WO2023028725A1 - 一种用于转发器的波束指示方法、装置和系统 - Google Patents

一种用于转发器的波束指示方法、装置和系统 Download PDF

Info

Publication number
WO2023028725A1
WO2023028725A1 PCT/CN2021/115190 CN2021115190W WO2023028725A1 WO 2023028725 A1 WO2023028725 A1 WO 2023028725A1 CN 2021115190 W CN2021115190 W CN 2021115190W WO 2023028725 A1 WO2023028725 A1 WO 2023028725A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
signal
transponder
indication
repeater
Prior art date
Application number
PCT/CN2021/115190
Other languages
English (en)
French (fr)
Inventor
张磊
陈哲
蒋琴艳
Original Assignee
富士通株式会社
张磊
陈哲
蒋琴艳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张磊, 陈哲, 蒋琴艳 filed Critical 富士通株式会社
Priority to PCT/CN2021/115190 priority Critical patent/WO2023028725A1/zh
Priority to PCT/CN2022/113774 priority patent/WO2023030059A1/zh
Priority to CN202280057110.4A priority patent/CN117941278A/zh
Publication of WO2023028725A1 publication Critical patent/WO2023028725A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication.
  • 5G farth generation mobile communication technology
  • 3G and 4G fourth generation mobile communication technology
  • 5G systems can provide greater bandwidth and higher data rates, and It can support more types of terminals and vertical industry businesses. For this reason, existing deployment frequencies of 5G systems are generally higher than those of 3G and 4G systems. For example, 5G systems can be deployed in millimeter wave bands.
  • Radio frequency transponders are widely used in the actual deployment of 3G systems and 4G systems.
  • a traditional radio frequency repeater is a device that amplifies and forwards signals between a base station and a terminal in the radio frequency domain.
  • Traditional radio frequency repeaters do not demodulate and decode the forwarded signal during the forwarding process.
  • the antenna orientation of traditional RF transponders is usually fixed.
  • the antenna direction of a traditional RF transponder is usually manually set and adjusted during the initial installation, so that the antenna on the base station side points to the incoming wave direction of the base station, and the antenna on the terminal side points to the place where enhanced deployment is required. During the operation of the traditional RF transponder, the antenna direction does not change. In addition, the traditional radio frequency transponder does not have a communication function and cannot perform information exchange with the base station, so it does not support adaptive and/or relatively dynamic configuration by the base station.
  • 5G systems deployed in higher frequency bands and millimeter wave frequency bands use more advanced and complex MIMO (Multiple Input Multiple Output) technology.
  • the directional antenna becomes the basic component of the base station and terminal equipment, and sending and receiving signals based on beam forming technology is the basic signal transmission mode in the 5G system.
  • the high frequency and small wavelength of the millimeter wave band are more conducive to the installation of antenna panels containing more antennas in base stations and terminal equipment.
  • the increase in the number of antenna elements contributes to more accurate beamforming, that is, it is easier to form narrow beams. Focusing energy on a narrow beam helps boost the signal while reducing interference to other devices.
  • the 5G system supports more complex but accurate channel measurement, antenna calibration and beam management solutions. Control the receiving beam and sending beam of the terminal equipment to achieve better communication effect.
  • radio frequency transponders for coverage enhancement is one of the feasible solutions.
  • the antenna of a traditional radio frequency transponder cannot dynamically adjust its direction and has a wide beam.
  • a radio frequency transponder is configured in a 5G system, although it can help enhance signal strength, it will also cause obvious interference to other surrounding base stations or terminal equipment due to the wide transmission beam, and then reduce the entire network due to the increase of new interference. throughput.
  • the Repeater can communicate with the gNB.
  • the gNB can configure the Repeater to a certain extent, and optimize the repeater's forwarding performance and reduce interference to other surrounding devices through these configurations.
  • Embodiments of the present application provide a beam indicating method, device and system for a transponder.
  • the network device can configure the beam used by the repeater (Repeater), so as to more accurately manage the forwarding of the repeater, achieve better coverage, reduce interference to other surrounding devices, and thus improve the transmission efficiency of the entire network .
  • a beam indicating device for a transponder which is configured in a network device, wherein the device includes:
  • a sending unit which sends a first indication to the transponder, where the first indication is used to indicate at least one beam.
  • a beam determining device configured in a transponder, wherein the device includes:
  • a receiving unit configured to receive a first indication sent by a network device, where the first indication is used to indicate at least one beam.
  • the network device can configure the beam used by the transponder, so as to more accurately manage the transmission of the transponder, achieve better coverage, reduce interference to other surrounding devices, and thus improve The transmission efficiency of the entire network.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic diagram of a beam indicating method for a transponder according to an embodiment of the present application
  • 3 to 6 are schematic diagrams of some implementation scenarios of beams indicated by network devices
  • FIG. 7 to FIG. 12 are schematic diagrams of scenarios of the use time of the beam indicated by the network device in the first time period
  • FIG. 13 is a schematic diagram of a beam determination method according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a beam indicating device for a transponder according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a beam determining device according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a network device according to an embodiment of the present application.
  • Fig. 17 is a schematic diagram of a transponder according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network conforming to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE- Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other communication protocols that are currently known or will be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transceiver node (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head), remote End radio unit (RRU, Remote Radio Unit), relay (relay) or low power node (such as femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node such as femto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be called “Terminal Equipment” (TE, Terminal Equipment).
  • a terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. wait.
  • Terminal equipment may include but not limited to the following equipment: cellular phone (Cellular Phone), personal digital assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, cordless phone , smartphones, smart watches, digital cameras, and more.
  • cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer machine type communication device
  • cordless phone smartphones
  • smartphones smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measurement, such as but not limited to: a machine type communication (MTC, Machine Type Communication) terminal, Vehicle communication terminal, device to device (D2D, Device to Device) terminal, machine to machine (M2M, Machine to Machine) terminal, etc.
  • MTC Machine Type Communication
  • Vehicle communication terminal device to device (D2D, Device to Device) terminal
  • M2M Machine to Machine
  • FIG 1 is a schematic diagram of the application scenario of the embodiment of the present application.
  • a 5G base station gNB
  • a repeater Repeater
  • UE terminal equipment
  • existing services or future service transmissions can be performed between the 5G base station and the terminal equipment.
  • these services may include, but are not limited to: enhanced mobile broadband (eMBB), massive machine-type communication (mMTC), highly reliable low-latency communication (URLLC), and vehicle-to-everything (V2X) communication, etc.
  • eMBB enhanced mobile broadband
  • mMTC massive machine-type communication
  • URLLC highly reliable low-latency communication
  • V2X vehicle-to-everything
  • An embodiment of the present application provides a beam indicating method for a transponder, which is described from a network device side.
  • Fig. 2 is a schematic diagram of a beam indicating method for a transponder according to an embodiment of the present application, please refer to Fig. 2, the method includes:
  • the network device sends a first indication to the repeater, where the first indication is used to indicate at least one beam.
  • the network device can configure the beam used by the transponder, so as to more accurately manage the transmission of the transponder, achieve better coverage, reduce interference to other surrounding devices, and thus improve the transmission efficiency of the entire network .
  • a beam may also be expressed as a beam (beam), a reference signal (RS), a transmission configuration indication (TCI, transmission configuration indication), a spatial domain filter (spatial domain filter), etc., or, It can also be expressed as beam index, lobe index, reference signal index, transmission configuration indication index, spatial domain filter index, etc.
  • the aforementioned reference signal is, for example, CSI-RS, SRS, RS used by the repeater, RS transmitted by the repeater, and the like.
  • the above TCI can also be expressed as a TCI state (state).
  • the above at least one beam is used by the repeater to forward signals between the network device and the terminal device.
  • one beam of the at least one beam is: a first beam used for the repeater to forward the first signal from the network device to the terminal device.
  • the transponder 302 sends a first signal to the terminal device 303 using a first beam, and the first signal comes from the network device 301 , for example, a fourth signal sent by the network device 301 .
  • one beam of the at least one beam is: a fourth beam used for the transponder to receive a fourth signal from the network device, and the fourth signal is used for forwarding to the terminal device.
  • the transponder 302 uses a fourth beam to receive a fourth signal, where the fourth signal is a signal sent by the network device 301 .
  • the fourth signal includes a signal sent by the network device to the terminal device, and the transponder does not demodulate and/or decode the signal sent by the network device to the terminal device in the fourth signal.
  • the signal sent by the network device to the terminal device includes at least one of signaling, data and reference signal.
  • the fourth signal may also include a signal sent by the network device to the transponder, and the transponder demodulates and/or decodes the signal for itself contained in the fourth signal,
  • the signal sent by the network device to the terminal device included in the fourth signal is not demodulated and/or decoded.
  • the first signal from the network device may be generated by the transponder at least by amplifying the received fourth signal.
  • one of the at least one beam is: a second beam used for the transponder to receive a second signal from the terminal device, and the second signal is used for forwarding to the network device.
  • the transponder 402 uses a second beam to receive a second signal, and the second signal is a signal sent by the terminal device 403 .
  • one beam in the at least one beam is: a third beam used for the repeater to forward a third signal from the terminal device to the network device.
  • the transponder 402 sends a third signal to the network device 401 by using a third beam, and the third signal is from the terminal device 403 , for example, the second signal sent by the terminal device.
  • the second signal includes a signal sent from the terminal device to the network device, and the transponder does not demodulate and/or decode the signal sent from the terminal device to the network device.
  • the signal sent by the terminal device to the network device includes at least one of signaling, data and reference signal.
  • the third signal from the terminal device may be generated by the transponder at least by amplifying the second signal it receives.
  • one beam in the at least one beam is: a fifth beam used for the transponder to send a fifth signal to the network device.
  • the transponder 502 sends a fifth signal to the network device 501 by using the fifth beam.
  • one beam of the at least one beam is: a sixth beam used for the transponder to receive a sixth signal from the network device.
  • the transponder 602 uses a sixth beam to receive a sixth signal, where the sixth signal is a signal sent by the network device 601 .
  • the network device may be the network device of the serving cell of the terminal device, or the network device of the cell where the repeater is located, or the network device of the serving cell of the repeater, or the network device of the repeater.
  • Parent node this application does not limit the name of the transponder, as long as the device that can realize the above functions is included in the scope of the transponder of this application.
  • the first indication may be carried by a first PDSCH (Physical Downlink Shared Channel).
  • first PDSCH Physical Downlink Shared Channel
  • the network device may also send a second indication to the transponder, where the second indication is used to instruct the transponder to use the seventh beam to receive the first PDSCH, and then obtain the above first indication, and proceed according to the first indication. above processing.
  • the first indication may be MAC (Medium Access Control) layer signaling, or RRC (Radio Resource Control) signaling, and the present application is not limited thereto.
  • MAC Medium Access Control
  • RRC Radio Resource Control
  • the first indication may also be indicated by a first PDCCH (Physical Downlink Control Channel).
  • first PDCCH Physical Downlink Control Channel
  • the network device may also send a third indication to the transponder, where the third indication is used to instruct the transponder to use the eighth beam to receive the first PDCCH, and then obtain the above first indication, and proceed according to the first indication. above processing.
  • the above first PDCCH is also used to instruct the transponder to use the ninth beam to receive the second PDSCH sent by the network device to the transponder, or, the first PDCCH is also used to indicate the The transponder uses the tenth beam to send the second PUSCH to the network device.
  • the relevant content of the first PDCCH reference may be made to related technologies, and the description is omitted here.
  • the network device uses the PDCCH channel to indicate the first indication, which can more quickly and accurately adjust the above-mentioned first beam to the sixth beam of the transponder, thereby effectively improving the accuracy of the beam used by the transponder and improving transmission efficiency. efficiency and reduce space interference.
  • reusing the PDCCH used to schedule the PDSCH transmission or PUSCH transmission of the transponder to indicate the first to fourth beams can reduce the control signaling overhead, thereby improving the utilization rate of time-frequency resources and improving the transmission efficiency of the network.
  • the network device may also use high-layer signaling (such as MAC or RRC signaling, etc.) or use high-layer signaling in conjunction with the PDCCH to perform a semi-static indication on the first indication.
  • the network device may also use high-layer signaling (for example, MAC or RRC signaling, etc.) or use high-layer signaling in conjunction with the PDCCH to indicate multiple beams at one time in the first indication.
  • configuring the transponder semi-statically or configuring multiple first to fourth beams (or first to sixth beams) at one time helps to improve the forwarding efficiency of the transponder and the like.
  • the antenna orientation of traditional RF transponders is usually fixed. After the initial installation, the transponder uses a wider beam on the terminal side to cover the area it is intended to cover, and then no adjustment is required, or manual adjustment is required if necessary. The network device cannot configure the forwarding beam of the transponder.
  • the network device can be configured for the sending beam, receiving beam and forwarding beam of the transponder, so that the forwarding of the transponder can be controlled by using a precise beam management scheme.
  • Precisely managed beams are usually better shaped and can more accurately point to the terminal devices that need to be served.
  • a well-shaped beam is usually relatively narrow, and it is difficult to cover the entire area that the transponder needs to cover with a well-shaped beam. Therefore, in order to serve terminal devices in different geographic locations within the coverage of the repeater, the transponder needs to use beams with different directions at different times to serve different terminal devices.
  • the transponder needs to communicate with the network device and forward the signals interacted between the network device and the terminal device at different times. Communication between the repeater and network equipment may interrupt the repeater's forwarding. In this case, the network device can instruct the transponder how to use the forwarding beam for a long period of time in one configuration, thereby reducing the communication between the transponder and the network device, improving the forwarding efficiency and improving the overall transmission efficiency of the network.
  • the network device can also instruct the transponder in a configuration how to make the forwarding beam for a long period of time, thereby improving the forwarding efficiency and improving the network overall transmission efficiency.
  • At least one beam among the above-mentioned first beam to the fourth beam is related to a first time period, and the first time period is used for the transponder to use the above-mentioned At least one beam among the first beam to the fourth beam forwards a signal between the network device and the terminal device.
  • the first time period may consist of at least one time unit.
  • the time unit may be a symbol, a slot (slot), a subframe, a mini-slot (mini-slot), a minimum scheduling time unit corresponding to non-slot-based scheduling, a frame, and the like.
  • the first time period may be indicated by the above first indication, may also be indicated by the fourth indication, may also be jointly indicated by the first indication and the fourth indication, or may be predefined by a standard and Preset in the transponder at the factory.
  • the length and starting point of the first time period are indicated through the first indication; or, the length and starting point of the first time period are indicated through the fourth indication; or, the length of the first time period is indicated through the first indication , using the fourth indication to indicate the starting point of the first time period; or, using the first indication to indicate the starting point of the first time period, and using the fourth indication to indicate the length of the first time period, and so on.
  • the fourth indication is used to indicate various combinations of at least one of the first beam to the fourth beam and the first time period
  • the first indication is used to indicate one or more combinations, here
  • the first indication may be indicated by an index or the like, or by a bitmap (bitmap) or the like.
  • the fourth indication is sent by the network device to the transponder, which may be carried by the third PDSCH or indicated by the third PDCCH.
  • the repeater does not forward the signal between the network device and the terminal device.
  • 7 to 12 show examples in which a network device configures multiple first to fourth beams for a transponder.
  • Fig. 7 is a schematic diagram of a network device configuring a transponder to use beam A and beam B to forward signals between the network device and the terminal device during the whole time period of the first time period.
  • the roles of beam A and beam B are different, for example, beam A is the first beam and beam B is the second beam, beam A is the third beam and beam B is the fourth beam, and so on.
  • the behavior of the transponder has been described in detail above, and the description is omitted here.
  • Fig. 8 is a schematic diagram of a network device configuring a transponder to use beam A and beam B to forward signals between the network device and the terminal device during part of the first time period.
  • the roles of beam A and beam B are different, for example, beam A is the first beam and beam B is the second beam, beam A is the third beam and beam B is the fourth beam, and so on.
  • FIGs 9 and 10 show that the network device configures the transponder to use five beams (referred to as beam A, beam B, beam C, beam D, and beam E) to network devices and A situation where signals between end devices are forwarded.
  • the five beams have the same function, that is, one of the first beam to the fourth beam.
  • the five beams have different spatial orientations (or, the five beams correspond to different spatial filters).
  • the transponder uses the five beams one by one in different time units to serve different terminal devices in different geographical locations within its coverage.
  • the time occupied by these five beams is continuous, but the application is not limited thereto, the time occupied by these five beams may also be dispersed, or partially continuous and partially dispersed, or Does not align with the start and end of the first time period, or partially aligns with the start and/or end of the first time period.
  • beam occupied time refers to the time when the network device instructs the transponder to use the beam, and/or the time when the transponder actually uses the beam.
  • the first time period may also be periodic.
  • the relative positions of the time occupied by the beams in the first time periods are the same.
  • the present application is not limited thereto.
  • the relative positions of the time occupied by the beams in the first time period may also be different.
  • Figures 11 and 12 show that when the first time period is periodic, the network device configures the transponder to use the above-mentioned first beam to the fourth beam during at least part of the first time period of each period. A situation where at least one beam forwards a signal between a network device and a terminal device.
  • the transponder uses beam A to forward the signal from the network device to the terminal device or forward the signal from the terminal device to the network device, and, in the different periods of In the first time period, the time lengths occupied by beam A are the same.
  • the first time period consists of 8 time units, and that beam A occupies the first four time units in the first time period of each period as an example.
  • Beam A A may also occupy other time units in the first time period of each period, and the positions of the time units occupied by beam A in the first time period of each period may be the same or different.
  • the time unit here may be a symbol or a time slot, or other, and the present application is not limited thereto.
  • the repeater uses different beams (such as beam A, beam B, and beam C) to forward signals between the network device and the terminal device within the first time period of different periods.
  • the beam A, the beam B, and the beam C have the same function, that is, one of the first beam to the fourth beam.
  • the three beams have different spatial directions (or, the three beams correspond to different spatial filters).
  • the transponder may use the three beams one by one in different first time periods to serve different terminal devices in different geographic locations within its coverage. For example, in the first, second, and third first time periods, respectively use beam A, beam B, and beam C to receive the second signal from the terminal device.
  • beam A, beam B, and beam C is the aforementioned second beam, but beam A, beam B, and beam C point to different receiving beams, or in other words, are different receiving spatial filters.
  • the time length occupied by the beams is the same, which is the first four time units.
  • the time unit here may be a symbol or a time slot, or other, and the present application is not limited thereto.
  • the network device can configure the beam used by the transponder, so as to more accurately manage the transmission of the transponder, achieve better coverage, reduce interference to other surrounding devices, and thus improve the overall network efficiency. transmission efficiency.
  • An embodiment of the present application provides a method for determining a beam, which is described from a transponder side.
  • the method corresponds to the method in the embodiment of the first aspect, and the same content as the embodiment of the first aspect will not be described again.
  • FIG. 13 is a schematic diagram of a method for determining a beam according to an embodiment of the present application. As shown in FIG. 13, the method includes:
  • the transponder receives a first indication sent by a network device, where the first indication is used to indicate at least one beam.
  • the network device can configure the beam used by the transponder, so as to more accurately manage the transmission of the transponder, achieve better coverage, reduce interference to other surrounding devices, and thus improve the transmission efficiency of the entire network .
  • one of the at least one beam is: a first beam used for the repeater to forward the first signal from the network device to the terminal device, as shown in FIG. 3 ,
  • one beam of the at least one beam is: a fourth beam used for the transponder to receive a fourth signal from the network device, and the fourth signal is used for forwarding to the terminal equipment, as shown in Figure 3.
  • one of said at least one beam is: a second beam for said transponder to receive a second signal from said terminal device, said second signal for forwarding to said network equipment, as shown in Figure 4.
  • one beam of the at least one beam is: a third beam used for the repeater to forward a third signal from the terminal device to the network device, as shown in FIG. 4 .
  • one of the at least one beam is: a fifth beam used for the transponder to send a fifth signal to the network device, as shown in FIG. 5 .
  • one beam of the at least one beam is: a sixth beam used for the transponder to receive a sixth signal from the network device, as shown in FIG. 6 .
  • the transponder uses the above-mentioned first beam to forward the first signal from the network device to the terminal device, as shown in Figure 3; and/or, the transponder uses the above-mentioned third beam to forward the signal from the terminal device to the network device
  • the third signal is as shown in FIG. 4 .
  • the transponder uses the first beam to forward the first signal from the network device to the terminal device, specifically including: using the fourth beam to receive the fourth signal sent by the network device, and at least amplifying the fourth signal processing, generating a first signal, and sending the first signal to the terminal device by using the first beam, as shown in FIG. 3 . That is, the first signal from the network device may be generated by the transponder at least by amplifying the received fourth signal.
  • the fourth signal may include a signal sent by the network device to the terminal device, and the transponder does not demodulate and/or decode the signal sent by the network device to the terminal device.
  • the signal sent by the network device to the terminal device includes at least one of signaling, data and reference signal.
  • the fourth signal may also include a signal sent by the network device to the transponder, and the transponder demodulates and/or decodes the signal for itself contained in the fourth signal,
  • the signal sent by the network device to the terminal device included in the fourth signal is not demodulated and/or decoded.
  • the transponder uses the third beam to forward the third signal from the terminal device to the network device, specifically including: using the second beam to receive the second signal sent by the terminal device, and at least amplifying the second signal , generate a third signal, and use a third beam to send the third signal to the network device, as shown in FIG. 4 . That is, the third signal from the terminal device may be generated by the transponder at least by amplifying the second signal it receives.
  • the second signal may include a signal sent by the terminal device to the network device, and the transponder does not demodulate and/or decode the signal sent by the terminal device to the network device.
  • the signal sent by the terminal device to the network device includes at least one of signaling, data and reference signal.
  • the transponder uses the fifth beam to send the fifth signal to the network device, as shown in Figure 5; and/or, the transponder uses the sixth beam to receive the sixth signal sent by the network device, as shown in Figure 6 shown.
  • the network device may be the network device of the serving cell of the terminal device, or the network device of the cell where the repeater is located, or the network device of the serving cell of the repeater, or the parent of the repeater.
  • Node Parent node
  • the first indication may be carried by a first PDSCH (Physical Downlink Shared Channel).
  • first PDSCH Physical Downlink Shared Channel
  • the transponder may also receive the second indication sent by the network device, the second indication is used to instruct the transponder to use the seventh beam to receive the first PDSCH, and then obtain the above first indication, according to the first indication Perform the above processing.
  • the first indication may be MAC (Medium Access Control) layer signaling, or RRC (Radio Resource Control) signaling, and the present application is not limited thereto.
  • MAC Medium Access Control
  • RRC Radio Resource Control
  • the first indication may also be indicated by a first PDCCH (Physical Downlink Control Channel).
  • first PDCCH Physical Downlink Control Channel
  • the transponder may also receive a third indication sent by the network device, the third indication is used to instruct the transponder to use the eighth beam to receive the first PDCCH, and then obtain the above first indication, according to the first indication Perform the above processing.
  • the above first PDCCH is also used to instruct the transponder to use the ninth beam to receive the second PDSCH sent by the network device to the transponder, or, the first PDCCH is also used to indicate the The transponder uses the tenth beam to send the second PUSCH to the network device.
  • the relevant content of the first PDCCH reference may be made to related technologies, and the description is omitted here.
  • the repeater may be a repeater, a radio frequency repeater, a radio frequency repeater, a repeater node, a repeater node, a repeater node, an intelligent repeater, an intelligent repeater, an intelligent relay devices, intelligent repeater nodes, intelligent repeater nodes, intelligent repeater nodes, etc., but the present application is not limited thereto, and may be other devices.
  • the network device can configure the beam used by the transponder, so as to more accurately manage the transmission of the transponder, achieve better coverage, reduce interference to other surrounding devices, and thus improve the overall network efficiency. transmission efficiency.
  • An embodiment of the present application provides a beam indicating device for a transponder, for example, the device may be a network device, or may be configured in one or some components or components of the network device.
  • Fig. 14 is a schematic diagram of a beam indicating device for a transponder according to an embodiment of the present application. Since the problem-solving principle of this device is the same as that of the embodiment of the first aspect, its specific implementation can refer to the implementation of the first aspect The implementation of the method of the example, the same content will not be repeated.
  • the beam indicating device 1400 for a transponder includes:
  • a sending unit 1401 configured to send a first indication to a transponder, where the first indication is used to indicate at least one beam.
  • one of the at least one beam is:
  • a first beam for the repeater to forward the first signal from the network device to the terminal device;
  • a second beam for the transponder to receive a second signal from the terminal device, the second signal for forwarding to the network device;
  • a sixth beam for the transponder to receive a sixth signal from the network device is
  • the first signal from the network device is generated by the transponder at least by amplifying the received fourth signal; and, the third signal from the terminal device is generated by the The transponder generates at least by amplifying the second signal it receives.
  • the network device is a network device of a serving cell of the terminal device.
  • the network device is a network device of a cell where the repeater is located.
  • the network device is a network device of a serving cell of the repeater.
  • the network device is a parent node (Parent node) of the repeater.
  • the fourth signal includes a signal sent by the network device to the terminal device, and the transponder does not demodulate and/or decode the signal sent by the network device to the terminal device.
  • the signal sent by the network device to the terminal device includes at least one of signaling, data and reference signal.
  • the second signal includes a signal sent by the terminal device to the network device, and the transponder does not demodulate and/or decode the signal sent by the terminal device to the network device.
  • the signal sent by the terminal device to the network device includes at least one of signaling, data, and reference signal.
  • the first indication is carried by the first PDSCH.
  • the sending unit 1401 further sends a second indication to the transponder, where the second indication is used to instruct the transponder to use the seventh beam to receive the first PDSCH.
  • the first indication is indicated by a first PDCCH.
  • the sending unit 1401 further sends a third indication to the transponder, where the third indication is used to instruct the transponder to use the eighth beam to receive the first PDCCH.
  • the first PDCCH is also used to instruct the transponder to use the ninth beam to receive the second PDSCH sent by the network device to the transponder, or the first PDCCH is also used to indicate The transponder sends the second PUSCH to the network device by using the tenth beam.
  • the network device can configure the beam used by the transponder, so as to more accurately manage the transmission of the transponder, achieve better coverage, reduce interference to other surrounding devices, and thus improve the efficiency of the entire network. transmission efficiency.
  • An embodiment of the present application provides a beam determining apparatus, for example, the apparatus may be a repeater, or may be one or some components or components configured on the repeater.
  • Figure 15 is a schematic diagram of the beam determination device of the embodiment of the present application. Since the principle of the device to solve the problem is the same as the method of the embodiment of the second aspect, its specific implementation can refer to the implementation of the method of the embodiment of the second aspect , where the content is the same will not be repeated.
  • the beam determination device 1500 of the embodiment of the present application includes:
  • a receiving unit 1501 configured to receive a first indication sent by a network device, where the first indication is used to indicate at least one beam.
  • one of the at least one beam is:
  • a first beam for the repeater to forward the first signal from the network device to the terminal device;
  • a second beam for the transponder to receive a second signal from the terminal device, the second signal for forwarding to the network device;
  • a sixth beam for the transponder to receive a sixth signal from the network device is
  • the apparatus 1500 further includes a first processing unit 1502, which uses the first beam to forward the first signal from the network device to the terminal device; and/or , using the third beam to forward a third signal from the terminal device to the network device.
  • a first processing unit 1502 which uses the first beam to forward the first signal from the network device to the terminal device; and/or , using the third beam to forward a third signal from the terminal device to the network device.
  • the first processing 1502 may use the fourth beam to receive the fourth signal sent by the network device, at least perform amplification processing on the fourth signal to generate the first signal, sending the first signal to the terminal device using the first beam.
  • the first processing 1502 may use the second beam to receive the second signal sent by the terminal device, and the transponder at least amplifies the second signal to generate the first Three signals, using the third beam to send the third signal to the network device.
  • the apparatus 1500 further includes a second processing unit 1503, which uses the fifth beam to send the fifth signal to the network device; and/or uses the The sixth beam receives the sixth signal sent by the network device.
  • the network device is a network device of a serving cell of the terminal device.
  • the network device is a network device of a cell where the repeater is located.
  • the network device is a network device of a serving cell of the repeater.
  • the network device is a parent node (Parent node) of the repeater.
  • the fourth signal includes a signal sent by the network device to the terminal device, and the transponder does not demodulate and/or decode the signal sent by the network device to the terminal device.
  • the signal sent by the network device to the terminal device includes at least one of signaling, data and reference signal.
  • the second signal includes a signal sent by the terminal device to the network device, and the transponder does not demodulate and/or decode the signal sent by the terminal device to the network device.
  • the signal sent by the terminal device to the network device includes at least one of signaling, data, and reference signal.
  • the first indication is carried by the first PDSCH.
  • the receiving unit 1501 further receives the second indication sent by the network device, where the second indication is used to instruct the transponder to use the seventh beam to receive the first PDSCH.
  • the first indication is indicated by a first PDCCH.
  • the receiving unit 1501 further receives a third indication sent by the network device, where the third indication is used to instruct the transponder to use the eighth beam to receive the first PDCCH.
  • the first PDCCH is also used to instruct the transponder to use the ninth beam to receive the second PDSCH sent by the network device to the transponder, or the first PDCCH is also used to indicate The transponder sends the second PUSCH to the network device by using the tenth beam.
  • the network device can configure the beam used by the transponder, so as to more accurately manage the transmission of the transponder, achieve better coverage, reduce interference to other surrounding devices, and thus improve the efficiency of the entire network. transmission efficiency.
  • FIG. 1 is a schematic diagram of the communication system of the embodiment of the present application.
  • the communication system 100 includes a network device 101, a transponder 102, and a terminal device 103, for simplicity , FIG. 1 only uses one network device, one transponder, and one terminal device as an example for illustration, but this embodiment of the present application is not limited thereto.
  • eMBB enhanced mobile broadband
  • mMTC massive machine-type communication
  • URLLC highly reliable low-latency communication
  • V2X vehicle-to-everything
  • the network device 101 is configured to execute the method described in the embodiment of the first aspect
  • the transponder 102 is configured to execute the method described in the embodiment of the second aspect, the contents of which are incorporated herein, I won't repeat them here.
  • the embodiment of the present application also provides a network device, which may be, for example, a base station (gNB), but the present application is not limited thereto, and may also be other network devices.
  • a network device which may be, for example, a base station (gNB), but the present application is not limited thereto, and may also be other network devices.
  • gNB base station
  • FIG. 16 is a schematic diagram of a network device according to an embodiment of the present application.
  • a network device 1600 may include: a processor 1610 (such as a central processing unit CPU) and a memory 1620 ; the memory 1620 is coupled to the processor 1610 .
  • the memory 1620 can store various data; in addition, it also stores a program 1630 for information processing, and executes the program 1630 under the control of the processor 1610 .
  • the processor 1610 may be configured to execute a program to implement the method described in the embodiment of the first aspect.
  • the processor 1610 may be configured to control as follows: sending a first indication to the transponder, where the first indication is used to indicate at least one beam.
  • the network device 1600 may further include: a transceiver 1640 and an antenna 1650 ; wherein, the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the network device 1600 does not necessarily include all the components shown in FIG. 16 ; in addition, the network device 1600 may also include components not shown in FIG. 16 , and reference may be made to the prior art.
  • the embodiment of the present application also provides a repeater, which can be, for example, a repeater, a radio frequency repeater, a radio frequency repeater, a repeater node, a repeater node, a repeater node, an intelligent repeater, an intelligent Transponders, intelligent repeaters, intelligent repeater nodes, intelligent repeater nodes, intelligent repeater nodes, etc., but the present application is not limited thereto, and may be other devices.
  • a repeater can be, for example, a repeater, a radio frequency repeater, a radio frequency repeater, a repeater node, a repeater node, a repeater node, an intelligent repeater, an intelligent Transponders, intelligent repeaters, intelligent repeater nodes, intelligent repeater nodes, intelligent repeater nodes, etc., but the present application is not limited thereto, and may be other devices.
  • Fig. 17 is a schematic diagram of a transponder according to an embodiment of the present application.
  • the transponder 1700 may include a processor 1710 and a memory 1720 ; the memory 1720 stores data and programs and is coupled to the processor 1710 . It is worth noting that this figure is exemplary; other types of structures may also be used in addition to or instead of this structure to implement telecommunication functions or other functions.
  • the processor 1710 may be configured to execute a program to implement the method described in the embodiment of the second aspect.
  • the processor 1710 may be configured to perform the following control: receive a first indication sent by a network device, where the first indication is used to indicate at least one beam.
  • the transponder 1700 may further include: a network-side transceiver 1740-1 and a network-side antenna 1750-1, a terminal-side transceiver 1740-2, a terminal-side antenna 1750-2, and a signal amplification circuit 1760; Wherein, the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the transponder 1700 does not necessarily include all the components shown in FIG. 17 ; in addition, the transponder 1700 may also include components not shown in FIG. 17 , and reference may be made to the prior art.
  • An embodiment of the present application further provides a computer-readable program, wherein when the program is executed in a network device, the program causes a computer to execute the method described in the embodiment of the first aspect in the network device.
  • An embodiment of the present application further provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in the embodiment of the first aspect in a network device.
  • An embodiment of the present application further provides a computer-readable program, wherein when the program is executed in a terminal device, the program causes a computer to execute the method described in the embodiment of the second aspect in the transponder.
  • the embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program causes the computer to execute the method described in the embodiment of the second aspect in the transponder.
  • the above devices and methods in this application can be implemented by hardware, or by combining hardware and software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present application also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, and the like.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to each software module or each hardware module of the computer program flow.
  • These software modules may respectively correspond to the steps shown in the figure.
  • These hardware modules for example, can be realized by solidifying these software modules by using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or it can be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or large-capacity flash memory device.
  • One or more of the functional blocks described in the accompanying drawings and/or one or more combinations of the functional blocks can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors processor, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a beam pointing method for a transponder comprising:
  • the network device sends a first indication to the transponder, where the first indication is used to indicate at least one beam.
  • a first beam for the repeater to forward the first signal from the network device to the terminal device;
  • a second beam for the transponder to receive a second signal from the terminal device, the second signal for forwarding to the network device;
  • a sixth beam for the transponder to receive a sixth signal from the network device is
  • the network device is a network device of a cell where the repeater is located.
  • the signal sent by the network device to the terminal device includes at least one of signaling, data and reference signal.
  • the signal sent by the terminal device to the network device includes at least one of signaling, data and reference signal.
  • the network device sends a second indication to the transponder, where the second indication is used to instruct the transponder to use a seventh beam to receive the first PDSCH.
  • the network device sends a third indication to the transponder, where the third indication is used to instruct the transponder to use the eighth beam to receive the first PDCCH.
  • a beam determination method wherein the method comprises:
  • the transponder receives the first indication sent by the network device, where the first indication is used to indicate at least one beam.
  • a first beam for the repeater to forward the first signal from the network device to the terminal device;
  • a second beam for the transponder to receive a second signal from the terminal device, the second signal for forwarding to the network device;
  • a sixth beam for the transponder to receive a sixth signal from the network device is
  • the repeater forwards the first signal from the network device to the terminal device using the first beam;
  • the repeater uses the third beam to forward a third signal from the terminal device to the network device.
  • the transponder forwards the first signal from the network device to the terminal device using the first beam, and further includes receiving the fourth signal sent by the network device using the fourth beam, performing amplification processing on at least the fourth signal, generating the first signal, and sending the first signal to the terminal device by using the first beam;
  • the transponder uses the third beam to forward the third signal from the terminal device to the network device, and further includes, using the second beam to receive the second signal sent by the terminal device, the The transponder at least performs amplification processing on the second signal to generate the third signal, and uses the third beam to send the third signal to the network device.
  • the transponder sends the fifth signal to the network device using the fifth beam;
  • the transponder uses the sixth beam to receive the sixth signal sent by the network device.
  • the network device is a network device of a serving cell of the terminal device.
  • the network device is a network device of a cell where the repeater is located.
  • the transponder receives the second indication sent by the network device, where the second indication is used to instruct the transponder to use the seventh beam to receive the first PDSCH.
  • the transponder receives a third indication sent by the network device, where the third indication is used to instruct the transponder to use the eighth beam to receive the first PDCCH.
  • a network device including a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method described in any one of Supplements 1 to 15.
  • a transponder including a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method described in any one of Supplements 1a to 18a.
  • a communication system comprising a network device and a repeater, wherein,
  • the network device is configured to send a first indication to the transponder, the first indication being used to indicate at least one beam;
  • the repeater is configured to receive the first indication sent by the network device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种用于转发器的波束指示方法、装置和系统,所述方法包括:网络设备向转发器发送第一指示,该第一指示用于指示至少一个波束。该至少一个波束中的一个波束是:用于转发器向终端设备转发来自网络设备的第一信号的第一波束;或者,用于转发器接收来自终端设备的第二信号的第二波束,该第二信号用于转发给网络设备;或者,用于转发器向网络设备转发来自终端设备的第三信号的第三波束;或者,用于转发器接收来自网络设备的第四信号的第四波束,该第四信号用于转发给终端设备;或者,用于转发器向网络设备发送第五信号的第五波束;或者,用于转发器接收来自网络设备的第六信号的第六波束。

Description

一种用于转发器的波束指示方法、装置和系统 技术领域
本申请涉及通信领域。
背景技术
与传统的3G(第三代移动通信技术)、4G(第四代移动通信技术)系统相比,5G(第五代移动通信技术)系统能够提供更大的带宽以及更高的数据率,并且能够支持更多类型的终端和垂直行业业务。为此,5G系统的现有部署频率通常高于3G和4G系统。例如,5G系统可以部署在毫米波波段。
然而,承载频率越高,信号在传输过程中经历的衰落越严重。因此,在5G系统的实际部署中,特别是在毫米波段,如何更好的增强小区覆盖,成为亟待解决的问题。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
为了更好的解决蜂窝移动通信系统在实际部署中的覆盖问题,采用射频转发器(RF Repeater)放大和转发终端与基站之间的通信信号,是比较常用的部署手段。射频转发器在3G系统和4G系统的实际部署中具有较为广泛的应用。通常来说,传统射频转发器是一种在射频域放大和转发基站与终端往来信号的设备。传统射频转发器在转发过程中,不对转发信号进行解调解码。传统射频转发器的天线方向通常是固定的。传统射频转发器的天线方向通常在初始安装的时候人工进行设置和调整,以使得基站侧的天线指向基站来波方向,终端侧的天线指向需要增强部署的地方。在传统射频转发器工作的过程中,天线方向不发生改变。此外,传统射频转发器不具备通信功能,不能够和基站进行信息交互,因此也不支持基站对其进行自适应和/或较为动态的配置。
相比于3G和4G系统,部署在较高频段和毫米波频段的5G系统采用了更为高级和复杂的MIMO(多进多出)技术。在5G系统中,有向天线成为基站与终端设备 的基本部件,基于波束赋形(Beam forming)技术发送和接收信号是5G系统中基本的信号传输方式。特别是毫米波波段频率高、小波长的特点更利于在基站和终端设备中设置包含较多阵子的天线面板。天线阵子个数的增加有助于更为精准的波束赋形,即更容易形成窄波束。窄波束汇聚能量有助于增强信号,并同时减小对其它设备的干扰。另一方面,由于窄波束的指向精准,对信道测量和波束管理的要求非常高,因此5G系统支持较为复杂但精准的信道测量、天线校准和波束管理方案,基站可以通过这些方案有效而精准的控制终端设备的接收波束和发送波束,以达到更好的通信效果。
发明人发现,针对5G系统在部署中遇到的覆盖问题,采用射频转发器进行覆盖增强是可行的解决方案之一。但是,传统射频转发器的天线不可动态调整方向、波束较宽。这样的射频转发器配置在5G系统中,虽然能够帮助增强信号强度,但也会由于发送波束较宽对周围的其它基站或者终端设备造成比较明显的干扰,进而因为新干扰的增加而降低整个网络的吞吐量。
在3GPP(第三代合作伙伴计划)Release18(版本18)的讨论中,一种新型Repeater设备被构想。在该设备构想中,Repeater能够与gNB进行通信。gNB能够对Repeater进行一定程度的配置,并通过这些配置优化Repeater的转发性能以及减小对周围其它设备的干扰等。
本申请实施例提供了一种用于转发器的波束指示方法、装置和系统。网络设备(gNB)可以配置转发器(Repeater)所使用的波束,从而更精准的管理转发器的转发、实现更好的覆盖、减小对周围其它设备的干扰并由此提高整个网络的传输效率。
根据本申请实施例的一方面,提供一种用于转发器的波束指示装置,配置于网络设备,其中,所述装置包括:
发送单元,其向转发器发送第一指示,所述第一指示用于指示至少一个波束。
根据本申请实施例的另一方面,提供一种波束确定装置,配置于转发器,其中,所述装置包括:
接收单元,其接收网络设备发送的第一指示,所述第一指示用于指示至少一个波束。
本申请实施例的有益效果之一在于:网络设备可以配置转发器所使用的波束,从而更精准的管理转发器的传输、实现更好的覆盖、减小对周围其它设备的干扰并由此提高整个网络的传输效率。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本申请实施例的应用场景的一个示意图;
图2是本申请实施例的用于转发器的波束指示方法的一个示意图;
图3至图6是网络设备所指示的波束的一些实施场景的示意图;
图7至图12是网络设备所指示的波束在第一时间段的使用时间的场景的示意图;
图13是本申请实施例的波束确定方法的一个示意图;
图14是本申请实施例的用于转发器的波束指示装置的一个示意图;
图15是本申请实施例的波束确定装置的一个示意图;
图16是本申请实施例的网络设备的一个示意图;
图17是本申请实施例的转发器的一个示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明 书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、收发节点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、 远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
图1是本申请实施例的应用场景的示意图,如图1所示,为了方便说明,以一个5G基站(gNB)、一个转发器(Repeater)和一个终端设备(UE)为例进行说明,本申请不限于此。
在本申请实施例中,5G基站和终端设备之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
下面结合附图对本申请实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
第一方面的实施例
本申请实施例提供一种用于转发器的波束指示方法,从网络设备侧进行说明。
图2是本申请实施例的用于转发器的波束指示方法的一示意图,请参照图2,该 方法包括:
201:网络设备向转发器发送第一指示,所述第一指示用于指示至少一个波束。
根据本申请实施例,网络设备可以配置转发器所使用的波束,从而更精准的管理转发器的传输、实现更好的覆盖、减小对周围其它设备的干扰并由此提高整个网络的传输效率。
在本申请实施例中,波束(beam)也可以表述为波瓣(beam)、参考信号(RS)、传输配置指示(TCI,transmission configuration indication)、空域滤波器(spatial domain filter)等,或者,也可以表述为波束索引、波瓣索引、参考信号索引、传输配置指示索引、空域滤波器索引等。上述参考信号例如为CSI-RS、SRS、供转发器使用的RS、由转发器发送的RS等。上述TCI也可以表述为TCI状态(state)。
在本申请实施例中,上述至少一个波束用于转发器对网络设备和终端设备之间的信号进行转发。
例如,所述至少一个波束中的一个波束是:用于所述转发器向终端设备转发来自所述网络设备的第一信号的第一波束。如图3所示,转发器302使用第一波束向终端设备303发送第一信号,该第一信号来自于网络设备301,例如来自于网络设备301发出的第四信号。
再例如,所述至少一个波束中的一个波束是:用于所述转发器接收来自所述网络设备的第四信号的第四波束,所述第四信号用于转发给所述终端设备。如图3所示,转发器302使用第四波束接收第四信号,该第四信号是网络设备301发出的信号。
在上述例子中,第四信号包含网络设备向终端设备发送的信号,转发器不对该第四信号中的网络设备向终端设备发送的信号进行解调和/或解码。
其中,网络设备向终端设备发送的信号包括信令、数据以及参考信号的其中至少之一。
其中,第四信号除了包含网络设备向终端设备发送的信号以外,还可以包含网络设备向转发器发送的信号,转发器对第四信号中包含的给自己的信号进行解调和/或解码,不对第四信号中包含的网络设备向终端设备发送的信号进行解调和/或解码。
在上述例子中,来自网络设备的第一信号可以由转发器至少通过对其接收到的第四信号进行放大生成。
再例如,所述至少一个波束中的一个波束是:用于所述转发器接收来自所述终端 设备的第二信号的第二波束,所述第二信号用于转发给所述网络设备。如图4所示,转发器402使用第二波束接收第二信号,该第二信号是终端设备403发出的信号。
再例如,所述至少一个波束中的一个波束是:用于所述转发器向所述网络设备转发来自所述终端设备的第三信号的第三波束。如图4所示,转发器402使用第三波束向网络设备401发送第三信号,该第三信号是来自于终端设备403,例如来自于终端设备发出的第二信号。
在上述例子中,第二信号包含终端设备向网络设备发送的信号,转发器不对终端设备向网络设备发送的信号进行解调和/或解码。
其中,终端设备向网络设备发送的信号包括信令、数据以及参考信号的其中至少之一。
在上述例子中,来自终端设备的第三信号可以由转发器至少通过对其收到的第二信号进行放大生成。
再例如,所述至少一个波束中的一个波束是:用于所述转发器向所述网络设备发送第五信号的第五波束。如图5所示,转发器502使用第五波束向网络设备501发送第五信号。
再例如,所述至少一个波束中的一个波束是:用于所述转发器接收来自所述网络设备的第六信号的第六波束。如图6所示,转发器602使用第六波束接收第六信号,该第六信号是网络设备601发出的信号。
在本申请实施例中,网络设备可以是终端设备的服务小区的网络设备,也可以是转发器所在的小区的网络设备,还可以是转发器的服务小区的网络设备,也可以是转发器的父节点(Parent node),本申请对该转发器的名称不做限制,只要能实现上述功能的设备,都包含于本申请的转发器的范围内。
在本申请实施例中,第一指示可以由第一PDSCH(物理下行共享信道)承载。
在上述实施例中,网络设备还可以向转发器发送第二指示,该第二指示用于指示转发器使用第七波束接收该第一PDSCH,进而得到上述第一指示,根据该第一指示进行上述处理。
在上述实施例中,该第一指示可以是MAC(媒体接入控制)层信令,也可以是RRC(无线资源控制)信令,本申请不限于此。
在本申请实施例中,第一指示也可以由第一PDCCH(物理下行控制信道)进行 指示。
在上述实施例中,网络设备还可以向转发器发送第三指示,该第三指示用于指示转发器使用第八波束接收该第一PDCCH,进而得到上述第一指示,根据该第一指示进行上述处理。
在上述实施例中,上述第一PDCCH还用于指示所述转发器使用第九波束接收所述网络设备发送给所述转发器的第二PDSCH,或者,所述第一PDCCH还用于指示所述转发器使用第十波束向所述网络设备发送第二PUSCH。关于该第一PDCCH的相关内容,可以参考相关技术,此处省略说明。
根据本申请实施例,网络设备利用PDCCH信道对第一指示进行指示可以更加快速、准确的调整转发器的上述第一波束至第六波束,从而有效提高转发器所使用波束的精确程度,提高传输效率、减少空间干扰。
此外,重用用于调度转发器的PDSCH传输或者PUSCH传输的PDCCH去指示上述第一至第四波束,可以减小控制信令开销,进而提高时频资源利用率,提高网络的传输效率。
在本申请实施例中,网络设备也可以利用高层信令(例如MAC或者RRC信令等)或者利用高层信令结合PDCCH对第一指示进行半静态指示。网络设备还可以利用高层信令(例如MAC或者RRC信令等)或者利用高层信令结合PDCCH在第一指示中一次性指示多个波束。在一些情况下,为转发器半静态配置或者一次配置多个第一至第四波束(或者第一至第六波束)有助于提高转发器的转发效率等。
值得注意的是,传统射频转发器的天线方向通常是固定的。在初始安装后转发器在终端侧使用一个较宽的波束覆盖其预定覆盖的区域,之后不再进行调整,或者在有需要的情况下需要进行人工调整。网络设备不能够对转发器的转发波束进行配置。
根据本申请实施例,网络设备能够针对转发器的发送波束、接收波束以及转发波束进行配置,从而可以采用精准的波束管理方案控制转发器的转发。被精准管理的波束通常赋形较好,能够更准确地指向需要被服务的终端设备。但是,赋形较好的波束通常比较窄,很难通过一个赋形较好的波束覆盖整个转发器需要覆盖的区域。因此,为了服务转发器覆盖范围内处于不同地理位置的终端设备,转发器需要在不同时间采用不同指向的波束以便服务不同终端设备。
在一些情况下,转发器需要在不同时间内与网络设备进行通信和对网络设备与终 端设备之间交互的信号进行转发。转发器与网络设备之间的通信可能会打断转发器的转发。这种情况下,网络设备可以在一次配置中指示在较长一段时间内转发器如何使转发波束,从而减少转发器与网络设备之间的通信,提高转发效率从而提高网络的整体传输效率。
在另一些情况下,当转发器服务的终端设备移动性不明显的时候,网络设备也可以在一次配置中指示在较长一段时间内转发器如何使转发波束,借此提高转发效率从而提高网络的整体传输效率。
下面介绍网络设备为转发器配置多个上述第一波束至第四波束的例子。
在本申请实施例中,上述第一波束至第四波束中的至少一个波束与第一时间段相关,该第一时间段用于转发器在该第一时间段的至少部分时间内,使用上述第一波束至第四波束中的至少一个波束,对网络设备和终端设备之间的信号进行转发。
在上述实施例中,第一时间段可以由至少一个时间单位组成。该时间单位可以是符号、时隙(slot)、子帧、小时隙(mini-slot)、基于非时隙调度(non-slot-based scheduling)对应的最小调度时间单位、帧等等。
在上述实施例中,第一时间段可以由上述第一指示进行指示,也可以由第四指示进行指示,还可以由第一指示和第四指示进行联合指示,还可以是由标准预定义并在出厂前预设在转发器中。
例如,通过第一指示来指示第一时间段的长度和起始点;或者,通过第四指示来指示第一时间段的长度和起始点;或者,通过第一指示来指示第一时间段的长度,通过第四指示来指示第一时间段的起始点;或者,通过第一指示来指示第一时间段的起始点,而通过第四指示来指示第一时间段的长度,等等。
再例如,通过第四指示来指示上述第一波束至第四波束中的至少一个波束与第一时间段的多种组合,再通过第一指示用于指示其中一种合或者多种组合,这里,第一指示可以通过索引等进行指示,或者通过位图(bitmap)等方式进行指示。
在上述实施例中,第四指示是网络设备发送给转发器的,其可以由第三PDSCH承载,也可以由第三PDCCH指示。
在上述实施例中,对于所述第一时间段内不对应所述第一波束至第四波束中的至少一个波束的时间,也即,上述第一波束至第四波束中的至少一个波束在所述第一时间段的使用时间的总和以外的时间,转发器不对网络设备和终端设备之间的信号进行 转发。
图7至图12示出了网络设备为转发器配置多个上述第一波束至第四波束的例子。
图7是网络设备配置转发器在第一时间段的全部时间内使用波束A和波束B对网络设备和终端设备之间的信号进行转发的示意图。波束A和波束B的作用不同,例如波束A为第一波束而波束B为第二波束,波束A为第三波束而波束B为第四波束,等等。关于转发器的行为已经在前面做了详细说明,此处省略说明。
图8是网络设备配置转发器在第一时间段的部分时间内使用波束A和波束B对网络设备和终端设备之间的信号进行转发的示意图。波束A和波束B的作用不同,例如波束A为第一波束而波束B为第二波束,波束A为第三波束而波束B为第四波束,等等。
图9和图10示出了网络设备配置转发器在该第一时间段的部分时间内,使用五个波束(称为波束A、波束B、波束C、波束D、波束E)对网络设备和终端设备之间的信号进行转发的情况。该五个波束作用相同,即为第一波束至第四波束中的一种。该五个波束空间指向不同(或,该五个波束对应不同空间滤波器)。转发器在不同时间单位逐个采用该五个波束可以服务其覆盖范围内不同处于不同地理位置的终端设备。
在图9和图10的示例中,这五个波束所占用的时间是连续的,但本申请不限于此,这五个波束所占用的时间也可以是分散的,或者部分连续部分分散,或者不与第一时间段的起始点和结束点对齐,或者部分与第一时间段的起始点和/或结束点对齐。
在本申请实施例中,如无特别说明,“波束所占时间”是指,网络设备指示转发器使用该波束的时间,和/或,转发器实际使用波束的时间。
在本申请实施例中,第一时间段也可以是周期性的。在不同周期的第一时间段内,波束所占时间在第一时间段中的相对位置相同。但本申请不限于此,在不同周期的第一时间段内,波束所占时间在第一时间段中的相对位置也可以不同。图11和图12示出了在第一时间段是周期性的情况下,网络设备配置转发器在各周期的第一时间段的至少部分时间内,使用上述第一波束至第四波束中的至少一个波束对网络设备和终端设备之间的信号进行转发的情况。
在图11的示例中,在不同周期的第一时间段内,转发器使用波束A将来自网络设备的信号转发给终端设备或者将来自终端设备的信号转发给网络设备,并且,在不 同周期的第一时间段内,波束A所占用的时间长度相同。在图11的示例中,以第一时间段由8个时间单位构成,并且,波束A在每个周期的第一时间段内都占用前四个时间单位为例,本申请不限于此,波束A在每个周期的第一时间段内也可以占用其他时间单位,波束A在每个周期的第一时间段内所占用的时间单位位置可以相同,也可以不同。这里的时间单位可以是符号或者时隙,也可以是其它,本申请不限于此。
在图12的示例中,在不同周期的第一时间段内,转发器使用不同的波束(例如波束A、波束B以及波束C)对网络设备和终端设备之间的信号进行转发。波束A、波束B以及波束C作用相同,即为第一波束至第四波束中的一种。该三个波束空间指向不同(或,该三个波束对应不同空间滤波器)。转发器在不同第一时间段内逐个采用该三个波束可以服务其覆盖范围内不同处于不同地理位置的终端设备。例如,在第一个、第二个、第三个第一时间段内,分别使用波束A、波束B、波束C接收来自所述终端设备的第二信号,此时波束A、波束B、波束C均为前述第二波束,但波束A、波束B、波束C为指向不同的接收波束,或者说,为不同的接收空间滤波器。
并且,在图12的示例中,在每个周期的第一时间段内,波束所占用的时间长度相同,都为前四个时间单位。这里的时间单位可以是符号或者时隙,也可以是其他,本申请不限于此。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
根据本申请实施例的方法,网络设备可以配置转发器所使用的波束,从而更精准的管理转发器的传输、实现更好的覆盖、减小对周围其它设备的干扰并由此提高整个网络的传输效率。
第二方面的实施例
本申请实施例提供一种波束确定方法,从转发器侧进行说明。该方法与第一方面的实施例的方法对应,其中与第一方面的实施例相同的内容不再重复说明。
图13是本申请实施例的波束确定方法的示意图,如图13所示,该方法包括:
1301,转发器接收网络设备发送的第一指示,所述第一指示用于指示至少一个波束。
根据本申请实施例,网络设备可以配置转发器所使用的波束,从而更精准的管理转发器的传输、实现更好的覆盖、减小对周围其它设备的干扰并由此提高整个网络的传输效率。
在一些实施例中,所述至少一个波束中的一个波束是:用于所述转发器向终端设备转发来自所述网络设备的第一信号的第一波束,如图3所示,
在一些实施例中,所述至少一个波束中的一个波束是:用于所述转发器接收来自所述网络设备的第四信号的第四波束,所述第四信号用于转发给所述终端设备,如图3所示。
在一些实施例中,所述至少一个波束中的一个波束是:用于所述转发器接收来自所述终端设备的第二信号的第二波束,所述第二信号用于转发给所述网络设备,如图4所示。
在一些实施例中,所述至少一个波束中的一个波束是:用于所述转发器向所述网络设备转发来自所述终端设备的第三信号的第三波束,如图4所示。
在一些实施例中,所述至少一个波束中的一个波束是:用于所述转发器向所述网络设备发送第五信号的第五波束,如图5所示。
在一些实施例中,所述至少一个波束中的一个波束是:用于所述转发器接收来自所述网络设备的第六信号的第六波束,如图6所示。
在一些实施例中,转发器使用上述第一波束向终端设备转发来自网络设备的第一信号,如图3所示;和/或,转发器使用上述第三波束向网络设备转发来自终端设备的第三信号,如图4所示。
在上述实施例中,转发器使用第一波束向终端设备转发来自网络设备的第一信号,具体包括:使用第四波束接收来由网络设备发送的第四信号,至少对该第四信号进行放大处理,生成第一信号,使用第一波束向终端设备发送该第一信号,如图3所示。也即,来自网络设备的第一信号可以由转发器至少通过对其接收到的第四信号进行放大生成。
其中,第四信号可以包含网络设备向终端设备发送的信号,转发器不对网络设备 向终端设备发送的信号进行解调和/或解码。这里,网络设备向终端设备发送的信号包括信令、数据以及参考信号的其中至少之一。
其中,第四信号除了包含网络设备向终端设备发送的信号以外,还可以包含网络设备向转发器发送的信号,转发器对第四信号中包含的给自己的信号进行解调和/或解码,不对第四信号中包含的网络设备向终端设备发送的信号进行解调和/或解码。
在上述实施例中,转发器使用第三波束向网络设备转发来自终端设备的第三信号,具体包括:使用第二波束接收由终端设备发送的第二信号,至少对该第二信号进行放大处理,生成第三信号,使用第三波束向网络设备发送该第三信号,如图4所示。也即,来自终端设备的第三信号可以由转发器至少通过对其收到的第二信号进行放大生成。
其中,第二信号可以包含终端设备向网络设备发送的信号,转发器不对终端设备向网络设备发送的信号进行解调和/或解码。这里,终端设备向网络设备发送的信号包括信令、数据以及参考信号的其中至少之一。
在一些实施例中,转发器使用上述第五波束向网络设备发送第五信号,如图5所示;和/或,转发器使用上述第六波束接收网络设备发送的第六信号,如图6所示。
在本申请实施例中,网络设备可以是终端设备的服务小区的网络设备,也可以是转发器所在的小区的网络设备,还可以是转发器的服务小区的网络设备,或者是转发器的父节点(Parent node)。
在本申请实施例中,第一指示可以由第一PDSCH(物理下行共享信道)承载。
在上述实施例中,转发器还可以接收网络设备发送的第二指示,该第二指示用于指示转发器使用第七波束接收该第一PDSCH,进而得到上述第一指示,根据该第一指示进行上述处理。
在上述实施例中,该第一指示可以是MAC(媒体接入控制)层信令,也可以是RRC(无线资源控制)信令,本申请不限于此。
在本申请实施例中,第一指示也可以由第一PDCCH(物理下行控制信道)进行指示。
在上述实施例中,转发器还可以接收网络设备发送的第三指示,该第三指示用于指示转发器使用第八波束接收该第一PDCCH,进而得到上述第一指示,根据该第一指示进行上述处理。
在上述实施例中,上述第一PDCCH还用于指示所述转发器使用第九波束接收所述网络设备发送给所述转发器的第二PDSCH,或者,所述第一PDCCH还用于指示所述转发器使用第十波束向所述网络设备发送第二PUSCH。关于该第一PDCCH的相关内容,可以参考相关技术,此处省略说明。
在本申请实施例中,转发器根据网络设备的指示,对网络设备和终端设备之间的信号进行发送或转发的示例,已经以图7至图12为例在第一方面的实施例中做了说明,其内容被合并于此,此处不再赘述。
在本申请实施例中,转发器可以是直放站、射频转发器、射频中继器、直放站节点、转发器节点、中继器节点、智能直放站、智能转发器、智能中继器、智能直放站节点、智能转发器节点、智能中继器节点等,但本申请不限于此,还可以是其它的设备。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例的方法,网络设备可以配置转发器所使用的波束,从而更精准的管理转发器的传输、实现更好的覆盖、减小对周围其它设备的干扰并由此提高整个网络的传输效率。
第三方面的实施例
本申请实施例提供一种用于转发器的波束指示装置,该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。
图14是本申请实施例的用于转发器的波束指示装置的一个示意图,由于该装置解决问题的原理与第一方面的实施例的方法相同,因此其具体的实施可以参照第一方面的实施例的方法的实施,内容相同之处不再重复说明。
如图14所示,本申请实施例的用于转发器的波束指示装置1400包括:
发送单元1401,其向转发器发送第一指示,所述第一指示用于指示至少一个波束。
在本申请实施例中,所述至少一个波束中的一个波束是:
用于所述转发器向终端设备转发来自所述网络设备的第一信号的第一波束;或者,
用于所述转发器接收来自所述终端设备的第二信号的第二波束,所述第二信号用于转发给所述网络设备;或者,
用于所述转发器向所述网络设备转发来自所述终端设备的第三信号的第三波束;或者,
用于所述转发器接收来自所述网络设备的第四信号的第四波束,所述第四信号用于转发给所述终端设备;或者,
用于所述转发器向所述网络设备发送第五信号的第五波束;或者,
用于所述转发器接收来自所述网络设备的第六信号的第六波束。
在一些实施例中,所述来自网络设备的第一信号由所述转发器至少通过对其接收到的所述第四信号进行放大生成;以及,所述来自终端设备的第三信号由所述转发器至少通过对其收到的所述第二信号进行放大生成。
在一些实施例中,所述网络设备是所述终端设备的服务小区的网络设备。
在一些实施例中,所述网络设备是所述转发器所在的小区的网络设备。
在一些实施例中,所述网络设备是所述转发器的服务小区的网络设备。
在一些实施例中,所述网络设备是所述转发器的父节点(Parent node)。
在一些实施例中,所述第四信号包含所述网络设备向所述终端设备发送的信号,所述转发器不对所述网络设备向所述终端设备发送的信号进行解调和/或解码。
在上述实施例中,所述网络设备向所述终端设备发送的信号包括信令、数据以及参考信号的其中至少之一。
在一些实施例中,所述第二信号包含所述终端设备向所述网络设备发送的信号,所述转发器不对所述终端设备向所述网络设备发送的信号进行解调和/或解码。
在上述实施例中,所述终端设备向所述网络设备发送的信号包括信令、数据以及参考信号的其中至少之一。
在一些实施例中,所述第一指示由第一PDSCH承载。
在上述实施例中,所述发送单元1401还向所述转发器发送第二指示,所述第二指示用于指示所述转发器使用第七波束接收所述第一PDSCH。
在一些实施例中,所述第一指示由第一PDCCH进行指示。
在上述实施例中,所述发送单元1401还向所述转发器发送第三指示,所述第三指示用于指示所述转发器使用第八波束接收所述第一PDCCH。
在上述实施例中,所述第一PDCCH还用于指示所述转发器使用第九波束接收所述网络设备发送给所述转发器的第二PDSCH,或者,所述第一PDCCH还用于指示所述转发器使用第十波束向所述网络设备发送第二PUSCH。
根据本申请实施例的装置,网络设备可以配置转发器所使用的波束,从而更精准的管理转发器的传输、实现更好的覆盖、减小对周围其它设备的干扰并由此提高整个网络的传输效率。
第四方面的实施例
本申请实施例提供一种波束确定装置,该装置例如可以是转发器,也可以是配置于转发器的某个或某些部件或者组件。
图15是本申请实施例的波束确定装置的一个示意图,由于该装置解决问题的原理与第二方面的实施例的方法相同,因此其具体的实施可以参照第二方面的实施例的方法的实施,内容相同之处不再重复说明。
如图15所示,本申请实施例的波束确定装置1500包括:
接收单元1501,其接收网络设备发送的第一指示,所述第一指示用于指示至少一个波束。
在本申请实施例中,所述至少一个波束中的一个波束是:
用于所述转发器向终端设备转发来自所述网络设备的第一信号的第一波束;或者,
用于所述转发器接收来自所述终端设备的第二信号的第二波束,所述第二信号用于转发给所述网络设备;或者,
用于所述转发器向所述网络设备转发来自所述终端设备的第三信号的第三波束;或者,
用于所述转发器接收来自所述网络设备的第四信号的第四波束,所述第四信号用于转发给所述终端设备;或者,
用于所述转发器向所述网络设备发送第五信号的第五波束;或者,
用于所述转发器接收来自所述网络设备的第六信号的第六波束。
在一些实施例中,如图15所示,所述装置1500还包括第一处理单元1502,其使 用所述第一波束向所述终端设备转发来自所述网络设备的第一信号;和/或,使用所述第三波束向所述网络设备转发来自所述终端设备的第三信号。
在上述实施例中,第一处理1502可以使用所述第四波束接收来由所述网络设备发送的所述第四信号,至少对所述第四信号进行放大处理,生成所述第一信号,使用所述第一波束向所述终端设备发送所述第一信号。
在上述实施例中,第一处理1502可以使用所述第二波束接收由所述终端设备发送的所述第二信号,所述转发器至少对所述第二信号进行放大处理,生成所述第三信号,使用所述第三波束向所述网络设备发送所述第三信号。
在一些实施例中,如图15所示,所述装置1500还包括第二处理单元1503,其使用所述第五波束向所述网络设备发送所述第五信号;和/或,使用所述第六波束接收所述网络设备发送的所述第六信号。
在一些实施例中,所述网络设备是所述终端设备的服务小区的网络设备。
在一些实施例中,所述网络设备是所述转发器所在的小区的网络设备。
在一些实施例中,所述网络设备是所述转发器的服务小区的网络设备。
在一些实施例中,所述网络设备是所述转发器的父节点(Parent node)。
在一些实施例中,所述第四信号包含所述网络设备向所述终端设备发送的信号,所述转发器不对所述网络设备向所述终端设备发送的信号进行解调和/或解码。
在上述实施例中,所述网络设备向所述终端设备发送的信号包括信令、数据以及参考信号的其中至少之一。
在一些实施例中,所述第二信号包含所述终端设备向所述网络设备发送的信号,所述转发器不对所述终端设备向所述网络设备发送的信号进行解调和/或解码。
在上述实施例中,所述终端设备向所述网络设备发送的信号包括信令、数据以及参考信号的其中至少之一。
在一些实施例中,所述第一指示由第一PDSCH承载。
在上述实施例中,所述接收单元1501还接收所述网络设备发送的第二指示,所述第二指示用于指示所述转发器使用第七波束接收所述第一PDSCH。
在一些实施例中,所述第一指示由第一PDCCH进行指示。
在上述实施例中,所述接收单元1501还接收所述网络设备发送的第三指示,所述第三指示用于指示所述转发器使用第八波束接收所述第一PDCCH。
在上述实施例中,所述第一PDCCH还用于指示所述转发器使用第九波束接收所述网络设备发送给所述转发器的第二PDSCH,或者,所述第一PDCCH还用于指示所述转发器使用第十波束向所述网络设备发送第二PUSCH。
根据本申请实施例的装置,网络设备可以配置转发器所使用的波束,从而更精准的管理转发器的传输、实现更好的覆盖、减小对周围其它设备的干扰并由此提高整个网络的传输效率。
第五方面的实施例
本申请实施例提供了一种通信系统,图1是本申请实施例的通信系统的示意图,如图1所示,该通信系统100包括网络设备101、转发器102以及终端设备103,为简单起见,图1仅以一个网络设备、一个转发器以及一个终端设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
在本申请实施例中,网络设备101被配置为执行第一方面的实施例所述的方法,转发器102被配置为执行第二方面的实施例所述的方法,其内容被合并于此,此处不再赘述。
本申请实施例还提供一种网络设备,例如可以是基站(gNB),但本申请不限于此,还可以是其它的网络设备。
图16是本申请实施例的网络设备的构成示意图。如图16所示,网络设备1600可以包括:处理器1610(例如中央处理器CPU)和存储器1620;存储器1620耦合到处理器1610。其中该存储器1620可存储各种数据;此外还存储信息处理的程序1630,并且在处理器1610的控制下执行该程序1630。
例如,处理器1610可以被配置为执行程序而实现如第一方面的实施例所述的方法。例如,处理器1610可以被配置为进行如下的控制:向转发器发送第一指示,所述第一指示用于指示至少一个波束。
此外,如图16所示,网络设备1600还可以包括:收发机1640和天线1650等; 其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1600也并不是必须要包括图16中所示的所有部件;此外,网络设备1600还可以包括图16中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种转发器,该转发器例如可以是直放站、射频转发器、射频中继器、直放站节点、转发器节点、中继器节点、智能直放站、智能转发器、智能中继器、智能直放站节点、智能转发器节点、智能中继器节点等,但本申请不限于此,还可以是其它的设备。
图17是本申请实施例的转发器的示意图。如图17所示,该转发器1700可以包括处理器1710和存储器1720;存储器1720存储有数据和程序,并耦合到处理器1710。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器1710可以被配置为执行程序而实现如第二方面的实施例所述的方法。例如,处理器1710可以被配置为进行如下的控制:接收网络设备发送的第一指示,所述第一指示用于指示至少一个波束。
如图17所示,该转发器1700还可以包括:网络侧收发机1740-1和网络侧天线1750-1、终端侧收发机1740-2和终端侧天线1750-2以及信号放大电路1760等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,转发器1700也并不是必须要包括图17中所示的所有部件;此外,转发器1700还可以包括图17中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第一方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行第一方面的实施例所述的方法。
本申请实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述转发器中执行第二方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在转发器中执行第二方面的实施例所述的方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现 上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种用于转发器的波束指示方法,其中,所述方法包括:
网络设备向转发器发送第一指示,所述第一指示用于指示至少一个波束。
2.根据附记1所述的方法,其中,所述至少一个波束中的一个波束是:
用于所述转发器向终端设备转发来自所述网络设备的第一信号的第一波束;或者,
用于所述转发器接收来自所述终端设备的第二信号的第二波束,所述第二信号用于转发给所述网络设备;或者,
用于所述转发器向所述网络设备转发来自所述终端设备的第三信号的第三波束;或者,
用于所述转发器接收来自所述网络设备的第四信号的第四波束,所述第四信号用于转发给所述终端设备;或者,
用于所述转发器向所述网络设备发送第五信号的第五波束;或者,
用于所述转发器接收来自所述网络设备的第六信号的第六波束。
2A.根据附记2所述的方法,其中,所述来自网络设备的第一信号由所述转发器至少通过对其接收到的所述第四信号进行放大生成;以及,所述来自终端设备的第三信号由所述转发器至少通过对其收到的所述第二信号进行放大生成。
3.根据附记1所述的方法,其中,所述网络设备是所述终端设备的服务小区的网络设备。
4.根据附记1所述的方法,其中,所述网络设备是所述转发器所在的小区的网络设备。
5.根据附记1所述的方法,其中,所述网络设备是所述转发器的服务小区的网络设备。
6.根据附记1所述的方法,其中,所述网络设备是所述转发器的父节点(Parent node)。
7.根据附记2所述的方法,其中,所述第四信号包含所述网络设备向所述终端设备发送的信号,所述转发器不对所述网络设备向所述终端设备发送的信号进行解调和/或解码。
8.根据附记7所述的方法,其中,所述网络设备向所述终端设备发送的信号包括信令、数据以及参考信号的其中至少之一。
9.根据附记2所述的方法,其中,所述第二信号包含所述终端设备向所述网络设备发送的信号,所述转发器不对所述终端设备向所述网络设备发送的信号进行解调和 /或解码。
10.根据附记9所述的方法,其中,所述终端设备向所述网络设备发送的信号包括信令、数据以及参考信号的其中至少之一。
11.根据附记1至10任一项所述的方法,其中,所述第一指示由第一PDSCH承载。
12.根据附记11所述的方法,其中,所述方法还包括:
所述网络设备向所述转发器发送第二指示,所述第二指示用于指示所述转发器使用第七波束接收所述第一PDSCH。
13.根据附记1至10任一项所述的方法,其中,所述第一指示由第一PDCCH进行指示。
14.根据附记13所述的方法,其中,所述方法还包括:
所述网络设备向所述转发器发送第三指示,所述第三指示用于指示所述转发器使用第八波束接收所述第一PDCCH。
15.根据附记13所述的方法,其中,所述第一PDCCH还用于指示所述转发器使用第九波束接收所述网络设备发送给所述转发器的第二PDSCH,或者,所述第一PDCCH还用于指示所述转发器使用第十波束向所述网络设备发送第二PUSCH。
1a.一种波束确定方法,其中,所述方法包括:
转发器接收网络设备发送的第一指示,所述第一指示用于指示至少一个波束。
2a.根据附记1a所述的方法,其中,所述至少一个波束中的一个波束是:
用于所述转发器向终端设备转发来自所述网络设备的第一信号的第一波束;或者,
用于所述转发器接收来自所述终端设备的第二信号的第二波束,所述第二信号用于转发给所述网络设备;或者,
用于所述转发器向所述网络设备转发来自所述终端设备的第三信号的第三波束;或者,
用于所述转发器接收来自所述网络设备的第四信号的第四波束,所述第四信号用于转发给所述终端设备;或者,
用于所述转发器向所述网络设备发送第五信号的第五波束;或者,
用于所述转发器接收来自所述网络设备的第六信号的第六波束。
3a.根据附记2a所述的方法,其中,所述方法还包括:
所述转发器使用所述第一波束向所述终端设备转发来自所述网络设备的第一信号;和/或,
所述转发器使用所述第三波束向所述网络设备转发来自所述终端设备的第三信号。
4a.根据附记3a所述的方法,其中,
所述转发器使用所述第一波束向所述终端设备转发来自所述网络设备的第一信号,还包括,使用所述第四波束接收来由所述网络设备发送的所述第四信号,至少对所述第四信号进行放大处理,生成所述第一信号,使用所述第一波束向所述终端设备发送所述第一信号;
所述转发器使用所述第三波束向所述网络设备转发来自所述终端设备的第三信号,还包括,使用所述第二波束接收由所述终端设备发送的所述第二信号,所述转发器至少对所述第二信号进行放大处理,生成所述第三信号,使用所述第三波束向所述网络设备发送所述第三信号。
5a.根据附记2a所述的方法,其中,所述方法还包括:
所述转发器使用所述第五波束向所述网络设备发送所述第五信号;和/或,
所述转发器使用所述第六波束接收所述网络设备发送的所述第六信号。
6a.根据附记1a所述的方法,其中,所述网络设备是所述终端设备的服务小区的网络设备。
7a.根据附记1a所述的方法,其中,所述网络设备是所述转发器所在的小区的网络设备。
8a.根据附记1a所述的方法,其中,所述网络设备是所述转发器的服务小区的网络设备。
9a.根据附记1a所述的方法,其中,所述网络设备是所述转发器的父节点(Parent node)。
10a.根据附记2a所述的方法,其中,所述第四信号包含所述网络设备向所述终端设备发送的信号,所述转发器不对所述网络设备向所述终端设备发送的信号进行解调和/或解码。
11a.根据附记10a所述的方法,其中,所述网络设备向所述终端设备发送的信号包括信令、数据以及参考信号的其中至少之一。
12a.根据附记2a所述的方法,其中,所述第二信号包含所述终端设备向所述网络设备发送的信号,所述转发器不对所述终端设备向所述网络设备发送的信号进行解调和/或解码。
13a.根据附记12a所述的方法,其中,所述终端设备向所述网络设备发送的信号包括信令、数据以及参考信号的其中至少之一。
14a.根据附记1a至13a任一项所述的方法,其中,所述第一指示由第一PDSCH承载。
15a.根据附记14a所述的方法,其中,所述方法还包括:
所述转发器接收所述网络设备发送的第二指示,所述第二指示用于指示所述转发器使用第七波束接收所述第一PDSCH。
16a.根据附记1a至13a任一项所述的方法,其中,所述第一指示由第一PDCCH进行指示。
17a.根据附记16a所述的方法,其中,所述方法还包括:
所述转发器接收所述网络设备发送的第三指示,所述第三指示用于指示所述转发器使用第八波束接收所述第一PDCCH。
18a.根据附记16a所述的方法,其中,所述第一PDCCH还用于指示所述转发器使用第九波束接收所述网络设备发送给所述转发器的第二PDSCH,或者,所述第一PDCCH还用于指示所述转发器使用第十波束向所述网络设备发送第二PUSCH。
1b.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至15任一项所述的方法。
1c.一种转发器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1a至18a任一项所述的方法。
1d.一种通信系统,包括网络设备和转发器,其中,
所述网络设备被配置为向所述转发器发送第一指示,所述第一指示用于指示至少一个波束;
所述转发器被配置为接收所述网络设备发送的所述第一指示。

Claims (20)

  1. 一种用于转发器的波束指示装置,配置于网络设备,其中,所述装置包括:
    发送单元,其向转发器发送第一指示,所述第一指示用于指示至少一个波束。
  2. 根据权利要求1所述的装置,其中,所述至少一个波束中的一个波束是:
    用于所述转发器向终端设备转发来自所述网络设备的第一信号的第一波束;或者,
    用于所述转发器接收来自所述终端设备的第二信号的第二波束,所述第二信号用于转发给所述网络设备;或者,
    用于所述转发器向所述网络设备转发来自所述终端设备的第三信号的第三波束;或者,
    用于所述转发器接收来自所述网络设备的第四信号的第四波束,所述第四信号用于转发给所述终端设备;或者,
    用于所述转发器向所述网络设备发送第五信号的第五波束;或者,
    用于所述转发器接收来自所述网络设备的第六信号的第六波束。
  3. 根据权利要求1所述的装置,其中,所述网络设备是所述转发器所在的小区的网络设备。
  4. 根据权利要求1所述的装置,其中,所述网络设备是所述转发器的服务小区的网络设备。
  5. 根据权利要求2所述的装置,其中,所述第四信号包含所述网络设备向所述终端设备发送的信号,所述转发器不对所述网络设备向所述终端设备发送的信号进行解调和/或解码。
  6. 根据权利要求2所述的装置,其中,所述第二信号包含所述终端设备向所述网络设备发送的信号,所述转发器不对所述终端设备向所述网络设备发送的信号进行解调和/或解码。
  7. 根据权利要求1所述的装置,其中,所述第一指示由第一PDSCH承载。
  8. 根据权利要求7所述的装置,其中,
    所述发送单元还向所述转发器发送第二指示,所述第二指示用于指示所述转发器使用第七波束接收所述第一PDSCH。
  9. 根据权利要求1所述的装置,其中,所述第一指示由第一PDCCH进行指示。
  10. 一种波束确定装置,配置于转发器,其中,所述装置包括:
    接收单元,其接收网络设备发送的第一指示,所述第一指示用于指示至少一个波束。
  11. 根据权利要求10所述的装置,其中,所述至少一个波束中的一个波束是:
    用于所述转发器向终端设备转发来自所述网络设备的第一信号的第一波束;或者,
    用于所述转发器接收来自所述终端设备的第二信号的第二波束,所述第二信号用于转发给所述网络设备;或者,
    用于所述转发器向所述网络设备转发来自所述终端设备的第三信号的第三波束;或者,
    用于所述转发器接收来自所述网络设备的第四信号的第四波束,所述第四信号用于转发给所述终端设备;或者,
    用于所述转发器向所述网络设备发送第五信号的第五波束;或者,
    用于所述转发器接收来自所述网络设备的第六信号的第六波束。
  12. 根据权利要求10所述的装置,其中,所述网络设备是所述转发器所在的小区的网络设备。
  13. 根据权利要求10所述的装置,其中,所述网络设备是所述转发器的服务小区的网络设备。
  14. 根据权利要求11所述的装置,其中,所述第四信号包含所述网络设备向所述终端设备发送的信号,所述转发器不对所述网络设备向所述终端设备发送的信号进行解调和/或解码。
  15. 根据权利要求11所述的装置,其中,所述第二信号包含所述终端设备向所述网络设备发送的信号,所述转发器不对所述终端设备向所述网络设备发送的信号进行解调和/或解码。
  16. 根据权利要求10所述的装置,其中,所述第一指示由第一PDSCH承载。
  17. 根据权利要求16所述的装置,其中,
    所述接收单元还接收所述网络设备发送的第二指示,所述第二指示用于指示所述转发器使用第七波束接收所述第一PDSCH。
  18. 根据权利要求10所述的装置,其中,所述第一指示由第一PDCCH进行指示。
  19. 根据权利要求18所述的装置,其中,
    所述接收单元还接收所述网络设备发送的第三指示,所述第三指示用于指示所述转发器使用第八波束接收所述第一PDCCH。
  20. 一种通信系统,包括网络设备和转发器,其中,
    所述网络设备被配置为向所述转发器发送第一指示,所述第一指示用于指示至少一个波束;
    所述转发器被配置为接收所述网络设备发送的所述第一指示。
PCT/CN2021/115190 2021-08-29 2021-08-29 一种用于转发器的波束指示方法、装置和系统 WO2023028725A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/115190 WO2023028725A1 (zh) 2021-08-29 2021-08-29 一种用于转发器的波束指示方法、装置和系统
PCT/CN2022/113774 WO2023030059A1 (zh) 2021-08-29 2022-08-19 一种用于转发器的波束指示方法、装置和系统
CN202280057110.4A CN117941278A (zh) 2021-08-29 2022-08-19 一种用于转发器的波束指示方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115190 WO2023028725A1 (zh) 2021-08-29 2021-08-29 一种用于转发器的波束指示方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2023028725A1 true WO2023028725A1 (zh) 2023-03-09

Family

ID=85410845

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/115190 WO2023028725A1 (zh) 2021-08-29 2021-08-29 一种用于转发器的波束指示方法、装置和系统
PCT/CN2022/113774 WO2023030059A1 (zh) 2021-08-29 2022-08-19 一种用于转发器的波束指示方法、装置和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113774 WO2023030059A1 (zh) 2021-08-29 2022-08-19 一种用于转发器的波束指示方法、装置和系统

Country Status (2)

Country Link
CN (1) CN117941278A (zh)
WO (2) WO2023028725A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215845A1 (en) * 2016-09-29 2019-07-11 Huawei Technologies Co., Ltd. Beam Indication Method, Network Device, and Terminal
US20190349925A1 (en) * 2017-01-05 2019-11-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signaling transmission method and device
US20210235283A1 (en) * 2020-01-23 2021-07-29 Qualcomm Incorporated Beam Configuration Of A Smart MMW Repeater For Forwarding RACH Message 2
CN113196680A (zh) * 2018-12-14 2021-07-30 高通股份有限公司 毫米波转发器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267240B (zh) * 2007-03-15 2011-11-16 华为技术有限公司 多跳无线中继通信系统及其下行数据传输方法、装置
CN101384075A (zh) * 2007-09-05 2009-03-11 中兴通讯股份有限公司 中继站专用下行信道及其分配方法
EP2552167B1 (en) * 2011-07-29 2013-07-24 Alcatel Lucent Method, apparatus and computer program for a base station transceiver and for a relay station transceiver in a communication network
IL256681B (en) * 2017-12-31 2021-06-30 Elta Systems Ltd Partial repeater device for uplink transmission–system, method and computer software product
CN110365457B (zh) * 2018-04-11 2021-01-15 成都华为技术有限公司 一种参考信号的传输方法及装置
US11528075B2 (en) * 2019-05-16 2022-12-13 Qualcomm Incorporated Joint beam management for backhaul links and access links

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215845A1 (en) * 2016-09-29 2019-07-11 Huawei Technologies Co., Ltd. Beam Indication Method, Network Device, and Terminal
US20190349925A1 (en) * 2017-01-05 2019-11-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signaling transmission method and device
CN113196680A (zh) * 2018-12-14 2021-07-30 高通股份有限公司 毫米波转发器
US20210235283A1 (en) * 2020-01-23 2021-07-29 Qualcomm Incorporated Beam Configuration Of A Smart MMW Repeater For Forwarding RACH Message 2

Also Published As

Publication number Publication date
WO2023030059A1 (zh) 2023-03-09
CN117941278A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2019153347A1 (zh) 配置信息的接收和发送方法、装置及通信系统
US20230179374A1 (en) Channel transmission method, terminal device, and network device
US11812367B2 (en) Method and apparatus for transmitting and receiving information in a wireless communication system
CN111434071B (zh) 信号接收装置及方法、通信系统
WO2022027518A1 (zh) 上行数据的发送方法、装置和系统
WO2023028725A1 (zh) 一种用于转发器的波束指示方法、装置和系统
WO2022188110A1 (zh) 一种信息传输方法、电子设备及存储介质
WO2023092841A1 (zh) 转发器、网络设备及其通信方法
US11350447B2 (en) Method and apparatus for operations in different frequency bands within a radio device
WO2023029238A1 (zh) 转发器、网络设备及其通信方法
WO2023028724A1 (zh) 转发器、网络设备及其通信方法
WO2023206303A1 (zh) 转发器及其传输方法、网络设备和通信系统
US20160050644A1 (en) Methods and apparatus for quick burst tune away in multi-sim devices
WO2023092427A1 (zh) 转发器、网络设备及其通信方法
WO2024065541A1 (zh) 信息指示方法、转发器和网络设备
WO2023092513A1 (zh) 信号发送方法、信息发送方法以及装置
WO2023092429A1 (zh) 一种通信方法、装置和系统
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024092819A1 (zh) 转发器的指示方法、转发器和网络设备
WO2023236021A1 (zh) 一种通信方法、装置和系统
WO2023236022A1 (zh) 一种通信方法、装置和系统
WO2024031435A1 (zh) 信息指示方法、转发器和网络设备
WO2024092836A1 (zh) 信息指示方法、转发器和网络设备
WO2023236023A1 (zh) 一种通信方法、装置和系统
WO2024031509A1 (zh) 转发器及其传输方法、网络设备和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE