WO2023206303A1 - 转发器及其传输方法、网络设备和通信系统 - Google Patents

转发器及其传输方法、网络设备和通信系统 Download PDF

Info

Publication number
WO2023206303A1
WO2023206303A1 PCT/CN2022/090096 CN2022090096W WO2023206303A1 WO 2023206303 A1 WO2023206303 A1 WO 2023206303A1 CN 2022090096 W CN2022090096 W CN 2022090096W WO 2023206303 A1 WO2023206303 A1 WO 2023206303A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
uplink
reference subcarrier
transponder
symbols
Prior art date
Application number
PCT/CN2022/090096
Other languages
English (en)
French (fr)
Inventor
田妍
蒋琴艳
张磊
Original Assignee
富士通株式会社
田妍
蒋琴艳
张磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 田妍, 蒋琴艳, 张磊 filed Critical 富士通株式会社
Priority to PCT/CN2022/090096 priority Critical patent/WO2023206303A1/zh
Publication of WO2023206303A1 publication Critical patent/WO2023206303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology.
  • 5G farth generation mobile communication technology
  • 3G and 4G fourth generation mobile communication technology
  • 5G systems can provide greater bandwidth and higher data rates, and Can support more types of terminals and vertical services. For this reason, 5G systems are typically deployed at significantly higher frequencies than 3G and 4G systems. For example, 5G systems can be deployed in the millimeter wave band.
  • Radio frequency repeaters RF Relay/Repeater
  • Radio frequency transponders are widely used in the actual deployment of 3G systems and 4G systems.
  • a radio frequency transponder is a device that amplifies and forwards signals between network equipment and terminal equipment in the radio frequency domain.
  • radio frequency transponders to enhance coverage is one of the feasible solutions.
  • traditional forwarders do not have the ability to communicate with network devices and cannot directly obtain relevant information about uplink and downlink configurations from network devices. Therefore, although such a transponder configured in a 5G system can help enhance signal strength, it is not flexible enough to cope with complex environmental changes, and cannot achieve the same effect as deploying the same radio frequency transponder in a 3G system and a 4G system.
  • embodiments of the present application provide a transponder and its transmission method, network equipment, and communication system.
  • the repeater has the ability to communicate with the network device and can receive time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information from the network device.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the transponder of the embodiment of the present application can better enhance signal coverage and respond to environmental changes under network configuration, thereby improving the transmission efficiency of the entire network.
  • a transmission method of a transponder including:
  • the repeater receives time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information from the network device; and
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the transponder determines whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit based on the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • a transponder including:
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the processing unit determines whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit based on the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • a forwarder configuration method including:
  • the network device sends time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information to the transponder; wherein the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • a network device including:
  • a configuration part that sends time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information to the transponder; wherein the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) ) configuration information is used by the forwarder to determine whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • a communication system including:
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • a repeater that determines whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit based on the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the transponder receives time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information from the network device.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • Figure 1 is a schematic diagram of the application scenario of the embodiment of the present application.
  • FIG. 2 is a schematic diagram of a TDD transponder
  • Figure 3 is a schematic diagram of the transmission method of the transponder according to the embodiment of the present application.
  • FIG. 4A is a schematic diagram of a TDD configuration according to an embodiment of the present application.
  • FIG. 4B is another schematic diagram of the TDD configuration according to the embodiment of the present application.
  • Figure 5 is a schematic diagram configuring two patterns according to the embodiment of the present application.
  • Figure 6 is an example diagram of a dynamically configured time slot format according to an embodiment of the present application.
  • Figure 7 is an example diagram of the time slot alignment between the reference SCS and the actual forwarding SCS in the semi-static configuration of the embodiment of the present application
  • Figure 8 is an example diagram of the alignment of the time slots corresponding to the reference SCS and the actual forwarding SCS when the uplink and downlink are at the same frequency point in the dynamic configuration of the embodiment of the present application;
  • Figure 9 is an example diagram of the time slot alignment corresponding to the downlink reference SCS and the actual downlink forwarding SCS when the uplink and downlink are at different frequency points in the dynamic configuration of the embodiment of the present application;
  • Figure 10 is an example diagram of the time slot alignment corresponding to the uplink reference SCS and the actual uplink forwarding SCS when the uplink and downlink are at different frequency points in the dynamic configuration of the embodiment of the present application;
  • Figure 11 is a schematic diagram of a transponder according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of a forwarder configuration method according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of network equipment according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to the communication protocol at any stage.
  • it can include but is not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and the future. 5G, New Wireless (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transceiver node (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc. In addition, it may also include remote radio head (RRH, Remote Radio Head), remote End wireless unit (RRU, Remote Radio Unit), relay or low-power node (such as femto, pico, etc.). And the term “base station” may include some or all of their functions, each of which may provide communications coverage to a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to a device that accesses a communication network through a network device and receives network services, and may also be called a "Terminal Equipment” (TE, Terminal Equipment).
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. wait.
  • Terminal devices may include, but are not limited to, the following devices: Cellular Phone, Personal Digital Assistant (PDA), wireless modem, wireless communication device, handheld device, machine-type communication device, laptop computer, cordless phone , smartphones, smart watches, digital cameras, and more.
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine-type communication device
  • laptop computer machine-type communication device
  • cordless phone smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • RF repeater was introduced in 3GPP Rel-17 research to forward transmissions between terminal equipment (UE) and network equipment (base station).
  • UE terminal equipment
  • base station network equipment
  • the RF repeater introduced in Rel-17 is transparent, that is, the base station and UE do not know the existence of the RF repeater.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a network device such as a 5G base station gNB
  • a repeater (Repeater) 102 and a terminal equipment (UE) are used 103 is used as an example for explanation, and the application is not limited to this.
  • the terminal device 103 establishes a connection with the network device 101 and communicates with it.
  • the channel/signal transmitted between the terminal device 103 and the network device 101 is forwarded via the repeater 102 .
  • the channel/signal interaction between the network device 101, the terminal device 103 and the transponder 102 all adopt beam-based receiving and transmitting methods.
  • the network device 101 may have a cell/carrier, and the network device 101, the transponder 102 and the terminal device 103 may forward/communicate in the cell; but the application is not limited thereto.
  • the network device 101 may also have other cell/carrier.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC highly reliable low-latency communications
  • V2X vehicle-to-everything
  • the repeater can forward the channel/signal transmitted between the network device and the terminal device as an example for illustration, but the application is not limited to this.
  • the repeater can serve as a second device to forward channels/signals between the first device and the third device, and can directly communicate with the first device and/or the third device; the first device to the third device can It is any device in the aforementioned network.
  • the first device is a network device and the third device is a terminal device.
  • FIG. 2 is a schematic diagram of a TDD transponder.
  • a time division duplex (TDD, Time Division Duplex) transponder has two paths.
  • the antennas on both sides of the repeater are respectively aimed at areas where network equipment and terminal equipment that need to be served may exist, and signals are forwarded between network equipment and terminal equipment in a time division manner.
  • TDD Time Division Duplex
  • traditional transponders do not demodulate/decode the forwarded signal.
  • the antenna directions of traditional transponders are basically fixed, and are usually manually set and adjusted during initial installation so that the antennas on the network device side point in the direction of the network device's incoming waves, and the antennas on the terminal device side point in places that require enhanced deployment.
  • the antenna direction does not change.
  • traditional transponders do not have communication functions and cannot interact with network devices. Therefore, they do not support adaptive and/or dynamic configuration by network devices.
  • 5G systems deployed in higher frequency bands and millimeter wave bands use more advanced and complex MIMO (Multiple Input Multiple Output) technology.
  • MIMO Multiple Input Multiple Output
  • directional antennas have become the basic components of network equipment and terminal equipment. Sending and receiving signals based on beam forming technology is the basic signal transmission method in the 5G system.
  • the millimeter wave band has the characteristics of high frequency and small wavelength, which is more conducive to the installation of antenna panels containing more elements in network equipment and terminal equipment.
  • the increase in the number of antenna elements contributes to more precise beamforming, that is, it is easier to form narrow beams. Concentrating energy in a narrow beam helps strengthen the signal while reducing interference to other devices.
  • the 5G system supports more complex but accurate channel measurement, antenna calibration and beam management solutions. Network equipment can use these solutions to be effective and accurate. Precisely control the receiving beam and transmitting beam of the terminal device to achieve better communication results.
  • the transponder needs to detect/determine the relevant uplink and downlink configuration (TDD UL/DL config) in the network by itself. Then, in the downlink time unit of the network, the transponder switches to the downlink forwarding position, that is, it receives the signal from the network device side, and after amplification and other processing, sends the signal out from the terminal device side; in the network uplink time unit, the transponder switches To the uplink forwarding position, that is, the signal is received from the terminal device side, and after amplification and other processing, the signal is sent out from the network device side.
  • TDD UL/DL config the relevant uplink and downlink configuration
  • the network device needs to assist the transponder and be able to configure the forwarding of the transponder according to the network conditions; and the transponder needs to have the ability to communicate with the network device , capable of receiving auxiliary information and/or configuration information from network equipment (such as TDD UL/DL configuration, reference subcarrier spacing, etc.). How to enable transponders to communicate efficiently with network devices has become an urgent problem to be solved.
  • a repeater can also be expressed as a repeater, a radio frequency repeater, a repeater, or a radio frequency repeater; or it can also be expressed as a repeater node, a repeater node, or a repeater node; or It can also be expressed as an intelligent repeater, an intelligent repeater, an intelligent repeater, an intelligent repeater node, an intelligent repeater node, an intelligent repeater node, etc., and the application is not limited thereto.
  • the network device may be a device in the serving cell of the terminal device, or may be a device in the cell where the transponder is located, or may be a device in the serving cell of the transponder, or it may be the parent node of the transponder. node), this application does not limit the name of the transponder. As long as the device can realize the above functions, it is included in the scope of the transponder of this application.
  • the embodiment of the present application provides a transponder transmission method, which will be described from the side of the transponder.
  • FIG 3 is a schematic diagram of the communication method of the transponder according to the embodiment of the present application. As shown in Figure 3, the method includes:
  • the transponder receives time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information from the network device; and
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the transponder determines whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit based on the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the repeater performs uplink forwarding within a period of time, that is, forwards the first channel or signal (uplink channel or signal) from the terminal device to the network device, and performs downlink forwarding within another period of time, that is, the repeater Forwarding the second channel or signal (downlink channel or signal) from the network device to the terminal device. Additionally, forwarding may not occur for a certain period of time.
  • the transponder can align the transmissions of different terminal devices served by the transponder or align the uplink and downlink forwarding on different frequencies, thereby ensuring that transmissions with different subcarrier intervals are not transmitted until the transponder completes uplink forwarding or Switch after downlink forwarding.
  • the transponder can communicate with the network device, and the transponder can receive the communication channel/signal sent by the network device, and demodulate/decode the channel/signal, thereby obtaining the communication channel/signal sent by the network device to the transponder.
  • Information this signal processing process is referred to as "communication” below.
  • the transponder can also forward the channel/signal transmitted between the network device and the terminal device.
  • the transponder does not demodulate/decode the channel/signal, but can perform amplification and other processing.
  • This signal processing process is referred to as "forwarding” below.
  • “Communication” and “forwarding” are collectively referred to as "transmission”. The above terms are only for convenience of description and do not constitute a limitation on this application.
  • the channel/signal for direct communication between a network device and a repeater or between a third device (such as a terminal device) and a repeater can be called a communication signal.
  • the repeater needs to be encoded. and/or modulation, when receiving communication signals, the transponder needs to decode and/or demodulate.
  • the channel/signal forwarded through the repeater can be called a forwarded signal.
  • the repeater can perform signal processing such as amplification on the forwarded signal, but it will not perform decoding and/or demodulation.
  • the transponder in the embodiment of the present application can communicate with network devices, and therefore can have some network control functions.
  • the transponder in the embodiment of the present application can also be called network control (NC, Network Control). Repeater, namely NC-repeater.
  • the time domain resources configured by the time division duplex configuration information include at least one of the following: downlink time unit, flexible time unit, and uplink time unit.
  • FIG. 4A is a schematic diagram of a TDD configuration according to an embodiment of the present application.
  • the UL/DL TDD configuration format used by NC-repeater for forwarding within a UL/DL TDD cycle, it can be configured in the form of downlink area + flexible area + uplink area.
  • the above-mentioned "region" or “time unit” is, for example, a period of time in the time domain, which may be one or more time slots, and/or one or more symbols, and the present application is not limited thereto.
  • the time domain resources configured by the time division duplex configuration information include at least one of the following: a downlink time unit, an uplink time unit; and a time interval is configured between the downlink time unit and the uplink time unit. .
  • the UL/DL TDD configuration format used by NC-repeater for forwarding within a UL/DL TDD cycle, it can be configured in the form of downlink area + time interval + uplink area, that is, there is no flexible area configuration, uplink and downlink Configure the time interval between uplink and downlink to avoid conflicts between uplink and downlink.
  • semi-static configuration and/or dynamic configuration is performed by time division duplex configuration information.
  • the semi-static configuration includes: cell public uplink and downlink configuration and/or device-specific uplink and downlink configuration.
  • the common uplink and downlink configuration of the cell includes a first pattern (pattern 1), which is configured by at least one of the following signaling: Radio Resource Control (RRC) signaling, medium access control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC medium access control
  • the first pattern indicates at least one of the following parameters: a first transmission period value P, a first downlink time slot number d slots , a first downlink symbol number d sym , and a first uplink time slot number u slots , the first uplink symbol number u sym , the first flexible symbol number.
  • the value of the above-mentioned number of symbols or number of time slots is an integer greater than or equal to zero.
  • the unit of the first transmission cycle value is milliseconds
  • the first downlink time slot number indicates that the first d slots of the first transmission cycle are downlink time slots
  • the first downlink symbol number indicates the d The d sym symbols after slots time slots are downlink symbols.
  • the first uplink time slot number indicates that the last u slots time slots of the first transmission cycle are uplink time slots.
  • the first uplink symbol number indicates that The u sym symbols before u slots time slots are uplink symbols.
  • Figure 4B is another schematic diagram of a TDD configuration according to an embodiment of the present application.
  • pattern 1 of a certain period includes from front to back: d slots (greater than or equal to 0) downlink time slots, d sym (greater than or equal to 0) downlink symbols, zero or More than one flexible slot or symbol, u sym (greater than or equal to 0) uplink symbols, u slots (greater than or equal to 0) uplink time slots.
  • the number of flexible time slots/symbols may or may not be indicated in the signaling. Without indicating the number of flexible time slots/symbols, time units other than the uplink time unit and the downlink time unit may be considered as flexible time slots/symbols.
  • the first symbol of every two frame lengths (20ms)/P periods is aligned with the first symbol of even frames, or, every two frame lengths (20ms)
  • the first symbol of )/P periods is the first symbol of the even frame.
  • the common uplink and downlink configuration of the cell includes the first mode (pattern 1) and the second mode (pattern 2).
  • the second mode (pattern 2) is configured by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the second pattern indicates at least one of the following parameters: a second transmission period value P 2 , a second downlink time slot number d slots,2 , a second downlink symbol number d sym,2 , a second uplink time slot
  • the value of the above-mentioned number of symbols or number of time slots is an integer greater than or equal to zero.
  • the unit of the second transmission cycle value is milliseconds
  • the second downlink time slot number indicates the first d slots of the second transmission cycle
  • 2 time slots are downlink time slots
  • the second downlink symbol number indicates the d slots, d sym after 2 time slots
  • 2 symbols are downlink symbols
  • the second uplink time slot number indicates the last u slots of the second transmission cycle
  • 2 time slots are uplink time slots
  • the second uplink time slot number indicates The second uplink symbol number indicates the u slots, 2 slots before u sym, and 2 symbols for the uplink symbols.
  • pattern 2 of a certain period it includes from front to back: d slots, 2 (greater than or equal to 0) downlink time slots, d sym, 2 (greater than or equal to 0) downlink symbols, zero or more Flexible time slots or symbols, u sym, 2 (greater than or equal to 0) uplink symbols, u slots, 2 (greater than or equal to 0) uplink time slots.
  • the number of flexible time slots/symbols may or may not be indicated in the signaling. Without indicating the number of flexible time slots/symbols, time units other than the uplink time unit and the downlink time unit may be considered as flexible time slots/symbols.
  • the first mode and the second mode are described separately.
  • the present application is not limited thereto.
  • the first mode and the second mode may be configured together in the same signaling or the same configuration information.
  • the common uplink and downlink configuration of the cell may include a first mode and a second mode, where the second mode is optional.
  • Figure 5 is a schematic diagram configuring two patterns according to an embodiment of the present application. For example, when the first mode and the second mode are configured, the first symbol of every two frames of (20ms)/(P+P 2 ) periods is aligned with the first symbol of an even frame, or, every two The first symbol of a frame length (20ms)/(P+P 2 ) periods is the first symbol of an even frame, and P+P 2 is evenly divisible by two frame lengths (20).
  • Table 1 is an example diagram of a semi-static configuration in an embodiment of the present application, illustrating the public uplink and downlink TDD configuration of a cell. As shown in Table 1, taking RRC information element (IE) as an example, TDD-UL-DL-ConfigCommon includes pattern 1 and pattern 2, and pattern 2 is optional.
  • IE RRC information element
  • the device-specific uplink and downlink configuration can configure the flexible time unit in the cell's common uplink and downlink configuration.
  • device-specific uplink and downlink configurations can only be configured in the flexible area of the community's common uplink and downlink TDD configuration; that is, only the uplink and downlink areas of the community's common uplink and downlink TDD configuration can be changed, but the uplink and downlink areas of the community's common uplink and downlink TDD configuration cannot be changed. .
  • the device-specific uplink and downlink configuration may be configured for one time slot by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the time slot position in the cycle may be indicated through the first signaling
  • the symbol configuration in the time slot indicated by the first signaling may be configured through the second signaling.
  • the second signaling configures all symbols in the time slot as downlink symbols, or configures all symbols in the time slot as uplink symbols, or configures the number of downlink symbols a and /or the number of uplink symbols b; wherein the number of downlink symbols indicates that the first a symbols in the time slot are downlink symbols, and the number of uplink symbols indicates that the last b symbols in the time slot are uplink symbols, where , the value of the above number of symbols or number of slots is an integer greater than or equal to zero.
  • the number of downlink symbols is not configured, there are no downlink symbols in the timeslot; if the number of uplink symbols is not configured, there are no uplink symbols in the timeslot; after configuring the number of uplink symbols and/or downlink symbols, there are no uplink symbols in the timeslot.
  • the remaining symbols are flexible symbols.
  • dynamic configuration enables configuration of flexible time units in a semi-static configuration.
  • the corresponding slot format can be indicated for the semi-statically configured flexible area to perform dynamic configuration, but the semi-statically indicated uplink and downlink areas cannot be modified.
  • DCI format 2_0 can be used to dynamically indicate the format of a certain time slot; this application is not limited to this.
  • the cell identity of the dynamic configuration application and/or the slot format index (SFI) corresponding to the dynamic configuration and/or the time of the dynamic configuration application may be indicated by at least one of the following signaling: Slot format: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the time slot format of the dynamic configuration application includes: a single structure format, a format with one flexible time unit in the time slot, a format with two flexible time units in the time slot, or a configuration indicating SFI A format that has no impact on semi-statically configured signal/channel transmission.
  • all symbols in the time slot are uplink symbols, or all symbols in the time slot are downlink symbols, or all symbols in the time slot are flexible symbols.
  • the time slot includes zero or more downlink symbols, more than one flexible symbol, and zero or more uplink symbols from front to back.
  • the time slot includes from front to back: zero or more downlink symbols, more than one flexible symbol, zero or more uplink symbols, Zero or more downward symbols, more than one flexible symbol, zero or more upward symbols.
  • two flexible areas are located in the first 7 symbols and the last 7 symbols in a time slot.
  • a format indicating that the configuration of the SFI has no impact on the semi-statically configured signal/channel transmission may be called the 255 format, and this format cannot modify the flexible area.
  • Figure 6 is an example diagram of a dynamically configured time slot format according to an embodiment of the present application. As shown in Figure 6, "D” represents that the symbol is a downlink symbol, “U” represents that the symbol is an uplink symbol, and “F” represents that the symbol is a downlink symbol. Symbols are flexible symbols.
  • the time division duplex configuration information used by the repeater for forwarding is the same as the time division duplex configuration information used by the repeater for communication, or the time division duplex configuration information used by the repeater for communication is used for the Time division duplex configuration information used by the repeater for forwarding.
  • the semi-static configuration of the time division duplex configuration information is the same, and/or the dynamic configuration of the time division duplex configuration information is the same.
  • the time division duplex configuration information used by the repeater for forwarding is different from the time division duplex configuration information used by the repeater for communication, or the time division duplex configuration information used by the repeater for communication is not used for all The time division duplex configuration information used by the repeater for forwarding.
  • the semi-static configuration of the time division duplex configuration information is different, and/or the dynamic configuration of the time division duplex configuration information is different.
  • the TDD configuration is schematically explained above, and the reference SCS configuration is explained below.
  • the reference subcarrier spacing bearer signaling used by the repeater for forwarding is the same as the reference subcarrier spacing used by the transponder for communication
  • the value of the reference subcarrier spacing used by the transponder for forwarding is the same as the value of the reference subcarrier spacing used by the transponder for communication.
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is used for The transponder carries signaling of a reference subcarrier spacing used for forwarding, and the value of the reference subcarrier spacing used by the transponder for communication is used for the value of the reference subcarrier spacing used by the transponder for forwarding.
  • the bearer signaling that instructs NC-repeater to use reference SCS for forwarding and the bearer signaling that instructs NC-repeater to use for communication is signaling a
  • the reference SCS value indicated by signaling a is value1.
  • the signaling a and This value1 is applicable to NC-repeater forwarding and NC-repeater communication.
  • the reference subcarrier spacing bearer signaling used by the repeater for forwarding is the same as the reference subcarrier spacing used by the transponder for communication, and the value of the reference subcarrier spacing used by the transponder for forwarding is different from the value of the reference subcarrier spacing used by the transponder for communication.
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is used for The transponder is used for carrying signaling of the reference subcarrier spacing for forwarding, and the value of the reference subcarrier spacing used by the transponder for communication is not used for the value of the reference subcarrier spacing used by the transponder for forwarding.
  • the bearer signaling of the reference SCS that instructs NC-repeater to be used for forwarding and the bearer signaling that instructs NC-repeater to be used for communication are signaling a.
  • This signaling a is applicable to NC-repeater forwarding and also to NC-repeater communication.
  • signaling a indicates two reference SCS values, value1 is the reference SCS value suitable for NC-repeater forwarding, value2 is the reference SCS value suitable for NC-repeater communication, and value2 ⁇ value1.
  • the reference subcarrier spacing bearer signaling used by the repeater for forwarding is different from the reference subcarrier spacing used by the transponder for communication, and the value of the reference subcarrier spacing used by the transponder for forwarding is the same as the value of the reference subcarrier spacing used by the transponder for communication.
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used.
  • the reference subcarrier spacing used by the transponder for forwarding carries signaling, and the value of the reference subcarrier spacing used by the transponder for communication is used for the value of the reference subcarrier spacing used by the transponder for forwarding.
  • the bearer signaling indicating the reference SCS used by NC-repeater for forwarding is signaling a
  • the signaling a indicates value1 is the reference SCS value suitable for forwarding by NC-repeater
  • indicating the bearer signaling used by NC-repeater for communication is signaling b
  • signaling b indicates that value2 is the reference SCS value suitable for NC-repeater communication
  • value2 value1
  • the reference subcarrier spacing bearer signaling used by the repeater for forwarding is different from the reference subcarrier spacing used by the transponder for communication, and the value of the reference subcarrier spacing used by the transponder for forwarding is different from the value of the reference subcarrier spacing used by the transponder for communication.
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used. Bearing signaling for the reference subcarrier spacing used by the transponder for forwarding, and the value of the reference subcarrier spacing used by the transponder for communication is not used for the value of the reference subcarrier spacing used by the transponder for forwarding.
  • the bearer signaling indicating the reference SCS used by NC-repeater for forwarding is signaling a
  • the signaling a indicates value1 is the reference SCS value applicable to NC-repeater forwarding
  • indicating the bearer signaling used by NC-repeater for communication is signaling b
  • signaling b indicates that value2 is the reference SCS value used for NC-repeater communication, and value2 ⁇ value1.
  • the reference subcarrier spacing bearer signaling used by the repeater for forwarding is different from the reference subcarrier spacing used by the transponder for communication, and the value of the reference subcarrier spacing used by the transponder for forwarding is the same as the value of the reference subcarrier spacing used by the transponder for communication.
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used.
  • Bearer signaling for the reference subcarrier spacing used by the transponder for forwarding, and the value of the reference subcarrier spacing used by the transponder for communication is used for the value of the reference subcarrier spacing used by the transponder for forwarding.
  • the bearer signaling indicating the reference SCS used by NC-repeater for forwarding is signaling a
  • the signaling a indicates value1 is the reference SCS value applicable to NC-repeater forwarding
  • indicating the bearer signaling used by NC-repeater for communication is signaling b
  • signaling b indicates that value2 is the reference SCS value suitable for NC-repeater communication
  • value2 value1.
  • the reference subcarrier spacing bearer signaling used by the repeater for forwarding is different from the reference subcarrier spacing used by the transponder for communication, and the value of the reference subcarrier spacing used by the transponder for forwarding is different from the value of the reference subcarrier spacing used by the transponder for communication.
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used.
  • the bearer signaling is used for the reference subcarrier spacing used by the transponder for forwarding, and the value of the reference subcarrier spacing used by the transponder for communication is not used for the value of the reference subcarrier spacing used by the transponder for forwarding.
  • the bearer signaling indicating the reference SCS used by NC-repeater for forwarding is signaling a
  • the signaling a indicates value1 is the reference SCS value suitable for forwarding by NC-repeater
  • indicating the bearer signaling used by NC-repeater for communication is signaling b
  • signaling b indicates that value2 is the reference SCS value suitable for NC-repeater transmission, and value2 ⁇ value1.
  • the reference subcarrier spacing configuration used by the repeater for forwarding is indicated by signaling of at least one of the following: Radio Resource Control (RRC) ) signaling, medium access control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC medium access control
  • the reference subcarrier spacing ⁇ ref is not larger than any SCS configured in one or more cells served by the transponder, or is not larger than the smallest SCS configured in one or more cells served by the transponder;
  • the reference subcarrier spacing ⁇ ref is not greater than any SCS transmitted by one or more devices served by the repeater, or is not greater than the smallest SCS transmitted by one or more devices served by the repeater.
  • each cell is configured with an SCS, and there are multiple SCSs in total; then the reference subcarrier spacing ⁇ ref is not greater than any one of these SCSs, or is not greater than the smallest SCS among these SCSs.
  • the repeater serving cell means that the repeater forwards the channel/signal transmitted between the terminal equipment and the network equipment in the cell for the cell.
  • the transponder serves multiple terminal devices, and the forwarding of each terminal device corresponds to one SCS, and there are multiple SCSs; then the reference subcarrier spacing ⁇ ref is not greater than any one of these SCSs, or is not greater than any of these SCSs.
  • the repeater serving the terminal device means that the repeater forwards the channel/signal transmitted between the terminal device and the network device for the terminal device.
  • the time slots or symbols of the reference subcarrier spacing are aligned with the time slots or symbols of the actual forwarded subcarrier spacing.
  • the starting position of the first time slot of the reference subcarrier interval is the same as the starting position of the first time slot of the actually forwarded subcarrier interval; the time slot or symbol of the reference subcarrier interval corresponds to the actual forwarded consecutive time slots or symbols; where ⁇ is the parameter of the actual forwarded subcarrier spacing, and ⁇ ref is the parameter of the reference subcarrier spacing.
  • Figure 7 is an example diagram of the time slot alignment between the reference SCS and the actual forwarding SCS in the semi-static configuration of the embodiment of the present application.
  • the UL/DL TDD configuration used by NC-repeater for forwarding is a semi-static configuration
  • each slot/symbol corresponding to the Reference SCS is aligned with the slot/symbol time length corresponding to the actual forwarded SCS, that is, one
  • the slot/symbol provided by reference SCS corresponds to the actual forwarded consecutive slot/symbol.
  • the reference subcarrier spacing of the first pattern (pattern 1) and the second pattern (pattern 2) are The reference subcarrier spacing of pattern 2) is the same.
  • the reference subcarrier spacing of the cell's common uplink and downlink configuration is consistent with the reference subcarrier spacing of the device-specific uplink and downlink configuration.
  • cell-common UL/DL TDD configuration and repeater-dedicated UL/DL TDD configuration use the same reference SCS.
  • the reference subcarrier spacing configuration used by the transponder when the uplink and downlink forwarded are on the same frequency point is configured by at least one of the following information: Command indication: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the reference subcarrier spacing is no greater than any SCS configured in one or more cells served by the repeater, or no greater than the smallest SCS configured in one or more cells served by the repeater,
  • the reference subcarrier spacing is no larger than any SCS transmitted by one or more devices served by the repeater, or no larger than the smallest SCS transmitted by one or more devices served by the repeater.
  • the time slots or symbols of the reference subcarrier spacing are aligned with the time slots or symbols of the actual forwarded subcarrier spacing.
  • the starting position of the first time slot of the reference subcarrier interval is the same as the starting position of the first time slot of the actually forwarded subcarrier interval; the time slot or symbol of the reference subcarrier interval corresponds to the actual forwarded consecutive time slots or symbols; where ⁇ is the parameter of the actual forwarded subcarrier spacing, and ⁇ ref is the parameter of the reference subcarrier spacing.
  • FIG 8 is an example diagram of the time slot alignment corresponding to the reference SCS and the actual forwarding SCS when the uplink and downlink are at the same frequency point in the dynamic configuration according to the embodiment of the present application.
  • each slot/symbol corresponding to the Reference SCS and the slot corresponding to the actual forwarded SCS /symbol time length alignment that is, the slot/symbol provided by a reference SCS corresponds to the actual forwarded
  • the reference subcarrier spacing used by the transponder for forwarding uplink and downlink at different frequency points is configured respectively.
  • the uplink reference subcarrier spacing is configured for the uplink partial bandwidth (BWP) used by the transponder for uplink forwarding
  • the downlink reference subcarrier spacing is configured for the downlink partial bandwidth (BWP) used by the transponder for downlink forwarding.
  • the time slot format corresponding to the downlink reference subcarrier spacing is aligned with the time slot format corresponding to the uplink reference subcarrier spacing. That is, the duration of each slot/symbol corresponding to the reference SCS configured between the upstream and downstream lines is aligned.
  • every time slot format corresponds to the downlink BWP, and the latter time slot format combination corresponds to the uplink BWP; when ⁇ SFI,DL ⁇ SFI,UL , each time slot format combination corresponds to the uplink BWP.
  • the first time slot format combination in the time slot formats corresponds to the downlink BWP, and the subsequent A time slot format combination corresponds to the uplink BWP; where ⁇ SFI,DL is the parameter of the downlink reference subcarrier spacing, and ⁇ SFI,UL is the parameter of the uplink reference subcarrier spacing.
  • the downlink reference subcarrier spacing is indicated by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the downlink reference subcarrier spacing is not larger than any SCS of the downlink configuration of one or more cells served by the transponder, or is not larger than the smallest SCS of the downlink configuration of one or more cells served by the transponder;
  • the downlink reference subcarrier spacing is no larger than any SCS for downlink transmission by one or more devices served by the repeater, or is no larger than the smallest SCS for downlink transmission by one or more devices served by the repeater.
  • the time slots or symbols of the downlink reference subcarrier spacing are aligned with the time slots or symbols of the actual downlink forwarded subcarrier spacing.
  • the starting position of the first time slot of the downlink reference subcarrier interval is the same as the starting position of the first time slot of the actual downlink forwarded subcarrier interval; the time slot or symbol of the downlink reference subcarrier interval corresponds to based on the actual downlink forwarding consecutive time slots or symbols; where ⁇ DL is the parameter of the actual downlink forwarding subcarrier spacing, and ⁇ SFI,DL is the parameter of the downlink reference subcarrier spacing.
  • Figure 9 is an example diagram of the time slot alignment between the downlink reference SCS and the actual downlink forwarding SCS when the uplink and downlink are at different frequency points in the dynamic configuration of the embodiment of the present application.
  • the UL/DL TDD configuration used for forwarding in NC-repeater is dynamically configured, and when the uplink and downlink are on different frequencies, each slot/symbol corresponding to the uplink and downlink Reference SCS corresponds to the actual forwarded SCS.
  • the slot/symbol time lengths are aligned respectively.
  • each slot/symbol corresponding to the NC-repeater downlink reference SCS is aligned with the slot/symbol time length corresponding to the actual downlink forwarded SCS.
  • the uplink reference subcarrier spacing is indicated by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the uplink reference subcarrier spacing is no larger than any SCS of the uplink configuration of one or more cells served by the transponder, or is not larger than the smallest SCS of the uplink configuration of one or more cells served by the transponder;
  • the uplink reference subcarrier spacing is no larger than any SCS for uplink transmission by one or more devices served by the repeater, or is no larger than the smallest SCS for uplink transmission by one or more devices served by the repeater.
  • the time slots or symbols of the uplink reference subcarrier spacing are aligned with the time slots or symbols of the actual uplink forwarded subcarrier spacing.
  • the starting position of the first time slot of the uplink reference subcarrier interval is the same as the starting position of the first time slot of the actual uplink forwarded subcarrier interval; the time slot or symbol of the uplink reference subcarrier interval corresponds to actually forwarded in the consecutive time slots or symbols;
  • ⁇ UL is the parameter of the actual uplink forwarding subcarrier spacing
  • ⁇ SFI,UL is the parameter of the uplink reference subcarrier spacing.
  • Figure 10 is an example diagram of the time slot alignment corresponding to the uplink reference SCS and the actual uplink forwarding SCS when the uplink and downlink are at different frequency points in the dynamic configuration of the embodiment of the present application.
  • the UL/DL TDD configuration used for forwarding in NC-repeater is dynamically configured, and when the uplink and downlink are on different frequencies, each slot/symbol corresponding to the uplink and downlink Reference SCS corresponds to the actual forwarded SCS.
  • the slot/symbol time lengths are aligned respectively.
  • each slot/symbol corresponding to the NC-repeater upstream reference SCS is aligned with the slot/symbol time length corresponding to the actual upstream forwarded SCS.
  • the ⁇ SFI or ⁇ SFI, DL or ⁇ SFI, UL or ⁇ SFI, SUL of FR1 in the dynamic configuration can take the value that the transmission SCS in FR1 can take, for example, it can be 1, 2, or 3;
  • the ⁇ SFI or ⁇ SFI, DL or ⁇ SFI, UL or ⁇ SFI, SUL of FR2 can take the values that the SCS in FR2 can take, such as 2 and 3; the application is not limited thereto.
  • the repeater receives time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information from the network device.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • Embodiments of the present application provide a transponder, which may be, for example, a network device or a terminal device, or may be some or some components or components configured in the network device or the terminal device.
  • FIG 11 is a schematic diagram of the transponder according to the embodiment of the present application. Since the principle of solving the problem of the transponder is the same as the method of the first aspect of the embodiment, its specific implementation can refer to the first aspect of the embodiment. The contents are the same. No further explanation will be given.
  • the transponder 1100 in this embodiment of the present application includes:
  • the communication part 1101 receives time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information from the network device; and
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the processing unit 1102 determines whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit based on the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the time domain resources configured by the time division duplex configuration information include at least one of the following: downlink time unit, flexible time unit, and uplink time unit.
  • the time domain resources configured by the time division duplex configuration information include at least one of the following: a downlink time unit, an uplink time unit; and a time domain is configured between the downlink time unit and the uplink time unit. time interval.
  • semi-static configuration and/or dynamic configuration is performed by the time division duplex configuration information.
  • the semi-static configuration includes: cell public uplink and downlink configuration and/or device-specific uplink and downlink configuration.
  • the common uplink and downlink configuration of the cell includes a first pattern (pattern 1), or the common uplink and downlink configuration of the cell includes a first pattern (pattern 1) and a second mode (pattern 2).
  • the first pattern (pattern 1) is configured by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the first pattern indicates at least one of the following parameters: a first transmission period value P, a first downlink time slot number d slots , a first downlink symbol number d sym , The number of uplink time slots u slots , the number of first uplink symbols u sym , and the number of first flexible symbols:
  • the unit of the first transmission cycle value is milliseconds
  • the first downlink time slot number indicates that the first d slots of the first transmission cycle are downlink time slots
  • the first downlink symbol number indicates that The d sym symbols after the d slots time slots are downlink symbols
  • the first uplink time slot number indicates that the last u slots time slots of the first transmission cycle are uplink time slots.
  • the first uplink symbol number indicates Indicates that u sym symbols before u slots time slots are uplink symbols.
  • the first symbol of every two frame lengths (20ms)/P periods is aligned with the first symbol of even frames, or, every two frame lengths
  • the first symbol of (20ms)/P periods is the first symbol of the even frame.
  • the second pattern (pattern 2) is configured by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the second pattern indicates at least one of the following parameters: a second transmission period value P 2 , a second downlink time slot number d slots,2 , and a second downlink symbol number d sym, 2.
  • the unit of the second transmission cycle value is milliseconds
  • the second downlink time slot number indicates the first d slots of the second transmission cycle
  • 2 time slots are downlink time slots
  • the second downlink symbol number indicates the The d slots, d sym after 2 time slots
  • 2 symbols are downlink symbols
  • the second uplink time slot number indicates the last u slots of the second transmission cycle
  • the 2 time slots are uplink time slots
  • the second uplink symbol number indicates the u slots, u sym 2 timeslots ago, and 2 symbols are uplink symbols.
  • the first symbol of every two frames of (20ms)/(P+ P2 ) periods is aligned with the first symbol of an even frame
  • the first symbol of every two frame lengths (20ms)/(P+P 2 ) periods is the first symbol of an even frame
  • P+P 2 is divisible by two frame lengths (20).
  • the device-specific uplink and downlink configuration can configure the flexible time unit in the cell common uplink and downlink configuration.
  • the device-specific uplink and downlink configuration is configured for one time slot by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling. make.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the time slot position in the cycle is indicated through the first signaling, and the symbol configuration in the time slot indicated by the first signaling is configured through the second signaling.
  • the second signaling configures all symbols in the time slot as downlink symbols, or configures all symbols in the time slot as uplink symbols, or configures downlink symbols in the time slot.
  • the dynamic configuration enables configuration of flexible time units in the semi-static configuration.
  • the cell identity of the dynamic configuration application and/or the slot format index (SFI) corresponding to the dynamic configuration and/or the timeslot of the dynamic configuration application are indicated by at least one of the following signalings: Format: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the time slot format of the dynamic configuration application includes: a single structure format, a format with one flexible time unit in the time slot, a format with two flexible time units in the time slot, or a configuration indicating SFI A format that has no impact on semi-statically configured signal/channel transmission.
  • all the symbols in the time slot are uplink symbols, or all the symbols in the time slot are downlink symbols, or all the symbols in the time slot are Flexible symbols;
  • the time slot includes from front to back: zero or more downlink symbols, more than one flexible symbol, zero or more uplink symbols ;
  • the time slot includes from front to back: zero or more downlink symbols, more than one flexible symbol, zero or more uplink symbols symbols, zero or more downward symbols, more than one flexible symbol, zero or more upward symbols.
  • the time division duplex configuration information used by the repeater for forwarding is the same as the time division duplex configuration information used by the repeater for communication, or the time division duplex configuration information used by the repeater for communication is used for The time division duplex configuration information used by the repeater to forward.
  • the semi-static configuration of the time division duplex configuration information is the same, and/or the dynamic configuration of the time division duplex configuration information is the same.
  • the bearer signaling of the reference subcarrier interval used by the repeater for forwarding is the same as the bearer signaling of the reference subcarrier interval used by the repeater for communication, and the reference subcarrier interval used by the repeater for forwarding
  • the value of the interval is the same as the value of the reference subcarrier interval used by the transponder for communication;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the value of the reference subcarrier interval used by the transponder for communication The value of the reference subcarrier spacing used by the repeater for forwarding.
  • the bearer signaling of the reference subcarrier interval used by the repeater for forwarding is the same as the bearer signaling of the reference subcarrier interval used by the repeater for communication, and the reference subcarrier interval used by the repeater for forwarding The value of the spacing is different from the value of the reference subcarrier spacing used by the transponder for communication;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the value of the reference subcarrier interval used by the transponder for communication The value of the reference subcarrier spacing that is not used for forwarding by the repeater.
  • the bearer signaling of the reference subcarrier interval used by the repeater for forwarding is different from the bearer signaling of the reference subcarrier interval used by the repeater for communication, and the reference subcarrier interval used by the repeater for forwarding
  • the value of the interval is the same as the value of the reference subcarrier interval used by the transponder for communication;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling.
  • the value used for the reference subcarrier spacing used by the repeater for forwarding is not used for the bearer signaling.
  • the bearer signaling of the reference subcarrier interval used by the repeater for forwarding is different from the bearer signaling of the reference subcarrier interval used by the repeater for communication, and the reference subcarrier interval used by the repeater for forwarding
  • the value of the spacing is different from the value of the reference subcarrier spacing used by the transponder for communication
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling.
  • the value is not used for the reference subcarrier spacing used by the repeater for forwarding. .
  • the time division duplex configuration information used by the repeater for forwarding is different from the time division duplex configuration information used by the repeater for communication, or the time division duplex configuration information used by the repeater for communication is not used. Time division duplex configuration information used for forwarding by the repeater.
  • the semi-static configuration of the time division duplex configuration information is different, and/or the dynamic configuration of the time division duplex configuration information is different.
  • the bearer signaling of the reference subcarrier interval used by the repeater for forwarding is different from the bearer signaling of the reference subcarrier interval used by the repeater for communication, and the reference subcarrier interval used by the repeater for forwarding
  • the value of the interval is the same as the value of the reference subcarrier interval used by the transponder for communication;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling.
  • the value used for the reference subcarrier spacing used by the repeater for forwarding is not used for the bearer signaling.
  • the bearer signaling of the reference subcarrier interval used by the repeater for forwarding is different from the bearer signaling of the reference subcarrier interval used by the repeater for communication, and the reference subcarrier interval used by the repeater for forwarding
  • the value of the spacing is different from the value of the reference subcarrier spacing used by the transponder for communication
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling.
  • the value is not used for the reference subcarrier spacing used by the repeater for forwarding.
  • the reference subcarrier spacing configuration used by the repeater for forwarding is indicated by signaling of at least one of the following: Radio Resource Control (RRC) ) signaling, medium access control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC medium access control
  • the reference subcarrier spacing is no greater than any SCS configured in one or more cells served by the repeater, or no greater than the smallest SCS configured in one or more cells served by the repeater. ;
  • the reference subcarrier spacing is no larger than any SCS transmitted by one or more devices served by the repeater, or no larger than the smallest SCS transmitted by one or more devices served by the repeater.
  • the time slots or symbols of the reference subcarrier spacing are aligned with the time slots or symbols of the actual forwarded subcarrier spacing.
  • the starting position of the first time slot of the reference subcarrier interval is the same as the starting position of the first time slot of the actually forwarded subcarrier interval; the time slot or symbol of the reference subcarrier interval corresponding to the actual forwarding consecutive time slots or symbols; where ⁇ is the parameter of the actual forwarded subcarrier spacing, and ⁇ ref is the parameter of the reference subcarrier spacing.
  • the reference subcarrier spacing of the first pattern (pattern 1) and the second pattern (pattern 2) are The reference subcarrier spacing of pattern 2) is the same.
  • the number of time slots corresponding to the reference subcarrier spacing in one cycle of the semi-static configuration is a positive integer.
  • the reference subcarrier spacing of the cell's common uplink and downlink configuration is consistent with the reference subcarrier spacing of the device-specific uplink and downlink configuration.
  • the reference subcarrier spacing configuration used by the transponder when the uplink and downlink forwarded are on the same frequency point is configured by at least one of the following information: Command indication: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the reference subcarrier spacing is no greater than any SCS configured in one or more cells served by the repeater, or no greater than the smallest SCS configured in one or more cells served by the repeater.
  • the reference subcarrier spacing is no larger than any SCS transmitted by one or more devices served by the repeater, or no larger than the smallest SCS transmitted by one or more devices served by the repeater.
  • the time slots or symbols of the reference subcarrier spacing are aligned with the time slots or symbols of the actual forwarded subcarrier spacing.
  • the starting position of the first time slot of the reference subcarrier interval is the same as the starting position of the first time slot of the actually forwarded subcarrier interval; the time slot or symbol of the reference subcarrier interval corresponding to the actual forwarding consecutive time slots or symbols; where ⁇ is the parameter of the actual forwarded subcarrier spacing, and ⁇ ref is the parameter of the reference subcarrier spacing.
  • the reference subcarrier spacing used by the transponder for forwarding uplink and downlink at different frequency points is configured respectively.
  • the uplink reference subcarrier spacing is configured for the uplink partial bandwidth (BWP) used by the transponder for uplink forwarding
  • the downlink reference subcarrier spacing is configured for the downlink partial bandwidth (BWP) used by the transponder for downlink forwarding
  • the time slot format corresponding to the downlink reference subcarrier interval is aligned with the time slot format corresponding to the uplink reference subcarrier interval.
  • each time slot format corresponds to the downlink BWP, and the latter time slot format combination corresponds to the uplink BWP;
  • every The first time slot format combination in the time slot formats corresponds to the downlink BWP, and the subsequent A time slot format combination corresponds to the uplink BWP;
  • ⁇ SFI ,DL is the parameter of the downlink reference subcarrier spacing
  • ⁇ SFI ,UL is the parameter of the uplink reference subcarrier spacing
  • the downlink reference subcarrier spacing is indicated by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the downlink reference subcarrier spacing is no larger than any SCS of the downlink configuration of one or more cells served by the transponder, or is no larger than the downlink configuration of one or more cells served by the transponder.
  • the downlink reference subcarrier spacing is no greater than any SCS for downlink transmission by one or more devices served by the repeater, or is no greater than the smallest SCS for downlink transmission by one or more devices served by the repeater.
  • the time slots or symbols of the downlink reference subcarrier spacing are aligned with the time slots or symbols of the actual downlink forwarded subcarrier spacing.
  • the first time slot starting position of the downlink reference subcarrier interval is the same as the first time slot starting position of the actual downlink forwarded subcarrier interval; the time of the downlink reference subcarrier interval is the same as the first time slot starting position of the actual downlink forwarded subcarrier interval;
  • the slot or symbol corresponds to the actual downlink forwarded consecutive time slots or symbols; where ⁇ DL is the parameter of the actual downlink forwarding subcarrier spacing, and ⁇ SFI,DL is the parameter of the downlink reference subcarrier spacing.
  • the uplink reference subcarrier spacing is indicated by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the uplink reference subcarrier spacing is no greater than any SCS of the uplink configuration of one or more cells served by the repeater, or no greater than the uplink configuration of one or more cells served by the repeater.
  • the uplink reference subcarrier spacing is no larger than any SCS for uplink transmission by one or more devices served by the repeater, or is no larger than the smallest SCS for uplink transmission by one or more devices served by the repeater.
  • the time slots or symbols of the uplink reference subcarrier spacing are aligned with the time slots or symbols of the actual uplink forwarded subcarrier spacing.
  • the starting position of the first time slot of the uplink reference subcarrier interval is the same as the starting position of the first time slot of the actual uplink forwarded subcarrier interval;
  • the time slot or symbol corresponds to the actual forwarded consecutive time slots or symbols;
  • ⁇ UL is the parameter of the actual uplink forwarding subcarrier spacing
  • ⁇ SFI,UL is the parameter of the uplink reference subcarrier spacing.
  • FIG. 11 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the repeater receives time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information from the network device.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the embodiment of the present application provides a forwarder configuration method, which is explained from the network device side, and the same content as the embodiment of the first aspect will not be described again.
  • Figure 12 is a schematic diagram of a forwarder configuration method according to an embodiment of the present application. As shown in Figure 12, the method includes:
  • the network device sends time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information to the transponder; wherein, the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) ) configuration information is used by the forwarder to determine whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the network device may send forwarding signals (for example, the destination is the terminal device and forwarded by the repeater) and/or communication signals (for example, the destination is the repeater) to the repeater, or the network device may also Receive a forwarded signal (eg, generated and sent by a terminal device and forwarded by the repeater) and/or a communication signal (eg, generated and sent by the repeater) from the repeater.
  • forwarding signals for example, the destination is the terminal device and forwarded by the repeater
  • communication signals for example, the destination is the repeater
  • the network device may also Receive a forwarded signal (eg, generated and sent by a terminal device and forwarded by the repeater) and/or a communication signal (eg, generated and sent by the repeater) from the repeater.
  • the network device sends time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information to the transponder.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • An embodiment of the present application provides a network device.
  • Figure 13 is a schematic diagram of a network device according to an embodiment of the present application. Since the problem-solving principle of the network device is the same as the method of the embodiment of the third aspect, its specific implementation can refer to the embodiment of the third aspect. The contents are the same. No further explanation will be given.
  • the network device 1300 in this embodiment of the present application includes:
  • Configuration part 1301 which sends time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information to the repeater; wherein the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) SCS) configuration information is used by the forwarder to determine whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the network device may send forwarding signals (for example, the destination is the terminal device and forwarded by the repeater) and/or communication signals (for example, the destination is the repeater) to the repeater, or the network device may also Receive a forwarded signal (eg, generated and sent by a terminal device and forwarded by the repeater) and/or a communication signal (eg, generated and sent by the repeater) from the repeater.
  • forwarding signals for example, the destination is the terminal device and forwarded by the repeater
  • communication signals for example, the destination is the repeater
  • the network device may also Receive a forwarded signal (eg, generated and sent by a terminal device and forwarded by the repeater) and/or a communication signal (eg, generated and sent by the repeater) from the repeater.
  • the network device 1300 in this embodiment of the present application may also include other components or modules.
  • the specific content of these components or modules reference may be made to related technologies.
  • FIG. 13 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the network device sends time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information to the transponder.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • Figure 1 is a schematic diagram of the communication system of the embodiment of the present application.
  • the communication system 100 includes a network device 101, a transponder 102 and a terminal device 103.
  • Figure 1 only takes a network device, a repeater and a terminal device as an example for illustration, but the embodiment of the present application is not limited thereto.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC highly reliable low-latency communications
  • V2X vehicle-to-everything
  • An embodiment of the present application also provides an electronic device.
  • the electronic device is, for example, a repeater or a network device.
  • Figure 14 is a schematic diagram of the structure of an electronic device according to an embodiment of the present application.
  • the electronic device 1400 may include a processor 1410 (eg, a central processing unit CPU) and a memory 1420 ; the memory 1420 is coupled to the processor 1410 .
  • the memory 1420 can store various data; in addition, it also stores an information processing program 1430, and the program 1430 is executed under the control of the processor 1410.
  • the processor 1410 may be configured to execute a program to implement the transmission method as described in the embodiment of the first aspect.
  • the processor 1410 may be configured to perform the following control: receiving time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information from the network device; and according to the time division duplex (TDD) Configuration information and/or reference subcarrier spacing (SCS) configuration information determines whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the processor 1410 may be configured to execute a program to implement the configuration method described in the embodiment of the third aspect.
  • the processor 1410 may be configured to perform the following control: sending time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information to the repeater; wherein the time division duplex (TDD) configuration
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the electronic device 1400 may also include: a transceiver 1440 and an antenna 1450 , etc.; the functions of the above components are similar to those in the prior art and will not be described again here. It is worth noting that the electronic device 1400 does not necessarily include all components shown in FIG. 14 ; in addition, the electronic device 1400 may also include components not shown in FIG. 14 , and reference may be made to the prior art.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a transponder, the program causes the computer to execute the transmission method described in the embodiment of the first aspect in the transponder.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program causes the computer to execute the transmission method described in the embodiment of the first aspect in the transponder.
  • An embodiment of the present application also provides a computer-readable program, wherein when the program is executed in a network device, the program causes the computer to execute the configuration method described in the embodiment of the third aspect in the network device.
  • An embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the configuration method described in the embodiment of the third aspect in a network device.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • This application also involves storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings may be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors combined with DSP communications, or any other such configuration.
  • a transponder transmission method including:
  • the repeater receives time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information from the network device; and
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • the transponder determines whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit based on the time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • time domain resources configured by the time division duplex configuration information include at least one of the following: downlink time unit, flexible time unit, and uplink time unit.
  • time domain resources configured by the time division duplex configuration information include at least one of the following: downlink time unit, uplink time unit; and between the downlink time unit and the There is a time interval configured between upstream time units.
  • the first pattern (pattern 1) is configured by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, Or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the first pattern indicates at least one of the following parameters: a first transmission period value P, a first downlink time slot number d slots , a first downlink slot number The number of row symbols d sym , the number of first uplink slots u slots , the number of first uplink symbols u sym , and the number of first flexible symbols:
  • the unit of the first transmission cycle value is milliseconds
  • the first downlink time slot number indicates that the first d slots of the first transmission cycle are downlink time slots
  • the first downlink symbol number indicates that The d sym symbols after the d slots time slots are downlink symbols
  • the first uplink time slot number indicates that the last u slots time slots of the first transmission cycle are uplink time slots.
  • the first uplink symbol number indicates Indicates that u sym symbols before u slots time slots are uplink symbols.
  • the second pattern is configured by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, Or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the second pattern indicates at least one of the following parameters: a second transmission period value P 2 , a second downlink slot number d slots,2 , The second number of downlink symbols d sym,2 , the second number of uplink slots u slots,2, , the second number of uplink symbols u sym,2 , and the second number of flexible symbols:
  • the unit of the second transmission cycle value is milliseconds
  • the second downlink time slot number indicates the first d slots of the second transmission cycle
  • 2 time slots are downlink time slots
  • the second downlink symbol number indicates the The d slots, d sym after 2 time slots
  • 2 symbols are downlink symbols
  • the second uplink time slot number indicates the last u slots of the second transmission cycle
  • the 2 time slots are uplink time slots
  • the second uplink symbol number indicates the u slots, u sym 2 timeslots ago, and 2 symbols are uplink symbols.
  • the device-specific uplink and downlink configuration is configured for one time slot by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the number of downlink symbols indicates that the first a symbols in the time slot are downlink symbols
  • the number of uplink symbols indicates that the last b symbols in the time slot are uplink symbols
  • the time slot format of the dynamic configuration application includes: a single structure format, a format with one flexible time unit in the time slot, a format with two flexible time units in the time slot, or a signal indicating the configuration of the SFI versus a semi-static configuration. /Channel transfer has no effect on format.
  • the time slot includes from front to back: zero or more downlink symbols, more than one flexible symbol, zero or more uplink symbols ;
  • the time slot includes from front to back: zero or more downlink symbols, more than one flexible symbol, zero or more uplink symbols symbols, zero or more downward symbols, more than one flexible symbol, zero or more upward symbols.
  • time division duplex configuration information used by the repeater for forwarding is the same as the time division duplex configuration information used by the repeater for communication, or the forwarding
  • the time division duplex configuration information used by the repeater for communication is used by the time division duplex configuration information used by the repeater for forwarding.
  • the bearer signaling of the reference subcarrier interval used by the transponder for forwarding is the same as the bearer signaling of the reference subcarrier interval used by the transponder for communication, and the value of the reference subcarrier interval used by the transponder for forwarding is the same as the value of the reference subcarrier interval used by the transponder.
  • the reference subcarrier spacing used by the transponder for communication has the same value;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the value of the reference subcarrier interval used by the transponder for communication The value of the reference subcarrier spacing used by the repeater for forwarding.
  • the bearer signaling of the reference subcarrier interval used by the transponder for forwarding is the same as the bearer signaling of the reference subcarrier interval used by the transponder for communication, and the value of the reference subcarrier interval used by the transponder for forwarding is the same as the value of the reference subcarrier interval used by the transponder.
  • the reference subcarrier spacing used by transponders for communication has different values;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the value of the reference subcarrier interval used by the transponder for communication The value of the reference subcarrier spacing that is not used for forwarding by the repeater.
  • the bearer signaling of the reference subcarrier interval used by the transponder for forwarding is different from the bearer signaling of the reference subcarrier interval used by the transponder for communication, and the value of the reference subcarrier interval used by the transponder for forwarding is different from the value of the reference subcarrier interval used by the transponder.
  • the reference subcarrier spacing used by the transponder for communication has the same value;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling.
  • the value used for the reference subcarrier spacing used by the repeater for forwarding is not used for the bearer signaling.
  • the bearer signaling of the reference subcarrier interval used by the transponder for forwarding is different from the bearer signaling of the reference subcarrier interval used by the transponder for communication, and the value of the reference subcarrier interval used by the transponder for forwarding is different from the value of the reference subcarrier interval used by the transponder.
  • the reference subcarrier spacing used by transponders for communication has different values;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling.
  • the value is not used for the reference subcarrier spacing used by the repeater for forwarding.
  • the bearer signaling of the reference subcarrier interval used by the transponder for forwarding is different from the bearer signaling of the reference subcarrier interval used by the transponder for communication, and the value of the reference subcarrier interval used by the transponder for forwarding is different from the value of the reference subcarrier interval used by the transponder.
  • the reference subcarrier spacing used by the transponder for communication has the same value;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling.
  • the value used for the reference subcarrier spacing used by the repeater for forwarding is not used for the bearer signaling.
  • the bearer signaling of the reference subcarrier interval used by the transponder for forwarding is different from the bearer signaling of the reference subcarrier interval used by the transponder for communication, and the value of the reference subcarrier interval used by the transponder for forwarding is different from the value of the reference subcarrier interval used by the transponder.
  • the reference subcarrier spacing used by transponders for communication has different values;
  • the bearer signaling of the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling of the reference subcarrier interval used by the transponder for forwarding, and the reference subcarrier interval used by the transponder for communication is not used for the bearer signaling.
  • the value is not used for the reference subcarrier spacing used by the repeater for forwarding.
  • the reference subcarrier spacing configuration used by the transponder for forwarding is at least as follows: One of the signaling indications: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the reference subcarrier spacing is no larger than any SCS configured in one or more cells served by the transponder, or no larger than the smallest SCS configured in one or more cells served by the transponder;
  • the reference subcarrier spacing is no larger than any SCS transmitted by one or more devices served by the repeater, or no larger than the smallest SCS transmitted by one or more devices served by the repeater.
  • the time slot or symbol of the reference subcarrier interval corresponds to the actually forwarded consecutive time slots or symbols; where ⁇ is the parameter of the actual forwarded subcarrier spacing, and ⁇ ref is the parameter of the reference subcarrier spacing.
  • the reference subcarrier spacing configuration is indicated by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the reference subcarrier spacing is no greater than any SCS configured in one or more cells served by the repeater, or no greater than the smallest SCS configured in one or more cells served by the repeater,
  • the reference subcarrier spacing is no larger than any SCS transmitted by one or more devices served by the repeater, or no larger than the smallest SCS transmitted by one or more devices served by the repeater.
  • the time slot or symbol of the reference subcarrier interval corresponds to the actually forwarded consecutive time slots or symbols; where ⁇ is the parameter of the actual forwarded subcarrier spacing, and ⁇ ref is the parameter of the reference subcarrier spacing.
  • Every time slot format corresponds to the downlink BWP, and the latter time slot format combination corresponds to the uplink BWP;
  • every The first time slot format combination in the time slot formats corresponds to the downlink BWP, and the subsequent A time slot format combination corresponds to the uplink BWP;
  • ⁇ SFI ,DL is the parameter of the downlink reference subcarrier spacing
  • ⁇ SFI ,UL is the parameter of the uplink reference subcarrier spacing
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the downlink reference subcarrier spacing is not greater than any SCS of the downlink configuration of one or more cells served by the repeater, or is not greater than one of the downlink configurations of one or more cells served by the repeater. Or the smallest SCS configured for downlink of multiple cells;
  • the downlink reference subcarrier spacing is no larger than any SCS for downlink transmission by one or more devices served by the repeater, or is no larger than the smallest SCS for downlink transmission by one or more devices served by the repeater.
  • the time slots or symbols of the downlink reference subcarrier interval correspond to the actual downlink forwarded consecutive time slots or symbols; where ⁇ DL is the parameter of the actual downlink forwarding subcarrier spacing, and ⁇ SFI,DL is the parameter of the downlink reference subcarrier spacing.
  • uplink reference subcarrier spacing is indicated by at least one of the following signaling: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, or physical layer signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the uplink reference subcarrier spacing is no larger than any SCS for uplink transmission by one or more devices served by the repeater, or is no larger than the smallest SCS for uplink transmission by one or more devices served by the repeater.
  • the time slots or symbols of the uplink reference subcarrier interval correspond to the actual uplink forwarded consecutive time slots or symbols; where ⁇ UL is the parameter of the actual uplink forwarding subcarrier spacing, and ⁇ SFI,UL is the parameter of the uplink reference subcarrier spacing.
  • a forwarder configuration method including:
  • the network device sends time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information to the transponder;
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • time division duplex (TDD) configuration information and/or reference subcarrier spacing (SCS) configuration information is used by the repeater to determine whether to perform uplink forwarding or downlink forwarding or not to forward within a certain time unit.
  • TDD time division duplex
  • SCS reference subcarrier spacing
  • a transponder comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the transmission method as described in any one of appendices 1 to 55.
  • a network device including a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the configuration method as described in appendix 55.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种转发器及其传输方法、网络设备和通信系统。所述传输方法包括:转发器接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;以及根据所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息,确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。

Description

转发器及其传输方法、网络设备和通信系统 技术领域
本申请涉及通信技术领域。
背景技术
与传统的3G(第三代移动通信技术)、4G(第四代移动通信技术)系统相比,5G(第五代移动通信技术)系统能够提供更大的带宽以及更高的数据率,并且能够支持更多类型的终端和垂直业务。为此,5G系统的部署频率通常明显高于3G和4G系统。例如,5G系统可以部署在毫米波波段。
然而,承载频率越高,信号在传输过程中遇到的衰落越严重。因此,在5G系统的实际部署中,特别是在毫米波段,如何更好的增强小区覆盖,成为亟待解决的问题。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
为了更好的解决蜂窝移动通信系统在实际部署中的覆盖问题,采用射频转发器(RF Relay/Repeater)放大和转发终端设备与网络设备之间的通信信号,是比较常用的部署手段。射频转发器在3G系统和4G系统的实际部署中具有较为广泛的应用。通常来说,射频转发器是一种在射频域放大和转发网络设备与终端设备往来信号的设备。
发明人发现,针对5G系统在部署中遇到的覆盖问题,采用射频转发器进行覆盖增强是可行的解决方案之一。但是,传统转发器不具备与网络设备通信的能力,不能从网络设备处直接获得上下行配置的相关信息。因此,这样的转发器配置在5G系统中,虽然能够帮助增强信号强度,但是不够灵活而无法应对复杂的环境变化,进而无法达到在3G系统和4G系统中部署相同射频转发器的同等效果。
针对上述问题的至少之一,本申请实施例提供了一种转发器及其传输方法、网络设备和通信系统。转发器具有与网络设备通信的能力,能够接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息。本申请实施例的转发器能够在网络配置下更好地加强信号覆盖并应对环境变化,由此能够提高整个网络的传输效率。
根据本申请实施例的一方面,提供一种转发器的传输方法,包括:
转发器接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;以及
所述转发器根据所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息,确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
根据本申请实施例的另一方面,提供一种转发器,包括:
通信部,其接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;以及
处理部,其根据所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息,确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
根据本申请实施例的另一方面,提供一种转发器的配置方法,包括:
网络设备向转发器发送时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;其中,所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息被所述转发器用于确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
根据本申请实施例的另一方面,提供一种网络设备,包括:
配置部,其向转发器发送时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;其中,所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息被所述转发器用于确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
根据本申请实施例的另一方面,提供一种通信系统,包括:
网络设备,其向转发器发送时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;以及
转发器,其根据所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
本申请实施例的有益效果之一在于:转发器接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息。由此能够根据网络情况配置转发器的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附 权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本申请实施例的应用场景的一示意图;
图2是TDD转发器的一示意图;
图3是本申请实施例的转发器的传输方法的一示意图;
图4A是本申请实施例的TDD配置的一示意图;
图4B是本申请实施例的TDD配置的另一示意图;
图5是本申请实施例的配置了两个pattern的一示意图;
图6是本申请实施例的动态配置的时隙格式的一示例图;
图7是本申请实施例的半静态配置中参考SCS与实际转发SCS对应时隙对齐的一示例图;
图8是本申请实施例的动态配置中上下行在同一频点时参考SCS与实际转发SCS对应时隙对齐的一示例图;
图9是本申请实施例的动态配置中上下行在不同频点时下行参考SCS与实际下行转发SCS对应时隙对齐的一示例图;
图10是本申请实施例的动态配置中上下行在不同频点时上行参考SCS与实际上行转发SCS对应时隙对齐的一示例图;
图11是本申请实施例的转发器的一示意图;
图12是本申请实施例的转发器的配置方法的一示意图;
图13是本申请实施例的网络设备的一示意图;
图14是本申请实施例的电子设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、收发节点(TRP,Transmission Reception Point)、 广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
为了增强覆盖,3GPP Rel-17研究中引入RF repeater来转发终端设备(UE)和网络设备(基站)之间的传输。对于基站和UE来说,Rel-17中引入的RF repeater是透明的,即基站和UE并不知道RF repeater的存在。
图1是本申请实施例的应用场景的一示意图,如图1所示,为了方便说明,以一个网络设备(例如5G基站gNB)101、一个转发器(Repeater)102和一个终端设备(UE)103为例进行说明,本申请不限于此。如图1所示,终端设备103与网络设备101建立连接并与其通信。为了增加通信质量,终端设备103与网络设备101之间传输的信道/信号经由转发器102进行转发。网络设备101,终端设备103与转发器102之间的信道/信号交互均采用基于波束的接收和发送方法。
如图1所示,网络设备101可以具有小区/载波,网络设备101、转发器102和终端设备103可以在该小区进行转发/通信;但本申请不限于此,例如网络设备101还可以具有其他小区/载波。
在本申请实施例中,网络设备和终端设备之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
图1中以转发器可以转发网络设备和终端设备之间传输的信道/信号为例进行说明,但本申请不限于此。例如,转发器可以作为第二设备,在第一设备和第三设备之间进行信道/信号转发,并能够与第一设备和/或第三设备直接进行通信;第一设备至第三设备可以是前述的网络中的任意设备。以下的实施例中,以第一设备为网络设备,第三设备为终端设备为例进行说明。
图2是TDD转发器的一示意图。如图2所示,时分双工(TDD,Time Division Duplex)转发器有两条通路。转发器的两侧天线分别对准网络设备和需要被服务的终端设备可能存在的区域,通过时分方式在网络设备和终端设备之间转发信号。
传统转发器在转发过程中,不对转发信号进行解调/解码。传统转发器的天线方向基本是固定的,通常在初始安装的时候人工进行设置和调整,以使得网络设备侧的天线指向网络设备来波方向,终端设备侧的天线指向需要增强部署的地方。在传统转发器工作的过程中,天线方向不发生改变。此外,传统转发器不具备通信功能,不能够和网络设备进行信息交互,因此也不支持网络设备对其进行自适应和/或较为动态的配置。
相比于3G和4G系统,部署在较高频段和毫米波频段的5G系统采用了更为高级和复杂的MIMO(多进多出)技术。在5G系统中,有向天线成为网络设备与终端设备的基本部件,基于波束赋形(Beam forming)技术发送和接收信号是5G系统中基本的信号传输方式。
特别是毫米波波段频率高、小波长的特点,更利于在网络设备和终端设备中设置包含较多阵子的天线面板。天线阵子个数的增加有助于更为精准的波束赋形,即更容易形成窄波束。窄波束汇聚能量有助于增强信号,并同时减小对其它设备的干扰。另一方面,由于窄波束的指向精准,对信道测量和波束管理的要求非常高,因此5G系统支持较为复杂但精准的信道测量、天线校准和波束管理方案,网络设备可以通过这些方案有效而精准地控制终端设备的接收波束和发送波束,以达到更好的通信效果。
传统转发器不具备与网络设备通信的能力,转发器需要自行探测/确定网络中相关的 上下行配置(TDD UL/DL config)。而后,在网络的下行时间单位,转发器切换至下行转发位置,即从网络设备侧接收信号,经过放大等处理后,从终端设备侧将信号发送出去;在网络的上行时间单位,转发器切换至上行转发位置,即从终端设备侧接收信号,经过放大等处理后,从网络设备侧将信号发送出去。
因此,传统转发器虽然能够帮助增强信号强度,但是不够灵活而无法应对复杂的环境变化,进而降低整个网络的吞吐量。为了使得转发器的转发能够更为灵活以适应5G网络的特点,网络设备需要对转发器进行协助,并能够根据网络情况对转发器的转发进行配置;而转发器需要具有与网络设备通信的能力,能够从网络设备处接收辅助信息和/或配置信息等(例如TDD UL/DL配置,参考子载波间隔等)。如何使得转发器能与网络设备高效通信成为亟待解决的问题。
下面结合附图对本申请实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
在本申请实施例中,转发器还可以表述为直放站、射频转发器、中继器、射频中继器;或者也可以表述为直放站节点、转发器节点、中继器节点;或者还可以表述为智能直放站、智能转发器、智能中继器、智能直放站节点、智能转发器节点、智能中继器节点,等等,本申请不限于此。
在本申请实施例中,网络设备可以是终端设备的服务小区的设备,也可以是转发器所在小区的设备,还可以是转发器的服务小区的设备,也可以是转发器的父节点(Parent node),本申请对该转发器的名称不做限制,只要能实现上述功能的设备,都包含于本申请的转发器的范围内。
第一方面的实施例
本申请实施例提供一种转发器的传输方法,从转发器一侧进行说明。
图3是本申请实施例的转发器的通信方法的一示意图,如图3所示,该方法包括:
301,转发器接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;以及
302,所述转发器根据所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息,确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
例如,转发器基于TDD配置信息,在一段时间内进行上行转发,即向网络设备转发来自终端设备的第一信道或信号(上行信道或信号),在另一段时间内进行下行转发, 即转发器向终端设备转发来自网络设备的第二信道或信号(下行信道或信号)。此外,也可以在一段时间内不进行转发。
再例如,转发器基于参考SCS配置信息,可以使转发器所服务的不同终端设备的传输对齐或者不同频点上的上下行转发对齐,从而保证不同子载波间隔的传输在转发器完成上行转发或下行转发后再进行切换。
值得注意的是,以上附图3仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图3的记载。
在本申请实施例中,转发器可以与网络设备通信,转发器可以接收网络设备发送的通信信道/信号,并进行信道/信号的解调/解码,由此获得网络设备发给该转发器的信息,以下将该信号处理过程称为“通信”。转发器还可以转发网络设备和终端设备之间传输的信道/信号,转发器不对该信道/信号进行解调/解码,可以进行放大等处理,以下将该信号处理过程称为“转发”。将“通信”和“转发”合称为“传输”。以上术语仅为了方便说明,并不构成对本申请的限制。
为方便起见,可以将网络设备和转发器之间或者第三设备(例如终端设备)和转发器之间进行直接通信的信道/信号称为通信信号,在发送通信信号时,转发器需要进行编码和/或调制,在接收通信信号时,转发器需要进行解码和/或解调。此外,可以将经由转发器转发的信道/信号称为转发信号,转发器对转发信号可以进行放大等信号处理,但不会进行解码和/或解调。
此外,与之前的转发器不同,本申请实施例的转发器可以与网络设备通信,因此可以具有部分网络控制的功能,本申请实施例的转发器也可以称为网络控制(NC,Network Control)转发器,即NC-repeater。
在一些实施例中,由时分双工配置信息配置的时域资源包括如下至少之一:下行时间单元、灵活时间单元、上行时间单元。
图4A是本申请实施例的TDD配置的一示意图。如图4A所示,对于NC-repeater用于转发的UL/DL TDD配置格式,在一个UL/DL TDD周期内,可以以下行区域+灵活区域+上行区域的方式进行配置。以上所述的“区域”或“时间单元”例如是时域上的一段时间,可以是一个或多个时隙,和/或,一个或多个符号,本申请不限于此。
在一些实施例中,由时分双工配置信息配置的时域资源包括如下至少之一:下行时 间单元、上行时间单元;并且在所述下行时间单元和所述上行时间单元之间配置有时间间隔。
例如,对于NC-repeater用于转发的UL/DL TDD配置格式,在一个UL/DL TDD周期内,可以以下行区域+时间间隔+上行区域的方式进行配置,即没有灵活区域的配置,上下行之间配置时间间隔以避免上下行之间的冲突。
在一些实施例中,由时分双工配置信息进行半静态配置和/或动态配置。其中,所述半静态配置包括:小区公共上下行配置和/或设备专用上下行配置。
例如,可以使用cell-common的UL/DL TDD信令进行半静态配置,或者也可以使用repeater-dedicated的UL/DL TDD信令进行半静态配置,或者也可以使用cell-common的UL/DL TDD信令和repeater-dedicated的UL/DL TDD信令进行半静态配置。
在一些实施例中,小区公共上下行配置包括第一模式(pattern 1),该第一模式(pattern 1)由如下至少之一的信令配置:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
所述第一模式(pattern 1)指示如下至少之一的参数:第一传输周期值P、第一下行时隙数d slots、第一下行符号数d sym、第一上行时隙数u slots、第一上行符号数u sym、第一灵活符号数。其中,上述符号数或者时隙数的取值为大于或者等于零的整数。
所述第一传输周期值的单位为毫秒,所述第一下行时隙数指示第一传输周期的前d slots个时隙为下行时隙,所述第一下行符号数指示所述d slots个时隙之后的d sym个符号为下行符号,所述第一上行时隙数指示所述第一传输周期的后u slots个时隙为上行时隙,所述第一上行符号数指示所述u slots个时隙之前的u sym个符号为上行符号。
图4B是本申请实施例的TDD配置的另一示意图。如图4B所示,例如,对于某个周期的pattern 1,从前到后依次包括:d slots(大于或等于0)个下行时隙、d sym(大于或等于0)个下行符号、零个或一个以上的灵活时隙或符号、u sym(大于或等于0)个上行符号、u slots(大于或等于0)个上行时隙。
在信令中可以指示灵活时隙/符号个数,也可以不指示灵活时隙/符号个数。在不指示灵活时隙/符号个数的情况下,可以认为除了上行时间单元和下行时间单元的其他时间单元为灵活时隙/符号。
在一些实施例中,在配置了第一模式时,每两个帧长(20ms)/P个周期的第一个符号与偶数帧的第一个符号对齐,或者,每两个帧长(20ms)/P个周期的第一个符号是偶数帧的第一个符号。
在一些实施例中,小区公共上下行配置包括所述第一模式(pattern 1)和第二模式(pattern 2)。该第二模式(pattern 2)由如下至少之一的信令配置:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
所述第二模式(pattern 2)指示如下至少之一的参数:第二传输周期值P 2、第二下行时隙数d slots,2、第二下行符号数d sym,2、第二上行时隙数u slots,2,、第二上行符号数u sym, 2、第二灵活符号数。其中,上述符号数或者时隙数的取值为大于或者等于零的整数。
所述第二传输周期值的单位为毫秒,所述第二下行时隙数指示第二传输周期的前d slots,2个时隙为下行时隙,所述第二下行符号数指示所述d slots,2个时隙之后的d sym,2个符号为下行符号,所述第二上行时隙数指示所述第二传输周期的后u slots,2个时隙为上行时隙,所述第二上行符号数指示所述u slots,2个时隙之前的u sym,2个符号为上行符号。
例如,对于某个周期的pattern 2,从前到后依次包括:d slots,2(大于或等于0)个下行时隙、d sym,2(大于或等于0)个下行符号、零个或一个以上的灵活时隙或符号、u sym, 2(大于或等于0)个上行符号、u slots,2(大于或等于0)个上行时隙。
在信令中可以指示灵活时隙/符号个数,也可以不指示灵活时隙/符号个数。在不指示灵活时隙/符号个数的情况下,可以认为除了上行时间单元和下行时间单元的其他时间单元为灵活时隙/符号。
以上为便于说明,对第一模式和第二模式分别进行了说明,本申请不限于此,第一模式和第二模式可以在同一信令或同一配置信息中一起被配置。例如,小区公共上下行配置可以包括第一模式和第二模式,其中第二模式是可选的。
图5是本申请实施例的配置了两个pattern的一示意图。例如,在配置了第一模式和第二模式时,每两个帧长(20ms)/(P+P 2)个周期的第一个符号与偶数帧的第一个符号对齐,或者,每两个帧长(20ms)/(P+P 2)个周期的第一个符号是偶数帧的第一个符号,且P+P 2能被两个帧长(20)整除。
表1是本申请实施例的半静态配置的一示例图,对小区公共上下行TDD配置进行示例性说明。如表1所示,以RRC信元(IE)为例,TDD-UL-DL-ConfigCommon包括pattern 1和pattern 2,pattern2是可选的。
表1
Figure PCTCN2022090096-appb-000001
Figure PCTCN2022090096-appb-000002
在一些实施例中,设备专用上下行配置能够对小区公共上下行配置中的灵活时间单元进行配置。例如,只能在小区公共上下行TDD配置的灵活区域进行设备专用上下行的配置;即,只能改变小区公共上下行TDD配置的上下行区域,不能改变小区公共上下行TDD配置的上下行区域。
设备专用上下行配置可以由如下至少之一的信令针对一个时隙进行配置:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。其中,可以通过第一信令指示周期中的时隙位置,通过第二信令配置所述第一信令指示的时隙中的符号配置。
例如,所述第二信令配置所述时隙内的全部符号为下行符号,或者,配置所述时隙内的全部符号为上行符号,或者,配置所述时隙内的下行符号数a和/或上行符号数b; 其中,所述下行符号数指示所述时隙内的前a个符号为下行符号,所述上行符号数指示所述时隙内的后b个符号为上行符号,其中,上述符号数或者时隙数的取值为大于或者等于零的整数。
再例如,如果未配置下行符号数,则该时隙内没有下行符号;如果未配置上行符号数,则该时隙内没有上行符号;配置上行符号和/或下行符号数后,该时隙内剩余符号为灵活符号。
在一些实施例中,动态配置能够对半静态配置中的灵活时间单元进行配置。例如,可以对半静态配置的灵活区域指示相应的时隙格式(slot format),从而进行动态配置,但是不能修改半静态指示的上下行区域。例如,可以使用DCI format 2_0来动态地指示某一时隙的格式;本申请不限于此。
在一些实施例中,可以由如下至少之一的信令指示所述动态配置应用的小区标识和/或所述动态配置对应的时隙格式索引(SFI)和/或所述动态配置应用的时隙格式:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
在一些实施例中,所述动态配置应用的时隙格式包括:单一结构的格式、时隙内有一个灵活时间单元的格式、时隙内有两个灵活时间单元的格式、或者指示SFI的配置对半静态配置的信号/信道传输没有影响的格式。
例如,在单一结构的格式中,所述时隙中的符号全部为上行符号,或者所述时隙中的符号全部为下行符号,或者所述时隙中的符号全部为灵活符号。
例如,在时隙内有一个灵活时间单元的格式中,所述时隙从前到后依次包括:零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号。
例如,在时隙内有两个灵活时间单元的格式中,所述时隙从前到后依次包括:零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号、零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号。例如,两个灵活区域分别位于一个时隙里前7个symbol和后7个symbol里。
再例如,指示SFI的配置对半静态配置的信号/信道传输没有影响的格式可称为255格式,该格式不能修改灵活区域。
图6是本申请实施例的动态配置的时隙格式的一示例图,如图6所示,“D”代表该符号为下行符号,“U”代表该符号为上行符号,“F”代表该符号为灵活符号。
在一些实施例中,转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息相同,或者,所述转发器用于通信的时分双工配置信息被用于所述转发 器用于转发的时分双工配置信息。例如,所述时分双工配置信息的半静态配置相同,和/或,所述时分双工配置信息的动态配置相同。
在一些实施例中,转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息不同,或者,所述转发器用于通信的时分双工配置信息不被用于所述转发器用于转发的时分双工配置信息。例如,时分双工配置信息的半静态配置不同,和/或,时分双工配置信息的动态配置不同。
以上对于TDD配置进行了示意性说明,以下再对参考SCS配置进行说明。
在一些实施例中,在转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息相同的情况下,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令相同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值相同。
或者,在转发器用于通信的时分双工配置信息被用于所述转发器用于转发的时分双工配置信息的情况下,所述转发器用于通信的参考子载波间隔的承载信令被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值。
例如:指示NC-repeater用于转发的reference SCS的承载信令与指示NC-repeater用于通信的承载信令为信令a,且信令a指示的reference SCS数值为value1,该信令a和该value1适用于NC-repeater转发也适用于NC-repeater通信。
在一些实施例中,在转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息相同的情况下,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令相同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值不同。
或者,在转发器用于通信的时分双工配置信息被用于所述转发器用于转发的时分双工配置信息的情况下,所述转发器用于通信的参考子载波间隔的承载信令被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
例如:指示NC-repeater用于转发的reference SCS的承载信令与指示NC-repeater用于通信的承载信令为信令a,该信令a适用于NC-repeater转发也适用于NC-repeater通信;且信令a指示两个reference SCS值,value1为适用于NC-repeater转发的reference SCS数值,value2为适用于NC-repeater通信的reference SCS数值,且value2≠value1。
在一些实施例中,在转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息相同的情况下,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值相同。
或者,在转发器用于通信的时分双工配置信息被用于所述转发器用于转发的时分双工配置信息的情况下,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值。
例如:指示NC-repeater用于转发的reference SCS的承载信令为信令a,且信令a指示value1为适用于NC-repeater转发的reference SCS数值;指示NC-repeater用于通信的承载信令为信令b,且信令b指示value2为适用于NC-repeater通信的reference SCS数值,且value2=value1。
在一些实施例中,在转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息相同的情况下,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值不同。
或者,在转发器用于通信的时分双工配置信息被用于所述转发器用于转发的时分双工配置信息的情况下,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
例如:指示NC-repeater用于转发的reference SCS的承载信令为信令a,且信令a指示value1为适用于NC-repeater转发的reference SCS数值;指示NC-repeater用于通信的承载信令为信令b,且信令b指示value2为用于NC-repeater通信的reference SCS数值,且value2≠value1。
在一些实施例中,在转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息不同的情况下,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值相同。
或者,在转发器用于通信的时分双工配置信息不被用于所述转发器用于转发的时分双工配置信息的情况下,所述转发器用于通信的参考子载波间隔的承载信令不被用于所 述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值。
例如:指示NC-repeater用于转发的reference SCS的承载信令为信令a,且信令a指示value1为适用于NC-repeater转发的reference SCS数值;指示NC-repeater用于通信的承载信令为信令b,且信令b指示value2为适用于NC-repeater通信的reference SCS数值,且value2=value1。
在一些实施例中,在转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息不同的情况下,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值不同。
或者,在转发器用于通信的时分双工配置信息不被用于所述转发器用于转发的时分双工配置信息的情况下,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
例如:指示NC-repeater用于转发的reference SCS的承载信令为信令a,且信令a指示value1为适用于NC-repeater转发的reference SCS数值;指示NC-repeater用于通信的承载信令为信令b,且信令b指示value2为适用于NC-repeater传输的reference SCS数值,且value2≠value1。
在一些实施例中,在由所述时分双工配置信息进行半静态配置的情况下,所述转发器用于转发的参考子载波间隔配置由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
其中,所述参考子载波间隔μ ref不大于所述转发器服务的一个或多个小区配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区配置的最小的SCS;
或者,所述参考子载波间隔μ ref不大于所述转发器服务的一个或多个设备传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备传输的最小的SCS。
例如,该转发器服务多个小区,每个小区配置一个SCS,共有多个SCS;则参考子载波间隔μ ref不大于这些SCS中的任一个SCS,或者不大于这些SCS中的最小SCS。其中,转发器服务小区是指转发器为该小区转发该小区中的终端设备与网络设备之间传输的信道/信号。
再例如,该转发器服务多个终端设备,每个终端设备的转发对应一个SCS,共有多 个SCS;则参考子载波间隔μ ref不大于这些SCS中的任一个SCS,或者不大于这些SCS中的最小SCS。其中,转发器服务终端设备是指转发器为该终端设备转发该终端设备与网络设备之间传输的信道/信号。
在一些实施例中,所述参考子载波间隔的时隙或符号与实际转发的子载波间隔的时隙或符号对齐。
例如,所述参考子载波间隔的第一个时隙起始位置与实际转发的子载波间隔的第一个时隙起始位置相同;所述参考子载波间隔的时隙或符号对应于所述实际转发的
Figure PCTCN2022090096-appb-000003
个连续时隙或符号;其中,μ为所述实际转发的子载波间隔的参数,μ ref为所述参考子载波间隔的参数。
图7是本申请实施例的半静态配置中参考SCS与实际转发SCS对应时隙对齐的一示例图。如图7所示,在NC-repeater用于转发的UL/DL TDD配置为半静态配置时,Reference SCS对应的每个slot/symbol与实际转发的SCS对应的slot/symbol时间长度对齐,即一个reference SCS提供的slot/symbol对应于实际转发的
Figure PCTCN2022090096-appb-000004
个连续slot/symbol。如图7所示,reference SCS参数μ ref=1,实际转发SCS参数μ=3。
在一些实施例中,在半静态配置第一模式(pattern 1)和第二模式(pattern 2)的情况下,所述第一模式(pattern 1)的参考子载波间隔和所述第二模式(pattern 2)的参考子载波间隔相同。
在一些实施例中,半静态配置的一个周期内根据参考子载波间隔对应的时隙数为正整数。例如,周期值为0.625ms时,μ ref=3;周期值为1.25ms时,μ ref=2,或μ ref=3;周期值为2.5时,μ ref=1,或μ ref=2,或μ ref=3。
在一些实施例中,小区公共上下行配置的参考子载波间隔与设备专用上下行配置的参考子载波间隔一致。例如,cell-common UL/DL TDD配置与repeater-dedicated UL/DL TDD配置采用同一个reference SCS。
在一些实施例中,在由所述时分双工配置信息进行动态配置的情况下,所述转发器用于转发的上下行在同一频点上时的参考子载波间隔配置由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
所述参考子载波间隔不大于所述转发器服务的一个或多个小区配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区配置的最小的SCS,
或者,所述参考子载波间隔不大于所述转发器服务的一个或多个设备传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备传输的最小的SCS。
在一些实施例中,所述参考子载波间隔的时隙或符号与实际转发的子载波间隔的时隙或符号对齐。
例如,所述参考子载波间隔的第一个时隙起始位置与实际转发的子载波间隔的第一个时隙起始位置相同;所述参考子载波间隔的时隙或符号对应于所述实际转发的
Figure PCTCN2022090096-appb-000005
个连续时隙或符号;其中,μ为所述实际转发的子载波间隔的参数,μ ref为所述参考子载波间隔的参数。
图8是本申请实施例的动态配置上下行在同一频点时参考SCS与实际转发SCS对应时隙对齐的一示例图。如图8所示,在NC-repeater用于转发的UL/DL TDD配置为动态配置,且上下行在同一频点上时,Reference SCS对应的每个slot/symbol与实际转发的SCS对应的slot/symbol时间长度对齐,即,一个reference SCS提供的slot/symbol对应于实际转发的
Figure PCTCN2022090096-appb-000006
个连续slot/symbol,如图8所示,reference SCS参数μ SFI=1,实际传输SCS参数μ=2。
在一些实施例中,在由所述时分双工配置信息进行动态配置的情况下,所述转发器用于转发的上下行在不同频点上时的参考子载波间隔分别被配置。例如,针对所述转发器用于上行转发的上行部分带宽(BWP)配置上行参考子载波间隔,针对所述转发器用于下行转发的下行部分带宽(BWP)配置下行参考子载波间隔。
在一些实施例中,下行参考子载波间隔所对应的时隙格式和上行参考子载波间隔所对应的时隙格式对齐。即,上下行之间配置的reference SCS对应的每个slot/symbol持续时长对齐。
例如,在μ SFI,DLSFI,UL时,每
Figure PCTCN2022090096-appb-000007
个时隙格式中前
Figure PCTCN2022090096-appb-000008
个时隙格式组合对应于下行BWP,后一个时隙格式组合对应于上行BWP;在μ SFI,DLSFI,UL时,每
Figure PCTCN2022090096-appb-000009
个时隙格式中第一个时隙格式组合对应于下行BWP,后
Figure PCTCN2022090096-appb-000010
个时隙格式组合对应于上行BWP;其中,μ SFI,DL为所述下行参考子载波间隔的参数,μ SFI,UL为所述上行参考子载波间隔的参数。
在一些实施例中,所述下行参考子载波间隔由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
所述下行参考子载波间隔不大于所述转发器服务的一个或多个小区下行配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区下行配置的最小的SCS;
或者,所述下行参考子载波间隔不大于所述转发器服务的一个或多个设备下行传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备下行传输的最小的SCS。
在一些实施例中,所述下行参考子载波间隔的时隙或符号与实际下行转发的子载波间隔的时隙或符号对齐。
例如,所述下行参考子载波间隔的第一个时隙起始位置与实际下行转发的子载波间隔的第一个时隙起始位置相同;所述下行参考子载波间隔的时隙或符号对应于所述实际下行转发的
Figure PCTCN2022090096-appb-000011
个连续时隙或符号;其中,μ DL为所述实际下行转发的子载波间隔的参数,μ SFI,DL为所述下行参考子载波间隔的参数。
图9是本申请实施例的动态配置中上下行在不同频点时下行参考SCS与实际下行转发SCS对应时隙对齐的一示例图。如图9所示,在NC-repeater用于转发的UL/DL TDD配置为动态配置,且上下行在不同频点上时,上下行Reference SCS对应的每个slot/symbol与实际转发的SCS对应的slot/symbol时间长度分别对齐。
如图9所示,NC-repeater下行reference SCS对应的每个slot/symbol与实际下行转发的SCS对应的slot/symbol时间长度对齐,下行reference SCS参数μ SFI,DL=2,实际下行SCS参数μ DL=3。
在一些实施例中,所述上行参考子载波间隔由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
所述上行参考子载波间隔不大于所述转发器服务的一个或多个小区上行配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区上行配置的最小的SCS;
或者,所述上行参考子载波间隔不大于所述转发器服务的一个或多个设备上行传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备上行传输的最小的SCS。
在一些实施例中,所述上行参考子载波间隔的时隙或符号与实际上行转发的子载波间隔的时隙或符号对齐。
例如,所述上行参考子载波间隔的第一个时隙起始位置与实际上行转发的子载波间隔的第一个时隙起始位置相同;所述上行参考子载波间隔的时隙或符号对应于所述实际上行转发的
Figure PCTCN2022090096-appb-000012
个连续时隙或符号;其中,μ UL为所述实际上行转发的子载波间隔的参数,μ SFI,UL为所述上行参考子载波间隔的参数。
图10是本申请实施例的动态配置中上下行在不同频点时上行参考SCS与实际上行转发SCS对应时隙对齐的一示例图。如图10所示,在NC-repeater用于转发的UL/DL TDD配置为动态配置,且上下行在不同频点上时,上下行Reference SCS对应的每个slot/symbol与实际转发的SCS对应的slot/symbol时间长度分别对齐。
如图10所示,NC-repeater上行reference SCS对应的每个slot/symbol与实际上行转 发的SCS对应的slot/symbol时间长度对齐,上行reference SCS参数μ SFI,UL=1,实际上行SCS参数μ UL=3。
在一些实施例中,动态配置中FR1的μ SFI或μ SFI,DL或μ SFI,UL或μ SFI,SUL可以取值为FR1中传输SCS可以取的值,例如可以为1、2、3;FR2的的μ SFI或μ SFI,DL或μ SFI,UL或μ SFI,SUL可以取值为FR2中SCS可以取的值,例如为2、3;本申请不限于此。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息。由此能够根据网络情况配置转发器的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
第二方面的实施例
本申请实施例提供一种转发器,该转发器例如可以是网络设备或终端设备,也可以是配置于网络设备或终端设备的某个或某些部件或者组件。
图11是本申请实施例的转发器的一示意图,由于该转发器解决问题的原理与第一方面的实施例的方法相同,因此其具体实施可以参照第一方面的实施例,内容相同之处不再重复说明。
如图11所示,本申请实施例的转发器1100包括:
通信部1101,其接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;以及
处理部1102,其根据所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息,确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
在一些实施例中,由所述时分双工配置信息配置的时域资源包括如下至少之一:下行时间单元、灵活时间单元、上行时间单元。
在一些实施例中,由所述时分双工配置信息配置的时域资源包括如下至少之一:下行时间单元、上行时间单元;并且在所述下行时间单元和所述上行时间单元之间配置有时间间隔。
在一些实施例中,由所述时分双工配置信息进行半静态配置和/或动态配置。
在一些实施例中,所述半静态配置包括:小区公共上下行配置和/或设备专用上下行配置。
在一些实施例中,所述小区公共上下行配置包括第一模式(pattern 1),或者,所述小区公共上下行配置包括第一模式(pattern 1)和第二模式(pattern 2)。
在一些实施例中,所述第一模式(pattern 1)由如下至少之一的信令配置:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
在一些实施例中,所述第一模式(pattern 1)指示如下至少之一的参数:第一传输周期值P、第一下行时隙数d slots、第一下行符号数d sym、第一上行时隙数u slots、第一上行符号数u sym、第一灵活符号数:
其中,所述第一传输周期值的单位为毫秒,所述第一下行时隙数指示第一传输周期的前d slots个时隙为下行时隙,所述第一下行符号数指示所述d slots个时隙之后的d sym个符号为下行符号,所述第一上行时隙数指示所述第一传输周期的后u slots个时隙为上行时隙,所述第一上行符号数指示所述u slots个时隙之前的u sym个符号为上行符号。
在一些实施例中,在配置了所述第一模式时,每两个帧长(20ms)/P个周期的第一个符号与偶数帧的第一个符号对齐,或者,每两个帧长(20ms)/P个周期的第一个符号是偶数帧的第一个符号。
在一些实施例中,所述第二模式(pattern 2)由如下至少之一的信令配置:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
在一些实施例中,所述第二模式(pattern 2)指示如下至少之一的参数:第二传输周期值P 2、第二下行时隙数d slots,2、第二下行符号数d sym,2、第二上行时隙数u slots,2,、第二上行符号数u sym,2、第二灵活符号数:
其中,所述第二传输周期值的单位为毫秒,所述第二下行时隙数指示第二传输周期的前d slots,2个时隙为下行时隙,所述第二下行符号数指示所述d slots,2个时隙之后的d sym, 2个符号为下行符号,所述第二上行时隙数指示所述第二传输周期的后u slots,2个时隙为上行时隙,所述第二上行符号数指示所述u slots,2个时隙之前的u sym,2个符号为上行符号。
在一些实施例中,在配置了第一模式和第二模式时,每两个帧长(20ms)/(P+P 2)个周期的第一个符号与偶数帧的第一个符号对齐,或者,每两个帧长(20ms)/(P+P 2)个周期的第一个符号是偶数帧的第一个符号,且P+P 2能被两个帧长(20)整除。
在一些实施例中,所述设备专用上下行配置能够对所述小区公共上下行配置中的灵活时间单元进行配置。
在一些实施例中,所述设备专用上下行配置由如下至少之一的信令针对一个时隙进行配置:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
在一些实施例中,通过第一信令指示周期中的时隙位置,通过第二信令配置所述第一信令指示的时隙中的符号配置。
在一些实施例中,所述第二信令配置所述时隙内的全部符号为下行符号,或者,配置所述时隙内的全部符号为上行符号,或者,配置所述时隙内的下行符号数a和/或上行符号数b;其中,所述下行符号数指示所述时隙内的前a个符号为下行符号,所述上行符号数指示所述时隙内的后b个符号为上行符号。
在一些实施例中,所述动态配置能够对所述半静态配置中的灵活时间单元进行配置。
在一些实施例中,由如下至少之一的信令指示所述动态配置应用的小区标识和/或所述动态配置对应的时隙格式索引(SFI)和/或所述动态配置应用的时隙格式:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
在一些实施例中,所述动态配置应用的时隙格式包括:单一结构的格式、时隙内有一个灵活时间单元的格式、时隙内有两个灵活时间单元的格式、或者指示SFI的配置对半静态配置的信号/信道传输没有影响的格式。
在一些实施例中,在所述单一结构的格式中,所述时隙中的符号全部为上行符号,或者所述时隙中的符号全部为下行符号,或者所述时隙中的符号全部为灵活符号;
其中,在所述时隙内有一个灵活时间单元的格式中,所述时隙从前到后依次包括:零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号;
其中,在所述时隙内有两个灵活时间单元的格式中,所述时隙从前到后依次包括:零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号、零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号。
在一些实施例中,所述转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息相同,或者,所述转发器用于通信的时分双工配置信息被用于所述转发器用于转发的时分双工配置信息。
在一些实施例中,所述时分双工配置信息的半静态配置相同,和/或,所述时分双工配置信息的动态配置相同。
在一些实施例中,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令相同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值相同;
或者,所述转发器用于通信的参考子载波间隔的承载信令被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值。
在一些实施例中,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令相同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值不同;
或者,所述转发器用于通信的参考子载波间隔的承载信令被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
在一些实施例中,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值相同;
或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值。
在一些实施例中,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值不同;
或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。。
在一些实施例中,所述转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息不同,或者,所述转发器用于通信的时分双工配置信息不被用于所述转发器用于转发的时分双工配置信息。
在一些实施例中,所述时分双工配置信息的半静态配置不同,和/或,所述时分双工配置信息的动态配置不同。
在一些实施例中,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值相同;
或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于 转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值。
在一些实施例中,所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值不同;
或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
在一些实施例中,在由所述时分双工配置信息进行半静态配置的情况下,所述转发器用于转发的参考子载波间隔配置由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
在一些实施例中,所述参考子载波间隔不大于所述转发器服务的一个或多个小区配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区配置的最小的SCS;
或者,所述参考子载波间隔不大于所述转发器服务的一个或多个设备传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备传输的最小的SCS。
在一些实施例中,所述参考子载波间隔的时隙或符号与实际转发的子载波间隔的时隙或符号对齐。
在一些实施例中,所述参考子载波间隔的第一个时隙起始位置与实际转发的子载波间隔的第一个时隙起始位置相同;所述参考子载波间隔的时隙或符号对应于所述实际转发的
Figure PCTCN2022090096-appb-000013
个连续时隙或符号;其中,μ为所述实际转发的子载波间隔的参数,μ ref为所述参考子载波间隔的参数。
在一些实施例中,在半静态配置第一模式(pattern 1)和第二模式(pattern 2)的情况下,所述第一模式(pattern 1)的参考子载波间隔和所述第二模式(pattern 2)的参考子载波间隔相同。
在一些实施例中,半静态配置的一个周期内根据参考子载波间隔对应的时隙数为正整数。
在一些实施例中,小区公共上下行配置的参考子载波间隔与设备专用上下行配置的参考子载波间隔一致。
在一些实施例中,在由所述时分双工配置信息进行动态配置的情况下,所述转发器用于转发的上下行在同一频点上时的参考子载波间隔配置由如下至少之一的信令指示: 无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
在一些实施例中,所述参考子载波间隔不大于所述转发器服务的一个或多个小区配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区配置的最小的SCS,
或者,所述参考子载波间隔不大于所述转发器服务的一个或多个设备传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备传输的最小的SCS。
在一些实施例中,所述参考子载波间隔的时隙或符号与实际转发的子载波间隔的时隙或符号对齐。
在一些实施例中,所述参考子载波间隔的第一个时隙起始位置与实际转发的子载波间隔的第一个时隙起始位置相同;所述参考子载波间隔的时隙或符号对应于所述实际转发的
Figure PCTCN2022090096-appb-000014
个连续时隙或符号;其中,μ为所述实际转发的子载波间隔的参数,μ ref为所述参考子载波间隔的参数。
在一些实施例中,在由所述时分双工配置信息进行动态配置的情况下,所述转发器用于转发的上下行在不同频点上时的参考子载波间隔分别被配置。
在一些实施例中,针对所述转发器用于上行转发的上行部分带宽(BWP)配置上行参考子载波间隔,针对所述转发器用于下行转发的下行部分带宽(BWP)配置下行参考子载波间隔。
在一些实施例中,所述下行参考子载波间隔所对应的时隙格式和所述上行参考子载波间隔所对应的时隙格式对齐。
在一些实施例中,在μ SFI,DLSFI,UL时,每
Figure PCTCN2022090096-appb-000015
个时隙格式中前
Figure PCTCN2022090096-appb-000016
个时隙格式组合对应于下行BWP,后一个时隙格式组合对应于上行BWP;
在μ SFI,DLSFI,UL时,每
Figure PCTCN2022090096-appb-000017
个时隙格式中第一个时隙格式组合对应于下行BWP,后
Figure PCTCN2022090096-appb-000018
个时隙格式组合对应于上行BWP;
其中,μ SFI,DL为所述下行参考子载波间隔的参数,μ SFI,UL为所述上行参考子载波间隔的参数。
在一些实施例中,所述下行参考子载波间隔由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
在一些实施例中,所述下行参考子载波间隔不大于所述转发器服务的一个或多个小区下行配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区下行配置的最小的SCS;
或者,所述下行参考子载波间隔不大于所述转发器服务的一个或多个设备下行传输 的任何一个SCS,或不大于所述转发器服务的一个或多个设备下行传输的最小的SCS。
在一些实施例中,所述下行参考子载波间隔的时隙或符号与实际下行转发的子载波间隔的时隙或符号对齐。
在一些实施例中,所述下行参考子载波间隔的第一个时隙起始位置与实际下行转发的子载波间隔的第一个时隙起始位置相同;所述下行参考子载波间隔的时隙或符号对应于所述实际下行转发的
Figure PCTCN2022090096-appb-000019
个连续时隙或符号;其中,μ DL为所述实际下行转发的子载波间隔的参数,μ SFI,DL为所述下行参考子载波间隔的参数。
在一些实施例中,所述上行参考子载波间隔由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
在一些实施例中,所述上行参考子载波间隔不大于所述转发器服务的一个或多个小区上行配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区上行配置的最小的SCS;
或者,所述上行参考子载波间隔不大于所述转发器服务的一个或多个设备上行传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备上行传输的最小的SCS。
在一些实施例中,所述上行参考子载波间隔的时隙或符号与实际上行转发的子载波间隔的时隙或符号对齐。
在一些实施例中,且所述上行参考子载波间隔的第一个时隙起始位置与实际上行转发的子载波间隔的第一个时隙起始位置相同;所述上行参考子载波间隔的时隙或符号对应于所述实际上行转发的
Figure PCTCN2022090096-appb-000020
个连续时隙或符号;其中,μ UL为所述实际上行转发的子载波间隔的参数,μ SFI,UL为所述上行参考子载波间隔的参数。
此外,为了简单起见,图11中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,转发器接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息。由此能够根据网络情况配置转发器的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传 输效率。
第三方面的实施例
本申请实施例提供一种转发器的配置方法,从网络设备一侧进行说明,与第一方面的实施例相同的内容不再赘述。
图12是本申请实施例的转发器的配置方法的一示意图,如图12所示,该方法包括:
1201,网络设备向转发器发送时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;其中,所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息被所述转发器用于确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
值得注意的是,以上附图12仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图12的记载。
在一些实施例中,网络设备可以向转发器发送转发信号(例如目的地为终端设备,由该转发器转发)和/或通信信号(例如目的地为该转发器),或者,网络设备也可以接收来自转发器的转发信号(例如由终端设备生成并发送,并由该转发器转发)和/或通信信号(例如由该转发器生成并发送)。
以上仅对与本申请相关的各步骤或过程进行了说明,但本申请不限于此。本申请实施例的方法还可以包括其他步骤或者过程,关于这些步骤或者过程的具体内容,可以参考相关技术。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,网络设备向转发器发送时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息。由此能够根据网络情况配置转发器的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
第四方面的实施例
本申请实施例提供一种网络设备。
图13是本申请实施例的网络设备的一示意图,由于该网络设备解决问题的原理与第三方面的实施例的方法相同,因此其具体实施可以参照第三方面的实施例,内容相同之处不再重复说明。
如图13所示,本申请实施例的网络设备1300包括:
配置部1301,其向转发器发送时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;其中,所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息被所述转发器用于确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
在一些实施例中,网络设备可以向转发器发送转发信号(例如目的地为终端设备,由该转发器转发)和/或通信信号(例如目的地为该转发器),或者,网络设备也可以接收来自转发器的转发信号(例如由终端设备生成并发送,并由该转发器转发)和/或通信信号(例如由该转发器生成并发送)。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的网络设备1300还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图13中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
根据本申请实施例,网络设备向转发器发送时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息。由此能够根据网络情况配置转发器的转发,可以更好地加强信号覆盖并应对环境与小区内主要业务的变化等,从而能够提高整个网络的传输效率。
第五方面的实施例
本申请实施例提供了一种通信系统,图1是本申请实施例的通信系统的示意图,如 图1所示,该通信系统100包括网络设备101、转发器102以及终端设备103,为简单起见,图1仅以一个网络设备、一个转发器以及一个终端设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。转发器102被配置为执行第一方面的实施例所述的传输方法,网络设备101被配置为执行第三方面的实施例所述的传输方法,其内容被合并于此,此处不再赘述。
本申请实施例还提供一种电子设备,该电子设备例如为转发器或者网络设备。
图14是本申请实施例的电子设备的构成示意图。如图14所示,电子设备1400可以包括:处理器1410(例如中央处理器CPU)和存储器1420;存储器1420耦合到处理器1410。其中该存储器1420可存储各种数据;此外还存储信息处理的程序1430,并且在处理器1410的控制下执行该程序1430。
例如,处理器1410可以被配置为执行程序而实现如第一方面的实施例所述的传输方法。例如,处理器1410可以被配置为进行如下的控制:接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;以及根据所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息,确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
再例如,处理器1410可以被配置为执行程序而实现如第三方面的实施例所述的配置方法。例如,处理器1410可以被配置为进行如下的控制:向转发器发送时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;其中,所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息被所述转发器用于确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
此外,如图14所示,电子设备1400还可以包括:收发机1440和天线1450等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,电子设备1400也并不是必须要包括图14中所示的所有部件;此外,电子设备1400还可以包括图14中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在转发器中执行所述程序时,所述程序使得计算机在所述转发器中执行第一方面的实施例所述的传输方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读 程序使得计算机在转发器中执行第一方面的实施例所述的传输方法。
本申请实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行第三方面的实施例所述的配置方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行第三方面的实施例所述的配置方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种转发器的传输方法,包括:
转发器接收来自网络设备的时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息;以及
所述转发器根据所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息,确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
2.根据附记1所述的方法,其中,所述上行转发由所述转发器向所述网络设备转发来自终端设备的上行信道或信号,所述下行转发由所述转发器向所述终端设备转发来自所述网络设备的下行信道或信号。
3.根据附记1所述的方法,其中,由所述时分双工配置信息配置的时域资源包括如下至少之一:下行时间单元、灵活时间单元、上行时间单元。
4.根据附记1所述的方法,其中,由所述时分双工配置信息配置的时域资源包括如下至少之一:下行时间单元、上行时间单元;并且在所述下行时间单元和所述上行时间单元之间配置有时间间隔。
5.根据附记1至4任一项所述的方法,其中,由所述时分双工配置信息进行半静态配置和/或动态配置。
6.根据附记5所述的方法,其中,所述半静态配置包括:小区公共上下行配置和/或设备专用上下行配置。
7.根据附记6所述的方法,其中,所述小区公共上下行配置包括第一模式(pattern 1),或者,所述小区公共上下行配置包括第一模式(pattern 1)和第二模式(pattern 2)。
8.根据附记7所述的方法,其中,所述第一模式(pattern 1)由如下至少之一的信令配置:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
9.根据附记8所述的方法,其中,所述第一模式(pattern 1)指示如下至少之一的参数:第一传输周期值P、第一下行时隙数d slots、第一下行符号数d sym、第一上行时隙数u slots、第一上行符号数u sym、第一灵活符号数:
其中,所述第一传输周期值的单位为毫秒,所述第一下行时隙数指示第一传输周期的前d slots个时隙为下行时隙,所述第一下行符号数指示所述d slots个时隙之后的d sym个 符号为下行符号,所述第一上行时隙数指示所述第一传输周期的后u slots个时隙为上行时隙,所述第一上行符号数指示所述u slots个时隙之前的u sym个符号为上行符号。
10.根据附记9所述的方法,其中,在配置了所述第一模式时,每两个帧长(20ms)/P个周期的第一个符号与偶数帧的第一个符号对齐,或者,每两个帧长(20ms)/P个周期的第一个符号是偶数帧的第一个符号。
11.根据附记7所述的方法,其中,所述第二模式(pattern 2)由如下至少之一的信令配置:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
12.根据附记11所述的方法,其中,所述第二模式(pattern 2)指示如下至少之一的参数:第二传输周期值P 2、第二下行时隙数d slots,2、第二下行符号数d sym,2、第二上行时隙数u slots,2,、第二上行符号数u sym,2、第二灵活符号数:
其中,所述第二传输周期值的单位为毫秒,所述第二下行时隙数指示第二传输周期的前d slots,2个时隙为下行时隙,所述第二下行符号数指示所述d slots,2个时隙之后的d sym, 2个符号为下行符号,所述第二上行时隙数指示所述第二传输周期的后u slots,2个时隙为上行时隙,所述第二上行符号数指示所述u slots,2个时隙之前的u sym,2个符号为上行符号。
13.根据附记12所述的方法,其中,在配置了第一模式和第二模式时,每两个帧长(20ms)/(P+P 2)个周期的第一个符号与偶数帧的第一个符号对齐,或者,每两个帧长(20ms)/(P+P 2)个周期的第一个符号是偶数帧的第一个符号,且P+P 2能被两个帧长(20)整除。
14.根据附记6所述的方法,其中,所述设备专用上下行配置能够对所述小区公共上下行配置中的灵活时间单元进行配置。
15.根据附记14所述的方法,其中,所述设备专用上下行配置由如下至少之一的信令针对一个时隙进行配置:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
16.根据附记15所述的方法,其中,通过第一信令指示周期中的时隙位置,通过第二信令配置所述第一信令指示的时隙中的符号配置。
17.根据附记16所述的方法,其中,所述第二信令配置所述时隙内的全部符号为下行符号,或者,配置所述时隙内的全部符号为上行符号,或者,配置所述时隙内的下行符号数a和/或上行符号数b;
其中,所述下行符号数指示所述时隙内的前a个符号为下行符号,所述上行符号数指示所述时隙内的后b个符号为上行符号。
18.根据附记5所述的方法,其中,所述动态配置能够对所述半静态配置中的灵活时间单元进行配置。
19.根据附记18所述的方法,其中,由如下至少之一的信令指示所述动态配置应用的小区标识和/或所述动态配置对应的时隙格式索引(SFI)和/或所述动态配置应用的时隙格式:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
20.根据附记18所述的方法,其中,
所述动态配置应用的时隙格式包括:单一结构的格式、时隙内有一个灵活时间单元的格式、时隙内有两个灵活时间单元的格式、或者指示SFI的配置对半静态配置的信号/信道传输没有影响的格式。
21.根据附记20所述的方法,其中,在所述单一结构的格式中,所述时隙中的符号全部为上行符号,或者所述时隙中的符号全部为下行符号,或者所述时隙中的符号全部为灵活符号;
其中,在所述时隙内有一个灵活时间单元的格式中,所述时隙从前到后依次包括:零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号;
其中,在所述时隙内有两个灵活时间单元的格式中,所述时隙从前到后依次包括:零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号、零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号。
22.根据附记1至21任一项所述的方法,其中,所述转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息相同,或者,所述转发器用于通信的时分双工配置信息被用于所述转发器用于转发的时分双工配置信息。
23.根据附记22所述的方法,其中,所述时分双工配置信息的半静态配置相同,和/或,所述时分双工配置信息的动态配置相同。
24.根据附记22所述的方法,其中,
所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令相同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值相同;
或者,所述转发器用于通信的参考子载波间隔的承载信令被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值。
25.根据附记22所述的方法,其中,
所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令相同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值不同;
或者,所述转发器用于通信的参考子载波间隔的承载信令被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
26.根据附记22所述的方法,其中,
所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值相同;
或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值。
27.根据附记22所述的方法,其中,
所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值不同;
或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
28.根据附记1至21任一项所述的方法,其中,所述转发器用于转发的时分双工配置信息和所述转发器用于通信的时分双工配置信息不同,或者,所述转发器用于通信的时分双工配置信息不被用于所述转发器用于转发的时分双工配置信息。
29.根据附记28所述的方法,其中,所述时分双工配置信息的半静态配置不同,和/或,所述时分双工配置信息的动态配置不同。
30.根据附记28所述的方法,其中,
所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值相同;
或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于 转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值。
31.根据附记28所述的方法,其中,
所述转发器用于转发的参考子载波间隔的承载信令与所述转发器用于通信的参考子载波间隔的承载信令不同,且所述转发器用于转发的参考子载波间隔的值与所述转发器用于通信的参考子载波间隔的值不同;
或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
32.根据附记1至31任一项所述的方法,其中,在由所述时分双工配置信息进行半静态配置的情况下,所述转发器用于转发的参考子载波间隔配置由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
33.根据附记32所述的方法,其中,
所述参考子载波间隔不大于所述转发器服务的一个或多个小区配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区配置的最小的SCS;
或者,所述参考子载波间隔不大于所述转发器服务的一个或多个设备传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备传输的最小的SCS。
34.根据附记32所述的方法,其中,所述参考子载波间隔的时隙或符号与实际转发的子载波间隔的时隙或符号对齐。
35.根据附记34所述的方法,其中,所述参考子载波间隔的第一个时隙起始位置与实际转发的子载波间隔的第一个时隙起始位置相同;
所述参考子载波间隔的时隙或符号对应于所述实际转发的
Figure PCTCN2022090096-appb-000021
个连续时隙或符号;其中,μ为所述实际转发的子载波间隔的参数,μ ref为所述参考子载波间隔的参数。
36.根据附记32所述的方法,其中,在半静态配置第一模式(pattern 1)和第二模式(pattern 2)的情况下,所述第一模式(pattern 1)的参考子载波间隔和所述第二模式(pattern 2)的参考子载波间隔相同。
37.根据附记32所述的方法,其中,半静态配置的一个周期内根据参考子载波间隔对应的时隙数为正整数。
38.根据附记32所述的方法,其中,小区公共上下行配置的参考子载波间隔与设备专用上下行配置的参考子载波间隔一致。
39.根据附记1至31任一项所述的方法,其中,在由所述时分双工配置信息进行动态配置的情况下,所述转发器用于转发的上下行在同一频点上时的参考子载波间隔配置由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
40.根据附记39所述的方法,其中,
所述参考子载波间隔不大于所述转发器服务的一个或多个小区配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区配置的最小的SCS,
或者,所述参考子载波间隔不大于所述转发器服务的一个或多个设备传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备传输的最小的SCS。
41.根据附记39所述的方法,其中,所述参考子载波间隔的时隙或符号与实际转发的子载波间隔的时隙或符号对齐。
42.根据附记41所述的方法,其中,所述参考子载波间隔的第一个时隙起始位置与实际转发的子载波间隔的第一个时隙起始位置相同;
所述参考子载波间隔的时隙或符号对应于所述实际转发的
Figure PCTCN2022090096-appb-000022
个连续时隙或符号;其中,μ为所述实际转发的子载波间隔的参数,μ ref为所述参考子载波间隔的参数。
43.根据附记1至31任一项所述的方法,其中,在由所述时分双工配置信息进行动态配置的情况下,所述转发器用于转发的上下行在不同频点上时的参考子载波间隔分别被配置。
44.根据附记43所述的方法,其中,针对所述转发器用于上行转发的上行部分带宽(BWP)配置上行参考子载波间隔,针对所述转发器用于下行转发的下行部分带宽(BWP)配置下行参考子载波间隔。
45.根据附记44所述的方法,其中,所述下行参考子载波间隔所对应的时隙格式和所述上行参考子载波间隔所对应的时隙格式对齐。
46.根据附记45所述的方法,其中,
在μ SFI,DLSFI,UL时,每
Figure PCTCN2022090096-appb-000023
个时隙格式中前
Figure PCTCN2022090096-appb-000024
个时隙格式组合对应于下行BWP,后一个时隙格式组合对应于上行BWP;
在μ SFI,DLSFI,UL时,每
Figure PCTCN2022090096-appb-000025
个时隙格式中第一个时隙格式组合对应于下行BWP,后
Figure PCTCN2022090096-appb-000026
个时隙格式组合对应于上行BWP;
其中,μ SFI,DL为所述下行参考子载波间隔的参数,μ SFI,UL为所述上行参考子载波间隔的参数。
47.根据附记44所述的方法,其中,所述下行参考子载波间隔由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
48.根据附记44所述的方法,其中,所述下行参考子载波间隔不大于所述转发器服务的一个或多个小区下行配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区下行配置的最小的SCS;
或者,所述下行参考子载波间隔不大于所述转发器服务的一个或多个设备下行传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备下行传输的最小的SCS。
49.根据附记44所述的方法,其中,所述下行参考子载波间隔的时隙或符号与实际下行转发的子载波间隔的时隙或符号对齐。
50.根据附记49所述的方法,其中,所述下行参考子载波间隔的第一个时隙起始位置与实际下行转发的子载波间隔的第一个时隙起始位置相同;
所述下行参考子载波间隔的时隙或符号对应于所述实际下行转发的
Figure PCTCN2022090096-appb-000027
个连续时隙或符号;其中,μ DL为所述实际下行转发的子载波间隔的参数,μ SFI,DL为所述下行参考子载波间隔的参数。
51.根据附记44所述的方法,其中,所述上行参考子载波间隔由如下至少之一的信令指示:无线资源控制(RRC)信令、介质访问控制(MAC)信令、或者物理层信令。
52.根据附记44所述的方法,其中,所述上行参考子载波间隔不大于所述转发器服务的一个或多个小区上行配置的任何一个SCS,或不大于所述转发器服务的一个或多个小区上行配置的最小的SCS;
或者,所述上行参考子载波间隔不大于所述转发器服务的一个或多个设备上行传输的任何一个SCS,或不大于所述转发器服务的一个或多个设备上行传输的最小的SCS。
53.根据附记44所述的方法,其中,所述上行参考子载波间隔的时隙或符号与实际上行转发的子载波间隔的时隙或符号对齐。
54.根据附记53所述的方法,其中,所述上行参考子载波间隔的第一个时隙起始位置与实际上行转发的子载波间隔的第一个时隙起始位置相同;
所述上行参考子载波间隔的时隙或符号对应于所述实际上行转发的
Figure PCTCN2022090096-appb-000028
个连续时隙或符号;其中,μ UL为所述实际上行转发的子载波间隔的参数,μ SFI,UL为所述上行参考子载波间隔的参数。
55.一种转发器的配置方法,包括:
网络设备向转发器发送时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配 置信息;
其中,所述时分双工(TDD)配置信息和/或参考子载波间隔(SCS)配置信息被所述转发器用于确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
56.一种转发器,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至55任一项所述的传输方法。
57.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记55所述的配置方法。

Claims (20)

  1. 一种转发器,包括:
    通信部,其接收来自网络设备的时分双工配置信息和/或参考子载波间隔配置信息;以及
    处理部,其根据所述时分双工配置信息和/或参考子载波间隔配置信息,确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
  2. 根据权利要求1所述的转发器,其中,所述上行转发由所述转发器向所述网络设备转发来自终端设备的上行信道或信号,所述下行转发由所述转发器向所述终端设备转发来自所述网络设备的下行信道或信号。
  3. 根据权利要求1所述的转发器,其中,由所述时分双工配置信息配置的时域资源包括如下至少之一:下行时间单元、灵活时间单元、上行时间单元;
    或者,由所述时分双工配置信息配置的时域资源包括如下至少之一:下行时间单元、上行时间单元;并且在所述下行时间单元和所述上行时间单元之间配置有时间间隔。
  4. 根据权利要求1所述的转发器,其中,所述时分双工配置信息包括:小区公共上下行配置和/或设备专用上下行配置和/或动态配置;
    所述小区公共上下行配置由如下至少之一的信令配置:无线资源控制信令、介质访问控制信令、或者物理层信令;
    所述设备专用上下行配置由如下至少之一的信令配置:无线资源控制信令、介质访问控制信令、或者物理层信令;
    所述动态配置由如下至少之一的信令配置:无线资源控制信令、介质访问控制信令、或者物理层信令。
  5. 根据权利要求4所述的转发器,其中,所述小区公共上下行配置包括第一模式,或者,所述小区公共上下行配置包括第一模式和第二模式。
  6. 根据权利要求5所述的转发器,其中,所述第一模式指示如下至少之一的参数:第一传输周期值P、第一下行时隙数d slots、第一下行符号数d sym、第一上行时隙数u slots、第一上行符号数u sym、第一灵活符号数:
    其中,所述第一传输周期值的单位为毫秒,所述第一下行时隙数指示第一传输周期的前d slots个时隙为下行时隙,所述第一下行符号数指示所述d slots个时隙之后的d sym个符号为下行符号,所述第一上行时隙数指示所述第一传输周期的后u slots个时隙为上行时隙,所述第一上行符号数指示所述u slots个时隙之前的u sym个符号为上行符号;
    其中,在配置了所述第一模式时,每两个帧长/P个周期的第一个符号与偶数帧的第一个符号对齐,或者,每两个帧长/P个周期的第一个符号是偶数帧的第一个符号。
  7. 根据权利要求5所述的转发器,其中,所述第二模式指示如下至少之一的参数:第二传输周期值P 2、第二下行时隙数d slots,2、第二下行符号数d sym,2、第二上行时隙数u slots,2,、第二上行符号数u sym,2、第二灵活符号数:
    其中,所述第二传输周期值的单位为毫秒,所述第二下行时隙数指示第二传输周期的前d slots,2个时隙为下行时隙,所述第二下行符号数指示所述d slots,2个时隙之后的d sym, 2个符号为下行符号,所述第二上行时隙数指示所述第二传输周期的后u slots,2个时隙为上行时隙,所述第二上行符号数指示所述u slots,2个时隙之前的u sym,2个符号为上行符号;
    其中,在配置了第一模式和第二模式时,每两个帧长/(P+P 2)个周期的第一个符号与偶数帧的第一个符号对齐,或者,每两个帧长/(P+P 2)个周期的第一个符号是偶数帧的第一个符号,且P+P 2能被两个帧长整除。
  8. 根据权利要求4所述的转发器,其中,所述设备专用上下行配置能够对所述小区公共上下行配置中的灵活时间单元进行配置;
    其中,通过第一信令指示周期中的时隙位置,通过第二信令配置所述第一信令指示的时隙中的符号配置;其中,所述第二信令配置所述时隙内的全部符号为下行符号,或者,配置所述时隙内的全部符号为上行符号,或者,配置所述时隙内的下行符号数a和/或上行符号数b;其中,所述下行符号数指示所述时隙内的前a个符号为下行符号,所述上行符号数指示所述时隙内的后b个符号为上行符号。
  9. 根据权利要求4所述的转发器,其中,所述动态配置能够对所述小区公共上下行配置和/或所述设备专用上下行配置的灵活时间单元进行配置;
    其中,由如下至少之一的信令指示所述动态配置应用的小区标识和/或所述动态配置对应的时隙格式索引和/或所述动态配置应用的时隙格式:无线资源控制信令、介质访问控制信令、或者物理层信令;
    其中,所述动态配置应用的时隙格式包括:单一结构的格式、时隙内有一个灵活时间单元的格式、时隙内有两个灵活时间单元的格式、或者指示时隙格式索引的配置对半静态配置的信号/信道传输没有影响的格式;
    其中,在所述单一结构的格式中,所述时隙中的符号全部为上行符号,或者所述时隙中的符号全部为下行符号,或者所述时隙中的符号全部为灵活符号;
    其中,在所述时隙内有一个灵活时间单元的格式中,所述时隙从前到后依次包括: 零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号;
    其中,在所述时隙内有两个灵活时间单元的格式中,所述时隙从前到后依次包括:零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号、零个或一个以上的下行符号、一个以上的灵活符号、零个或一个以上的上行符号。
  10. 根据权利要求1所述的转发器,其中,所述转发器用于通信的时分双工配置信息被用于所述转发器用于转发的时分双工配置信息;
    所述转发器用于通信的参考子载波间隔的承载信令被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值;
    或者,所述转发器用于通信的参考子载波间隔的承载信令被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值;
    或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值;
    或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
  11. 根据权利要求1所述的转发器,其中,所述转发器用于通信的时分双工配置信息不被用于所述转发器用于转发的时分双工配置信息;
    所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值被用于所述转发器用于转发的参考子载波间隔的值;
    或者,所述转发器用于通信的参考子载波间隔的承载信令不被用于所述转发器用于转发的参考子载波间隔的承载信令,且所述转发器用于通信的参考子载波间隔的值不被用于所述转发器用于转发的参考子载波间隔的值。
  12. 根据权利要求1所述的转发器,其中,在所述时分双工配置信息包括小区公共上下行配置和/或设备专用上下行配置的情况下,所述转发器用于转发的参考子载波间隔配置由如下至少之一的信令指示:无线资源控制信令、介质访问控制信令、或者物理层信令;
    所述参考子载波间隔不大于所述转发器服务的一个或多个小区配置的任何一个子载波间隔,或不大于所述转发器服务的一个或多个小区配置的最小的子载波间隔;或者,所述参考子载波间隔不大于所述转发器服务的一个或多个设备传输的任何一个子载波间隔,或不大于所述转发器服务的一个或多个设备传输的最小的子载波间隔;
    其中,所述参考子载波间隔的第一个时隙起始位置与实际转发的子载波间隔的第一个时隙起始位置相同;所述参考子载波间隔的时隙或符号对应于所述实际转发的
    Figure PCTCN2022090096-appb-100001
    个连续时隙或符号;其中,μ为所述实际转发的子载波间隔的参数,μ ref为所述参考子载波间隔的参数。
  13. 根据权利要求12所述的转发器,其中,在所述小区公共上下行配置包括第一模式和第二模式的情况下,所述第一模式的参考子载波间隔和所述第二模式的参考子载波间隔相同;
    所述小区公共上下行配置的一个周期内根据参考子载波间隔对应的时隙数为正整数;
    所述小区公共上下行配置的参考子载波间隔与所述设备专用上下行配置的参考子载波间隔一致。
  14. 根据权利要求1所述的转发器,其中,在所述时分双工配置信息包括动态配置的情况下,所述转发器用于转发的上下行在同一频点上时的参考子载波间隔配置由如下至少之一的信令指示:无线资源控制信令、介质访问控制信令、或者物理层信令;
    所述参考子载波间隔不大于所述转发器服务的一个或多个小区配置的任何一个子载波间隔,或不大于所述转发器服务的一个或多个小区配置的最小的子载波间隔,或者,所述参考子载波间隔不大于所述转发器用于转发的一个或多个设备传输的任何一个子载波间隔,或不大于所述转发器服务的一个或多个设备传输的最小的子载波间隔;
    其中,所述参考子载波间隔的第一个时隙起始位置与实际转发的子载波间隔的第一个时隙起始位置相同;所述参考子载波间隔的时隙或符号对应于所述实际转发的
    Figure PCTCN2022090096-appb-100002
    个连续时隙或符号;其中,μ为所述实际转发的子载波间隔的参数,μ ref为所述参考子载波间隔的参数。
  15. 根据权利要求1所述的转发器,其中,在所述时分双工配置信息包括动态配置的情况下,所述转发器用于转发的上下行在不同频点上时的参考子载波间隔分别被配置;
    其中,针对所述转发器用于上行转发的上行部分带宽配置上行参考子载波间隔,针对所述转发器用于下行转发的下行部分带宽配置下行参考子载波间隔。
  16. 根据权利要求15所述的转发器,其中,所述下行参考子载波间隔所对应的时 隙格式和所述上行参考子载波间隔所对应的时隙格式对齐;
    在μ SFI,DLSFI,UL时,每
    Figure PCTCN2022090096-appb-100003
    个时隙格式中前
    Figure PCTCN2022090096-appb-100004
    个时隙格式组合对应于下行部分带宽,后一个时隙格式组合对应于上行部分带宽;
    在μ SFI,DLSFI,UL时,每
    Figure PCTCN2022090096-appb-100005
    个时隙格式中第一个时隙格式组合对应于下行部分带宽,后
    Figure PCTCN2022090096-appb-100006
    个时隙格式组合对应于上行部分带宽;
    其中,μ SFI,DL为所述下行参考子载波间隔的参数,μ SFI,UL为所述上行参考子载波间隔的参数。
  17. 根据权利要求15所述的转发器,其中,所述下行参考子载波间隔由如下至少之一的信令指示:无线资源控制信令、介质访问控制信令、或者物理层信令;
    所述下行参考子载波间隔不大于所述转发器服务的一个或多个小区下行配置的任何一个子载波间隔,或不大于所述转发器服务的一个或多个小区下行配置的最小的子载波间隔;或者,所述下行参考子载波间隔不大于所述转发器服务的一个或多个设备下行传输的任何一个子载波间隔,或不大于所述转发器服务的一个或多个设备下行传输的最小的子载波间隔;
    其中,所述下行参考子载波间隔的第一个时隙起始位置与实际下行转发的子载波间隔的第一个时隙起始位置相同;所述下行参考子载波间隔的时隙或符号对应于所述实际下行转发的
    Figure PCTCN2022090096-appb-100007
    个连续时隙或符号;其中,μ DL为所述实际下行转发的子载波间隔的参数,μ SFI,DL为所述下行参考子载波间隔的参数。
  18. 根据权利要求15所述的转发器,其中,所述上行参考子载波间隔由如下至少之一的信令指示:无线资源控制信令、介质访问控制信令、或者物理层信令;
    所述上行参考子载波间隔不大于所述转发器服务的一个或多个小区上行配置的任何一个子载波间隔,或不大于所述转发器服务的一个或多个小区上行配置的最小的子载波间隔;或者,所述上行参考子载波间隔不大于所述转发器服务的一个或多个设备上行传输的任何一个子载波间隔,或不大于所述转发器服务的一个或多个设备上行传输的最小的子载波间隔;
    其中,所述上行参考子载波间隔的第一个时隙起始位置与实际上行转发的子载波间隔的第一个时隙起始位置相同;所述上行参考子载波间隔的时隙或符号对应于所述实际上行转发的
    Figure PCTCN2022090096-appb-100008
    个连续时隙或符号;其中,μ UL为所述实际上行转发的子载波间隔的参数,μ SFI,UL为所述上行参考子载波间隔的参数。
  19. 一种网络设备,包括:
    配置部,其向转发器发送时分双工配置信息和/或参考子载波间隔配置信息;
    其中,所述时分双工配置信息和/或参考子载波间隔配置信息被所述转发器用于确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
  20. 一种通信系统,包括:
    网络设备,其向转发器发送时分双工配置信息和/或参考子载波间隔配置信息;以及
    转发器,其根据所述时分双工配置信息和/或参考子载波间隔配置信息,确定在某一时间单元内进行上行转发或者下行转发或者不进行转发。
PCT/CN2022/090096 2022-04-28 2022-04-28 转发器及其传输方法、网络设备和通信系统 WO2023206303A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090096 WO2023206303A1 (zh) 2022-04-28 2022-04-28 转发器及其传输方法、网络设备和通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090096 WO2023206303A1 (zh) 2022-04-28 2022-04-28 转发器及其传输方法、网络设备和通信系统

Publications (1)

Publication Number Publication Date
WO2023206303A1 true WO2023206303A1 (zh) 2023-11-02

Family

ID=88516897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090096 WO2023206303A1 (zh) 2022-04-28 2022-04-28 转发器及其传输方法、网络设备和通信系统

Country Status (1)

Country Link
WO (1) WO2023206303A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180288621A1 (en) * 2017-03-31 2018-10-04 Nokia Technologies Oy Coordinating Spectrum Authorization For Backhaul Connections
CN110809322A (zh) * 2018-08-06 2020-02-18 现代自动车株式会社 用于在通信系统中配置侧链路资源的方法和用于该方法的装置
CN110876202A (zh) * 2018-08-29 2020-03-10 现代自动车株式会社 通信系统中配置侧链路资源的方法和装置
CN111555790A (zh) * 2018-12-31 2020-08-18 威尔逊电子有限责任公司 被配置成与频谱接入系统(sas)通信的时分双工(tdd)中继器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180288621A1 (en) * 2017-03-31 2018-10-04 Nokia Technologies Oy Coordinating Spectrum Authorization For Backhaul Connections
CN110809322A (zh) * 2018-08-06 2020-02-18 现代自动车株式会社 用于在通信系统中配置侧链路资源的方法和用于该方法的装置
CN110876202A (zh) * 2018-08-29 2020-03-10 现代自动车株式会社 通信系统中配置侧链路资源的方法和装置
CN111555790A (zh) * 2018-12-31 2020-08-18 威尔逊电子有限责任公司 被配置成与频谱接入系统(sas)通信的时分双工(tdd)中继器

Similar Documents

Publication Publication Date Title
CN112640543B (zh) 新无线电中的定时提前
CN111867094B (zh) 数据接收和发送方法及装置
WO2018228532A1 (zh) 通信方法、终端及网络设备
US20190281571A1 (en) Wireless Communications Method and Apparatus
US11546861B2 (en) Techniques in inter-band and intra-band dynamic power sharing in dual connectivity communications
US11102823B2 (en) Beam configuration of a smart MMW repeater for forwarding RACH message 1
US11800399B2 (en) Symbol processing method and related device
JP2024037987A (ja) サブテラヘルツサブバンド平坦化フィードバック
WO2023206303A1 (zh) 转发器及其传输方法、网络设备和通信系统
WO2020199853A1 (zh) 数据接收和发送方法及装置
WO2023092426A1 (zh) 转发器、网络设备及其通信方法
WO2023028725A1 (zh) 一种用于转发器的波束指示方法、装置和系统
WO2023092429A1 (zh) 一种通信方法、装置和系统
WO2023092427A1 (zh) 转发器、网络设备及其通信方法
WO2023236021A1 (zh) 一种通信方法、装置和系统
WO2023029238A1 (zh) 转发器、网络设备及其通信方法
WO2023028724A1 (zh) 转发器、网络设备及其通信方法
WO2023236022A1 (zh) 一种通信方法、装置和系统
WO2024065541A1 (zh) 信息指示方法、转发器和网络设备
WO2023236023A1 (zh) 一种通信方法、装置和系统
WO2023092513A1 (zh) 信号发送方法、信息发送方法以及装置
WO2024092819A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024031435A1 (zh) 信息指示方法、转发器和网络设备
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024031509A1 (zh) 转发器及其传输方法、网络设备和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939153

Country of ref document: EP

Kind code of ref document: A1