号,转发器不对该信道/信号进行解调/解码,可以进行放大等处理,以下将该信号处理过程称为“转发”。将“通信”和“转发”合称为“传输”。此外,“在AC链路上进行发送或进行接收”可以等价于“在AC链路上进行转发”,“在控制链路上进行发送或进行接收”可以等价于“在控制链路上进行通信”。以上术语仅为了方便说明,并不构成对本申请的限制。
为方便起见,可以将网络设备和转发器之间或者第三设备(例如终端设备)和转发器之间进行直接通信的信道/信号称为通信信号,在发送通信信号时,转发器需要 进行编码和/或调制,在接收通信信号时,转发器需要进行解码和/或解调。此外,可以将经由转发器转发的信道/信号称为转发信号,转发器对转发信号可以进行放大等信号处理,但不会进行解码和/或解调。
在本申请实施例中,转发器还可以表述为直放站、射频转发器、中继器、射频中继器;或者也可以表述为直放站节点、转发器节点、中继器节点;或者还可以表述为智能直放站、智能转发器、智能中继器、智能直放站节点、智能转发器节点、智能中继器节点,等等,本申请不限于此。
在本申请实施例中,网络设备可以是终端设备的服务小区的设备,也可以是转发器所在小区的设备,还可以是转发器的服务小区的设备,也可以是转发器的父节点(Parent node),本申请对该转发器的名称不做限制,只要能实现上述功能的设备,都包含于本申请的转发器的范围内。
在本申请实施例中,波束(beam)也可以表述为波瓣、参考信号(RS,reference signal)、传输配置指示(TCI,transmission configuration indication)、空域滤波器(spatial domain filter)等;或者,也可以表述为波束索引、波瓣索引、参考信号索引、传输配置指示索引、空域滤波器索引等。上述参考信号例如为信道状态信息参考信号(CSI-RS,channel state Information reference signal)、探测参考信号(SRS,sounding reference signal)、供转发器使用的RS、由转发器发送的RS等。上述TCI也可以表述为TCI状态(state)。本申请实施例不限于此。
第一方面的实施例
本申请实施例提供一种信息指示方法,从转发器一侧进行说明。
图5是本申请实施例的信息指示方法的一示意图,如图5所示,该方法包括:
501,转发器获得第一信息;以及
502,所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。
值得注意的是,以上附图5仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图5的记载。
由此,转发器能够基于第一信息和/或通信标准定义规则确定AC链路的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
在一些实施例中,转发器根据如下至少之一确定所述第一波束和/或所述第一时间:通信标准定义规则、动态信令、半静态信令、操作管理维护(OAM)配置信息。
例如,该第一波束可以是NCR通过标准协议中预先的规则自行确定的。再例如,NCR出厂时设置AC链路转发用的波束数目,再由NCR选择多个波束的其中之一。再例如,NCR通过接收系统信息,和/或利用一些其它信息来确定第一波束。根据标准预定义规则或者出厂时设置确定第一波束有助于减小NCR的复杂度、降低NCR设备成本。例如,这种实施方式可以应用于周期发送的公共信号等。
再例如,网络侧(gNB或OAM)为NCR配置/指示该第一波束。可以通过动态信令指示该第一波束,也可以通过半静态信令指示该第一波束,或者通过OAM配置信息指示该第一波束。由网络侧为NCR配置/指示第一波束,可以提供更好的灵活度,使得网络侧可以根据实际需要为NCR配置/指示第一波束。例如,这种实施方式可以应用于非周期信号等。
在一些实施例中,第一时间包括至少一个时间单位,所述至少一个时间单位在时域上连续,或者所述至少一个时间单位在时域上不连续。该时间单位例如是子帧、时隙、符号、小时隙(mini-slot)等等。
在一些实施例中,所述第一信息由半静态信令承载,和/或,所述第一信息由OAM实体配置,和/或,所述第一信息由物理下行控制信道(PDCCH)或动态信令承载。
在一些实施例中,所述第一信息用于指示所述第一时间,和/或,所述第一信息用于指示所述第一波束,和/或,所述第一信息用于指示所述转发器在所述接入链路进行接收或者进行发送。第一信息指示的灵活性便于在不同应用场景重用5G系统中现有信令和/或指示信息,如此可以减少标准化工作,加速标准化进程,有助于加快产业升级,更快更好地让电信产业适应新兴应用和新兴领域。
例如,第一波束由NCR根据预定义规则确定,第一时间通过第一信息被指示(例如通过接收动态信令、半静态信令或OAM配置)。
再例如,第一时间由NCR根据预定义规则确定,第一波束通过第一信息被指示(例如通过接收动态信令、半静态信令或OAM配置)。
再例如,第一波束和第一时间均由NCR根据预定义规则确定,通过第一信息(例如通过接收动态信令、半静态信令或OAM配置)转发器被指示在所述接入链路进行接收或者进行发送。
在一些实施例中,所述第一波束的指示基于波束索引,和/或,所述第一波束的指示基于同步信号块(SSB)索引,和/或,所述第一波束的指示基于参考信号索引。所述第一波束的指示基于波束索引也可以是AC链路的波束编号。所述第一波束的指示基于SSB索引或者参考信号索引也可以是所述第一波束以SSB索引或者参考信号索引命名。
所述第一波束的指示可以是指示与所述第一波束相应的波束索引,和/或,指示与所述第一波束相应的SSB索引,和/或,指示与所述第一波束相应的参考信号索引。波束与波束索引(或者SSB索引,或者参考信号索引)具有一一对应的关系。波束与波束索引(或者SSB索引,或者参考信号索引)之间的对应关系可以由所述转发器确定,或者由网络侧向转发器指示。所述波束与波束索引(或者SSB索引,或者参考信号索引)之间的对应关系一旦被确定不再改变,或者,再转发器被重设定和/或重配置和/或重指示和/或重启或下一次启动之前不再改变。
在一些实施例中,所述第一信息用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
例如,第一时间、第一波束和转发方向均由第一信息指示。
在一些实施例中,所述第一信息用于指示所述第一时间和所述第一波束;所述转发器获取第二信息,所述第二信息至少用于所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
在一些实施例中,所述第二信息由动态信令和/或半静态信令承载,和/或,所述第二信息由OAM实体配置。
例如,第一时间和第一波束由第一信息指示,其他信息(例如转发方向等)由第二信息指示。
在一些实施例中,所述第二信息至少指示所述第一时间包含上行时间单位和/或下行时间单位和/或灵活时间单位。例如,所述第二信息包含时分双工(TDD)上行下行配置信息。
例如,网络侧在指示波束的时候,可以同时指示该波束的转发方向。
再例如,AC链路的收发具有一致性,也就是说,转发上行或者下行的波束具有一致性。这种情况下,即使网络侧不指定这个波束是上行的还是下行的,例如仅仅指示一个波束(例如指示该波束的索引),网络侧与NCR也不会就这个波束是哪一个波束产生歧义。在这种情况下,在具体的实施方式中,NCR也可以结合其它信息(例如,TDD config)对被指示的该波束用于转发的信号的传播方向进行判断/确定。采用这种实施方式,可以减少重复指示。
在一些实施例中,转发器确定在所述第一时间的上行时间单位使用所述第一波束在所述接入链路进行接收。
在一些实施例中,转发器确定在所述第一时间的下行时间单位使用所述第一波束在所述接入链路进行发送。
在一些实施例中,转发器确定在所述第一时间的至少一个灵活时间单位使用所述第一波束在所述接入链路进行接收或进行发送。
在一些实施例中,转发器确定在所述第一时间的至少一个灵活时间单位在所述接入链路不进行接收和不进行发送。
在一些实施例中,第一信息用于指示第一时间,所述第一时间与第一信号相关。第一信号不由所述转发器生成,和/或,所述转发器不对所述第一信号进行解调解码。即,第一信号为前述的转发信号。
例如,第一信息指示转发公共信号的时间(第一时间),而第一波束由NCR自行确定,或者按照预定义规则确定、或者被随机确定。转发器不对其所转发的信号进行解调等信号处理,转发器仅对其所转发的信号进行放大。转发器在AC链路使用的波束性能,可以由第三方设备(例如终端设备)测量和/或网络侧测量的结果进行评估。转发器不对其所转发的信号进行任何测量。因此,波束的名字与波束的具体对应关系,不会影响网络侧对转发器的转发行为的指示和配置。由NCR自行确定波束,可以降低网络侧的指示/配置信令开销,减小网络侧的复杂度。
在一些实施例中,所述转发器确定所述第一波束,所述第一波束与所述第一信号相关;所述转发器确定在所述第一时间使用所述第一波束在所述接入链路接收或者发送所述第一信号。
在一些实施例中,所述第一信号至少包含索引为n的SSB;所述第一信息包含系统信息,所述第一时间至少包含所述SSB索引n所对应的时间单位。
在一些实施例中,转发器确定用于在所述接入链路进行发送的所述SSB索引n。
在一些实施例中,所述SSB索引n由网络侧配置或指示,和/或,所述SSB索引n由通信标准预定义,和/或,所述SSB索引n预先设定在所述转发器内。
在一些实施例中,转发器确定用于在所述接入链路发送所述索引为n的SSB的所述第一波束。
在一些实施例中,转发器确定用于在所述接入链路发送的SSB数目N和/或用于在所述接入链路发送的N个SSB的索引,所述SSB索引n为所述N个SSB的索引之一;所述SSB数目N和/或N个SSB的索引被预先设定,或者,所述SSB数目N和/或N个SSB的索引由通信标准预定义,或者,所述SSB数目N和/或N个SSB的索引由网络侧为所述转发器配置或指示。
在一些实施例中,所述SSB数目N的取值被预先设定,转发器向网络侧上报所述SSB数目N。以及,网络侧为转发器配置/指示所述N个SSB的索引。
在一些实施例中,所述转发器确定用于在所述接入链路发送所述N个SSB的N个波束,以及确定所述N个波束与所述N个SSB的对应关系。
例如,N也可以为用于转发SSB的波束数,和/或,N也可以为转发器在AC链路支持的转发波束数,和/或,N也可以为转发器在AC链路使用的转发波束数。
在一些实施例中,转发器根据网络侧配置和/或指示确定用于在所述接入链路发送所述N个SSB的N个波束,或者,所述转发器根据通信标准定义规则确定用于在所述接入链路发送所述N个SSB的N个波束,或者,所述转发器自行确定用于在所述接入链路发送所述N个SSB的N个波束。例如,通信标准定义规则为索引号小的SSB对应索引号小的波束。
在一些实施例中,第一波束与所述SSB索引n一一对应,且所述一一对应关系保持不变,直到所述转发器被重启和/或被重配置。如此可以避免网络侧为NCR配置/指示AC链路转发波束时的歧义。
例如,NCR自行确定使用的波束,且在确定后不再改变。
在一些实施例中,第一时间还包含与所述SSB索引n相应的用于发送随机接入前导(RACH preamble)的时间单位或随机接入机会(RACH occasion)。所述第一信号还包含使用所述与SSB索引n相应的用于发送随机接入前导(RACH preamble)的时间单位或随机接入机会(RACH occasion)相应的时域和/或频域资源来进行传输的 信号。
在一些实施例中,所述第一信号包括以下信号或信道或信息的至少之一,或者,所述第一信号与以下信号或信道或信息的至少之一相关:
同步信号(SS),
同步信号块(SSB),
系统信息块(SIB),
主信息块(MIB),
Msg1(随机接入信道,RACH),
Msg2,
Msg3,
Msg4,
Msg5,
用于调度(或触发)Msg1和/或Msg2和/或Msg3和/或Msg4和/或Msg5的物理下行控制信道(PDCCH),
用于承载Msg2和/或Msg4的物理下行共享信道(PDSCH),
用于承载Msg3和/或Msg5的物理上行共享信道(PUSCH),
信道状态信息参考信号(CSIRS),
探测参考信号(SRS),
波束失败恢复(BFR),
用于承载波束失败恢复(BFR)的物理上行控制信道(PUCCH),
ACK/NACK信息,
用于承载ACK/NACK信息的物理上行控制信道(PUCCH),
调度请求(SR),
用于承载SR的物理上行控制信道(PUCCH)。
在一些实施例中,转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路接收或者发送所述第一信号。
在一些实施例中,所述第一信息包括所述第一信号所在的时域和/或频域的位置信息,和/或,所述第一信息由一个或者一个以上信令承载。
在一些实施例中,所述第一信息至少包含系统信息;所述转发器至少根据所述第 一信息确定在所述第一时间接收或者发送与所述第一信号相关的信号。
以上对于第一信息、第一波束、第一时间等进行了示意性说明,本申请不限于此。
由于AC链路是NCR的转发链路,因此,NCR可能知道其所转发的信号是什么信号,也可能不知道所转发的信号是什么信号。或者,换句话说,即使NCR不知道其转发的是什么信号,也不影响该NCR对信号进行转发。
网络侧配置NCR在指定的时间、使用指定的波束,对指定传输方向(例如上行或者下行,或,从网络侧到终端侧或者从终端侧到网络侧)的信号进行转发即可。这样,减少了通信协议的复杂度,并降低了NCR的实现成本,有助于增加NCR设备的性价比,以便NCR设备能更好、更多地服务于实际网络服务。
另一方面,NCR也可以识别其所转发的信号的类型,例如,该信号是公共信号(例如:SS,SSB,SIB,MIB,RACH等)或者其它信号(例如:某一个被该NCR服务的终端设备的专有信号等)。这样,具有了这种能力的NCR设备,可以一定程度的自主获取该信号转发的相关信息,从而减轻网络侧设备的复杂度,降低网络设备的成本,也减少了网络侧与NCR之间的交互的配置信息,从而让更多的时域/频域/空域资源用于传输业务数据进而提高频谱使用效率。
以下再示意性说明NCR在AC链路中如何避免或者处理波束指示等配置的冲突。
在一些实施例中,转发器获得第三信息,所述第三信息与第二时间相关,所述第二时间与所述第一时间至少部分重叠;
所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,和/或,所述第三信息还用于指示所述至少部分重叠的时间内、所述转发器在所述接入链路的转发方向,和/或,所述第三信息还用于指示与所述至少部分重叠的时间相关的传输方向和/或开关状态。
以下先示意性说明所述第二波束与所述第一波束不同的情况,即波束出现冲突。以下以在冲突解决中引入优先级概念为例进行说明,所述第一波束的优先级高于或等于所述第二波束的优先级;本申请不限于此。
在一些实施例中,所述第三信息至少用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行转发,所述转发方向与所述转发器在所述第一时间确定的转发方向一致或者不一致,所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行接收,所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收。
再例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行发送,所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送。
再例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行发送,所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收。
再例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行接收,所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送。
在一些实施例中,所述第一波束的优先级由网络侧配置和/或指示,或者所述第一波束的优先级由通信标准定义,或者所述第一波束的优先级由所述转发器至少根据所述第一信息确定。
在一些实施例中,所述第一时间包括的至少一个时间单位的优先级高于或等于预设优先级,或者,高于或等于所述第二时间中任意一个时间单位的优先级,或者,高于或等于所述至少部分重叠的时间中任意一个时间单位的优先级。在冲突解决中,转发器确定的、与所述第一时间相关的转发优先级高于或者等于与所述第二时间相关的转发优先级。
例如,所述时间单位的优先级由网络侧配置和/或指示,或者所述时间单位的优先级由通信标准定义,或者所述时间单位的优先级至少由与所述时间单位相关的信号确定。
在一些实施例中,所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,其中,所述第三信息指示所述转发器在所述第二时间使用所述第二波束 在所述接入链路接收或者发送第二信号;所述第二信号的优先级低于或等于所述第一信号的优先级。在冲突解决中,转发器确定的、与所述第一信号相关的转发优先级高于或者等于与所述第二信号相关的转发优先级。
在一些实施例中,所述第一信号和/或所述第二信号的优先级由通信标准定义,或者,所述第一信号和/或所述第二信号的优先级由网络侧配置和/或指示。
在一些实施例中,所述第一信号的优先级最高。
例如,第一信号的优先级等于或者高于NCR在AC链路上接收或者发送的其它信号的优先级;或者,第一信号的优先级等于或者高于所述第一时间内NCR在AC链路上接收或者发送的其它信号;或者,NCR在AC链路上接收或者发送的信号优先级分为M个等级,所述第一信号的优先级为最高等级。
在一些实施例中,所述第一信息由半静态信令承载和/或由OAM实体配置,所述第三信息由动态信令承载。例如,半静态信令承载或者OAM配置的第一信息的优先级高于或等于动态信令承载的第三信息的优先级。在冲突解决中,由半静态信令承载或者OAM配置的第一信息相关的转发优先级高于或者等于由动态信令承载的第三信息相关的转发优先级。
由此,可以在冲突发生的时候,有效保证更为重要的公共信号的转发,进而避免因为公共信号传输质量不佳造成的终端设备接入网络失败、链路失败、波束失败等不良后果。半静态信令可以用于指示与比较重要的、周期发送或者接收的、公共信号相关的转发,例如SSB信号、SIB信号以及可能包含RACH的信号等。动态信令承载可以用于指示与动态或者较为动态的数据相关的转发,例如被NCR服务的终端设备的PDSCH和/或PUSCH等等。
在一些实施例中,所述第一信息由动态信令承载,所述第三信息由半静态信令承载和/或由OAM指示,或者,所述第三信息由动态信令承载;所述半静态信令包括MAC CE和/或RRC信令;所述转发器在接收所述第一信息之前接收所述第三信息。
由此,可以通过动态信令对信息进行改写。例如,采用这种方法,可以保证较为重要的待转发信号得到可靠、高效的转发。在被NCR服务的终端中,其中一个终端有对可靠性和时延要求都很高的URLLC业务到达的时候,需要发送或者接收URLLC业务信号。网络侧可以是使用动态信令改写转发配置/指示,以保证该URLLC业务信号得到可靠、及时的转发。
在一些实施例中,所述第一信息由半静态信令承载,所述第三信息由半静态信令承载和/或由OAM指示和/或动态信令承载;所述半静态信令包括MAC CE和/或RRC信令;所述转发器在接收所述第一信息之前接收所述第三信息。
由此,可以通过半静态信令对信息进行改写(或者更新,或者重配置等)。例如,采用这种方法,网络侧对周期发送的公共信号的发送进行调整时,可以允许网络侧对周期发送的公共信号的转发配置进行改写,以便转发器适应调整后的公共信号的转发。
上述实施方法可以结合,例如应用在不同的场景以便为转发器的转发提供更好的灵活性同时还能保证重要信号的转发。
以下再示意性说明传输方向不一致的情况,即传输方向出现冲突。
在一些实施例中,所述第三信息还用于指示与所述至少部分重叠时间相关的传输方向和/或开关状态,其中,所述第三信息至少用于指示所述至少部分重叠时间的一个时间单位的信号传输方向;其中,所述一个时间单位的信号传输方向和所述转发器根据所述第一信息确定的在所述第一时间使用所述第一波束在所述接入链路上的信号传输方向不一致。
在一些实施例中,所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
例如,所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收(上行),所述第三信息至少用于指示所述至少部分重叠时间中的一个时间单位为下行时间单位或者灵活时间单位。
再例如,所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行发送(下行),所述第三信息至少用于指示所述至少部分重叠时间中的一个时间单位为上行时间单位或者灵活时间单位。
在一些实施例中,所述转发器在所述信号传输方向不一致的时间单位内在所述接入链路不进行接收和/或不进行发送。
例如,所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收(上行),所述第三信息至少用于指示所述第一时间包含的时间单位中的一个时间单位为下行时间单位或者灵活时间单位;所述转发器在所述下行时间单位或者灵活时间单位不进行接收,或者,在所述第一时间不进行接收。
再例如,所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行 发送(下行),所述第三信息至少用于指示所述第一时间包含的时间单位中的一个时间单位为上行时间单位或者灵活时间单位;所述转发器在所述上行时间单位或者灵活时间单位不进行发送,或者,在所述第一时间不进行发送。
以下再示意性说明OFF时间的情况,即转发时间与OFF时间出现冲突。
在一些实施例中,所述第三信息至少用于指示所述第一时间包含的时间单位中至少一个时间单位不用于接收或发送。该不用于接收或发送的所述至少一个时间单位为关闭(OFF)时间单位,或者,为休眠(sleep/dormancy)时间单位,或者,为空(null)时间单位。
在一些实施例中,所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。例如,由于第一信号对于终端设备的初始接入等非常重要,即使是在OFF的状态下,也需要对其进行转发。
在一些实施例中,所述转发器在所述被指示为不用于接收或发送的时间单位内在所述接入链路上不进行接收和/或不进行发送。由此,NCR不在OFF时间进行转发,可以提高节能效率。
在一些实施例中,所述第三信息由信令承载,所述信令至少用于指示关闭(OFF)时间。例如,所述信令还用于指示TDD UL DL配置,所述OFF为TDD UL DL配置中时间单位的一个状态。例如,所述信令为用于指示OFF时间的专用信令。例如,所述信令为DRX信令。
在一些实施例中,所述信令还用于指示上行时间单位,和/或,下行时间单位,和/或,灵活时间单位。例如,所述信令至少用于指示TDD UL DL配置。
以下再示意性说明C-link的情况,即转发链路与控制链路出现冲突。
在一些实施例中,所述转发器获得第四信息,所述第四信息与第三时间相关,所述第三时间与所述第一时间至少部分重叠。
在一些实施例中,所述第四信息至少用于指示所述转发器在所述第三时间在控制链路接收来自网络侧的信号或向网络侧发送信号。
在一些实施例中,所述转发器在所述第三时间在所述控制链路接收来自网络侧的信号或向网络侧发送生成的信号。
由此,NCR优先保证与网络设备之间的连接,避免因为与网络侧的连接不可靠而影响AC链路的转发。
例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行接收;所述转发器不在所述至少部分重叠时间在所述接入链路进行接收。
再例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行发送;所述转发器不在所述至少部分重叠的时间在所述接入链路进行发送。
再例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行接收;所述转发器不在所述第一时间在所述接入链路进行接收。
再例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行发送;所述转发器不在所述第一时间在所述接入链路进行发送。
在一些实施例中,所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
由此,NCR优先保证AC链路的稳定性,有助于保护高优先级终端设备的传输,例如有URLLC业务的终端设备。
例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路接收来自网络侧的信号;所述转发器不在至少部分重叠的时间在所述控制链路接收来自网络侧的信号。
再例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路向网络侧发送信号;所述转发器不在至少部分重叠的时间在所述控制链路向网络侧发送信号。
再例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路接收来自网络侧的信号;所述转发器不在所述第三时间在所述控制链路接收来自网络侧的信号。
再例如,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路向网络侧发送信号;所述转发器不在所述第三时间在所述控制链路向网络侧发送信号。
在一些实施例中,所述第四信息用于指示所述转发器生成并在所述第三时间向网络侧发送以下信号至少之一:
Msg1(RACH,preamble),
BFR,
SR,
A/N,
SRS,
Msg3,
Msg5,
非周期CSI报告,
半持续CSI报告。
在一些实施例中,所述第四信息用于指示所述转发器在所述第三时间从网络侧接收以下信号至少之一:
Msg2,
Msg4,
调度Msg2和/或Msg4的PDCCH,
CSIRS,
BFRR;
以及所述信号被所述转发器解调或者解码。
以上示意性说明了NCR在AC链路中如何处理波束指示等配置的冲突,本申请不限于此。为了避免冲突,网络侧和转发器也可以遵循一定的策略或行为。
以下再对网络侧避免冲突的行为进行示意性说明。
在一些实施例中,网络侧不发送与所述第一信息不一致的指示信息;
在一些实施例中,网络侧不指示所述转发器在所述第一时间使用所述第一波束以外的波束进行发送或者进行接收。
在一些实施例中,网络侧不指示所述第一时间为OFF时间。
在一些实施例中,在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收的情况下,网络侧不指示所述第一时间包含下行时间单位和/或灵活时间单位。
在一些实施例中,在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送的情况下,网络侧不指示所述第一时间包含上行时间单位和/或灵活时间单位。
以下再对转发器侧避免冲突的行为进行示意性说明。
在一些实施例中,所述转发器不期望被指示与所述第一信息不一致的指示信息;
在一些实施例中,所述转发器不期望被指示在所述第一时间使用所述第一波束以外的波束进行发送或者进行接收。
在一些实施例中,所述转发器不期望被指示所述第一时间为OFF时间。
在一些实施例中,在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收的情况下,所述转发器不期望被指示所述第一时间包含下行时间单位和/或灵活时间单位。
在一些实施例中,在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送的情况下,所述转发器不期望被指示所述第一时间包含上行时间单位和/或灵活时间单位。
以上对于处理或避免冲突进行了示意性说明,以下再对优先级进行进一步说明。
在一些实施例中,可以表现为波束的优先级:一部分波束的优先级高于另一部分的优先级。
例如,用于转发某些信号的波束的优先级高。例如,用于转发SSB等高优先级信号的波束高。
再例如,网络侧配置一部分波束的优先级高,例如指定一部分波束调度index;或者,网络侧配置或指示一个波束的优先级。
再例如,事先约定某些信令指示的波束优先级高,例如OAM配置的波束优先级高,和或,半静态指示的波束优先级高,和或,动态指示的波束优先级高。
在一些实施例中,可以表现为转发信号的优先级:转发信号本身具有优先级。
例如,优先级可能较高的信号:至少包括以下之一:SS,SSB,SIB,MIB,RACH, 用于调度Msg2和或Msg3和或Msg4和或Msg5的PDCCH,用于承载Msg2和或Msg4的PDSCH,用于承载Msg3和或Msg5的PUSCH,CSIRS,SRS等。当然,也可以是上述信号以外的信号,本申请不以此为限。
再例如,NCR可以辨别具有较高优先级的信号,则用于转发该信号的波束与其它波束冲突时,NCR使用转发该信号的波束进行发送和或接收。
再例如,NCR可以辨别具有较高优先级的信号和部分或者全部其它信号,则用于转发该信号的波束与其它波束(例如用于转发部分或者全部其它信号,或者不确定其所转发信号的波束)冲突时,NCR使用转发该信号的波束进行发送和或接收。
再例如,被NCR服务的终端设备用于汇报BFR(beam failure report)的信号也可能优先级更高,这样让网络侧及时收到终端侧的BFR并进行适当处理,以避免发生进一步的更大的链路失败等。
再例如,信号优先级是由网络侧指示的。
在一些实施例中,可以表现为指示/配置信息、信令的优先级。
例如,OAM配置的波束优先级高,和/或,半静态指示的波束优先级高,和/或,动态指示的波束优先级高。
再例如,上述例子里重要的信号,大多与被服务的终端设备的初始接入、信道追踪、信道测量等关键的流程和能力相关。因此半静态信令或者由OAM配置的信令可能优先级更高一些。
再例如,当NCR所服务的终端设备中有较需要对可靠性和时延要求较高的业务的时候,网络侧可能会发送动态信令,为NCR指示新的传输波束。在这种情况下,优先级有可能分为三类,例如,用于转发SSB等的波束优先级最高,动态改写的优先级次之,其它指示的优先级较低。
在一些实施例中,可以表现为转发方向的优先级:转发方向具有优先级。
例如,波束冲突可能发生在上行转发与下行转发之间,下行转发波束可以更为优先,在通信中网络侧的优先级较高,可以保障被该网络设备服务的更多终端设备的业务。
又例如,波束转发方向冲突中,上行转发波束可以更为优先,以便让网络侧及时获得NCR所服务的终端设备的请求或者上报的信息。
在一些实施例中,可以表现为该波束使用或者转发的时间单位/时间段的优先级。
例如,NCR可以确定(根据收到的指示或者自行获取的系统信息)较为重要的信号可能在哪些时间需要被转发,这些时间或者时间段优先级较高,与这些时间或者时间段相关的波束在波束冲突中具有更高优先级。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器获得第一信息;所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。由此,转发器能够基于第一信息和/或通信标准定义规则确定AC链路的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
第二方面的实施例
本申请实施例提供一种转发器,该转发器例如可以是前述的NCR,也可以是具有转发功能的网络设备或终端设备,也可以是配置于NCR、网络设备或终端设备的某个或某些部件或者组件。
图6是本申请实施例的转发器的一示意图,由于该转发器解决问题的原理与第一方面的实施例的方法相同,因此其具体实施可以参照第一方面的实施例,内容相同之处不再重复说明。
如图6所示,本申请实施例的转发器600包括:
获取单元601,其获得第一信息;
确定单元602,其至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。
在一些实施例中,所述确定单元602根据如下至少之一确定所述第一波束和/或所述第一时间:通信标准定义规则、动态信令、半静态信令、操作管理维护(OAM)配置信息。
在一些实施例中,所述第一时间包括至少一个时间单位,所述至少一个时间单位在时域上连续或者不连续。
在一些实施例中,所述第一信息由半静态信令承载,和/或,所述第一信息由OAM 实体配置,和/或,所述第一信息由PDCCH或动态信令承载。
在一些实施例中,所述第一信息用于指示所述第一时间,和/或,所述第一信息用于指示所述第一波束,和/或,所述第一信息用于指示所述转发器在所述接入链路进行接收或者进行发送。
在一些实施例中,所述第一波束的指示基于波束索引,和/或,所述第一波束的指示基于同步信号块(SSB)索引,和/或,所述第一波束的指示基于参考信号索引。
在一些实施例中,所述第一信息用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
在一些实施例中,所述第一信息用于指示所述第一时间和所述第一波束;
所述获取单元601还获取第二信息,所述第二信息至少用于所述确定单元602确定在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
在一些实施例中,所述第二信息至少指示所述第一时间包含上行时间单位和/或下行时间单位和/或灵活时间单位。
在一些实施例中,所述第二信息包含时分双工(TDD)上行下行配置信息,所述第二信息由动态信令和/或半静态信令承载,和/或,所述第二信息由OAM实体配置。
在一些实施例中,所述确定单元602确定在所述第一时间的上行时间单位使用所述第一波束在所述接入链路进行接收,和/或,
所述确定单元602确定在所述第一时间的下行时间单位使用所述第一波束在所述接入链路进行发送,和/或,
所述确定单元602确定在所述第一时间的至少一个灵活时间单位使用所述第一波束在所述接入链路进行接收或进行发送,和/或,
所述确定单元602确定在所述第一时间的至少一个灵活时间单位在所述接入链路不进行接收和不进行发送。
在一些实施例中,所述第一信息用于指示所述第一时间,所述第一时间与第一信号相关。
在一些实施例中,所述第一信号不由所述转发器生成,和/或,所述转发器不对所述第一信号进行解调解码。
在一些实施例中,所述确定单元602确定所述第一波束,所述第一波束与所述第一信号相关;所述确定单元602确定在所述第一时间使用所述第一波束在所述接入链 路接收或者发送所述第一信号。
在一些实施例中,所述第一信号至少包含索引为n的SSB;
所述第一信息包含系统信息,所述第一时间至少包含所述SSB索引n所对应的时间单位。
在一些实施例中,所述确定单元602确定用于在所述接入链路进行发送的所述SSB索引n。
在一些实施例中,所述SSB索引n由网络侧配置或指示,和/或,所述SSB索引n由通信标准预定义,和/或,所述SSB索引n预先设定在所述转发器内。
在一些实施例中,所述确定单元602确定用于在所述接入链路发送所述索引为n的SSB的所述第一波束。
在一些实施例中,所述确定单元602确定用于在所述接入链路发送的SSB数目N和/或N个SSB的索引,所述SSB索引n为所述N个SSB的索引之一;
所述SSB数目N和/或N个SSB的索引被预先设定,或者,所述SSB数目N和/或N个SSB的索引由通信标准预定义,或者,所述SSB数目N和/或N个SSB的索引由网络侧为所述转发器配置或指示。
在一些实施例中,所述SSB数目N的取值被预先设定,其中,所述转发器向网络侧上报所述SSB数目N;由网络侧为所述转发器配置/指示所述N个SSB的索引。
在一些实施例中,所述确定单元602确定用于在所述接入链路发送N个SSB的N个波束,以及确定所述N个波束与所述N个SSB的对应关系。
在一些实施例中,所述确定单元602根据网络侧配置和/或指示确定用于在所述接入链路发送所述N个SSB的N个波束,或者,所述确定单元602根据通信标准定义规则确定用于在所述接入链路发送所述N个SSB的N个波束,或者,所述确定单元602自行确定用于在所述接入链路发送所述N个SSB的N个波束。
在一些实施例中,所述第一波束与所述SSB索引n一一对应,且所述一一对应关系保持不变,直到所述转发器被重启和/或被重配置。
在一些实施例中,所述第一时间还包含与所述SSB索引n相应的用于发送随机接入前导(RACH preamble)的时间单位或随机接入机会(RACH occasion);
所述第一信号还包含使用所述与SSB索引n相应的用于发送随机接入前导(RACH preamble)的时间单位或随机接入机会(RACH occasion)相应的时域和/或 频域资源来进行传输的信号。
在一些实施例中,所述第一信号包括以下信号或信道或信息的至少之一,或所述第一信号与以下信号或信道或信息的至少之一相关:
同步信号(SS),
同步信号块(SSB),
系统信息块(SIB),
主信息块(MIB),
Msg1(随机接入信道,RACH),
Msg2,
Msg3,
Msg4,
Msg5,
用于调度(或触发)Msg1和/或Msg2和/或Msg3和/或Msg4和/或Msg5的物理下行控制信道(PDCCH),
用于承载Msg2和/或Msg4的物理下行共享信道(PDSCH),
用于承载Msg3和/或Msg5的物理上行共享信道(PUSCH),
信道状态信息参考信号(CSIRS),
探测参考信号(SRS),
波束失败恢复(BFR),
用于承载波束失败恢复(BFR)的物理上行控制信道(PUCCH),
ACK/NACK信息,
用于承载ACK/NACK信息的物理上行控制信道(PUCCH),
调度请求(SR),
用于承载SR的物理上行控制信道(PUCCH)。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路接收或者发送所述第一信号。
在一些实施例中,所述第一信息包括所述第一信号所在的时域和/或频域的位置信息,和/或,所述第一信息由一个或者一个以上信令承载。
在一些实施例中,所述第一信息至少包含系统信息;
所述确定单元602至少根据所述第一信息确定在所述第一时间接收或者发送与所述第一信号相关的信号。
在一些实施例中,所述获取单元601获得第三信息,所述第三信息与第二时间相关,所述第二时间与所述第一时间至少部分重叠;
所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,和/或,所述第三信息还用于指示所述至少部分重叠的时间内、所述转发器在所述接入链路的转发方向,和/或,所述第三信息还用于指示与所述至少部分重叠的时间相关的传输方向和/或开关状态。
在一些实施例中,所述第二波束与所述第一波束不同,和/或,
所述至少部分重叠的时间内的转发方向与所述转发器确定的所述第一时间内在所述接入链路上进行转发的方向不一致,和/或,
所述至少部分重叠的时间相关的传输方向和/或开关状态与所述转发器确定的所述第一时间在所述接入链路上进行转发的方向不一致。
在一些实施例中,所述第三信息至少用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行转发,所述转发方向与所述转发器在所述第一时间确定的转发方向一致或者不一致,所述第二波束与所述第一波束相同或者不同;
如图6所示,转发器600还包括:
转发单元603,其在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行接收,
所述转发单元603在所述第一时间使用所述第一波束在所述接入链路进行接收。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行发送,
所述转发单元603在所述第一时间使用所述第一波束在所述接入链路进行发送。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第三信息用于指示所述转发器在所 述第二时间使用所述第二波束在所述接入链路进行发送,
所述转发单元603在所述第一时间使用所述第一波束在所述接入链路进行接收。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行接收,
所述转发单元603在所述第一时间使用所述第一波束在所述接入链路进行发送。
在一些实施例中,所述第一波束的优先级高于或等于所述第二波束的优先级。
在一些实施例中,所述第一波束的优先级由网络侧配置和/或指示,或者所述第一波束的优先级由通信标准定义,或者所述第一波束的优先级由所述转发器至少根据所述第一信息确定。
在一些实施例中,所述第一时间包括的至少一个时间单位的优先级高于或等于预设优先级,或者,高于或等于所述第二时间中任意一个时间单位的优先级,或者,高于或等于所述至少部分重叠的时间中任意一个时间单位的优先级。
在一些实施例中,所述时间单位的优先级由网络侧配置和/或指示,或者所述时间单位的优先级由通信标准定义,或者所述时间单位的优先级至少由与所述时间单位相关的信号确定。
在一些实施例中,所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,其中,
所述第三信息指示所述转发器在所述第二时间使用所述第二波束在所述接入链路接收或者发送第二信号;所述第二信号的优先级低于或等于所述第一信号的优先级。
在一些实施例中,所述第一信号和/或所述第二信号的优先级由通信标准定义,或者,所述第一信号和/或所述第二信号的优先级由网络侧配置和/或指示。
在一些实施例中,所述第一信号的优先级最高。
在一些实施例中,所述第一信息由半静态信令承载和/或由OAM实体配置,所述第三信息由动态信令承载。
在一些实施例中,所述第一信息由动态信令承载,所述第三信息由半静态信令承载和/或由动态信令承载和/或由OAM指示;
所述半静态信令包括MAC CE和/或RRC信令;
所述转发器在接收所述第一信息之前接收所述第三信息。
在一些实施例中,所述第一信息由半静态信令承载,所述第三信息由半静态信令承载和/或由OAM指示和/或由动态信令承载;
所述半静态信令包括MAC CE和/或RRC信令;
所述转发器在接收所述第一信息之前接收所述第三信息。
在一些实施例中,所述第三信息还用于指示与所述至少部分重叠时间相关的传输方向和/或开关状态,其中,
所述第三信息至少用于指示所述至少部分重叠时间的一个时间单位的信号传输方向;其中,所述一个时间单位的信号传输方向和所述转发器根据所述第一信息确定的在所述第一时间使用所述第一波束在所述接入链路上的信号传输方向不一致。
在一些实施例中,所述转发单元603在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
在一些实施例中,所述确定单元602确定在所述第一时间使用所述第一波束在所述接入链路进行接收(上行),所述第三信息至少用于指示所述至少部分重叠时间中的一个时间单位为下行时间单位或者灵活时间单位。
在一些实施例中,所述确定单元602确定在所述第一时间使用所述第一波束在所述接入链路进行发送(下行),所述第三信息至少用于指示所述至少部分重叠时间中的一个时间单位为上行时间单位或者灵活时间单位。
在一些实施例中,所述转发单元603在所述信号传输方向不一致的时间单位内在所述接入链路不进行接收和/或不进行发送。
在一些实施例中,所述确定单元602确定在所述第一时间使用所述第一波束在所述接入链路进行接收(上行),所述第三信息至少用于指示所述第一时间包含的时间单位中的一个时间单位为下行时间单位或者灵活时间单位;
所述转发单元603在所述下行时间单位或者灵活时间单位不进行接收,或者,在所述第一时间不进行接收。
在一些实施例中,所述确定单元602确定在所述第一时间使用所述第一波束在所述接入链路进行发送(下行),所述第三信息至少用于指示所述第一时间包含的时间单位中的一个时间单位为上行时间单位或者灵活时间单位;
所述转发单元603在所述上行时间单位或者灵活时间单位不进行发送,或者,在所述第一时间不进行发送。
在一些实施例中,所述第三信息至少用于指示所述第一时间包含的时间单位中至少一个时间单位不用于接收或发送。
在一些实施例中,所述转发单元603在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
在一些实施例中,所述转发单元603在所述被指示为不用于接收或发送的时间单位内在所述接入链路上不进行接收和/或不进行发送。
在一些实施例中,所述第三信息由信令承载,所述信令至少用于指示关闭(OFF)时间。
在一些实施例中,所述信令还用于指示上行时间单位,和/或,下行时间单位,和/或,灵活时间单位。
在一些实施例中,不用于接收或发送的所述至少一个时间单位为关闭(OFF)时间单位,或者,为休眠(sleep/dormancy)时间单位,或者,为空(null)时间单位。
在一些实施例中,所述获取单元601获得第四信息,所述第四信息与第三时间相关,所述第三时间与所述第一时间至少部分重叠。
在一些实施例中,所述第四信息至少用于指示所述转发器在所述第三时间在控制链路接收来自网络侧的信号或向网络侧发送信号。
在一些实施例中,所述转发单元603在所述第三时间在所述控制链路接收来自网络侧的信号或向网络侧发送生成的信号。
在一些实施例中,所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行接收;
所述转发单元603不在所述至少部分重叠时间在所述接入链路进行接收。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行发送;
所述转发单元603不在所述至少部分重叠的时间在所述接入链路进行发送。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行接收;
所述转发单元603不在所述第一时间在所述接入链路进行接收。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行发送;
所述转发单元603不在所述第一时间在所述接入链路进行发送。
在一些实施例中,所述转发单元603在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路接收来自网络侧的信号;
所述转发单元603不在至少部分重叠的时间在所述控制链路接收来自网络侧的信号。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路向网络侧发送信号;
所述转发单元603不在至少部分重叠的时间在所述控制链路向网络侧发送信号。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路接收来自网络侧的信号;
所述转发单元603不在所述第三时间在所述控制链路接收来自网络侧的信号。
在一些实施例中,所述确定单元602至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路向网络侧发送信号;
所述转发单元603不在所述第三时间在所述控制链路向网络侧发送信号。
在一些实施例中,所述第四信息用于指示所述转发器生成并在所述第三时间向网络侧发送以下信号至少之一:
Msg1(RACH,preamble),
BFR,
SR,
A/N,
SRS,
Msg3,
Msg5,
非周期CSI报告,
半持续CSI报告。
在一些实施例中,所述第四信息用于指示所述转发器在所述第三时间从网络侧接收以下信号至少之一:
Msg2,
Msg4,
调度Msg2和/或Msg4的PDCCH,
CSIRS,
BFRR;
以及所述信号被所述转发器解调或者解码。
在一些实施例中,所述转发器不期望被指示与所述第一信息不一致的指示信息;
在一些实施例中,所述转发器不期望被指示在所述第一时间使用所述第一波束以外的波束进行发送或者进行接收。
在一些实施例中,所述转发器不期望被指示所述第一时间为OFF时间。
在一些实施例中,在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收的情况下,所述转发器不期望被指示所述第一时间包含下行时间单位和/或灵活时间单位;
和/或
在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送的情况下,所述转发器不期望被指示所述第一时间包含上行时间单位和/或灵活时间单位。
此外,为了简单起见,图6中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实 现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器获得第一信息;所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。由此,转发器能够基于第一信息和/或通信标准定义规则确定AC链路的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
第三方面的实施例
本申请实施例提供一种信息指示方法,从网络设备一侧进行说明,与第一方面的实施例相同的内容不再赘述。
图7是本申请实施例的信息指示方法的一示意图,如图7所示,该方法包括:
701,网络设备向转发器发送第一信息;
其中,所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。
值得注意的是,以上附图7仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图7的记载。
在一些实施例中,网络设备可以向转发器发送转发信号(例如目的地为终端设备,由该转发器转发)和/或通信信号(例如目的地为该转发器),或者,网络设备也可以接收来自转发器的转发信号(例如由终端设备生成并发送,并由该转发器转发)和/或通信信号(例如由该转发器生成并发送)。
在一些实施例中,所述第一时间包括至少一个时间单位,所述至少一个时间单位在时域上连续或者不连续。
在一些实施例中,所述第一信息由半静态信令承载,和/或,所述第一信息由OAM实体配置,和/或,所述第一信息由PDCCH或动态信令承载。
在一些实施例中,所述第一信息用于指示所述第一时间,和/或,所述第一信息用于指示所述第一波束,和/或,所述第一信息用于指示所述转发器在所述接入链路进行接收或者进行发送。
在一些实施例中,所述第一波束的指示基于波束索引,和/或,所述第一波束的指示基于同步信号块(SSB)索引,和/或,所述第一波束的指示基于参考信号索引。
在一些实施例中,所述第一信息用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
在一些实施例中,所述第一信息用于指示所述第一时间和所述第一波束;
所述网络设备向所述转发器发送第二信息,所述第二信息至少用于所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
在一些实施例中,所述第二信息至少指示所述第一时间包含上行时间单位和/或下行时间单位和/或灵活时间单位。
在一些实施例中,所述第二信息包含时分双工(TDD)上行下行配置信息,所述第二信息由动态信令和/或半静态信令承载,和/或,所述第二信息由OAM实体配置。
在一些实施例中,所述第一信息用于指示所述第一时间,所述第一时间与第一信号相关。
在一些实施例中,所述第一信号不由所述转发器生成,和/或,所述转发器不对所述第一信号进行解调解码。
在一些实施例中,所述网络设备向所述转发器发送第三信息,所述第三信息与第二时间相关,所述第二时间与所述第一时间至少部分重叠;
所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,和/或,所述第三信息还用于指示所述至少部分重叠的时间内、所述转发器在所述接入链路的转发方向,和/或,所述第三信息还用于指示与所述至少部分重叠的时间相关的传输方向和/或开关状态。
在一些实施例中,所述第二波束与所述第一波束不同,和/或,
所述至少部分重叠的时间内的转发方向与所述转发器确定的所述第一时间内在所述接入链路上进行转发的方向不一致,和/或,
所述至少部分重叠的时间相关的传输方向和/或开关状态与所述转发器确定的所述第一时间在所述接入链路上进行转发的方向不一致。
在一些实施例中,所述第一信息由半静态信令承载和/或由OAM实体配置,所述第三信息由动态信令承载。
在一些实施例中,所述第一信息由动态信令承载,所述第三信息由半静态信令承载和/或由动态信令承载和/或由OAM指示;
所述半静态信令包括MAC CE和/或RRC信令;
所述转发器在接收所述第一信息之前接收所述第三信息。
在一些实施例中,所述第一信息由半静态信令承载,所述第三信息由半静态信令承载和/或由OAM指示和/或由动态信令承载;
所述半静态信令包括MAC CE和/或RRC信令;
所述转发器在接收所述第一信息之前接收所述第三信息。
在一些实施例中,所述网络设备向所述转发器发送第四信息,所述第四信息与第三时间相关,所述第三时间与所述第一时间至少部分重叠。
在一些实施例中,所述第四信息至少用于指示所述转发器在所述第三时间在控制链路接收来自网络侧的信号或向网络侧发送信号。
在一些实施例中,所述第四信息用于指示所述转发器生成并在所述第三时间向网络侧发送以下信号至少之一:
Msg1(RACH,preamble),
BFR,
SR,
A/N,
SRS,
Msg3,
Msg5,
非周期CSI报告,
半持续CSI报告。
在一些实施例中,所述第四信息用于指示所述转发器在所述第三时间从网络侧接收以下信号至少之一:
Msg2,
Msg4,
调度Msg2和/或Msg4的PDCCH,
CSIRS,
BFRR;
以及所述信号被所述转发器解调或者解码。
在一些实施例中,网络侧不发送与所述第一信息不一致的指示信息;
在一些实施例中,网络侧不指示所述转发器在所述第一时间使用所述第一波束以外的波束进行发送或者进行接收。
在一些实施例中,网络侧不指示所述第一时间为OFF时间。
在一些实施例中,在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收的情况下,网络侧不指示所述第一时间包含下行时间单位和/或灵活时间单位;
和/或
在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送的情况下,网络侧不指示所述第一时间包含上行时间单位和/或灵活时间单位。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,网络设备向转发器发送第一信息;所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。由此,转发器能够基于第一信息和/或通信标准定义规则确定AC链路的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
第四方面的实施例
本申请实施例提供一种网络设备。
图8是本申请实施例的网络设备的一示意图,由于该网络设备解决问题的原理与第三方面的实施例的方法相同,因此其具体实施可以参照第三方面的实施例,内容相同之处不再重复说明。
如图8所示,本申请实施例的网络设备800包括:
发送单元801,其向转发器发送第一信息;
其中,所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入链路进行接收或者进行发送。
在一些实施例中,网络设备可以向转发器发送转发信号(例如目的地为终端设备,由该转发器转发)和/或通信信号(例如目的地为该转发器),或者,网络设备也可以接收来自转发器的转发信号(例如由终端设备生成并发送,并由该转发器转发)和/或通信信号(例如由该转发器生成并发送)。
在一些实施例中,所述发送单元801向所述转发器发送第二信息,所述第二信息至少用于所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
在一些实施例中,所述发送单元801向所述转发器发送第三信息,所述第三信息与第二时间相关,所述第二时间与所述第一时间至少部分重叠;
所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,和/或,所述第三信息还用于指示所述至少部分重叠的时间内、所述转发器在所述接入链路的转发方向,和/或,所述第三信息还用于指示与所述至少部分重叠的时间相关的传输方向和/或开关状态。
在一些实施例中,所述发送单元801向所述转发器发送第四信息,所述第四信息与第三时间相关,所述第三时间与所述第一时间至少部分重叠。
在一些实施例中,所述第四信息至少用于指示所述转发器在所述第三时间在控制链路接收来自网络侧的信号或向网络侧发送信号。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的网络设备800还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图8中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。 上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,网络设备向转发器发送第一信息;所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。由此,转发器能够基于第一信息和/或通信标准定义规则确定AC链路的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
第五方面的实施例
本申请实施例提供了一种通信系统,图1是本申请实施例的通信系统的示意图,如图1所示,该通信系统100包括网络设备101、转发器102以及终端设备103,为简单起见,图1仅以一个网络设备、一个转发器以及一个终端设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。转发器102被配置为执行第一方面的实施例所述的信息指示方法,网络设备101被配置为执行第三方面的实施例所述的信息指示方法,其内容被合并于此,此处不再赘述。
本申请实施例还提供一种电子设备,该电子设备例如为转发器或者网络设备。
图9是本申请实施例的电子设备的构成示意图。如图9所示,电子设备900可以包括:处理器910(例如中央处理器CPU)和存储器920;存储器920耦合到处理器910。其中该存储器920可存储各种数据;此外还存储信息处理的程序930,并且在处理器910的控制下执行该程序930。
例如,处理器910可以被配置为执行程序而实现如第一方面的实施例所述的信息指示方法。例如,处理器910可以被配置为进行如下的控制:获得第一信息;至少基 于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。
再例如,处理器910可以被配置为执行程序而实现如第三方面的实施例所述的信息指示方法。例如,处理器910可以被配置为进行如下的控制:向转发器发送第一信息;使得所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。
此外,如图9所示,电子设备900还可以包括:收发机940和天线950等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,电子设备900也并不是必须要包括图9中所示的所有部件;此外,电子设备900还可以包括图9中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在转发器中执行所述程序时,所述程序使得计算机在所述转发器中执行第一方面的实施例所述的信息指示方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在转发器中执行第一方面的实施例所述的信息指示方法。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第三方面的实施例所述的信息指示方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行第三方面的实施例所述的信息指示方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM 存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种信息指示方法,包括:
转发器获得第一信息;
所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。
2.根据附记1所述的方法,其中,所述方法还包括:
所述转发器根据如下至少之一确定所述第一波束和/或所述第一时间:通信标准定义规则、动态信令、半静态信令、操作管理维护(OAM)配置信息。
3.根据附记1或2所述的方法,其中,所述方法还包括:
所述第一时间包括至少一个时间单位,所述至少一个时间单位在时域上连续或者不连续。
4.根据附记1至3任一项所述的方法,其中,
所述第一信息由半静态信令承载,和/或,所述第一信息由OAM实体配置,和/或,所述第一信息由PDCCH或动态信令承载。
5.根据附记1至4任一项所述的方法,其中,
所述第一信息用于指示所述第一时间,和/或,所述第一信息用于指示所述第一波束,和/或,所述第一信息用于指示所述转发器在所述接入链路进行接收或者进行发送。
6.根据附记1至5任一项所述的方法,其中,
所述第一波束的指示基于波束索引,和/或,所述第一波束的指示基于同步信号块(SSB)索引,和/或,所述第一波束的指示基于参考信号索引。
7.根据附记1至6任一项所述的方法,其中,
所述第一信息用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
8.根据附记1至6任一项所述的方法,其中,
所述第一信息用于指示所述第一时间和所述第一波束;所述方法还包括:
所述转发器获取第二信息,所述第二信息至少用于所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
9.根据附记8所述的方法,其中,
所述第二信息至少指示所述第一时间包含上行时间单位和/或下行时间单位和/或灵活时间单位。
10.根据附记8或9所述的方法,其中,
所述第二信息包含时分双工(TDD)上行下行配置信息,所述第二信息由动态信令和/或半静态信令承载,和/或,所述第二信息由OAM实体配置。
11.根据附记9所述的方法,其中,
所述转发器确定在所述第一时间的上行时间单位使用所述第一波束在所述接入链路进行接收,和/或,
所述转发器确定在所述第一时间的下行时间单位使用所述第一波束在所述接入链路进行发送,和/或,
所述转发器确定在所述第一时间的至少一个灵活时间单位使用所述第一波束在 所述接入链路进行接收或进行发送,和/或,
所述转发器确定在所述第一时间的至少一个灵活时间单位在所述接入链路不进行接收和不进行发送。
12.根据附记1至6任一项所述的方法,其中,
所述第一信息用于指示所述第一时间,所述第一时间与第一信号相关。
13.根据附记12所述的方法,其中,所述第一信号不由所述转发器生成,和或,所述转发器不对所述第一信号进行解调解码。
14.根据附记12或13所述的方法,其中,
所述转发器确定所述第一波束,所述第一波束与所述第一信号相关;
所述转发器确定在所述第一时间使用所述第一波束在所述接入链路接收或者发送所述第一信号。
15.根据附记14所述的方法,其中,
所述第一信号至少包含索引为n的SSB;
所述第一信息包含系统信息,所述第一时间至少包含所述SSB索引n所对应的时间单位。
16.根据附记15所述的方法,其中,所述方法还包括:
所述转发器确定用于在所述接入链路进行发送的所述SSB索引n。
17.根据附记16所述的方法,其中,
所述SSB索引n由网络侧配置或指示,和/或,所述SSB索引n由通信标准预定义,和/或,所述SSB索引n预先设定在所述转发器内。
18.根据附记15至17任一项所述的方法,其中,所述方法还包括:
所述转发器确定用于在所述接入链路发送所述索引为n的SSB的所述第一波束。
19.根据附记15至18任一项所述的方法,其中,所述方法还包括:
所述转发器确定用于在所述接入链路发送的SSB数目N和/或N个SSB的索引,所述SSB索引n为所述N个SSB的索引之一;
所述SSB数目N和/或N个SSB的索引被预先设定,或者,所述SSB数目N和/或N个SSB的索引由通信标准预定义,或者,所述SSB数目N和/或N个SSB的索引由网络侧为所述转发器配置或指示。
20.根据附记19所述的方法,所述SSB数目N的取值被预先设定,其中,所述 方法还包括:
所述转发器向网络侧上报所述SSB数目N。
21.根据附记19或20所述的方法,其中,所述方法还包括:
所述转发器确定用于在所述接入链路发送所述N个SSB的N个波束,以及确定所述N个波束与所述N个SSB的对应关系。
22.根据附记21所述的方法,其中,
所述转发器根据网络侧配置和/或指示确定用于在所述接入链路发送所述N个SSB的N个波束,或者,所述转发器根据通信标准定义规则确定用于在所述接入链路发送所述N个SSB的N个波束,或者,所述转发器自行确定用于在所述接入链路发送所述N个SSB的N个波束。
23.根据附记15至22任一项所述的方法,其中,
所述第一波束与所述SSB索引n一一对应,且所述一一对应关系保持不变,直到所述转发器被重启和/或被重配置。
24.根据附记15至23任一项所述的方法,其中,
所述第一时间还包含与所述SSB索引n相应的用于发送随机接入前导(RACH preamble)的时间单位或随机接入机会(RACH occasion);
所述第一信号还包含使用所述与SSB索引n相应的用于发送随机接入前导(RACH preamble)的时间单位或随机接入机会(RACH occasion)相应的时域和/或频域资源来进行传输的信号。
25.根据附记12至24任一项所述的方法,其中,
所述第一信号包括以下信号或信道或信息的至少之一,或所述第一信号与以下信号或信道或信息的至少之一相关:
同步信号(SS),
同步信号块(SSB),
系统信息块(SIB),
主信息块(MIB),
Msg1(随机接入信道,RACH),
Msg2,
Msg3,
Msg4,
Msg5,
用于调度(或触发)Msg1和/或Msg2和/或Msg3和/或Msg4和/或Msg5的物理下行控制信道(PDCCH),
用于承载Msg2和/或Msg4的物理下行共享信道(PDSCH),
用于承载Msg3和/或Msg5的物理上行共享信道(PUSCH),
信道状态信息参考信号(CSIRS),
探测参考信号(SRS),
波束失败恢复(BFR),
用于承载波束失败恢复(BFR)的物理上行控制信道(PUCCH),
ACK/NACK信息,
用于承载ACK/NACK信息的物理上行控制信道(PUCCH),
调度请求(SR),
用于承载SR的物理上行控制信道(PUCCH)。
26.根据附记25所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路接收或者发送所述第一信号。
27.根据附记25或26所述的方法,其中,所述第一信息包括所述第一信号所在的时域和/或频域的位置信息,和/或,所述第一信息由一个或者一个以上信令承载。
28.根据附记25至27任一项所述的方法,其中,
所述第一信息至少包含系统信息;所述方法还包括,
所述转发器至少根据所述第一信息确定在所述第一时间接收或者发送与所述第一信号相关的信号。
29.根据附记1至28任一项所述的方法,其中,所述方法还包括:
所述转发器获得第三信息,所述第三信息与第二时间相关,所述第二时间与所述第一时间至少部分重叠;
所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,和/或,所述第三信息还用于指示所述至少部分重叠的时间内、所述转发器在所述接入链路的转发方向,和/或,所述第三信息还用于指示与所述至少部分重叠的时间相关的 传输方向和/或开关状态。
30.根据附记29所述的方法,其中,
所述第二波束与所述第一波束不同,和/或,
所述至少部分重叠的时间内的转发方向与所述转发器确定的所述第一时间内在所述接入链路上进行转发的方向不一致,和/或,
所述至少部分重叠的时间相关的传输方向和/或开关状态与所述转发器确定的所述第一时间在所述接入链路上进行转发的方向不一致。
31.根据附记29或30所述的方法,其中,
所述第三信息至少用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行转发,所述转发方向与所述转发器在所述第一时间确定的转发方向一致或者不一致,所述第二波束与所述第一波束相同或者不同;所述方法还包括:
所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
32.根据附记31所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行接收,
所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收。
33.根据附记31所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行发送,
所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送。
34.根据附记31所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行发送,
所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收。
35.根据附记31所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第三信息用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行接收,
所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送。
36.根据附记31至35任一项所述的方法,其中,所述第一波束的优先级高于或等于所述第二波束的优先级。
37.根据附记36所述的方法,其中,所述第一波束的优先级由网络侧配置和/或指示,或者所述第一波束的优先级由通信标准定义,或者所述第一波束的优先级由所述转发器至少根据所述第一信息确定。
38.根据附记31至37任一项所述的方法,其中,所述第一时间包括的至少一个时间单位的优先级高于或等于预设优先级,或者,高于或等于所述第二时间中任意一个时间单位的优先级,或者,高于或等于所述至少部分重叠的时间中任意一个时间单位的优先级。
39.根据附记38所述的方法,其中,所述时间单位的优先级由网络侧配置和/或指示,或者所述时间单位的优先级由通信标准定义,或者所述时间单位的优先级至少由与所述时间单位相关的信号确定。
40.根据附记31至39任一项所述的方法,所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,其中,
所述第三信息指示所述转发器在所述第二时间使用所述第二波束在所述接入链路接收或者发送第二信号;所述第二信号的优先级低于或等于所述第一信号的优先级。
41.根据附记40所述的方法,其中,所述第一信号和/或所述第二信号的优先级由通信标准定义,或者,所述第一信号和/或所述第二信号的优先级由网络侧配置和/或指示。
42.根据附记40或41所述的方法,其中,所述第一信号的优先级最高。
43.根据附记29至42任一项所述的方法,其中,所述第一信息由半静态信令承载和/或由OAM实体配置,所述第三信息由动态信令承载。
44.根据附记29至42任一项所述的方法,其中,所述第一信息由动态信令承载,所述第三信息由半静态信令承载和/或由动态信令承载和/或由OAM指示;
所述半静态信令包括MAC CE和/或RRC信令;
所述转发器在接收所述第一信息之前接收所述第三信息。
45.根据附记29至42任一项所述的方法,其中,所述第一信息由半静态信令承载,所述第三信息由半静态信令承载和/或由OAM指示和/或由动态信令承载;
所述半静态信令包括MAC CE和/或RRC信令;
所述转发器在接收所述第一信息之前接收所述第三信息。
46.根据附记29或30所述的方法,所述第三信息还用于指示与所述至少部分重叠时间相关的传输方向和/或开关状态,其中,
所述第三信息至少用于指示所述至少部分重叠时间的一个时间单位的信号传输方向;其中,所述一个时间单位的信号传输方向和所述转发器根据所述第一信息确定的在所述第一时间使用所述第一波束在所述接入链路上的信号传输方向不一致。
47.根据附记46所述的方法,其中,所述方法还包括:
所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
48.根据附记47所述的方法,其中,
所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收(上行),所述第三信息至少用于指示所述至少部分重叠时间中的一个时间单位为下行时间单位或者灵活时间单位。
49.根据附记47所述的方法,其中,
所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行发送(下行),所述第三信息至少用于指示所述至少部分重叠时间中的一个时间单位为上行时间单位或者灵活时间单位。
50.根据附记46所述的方法,其中,所述方法还包括:
所述转发器在所述信号传输方向不一致的时间单位内在所述接入链路不进行接收和/或不进行发送。
51.根据附记50所述的方法,其中,
所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收(上行),所述第三信息至少用于指示所述第一时间包含的时间单位中的一个时间单位为下行时间单位或者灵活时间单位;
所述转发器在所述下行时间单位或者灵活时间单位不进行接收,或者,在所述第 一时间不进行接收。
52.根据附记50所述的方法,其中,
所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行发送(下行),所述第三信息至少用于指示所述第一时间包含的时间单位中的一个时间单位为上行时间单位或者灵活时间单位;
所述转发器在所述上行时间单位或者灵活时间单位不进行发送,或者,在所述第一时间不进行发送。
53.根据附记29或30所述的方法,其中,所述第三信息至少用于指示所述第一时间包含的时间单位中至少一个时间单位不用于接收或发送。
54.根据附记53所述的方法,其中,所述方法还包括:
所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
55.根据附记53所述的方法,其中,所述方法还包括:
所述转发器在所述被指示为不用于接收或发送的时间单位内在所述接入链路上不进行接收和/或不进行发送。
56.根据附记53至55任一项所述的方法,其中,
所述第三信息由信令承载,所述信令至少用于指示关闭(OFF)时间。
57.根据附记56所述的方法,其中,
所述信令还用于指示上行时间单位,和/或,下行时间单位,和/或,灵活时间单位。
58.根据附记53至57任一项所述的方法,其中,不用于接收或发送的所述至少一个时间单位为关闭(OFF)时间单位,或者,为休眠(sleep/dormancy)时间单位,或者,为空(null)时间单位。
59.根据附记1至58任一项所述的方法,其中,所述方法还包括:
所述转发器获得第四信息,所述第四信息与第三时间相关,所述第三时间与所述第一时间至少部分重叠。
60.根据附记59所述的方法,其中,所述第四信息至少用于指示所述转发器在所述第三时间在控制链路接收来自网络侧的信号或向网络侧发送信号。
61.根据附记60所述的方法,其中,所述转发器在所述第三时间在所述控制链 路接收来自网络侧的信号或向网络侧发送生成的信号。
62.根据附记61所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行接收;
所述转发器不在所述至少部分重叠时间在所述接入链路进行接收。
63.根据附记61所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行发送;
所述转发器不在所述至少部分重叠的时间在所述接入链路进行发送。
64.根据附记61所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行接收;
所述转发器不在所述第一时间在所述接入链路进行接收。
65.根据附记61所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路进行发送;
所述转发器不在所述第一时间在所述接入链路进行发送。
66.根据附记60所述的方法,其中,
所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
67.根据附记66所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路接收来自网络侧的信号;
所述转发器不在至少部分重叠的时间在所述控制链路接收来自网络侧的信号。
68.根据附记66所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路向网络侧发送信号;
所述转发器不在至少部分重叠的时间在所述控制链路向网络侧发送信号。
69.根据附记66所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行接收,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路接收来自网络侧的信号;
所述转发器不在所述第三时间在所述控制链路接收来自网络侧的信号。
70.根据附记66所述的方法,其中,
所述转发器至少基于所述第一信息确定在所述第一时间使用所述第一波束在所述接入链路进行发送,所述第四信息用于指示所述转发器在所述第三时间在所述控制链路向网络侧发送信号;
所述转发器不在所述第三时间在所述控制链路向网络侧发送信号。
71.根据附记59至70任一项所述的方法,其中,所述第四信息用于指示所述转发器生成并在所述第三时间向网络侧发送以下信号至少之一:
Msg1(RACH,preamble),
BFR,
SR,
A/N,
SRS,
Msg3,
Msg5,
非周期CSI报告,
半持续CSI报告。
72.根据附记59至70任一项所述的方法,其中,所述第四信息用于指示所述转发器在所述第三时间从网络侧接收以下信号至少之一:
Msg2,
Msg4,
调度Msg2和/或Msg4的PDCCH,
CSIRS,
BFRR;
以及所述信号被所述转发器解调或者解码。
73.根据附记1至72任一项所述的方法,其中,所述转发器不期望被指示与所述第一信息不一致的指示信息;
74.根据附记1至73任一项所述的方法,其中,所述转发器不期望被指示在所述第一时间使用所述第一波束以外的波束进行发送或者进行接收。
75.根据附记1至74任一项所述的方法,其中,所述转发器不期望被指示所述第一时间为OFF时间。
76.根据附记1至75任一项所述的方法,其中,
在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收的情况下,所述转发器不期望被指示所述第一时间包含下行时间单位和/或灵活时间单位;
和/或
在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送的情况下,所述转发器不期望被指示所述第一时间包含上行时间单位和/或灵活时间单位。
77.一种信息指示方法,包括:
网络设备向转发器发送第一信息;
其中,所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入(AC)链路进行接收或者进行发送。
78.根据附记77所述的方法,其中,
所述第一时间包括至少一个时间单位,所述至少一个时间单位在时域上连续或者不连续。
79.根据附记77或78所述的方法,其中,
所述第一信息由半静态信令承载,和/或,所述第一信息由OAM实体配置,和/或,所述第一信息由PDCCH或动态信令承载。
80根据附记77至79任一项所述的方法,其中,
所述第一信息用于指示所述第一时间,和/或,所述第一信息用于指示所述第一波束,和/或,所述第一信息用于指示所述转发器在所述接入链路进行接收或者进行发送。
81.根据附记77至80任一项所述的方法,其中,
所述第一波束的指示基于波束索引,和/或,所述第一波束的指示基于同步信号块(SSB)索引,和/或,所述第一波束的指示基于参考信号索引。
82.根据附记77至81任一项所述的方法,其中,
所述第一信息用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
83.根据附记77至82任一项所述的方法,其中,
所述第一信息用于指示所述第一时间和所述第一波束;所述方法还包括:
向所述转发器发送第二信息,所述第二信息至少用于所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
84.根据附记83所述的方法,其中,
所述第二信息至少指示所述第一时间包含上行时间单位和/或下行时间单位和/或灵活时间单位。
85.根据附记83或84所述的方法,其中,
所述第二信息包含时分双工(TDD)上行下行配置信息,所述第二信息由动态信令和/或半静态信令承载,和/或,所述第二信息由OAM实体配置。
86.根据附记77至82任一项所述的方法,其中,
所述第一信息用于指示所述第一时间,所述第一时间与第一信号相关。
87.根据附记86所述的方法,其中,所述第一信号不由所述转发器生成,和/或,所述转发器不对所述第一信号进行解调解码。
88.根据附记77至87任一项所述的方法,其中,所述方法还包括:
向所述转发器发送第三信息,所述第三信息与第二时间相关,所述第二时间与所述第一时间至少部分重叠;
所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,和/或,所述第三信息还用于指示所述至少部分重叠的时间内、所述转发器在所述接入链 路的转发方向,和/或,所述第三信息还用于指示与所述至少部分重叠的时间相关的传输方向和/或开关状态。
89.根据附记88所述的方法,其中,
所述第二波束与所述第一波束不同,和/或,
所述至少部分重叠的时间内的转发方向与所述转发器确定的所述第一时间内在所述接入链路上进行转发的方向不一致,和/或,
所述至少部分重叠的时间相关的传输方向和/或开关状态与所述转发器确定的所述第一时间在所述接入链路上进行转发的方向不一致。
90.根据附记88或89所述的方法,其中,所述第一信息由半静态信令承载和/或由OAM实体配置,所述第三信息由动态信令承载。
91.根据附记88至90任一项所述的方法,其中,所述第一信息由动态信令承载,所述第三信息由半静态信令承载和/或由动态信令承载和/或由OAM指示;
所述半静态信令包括MAC CE和/或RRC信令;
所述转发器在接收所述第一信息之前接收所述第三信息。
92.根据附记88至90任一项所述的方法,其中,所述第一信息由半静态信令承载,所述第三信息由半静态信令承载和/或由OAM指示和/或由动态信令承载;
所述半静态信令包括MAC CE和/或RRC信令;
所述转发器在接收所述第一信息之前接收所述第三信息。
93.根据附记77至92任一项所述的方法,其中,所述方法还包括:
向所述转发器发送第四信息,所述第四信息与第三时间相关,所述第三时间与所述第一时间至少部分重叠。
94.根据附记93所述的方法,其中,所述第四信息至少用于指示所述转发器在所述第三时间在控制链路接收来自网络侧的信号或向网络侧发送信号。
95.根据附记93或94所述的方法,其中,所述第四信息用于指示所述转发器生成并在所述第三时间向网络侧发送以下信号至少之一:
Msg1(RACH,preamble),
BFR,
SR,
A/N,
SRS,
Msg3,
Msg5,
非周期CSI报告,
半持续CSI报告。
96.根据附记93或94所述的方法,其中,所述第四信息用于指示所述转发器在所述第三时间从网络侧接收以下信号至少之一:
Msg2,
Msg4,
调度Msg2和/或Msg4的PDCCH,
CSIRS,
BFRR;
以及所述信号被所述转发器解调或者解码。
97.根据附记77至96任一项所述的方法,其中,网络侧不发送与所述第一信息不一致的指示信息;
98.根据附记77至97任一项所述的方法,其中,网络侧不指示所述转发器在所述第一时间使用所述第一波束以外的波束进行发送或者进行接收。
99.根据附记77至98任一项所述的方法,其中,网络侧不指示所述第一时间为OFF时间。
100.根据附记77至99任一项所述的方法,其中,
在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行接收的情况下,网络侧不指示所述第一时间包含下行时间单位和/或灵活时间单位;
和/或
在所述第一信息至少用于指示所述转发器在所述第一时间使用所述第一波束在所述接入链路进行发送的情况下,网络侧不指示所述第一时间包含上行时间单位和/或灵活时间单位。
101.一种转发器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至76任一项所述的信息指示方 法。
102.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记77至100任一项所述的信息指示方法。

Claims (20)

  1. 一种转发器,包括:
    获取单元,其获得第一信息;
    确定单元,其至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入链路进行接收或者进行发送。
  2. 根据权利要求1所述的转发器,其中,
    所述确定单元根据如下至少之一确定所述第一波束和/或所述第一时间:通信标准定义规则、动态信令、半静态信令、操作管理维护配置信息。
  3. 根据权利要求1所述的转发器,其中,
    所述第一时间包括至少一个时间单位,所述至少一个时间单位在时域上连续或者不连续。
  4. 根据权利要求1所述的转发器,其中,
    所述第一信息由半静态信令承载,和/或,
    所述第一信息由操作管理维护实体配置,和/或,
    所述第一信息由物理下行控制信道或动态信令承载。
  5. 根据权利要求1所述的转发器,其中,
    所述第一信息用于指示所述第一时间,和/或,
    所述第一信息用于指示所述第一波束,和/或,
    所述第一信息用于指示所述转发器在所述接入链路进行接收或者进行发送。
  6. 根据权利要求1所述的转发器,其中,
    所述第一信息用于指示所述第一时间和所述第一波束;
    所述获取单元还获取第二信息,所述第二信息至少用于所述转发器确定在所述第一时间使用所述第一波束在所述接入链路进行接收或者进行发送。
  7. 根据权利要求6所述的转发器,其中,
    所述第二信息至少指示所述第一时间包含上行时间单位和/或下行时间单位和/或灵活时间单位。
  8. 根据权利要求1所述的转发器,其中,
    所述获取单元还获得第三信息,所述第三信息与第二时间相关,所述第二时间与 所述第一时间至少部分重叠;
    所述第三信息还用于指示所述转发器在所述接入链路进行转发的第二波束,和/或,所述第三信息还用于指示所述至少部分重叠的时间内、所述转发器在所述接入链路的转发方向,和/或,所述第三信息还用于指示与所述至少部分重叠的时间相关的传输方向和/或开关状态。
  9. 根据权利要求8所述的转发器,其中,
    所述第二波束与所述第一波束不同,和/或,
    所述至少部分重叠的时间内的转发方向与所述转发器确定的所述第一时间内在所述接入链路上进行转发的方向不一致,和/或,
    所述至少部分重叠的时间相关的传输方向和/或开关状态与所述转发器确定的所述第一时间在所述接入链路上进行转发的方向不一致。
  10. 根据权利要求8所述的转发器,其中,
    所述第三信息至少用于指示所述转发器在所述第二时间使用所述第二波束在所述接入链路进行转发,所述转发方向与所述转发器在所述第一时间确定的转发方向一致或者不一致,所述第二波束与所述第一波束相同或者不同。
  11. 根据权利要求10所述的转发器,其中,所述转发器还包括:
    转发单元,其在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
  12. 根据权利要求8所述的转发器,其中,所述第一信息由半静态信令承载和/或由操作管理维护实体配置,所述第三信息由动态信令承载。
  13. 根据权利要求8所述的转发器,其中,
    所述第三信息还用于指示与所述至少部分重叠时间相关的传输方向和/或开关状态,
    其中,所述第三信息至少用于指示所述至少部分重叠时间的一个时间单位的信号传输方向;其中,所述一个时间单位的信号传输方向和所述转发器根据所述第一信息确定的在所述第一时间使用所述第一波束在所述接入链路上的信号传输方向不一致。
  14. 根据权利要求13所述的转发器,其中,所述转发器还包括:
    转发单元,其在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送,和/或,在所述信号传输方向不一致的时间单位内在所述接入链路不进行接收 和/或不进行发送。
  15. 根据权利要求8所述的转发器,其中,
    所述第三信息至少用于指示所述第一时间包含的时间单位中至少一个时间单位不用于接收或发送。
  16. 根据权利要求15所述的转发器,其中,所述转发器还包括:
    转发单元,其在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送,和/或,在被指示为不用于接收或发送的时间单位内在所述接入链路上不进行接收和/或不进行发送。
  17. 根据权利要求1所述的转发器,其中,
    所述获取单元获得第四信息,所述第四信息与第三时间相关,所述第三时间与所述第一时间至少部分重叠;所述第四信息至少用于指示所述转发器在所述第三时间在控制链路接收来自网络侧的信号或向网络侧发送信号。
  18. 根据权利要求17所述的转发器,其中,所述转发器还包括:
    转发单元,其在所述第三时间在所述控制链路接收来自网络侧的信号或向网络侧发送生成的信号,或者,在所述第一时间使用所述第一波束在所述接入链路进行接收或进行发送。
  19. 一种网络设备,包括:
    发送单元,其向转发器发送第一信息;
    其中,所述转发器至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入链路进行接收或者进行发送。
  20. 一种通信系统,包括:
    网络设备,其向转发器发送第一信息;以及
    转发器,其至少基于所述第一信息和/或通信标准定义规则确定在第一时间使用第一波束在接入链路进行接收或者进行发送。
PCT/CN2022/111451 2022-08-10 2022-08-10 信息指示方法、转发器和网络设备 WO2024031435A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111451 WO2024031435A1 (zh) 2022-08-10 2022-08-10 信息指示方法、转发器和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111451 WO2024031435A1 (zh) 2022-08-10 2022-08-10 信息指示方法、转发器和网络设备

Publications (1)

Publication Number Publication Date
WO2024031435A1 true WO2024031435A1 (zh) 2024-02-15

Family

ID=89850137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111451 WO2024031435A1 (zh) 2022-08-10 2022-08-10 信息指示方法、转发器和网络设备

Country Status (1)

Country Link
WO (1) WO2024031435A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053486A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Control signal design for smart repeater devices
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置
WO2022082774A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 一种波束管理方法及通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053486A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Control signal design for smart repeater devices
WO2022082774A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 一种波束管理方法及通信装置
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on L1/L2 signaling for side control information", 3GPP DRAFT; R1-2203238, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052152883 *

Similar Documents

Publication Publication Date Title
US11626952B2 (en) Signal configuration method and related device
KR102650985B1 (ko) 빔 표시 방법, 디바이스 및 시스템
JP2023521650A (ja) ビーム失敗検出方法、装置、デバイス及び読み取り可能な記憶媒体
EP3723447B1 (en) Relay transmission method and device
US11582736B2 (en) Communication method and apparatus and communication system
WO2023050472A1 (zh) 用于寻呼的方法和装置
EP3994911B1 (en) Semi-persistent channel state information reporting procedure with uplink clear channel assessment
CN112997433B (zh) 用于harq传输的方法以及通信设备
US20230189333A1 (en) Uplink polling for new radio operation in mm-wave frequency bands
WO2024031435A1 (zh) 信息指示方法、转发器和网络设备
WO2024092819A1 (zh) 转发器的指示方法、转发器和网络设备
WO2020087361A1 (zh) 信号发送方法、天线面板信息的指示方法、装置和系统
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024065409A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024065538A1 (zh) 开关控制方法、信息指示方法、转发器和网络设备
WO2023092841A1 (zh) 转发器、网络设备及其通信方法
WO2024065417A1 (zh) 转发器的指示方法、转发器和网络设备
WO2023236021A1 (zh) 一种通信方法、装置和系统
WO2024065541A1 (zh) 信息指示方法、转发器和网络设备
WO2023028725A1 (zh) 一种用于转发器的波束指示方法、装置和系统
WO2023236022A1 (zh) 一种通信方法、装置和系统
WO2023206303A1 (zh) 转发器及其传输方法、网络设备和通信系统
WO2024092836A1 (zh) 信息指示方法、转发器和网络设备
WO2023206244A1 (zh) 转发器的配置方法及装置
WO2024031509A1 (zh) 转发器及其传输方法、网络设备和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954410

Country of ref document: EP

Kind code of ref document: A1