WO2024065417A1 - 转发器的指示方法、转发器和网络设备 - Google Patents

转发器的指示方法、转发器和网络设备 Download PDF

Info

Publication number
WO2024065417A1
WO2024065417A1 PCT/CN2022/122697 CN2022122697W WO2024065417A1 WO 2024065417 A1 WO2024065417 A1 WO 2024065417A1 CN 2022122697 W CN2022122697 W CN 2022122697W WO 2024065417 A1 WO2024065417 A1 WO 2024065417A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
repeater
forwarding
ncr
Prior art date
Application number
PCT/CN2022/122697
Other languages
English (en)
French (fr)
Inventor
张磊
蒋琴艳
田妍
王昕�
Original Assignee
富士通株式会社
张磊
蒋琴艳
田妍
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张磊, 蒋琴艳, 田妍, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2022/122697 priority Critical patent/WO2024065417A1/zh
Publication of WO2024065417A1 publication Critical patent/WO2024065417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application relates to the field of communication technology.
  • 5G (fifth generation mobile communication technology) systems can provide larger bandwidth and higher data rates, and can support more types of terminals and vertical services.
  • 5G systems are also deployed on new spectrum, which has significantly higher frequencies than the traditional telecommunication spectrum used by 3G and 4G systems.
  • 5G systems can be deployed in the millimeter wave band (28GHz, 38GHz, 60GHz and above, etc.).
  • 5G systems need cell coverage enhancement methods more than previous 3G and 4G systems, especially 5G systems deployed in the millimeter wave frequency band. How to better enhance the cell coverage of 5G systems has become one of the urgent issues to be solved.
  • 5G systems use more advanced multi-antenna propagation technology and corresponding transmission equipment.
  • the complexity of 5G systems is higher than that of 3G and 4G systems.
  • the power consumption of 5G systems is also higher than that of 3G and 4G systems. How to reduce the power consumption of 5G systems and save energy costs is also one of the problems that need to be solved urgently.
  • the embodiments of the present application provide a repeater indication method, a repeater and a network device.
  • the repeater has the ability to communicate with the network device, can better enhance signal coverage and cope with environmental changes under network configuration (for example, reduce interference with other network devices and terminal devices during forwarding, etc.), and can also reduce system power consumption and save energy costs.
  • a method for indicating a repeater including:
  • the repeater determines (or defaults to or is expected to) repeat in the first frequency domain range unless first information is received from the network device; and/or
  • the repeater determines (or defaults or is expected) not to repeat in the second frequency domain unless second information is received from the network device.
  • a repeater including:
  • a first determining unit which determines to forward in a first frequency domain range unless first information is received from a network device
  • a second determining unit is configured to determine not to forward in a second frequency domain unless second information is received from the network device.
  • a method for indicating a repeater including:
  • the network device sends first information to the repeater; wherein the repeater determines (or defaults to or is expected to) forward in a first frequency domain range unless the first information is received; and/or,
  • the network device sends second information to the repeater; wherein the repeater determines (or defaults or is expected) not to forward in the second frequency domain range unless the second information is received.
  • a network device including:
  • a first sending unit which sends first information to a repeater; wherein the repeater determines (or defaults to or is expected to) forward in a first frequency domain range unless the first information is received; and/or,
  • a second sending unit is configured to send second information to the repeater; wherein the repeater determines (or defaults or is expected) not to forward in a second frequency domain unless the second information is received.
  • a communication system including:
  • a repeater that determines to forward in a first frequency domain range unless the first information is received, and/or that determines not to forward in a second frequency domain range unless the second information is received.
  • One of the beneficial effects of the embodiments of the present application is that the repeater defaults (or determines or is expected to) forward in the first frequency domain range, and/or the repeater defaults (or determines or is expected not to forward in the second frequency domain range).
  • unnecessary interference can be reduced, the transmission efficiency of the entire network can be improved, and system power consumption can also be reduced and energy costs can be saved.
  • FIG1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG2 is a schematic diagram of an NCR according to an embodiment of the present application.
  • FIG3 is a schematic diagram of NCR forwarding according to an embodiment of the present application.
  • FIG4 is another schematic diagram of NCR forwarding according to an embodiment of the present application.
  • FIG5 is a schematic diagram of an indication method of a repeater according to an embodiment of the present application.
  • FIG6 is an example diagram of first information and first time according to an embodiment of the present application.
  • FIG7 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG8 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG9 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG10 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG11 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG12 is another example diagram of the first information and the first time according to an embodiment of the present application.
  • FIG13 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG14 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG15 is another example diagram of first information and first time according to an embodiment of the present application.
  • FIG16 is an example diagram of second information and second time according to an embodiment of the present application.
  • FIG17 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG18 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG19 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG20 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG. 21 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG. 22 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG23 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG. 24 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG. 25 is another example diagram of second information and second time according to an embodiment of the present application.
  • FIG26 is a schematic diagram of a repeater according to an embodiment of the present application.
  • FIG27 is another schematic diagram of the indication method of the repeater according to an embodiment of the present application.
  • FIG28 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 29 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, etc., and these elements should not be limited by these terms.
  • the term “and/or” includes any one and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having”, etc. refer to the existence of the stated features, elements, components or components, but do not exclude the existence or addition of one or more other features, elements, components or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE), enhanced Long Term Evolution (LTE-A), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), etc.
  • LTE Long Term Evolution
  • LTE-A enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • communication between devices in the communication system may be carried out according to communication protocols of any stage, such as but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G and future 5G
  • NR New Radio
  • the term "network device” refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • the network device may include, but is not limited to, the following devices: base station (BS), access point (AP), transmission reception point (TRP), broadcast transmitter, mobile management entity (MME), gateway, server, radio network controller (RNC), base station controller (BSC), etc.
  • Base stations may include but are not limited to: NodeB (NodeB or NB), evolved NodeB (eNodeB or eNB) and 5G base station (gNB), IAB host, etc., and may also include remote radio heads (RRH, Remote Radio Head), remote radio units (RRU, Remote Radio Unit), relays or low-power nodes (such as femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relays or low-power nodes such as femto, pico, etc.
  • base station may include some or all of their functions, and each base station may provide communication coverage for a specific geographical area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be referred to as "terminal equipment” (TE).
  • the terminal equipment may be fixed or mobile, and may also be referred to as a mobile station (MS), a terminal, a user, a subscriber station (SS), an access terminal (AT), a station, and the like.
  • Terminal devices may include but are not limited to the following devices: cellular phones, personal digital assistants (PDA, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, cordless phones, smart phones, smart watches, digital cameras, etc.
  • PDA personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers cordless phones
  • smart phones smart watches, digital cameras, etc.
  • the terminal device can also be a machine or device for monitoring or measuring, such as but not limited to: machine type communication (MTC) terminal, vehicle-mounted communication terminal, device to device (D2D) terminal, machine to machine (M2M) terminal, and so on.
  • MTC machine type communication
  • D2D device to device
  • M2M machine to machine
  • 3GPP Rel-17 introduces RF repeater to forward transmissions between terminal equipment (UE) and network equipment (base station).
  • UE terminal equipment
  • base station network equipment
  • the RF repeater introduced in Rel-17 is transparent, that is, the network equipment and terminal equipment are unaware of the existence of RF repeater.
  • Figure 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a network device such as a 5G base station gNB 101, a repeater (Repeater) 102 and a terminal device (such as UE) 103 are taken as an example for explanation, but the present application is not limited to this.
  • the terminal device 103 establishes a connection with the network device 101 and communicates with it.
  • the channel/signal transmitted between the terminal device 103 and the network device 101 is forwarded via the repeater 102.
  • the channel/signal interaction between the network device 101, the terminal device 103 and the repeater 102 can adopt a beam-based receiving and transmitting method.
  • the beam can be a fixed beam or an adaptive beam.
  • the network device 101 may have a cell/carrier, and the network device 101, the repeater 102, and the terminal device 103 may forward/communicate in the cell; however, the present application is not limited thereto, for example, the network device 101 may also have other cells/carriers.
  • existing services or future services can be transmitted between the network device and the terminal device.
  • these services may include but are not limited to: enhanced mobile broadband (eMBB), massive machine type communication (mMTC), highly reliable and low latency communication (URLLC) and vehicle-to-everything (V2X) communication, etc.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC highly reliable and low latency communication
  • V2X vehicle-to-everything
  • Traditional repeaters do not have the ability to communicate with network devices. Therefore, although traditional repeaters can help enhance signal strength, they are not flexible enough to cope with complex environmental changes. Deploying traditional repeaters in 5G networks (especially in high-frequency 5G networks) may cause unnecessary interference to other network devices and/or terminal devices, thereby reducing the transmission efficiency of the entire network (for example, throughput). In order to make the forwarding of repeaters more flexible to adapt to the characteristics of 5G networks, network devices need to assist repeaters and be able to configure the forwarding of repeaters according to network conditions.
  • NCR network-controlled repeater
  • FIG2 is a schematic diagram of the NCR of the embodiment of the present application.
  • the NCR 202 is configured between the network device 201 and the terminal device 203.
  • the NCR 202 may include the following two modules/components: a mobile terminal (NCR-MT) of the repeater and a forwarding module (NCR-Fwd) of the repeater; the NCR-Fwd may also be referred to as a routing unit (NCR-RU) of the NCR-RU.
  • the NCR-MT is used to communicate with the network device, and the NCR-Fwd is used to forward signals between the network device and the terminal device.
  • the NCR of the embodiment of the present application may have three links: a control link (C-link), a backhaul link (BH link) for forwarding, and an access link (AC link).
  • C-link control link
  • BH link backhaul link
  • AC link access link
  • the C-link is used for communication between the NCR and the network device.
  • the BH link is used for the forwarder to receive a signal to be forwarded from the network device, or to forward a signal from the AC link (for example, from a terminal device) to the network device.
  • the AC link is used for the forwarder to forward a signal from the network device (for example, to the terminal device), or to receive a signal for forwarding to the BH link (for example, a signal to be forwarded from the terminal device).
  • the inventors recognize that the 5G system is more complex than the previous 3G and 4G systems. For example, it can support more types of services and terminals, and needs to be deployed in multiple frequency bands and scenarios. Compared with the traditional RF repeater, NCR needs to have the function of beam-based transceiver (forwarding).
  • FIG3 is a schematic diagram of NCR forwarding in an embodiment of the present application. As shown in FIG3, the repeater uses a transmit beam on the AC link to forward a signal from a network device.
  • FIG4 is another schematic diagram of NCR forwarding in an embodiment of the present application. As shown in FIG4, the repeater uses a receive beam on the AC link to receive a signal for forwarding to a network device.
  • the total number of beams supported by network devices, NCR devices, and served terminal devices is limited due to the characteristics of the frequency band itself.
  • How to design NCR devices working in different frequency ranges based on the wireless signal propagation characteristics of different frequency ranges to better achieve the comprehensive effect of power saving and efficient transmission has become an urgent problem to be solved.
  • the repeater of the embodiment of the present application can operate in a first frequency range (FR1), or can also operate in a second frequency range (FR2), or can also operate in the first frequency range (FR1) and the second frequency range (FR2); for the specific contents of FR1 and FR2, please refer to the relevant technology.
  • a repeater can communicate with a network device.
  • the repeater can receive a communication channel/signal sent by the network device and demodulate/decode the channel/signal to obtain information sent by the network device to the repeater.
  • the signal processing process is referred to as "communication” hereinafter.
  • the repeater can also forward a channel/signal transmitted between a network device and a terminal device.
  • the repeater does not demodulate/decode the channel/signal and can perform amplification and other processing.
  • the signal processing process is referred to as "forwarding” hereinafter.
  • “Communication” and “forwarding” are collectively referred to as "transmission”.
  • sending or receiving on an AC link can be equivalent to “forwarding on an AC link”
  • sending or receiving on a control link can be equivalent to "communicating on a control link”.
  • the channel/signal for direct communication between a network device and a repeater or between a third device (such as a terminal device) and a repeater may be referred to as a communication signal.
  • the repeater needs to perform encoding and/or modulation, and when receiving a communication signal, the repeater needs to perform decoding and/or demodulation.
  • the channel/signal forwarded by the repeater may be referred to as a forwarded signal.
  • the repeater may perform signal processing such as amplification on the forwarded signal, but will not perform decoding and/or demodulation.
  • the repeater can also be expressed as a repeater, a RF repeater, a repeater, a RF repeater; or it can also be expressed as a repeater node, a repeater node, a repeater node; or it can also be expressed as an intelligent repeater, an intelligent repeater, an intelligent repeater, an intelligent repeater node, an intelligent repeater node, an intelligent repeater node, etc., but the present application is not limited to this.
  • the network device may be a device of the service cell of the terminal device, or a device of the cell where the repeater is located, or a device of the service cell of the repeater, or a parent node (Parent node) of the repeater.
  • the present application does not impose any restriction on the name of the repeater. As long as the device can realize the above functions, it is included in the scope of the repeater of the present application.
  • beam may also be expressed as a lobe, a reference signal (RS), a transmission configuration indication (TCI), a spatial domain filter, etc.; or, may also be expressed as a beam index, a lobe index, a reference signal index, a transmission configuration indication index, a spatial domain filter index, etc.
  • the above-mentioned reference signals are, for example, a channel state information reference signal (CSI-RS, channel state Information reference signal), a sounding reference signal (SRS, sounding reference signal), an RS for use by a repeater, an RS sent by a repeater, etc.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • TCI may also be expressed as a TCI state.
  • the embodiments of the present application are not limited to this.
  • An embodiment of the present application provides an indication method for a repeater, which is described from the perspective of the repeater.
  • FIG. 5 is a schematic diagram of an indication method of a repeater according to an embodiment of the present application. As shown in FIG. 5 , the method includes:
  • the repeater determines (or defaults to or is expected to) forward in a first frequency domain range unless first information is received from a network device;
  • the repeater determines (or by default or expected) not to forward in the second frequency domain unless second information is received from the network device.
  • FIG. 5 is only a schematic illustration of the embodiment of the present application, but the present application is not limited thereto.
  • the execution order between the various operations can be appropriately adjusted, and other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of the above FIG. 5.
  • the repeater repeats in a first frequency domain unless first information is received from a network device; and/or the repeater does not repeat in a second frequency domain unless second information is received from the network device.
  • the repeater has the ability to forward in the first frequency domain by default, and whether the signal is actually forwarded can be determined according to actual scheduling or instructions.
  • the repeater forwards in the first frequency domain at a determined forwarding frequency band according to a determined forwarding method.
  • the determined forwarding frequency band and/or the determined forwarding method can be set before leaving the factory, set when the equipment is installed, configured by OAM, and/or configured by the network equipment.
  • the present application is not limited to this.
  • the repeater does not have the forwarding capability in the second frequency domain by default, for example, the forwarding module is turned off.
  • the repeater is not allowed to forward or does not perform forwarding in the second frequency domain.
  • the repeater is expected (or determined or defaulted) to be turned on (ON) in a first frequency domain range unless first information is received from a network device; and/or, the repeater is determined (or defaulted or expected) to be turned off (OFF) in a second frequency domain range unless second information is received from the network device.
  • the repeater is expected (or determined or defaulted) to be in an ON state in a first frequency domain range unless first information is received from a network device; and/or the repeater is determined (or defaulted or expected) to be in an OFF state in a second frequency domain range unless second information is received from the network device.
  • the repeater performs forwarding by default (or determined or expected) in the first frequency domain range; and/or the repeater does not perform forwarding by default (or determined or expected) in the second frequency domain range.
  • the repeater performs forwarding by default (or determined or expected) in the first frequency domain range; and/or the repeater does not perform forwarding by default (or determined or expected) in the second frequency domain range.
  • unnecessary interference can be reduced, the transmission efficiency of the entire network can be improved, and system power consumption can be reduced and energy costs can be saved.
  • the forwarding module in the default ON state, at least the forwarding module is turned on or starts working or is able to forward or forwards; in the default OFF state, at least the forwarding module is turned off or paused or stops forwarding or does not forward.
  • the forwarding module of a repeater in the default ON state forwards according to a determined forwarding beam in a determined forwarding frequency band; for another example, the forwarding module of a repeater in the default ON state forwards according to a determined forwarding beam in a determined forwarding frequency band and at a determined time.
  • the forwarding module of a repeater in the default OFF state stops working (it can start forwarding at any time); for another example, only the forwarding module of a repeater in the default OFF state stops working; for another example, only the forwarding module of a repeater in the default OFF state is turned off, etc.
  • the present application is not limited to this.
  • the above-mentioned repeater is expected (or determined or defaulted) to be turned on (ON), which may be that the forwarding component or forwarding module (NCR-Fwd) of the repeater is expected to be turned on, or that both the forwarding module and the communication module are expected to be turned on, etc.
  • the above-mentioned repeater is expected (or determined or defaulted) to be turned off (OFF), which may be that the forwarding component or forwarding module (NCR-Fwd) of the repeater is expected to be turned off, or that both the forwarding module and the communication module are expected to be turned off, etc.
  • the turning on and/or off of the forwarding module and the communication module of the repeater may be consistent or inconsistent.
  • the present application is not limited to this.
  • the NCR forwards in the determined forwarding band in FR1 according to the determined forwarding method. Considering the spectrum characteristics of FR1 and the characteristics of the network deployed in FR1, putting the NCR in this default ON state helps save the indication overhead of the network device, improve the spectrum utilization efficiency, and thus increase the network transmission rate.
  • the NCR in the default OFF state, does not forward signals. However, when the NCR is turned on or powered on normally, the NCR forwarding module stops forwarding. Considering the spectrum characteristics of FR2 and the characteristics of the network deployed in FR2, one of the main purposes of putting the NCR in this default OFF state is to reduce unnecessary interference of the NCR to surrounding devices when the network device does not serve the terminal devices covered by the NCR.
  • the forwarder in the OFF state does not forward (or the forwarding module of the forwarder does not forward).
  • the forwarder does not forward means that it does not do at least one of the following:
  • the first frequency domain range is FR1
  • the second frequency domain range is FR2; however, the present application is not limited thereto.
  • the first information is information at least applied to FR1 and at least used to indicate OFF
  • the second information is information at least applied to FR2 and at least used to indicate ON.
  • the first information is at least used to instruct the repeater to suspend forwarding or not forwarding or enter/start/enable an OFF state or enter a stopped forwarding state
  • the second information is at least used to instruct the repeater to forward or enter/start/enable an ON state.
  • the first information is at least used to instruct the repeater whose forwarding frequency is within the first frequency domain range to suspend forwarding or not forwarding or to enter/start/enable an off (OFF) state or to enter a stopped forwarding state
  • the second information is at least used to instruct the repeater whose forwarding frequency is within the second frequency domain range to forward or to enter/start/enable an on (ON) state.
  • the first information is at least used to indicate that the repeater whose forwarding frequency is within the first frequency domain range suspends forwarding or does not forward or enters/starts/enables an OFF state or a stopped forwarding state at a first time
  • the second information is at least used to indicate that the repeater whose forwarding frequency is within the second frequency domain range forwards or enters/starts/enables an ON state at a second time.
  • the first information and the first time are described below for a transponder having at least one transponding frequency within a first frequency range (FR1).
  • the first time defaults to a period of time during which the forwarder performs forwarding.
  • the NCR working under FR1 is in the ON state by default at the first time, unless it receives the first information instructing it to turn to the OFF state or suspend forwarding or instructing it not to forward at the first time.
  • the NCR working in FR1 is in the ON state by default until the NCR receives an instruction from the base station indicating that it is not forwarding or is in the OFF state (eg, through the first information).
  • the first time can be understood as the time period after the first information is executed.
  • the NCR working in FR1 is in the ON state by default at a certain time (e.g., the first time). Unless the NCR receives the first information from the base station before the first time, indicating that it should not be forwarded at the first time or indicating that it is in the OFF state at the first time, the NCR is in the ON state at the first time.
  • the repeater receives first information indicating that the repeater should not repeat at least at the first time, and at least one repeating frequency of the repeater is within the first frequency domain. The repeater does not repeat at the first time according to the first information.
  • the forwarder is capable of not forwarding at the first time based on the first information.
  • the forwarder does not forward at the first time according to the first information.
  • the forwarder forwards or does not forward at the first time at least according to the other information.
  • the forwarder forwards the first information at the first time if the forwarder has not received the first information before the first time.
  • the forwarder if the forwarder receives the first information before the first time, it does not forward it at the first time.
  • the first time may be indicated by the first information.
  • the first time is a non-periodic period of time; the first information further indicates at least one of the following of the first time: a starting time point, an ending time point, and a duration.
  • the first time is a periodic period of time; the first information further indicates at least one of the following of the first time: a period, an offset, a starting time point, an ending time point, and a duration.
  • the first information may explicitly indicate the first time.
  • the first information may explicitly indicate a time period, which includes at least the first time; the time period may be periodic.
  • the first information may indicate a period and an offset, and/or a start time and a duration.
  • a first information may indicate a time point, and the time period starts from the time point and ends when the base station indicates the end.
  • the end time point of the time period may be indicated by another first information or by other information.
  • the first information may implicitly indicate the first time.
  • the first information may also implicitly indicate a time period, which at least includes the first time.
  • the first information is a DRX indication of the NCR-MT, and the first time is the sleep time of the NCR-MT.
  • the first information is power indication information, indicating that the forwarding power of the NCR Fwd is zero at the first time.
  • the first time is determined by the repeater according to other information and/or predefined rules. For example, the repeater determines the shutdown time of the repeater communication module as the first time, or determines the start and/or end of the first time according to a high-level timer, etc.
  • FIG6 is an example diagram of the first information and the first time of an embodiment of the present application.
  • the NCR if the NCR has not received the first information before the first time, the NCR is in the ON state at the first time, and the NCR forwards at the first time.
  • the NCR receives the first information from the base station before the first time, indicating that it is not forwarded at the first time, the NCR determines not to forward at the first time according to the first information (as shown in OFF in FIG6).
  • the first information may instruct the repeater not to repeat at a periodic first time.
  • Fig. 7 is another example diagram of the first information and the first time of the embodiment of the present application. As shown in Fig. 7, after receiving the first information sent by the base station, the repeater may not forward the information at the periodic first time (as shown by OFF), and forward the information at other times (as shown by ON).
  • the first information may indicate a periodic first time of non-forwarding (as shown as OFF) and a periodic ON time.
  • FIG8 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the first information indicates the ON/OFF time, and the NCR does not forward the first information at the periodic first time, or the NCR turns to the OFF state at the periodic first time, and the NCR forwards the first information at the periodic fifth time, or the NCR forwards to the ON state at the periodic fifth time.
  • the first time shown in FIG8 is before the fifth time. In a specific implementation, the first time may also be after the fifth time. The present application is not limited to this.
  • the base station can instruct the NCR to forward or not forward periodically.
  • the forwarding component and the corresponding control component can be appropriately turned off to achieve better energy saving effect.
  • the first information indicating the periodic ON/OFF can be carried by dynamic signaling or by semi-static signaling.
  • the forwarder forwards at the first time if it has not received the first information N symbols and/or M time slots before the first time; N and M are both integers greater than or equal to 0.
  • a minimum interval (interval/gap) or a minimum processing delay is defined before the first time.
  • FIG9 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the first interval shown in FIG9.
  • the NCR NCR-MT
  • the NCR-Fwd does not forward the first information, or the NCR-Fwd turns to the OFF state.
  • the NCR is OFF at the first time.
  • FIG10 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the first interval shown in FIG10.
  • the NCR NCR-MT
  • the NCR-Fwd does not forward according to the first information instruction, or the NCR-Fwd does not turn to the OFF state.
  • the NCR does not execute the instruction of the first information, that is, the NCR is still ON at the first time.
  • FIG11 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, that is, the first interval shown in FIG11.
  • the NCR NCR-MT
  • the NCR-Fwd does not forward according to the first information, or the NCR-Fwd is turned to the OFF state at the first time.
  • FIG12 is another example diagram of the first information and the first time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the first interval shown in FIG12.
  • the NCR NCR-MT
  • the NCR-Fwd does not forward the first information at the periodic first time, or the NCR-Fwd turns to the OFF state at the periodic first time.
  • defining or stipulating the minimum time interval will help standardize the implementation of terminal equipment and base stations, and facilitate the joint debugging of base station equipment and terminal equipment from different manufacturers, thereby accelerating product updates and providing the market with faster and better services.
  • FIG13 is another example diagram of the first information and the first time of an embodiment of the present application. As shown in FIG13, there may be no minimum interval requirement. In this case, the base station may ensure that the interval between the arrival time of the first information and the start time of the first time is sufficient for the NCR-MT to demodulate/decode the received first information and for the NCR-Fwd to prepare to execute the non-forwarding indicated by the first information or enter the indicated OFF state.
  • the base station guarantees the time interval between the reception of information and the execution of the content indicated by the information, which helps to provide greater freedom for the implementation of base station products and terminal products. For devices with strong hardware computing capabilities and advanced algorithms, this can allow them to maximize their capabilities, reduce the processing delay of the network deployed using the device, increase the effective transmission time, and thus improve the transmission efficiency of the network.
  • the first information indicates that the forwarder cannot forward within a period of time starting from a first time point and including the first time.
  • the first time is a period of time starting from the first time point.
  • Figure 14 is another example diagram of the first information and the first time of the embodiment of the present application. As shown in Figure 14, if the NCR (NCR-MT) receives the first information before the first time starts, the NCR-Fwd enters the OFF state at the first time point according to the instruction of the first information, that is, forwarding is not possible.
  • NCR NCR-MT
  • the forwarder may also receive third information; and the forwarder starts forwarding from a third time point according to the third information.
  • FIG15 is another example diagram of the first information and the first time of the embodiment of the present application.
  • the NCR (NCR-MT) receives the first information before the first time
  • the NCR-Fwd starts to enter the OFF state at the first time point according to the instruction of the first information, that is, forwarding is not possible.
  • the NCR (NCR-MT) receives the third information after the first time point
  • the NCR-Fwd starts to enter the ON state at the third time point according to the instruction of the third information, that is, forwarding is possible.
  • the first information can be explicit information or implicit information.
  • the explicit first information may be used to indicate that the NCR enters the OFF state at a first time point, as shown in Figures 14 and 15.
  • the explicit first information may be used to indicate that the NCR enters (or is in) the OFF state at a first time, as shown in Figures 6 and 11.
  • the explicit first information may be used to indicate that the NCR does not forward at a first time.
  • the first information is dynamic signaling and/or semi-static signaling.
  • the first information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the first information may be information used to dynamically instruct the NCR not to forward.
  • the first information may be DCI, indicating that the NCR does not forward; for example, the first information may be dedicated signaling, indicating that the NCR does not forward; for another example, the first information may reuse the signaling used to instruct the NCR to forward (the signaling is at least applied to FR2), such as predefining a fixed value of a field to instruct the NCR not to forward. If the NCR working in FR1 receives the signaling, and the value of the field is a pre-agreed fixed value, the NCR does not forward at the first time corresponding to the signaling.
  • the first information may reuse the signaling used to instruct the NCR to forward a beam (the signaling is at least applied to FR2), and instruct the NCR not to forward by using the minimum or maximum beam number or a predefined beam number.
  • the NCR working in FR1 does not forward at the first time corresponding to these beams, and so on.
  • the first information may be a DCI indicating the NCR power; wherein, if the indicated power is zero, after receiving the DCI, the NCR does not forward it at a first time corresponding to the first information;
  • the first information indicates that a certain flexible time unit is still a flexible time unit, and the NCR does not forward in the flexible time unit.
  • the first information may also be semi-static/semi-persistent information, at least used to instruct the NCR not to forward.
  • the first information is used to semi-statically indicate the time when the NCR is OFF, and the OFF time (first time) can be periodic or non-periodic.
  • the first information is used to semi-statically/semi-persistently indicate the time when the NCR is not forwarded.
  • the base station configures the DRX mode for the UE, and when the terminal device is in the sleep time, the NCR is not forwarded accordingly.
  • the first information is semi-static information, indicating the periodic forwarding (ON) time and non-forwarding (OFF) time of the NCR.
  • the semi-static first information may be indicated/carried by MAC CE or RRC signaling.
  • the semi-persistent first information may be configured with one or more configuration information by MAC CE or RRC, and then one or more of them may be activated by DCI or MAC CE or other signals.
  • the second information and the second time are described below with respect to at least one repeater having a repeating frequency within a second frequency range (FR2).
  • the second time period defaults to a period of time during which the repeater does not repeat.
  • the NCR working in FR2 is in the OFF state by default at the second time, unless it receives the second information instructing it to turn to the ON state or instructing it to forward at the second time. Since the repeater in the OFF state can be changed to the ON state at any time by the second information, the default OFF state can be a dynamic OFF state. Therefore, by adopting the dynamic OFF state, the state of the repeater (forwarding or not forwarding) can be adjusted in time according to the real-time scheduling of the network device.
  • the NCR operating in FR2 is in the OFF state by default until the NCR receives an instruction from the base station instructing it to forward or be in the ON state (for example, through the second information).
  • the NCR working in FR2 is in the OFF state by default at a certain time (e.g., the second time). Unless the NCR receives a second message from the base station before the second time, instructing it to forward at the second time or instructing it to be in the ON state at the second time, the NCR is in the OFF state at the second time.
  • the repeater receives second information for instructing the repeater to forward at least at the second time, and at least one forwarding frequency of the repeater is within the second frequency domain.
  • the repeater forwards at the second time according to the second information.
  • the forwarder is capable of forwarding at the second time based on the second information.
  • the forwarder forwards at the second time according to the second information.
  • the forwarder does not forward or forwards at the second time according to the other information.
  • the forwarder if the forwarder does not receive the second information before the second time, it does not forward the second information at the second time.
  • the forwarder if the forwarder receives the second information before the second time, the forwarder forwards the second information at the second time.
  • the second time may be indicated by the second information.
  • the second time is a non-periodic period of time; the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • the second time is a periodic period of time; the second information also indicates at least one of the following of the second time: period, offset, starting time point, ending time point, and duration.
  • the second information may explicitly indicate the second time.
  • the second information may explicitly indicate a time period, which includes at least the second time; the time period may be periodic.
  • the second information may indicate a period and an offset, and/or a start time and a duration.
  • a second information may indicate a time point, and the time period starts from the time point until the base station indicates the end.
  • the end time point of the time period may be indicated by another second information or by other information.
  • the second information may implicitly indicate the second time.
  • the second information may also implicitly indicate a time period, which at least includes the second time.
  • the second information is a DRX indication of the NCR-MT, and the second time is the start time of the NCR-MT.
  • the second information is power indication information, indicating that the forwarding power of the NCR Fwd is non-zero at the first time.
  • the second time is determined by the repeater according to other information and/or predefined rules. For example, the repeater determines the start time of the repeater communication module as the second time, or determines the start and/or end of the second time according to a high-level timer, etc.
  • FIG16 is an example diagram of the second information and the second time of an embodiment of the present application.
  • the NCR determines to forward according to the second information at the second time (as shown in ON in FIG16).
  • the second information may instruct the forwarder to forward at a periodic second time.
  • Figure 17 is another example diagram of the second information and the second time of an embodiment of the present application. As shown in Figure 17, after receiving the second information sent by the base station, the repeater can forward at the periodic second time (as shown in ON), and not forward at other times (as shown in OFF).
  • the second information may indicate a periodic second time forwarding (as indicated by ON) and a periodic OFF time.
  • FIG18 is another example diagram of the second information and the second time of an embodiment of the present application.
  • the second information indicates the ON/OFF time
  • the NCR forwards the second information at the periodic second time, or the NCR turns to the ON state at the periodic second time, or the NCR does not forward the second information at the periodic sixth time, or the NCR forwards to the OFF state at the periodic sixth time.
  • the second time shown in FIG18 is before the sixth time. In a specific implementation, the second time may also be after the sixth time. The present application is not limited to this.
  • the base station can instruct the NCR to forward or not forward periodically.
  • the forwarding component and the corresponding control component can be appropriately turned off to achieve better energy saving effect.
  • the second information indicating the periodic ON/OFF can be carried by dynamic signaling or by semi-static signaling.
  • the ON/FF indication applied to FR1 shown in FIG8 and the ON/OFF indication applied to FR2 shown in FIG18 are indicated by the same signaling.
  • the NCR After receiving the signaling, the NCR forwards or does not forward according to the time (and forwarding method, etc.) indicated by the signaling in FR1 or FR2 according to its forwarding frequency band. Indicating through one signaling can simplify system design and product implementation.
  • the ON/FF indication applied to FR1 shown in FIG8 and the ON/OFF indication applied to FR2 shown in FIG18 can be indicated by different signaling.
  • the NCR receives the signaling applied to FR1, it forwards or does not forward in its forwarding band located in FR1 according to the time (and forwarding mode, etc.) indicated by the signaling; when the NCR receives the signaling applied to FR2, it forwards or does not forward in its forwarding band located in FR2 according to the time (and forwarding mode, etc.) indicated by the signaling.
  • Indicating the forwarding time and/or forwarding behavior applied to FR1 and FR2 by different signaling helps to simplify the product implementation logic.
  • an NCR device can have multiple forwarding bands at the same time, some of which are located in FR1 and the other part are located in FR2.
  • N and M are both integers greater than or equal to 0.
  • a minimum interval (interval/gap) or a minimum processing delay is defined before the second time.
  • FIG19 is another example diagram of the second information and the second time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the second interval shown in FIG19.
  • the NCR NCR-MT
  • the NCR-Fwd forwards the second information at the second time, or the NCR-Fwd turns to the ON state at the second time.
  • the NCR is ON during the second time.
  • FIG20 is another example diagram of the second information and the second time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the second interval shown in FIG20.
  • the NCR NCR-MT
  • the NCR-Fwd does not forward according to the second information instruction, or the NCR-Fwd does not turn to the ON state.
  • the NCR does not execute the instruction of the second information, that is, the NCR is still OFF at the second time.
  • FIG21 is another example diagram of the second information and the second time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the second interval shown in FIG21.
  • the NCR NCR-MT
  • the NCR-Fwd forwards the second information, or the NCR-Fwd turns to the ON state.
  • FIG22 is another example diagram of the second information and the second time of an embodiment of the present application.
  • the standard predefines a minimum interval or a minimum processing delay, i.e., the second interval shown in FIG22.
  • the NCR NCR-MT
  • the NCR-Fwd forwards the second information at the periodic second time, or the NCR-Fwd turns to the ON state at the periodic second time.
  • defining or stipulating the minimum time interval will help standardize the implementation of terminal equipment and base stations, and facilitate the joint debugging of base station equipment and terminal equipment from different manufacturers, thereby accelerating product updates and providing the market with faster and better services.
  • FIG23 is another example diagram of the second information and the second time of an embodiment of the present application. As shown in FIG23, there may be no minimum interval requirement. In this case, the base station can ensure that the interval between the arrival time of the second information and the start time of the second time is sufficient for the NCR-MT to demodulate/decode the received second information and for the NCR-Fwd to prepare to perform the forwarding indicated by the second information or enter the indicated ON state.
  • the base station guarantees the time interval between the reception of information and the execution of the content indicated by the information, which helps to provide greater freedom for the implementation of base station products and terminal products. For devices with strong hardware computing capabilities and advanced algorithms, this can allow them to maximize their capabilities, reduce the processing delay of the network deployed using the device, increase the effective transmission time, and thus improve the transmission efficiency of the network.
  • the second information indicates that the forwarder is capable of forwarding within a period of time starting from a second time point and including the second time.
  • Figure 24 is another example diagram of the second information and the second time of the embodiment of the present application. As shown in Figure 24, if the NCR (NCR-MT) receives the second information before the second time starts, the NCR-Fwd starts to enter the ON state at the second time point according to the instruction of the second information, that is, it can forward.
  • NCR NCR-MT
  • the forwarder may also receive fourth information; and the forwarder may be unable to forward from a fourth time point according to the fourth information.
  • FIG25 is another example diagram of the second information and the second time of the embodiment of the present application.
  • the NCR (NCR-MT) receives the second information before the second time
  • the NCR-Fwd starts to enter the ON state at the second time point according to the instruction of the second information, that is, forwarding is possible.
  • the NCR (NCR-MT) receives the fourth information after the second time point
  • the NCR-Fwd starts to enter the OFF state at the fourth time point according to the instruction of the fourth information, that is, forwarding is not possible.
  • the second information further indicates a forwarding beam used by the forwarder.
  • the indicated forwarding beam is a beam on an access (AC) link and/or a beam on a backhaul link.
  • the second information further instructs the repeater to forward.
  • the repeater uses a default beam.
  • the default beam may be a pre-agreed beam or a default beam used by the repeater.
  • the repeater may use a default beam in a feedback link. Using a default beam helps save indication information overhead and improves effective data transmission efficiency.
  • the second time includes a flexible time unit.
  • the second information is used to indicate that the flexible time unit included in the second time is an uplink time unit, and/or the second information is used to indicate that the flexible time unit included in the second time is a downlink time unit.
  • the second information indicates that the flexible time unit included in the second time is an uplink time unit, and the repeater forwards the signal received in the access link to the network device through the feedback link at the second time indicated as the uplink time unit.
  • the second information indicates that the flexible time unit included in the second time is a downlink time unit, and the repeater forwards the signal received in the feedback link from the network device through the access link at the second time indicated as the downlink time unit.
  • the above-mentioned time unit may be one or any combination of a time slot, a symbol, a subframe or a mini-slot, and the present application is not limited thereto.
  • the second information indicates NCR power, which is non-zero, and the NCR uses the power for forwarding at the second time.
  • the second information may be explicit information or implicit information.
  • the explicit second information may be used to instruct the NCR to enter the ON state at the second time point, as shown in Figures 24 and 25.
  • the explicit second information may be used to instruct the NCR to enter (or be in) the ON state at the second time, as shown in Figures 17 and 21.
  • the explicit second information may be used to instruct the NCR to forward (e.g., use a default beam) at the second time, as shown in Figures 17 and 21.
  • the implicit second information may be used to indicate the forwarding beam used by the NCR, where the indicated forwarding beam is the beam of the AC link and/or the beam of the feedback link.
  • the NCR uses the beam indicated by the second information for forwarding at the second time.
  • the implicit second information can be used to indicate to the NCR whether the flexible unit of the second time is an uplink time unit or a downlink time unit.
  • the NCR forwards from the access link to the feedback link in the uplink time unit and forwards from the feedback link to the access link in the downlink time unit.
  • the second information is dynamic signaling or semi-static signaling.
  • the second information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the second information may be information used to dynamically instruct the NCR to forward.
  • the second information dynamically indicates to use a default beam for forwarding.
  • the default beam may be predefined by a communication standard, configured by OAM, or indicated or confirmed by a network device.
  • the second information dynamically indicates the forwarding beam corresponding to the second time of the NCR, and the NCR ends the OFF state at the second time and uses the indicated beam for forwarding.
  • the second information dynamically indicates the NCR power, and the power is non-zero, and the NCR uses the power for forwarding at the second time.
  • the second information dynamically indicates that the flexible time unit is an uplink time unit and/or a downlink time unit, and the NCR forwards the signal received from the access link on the feedback link in the uplink time unit and forwards the signal received from the feedback link on the access link in the downlink time unit.
  • the second information may also be semi-static (semi-persistent) information that semi-statically instructs the NCR to forward.
  • the second information is used to semi-statically indicate the time when the NCR is ON.
  • the second information is used to semi-statically/semi-continuously indicate the time when the NCR forwards and/or the beam used.
  • the base station in order to semi-continuously transmit data of the served terminal device, the base station semi-statically/semi-continuously configures the NCR to forward the data through the second information.
  • This configuration can be used for reference signal forwarding, such as CSI-RS and SRS.
  • the base station can only configure the NCR forwarding method without indicating the purpose of the configuration.
  • the second information is used to semi-statically/semi-persistently indicate the time and/or beam used by the NCR for forwarding. For example, forwarding a common signal used for a terminal device to access a cell or maintain connection with a base station.
  • the semi-static second information is indicated by MAC CE or RRC.
  • the semi-persistent second information is first configured with one or more configuration information by MAC CE or RRC, and then one or more of them are activated by DCI or MAC CE or other signals.
  • NCR is ON by default in FR1 and OFF by default in FR2.
  • the first information and the second information for indicating periodic ON/OFF can be one information.
  • the information can indicate both ON and OFF.
  • the working characteristics of 5G networks deployed in different frequency bands are taken into consideration.
  • the beam used by the base station to serve the terminal device is wider than that in the FR2 frequency band, and the base station can use fewer beams to cover the area it covers. Accordingly, the terminal devices in the FR1 frequency band have more opportunities to be served when the network device provides services through beam scanning.
  • the NCR forwarding in the FR1 frequency band is in the ON state by default, and enters the OFF state when receiving the first information. Compared with the default OFF state, the base station can use less first information to control the NCR to complete the forwarding required in FR1.
  • the NCR forwarding in the FR2 frequency band is in the OFF state by default, and enters the ON state when receiving the second information. Compared with the default ON state, the base station can use less second information to control the NCR to complete the forwarding required in FR2.
  • the NCR can be put into a non-forwarding state when forwarding is not needed to achieve the purpose of saving power, and less control information can be used to control the forwarding or non-forwarding of the NCR according to the characteristics of the frequency band deployment, thereby reducing the frequency of sending control information and improving the efficiency of information transmission, thereby better achieving the comprehensive effect of power saving and efficient transmission.
  • the repeater defaults (or determines or is expected to) forward in the first frequency domain range, and/or the repeater defaults (or determines or is expected not to forward in the second frequency domain range).
  • unnecessary interference can be reduced, the transmission efficiency of the entire network can be improved, and system power consumption can also be reduced and energy costs can be saved.
  • An embodiment of the present application provides a repeater, which may be, for example, the aforementioned NCR, or a network device or terminal device with a forwarding function, or one or more parts or components configured in the NCR, network device or terminal device.
  • Figure 26 is a schematic diagram of a repeater according to an embodiment of the present application. Since the principle of solving the problem by the repeater is the same as the method of the embodiment of the first aspect, its specific implementation can refer to the embodiment of the first aspect, and the same contents will not be repeated.
  • the forwarder 2600 of the embodiment of the present application includes:
  • a first determining unit 2601 determines to forward in a first frequency domain range unless first information is received from a network device;
  • the second determining unit 2602 determines not to forward in the second frequency domain unless second information is received from the network device.
  • the first information is at least used to instruct the repeater to suspend forwarding or not forwarding or enter/start/enable an OFF state or enter a stopped forwarding state
  • the second information is at least used to instruct the repeater to forward or enter/start/enable an ON state.
  • the first information is at least used to instruct the repeater whose forwarding frequency is within the first frequency domain range to suspend forwarding or not forwarding or to enter/start/enable an off (OFF) state or to enter a stopped forwarding state
  • the second information is at least used to instruct the repeater whose forwarding frequency is within the second frequency domain range to forward or to enter/start/enable an on (ON) state.
  • the first information is at least used to indicate that the repeater whose forwarding frequency is within the first frequency domain range suspends forwarding or does not forward or enters/starts/enables an OFF state or a stopped forwarding state at a first time
  • the second information is at least used to indicate that the repeater whose forwarding frequency is within the second frequency domain range forwards or enters/starts/enables an ON state at a second time.
  • the repeater receives first information indicating that the repeater should not forward at least at a first time, and at least one forwarding frequency of the repeater is within the first frequency domain; the repeater does not forward at the first time according to the first information.
  • the first information indicates that the repeater whose forwarding frequency is within the first frequency domain range does not forward within a period of time starting from a first time point and including the first time; the repeater receives third information, and the repeater starts forwarding from a third time point according to the third information.
  • the forwarder forwards the first information at the first time if the forwarder has not received the first information before the first time.
  • the forwarder forwards at the first time if the first information has not been received N symbols and/or M time slots before the first time; N and M are both integers greater than or equal to 0.
  • the first information is dynamic signaling and/or semi-static signaling; wherein, the first information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the first information further indicates a first time
  • the forwarder is instructed not to forward, or the forwarder is not capable of forwarding, or the forwarder is expected not to forward.
  • the first time is a periodic period of time
  • the first information further indicates at least one of the following of the first time: a period, an offset, a start time point, an end time point, and a duration.
  • the first time is a non-periodic period of time
  • the first information further indicates at least one of the following of the first time: a starting time point, an ending time point, and a duration.
  • the repeater receives second information indicating that the repeater forwards at least at the second time, and at least one forwarding frequency of the repeater is within the second frequency domain; the repeater forwards at the second time according to the second information.
  • the second information indicates that the repeater forwards the forwarding frequency within the second frequency domain range within a period of time starting from a second time point and including the second time; the method also includes: the repeater receives fourth information, and the repeater does not forward from a fourth time point according to the fourth information.
  • the forwarder if the forwarder has not received the second information before the second time, the forwarder does not forward the second information at the second time.
  • N and M are both integers greater than or equal to 0.
  • the second information is dynamic signaling and/or semi-static signaling; wherein, the second information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the second information further indicates a second time
  • the forwarder is instructed to forward, or the forwarder is capable of forwarding, or the forwarder is expected to forward.
  • the second time is a periodic period of time
  • the second information further indicates at least one of the following of the second time: a period, an offset, a start time point, an end time point, and a duration.
  • the second time is a non-periodic period of time
  • the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • FIG. 26 only exemplifies the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned various components or modules can be implemented by hardware facilities such as processors, memories, transmitters, and receivers; the implementation of this application is not limited to this.
  • the repeater performs forwarding by default (or determined or expected) in the first frequency domain range, and/or the repeater does not perform forwarding by default (or determined or expected) in the second frequency domain range.
  • unnecessary interference can be reduced, the transmission efficiency of the entire network can be improved, and system power consumption can be reduced and energy costs can be saved.
  • An embodiment of the present application provides an indication method for a repeater, which is explained from the perspective of a network device, and the contents that are the same as those in the embodiment of the first aspect are not repeated here.
  • FIG. 27 is a schematic diagram of an indication method of a repeater according to an embodiment of the present application. As shown in FIG. 27 , the method includes:
  • the network device sends first information to the repeater; wherein the repeater determines (or is defaulted or expected to) forward in the first frequency domain range unless the first information is received; and/or,
  • the network device sends second information to the repeater; wherein the repeater determines (or is defaulted or expected) not to forward in the second frequency domain range unless the second information is received.
  • FIG. 27 is only a schematic illustration of the embodiment of the present application, but the present application is not limited thereto.
  • the execution order between the various operations can be appropriately adjusted, and other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of the above FIG. 27.
  • the network device may send a forwarding signal (e.g., destined for a terminal device and forwarded by the forwarder) and/or a communication signal (e.g., destined for the forwarder) to the forwarder, or the network device may also receive a forwarding signal (e.g., generated and sent by a terminal device and forwarded by the forwarder) and/or a communication signal (e.g., generated and sent by the forwarder) from the forwarder.
  • a forwarding signal e.g., destined for a terminal device and forwarded by the forwarder
  • a communication signal e.g., generated and sent by the forwarder
  • the first frequency domain range is FR1
  • the second frequency domain range is FR2.
  • the first information is at least used to instruct the forwarder to suspend forwarding or not forwarding or enter/start/enable an off (OFF) state or enter a stopped forwarding state
  • the second information is at least used to instruct the forwarder to forward or enter/start/enable an on (ON) state.
  • the first information is at least used to instruct the repeater whose forwarding frequency is within the first frequency domain range to suspend forwarding or not forwarding or to enter/start/enable an off (OFF) state or to enter a stopped forwarding state
  • the second information is at least used to instruct the repeater whose forwarding frequency is within the second frequency domain range to forward or to enter/start/enable an on (ON) state.
  • the first information is at least used to indicate that the repeater whose forwarding frequency is within the first frequency domain range suspends forwarding or does not forward or enters/starts/enables an OFF state or a stopped forwarding state at a first time
  • the second information is at least used to indicate that the repeater whose forwarding frequency is within the second frequency domain range forwards or enters/starts/enables an ON state at a second time.
  • the first information indicates that the repeater whose forwarding frequency is within the first frequency domain range does not forward within a period of time starting from a first time point and including a first time; the method further includes:
  • the network device sends third information to the forwarder; wherein the forwarder starts forwarding from a third time point according to the third information.
  • the first information is dynamic signaling and/or semi-static signaling.
  • the first information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the first information also indicates a first time.
  • the forwarder is instructed not to forward, or the forwarder is not capable of forwarding, or the forwarder is expected not to forward.
  • the first time is a periodic period of time
  • the first information further indicates at least one of the following of the first time: a period, an offset, a start time point, an end time point, and a duration.
  • the first time is a non-periodic period of time
  • the first information further indicates at least one of the following of the first time: a starting time point, an ending time point, and a duration.
  • the second information indicates forwarding by the repeater having a forwarding frequency in the second frequency domain range within a period of time starting from a second time point and including the second time; the method further includes:
  • the network device sends fourth information to the forwarder; wherein the forwarder stops forwarding from a fourth time point according to the fourth information.
  • the second information is dynamic signaling and/or semi-static signaling.
  • the second information is carried by physical downlink control channel (PDCCH) and/or MAC CE and/or radio resource control (RRC) signaling.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the second information further indicates a second time.
  • the forwarder is instructed to forward, or the forwarder is capable of forwarding, or the forwarder is expected not to forward.
  • the second time is a periodic period of time
  • the second information further indicates at least one of the following of the second time: a period, an offset, a start time point, an end time point, and a duration.
  • the second time is a non-periodic period of time
  • the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • the repeater performs forwarding by default (or determined or expected) in the first frequency domain range, and/or the repeater does not perform forwarding by default (or determined or expected) in the second frequency domain range.
  • unnecessary interference can be reduced, the transmission efficiency of the entire network can be improved, and system power consumption can be reduced and energy costs can be saved.
  • An embodiment of the present application provides a network device.
  • Figure 28 is a schematic diagram of a network device according to an embodiment of the present application. Since the principle of solving the problem by the network device is the same as the method of the embodiment of the third aspect, its specific implementation can refer to the embodiment of the third aspect, and the same contents will not be repeated.
  • the network device 3800 of the embodiment of the present application includes:
  • a first sending unit 2801 sends first information to a repeater; wherein the repeater determines (or defaults to or is expected to) forward in a first frequency domain range unless the first information is received; and/or,
  • the second sending unit 2802 sends second information to the repeater; wherein the repeater determines (or defaults or is expected) not to forward in the second frequency domain range unless the second information is received.
  • the network device may send a forwarding signal (e.g., destined for a terminal device and forwarded by the forwarder) and/or a communication signal (e.g., destined for the forwarder) to the forwarder, or the network device may also receive a forwarding signal (e.g., generated and sent by a terminal device and forwarded by the forwarder) and/or a communication signal (e.g., generated and sent by the forwarder) from the forwarder.
  • a forwarding signal e.g., destined for a terminal device and forwarded by the forwarder
  • a communication signal e.g., generated and sent by the forwarder
  • the network device 2800 of the present embodiment may also include other components or modules, and the specific contents of these components or modules may refer to the relevant technology.
  • FIG. 28 only exemplifies the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned various components or modules can be implemented by hardware facilities such as processors, memories, transmitters, and receivers; the implementation of this application is not limited to this.
  • the repeater performs forwarding by default (or determined or expected) in the first frequency domain range, and/or the repeater does not perform forwarding by default (or determined or expected) in the second frequency domain range.
  • unnecessary interference can be reduced, the transmission efficiency of the entire network can be improved, and system power consumption can be reduced and energy costs can be saved.
  • FIG1 is a schematic diagram of the communication system of the embodiment of the present application.
  • the communication system 100 includes a network device 101, a repeater 102, and a terminal device 103.
  • FIG1 only illustrates a network device, a repeater, and a terminal device as an example, but the embodiment of the present application is not limited to this.
  • existing services or future implementable services can be transmitted between the network device 101 and the terminal device 103.
  • these services may include, but are not limited to: enhanced mobile broadband (eMBB), massive machine type communication (mMTC), highly reliable and low latency communication (URLLC) and vehicle-to-everything (V2X) communication, etc.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC highly reliable and low latency communication
  • V2X vehicle-to-everything
  • An embodiment of the present application also provides an electronic device, which is, for example, a repeater or a network device.
  • FIG29 is a schematic diagram of the composition of an electronic device according to an embodiment of the present application.
  • the electronic device 2900 may include: a processor 2910 (e.g., a central processing unit CPU) and a memory 2920; the memory 2920 is coupled to the processor 2910.
  • the memory 2920 may store various data; in addition, it may store a program 2930 for information processing, and the program 2930 may be executed under the control of the processor 2910.
  • the processor 2910 may be configured to execute a program to implement the indication method of the repeater as described in the embodiment of the first aspect.
  • the processor 2910 may be configured to perform the following control: determining to forward in a first frequency domain range unless first information from a network device is received; and/or determining not to forward in a second frequency domain range unless second information from the network device is received.
  • the processor 2910 may be configured to execute a program to implement the indication method of the repeater as described in the embodiment of the third aspect.
  • the processor 2910 may be configured to perform the following control: sending first information to the repeater; wherein the repeater determines (or defaults or is expected) to forward in a first frequency domain range unless the first information is received; and/or, sending second information to the repeater; wherein the repeater determines (or defaults or is expected) not to forward in a second frequency domain range unless the second information is received.
  • the electronic device 2900 may further include: a transceiver 2940 and an antenna 2950, etc.; wherein the functions of the above components are similar to those of the prior art and are not described in detail here. It is worth noting that the electronic device 2900 does not necessarily have to include all the components shown in FIG29 ; in addition, the electronic device 2900 may also include components not shown in FIG29 , which may refer to the prior art.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a repeater, the program enables a computer to execute the repeater indication method described in the embodiment of the first aspect in the repeater.
  • An embodiment of the present application further provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the indication method of the repeater described in the embodiment of the first aspect in the repeater.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a network device, the program enables a computer to execute the method for indicating a repeater described in the embodiment of the third aspect in the network device.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method for indicating a repeater described in the embodiment of the third aspect in a network device.
  • the above devices and methods of the present application can be implemented by hardware, or by hardware combined with software.
  • the present application relates to such a computer-readable program, which, when executed by a logic component, enables the logic component to implement the above-mentioned devices or components, or enables the logic component to implement the various methods or steps described above.
  • the logic component is, for example, a field programmable logic component, a microprocessor, a processor used in a computer, etc.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to various software modules of the computer program flow or to various hardware modules.
  • These software modules may correspond to the various steps shown in the figure, respectively.
  • These hardware modules may be implemented by solidifying these software modules, for example, using a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the software module may be located in a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to a processor so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and the storage medium may be located in an ASIC.
  • the software module may be stored in a memory of a mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • the functional blocks described in the drawings and/or one or more combinations of functional blocks it can be implemented as a general-purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof for performing the functions described in the present application.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • it can also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a method for indicating a repeater comprising:
  • the repeater determines (or defaults to or is expected to) repeat in the first frequency domain range unless first information is received from the network device; and/or
  • the repeater determines (or defaults to or is expected to) not to repeat in the second frequency domain unless it receives second information from the network device.
  • a method for indicating a repeater comprising:
  • the repeater repeats in the first frequency domain unless first information is received from the network device;
  • the repeater does not repeat in the second frequency domain unless second information is received from the network device.
  • a method for indicating a repeater comprising:
  • the repeater is expected (or determined or defaulted) to be turned on in the first frequency domain range unless first information is received from the network device; and/or
  • the repeater is expected (or determined or defaulted) to be turned OFF in the second frequency range unless second information is received from the network device.
  • a method for indicating a repeater comprising:
  • the repeater is expected (or determined or defaulted) to be in an ON state in the first frequency domain range unless first information is received from the network device;
  • the repeater is expected (or determined or defaulted) to be in an OFF state in the second frequency domain unless second information is received from the network device.
  • a method for indicating a repeater comprising:
  • the repeater repeats by default (or determines or is expected) in the first frequency domain range; and/or
  • the repeater does not repeat in the second frequency domain by default (or determined or expected).
  • the repeater receives first information indicating that the repeater does not forward at least for a first time, and at least one forwarding frequency of the repeater is within the first frequency domain.
  • the forwarder does not forward at the first time according to the first information.
  • the repeater receives third information
  • the forwarder starts forwarding from a third time point according to the third information.
  • the duration, period and offset of the first time are the duration, period and offset of the first time.
  • the first information is carried by a physical downlink control channel (PDCCH) and/or a medium access control (MAC) control element (CE) and/or a radio resource control (RRC) signaling.
  • PDCCH physical downlink control channel
  • MAC medium access control
  • RRC radio resource control
  • the first information further indicates at least one of the following of the first time: a period, an offset, a start time point, an end time point, and a duration.
  • the first information further indicates at least one of the following of the first time: a starting time point, an ending time point, and a duration.
  • the repeater receives second information for instructing the repeater to forward at least at a second time, and at least one forwarding frequency of the repeater is within the second frequency domain.
  • the forwarder forwards at the second time according to at least the second information.
  • the repeater receives fourth information
  • the forwarder stops forwarding from a fourth time point according to the fourth information.
  • the duration, period and offset of the second time are the duration, period and offset of the second time.
  • the second information further indicates at least one of the following of the second time: a period, an offset, a start time point, an end time point, and a duration.
  • the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • a method for indicating a repeater comprising:
  • the network device sends first information to the repeater; wherein the repeater determines (or defaults to or is expected to) forward in a first frequency domain range unless the first information is received; and/or,
  • the network device sends second information to the repeater; wherein the repeater determines (or is defaulted or expected) not to forward in the second frequency domain range unless the second information is received.
  • the network device sends third information to the forwarder; wherein the forwarder starts forwarding from a third time point according to the third information.
  • PDCH physical downlink control channel
  • RRC radio resource control
  • the first information further indicates at least one of the following of the first time: a period, an offset, a start time point, an end time point, and a duration.
  • the first information further indicates at least one of the following of the first time: a starting time point, an ending time point, and a duration.
  • the network device sends fourth information to the forwarder; wherein the forwarder stops forwarding from a fourth time point according to the fourth information.
  • the second information further indicates at least one of the following of the second time: a period, an offset, a start time point, an end time point, and a duration.
  • the second information further indicates at least one of the following of the second time: a starting time point, an ending time point, and a duration.
  • a repeater comprising a memory and a processor, wherein the memory stores a computer program, and the processor is configured to execute the computer program to implement the indication method of the repeater as described in any one of Notes 1 to 34.
  • a network device comprising a memory and a processor, wherein the memory stores a computer program, and the processor is configured to execute the computer program to implement the indication method of the repeater as described in any one of Notes 35 to 54.

Abstract

本申请实施例提供了一种转发器的指示方法、转发器和网络设备。所述方法包括:转发器在第一频域范围确定(或默认或被期望)进行转发,除非接收到来自网络设备的第一信息;和/或,所述转发器在第二频域范围确定(或默认或被期望)不进行转发,除非接收到来自所述网络设备的第二信息。

Description

转发器的指示方法、转发器和网络设备 技术领域
本申请涉及通信技术领域。
背景技术
与传统的3G(第三代移动通信技术)、4G(第四代移动通信技术)系统相比,5G(第五代移动通信技术)系统能够提供更大的带宽以及更高的数据率,并且能够支持更多类型的终端和垂直业务。
为此,除了传统电信频谱以外,5G系统也被部署在新频谱上,新频谱的频率明显高于3G和4G系统使用的传统电信频谱。例如,5G系统可以部署在毫米波波段(28GHz,38GHz,60GHz以及以上等等)。
根据无线信号的传播规律,其所在载波的频率越高、信号在传播过程中遇到的衰落越严重。因此,实际部署中,5G系统比以往的3G、4G系统更需要小区覆盖增强方法,特别是部署在毫米波频段的5G系统。如何更好地增强5G系统小区覆盖,成为亟待解决的问题之一。
另一方面,相比于传统的3G和4G系统,5G系统采用了更为高级的多天线传播技术以及相应的传输设备。为了支持更为灵活和复杂的业务,5G系统的复杂度高于3G和4G系统。相应地,5G系统的耗电也高于3G和4G系统。如何降低5G系统的功耗,节省能源开销,也是亟待解决的问题之一。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
针对上述问题的至少之一,本申请实施例提供了一种转发器的指示方法、转发器和网络设备。转发器具有与网络设备通信的能力,能够在网络配置下更好地加强信号覆盖并应对环境变化(例如,在转发中减少对其它网络设备和终端设备的干扰等),此外还能够降低系统功耗和节省能源开销。
根据本申请实施例的一方面,提供一种转发器的指示方法,包括:
转发器在第一频域范围确定(或默认或被期望)进行转发,除非接收到来自网络设备的第一信息;和/或
所述转发器在第二频域范围确定(或默认或被期望)不进行转发,除非接收到来自所述网络设备的第二信息。
根据本申请实施例的另一方面,提供一种转发器,包括:
第一确定单元,其在第一频域范围确定进行转发,除非接收到来自网络设备的第一信息;和/或
第二确定单元,其在第二频域范围确定不进行转发,除非接收到来自所述网络设备的第二信息。
根据本申请实施例的另一方面,提供一种转发器的指示方法,包括:
网络设备向转发器发送第一信息;其中,转发器在第一频域范围确定(或默认或被期望)进行转发,除非接收到所述第一信息;和/或,
所述网络设备向所述转发器发送第二信息;其中,所述转发器在第二频域范围确定(或默认或被期望)不进行转发,除非接收到所述第二信息。
根据本申请实施例的另一方面,提供一种网络设备,包括:
第一发送单元,其向转发器发送第一信息;其中,转发器在第一频域范围确定(或默认或被期望)进行转发,除非接收到所述第一信息;和/或,
第二发送单元,其向所述转发器发送第二信息;其中,所述转发器在第二频域范围确定(或默认或被期望)不进行转发,除非接收到所述第二信息。
根据本申请实施例的另一方面,提供一种通信系统,包括:
网络设备,其向转发器发送第一信息和/或第二信息;以及
转发器,其在第一频域范围确定进行转发除非接收到所述第一信息,和/或,在第二频域范围确定不进行转发除非接收到所述第二信息。
本申请实施例的有益效果之一在于:转发器默认(或确定或被期望)在第一频域范围进行转发,和/或,转发器默认(或确定或被期望)在第二频域范围不进行转发。由此,能够减少不必要的干扰,提高整个网络的传输效率;此外还能够降低系统功耗和节省能源开销。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本申请实施例的应用场景的一示意图;
图2是本申请实施例的NCR的一示意图;
图3是本申请实施例的NCR转发的一示意图;
图4是本申请实施例的NCR转发的另一示意图;
图5是本申请实施例的转发器的指示方法的一示意图;
图6是本申请实施例的第一信息和第一时间的一示例图;
图7是本申请实施例的第一信息和第一时间的另一示例图;
图8是本申请实施例的第一信息和第一时间的另一示例图;
图9是本申请实施例的第一信息和第一时间的另一示例图;
图10是本申请实施例的第一信息和第一时间的另一示例图;
图11是本申请实施例的第一信息和第一时间的另一示例图;
图12是本申请实施例的第一信息和第一时间的另一示例图;
图13是本申请实施例的第一信息和第一时间的另一示例图;
图14是本申请实施例的第一信息和第一时间的另一示例图;
图15是本申请实施例的第一信息和第一时间的另一示例图;
图16是本申请实施例的第二信息和第二时间的一示例图;
图17是本申请实施例的第二信息和第二时间的另一示例图;
图18是本申请实施例的第二信息和第二时间的另一示例图;
图19是本申请实施例的第二信息和第二时间的另一示例图;
图20是本申请实施例的第二信息和第二时间的另一示例图;
图21是本申请实施例的第二信息和第二时间的另一示例图;
图22是本申请实施例的第二信息和第二时间的另一示例图;
图23是本申请实施例的第二信息和第二时间的另一示例图;
图24是本申请实施例的第二信息和第二时间的另一示例图;
图25是本申请实施例的第二信息和第二时间的另一示例图;
图26是本申请实施例的转发器的一示意图;
图27是本申请实施例的转发器的指示方法的另一示意图;
图28是本申请实施例的网络设备的一示意图;
图29是本申请实施例的电子设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A, LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、收发节点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),IAB宿主等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
为了增强覆盖,3GPP Rel-17研究中引入RF repeater来转发终端设备(UE)和网络设备(基站)之间的传输。对于网络设备和终端设备来说,Rel-17中引入的RF repeater是透明的,即网络设备和终端设备并不知道RF repeater的存在。
图1是本申请实施例的应用场景的一示意图,如图1所示,为了方便说明,以一个网络设备(例如5G基站gNB)101、一个转发器(Repeater)102和一个终端设备(例如UE)103为例进行说明,本申请不限于此。
如图1所示,终端设备103与网络设备101建立连接并与其通信。为了增加通信质量,终端设备103与网络设备101之间传输的信道/信号经由转发器102进行转发。网络设备101,终端设备103与转发器102之间的信道/信号交互可采用基于波束的接收和发送方法。波束可以为固定波束或者自适应波束。
如图1所示,网络设备101可以具有小区/载波,网络设备101、转发器102和终端设备103可以在该小区进行转发/通信;但本申请不限于此,例如网络设备101还可以具有其他小区/载波。
在本申请实施例中,网络设备和终端设备之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
传统转发器不具备与网络设备通信的能力,因此,传统转发器虽然能够帮助增强信号强度,但是不够灵活而无法应对复杂的环境变化,将传统转发器部署在5G网络(特别是部署在高频的5G网络)中可能引起对其它网络设备和/或终端设备的不必要的干扰,进而降低整个网络的传输效率(例如,吞吐量)。为了使得转发器的转发能够更为灵活以适应5G网络的特点,网络设备需要对转发器进行协助,并能够根据网络情况对转发器的转发进行配置。
3GPP Rel-18为了增强NR的覆盖,提出网络控制转发器(NCR,Network-controlled repeater)的方案,为网络设备与终端设备之间的信号进行转发。NCR通过控制链路可以与网络设备进行直接通信以辅助NCR的转发操作。
图2是本申请实施例的NCR的一示意图。如图2所示,NCR 202被配置在网络设备201和终端设备203之间。NCR 202可以包括如下两个模块/部件:转发器的移动终端(NCR-MT)和转发器的转发模块(NCR-Fwd);NCR-Fwd也可称为NCR-RU的路由单元(NCR-RU)。NCR-MT用于与网络设备通信,NCR-Fwd用于转发往来于网络设备和终端设备之间的信号。
如图2所示,本申请实施例的NCR可以具有3个链路:控制链路(control link,C-link),用于转发的回传链路(backhaul link,BH link)和接入链路(access link,AC link)。其中,C-link用于NCR与网络设备之间的通信。BH link用于转发器从网络设备接收待转发信号,或者,向网络设备转发来自AC链路(例如来自终端设备)的信号。AC link用于转发器(例如向终端设备)转发来自网络设备的信号,或者,接收用于转发至BH链路的信号(例如,来自终端设备的待转发信号)。
发明人认识到,5G系统相对于以前的3G、4G系统等更为复杂,例如,能够支持更多种类的业务和终端类型,又例如,需要被部署在多种频段和场景等。与传统的RF repeater相比,NCR需要具备基于波束收发(转发)的功能。
图3是本申请实施例的NCR转发的一示意图。如图3所示,转发器在AC链路使用发送波束将来自网络设备的信号转发出去。图4是本申请实施例的NCR转发的另一示意图。如图4所示,转发器在AC链路使用接收波束来接收用于转发给网络设备的信号。
发明人认识到,5G系统采用了更高级的MIMO技术,特别是在FR2频段,5G基站能够赋型更窄的波束,并采用波束扫描(beam swiping)服务小区内的终端设备。对于工作在FR1频段的NCR设备,由频段本身特性决定的,网络设备、NCR设备以及被服务的终端设备所支持的波束总数有限。如何基于不同频率范围的无线信号传播特性,对工作在不同频率范围的NCR设备进行设计,以更好地达到省电节能和高效传输的综合效果,成为亟待解决的问题。
下面结合附图对本申请实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。本申请实施例的转发器可以工作在第一频率范围(FR1),或者,也可以工作在第二频率范围(FR2),还可以工作在第一频率范围(FR1)和第二频率范围(FR2);关于FR1和FR2的具体内容可以参考相关技术。
在本申请实施例中,转发器可以与网络设备通信,转发器可以接收网络设备发送的通信信道/信号,并进行信道/信号的解调/解码,由此获得网络设备发给该转发器的信息,以下将该信号处理过程称为“通信”。转发器还可以转发网络设备和终端设备之间传输的信道/信号,转发器不对该信道/信号进行解调/解码,可以进行放大等处理,以下将该信号处理过程称为“转发”。将“通信”和“转发”合称为“传输”。此外,“在AC链路上进行发送或进行接收”可以等价于“在AC链路上进行转发”,“在控制链路上进行发送或进行接收”可以等价于“在控制链路上进行通信”。以上术语仅为了方便说明, 并不构成对本申请的限制。
为方便起见,可以将网络设备和转发器之间或者第三设备(例如终端设备)和转发器之间进行直接通信的信道/信号称为通信信号,在发送通信信号时,转发器需要进行编码和/或调制,在接收通信信号时,转发器需要进行解码和/或解调。此外,可以将经由转发器转发的信道/信号称为转发信号,转发器对转发信号可以进行放大等信号处理,但不会进行解码和/或解调。
在本申请实施例中,转发器还可以表述为直放站、射频转发器、中继器、射频中继器;或者也可以表述为直放站节点、转发器节点、中继器节点;或者还可以表述为智能直放站、智能转发器、智能中继器、智能直放站节点、智能转发器节点、智能中继器节点,等等,本申请不限于此。
在本申请实施例中,网络设备可以是终端设备的服务小区的设备,也可以是转发器所在小区的设备,还可以是转发器的服务小区的设备,也可以是转发器的父节点(Parent node),本申请对该转发器的名称不做限制,只要能实现上述功能的设备,都包含于本申请的转发器的范围内。
在本申请实施例中,波束(beam)也可以表述为波瓣、参考信号(RS,reference signal)、传输配置指示(TCI,transmission configuration indication)、空域滤波器(spatial domain filter)等;或者,也可以表述为波束索引、波瓣索引、参考信号索引、传输配置指示索引、空域滤波器索引等。上述参考信号例如为信道状态信息参考信号(CSI-RS,channel state Information reference signal)、探测参考信号(SRS,sounding reference signal)、供转发器使用的RS、由转发器发送的RS等。上述TCI也可以表述为TCI状态(state)。本申请实施例不限于此。
第一方面的实施例
本申请实施例提供一种转发器的指示方法,从转发器一侧进行说明。
图5是本申请实施例的转发器的指示方法的一示意图,如图5所示,该方法包括:
501,转发器在第一频域范围确定(或默认或被期望)进行转发,除非接收到来自网络设备的第一信息;和/或
502,所述转发器在第二频域范围确定(或默认或被期望)不进行转发,除非接收到来自所述网络设备的第二信息。
值得注意的是,以上附图5仅对本申请实施例进行了示意性说明,但本申请不限于 此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图5的记载。
在一些实施例中,转发器在第一频域范围转发,除非接收到来自网络设备的第一信息;和/或,所述转发器在第二频域范围不转发,除非接收到来自所述网络设备的第二信息。
例如,如果没有接收到第一信息,转发器在第一频域范围默认具有转发的能力,至于实际上是否转发信号,可以根据实际的调度或指示进行。或者,如果没有收到第一信息,转发器在第一频域范围在已确定的转发频带上按照已经确定的转发方法进行转发。所述已经确定的转发频带和/或已经确定的转发方法可以在出厂前设定、设备安装时设定、由OAM配置和/或由网络设备配置。但本申请不限于此。
再例如,如果没有接收到第二信息,转发器在第二频域范围默认不具有转发的能力,例如转发模块被关闭。或者,如果没有接收到第二信息,转发器在第二频域范围不被允许进行转发或者不实施转发。
在一些实施例中,转发器在第一频域范围被期望(或确定或默认)为开启(ON),除非接收到来自网络设备的第一信息;和/或,所述转发器在第二频域范围确定(或默认或被期望)为关闭(OFF),除非接收到来自所述网络设备的第二信息。
在一些实施例中,转发器在第一频域范围被期望(或确定或默认)处于开启(ON)状态,除非接收到来自网络设备的第一信息;和/或,所述转发器在第二频域范围确定(或被默认或被期望)处于关闭(OFF)状态,除非接收到来自所述网络设备的第二信息。
在一些实施例中,转发器在第一频域范围默认(或确定或被期望)进行转发;和/或,转发器在第二频域范围默认(或确定或被期望)不进行转发。
以上示意性对本申请的转发器的一些行为进行了说明,但本申请不限于此,例如以上描述可以相互替换或者相互结合。
在本申请实施例中,转发器在第一频域范围默认(或确定或被期望)进行转发;和/或,转发器在第二频域范围默认(或确定或被期望)不进行转发。由此,能够减少不必要的干扰,提高整个网络的传输效率;此外还能够降低系统功耗和节省能源开销。
在本申请实施例中,在默认的ON状态下,至少转发模块被开启或者开始工作或者能够转发或者转发;在默认的OFF状态下,至少转发模块被关闭或者暂停工作或者停止转发或者不转发。
例如,处于默认ON状态的转发器的转发模块按照已确定的转发波束在已确定的转发频段进行转发;又例如,处于默认ON状态的转发器的转发模块按照已确定的转发波束在已确定的转发频段和已确定的时间进行转发。例如,处于默认的OFF状态的转发器的转发模块停止工作(随时可以开始转发);又例如,处于默认的OFF状态的转发器中仅转发模块停止工作;又例如,处于默认的OFF状态的转发器中仅转发模块关闭等等。但本申请不限于此。
在一些实施例中,上述转发器被期望(或确定或默认)为开启(ON)可以是所述转发器的转发部件或转发模块(NCR-Fwd)被期望为开启,也可以是转发模块和通信模块均被期望为开启等等。上述转发器被期望(或确定或默认)为关闭(OFF)可以是所述转发器的转发部件或转发模块(NCR-Fwd)被期望为关闭,也可以是转发模块和通信模块均被期望为关闭等等。或者说,转发器的转发模块和通信模块的开启和/或关闭可以一致,也可以不一致。但本申请不限于此。
在一些实施例中,在默认的ON状态下,NCR在FR1在已确定的转发频带上按照已经确定的转发方法进行转发。考虑到FR1的频谱特性以及在FR1部署的网络的特点,使NCR处于这种默认的ON状态有助于节省网络设备的指示开销,提高频谱使用效率,进而增加网络传输速率。
在一些实施例中,在默认的OFF状态下,NCR不对信号进行转发。但是,NCR处于开机或者正常上电的状态,NCR转发模块停止转发。考虑到FR2的频谱特性以及在FR2部署的网络的特点,使NCR处于这种默认的OFF状态的主要目的之一是在网络设备不为NCR所覆盖的终端设备服务的时候,减少NCR对周围设备的不必要的干扰。
在本申请实施例中,处于OFF状态的转发器不转发(或转发器的转发模块不转发)。例如,转发器不转发是不做以下至少一项:
--在BH链路接收来自基站的信号;
--在AC链路发送经过放大的、在BH链路接收到的信号;
--在AC链路接收信号;
--在BH链路发送经过放大的、在AC链路接收到的信号。
在一些实施例中,所述第一频域范围为FR1,所述第二频域范围为FR2;但本申请不限于此。关于FR1和FR2的具体内容可以参考相关技术。例如,第一信息是至少应用于FR1的、至少用于指示OFF的信息;第二信息是至少应用于FR2的、至少用于指示ON的信息。
在一些实施例中,所述第一信息至少用于指示所述转发器暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态,所述第二信息至少用于指示所述转发器转发或进入/开始/使能开启(ON)状态。
在一些实施例中,所述第一信息至少用于指示转发频率在所述第一频域范围的所述转发器暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态,所述第二信息至少用于指示转发频域在所述第二频域范围的所述转发器转发或进入/开始/使能开启(ON)状态。
在一些实施例中,所述第一信息至少用于指示转发频率在所述第一频域范围的所述转发器在第一时间暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态,所述第二信息至少用于指示转发频域在所述第二频域范围的所述转发器在第二时间转发或进入/开始/使能开启(ON)状态。
以下针对至少一个转发频率在第一频率范围(FR1)内的转发器,对第一信息和第一时间进行说明。
在一些实施例中,第一时间默认为转发器进行转发的一段时间。
例如,工作在FR1下的NCR默认在第一时间处于ON状态,除非收到第一信息指示其转为OFF状态或者暂停转发或者指示其在第一时间不转发。
再例如,工作在FR1下的NCR默认处于ON状态,直到该NCR收到来自基站的指示,指示其不转发或者处于OFF状态(例如,通过第一信息)。这种情况下,可以将第一时间理解为第一信息被执行之后的时间段。
再例如,在有基站具体指示之前,工作在FR1下的NCR在某一个时间(例如,第一时间)默认处于ON状态。除非NCR在该第一时间之前收到了来自基站的第一信息,指示其在该第一时间不转发或者指示其在第一时间为OFF状态,NCR在第一时间处于ON状态。
在一些实施例中,所述转发器接收用于指示转发器至少在所述第一时间不转发的第一信息,所述转发器的至少一个转发频率在所述第一频域范围。所述转发器根据所述第一信息在所述第一时间不转发。
在一些实施例中,所述转发器根据所述第一信息能够在所述第一时间不转发。
例如,在没有其他信息指示的情况下,转发器根据第一信息在第一时间不转发。再例如,在还接收到其他信息且该其他信息的优先级高于第一信息或者该其他信息改写了第一信息的指示的情况下,转发器至少根据该其他信息在第一时间转发或者不转发。
在一些实施例中,转发器在第一时间之前未接收到第一信息的情况下,在所述第一时间进行转发。
在一些实施例中,转发器在第一时间之前接收到第一信息的情况下,在所述第一时间不转发。
在一些实施例中,所述第一时间可以由所述第一信息指示。
在一些实施例中,所述第一时间为非周期性的一段时间;所述第一信息还指示所述第一时间的如下至少之一:起始时间点、结束时间点、持续时长。
在一些实施例中,所述第一时间为周期性的一段时间;所述第一信息还指示所述第一时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,第一信息可以显式指示第一时间。
例如,第一信息可以显式指示一个时间段,该时间段至少包含第一时间;该时间段可以是周期性的。第一信息可以指示周期和偏移量,和/或,起始时间和持续时间。
再例如,一个第一信息可以指示一个时间点,该时间段从该时间点开始,直至基站指示结束为止。该时间段的结束时间点可以由另一个第一信息指示,也可以由其它信息指示。
在一些实施例中,第一信息可以隐式指示第一时间。
例如,第一信息也可以隐式指示一个时间段,该时间段至少包含第一时间。例如,第一信息为NCR-MT的DRX指示,第一时间为NCR-MT的休眠时间。例如,第一信息为功率指示信息,指示NCR Fwd的转发功率在第一时间为零。
在又一些实施例中,所述第一时间由转发器根据其它信息和/或预定义规则确定。例如,转发器确定转发器通信模块的关闭时间为所述第一时间,或者,根据高层定时器确定第一时间的起始和/或终止等等。
图6是本申请实施例的第一信息和第一时间的一示例图。如图6的上半部分所示,如果NCR在第一时间之前没有收到第一信息,NCR在该第一时间处于ON状态,NCR在该第一时间进行转发。如图6的下半部分所示,如果NCR在第一时间之前收到了来自基站的第一信息,指示其在该第一时间不转发,则NCR确定在该第一时间根据该第一信息不转发(如图6中的OFF所示)。
在一些实施例中,第一信息可以指示转发器在周期性的第一时间不转发。
图7是本申请实施例的第一信息和第一时间的另一示例图。如图7所示,在接收到基站发送的第一信息之后,转发器可以在周期性的第一时间不转发(如OFF所示),在 其他时间进行转发(如ON所示)。
在一些实施例中,第一信息可以指示周期性的第一时间不转发(如OFF所示)和指示周期性的ON时间。
图8是本申请实施例的第一信息和第一时间的另一示例图。如图8所示,该第一信息指示ON/OFF时间,NCR按照第一信息在周期性的第一时间不转发,或者,NCR在周期性的第一时间转为OFF状态,NCR按照第一信息在周期性的第五时间转发,或者,NCR在周期性的第五时间转发为ON状态。图8所示第一时间位于第五时间之前。在具体实施中,第一时间也可以位于第五时间之后。本申请不以此为限制。
例如,当该NCR服务的终端设备数据量不大的时候,基站可以指示NCR周期性地转发和不转发。在这种周期性的时间里,当NCR不进行转发的时候,可以适当关闭转发部件以及相应的控制部件,以便达到更好的节能效果。指示周期性ON/OFF的第一信息,可以由动态信令承载也可以由半静态信令承载。
在一些实施例中,所述转发器在所述第一时间之前的N个符号和/或M个时隙还未接收到所述第一信息的情况下,在所述第一时间进行转发;N和M均为大于或等于0的整数。
例如,在第一时间之前定义最小间隔(interval/gap)或者最小处理时延。
图9是本申请实施例的第一信息和第一时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图9中所示的第一间隔。如图9所示,如果NCR(NCR-MT)在第一时间开始前的第一间隔之前收到第一信息,NCR-Fwd按照第一信息不转发,或者,NCR-Fwd转为OFF状态。
也就是说,第一信息的到达时刻与第一时间的起始时刻之间大于或等于最小间隔,NCR在第一时间为OFF。
图10是本申请实施例的第一信息和第一时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图10中所示的第一间隔。如图10所示,如果NCR(NCR-MT)在第一时间开始前的第一间隔之内收到第一信息,NCR-Fwd不按照第一信息指示不转发,或者,NCR-Fwd不转为OFF状态。
也就是说,第一信息的到达时刻与第一时间的起始时刻之间小于最小间隔,NCR不执行第一信息的指示,即NCR在第一时间仍为ON。
图11是本申请实施例的第一信息和第一时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图11中所示的第一间隔。如图11所示,如果NCR(NCR-MT) 在第一时间开始前的第一间隔之前收到第一信息,NCR-Fwd按照第一信息不转发,或者,NCR-Fwd在第一时间转为OFF状态。
图12是本申请实施例的第一信息和第一时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图12中所示的第一间隔。如图12所示,如果NCR(NCR-MT)在第一时间开始前的第一间隔之前收到第一信息,NCR-Fwd按照第一信息在周期性的第一时间不转发,或者,NCR-Fwd在周期性的第一时间转为OFF状态。
由此,定义或规定最小时间间隔有助于规范终端设备和基站的实现,为不同厂商的基站设备和终端设备联合调试提供便利,由此加快产品更新换代为市场提供更快更好的服务。
图13是本申请实施例的第一信息和第一时间的另一示例图。如图13所示,可以没有最小间隔的要求。在这种情况下,可以由基站保证:第一信息的到达时刻与第一时间的起始时刻之间的间隔足够NCR-MT对接收到的第一信息进行解调/解码以及NCR-Fwd准备执行第一信息所指示的不转发或者进入所指示的OFF状态。
由此,由基站保证信息的接收和信息所指示内容的执行之间的时间间隔,有助于为基站产品和终端产品的实现提供更大的自由度。对于硬件计算能力强、算法先进的设备,如此可以允许其发挥最大能力,使得采用该设备部署的网络处理时延减小、有效传输时间增加,进而提高该网络的传输效率。
在一些实施例中,第一信息指示从第一时间点开始的包括所述第一时间的一段时间内所述转发器不能够转发。所述第一时间为从第一时间点开始的一段时间。
图14是本申请实施例的第一信息和第一时间的另一示例图。如图14所示,如果NCR(NCR-MT)在第一时间开始前收到第一信息,NCR-Fwd按照第一信息的指示在第一时间点开始进入OFF状态,即不能够进行转发。
在一些实施例中,所述转发器还可以接收第三信息;以及所述转发器根据所述第三信息从第三时间点开始转发。
图15是本申请实施例的第一信息和第一时间的另一示例图。如图15所示,如果NCR(NCR-MT)在第一时间开始前收到第一信息,NCR-Fwd按照第一信息的指示在第一时间点开始进入OFF状态,即不能够进行转发。如果NCR(NCR-MT)在第一时间点之后收到第三信息,NCR-Fwd按照第三信息的指示在第三时间点开始进入ON状态,即能够进行转发。
在一些实施例中,第一信息可以是显式信息(explicit information),也可以是隐式信 息(implicit information)。
例如,显式的第一信息可以用于指示NCR在第一时间点进入OFF状态,如图14和15所示。再例如,显式的第一信息可以用于指示NCR在第一时间进入(或处于)OFF状态,如图6和11所示。再例如,显式的第一信息可以用于指示NCR在第一时间不转发。
在一些实施例中,所述第一信息为动态信令和/或半静态信令。
在一些实施例中,所述第一信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
例如,第一信息可以是用于动态指示NCR不转发的信息。
--例如,第一信息可以是DCI,指示NCR不转发;例如,第一信息可以是专用信令,指示NCR不转发;再例如,第一信息可以重用用于指示NCR转发的信令(该信令至少应用于FR2),例如预定义一个field的固定取值,以此指示NCR不转发,如果工作在FR1的NCR收到该信令,且该field取值为预先约定的固定值,则该NCR在该信令相应的第一时间不转发。再例如,第一信息可以重用用于指示NCR转发波束的信令(该信令至少应用于FR2),通过最小或最大波束序号或者预定义的波束序号指示NCR不转发,则该工作在FR1的NCR在这些波束相应的第一时间不转发等等。
--又例如,第一信息可以是DCI,指示NCR功率;其中,如果被指示的功率为零,NCR接收到该DCI后,在与第一信息相应的第一时间不转发;
--还例如,第一信息指示某一灵活时间单位仍为灵活时间单位,NCR在该灵活时间单位不转发。
再例如,第一信息还可以是半静态/半持续信息,至少用于指示NCR不转发。
--例如,第一信息用于半静态地指示NCR处于OFF的时间,该OFF时间(第一时间)可以是周期性的或者非周期的。
--又例如,第一信息用于半静态/半持续指示NCR不转发的时间。例如,基站为UE配置了DRX模式,在终端设备处于休眠时间的时候,相应地NCR不转发。
--还例如,第一信息为半静态信息,指示NCR周期性的转发(ON)时间和不转发(OFF)时间。
在一些实施例中,上述半静态的第一信息可以通过MAC CE或者RRC信令指示/承载。在另一些实施例中,上述半持续的第一信息可以通过MAC CE或者RRC先配置一种或者大于一种的配置信息,随后通过DCI或者MAC CE或者其它信号激活其中的一 种或者几种。
以下针对至少一个转发频率在第二频率范围(FR2)内的转发器,对第二信息和第二时间进行说明。
在一些实施例中,第二时间默认为转发器不进行转发的一段时间。
例如,工作在FR2的NCR默认在第二时间处于OFF状态,除非收到第二信息指示其转为ON状态或者指示其在第二时间进行转发。由于这种OFF状态下的转发器可以随时被第二信息指示而变更为ON状态,这种默认的OFF状态可以是一种动态OFF状态。由此,采用动态OFF状态,可以根据网络设备的实时调度,及时地调整转发器的状态(转发或者不转发)。
再例如,工作在FR2的NCR默认处于OFF状态,直到该NCR收到来自基站的指示,指示其进行转发或者处于ON状态(例如,通过第二信息)。
再例如,在有基站具体指示之前,工作在FR2的NCR在某一个时间(例如,第二时间)默认处于OFF状态。除非NCR在该第二时间之前收到了来自基站的第二信息,指示其在该第二时间进行转发或者指示其在第二时间为ON状态,NCR在第二时间处于OFF状态。
在一些实施例中,所述转发器接收用于指示所述转发器至少在所述第二时间转发的第二信息,所述转发器的至少一个转发频率在所述第二频域范围。所述转发器根据所述第二信息在所述第二时间进行转发。
在一些实施例中,所述转发器根据所述第二信息能够在所述第二时间转发。
例如,在没有其他信息指示的情况下,转发器根据第二信息在第二时间进行转发。再例如,在还接收到其他信息且该其他信息的优先级高于第二信息或者该其他信息改写了第二信息的指示的情况下,转发器根据该其他信息在第二时间不转发或者转发。
在一些实施例中,转发器在第二时间之前未接收到第二信息的情况下,在所述第二时间不进行转发。
在一些实施例中,转发器在第二时间之前接收到第二信息的情况下,在所述第二时间进行转发。
在一些实施例中,所述第二时间可以由所述第二信息指示。
在一些实施例中,所述第二时间为非周期性的一段时间;所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
在一些实施例中,所述第二时间为周期性的一段时间;所述第二信息还指示所述第 二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,第二信息可以显式地指示第二时间。
例如,第二信息可以显式指示一个时间段,该时间段至少包含第二时间;该时间段可以是周期性的。第二信息可以指示周期和偏移量,和/或,起始时间和持续时间。
再例如,一个第二信息可以指示一个时间点,该时间段从该时间点开始,直至基站指示结束为止。该时间段的结束时间点可以由另一个第二信息指示,也可以由其它信息指示。
在一些实施例中,第二信息可以隐式地指示第二时间。
例如,第二信息也可以隐式指示一个时间段,该时间段至少包含第二时间。例如,第二信息为NCR-MT的DRX指示,第二时间为NCR-MT的开启时间。例如,第二信息为功率指示信息,指示NCR Fwd的转发功率在第一时间为非零。
在又一些实施例中,所述第二时间由转发器根据其它信息和/或预定义规则确定。例如,转发器确定转发器通信模块的开启时间为所述第二时间,或者,根据高层定时器确定第二时间的起始和/或终止等等。
图16是本申请实施例的第二信息和第二时间的一示例图。如图16的上半部分所示,如果NCR在第二时间之前没有收到第二信息,NCR在该第二时间处于OFF状态,NCR在该第二时间不进行转发。如图16的下半部分所示,如果NCR在第二时间之前收到了来自基站的第二信息,指示其在该第二时间进行转发,则NCR确定在该第二时间根据该第二信息进行转发(如图16中的ON所示)。
在一些实施例中,第二信息可以指示转发器在周期性的第二时间进行转发。
图17是本申请实施例的第二信息和第二时间的另一示例图。如图17所示,在接收到基站发送的第二信息之后,转发器可以在周期性的第二时间进行转发(如ON所示),在其他时间不进行转发(如OFF所示)。
在一些实施例中,第二信息除指示周期性的第二时间转发(如ON所示)以外,还可以指示周期性的OFF时间
图18是本申请实施例的第二信息和第二时间的另一示例图。如图18所示,该第二信息指示ON/OFF时间,NCR按照第二信息在周期性的第二时间转发,或者,NCR在周期性的第二时间转为ON状态,或者,NCR按照第二信息在周期性的第六时间不转发,或者,NCR在周期性的第六时间转发为OFF状态。图18所示第二时间位于第六时间之前。在具体实施中,第二时间也可以位于第六时间之后。本申请不以此为限制。
例如,当该NCR服务的终端设备数据量不大的时候,基站可以指示NCR周期性地转发和不转发。在这种周期性的时间里,当NCR不进行转发的时候,可以适当关闭转发部件以及相应的控制部件,以便达到更好的节能效果。指示周期性ON/OFF的第二信息,可以由动态信令承载也可以由半静态信令承载。
在一些实施例中,图8所示的应用于FR1的ON/FF指示与图18所示的应用于FR2的ON/OFF指示由同一信令指示。接收到该信令后,NCR根据其转发频带在FR1或者FR2按照该信令所指示的时间(和转发方式等)进行转发或者不转发。通过一个信令进行指示,能够简化系统设计和产品实现。
在又一些实施例中,图8所示的应用于FR1的ON/FF指示与图18所示的应用于FR2的ON/OFF指示可以由不同信令指示。例如,NCR接收到应用于FR1的信令时,按照该信令所指示的时间(和转发方式等)在其位于FR1的转发频带进行转发或者不转发;NCR接收到应用于FR2的信令时,按照该信令所指示的时间(和转发方式等)在其位于FR2的转发频带进行转发或者不转发。通过不同信令指示应用于FR1和FR2的转发时间和/或转发行为,有助于简化产品实现逻辑。此外,通过不同信令指示应用于FR1和FR2的转发时间和/或转发行为,还有助于支持高级NCR的实现,例如一个NCR设备可以同时有多个转发频带,其中一部分位于FR1另外一部分位于FR2。
在一些实施例中,所述转发器在所述第二时间之前的N个符号和/或M个时隙还未接收到所述第二信息的情况下,在所述第二时间不进行转发;N和M均为大于或等于0的整数。
例如,在第二时间之前定义最小间隔(interval/gap)或者最小处理时延。
图19是本申请实施例的第二信息和第二时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图19中所示的第二间隔。如图19所示,如果NCR(NCR-MT)在第二时间开始前的第二间隔之前收到第二信息,NCR-Fwd在第二时间按照第二信息进行转发,或者,NCR-Fwd在第二时间转为ON状态。
也就是说,第二信息的到达时刻与第二时间的起始时刻之间大于或等于最小间隔,NCR在第二时间为ON。
图20是本申请实施例的第二信息和第二时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图20中所示的第二间隔。如图20所示,如果NCR(NCR-MT)在第二时间开始前的第二间隔之内收到第二信息,NCR-Fwd不按照第二信息指示进行转发,或者,NCR-Fwd不转为ON状态。
也就是说,第二信息的到达时刻与第二时间的起始时刻之间小于最小间隔,NCR不执行第二信息的指示,即NCR在第二时间仍为OFF。
图21是本申请实施例的第二信息和第二时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图21中所示的第二间隔。如图21所示,如果NCR(NCR-MT)在第二时间开始前的第二间隔之前收到第二信息,NCR-Fwd按照第二信息进行转发,或者,NCR-Fwd转为ON状态。
图22是本申请实施例的第二信息和第二时间的另一示例图。例如,标准预定义最小间隔或最小处理时延,即图22中所示的第二间隔。如图22所示,如果NCR(NCR-MT)在第二时间开始前的第二间隔之前收到第二信息,NCR-Fwd按照第二信息在周期性的第二时间进行转发,或者,NCR-Fwd在周期性的第二时间转为ON状态。
由此,定义或规定最小时间间隔有助于规范终端设备和基站的实现,为不同厂商的基站设备和终端设备联合调试提供便利,由此加快产品更新换代为市场提供更快更好的服务。
图23是本申请实施例的第二信息和第二时间的另一示例图。如图23所示,可以没有最小间隔的要求。在这种情况下,可以由基站保证:第二信息的到达时刻与第二时间的起始时刻之间的间隔足够NCR-MT对接收到的第二信息进行解调/解码以及NCR-Fwd准备执行第二信息所指示的转发或者进入所指示的ON状态。
由此,由基站保证信息的接收和信息所指示内容的执行之间的时间间隔,有助于为基站产品和终端产品的实现提供更大的自由度。对于硬件计算能力强、算法先进的设备,如此可以允许其发挥最大能力,使得采用该设备部署的网络处理时延减小、有效传输时间增加,进而提高该网络的传输效率。
在一些实施例中,第二信息指示从第二时间点开始的包括所述第二时间的一段时间内所述转发器能够进行转发。
图24是本申请实施例的第二信息和第二时间的另一示例图。如图24所示,如果NCR(NCR-MT)在第二时间开始前收到第二信息,NCR-Fwd按照第二信息的指示在第二时间点开始进入ON状态,即能够进行转发。
在一些实施例中,所述转发器还可以接收第四信息;以及所述转发器根据所述第四信息从第四时间点开始不能够转发。
图25是本申请实施例的第二信息和第二时间的另一示例图。如图25所示,如果NCR(NCR-MT)在第二时间开始前收到第二信息,NCR-Fwd按照第二信息的指示在第二 时间点开始进入ON状态,即能够进行转发。如果NCR(NCR-MT)在第二时间点之后收到第四信息,NCR-Fwd按照第四信息的指示在第四时间点开始进入OFF状态,即不能够进行转发。
在一些实施例中,第二信息还指示所述转发器所使用的转发波束。例如,被指示的所述转发波束为接入(AC)链路上的波束和/或反馈(backhaul)链路上的波束。
在一些实施例中,第二信息还指示所述转发器进行转发。所述转发器使用默认波束。所述默认波束可以是预先约定的波束,也可以是转发器采用的默认波束。例如,转发器在反馈链路可以采用默认波束。采用默认波束有助于节省指示信息开销,提高有效数据传输效率。
在一些实施例中,第二时间包括灵活时间单位。第二信息用于指示所述第二时间中所包括的灵活时间单位为上行时间单位,和/或,所述第二信息用于指示所述第二时间中所包括的灵活时间单位为下行时间单位。第二信息指示所述第二时间中所包括的灵活时间单位为上行时间单位,所述转发器在所述被指示为上行时间单位的第二时间将其在接入链路接收到的信号通过反馈链路向网络设备转发。第二信息指示所述第二时间中所包括的灵活时间单位为下行时间单位,所述转发器在所述被指示为下行时间单位的第二时间将其在反馈链路接收到的、来自网络设备的信号通过接入链路转发出去。
上述的时间单位可以是时隙、符号、子帧或小时隙(mini-slot)的其中之一或任意组合,本申请不限于此。
在一些实施例中,第二信息指示NCR功率,该功率非零,NCR在第二时间使用该功率进行转发。
在一些实施例中,第二信息可以是显式信息(explicit information),也可以是隐式信息(implicit information)。
例如,显式的第二信息可以用于指示NCR在第二时间点进入ON状态,如图24和25所示。再例如,显式的第二信息可以用于指示NCR在第二时间进入(或处于)ON状态,如图17和21所示。再例如,显式的第二信息可以用于指示NCR在第二时间进行转发(例如使用默认波束),如图17和21所示。
再例如,隐式的第二信息可以用于指示NCR使用的转发波束,所述被指示的转发波束为AC链路的波束和/或反馈链路的波束。NCR在第二时间使用所述第二信息指示的波束进行转发。
又例如,隐式的第二信息可以用于向NCR指示第二时间的灵活单位为上行时间单 位还是下行时间单位。NCR在上行时间单位进行从接入链路到反馈链路的转发,在下行时间单位进行从反馈链路到接入链路的转发。
在一些实施例中,所述第二信息为动态信令或者半静态信令。
在一些实施例中,所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
例如,第二信息可以是用于动态指示NCR进行转发的信息。
--例如,第二信息动态地指示使用默认波束进行转发,默认波束可以由通信标准预定义,也可以由OAM进行配置,还可以由网络设备指示或者确认。
--例如,第二信息动态地指示NCR与第二时间对应的转发波束,NCR在第二时间结束OFF状态,使用该指示的波束进行转发。
--又例如,第二信息动态地指示NCR功率,该功率非零,NCR在第二时间使用该功率进行转发。
--还例如,第二信息动态地指示灵活时间单位为上行时间单位和/或下行时间单位,NCR在所述上行时间单位将从接入链路接收的信号在反馈链路转发,在所述下行时间单位将在反馈链路接收到的信号在接入链路转发。
再例如,第二信息还可以是半静态指示NCR进行转发的半静态(半持续)信息。
--例如,第二信息用于半静态地指示NCR处于ON的时间。
--又例如,第二信息用于半静态/半持续指示NCR进行转发的时间和/或所使用的波束。例如,为了所服务的终端设备的半持续数据传输,基站通过第二信息半静态/半持续地配置NCR对该数据进行转发。这种配置可以用于参考信号转发,例如CSI-RS和SRS等。基站可以仅配置NCR转发方法,而不指示该配置用途。
--又例如,第二信息用于半静态/半持续指示NCR进行转发的时间和/或所使用的波束。例如,转发用于终端设备接入小区或者保持与基站连接等作用的公共信号。
在一些实施例中,上述半静态的第二信息通过MAC CE或者RRC指示。在另一些实施例中,上述半持续的第二信息通过MAC CE或者RRC先配置一种或者大于一种的配置信息,随后通过DCI或者MAC CE或者其它信号激活其中的一种或者几种。
以上示意性说明第一信息和第二信息的情况,但本申请不限于此,还可以将上述的各个实施例结合起来。
例如,NCR在FR1默认处于ON,在FR2默认处于OFF。用于指示周期性ON/OFF的第一信息和第二信息可以是一个信息。该信息可以既指示ON又指示OFF。由此,可 以节省信令设计所需要的标准化时间,加快标准化协议冻结,加速产业升级。同时,还可以节省协议栈存储空间从而降低设备成本。
在上述实施例中,考虑了部署在不同频段范围的5G网络的工作特点。在FR1频段,基站用于服务终端设备的波束较FR2频段的宽,基站可以用较少的波束覆盖其所覆盖的区域。相应地,处于FR1频段的终端设备在网络设备通过波束扫描提供服务的时候有较多被服务的机会。
在本申请实施例中,在FR1频段进行转发的NCR默认处于ON状态,在收到第一信息时进入OFF状态。相较于默认处于OFF状态,基站可以用较少的第一信息控制NCR完成在FR1所需要的转发。
而在FR2频段进行转发的NCR默认处于OFF状态,在收到第二信息的时候进入ON状态。相较于默认处于ON状态,基站可以用较少的第二信息控制NCR完成在FR2所需要的转发。
因此,采用本申请的实施方案,既可以在不需要转发的时候使NCR处于不转发状态以达到节电目的,又可以根据频段部署特性利用较少的控制信息达到控制NCR转发或者不转发的效果,降低了控制信息的发送频率并提高了信息传输效率,从而更好地取得省电节能和高效传输的综合效果。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器默认(或确定或被期望)在第一频域范围进行转发,和/或,转发器默认(或确定或被期望)在第二频域范围不进行转发。由此,能够减少不必要的干扰,提高整个网络的传输效率;此外还能够降低系统功耗和节省能源开销。
第二方面的实施例
本申请实施例提供一种转发器,该转发器例如可以是前述的NCR,也可以是具有转发功能的网络设备或终端设备,也可以是配置于NCR、网络设备或终端设备的某个或某些部件或者组件。
图26是本申请实施例的转发器的一示意图,由于该转发器解决问题的原理与第一方面的实施例的方法相同,因此其具体实施可以参照第一方面的实施例,内容相同之处不再重复说明。
如图26所示,本申请实施例的转发器2600包括:
第一确定单元2601,其在第一频域范围确定进行转发,除非接收到来自网络设备的第一信息;和/或
第二确定单元2602,其在第二频域范围确定不进行转发,除非接收到来自所述网络设备的第二信息。
在一些实施例中,所述第一信息至少用于指示所述转发器暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态,所述第二信息至少用于指示所述转发器转发或进入/开始/使能开启(ON)状态。
在一些实施例中,所述第一信息至少用于指示转发频率在所述第一频域范围的所述转发器暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态,所述第二信息至少用于指示转发频域在所述第二频域范围的所述转发器转发或进入/开始/使能开启(ON)状态。
在一些实施例中,所述第一信息至少用于指示转发频率在所述第一频域范围的所述转发器在第一时间暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态,所述第二信息至少用于指示转发频域在所述第二频域范围的所述转发器在第二时间转发或进入/开始/使能开启(ON)状态。
在一些实施例中,所述转发器接收用于指示所述转发器至少在第一时间不转发的第一信息,所述转发器的至少一个转发频率在所述第一频域范围;所述转发器根据所述第一信息在所述第一时间不转发。
在一些实施例中,所述第一信息指示从第一时间点开始的包括第一时间的一段时间内转发频率在所述第一频域范围的所述转发器不转发;所述转发器接收第三信息,以及所述转发器根据所述第三信息从第三时间点开始转发。
在一些实施例中,所述转发器在第一时间之前未接收到所述第一信息的情况下,在所述第一时间进行转发。
在一些实施例中,所述转发器在第一时间之前的N个符号和/或M个时隙还未接收到所述第一信息的情况下,在所述第一时间进行转发;N和M均为大于或等于0的整数。
在一些实施例中,所述第一信息为动态信令和/或半静态信令;其中,所述第一信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
在一些实施例中,所述第一信息还指示第一时间;
在所述第一时间中,所述转发器被指示为不转发,或者,所述转发器不能够进行转发,或者,所述转发器被期望不进行转发。
在一些实施例中,所述第一时间为周期性的一段时间;
所述第一信息还指示所述第一时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,所述第一时间为非周期性的一段时间;
所述第一信息还指示所述第一时间的如下至少之一:起始时间点、结束时间点、持续时长。
在一些实施例中,所述转发器接收用于指示所述转发器至少在所述第二时间转发的第二信息,所述转发器的至少一个转发频率在所述第二频域范围;所述转发器根据所述第二信息在所述第二时间进行转发。
在一些实施例中,所述第二信息指示从第二时间点开始的包括所述第二时间的一段时间内转发频率在所述第二频域范围的所述转发器转发;所述方法还包括:所述转发器接收第四信息,以及所述转发器根据所述第四信息从第四时间点开始不转发。
在一些实施例中,所述转发器在所述第二时间之前未接收到所述第二信息的情况下,在所述第二时间不转发。
在一些实施例中,所述转发器在所述第二时间之前的N个符号和/或M个时隙还未接收到所述第二信息的情况下,在所述第二时间不转发;N和M均为大于或等于0的整数。
在一些实施例中,所述第二信息为动态信令和/或半静态信令;其中,所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
在一些实施例中,所述第二信息还指示第二时间;
在所述第二时间中,所述转发器被指示为转发,或者,所述转发器能够进行转发,或者,所述转发器被期望进行转发。
在一些实施例中,所述第二时间为周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,所述第二时间为非周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
此外,为了简单起见,图26中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器在第一频域范围默认(或确定或被期望)进行转发,和/或,转发器在第二频域范围默认(或确定或被期望)不进行转发。由此,能够减少不必要的干扰,提高整个网络的传输效率;此外还能够降低系统功耗和节省能源开销。
第三方面的实施例
本申请实施例提供一种转发器的指示方法,从网络设备一侧进行说明,与第一方面的实施例相同的内容不再赘述。
图27是本申请实施例的转发器的指示方法的一示意图,如图27所示,该方法包括:
2701,网络设备向转发器发送第一信息;其中,转发器在第一频域范围确定(或被默认或被期望)进行转发,除非接收到所述第一信息;和/或,
2702,所述网络设备向所述转发器发送第二信息;其中,所述转发器在第二频域范围确定(或被默认或被期望)不进行转发,除非接收到所述第二信息。
值得注意的是,以上附图27仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图27的记载。
在一些实施例中,网络设备可以向转发器发送转发信号(例如目的地为终端设备,由该转发器转发)和/或通信信号(例如目的地为该转发器),或者,网络设备也可以接收来自转发器的转发信号(例如由终端设备生成并发送,并由该转发器转发)和/或通信信号(例如由该转发器生成并发送)。
在一些实施例中,所述第一频域范围为FR1,所述第二频域范围为FR2。
在一些实施例中,所述第一信息至少用于指示所述转发器暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态,所述第二信息至少用于指示所述转 发器转发或进入/开始/使能开启(ON)状态。
在一些实施例中,所述第一信息至少用于指示转发频率在所述第一频域范围的所述转发器暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态,所述第二信息至少用于指示转发频域在所述第二频域范围的所述转发器转发或进入/开始/使能开启(ON)状态。
在一些实施例中,所述第一信息至少用于指示转发频率在所述第一频域范围的所述转发器在第一时间暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态,所述第二信息至少用于指示转发频域在所述第二频域范围的所述转发器在第二时间转发或进入/开始/使能开启(ON)状态。
在一些实施例中,所述第一信息指示从第一时间点开始的包括第一时间的一段时间内转发频率在所述第一频域范围的所述转发器不转发;所述方法还包括:
所述网络设备向所述转发器发送第三信息;其中,所述转发器根据所述第三信息从第三时间点开始转发。
在一些实施例中,所述第一信息为动态信令和/或半静态信令。
在一些实施例中,所述第一信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
在一些实施例中,所述第一信息还指示第一时间。
在一些实施例中,在所述第一时间中,所述转发器被指示为不转发,或者,所述转发器不能够进行转发,或者,所述转发器被期望不进行转发。
在一些实施例中,所述第一时间为周期性的一段时间;
所述第一信息还指示所述第一时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,所述第一时间为非周期性的一段时间;
所述第一信息还指示所述第一时间的如下至少之一:起始时间点、结束时间点、持续时长。
在一些实施例中,所述第二信息指示从第二时间点开始的包括所述第二时间的一段时间内转发频率在所述第二频域范围的所述转发器转发;所述方法还包括:
所述网络设备向所述转发器发送第四信息;其中,所述转发器根据所述第四信息从第四时间点开始不转发。
在一些实施例中,所述第二信息为动态信令和/或半静态信令。
在一些实施例中,所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
在一些实施例中,所述第二信息还指示第二时间。
在一些实施例中,在所述第二时间中,所述转发器被指示为进行转发,或者,所述转发器能够进行转发,或者,所述转发器被期望不进行转发。
在一些实施例中,所述第二时间为周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
在一些实施例中,所述第二时间为非周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器在第一频域范围默认(或确定或被期望)进行转发,和/或,转发器在第二频域范围默认(或确定或被期望)不进行转发。由此,能够减少不必要的干扰,提高整个网络的传输效率;此外还能够降低系统功耗和节省能源开销。
第四方面的实施例
本申请实施例提供一种网络设备。
图28是本申请实施例的网络设备的一示意图,由于该网络设备解决问题的原理与第三方面的实施例的方法相同,因此其具体实施可以参照第三方面的实施例,内容相同之处不再重复说明。
如图28所示,本申请实施例的网络设备3800包括:
第一发送单元2801,其向转发器发送第一信息;其中,转发器在第一频域范围确定(或默认或被期望)进行转发,除非接收到所述第一信息;和/或,
第二发送单元2802,其向所述转发器发送第二信息;其中,所述转发器在第二频域 范围确定(或默认或被期望)不进行转发,除非接收到所述第二信息。
在一些实施例中,网络设备可以向转发器发送转发信号(例如目的地为终端设备,由该转发器转发)和/或通信信号(例如目的地为该转发器),或者,网络设备也可以接收来自转发器的转发信号(例如由终端设备生成并发送,并由该转发器转发)和/或通信信号(例如由该转发器生成并发送)。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的网络设备2800还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图28中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器在第一频域范围默认(或确定或被期望)进行转发,和/或,转发器在第二频域范围默认(或确定或被期望)不进行转发。由此,能够减少不必要的干扰,提高整个网络的传输效率;此外还能够降低系统功耗和节省能源开销。
第五方面的实施例
本申请实施例提供了一种通信系统,图1是本申请实施例的通信系统的示意图,如图1所示,该通信系统100包括网络设备101、转发器102以及终端设备103,为简单起见,图1仅以一个网络设备、一个转发器以及一个终端设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。转发器102被配置为执行第一方面的实施例所述的转发器的指示方法,网络设备101被配置为执行第三方面的实施例所述的转发器的指示方法,其内容被合并于此,此处不再赘述。
本申请实施例还提供一种电子设备,该电子设备例如为转发器或者网络设备。
图29是本申请实施例的电子设备的构成示意图。如图29所示,电子设备2900可以包括:处理器2910(例如中央处理器CPU)和存储器2920;存储器2920耦合到处理器2910。其中该存储器2920可存储各种数据;此外还存储信息处理的程序2930,并且在处理器2910的控制下执行该程序2930。
例如,处理器2910可以被配置为执行程序而实现如第一方面的实施例所述的转发器的指示方法。例如,处理器2910可以被配置为进行如下的控制:在第一频域范围确定进行转发,除非接收到来自网络设备的第一信息;和/或,在第二频域范围确定不进行转发,除非接收到来自所述网络设备的第二信息。
再例如,处理器2910可以被配置为执行程序而实现如第三方面的实施例所述的转发器的指示方法。例如,处理器2910可以被配置为进行如下的控制:向转发器发送第一信息;其中,转发器在第一频域范围确定(或默认或被期望)进行转发,除非接收到所述第一信息;和/或,向所述转发器发送第二信息;其中,所述转发器在第二频域范围确定(或默认或被期望)不进行转发,除非接收到所述第二信息。
此外,如图29所示,电子设备2900还可以包括:收发机2940和天线2950等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,电子设备2900也并不是必须要包括图29中所示的所有部件;此外,电子设备2900还可以包括图29中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在转发器中执行所述程序时,所述程序使得计算机在所述转发器中执行第一方面的实施例所述的转发器的指示方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在转发器中执行第一方面的实施例所述的转发器的指示方法。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第三方面的实施例所述的转发器的指示方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行第三方面的实施例所述的转发器的指示方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例 如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种转发器的指示方法,包括:
转发器在第一频域范围确定(或默认或被期望)进行转发,除非接收到来自网络设备的第一信息;和/或
所述转发器在第二频域范围确定(或默认或被期望)不进行转发,除非接收到来自 所述网络设备的第二信息。
2.一种转发器的指示方法,包括:
转发器在第一频域范围转发,除非接收到来自网络设备的第一信息;和/或
所述转发器在第二频域范围不转发,除非接收到来自所述网络设备的第二信息。
3.一种转发器的指示方法,包括:
转发器在第一频域范围被期望(或确定或默认)为开启(ON),除非接收到来自网络设备的第一信息;和/或
所述转发器在第二频域范围被期望(或确定或默认)为关闭(OFF),除非接收到来自所述网络设备的第二信息。
4.一种转发器的指示方法,包括:
转发器在第一频域范围被期望(或确定或默认)处于开启(ON)状态,除非接收到来自网络设备的第一信息;和/或
所述转发器在第二频域范围被期望(或确定或默认)处于关闭(OFF)状态,除非接收到来自所述网络设备的第二信息。
5.一种转发器的指示方法,包括:
转发器在第一频域范围默认(或确定或被期望)进行转发;和/或
转发器在第二频域范围默认(或确定或被期望)不进行转发。
6.根据附记1至5任一项所述的方法,其中,所述第一频域范围为FR1,所述第二频域范围为FR2。
7.根据附记1至6任一项所述的方法,其中,所述第一信息至少用于指示所述转发器暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态。
8.根据附记1至6任一项所述的方法,其中,所述第二信息至少用于指示所述转发器转发或进入/开始/使能开启(ON)状态。
9.根据附记1至6任一项所述的方法,其中,所述第一信息至少用于指示转发频率在所述第一频域范围的所述转发器在第一时间暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态。
10.根据附记1至6任一项所述的方法,其中,所述第二信息至少用于指示转发频域在所述第二频域范围的所述转发器在第二时间转发或进入/开始/使能开启(ON)状态。
11.根据附记1至10任一项所述的方法,其中,所述方法还包括:
所述转发器接收用于指示所述转发器至少在第一时间不转发的第一信息,所述转发 器的至少一个转发频率在所述第一频域范围。
12.根据附记11所述的方法,其中,所述方法还包括:
所述转发器根据所述第一信息在所述第一时间不转发。
13.根据附记1至12任一项所述的方法,其中,所述第一信息还指示所述第一时间。
14.根据附记1至13任一项所述的方法,其中,所述第一信息指示从第一时间点开始的包括第一时间的一段时间内转发频率在所述第一频域范围的所述转发器不转发;所述方法还包括:
所述转发器接收第三信息;以及
所述转发器根据所述第三信息从第三时间点开始转发。
15.根据附记1至14任一项所述的方法,其中,所述第一信息指示以下至少一组信息:
所述第一时间的起始位置和结束位置;
所述第一时间的起始位置和/或持续时间;
所述第一时间的起始位置、持续时间和周期;
所述第一时间的持续时间、周期和偏移量。
16.根据附记1至15任一项所述的方法,其中,所述转发器在第一时间之前未接收到所述第一信息的情况下,在所述第一时间进行转发。
17.根据附记1至16任一项所述的方法,其中,所述转发器在第一时间之前的N个符号和/或M个时隙还未接收到所述第一信息的情况下,在所述第一时间进行转发;N和M均为大于或等于0的整数。
18.根据附记1至17任一项所述的方法,其中,所述第一信息为动态信令和/或半静态信令。
19.根据附记18所述的方法,其中,所述第一信息由物理下行控制信道(PDCCH)和/或介质访问控制(MAC)控制元素(CE)和/或无线资源控制(RRC)信令承载。
20.根据附记11至19所述的方法,其中,在所述第一时间中,所述转发器被指示为不转发,或者,所述转发器不能够进行转发,或者,所述转发器被期望不进行转发。
21.根据附记11至20任一项所述的方法,其中,所述第一时间为周期性的一段时间;
所述第一信息还指示所述第一时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
22.根据附记11至20任一项所述的方法,其中,所述第一时间为非周期性的一段时间;
所述第一信息还指示所述第一时间的如下至少之一:起始时间点、结束时间点、持续时长。
23.根据附记1至22任一项所述的方法,其中,所述方法还包括:
所述转发器接收用于指示所述转发器至少在第二时间转发的第二信息,所述转发器的至少一个转发频率在所述第二频域范围。
24.根据附记23所述的方法,其中,所述方法还包括:
所述转发器至少根据所述第二信息在所述第二时间转发。
25.根据附记1至24任一项所述的方法,其中,所述第二信息还指示所述第二时间。
26.根据附记1至25任一项所述的方法,其中,所述第二信息指示从第二时间点开始的包括第二时间的一段时间内转发频率在所述第二频域范围的所述转发器进行转发;所述方法还包括:
所述转发器接收第四信息;以及
所述转发器根据所述第四信息从第四时间点开始不转发。
27.根据附记1至26任一项所述的方法,其中,所述第二信息指示以下至少一组信息:
所述第二时间的起始位置和结束位置;
所述第二时间的起始位置和/或持续时间;
所述第二时间的起始位置、持续时间和周期;
所述第二时间的持续时间、周期和偏移量。
28.根据附记1至27任一项所述的方法,其中,所述转发器在第二时间之前未接收到所述第二信息的情况下,在所述第二时间不转发。
29.根据附记1至28任一项所述的方法,其中,所述转发器在第二时间之前的N个符号和/或M个时隙还未接收到所述第二信息的情况下,在所述第二时间不转发;N和M均为大于或等于0的整数。
30.根据附记1至29任一项所述的方法,其中,所述第二信息为动态信令和/或半静态信令。
31.根据附记30所述的方法,其中,所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
32.根据附记23至31任一项所述的方法,其中,在所述第二时间中,所述转发器被指示为转发,或者,所述转发器能够进行转发,或者,所述转发器被期望不进行转发。
33.根据附记23至32任一项所述的方法,其中,所述第二时间为周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
34.根据附记23至33任一项所述的方法,其中,所述第二时间为非周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
35.一种转发器的指示方法,包括:
网络设备向转发器发送第一信息;其中,转发器在第一频域范围确定(或默认或被期望)进行转发,除非接收到所述第一信息;和/或,
所述网络设备向所述转发器发送第二信息;其中,所述转发器在第二频域范围确定(或被默认或被期望)不进行转发,除非接收到所述第二信息。
36.根据附记35所述的方法,其中,所述第一频域范围为FR1,所述第二频域范围为FR2。
37.根据附记35或36所述的方法,其中,所述第一信息至少用于指示所述转发器暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态。
38.根据附记35或36所述的方法,其中,所述第二信息至少用于指示所述转发器转发或进入/开始/使能开启(ON)状态。
39.根据附记35或36所述的方法,其中,所述第一信息至少用于指示转发频率在所述第一频域范围的所述转发器在第一时间暂停转发或不转发或进入/开始/使能关闭(OFF)状态或进入停止转发状态。
40.根据附记35或36所述的方法,其中,所述第二信息至少用于指示转发频域在所述第二频域范围的所述转发器在第二时间转发或进入/开始/使能开启(ON)状态。
41.根据附记35至40任一项所述的方法,其中,所述第一信息指示从第一时间点开始的包括第一时间的一段时间内转发频率在所述第一频域范围的所述转发器不转发;所述方法还包括:
所述网络设备向所述转发器发送第三信息;其中,所述转发器根据所述第三信息从 第三时间点开始转发。
42.根据附记35至41任一项所述的方法,其中,所述第一信息为动态信令和/或半静态信令。
43.根据附记42所述的方法,其中,所述第一信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
44.根据附记35至43任一项所述的方法,其中,所述第一信息还指示第一时间。
45.根据附记44所述的方法,其中,在所述第一时间中,所述转发器被指示为不转发,或者,所述转发器不能够进行转发,或者,所述转发器被期望不进行转发。
46.根据附记44所述的方法,其中,所述第一时间为周期性的一段时间;
所述第一信息还指示所述第一时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
47.根据附记44所述的方法,其中,所述第一时间为非周期性的一段时间;
所述第一信息还指示所述第一时间的如下至少之一:起始时间点、结束时间点、持续时长。
48.根据附记35至47任一项所述的方法,其中,所述第二信息指示从第二时间点开始的包括所述第二时间的一段时间内转发频率在所述第二频域范围的所述转发器转发;所述方法还包括:
所述网络设备向所述转发器发送第四信息;其中,所述转发器根据所述第四信息从第四时间点开始不转发。
49.根据附记35至48任一项所述的方法,其中,所述第二信息为动态信令和/或半静态信令。
50.根据附记49所述的方法,其中,所述第二信息由物理下行控制信道(PDCCH)和/或MAC CE和/或无线资源控制(RRC)信令承载。
51.根据附记35至50任一项所述的方法,其中,所述第二信息还指示第二时间。
52.根据附记51所述的方法,其中,在所述第二时间中,所述转发器被指示为进行转发,或者,所述转发器能够进行转发,或者,所述转发器被期望进行转发。
53.根据附记51所述的方法,其中,所述第二时间为周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
54.根据附记51所述的方法,其中,所述第二时间为非周期性的一段时间;
所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
55.一种转发器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至34任一项所述的转发器的指示方法。
56.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记35至54任一项所述的转发器的指示方法。

Claims (20)

  1. 一种转发器,包括:
    第一确定单元,其在第一频域范围确定进行转发,除非接收到来自网络设备的第一信息;和/或
    第二确定单元,其在第二频域范围确定不进行转发,除非接收到来自所述网络设备的第二信息。
  2. 根据权利要求1所述的转发器,其中,所述第一信息至少用于指示所述转发器暂停转发或不转发或进入/开始/使能关闭状态或进入停止转发状态,所述第二信息至少用于指示所述转发器转发或进入/开始/使能开启状态。
  3. 根据权利要求1所述的转发器,其中,所述第一信息至少用于指示转发频率在所述第一频域范围的所述转发器在第一时间暂停转发或不转发或进入/开始/使能关闭状态或进入停止转发状态。
  4. 根据权利要求1所述的转发器,其中,所述第二信息至少用于指示转发频域在所述第二频域范围的所述转发器在第二时间转发或进入/开始/使能开启状态。
  5. 根据权利要求1所述的转发器,其中,所述转发器接收用于指示所述转发器至少在第一时间不转发的第一信息,所述转发器的至少一个转发频率在所述第一频域范围;所述转发器根据所述第一信息在所述第一时间不转发。
  6. 根据权利要求1所述的转发器,其中,所述第一信息指示从第一时间点开始的包括第一时间的一段时间内转发频率在所述第一频域范围的所述转发器不转发;所述转发器接收第三信息,以及所述转发器根据所述第三信息从第三时间点开始转发。
  7. 根据权利要求1所述的转发器,其中,所述转发器在第一时间之前未接收到所述第一信息的情况下,在所述第一时间进行转发;或者
    所述转发器在第一时间之前的N个符号和/或M个时隙还未接收到所述第一信息的情况下,在所述第一时间进行转发;N和M均为大于或等于0的整数。
  8. 根据权利要求1所述的转发器,其中,所述第一信息为动态信令和/或半静态信令;其中,所述第一信息由物理下行控制信道和/或介质访问控制控制元素和/或无线资源控制信令承载。
  9. 根据权利要求1所述的转发器,其中,所述第一信息还指示第一时间;
    在所述第一时间中,所述转发器被指示为不转发,或者,所述转发器不能够进行转发,或者,所述转发器被期望不进行转发。
  10. 根据权利要求9所述的转发器,其中,所述第一时间为周期性的一段时间;
    所述第一信息还指示所述第一时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
  11. 根据权利要求9所述的转发器,其中,所述第一时间为非周期性的一段时间;
    所述第一信息还指示所述第一时间的如下至少之一:起始时间点、结束时间点、持续时长。
  12. 根据权利要求1所述的转发器,其中,所述转发器接收用于指示所述转发器至少在第二时间转发的第二信息,所述转发器的至少一个转发频率在所述第二频域范围;所述转发器根据所述第二信息在所述第二时间进行转发。
  13. 根据权利要求1所述的转发器,其中,所述第二信息指示从第二时间点开始的包括所述第二时间的一段时间内转发频率在所述第二频域范围的所述转发器转发;所述转发器接收第四信息,以及所述转发器根据所述第四信息从第四时间点开始不转发。
  14. 根据权利要求1所述的转发器,其中,所述转发器在第二时间之前未接收到所述第二信息的情况下,在所述第二时间不转发;或者
    所述转发器在所述第二时间之前的N个符号和/或M个时隙还未接收到所述第二信息的情况下,在所述第二时间不转发;N和M均为大于或等于0的整数。
  15. 根据权利要求1所述的转发器,其中,所述第二信息为动态信令和/或半静态信令;其中,所述第二信息由物理下行控制信道和/或介质访问控制控制元素和/或无线资源控制信令承载。
  16. 根据权利要求1所述的转发器,其中,所述第二信息还指示第二时间;
    在所述第二时间中,所述转发器被指示为进行转发,或者,所述转发器能够进行转发,或者,所述转发器被期望进行转发。
  17. 根据权利要求16所述的转发器,其中,所述第二时间为周期性的一段时间;
    所述第二信息还指示所述第二时间的如下至少之一:周期、偏移量、起始时间点、结束时间点、持续时长。
  18. 根据权利要求16所述的转发器,其中,所述第二时间为非周期性的一段时间;
    所述第二信息还指示所述第二时间的如下至少之一:起始时间点、结束时间点、持续时长。
  19. 一种网络设备,包括:
    第一发送单元,其向转发器发送第一信息;其中,转发器在第一频域范围确定进行 转发,除非接收到所述第一信息;和/或,
    第二发送单元,其向所述转发器发送第二信息;其中,所述转发器在第二频域范围确定不进行转发,除非接收到所述第二信息。
  20. 一种通信系统,包括:
    网络设备,其向转发器发送第一信息和/或第二信息;以及
    转发器,其在第一频域范围确定进行转发除非接收到所述第一信息,和/或,在第二频域范围确定不进行转发除非接收到所述第二信息。
PCT/CN2022/122697 2022-09-29 2022-09-29 转发器的指示方法、转发器和网络设备 WO2024065417A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122697 WO2024065417A1 (zh) 2022-09-29 2022-09-29 转发器的指示方法、转发器和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122697 WO2024065417A1 (zh) 2022-09-29 2022-09-29 转发器的指示方法、转发器和网络设备

Publications (1)

Publication Number Publication Date
WO2024065417A1 true WO2024065417A1 (zh) 2024-04-04

Family

ID=90475264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122697 WO2024065417A1 (zh) 2022-09-29 2022-09-29 转发器的指示方法、转发器和网络设备

Country Status (1)

Country Link
WO (1) WO2024065417A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188816A (zh) * 2006-11-15 2008-05-28 华为技术有限公司 中继方法和中继系统以及中继设备
CN102265526A (zh) * 2008-09-05 2011-11-30 爱立信(中国)通信有限公司 无线电接入网中的方法和布置
US20210037447A1 (en) * 2019-08-02 2021-02-04 AR & NS Investment, LLC Communication by a repeater system including a network of radio frequency (rf) repeater devices
WO2022140894A1 (zh) * 2020-12-28 2022-07-07 华为技术有限公司 一种中继通信方法及装置
CN114765860A (zh) * 2021-01-11 2022-07-19 中国移动通信有限公司研究院 传输方法、装置、设备及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188816A (zh) * 2006-11-15 2008-05-28 华为技术有限公司 中继方法和中继系统以及中继设备
CN102265526A (zh) * 2008-09-05 2011-11-30 爱立信(中国)通信有限公司 无线电接入网中的方法和布置
US20210037447A1 (en) * 2019-08-02 2021-02-04 AR & NS Investment, LLC Communication by a repeater system including a network of radio frequency (rf) repeater devices
WO2022140894A1 (zh) * 2020-12-28 2022-07-07 华为技术有限公司 一种中继通信方法及装置
CN114765860A (zh) * 2021-01-11 2022-07-19 中国移动通信有限公司研究院 传输方法、装置、设备及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 13)", 3GPP STANDARD; 3GPP TS 36.300, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V13.3.0, 1 April 2016 (2016-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 295, XP051088532 *

Similar Documents

Publication Publication Date Title
CN114785655B (zh) 用于同步信号块传输的下行链路信道速率匹配的方法和装置
US11006367B2 (en) Optimizing power consumption in Multi-SIM devices
US11102823B2 (en) Beam configuration of a smart MMW repeater for forwarding RACH message 1
KR102152558B1 (ko) 저 레이턴시 통신 시스템들을 위한 제어 오버헤드 감소
US20240155326A1 (en) Management of default data subscription (dds) in multi-subscriber identity module devices
CN114982153B (zh) 用于转发rach消息2的智能mmw转发器的波束配置
CN115668799A (zh) 管理波束故障恢复更新
WO2024065417A1 (zh) 转发器的指示方法、转发器和网络设备
US11962543B2 (en) Wireless device full duplex cooperative schemes
WO2024065409A1 (zh) 转发器的指示方法、转发器和网络设备
WO2021184229A1 (en) Method to support entv broadcast and unicast modes in ue
WO2024092819A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024065541A1 (zh) 信息指示方法、转发器和网络设备
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024065538A1 (zh) 开关控制方法、信息指示方法、转发器和网络设备
WO2024031435A1 (zh) 信息指示方法、转发器和网络设备
WO2023029238A1 (zh) 转发器、网络设备及其通信方法
WO2024092836A1 (zh) 信息指示方法、转发器和网络设备
WO2023028724A1 (zh) 转发器、网络设备及其通信方法
WO2023236021A1 (zh) 一种通信方法、装置和系统
WO2023092841A1 (zh) 转发器、网络设备及其通信方法
WO2023028725A1 (zh) 一种用于转发器的波束指示方法、装置和系统
WO2024065537A1 (zh) 收发信号的方法、装置和通信系统
WO2024031509A1 (zh) 转发器及其传输方法、网络设备和通信系统
WO2023236022A1 (zh) 一种通信方法、装置和系统