WO2020199853A1 - 数据接收和发送方法及装置 - Google Patents

数据接收和发送方法及装置 Download PDF

Info

Publication number
WO2020199853A1
WO2020199853A1 PCT/CN2020/078304 CN2020078304W WO2020199853A1 WO 2020199853 A1 WO2020199853 A1 WO 2020199853A1 CN 2020078304 W CN2020078304 W CN 2020078304W WO 2020199853 A1 WO2020199853 A1 WO 2020199853A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
time interval
terminal
predefined time
computer
Prior art date
Application number
PCT/CN2020/078304
Other languages
English (en)
French (fr)
Inventor
施弘哲
纪刘榴
杭海存
吕永霞
吴茜
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020199853A1 publication Critical patent/WO2020199853A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for receiving and sending data.
  • multi-point refers to multiple transmission reception points (transmission reception points, TRP for short), and multiple TRPs can cooperate through information exchange, thereby avoiding interference.
  • TRP transmission reception points
  • multiple TRPs can send data to the terminal respectively.
  • the receiving efficiency of the terminal is not high.
  • the embodiments of the present application provide a data receiving and sending method and device to improve the receiving efficiency of the terminal.
  • a data receiving method including: a terminal receives a first PDSCH and a second PDSCH, the transmission time of the first PDSCH is earlier than the transmission time of the second PDSCH, and the first PDSCH and the second PDSCH are transmitted.
  • the spatial information associated with the second PDSCH is different; in the case that the actual time interval between the first PDSCH and the second PDSCH is less than a predefined time interval, if and only when a preset condition is met, the When the terminal receives the second PDSCH, the actual time interval refers to the time interval between the end symbol in the symbols occupied by the first PDSCH and the start symbol in the symbols occupied by the second PDSCH;
  • the set condition includes one or more of the following conditions: the ratio of the predefined time interval to the symbol length of the second PDSCH is less than or equal to a first preset threshold; the predefined time interval and the actual time interval The ratio of the difference between and the symbol length of the second PDSCH is less than or equal to the second preset threshold; the code rate of the second PDSCH is less than or equal to the third preset threshold.
  • a time interval is predefined, and the terminal can determine whether to receive the second PDSCH according to the predefined time interval. Due to the influence of the AGC response time, if the above preset conditions are not met, the terminal is likely to be unable to decode the second PDSCH, and the terminal skips the reception of the second PDSCH, which improves the reception efficiency of the terminal. Thereby, the influence of the AGC response time on the data reception of the terminal is minimized, and the overall reception efficiency and performance of the terminal are improved.
  • the first PDSCH and the second PDSCH are scheduled through the same DCI; or, the first PDSCH and the second PDSCH are scheduled through different DCIs.
  • the predefined time interval is X microseconds, and X is greater than 0; or, the predefined time interval is Y symbols, and Y is an integer greater than 0.
  • the predefined time interval corresponds to the subcarrier interval.
  • the first PDSCH and the second PDSCH correspond to the same information bits.
  • the mapping type of one PDSCH of the first PDSCH and the second PDSCH is type A or type B
  • the mapping type of the other PDSCH is type B.
  • the symbols occupied by the first PDSCH and the second PDSCH are located in the same time slot.
  • a data transmission method including: a second TRP transmits a second PDSCH, the transmission time of the second PDSCH is later than the transmission time of the first PDSCH, and the first of the symbols occupied by the second PDSCH The time interval between the start symbol and the end symbol in the symbols occupied by the first PDSCH is greater than or equal to a predefined time interval, and the spatial information associated with the first PDSCH and the second PDSCH are different.
  • the method provided by the second aspect is because the first PDSCH and the second PDSCH are associated with different spatial information. Therefore, when the terminal receives the first PDSCH and the second PDSCH, there may be a large signal received power difference. If the start symbol in the symbols occupied by the second PDSCH and the end symbol in the symbols occupied by the first PDSCH are adjacent, the AGC circuit may not be able to perform power adjustment in time, which may cause signal distortion.
  • the first PDSCH and the second PDSCH are scheduled through the same DCI; or, the first PDSCH and the second PDSCH are scheduled through different DCIs.
  • the predefined time interval is X microseconds, and X is greater than 0; or, the predefined time interval is Y symbols, and Y is an integer greater than 0.
  • the predefined time interval corresponds to the subcarrier interval.
  • the first PDSCH and the second PDSCH correspond to the same information bits.
  • the mapping type of one PDSCH of the first PDSCH and the second PDSCH is type A or type B
  • the mapping type of the other PDSCH is type B.
  • a data receiving device including: a communication unit and a processing unit; the processing unit is configured to receive a first PDSCH and a second PDSCH through the communication unit, and the transmission time of the first PDSCH is early At the sending moment of the second PDSCH, the spatial information associated with the first PDSCH and the second PDSCH is different; the actual time interval between the first PDSCH and the second PDSCH is less than a predefined time In the case of an interval, if and only when a preset condition is met, the processing unit is further configured to receive the second PDSCH through the communication unit, and the actual time interval refers to the symbols occupied by the first PDSCH The time interval between the end symbol in the second PDSCH and the start symbol in the symbol occupied by the second PDSCH; the preset condition includes one or more of the following conditions: the predefined time interval and the second The ratio of the symbol length of the PDSCH is less than or equal to the first preset threshold; the ratio of the difference between the predefined
  • the first PDSCH and the second PDSCH are scheduled through the same DCI; or, the first PDSCH and the second PDSCH are scheduled through different DCIs.
  • the predefined time interval is X microseconds, and X is greater than 0; or, the predefined time interval is Y symbols, and Y is an integer greater than 0.
  • the predefined time interval corresponds to the subcarrier interval.
  • the first PDSCH and the second PDSCH correspond to the same information bits.
  • the mapping type of one PDSCH of the first PDSCH and the second PDSCH is type A or type B
  • the mapping type of the other PDSCH is type B.
  • the symbols occupied by the first PDSCH and the second PDSCH are located in the same time slot.
  • a data transmission device including: a communication unit and a processing unit; the processing unit transmits a second PDSCH through the communication unit, and the transmission time of the second PDSCH is later than that of the first PDSCH At time, the time interval between the start symbol in the symbols occupied by the second PDSCH and the end symbol in the symbols occupied by the first PDSCH is greater than or equal to a predefined time interval, and the first PDSCH and the second PDSCH 2.
  • the spatial information associated with the PDSCH is different.
  • the first PDSCH and the second PDSCH are scheduled through the same DCI; or, the first PDSCH and the second PDSCH are scheduled through different DCIs.
  • the predefined time interval is X microseconds, and X is greater than 0; or, the predefined time interval is Y symbols, and Y is an integer greater than 0.
  • the predefined time interval corresponds to the subcarrier interval.
  • the first PDSCH and the second PDSCH correspond to the same information bits.
  • the mapping type of one PDSCH of the first PDSCH and the second PDSCH is type A or type B
  • the mapping type of the other PDSCH is type B.
  • a communication method including: a terminal receives a user capability query request message, the user capability query request message is used to request capability information of the terminal; the terminal sends a user capability query to the network device In response message, the user capability query response message includes capability information of the terminal, and the capability information of the terminal includes information used to indicate an AGC response time or a predefined time interval of the terminal.
  • a communication method including: a network device sends a user capability query request message to a terminal, where the user capability query request message is used to request capability information of the terminal; the network device receives from the terminal A user capability query response message, the user capability query response message includes capability information of the terminal, and the capability information of the terminal includes information used to indicate an AGC response time or a predefined time interval of the terminal.
  • a communication device including: a communication unit and a processing unit; the processing unit is configured to receive a user capability query request message through the communication unit, and the user capability query request message is used to request the The capability information of the terminal; the processing unit is further configured to send a user capability query response message to the network device through the communication unit, and the user capability query response message includes the capability information of the terminal, and The capability information includes information used to indicate the AGC response time or the predefined time interval of the terminal.
  • a communication device includes: a communication unit and a processing unit; the processing unit is configured to send a user capability query request message to a terminal through the communication unit, and the user capability query request message is used to request the The capability information of the terminal; the processing unit is further configured to receive a user capability query response message from the terminal through the communication unit, and the user capability query response message includes the capability information of the terminal, and the capability of the terminal
  • the information includes information used to indicate the AGC response time or the predefined time interval of the terminal.
  • a data receiving device including a processor.
  • the processor is connected to the memory, the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so as to implement any one of the methods provided in the first aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory can be located in the data receiving device or outside the data receiving device.
  • the processor includes a logic circuit and also includes at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • the data receiving device further includes a communication interface and a communication bus, and the processor, the memory and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the data receiving device exists in the form of a chip product.
  • a data sending device including a processor.
  • the processor is connected to the memory, and the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, thereby realizing any one of the methods provided in the second aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory can be located in the data sending device or outside the data sending device.
  • the processor includes a logic circuit and also includes at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • the data sending device further includes a communication interface and a communication bus, and the processor, the memory and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the data sending device exists in the form of a chip product.
  • a communication device including a processor.
  • the processor is connected to the memory, the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so as to implement any one of the methods provided in the fifth aspect or the sixth aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the communication device or outside the communication device.
  • the processor includes a logic circuit and also includes at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • the communication device further includes a communication interface and a communication bus, and the processor, the memory, and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the communication device exists in the form of a chip product.
  • a communication system including: the data receiving device provided in the third aspect and the data sending device provided in the fourth aspect.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute any one of the first aspect or the second aspect, the fifth aspect, or the sixth aspect method.
  • a computer program product containing instructions is provided, when the instructions are run on a computer, the computer executes any one of the methods provided in the first or second or fifth or sixth aspects.
  • FIG. 1 is a schematic diagram of the composition of a network architecture provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the position of the AGC circuit provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a scene of coordinated multi-point transmission provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of TRP and terminal communication provided by an embodiment of the application.
  • 5 and 6 are respectively schematic diagrams of a time domain resource occupied by data according to an embodiment of the application.
  • FIG. 7 is a flowchart of a data receiving method provided by an embodiment of this application.
  • FIGS. 8 and 9 are respectively schematic diagrams of time domain resources occupied by data according to an embodiment of the application.
  • 10 and 11 are respectively flowcharts of a method for sending and receiving data according to an embodiment of this application;
  • FIG. 12 and FIG. 13 are respectively schematic diagrams of a time domain resource occupied by data according to an embodiment of the application.
  • FIG. 14 is a flowchart of a method for sending and receiving data according to an embodiment of the application.
  • 15 is a schematic diagram of the composition of a communication device provided by an embodiment of the application.
  • 16 and 17 are respectively schematic diagrams of the hardware structure of a communication device provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of the hardware structure of a network device provided by an embodiment of this application.
  • A/B can mean A or B.
  • the "and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone These three situations.
  • “at least one” means one or more
  • “plurality” means two or more. The words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • the term "system” can be replaced with "network”.
  • the OFDMA system can implement wireless technologies such as evolved universal terrestrial radio access (E-UTRA) and ultra mobile broadband (UMB).
  • E-UTRA is an evolved version of the Universal Mobile Telecommunications System (UMTS).
  • UMTS Universal Mobile Telecommunications System
  • 3rd generation partnership project (3GPP) uses the new version of E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • the fifth-generation (5th-generation, 5G for short) communication system and the new radio (NR for short) are next-generation communication systems under study.
  • 5G communication systems include non-standalone (NSA) 5G communication systems, standalone (standalone, SA) 5G communication systems, or NSA's 5G communication systems and SA's 5G communication systems .
  • the communication system may also be applicable to future-oriented communication technologies, all of which apply the technical solutions provided in the embodiments of the present application.
  • the above-mentioned communication system applicable to this application is only an example, and the communication system applicable to this application is not limited to this.
  • M2M machine-to-machine
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable&low latency communication
  • mMTC Massive machine type communication
  • the communication system to which the technical solution provided in this application is applicable may include at least one TRP and at least one terminal.
  • One or more of the at least one terminal can communicate with one or more of the at least one TRP.
  • a terminal can communicate with multiple TRPs (for example, TRP1 and TRP2), that is, multiple TRPs can send signaling and downlink data to the terminal, and vice versa, the terminal can also communicate to multiple TRPs. Send upstream data.
  • TRP1 and TRP2 multiple TRPs can send signaling and downlink data to the terminal, and vice versa
  • the terminal can also communicate to multiple TRPs. Send upstream data.
  • ideal backhaul can be performed between TRPs, that is, there is basically no transmission delay between TRPs.
  • a TRP may use different beams to communicate with a terminal.
  • a TRP may use different beams to send downlink data to the terminal in different time domain resources.
  • TRP is an entity on the network side that is used to send signals, receive signals, or send signals and receive signals.
  • TRP may be a device deployed in a radio access network (RAN for short) to provide wireless communication functions for terminals.
  • RAN radio access network
  • the TRP may be: a base station, an antenna panel on the base station, various forms of control nodes, a TRP in a public land mobile network (public land mobile network, PLMN for short) that will evolve in the future, and so on.
  • PLMN public land mobile network
  • the base station may be various forms of macro base station, micro base station (also called small station), relay station, access point (access point, AP for short), etc.
  • the names of devices with base station functions may be different.
  • the global system for mobile communication (GSM) or code division multiple access (CDMA) network can be called base transceiver station (BTS), and broadband code
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • BTS base transceiver station
  • BTS broadband code
  • NodeB base station
  • WCDMA wideband code division multiple access
  • eNB evolved NodeB
  • gNB next generation node base station
  • the control node can connect to multiple base stations and configure resources for multiple terminals covered by multiple base stations.
  • the control node may include a network controller, a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, and so on.
  • cloud radio access network cloud radio access network, CRAN
  • a terminal is an entity on the user side that is used to receive signals, or send signals, or receive signals and send signals.
  • the terminal is used to provide users with one or more of voice services and data connectivity services.
  • the terminal can also be called user equipment (UE), terminal equipment, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication equipment, user agent or User device.
  • the terminal can be a mobile station (MS), subscriber unit (subscriber unit), drone, Internet of things (IoT) equipment, and wireless local area networks (WLAN).
  • the terminal may also be a terminal in a next-generation communication system, for example, a terminal in a 5G communication system or a terminal in a future evolved PLMN, a terminal in an NR communication system, and so on.
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can know that with the evolution of network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • AGC Automatic gain control
  • the AGC circuit is an important circuit in the radio receiving equipment (for example, a terminal). See Figure 2.
  • This circuit can adjust the input signal with a large amplitude change to a signal with a small amplitude change and input to the radio frequency of the radio receiving equipment. Device. Since the radio frequency device of the radio receiving equipment has an optimal receiving signal strength interval at the beginning of the design, the input signal received by the radio frequency device in this interval will not be distorted. However, in the actual communication process, due to various reasons, the received signal of the RF device may exceed the optimal received signal strength range. Therefore, it is necessary to scale the input signal strength to the optimal received signal strength range through the AGC circuit at the front end of the RF device. .
  • the AGC circuit realizes the limitation of the amplitude change of the output signal by controlling the gain of the controllable gain amplifier, and the gain change depends on the change of the input signal strength. Therefore, when the strength of the input signal changes from one value to another value, the AGC circuit needs to change the gain of the controllable gain amplifier from one value to another value. However, it takes a certain time for the gain of the controllable gain amplifier to change from one value to another, and this time can be called the response time of the AGC circuit. If the response time is too short, the strength of the output signal of the AGC circuit will easily fluctuate with the instantaneous fluctuation of the input signal, resulting in output signal distortion.
  • the response time setting needs to meet the actual requirements of the communication system. For example, if the amplitude of the two input signals differ by 6dB, the response time of the AGC is approximately 10 microseconds (us).
  • high-frequency communication adopts analog beam technology, and performs weighting processing through a large-scale antenna array to concentrate the signal energy in a small range to form a beam-like signal (called analog beam, or beam for short). ) To increase the transmission distance.
  • the beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • the beam includes a transmitting beam and a receiving beam.
  • Transmitting beam may refer to the distribution of signal strength formed in different directions in space after a signal is transmitted through an antenna
  • receiving beam may refer to the distribution of antenna arrays that strengthen or weaken the reception of wireless signals in different directions in space.
  • the spatial information can be indicated by the antenna port quasi colocation (QCL) relationship.
  • the indication information (for example, downlink control information (DCI)) may indicate that one reference signal resource (or antenna port) has a QCL relationship with another reference signal resource (or antenna port) to indicate The two reference signal resources (or antenna ports) have a QCL relationship.
  • DCI downlink control information
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port that has the QCL relationship with the antenna port, or the two antenna ports have the same parameters , Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread, Doppler spread, Doppler shift, average delay, average Gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle of departure, AOD), average departure angle AOD, AOD extension, reception Antenna spatial correlation parameter, transmit antenna spatial correlation parameter, transmit beam, receive beam, and resource identification.
  • the above-mentioned angle may be decomposition values of different dimensions, or a combination of decomposition values of different dimensions.
  • Antenna ports are antenna ports with different antenna port numbers, and/or antenna ports that have the same antenna port number for information transmission or reception in different time and/or frequency and/or code domain resources, and/or have different Antenna port number The antenna port for information transmission or reception in different time and/or frequency and/or code domain resources.
  • the resource identifier may include: channel state information reference signal (CSI-RS) resource identifier, or sounding reference signal (SRS) resource identifier, or synchronous signal broadcast channel block (synchronous signal/ physical broadcast channel block, which can be referred to as SS/PBCH block or SSB for short) resource identifier, or the resource identifier of the preamble sequence transmitted on the physical random access channel (PRACH), or demodulation reference
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • synchronous signal broadcast channel block synchronous signal/ physical broadcast channel block, which can be referred to as SS/PBCH block or SSB for short
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, and delay spread;
  • Type B Doppler frequency shift, Doppler spread
  • Type C Doppler frequency shift, average delay
  • Type D type D: spatial reception parameters.
  • the QCL of type D is used to indicate different beams, that is, the QCL defined based on the spatial reception parameters.
  • the beams have the same spatial characteristics and can be received by the same receiving beam.
  • the beam can be specifically represented by various signal identifiers in the protocol, such as CSI-RS resource index, SSB index, SRS resource index, and tracking reference signal (tracking reference signal, TRS for short) resource index.
  • Multipoint transmission technology is a technology in which multiple TRPs perform data transmission.
  • multiple TRPs can coordinate to send downlink signals to users, and/or receive users' uplink signals through cooperation.
  • Multipoint transmission technology is mainly divided into joint transmission (JT), dynamic point selection (DPS), dynamic cell selection (DCS), coordinated beam forming (referred to as CB), coordinated scheduling (CS), etc.
  • the multipoint transmission involved in this application is mainly a scenario of joint transmission (or called coordinated multipoint transmission).
  • the joint transmission of multiple TRPs can increase the transmission rate of terminals at the edge of a cell.
  • a non-joint transmission scenario see (a) in FIG. 3, when the terminal is at the edge of a cell, the communication of the terminal will be interfered by signals sent by neighboring cells of the serving cell.
  • the solid lines in (a) and (b) in FIG. 3 indicate useful data generated to the terminal, and the dashed lines indicate interference generated to the terminal.
  • multiple TRPs jointly send data to a terminal, and the terminal receives multiple copies of useful data. Therefore, the signals sent by neighboring cells of the serving cell will not cause interference to the terminal. Instead, the transmission rate of the terminal at the edge of the cell can be increased.
  • TRPs correspond to different spatial information.
  • multiple TRPs can send their respective physical downlink control channels (PDCCH) containing DCI to the same terminal, and each PDCCH schedules a corresponding physical downlink shared channel (physical downlink shared channel, Referred to as PDSCH).
  • PDCCH physical downlink control channels
  • PDSCH physical downlink shared channel
  • multiple TRPs can schedule data relatively independently under limited interaction.
  • This transmission mode can be called multi-point transmission based on multiple DCIs.
  • URLLC is one of the important business types.
  • data throughput is often no longer the main measurement index.
  • low bit error rate and low latency have become the most critical indicators.
  • the multipoint transmission technology there is channel diversity among the channels of multiple TRPs. If repeated transmission is used, the reliability of the communication link can be improved. Therefore, the multipoint transmission technology can be used to enhance the reliability of the URLLC service.
  • TRP1 and TRP2 may send data corresponding to the same information bit to the same terminal at t1 and t2, respectively.
  • a terminal under multi-point coordination can receive data corresponding to the same information bits from multiple TRPs in a time division manner. After receiving multiple pieces of data, the terminal can process the received data to obtain soft information, and then perform soft combining (soft combining) on the soft information to improve the data decoding success rate.
  • one time slot includes 14 orthogonal frequency division multiplexing (OFDM for short) symbols (symbols for short).
  • OFDM orthogonal frequency division multiplexing
  • one time slot includes 14 symbols.
  • 14 symbols are numbered in order from smallest to largest, with the smallest number being 0 and the largest number being 13.
  • the symbol whose index (ie, the number) is i is marked as symbol #i
  • a time slot includes symbols #0 to symbol #13.
  • the time slot with the index (ie, the number) j is denoted as time slot #j in the following in this application. j is an integer greater than or equal to 0, and i is an integer greater than or equal to 0 and less than or equal to 13.
  • the PDSCH time domain resource allocation table is used to allocate time domain resources for transmitting the PDSCH.
  • the PDSCH time domain resource allocation table contains information about the start symbol (denoted as S) and symbol length (denoted as L) of the PDSCH time domain resources allowed by the network.
  • S and L are related to the mapping type (Mapping Type) of the PDSCH and the CP type. For details, see Table 1.
  • the mapping types of PDSCH include Type A and Type B.
  • CP types include regular CP and extended CP.
  • DMRS refers to demodulation reference signal (demodulation reference signal).
  • the S of the PDSCH can be symbols #0 to symbol #3 in a time slot, and when the mapping type is type B, it can be symbols #0 to symbol #3 in a time slot.
  • the L of the PDSCH can be 3 to 14 symbols when the mapping type is type A, and can be 2, 4, or 7 symbols when the mapping type is B.
  • the symbols occupied by the 2 PDSCHs called by 2 TRPs are consecutive symbols, that is, the end symbol (that is, the end symbol of the symbols occupied by the first PDSCH) The last symbol) is adjacent to the start symbol (that is, the first symbol) in the symbols occupied by the second PDSCH.
  • mapping types of the two PDSCHs called by two TRP time divisions are both TypeB.
  • the length of the PDSCH can be 2, 4, or 7 symbols, which is much smaller than the number of symbols occupied by a time slot.
  • This scheduling method is most common under the mini-slot (small/mini-slot) structure, that is, only a few symbols are scheduled at a time to complete the data transmission function of a time slot.
  • the AGC circuit of the terminal may not be able to adjust the controllable gain amplifier from the gain of the received power of the previous PDSCH to the gain of the received power of the PDSCH after the adaptation in time, that is, the power adjustment cannot be completed in time , It will cause signal distortion, thereby reducing the terminal's receiving efficiency.
  • TRP may have a purpose to continuously schedule multiple PDSCHs whose mapping types are all TypeB. At this time, the multiple PDSCHs can correspond to the same information bits to enhance reliability, and continue Send to reduce delay. In this scenario, the above-mentioned signal distortion problem may occur frequently.
  • the time length of CP and PDCCH in the time domain can generally meet the response time requirement of AGC.
  • the 5G communication system supports flexible subcarrier spacing (SCS) configuration. For example, 120K Hertz (Hz), 240KHz, etc.
  • SCS subcarrier spacing
  • the future evolution of communication systems does not rule out the possibility of supporting higher subcarrier spacing configurations. Under this larger subcarrier spacing configuration, the symbol duration is also reduced proportionally, which will greatly shorten the absolute time occupied by the CP.
  • an embodiment of the present application provides a data receiving and sending method, which will be described in the following through Embodiment 1 and Embodiment 2 respectively. It should be pointed out that the terms or terms involved in the various embodiments of the present application may refer to each other and are not limited.
  • Embodiment 1 provides a data receiving method. As shown in FIG. 7, the method includes:
  • the terminal receives the first PDSCH and the second PDSCH.
  • the transmission time of the first PDSCH is earlier than the transmission time of the second PDSCH.
  • the spatial information associated with the first PDSCH and the second PDSCH is different.
  • the spatial information in the communication system may be indicated through the transmission configuration indicator (TCI for short) in the DCI.
  • TCI state ID transmission configuration indication state sequence number
  • the TCI state ID may be associated with a piece of QCL information.
  • the first PDSCH and the second PDSCH are scheduled by the same DCI, or the first PDSCH and the second PDSCH are scheduled by different DCIs respectively.
  • the DCI may indicate a combination of PDSCH time domain resources, and the combination may be used by the terminal to determine the symbols occupied by the first PDSCH and the second PDSCH.
  • DCI may indicate a combination of PDSCH time domain resources with an index of 5.
  • the symbols occupied by the first PDSCH and the second PDSCH scheduled by the DCI can be seen in FIG. 8.
  • one DCI may indicate one PDSCH time domain resource, and the other DCI may indicate another PDSCH time domain resource.
  • one DCI may indicate a PDSCH time domain resource with an index of 3
  • another DCI may indicate a PDSCH time domain resource with an index of 7.
  • the symbols occupied by the first PDSCH and the second PDSCH scheduled by the two DCIs can also be seen in FIG. 8.
  • Table 2 and Table 3 may be configured by the network equipment to the terminal through RRC signaling (for example, PDSCH_TimeDomainAllocationList in the PDSCH_config information unit in RRC signaling) or MAC CE signaling at a certain prior moment, and then The network device only needs to indicate one or more items in the above table through the DCI (for example, the Time domain resource assignment field in the DCI) to allocate symbols occupied by the PDSCH to the terminal.
  • RRC signaling for example, PDSCH_TimeDomainAllocationList in the PDSCH_config information unit in RRC signaling
  • MAC CE MAC CE
  • the terminal receives the second PDSCH if and only when the preset condition is met.
  • the terminal when the actual time interval between the first PDSCH and the second PDSCH is less than the predefined time interval, when the preset condition is not met, the terminal does not receive the second PDSCH or determines that the second PDSCH is invalid or skips the second PDSCH. PDSCH reception.
  • the terminal may add an indicator bit to the negative acknowledgement (NACK) feedback information for the second PDSCH.
  • NACK negative acknowledgement
  • the indicator bit takes a specific value (for example, 0 or 1)
  • the indicator bit Indicate to the network device the reason for the failure to send the second PDSCH, that is, the indication information indicates that the actual time interval is less than the predefined time interval and does not meet the preset condition.
  • the actual time interval refers to the time interval (for example, symbol length) between the end symbol in the symbols occupied by the first PDSCH and the start symbol in the symbols occupied by the second PDSCH.
  • step 702 the terminal can determine the predefined time interval and the actual time interval. Second, the terminal judges whether the actual time interval is less than the predefined time interval. In the case that the actual time interval is less than the predefined time interval, it is further determined whether the preset condition is satisfied, so as to determine whether to receive the second PDSCH.
  • the predefined time interval can be determined according to the AGC response time or the actual communication scenario (for example, according to the time delay that the service needs meet), or it can be determined in combination with the AGC response time and the actual communication scenario.
  • the predefined time interval can also be pre-configured or stipulated by the protocol or configured by the network equipment through RRC signaling or medium access control (medium access control, MAC) control element (CE) signaling or DCI for terminal configuration of.
  • the predefined time interval can also be expressed in future communication protocols as "minimum scheduling time interval", "beam switching delay”, “data scheduling time domain offset (offset)” and other terms of the same technical essence.
  • the value of the predefined time interval is described by taking the determination of the predefined time interval according to the AGC response time as an example.
  • the predefined time interval is X microseconds (us), and X is greater than 0.
  • the time unit of X can also be other, for example, milliseconds (ms), seconds (s), etc. In the embodiment of the present application, us is taken as an example for description.
  • the predefined time interval is a fixed value.
  • X microseconds may be the AGC response time.
  • the response time of AGC can be shorter if possible. Then the value of X can be reduced accordingly.
  • the terminal can directly determine the predefined time interval.
  • the terminal judges whether the actual time interval is less than the predefined time interval, it can convert the predefined time interval into the number of symbols, and compare it with the number of symbols in the actual time interval.
  • the method of converting the predefined time interval into the number of symbols can be: the number of symbols in the predefined time interval
  • the predefined time interval is Y symbols, and Y is an integer greater than 0.
  • the predefined time interval is a relative value.
  • the length of the predefined time interval varies with the time length of a single symbol.
  • the terminal can directly determine the number of symbols in the predefined time interval.
  • the terminal judges whether the actual time interval is less than the predefined time interval, it can compare the number of symbols in the predefined time interval with the number of symbols in the actual time interval.
  • the third case the predefined time interval corresponds to the subcarrier interval.
  • the terminal may determine the predefined time interval according to the current subcarrier interval.
  • the predefined time interval corresponding to the subcarrier interval can be several microseconds or several symbols.
  • the correspondence between the predefined time interval and the subcarrier interval may be pre-configured or stipulated by agreement.
  • Table 4 exemplarily shows a possible correspondence between the predefined time interval and the subcarrier interval.
  • the values of any two of the four parameters A1, B1, C1 and D1 may be the same or different.
  • the values of any two of the four parameters A2, B2, C2, and D2 may be the same or different, which is not specifically limited in the embodiment of the present application.
  • SCS Predefined time interval 15kHz A1 microsecond or A2 symbols 30kHz B1 microseconds or B2 symbols 60kHz C1 microseconds or C2 symbols 120kHz D1 microseconds or D2 symbols
  • the predefined time interval can only be set according to 4*x microseconds (that is, the subcarrier interval is configured as the time length of the next symbol at 15KHz) .
  • the predefined time interval is equivalent to occupying 16 symbols, which will cause a waste of communication resources.
  • the predefined time interval can be changed with the subcarrier interval, and the shortest delay can be selected under different subcarrier interval configurations. For example, under 15KHz, 1 OFDM symbol, under 240KHz, according to actual x microsecond conversion, only 4 OFDM symbols can meet the AGC response delay, which is greatly shortened compared to the above 16 symbols. This can meet the low latency requirements of URLLC services.
  • the fourth case the predefined time interval corresponds to the type of terminal.
  • different types of terminals may refer to terminals of different manufacturers, terminals of different costs, and so on.
  • the future communication system supports the diversity of terminals.
  • the AGC circuit may also have different costs and different performances (ie, corresponding delays) in the process of technological evolution. Therefore, the response time of the AGC circuit in different types of terminals may be different. For example, the response time of the AGC circuit in a low-cost terminal may be relatively long, and the response time of the AGC circuit in a high-cost terminal may be relatively short or even adjustable. Therefore, the predefined time interval may correspond to the type of terminal.
  • the method may also include:
  • the network device sends a user capability query request message to the terminal.
  • the terminal receives the user capability query request message.
  • the user capability query request message is used to request the capability information of the terminal.
  • the terminal sends a user capability query response message to the network device.
  • the network device receives the user capability query response message from the terminal.
  • the user capability query response message includes the capability information of the terminal, and the capability information of the terminal includes information used to indicate a predefined time interval or the AGC response time of the terminal.
  • the above preset conditions include one or more of the following conditions 1 to 3.
  • the ratio of the predefined time interval to the symbol length of the second PDSCH is less than or equal to the first preset threshold.
  • the ratio of the difference between the predefined time interval and the actual time interval to the symbol length of the second PDSCH is less than or equal to the second preset threshold.
  • Condition 3 The code rate of the second PDSCH is less than or equal to the third preset threshold.
  • the first preset threshold, the second preset threshold, and the third preset threshold may be determined according to actual application scenarios.
  • the first preset threshold may be 0.3.
  • the second preset threshold may be 0.2.
  • the third preset threshold may be 0.3.
  • the terminal may solve the affected part through coding error correction.
  • the terminal cannot correctly decode the second PDSCH.
  • the terminal can receive the second PDSCH normally. Otherwise, the terminal may not receive the second PDSCH.
  • a time interval is predefined, and the terminal can determine whether to receive the second PDSCH according to the predefined time interval. Due to the influence of the AGC response time, if the above preset conditions are not met, the terminal is likely to be unable to decode the second PDSCH, and the terminal skips the reception of the second PDSCH, which improves the reception efficiency of the terminal. Thereby, the influence of the AGC response time on the data reception of the terminal is minimized, and the overall reception efficiency and performance of the terminal are improved.
  • the terminal may execute the foregoing method in certain scenarios.
  • the terminal may execute the foregoing method in one or more scenarios from scenario 1 to scenario 3.
  • the mapping type of one of the first PDSCH and the second PDSCH is type A or type B, and the mapping type of the other PDSCH is type B.
  • the terminal can determine the mapping type of the first PDSCH and the second PDSCH according to the above-mentioned DCI scheduling.
  • Scenario 2 The symbols occupied by the first PDSCH and the second PDSCH are located in the same time slot.
  • the terminal can determine the symbols occupied by the first PDSCH and the second PDSCH according to the above-mentioned DCI scheduling, and then determine whether the first PDSCH and the second PDSCH are located in the same time slot.
  • Scenario 3 The first PDSCH and the second PDSCH correspond to the same information bits.
  • the first PDSCH and the second PDSCH corresponding to the same information bits mean that the transport blocks or code blocks of the code words corresponding to the first PDSCH and the second PDSCH contain the same information bits before encoding.
  • the terminal can determine whether the current is a repeated transmission scene through the display configuration of the network device. Specifically, the terminal can learn whether it is a repeated transmission scenario currently through high-level signaling.
  • the communication protocol may configure a high-level signaling (for example, RRC signaling) for repeated transmission scenarios under URLLC, and the high-level signaling may include the parameter PDSCHRepetitionFactor, which is configured to be ON/OFF, or the specific number of repetitions .
  • the signaling is ON or the number of repetitions is configured to be greater than 1
  • the terminal determines that the current scene is a repeated transmission scene according to this parameter.
  • the terminal can also determine whether it is a repetitive transmission scenario through the default binding relationship with other parameters. For example, when the first PDSCH and the second PDSCH are associated with different RVs or different scrambling codes or different modulation orders, the terminal determines that it is in a repetitive transmission scenario .
  • the terminal can also determine whether it is a repeated transmission scenario in other ways.
  • the embodiment of the application does not specifically limit this.
  • the predefined time interval has certain restrictions on the receiving behavior of the terminal. In application scenarios where reliability is not sensitive, such unnecessary restrictions may affect the actual communication efficiency. Therefore, by adding applicable scenarios, this impact can be limited to important targeted scenarios.
  • scenario 1 to scenario 3 are only used to exemplify the scenario for performing the above method.
  • the terminal With the change of the subcarrier interval configuration, if the time interval between the PDSCHs scheduled in the two time slots cannot meet the AGC response time requirement, the terminal also needs to perform the above method.
  • the details can be determined according to actual application scenarios.
  • the foregoing method includes:
  • the first TRP sends the first PDSCH to the terminal.
  • the second TRP sends a second PDSCH to the terminal.
  • step 701 when step 701 is specifically implemented, it may include: the terminal receives the first PDSCH from the first TRP, and receives the second PDSCH from the second TRP.
  • first TRP and the second TRP may be any of the following situations.
  • the first TRP and the second TRP are different base stations.
  • the first TRP and the second TRP may each schedule PDSCH through DCI.
  • the first TRP schedules the first PDSCH through the first DCI
  • the second TRP schedules the second PDSCH through the second DCI.
  • the first TRP and the second TRP are different antenna panels of the same base station.
  • the base station may schedule the first PDSCH and the second PDSCH through DCI, and send them to the terminal through the first TRP and the second TRP.
  • one TRP can be a base station (denoted as the first base station), and the other TRP is another base station (denoted as the second base station) Antenna panel.
  • the two base stations can each schedule PDSCH through DCI.
  • the first base station schedules the first PDSCH and sends the first PDSCH to the terminal
  • the second base station schedules the second PDSCH and sends the second PDSCH to the terminal through the TRP (that is, the antenna panel).
  • the first TRP and the second TRP may be a base station or an antenna panel of a base station.
  • the first PDSCH and the second PDSCH may be two PDSCHs transmitted by one TRP through different beams.
  • the first PDSCH and the second PDSCH correspond to the same information bits. That is, the first PDSCH and the second PDSCH are two repeated transmissions of the same data.
  • the method further includes: the terminal separately processes the first PDSCH and the second PDSCH to obtain soft information, and soft merges the obtained soft information. This method can improve the reliability of data transmission and increase the success rate of data decoding.
  • the manner in which the first TRP and the second TRP schedule data is not limited.
  • the embodiment of the present application provides a data sending method. As shown in FIG. 11, the method includes:
  • the first TRP sends the first PDSCH.
  • the second TRP sends a second PDSCH.
  • the transmission time of the second PDSCH is later than the transmission time of the first PDSCH, and the time interval between the start symbol in the symbols occupied by the second PDSCH and the end symbol in the symbols occupied by the first PDSCH is greater than or Equal to the predefined time interval.
  • the second TRP schedules the second PDSCH it needs to be scheduled according to a predefined time interval, that is, the start symbol in the symbols occupied by the scheduled second PDSCH and the end symbol in the symbols occupied by the first PDSCH.
  • the time interval between symbols must be greater than or equal to the predefined time interval.
  • the spatial information associated with the first PDSCH and the second PDSCH is different.
  • the spatial information in the communication system can be indicated by the TCI in the DCI.
  • a TCI state ID transmission configuration indication state sequence number
  • the TCI state ID may be associated with a piece of QCL information.
  • the first PDSCH and the second PDSCH are scheduled by the same DCI, or the first PDSCH and the second PDSCH are scheduled by different DCIs respectively.
  • the DCI may indicate a combination of PDSCH time domain resources, and the start symbol of the symbols occupied by the second PDSCH in the combination is the same as that of the first PDSCH.
  • the time interval between the end symbols in the occupied symbols needs to be greater than or equal to the predefined time interval.
  • the predefined time interval is 1 symbol, referring to Table 5, the DCI may indicate a combination of PDSCH time domain resources with an index of 5. In this case, the symbols occupied by the first PDSCH and the second PDSCH scheduled by the DCI can be seen in FIG. 13.
  • one DCI may indicate the time domain resources of the first PDSCH, and the other DCI may indicate the second PDSCH time domain resources.
  • the time interval between the start symbol in the symbols occupied by the second PDSCH and the end symbol in the symbols occupied by the first PDSCH needs to be greater than or equal to the predefined time interval.
  • the predefined time interval is 1 symbol
  • one DCI may indicate the PDSCH time domain resource with index 3
  • the other DCI may indicate the PDSCH time domain resource with index 7.
  • the symbols occupied by the first PDSCH and the second PDSCH scheduled by the two DCIs can also be seen in FIG. 13.
  • Table 5 and Table 6 may be configured by the network equipment to the terminal through RRC signaling (for example, PDSCH_TimeDomainAllocationList in the PDSCH_config information unit in RRC signaling) or MAC CE signaling at a certain prior time, and then The network device only needs to indicate one or more items in the above table through the DCI (for example, the Time domain resource assignment field in the DCI) to allocate symbols occupied by the PDSCH to the terminal.
  • RRC signaling for example, PDSCH_TimeDomainAllocationList in the PDSCH_config information unit in RRC signaling
  • MAC CE MAC CE
  • the pre-defined time interval can be determined according to the AGC response time of the terminal or the actual communication scenario (for example, according to the time delay that the service needs to meet), or it can be determined in combination with the AGC response time and the actual communication scenario.
  • the predefined time interval can also be pre-configured or stipulated by the protocol.
  • the predefined time interval can also be expressed in future communication protocols as "minimum scheduling time interval", “beam switching delay”, “data scheduling time domain offset (offset)” and other terms of the same technical essence.
  • the value of the predefined time interval is described by taking the determination of the predefined time interval according to the AGC response time as an example.
  • the predefined time interval is Xus, and X is greater than 0.
  • the time unit of X can also be other, for example, milliseconds (ms), seconds (s), etc. In the embodiment of the present application, us is taken as an example for description.
  • the predefined time interval is a fixed value.
  • X microseconds may be the AGC response time.
  • the response time of AGC can be shorter if possible. Then the value of X can be reduced accordingly.
  • the second TRP may directly determine the predefined time interval when scheduling the second PDSCH.
  • the second TRP may convert the predefined time interval into the number of symbols, and then schedule the second PDSCH according to the number of symbols.
  • the method of converting the predefined time interval into the number of symbols can be: the number of symbols in the predefined time interval
  • the predefined time interval is Y symbols, and Y is an integer greater than 0.
  • the predefined time interval is a relative value.
  • the length of the predefined time interval varies with the time length of a single symbol.
  • the response time of the AGC does not exceed the time length of 1 symbol under the maximum subcarrier interval configuration, it can be directly pre-configured or agreed in the protocol that the predefined time interval is 1 symbol.
  • the second TRP may directly determine the number of symbols in the predefined time interval, and schedule the second PDSCH according to the number of symbols.
  • the third case the predefined time interval corresponds to the subcarrier interval.
  • the second TRP may determine the predefined time interval according to the current subcarrier interval.
  • the predefined time interval corresponding to the subcarrier interval can be several microseconds or several symbols.
  • the correspondence between the predefined time interval and the subcarrier interval may be pre-configured or stipulated by agreement.
  • the predefined time interval can only be set according to 4*x microseconds (that is, the subcarrier interval is configured as the time length of the next symbol at 15KHz) .
  • the predefined time interval is equivalent to occupying 16 symbols, which will cause a waste of communication resources.
  • the predefined time interval can be changed with the subcarrier interval, and the shortest delay can be selected under different subcarrier interval configurations. For example, under 15KHz, 1 OFDM symbol, under 240KHz, according to actual x microsecond conversion, only 4 OFDM symbols can meet the AGC response delay, which is greatly shortened compared to the above 16 symbols. This can meet the low latency requirements of URLLC services.
  • the predefined time interval corresponds to the type of terminal.
  • different types of terminals may refer to terminals of different manufacturers, terminals of different costs, and so on.
  • the future communication system supports the diversity of terminals.
  • the AGC circuit may also have different costs and different performances (ie, corresponding delays) in the process of technological evolution. Therefore, the response time of the AGC circuit in different types of terminals may be different. For example, the response time of the AGC circuit in a low-cost terminal may be relatively long, and the response time of the AGC circuit in a high-cost terminal may be relatively short or even adjustable. Therefore, the predefined time interval may correspond to the type of terminal.
  • the above method may further include:
  • the second TRP sends a user capability query request message to the terminal.
  • the terminal receives the user capability query request message.
  • the user capability query request message is used to request the capability information of the terminal;
  • the terminal sends a user capability query response message to the second TRP.
  • the network device receives the user capability query response message from the terminal.
  • the user capability query response message includes the capability information of the terminal, and the capability information of the terminal includes information used to indicate a predefined time interval or the AGC response time of the terminal.
  • the terminal receives the first PDSCH from the first TRP.
  • the terminal receives the second PDSCH from the second TRP.
  • Step 1103 and step 1104 are executed in no particular order.
  • the manner in which the terminal receives the first PDSCH and the second PDSCH is not limited.
  • the terminal can directly receive the first PDSCH and the second PDSCH on the time domain resources configured by the first TRP and/or the second TRP, or
  • the method shown in the first embodiment is used to receive the first PDSCH and the second PDSCH.
  • the method provided in the second embodiment is because the first PDSCH and the second PDSCH are associated with different spatial information. Therefore, when the terminal receives the first PDSCH and the second PDSCH, there may be a large signal received power difference. If the start symbol in the symbols occupied by the second PDSCH and the end symbol in the symbols occupied by the first PDSCH are adjacent, the AGC circuit may not be able to perform power adjustment in time, which may cause signal distortion.
  • the second TRP may schedule the second PDSCH according to a predefined time interval in some scenarios.
  • the second TRP may perform the above method in one or more of scenario 1 and scenario 2.
  • the mapping type of one of the first PDSCH and the second PDSCH is type A or type B, and the mapping type of the other PDSCH is type B.
  • the terminal can determine the mapping type of the first PDSCH and the second PDSCH according to the above-mentioned DCI scheduling.
  • Scenario 2 The first PDSCH and the second PDSCH correspond to the same information bits.
  • the first PDSCH and the second PDSCH corresponding to the same information bits mean that the transport blocks or code blocks of the code words corresponding to the first PDSCH and the second PDSCH contain the same information bits before encoding.
  • the second TRP may schedule the second PDSCH according to a predefined time interval in the repeated transmission scenario under the URLLC to meet the high latency and high reliability requirements of the URLLC.
  • the predefined time interval has certain restrictions on the receiving behavior of the second TRP. In an application scenario where reliability is not sensitive, such unnecessary restrictions may affect the actual communication efficiency. Therefore, by adding applicable scenarios, this impact can be limited to important targeted scenarios.
  • Scenario 1 and Scenario 2 are only used to exemplify the scenario for performing the above method.
  • the subcarrier interval configuration changes, if the time interval between the PDSCHs scheduled in the two time slots cannot meet the AGC response time requirement, the second TRP needs to schedule the second PDSCH according to the predefined time interval. .
  • the first PDSCH and the second PDSCH correspond to the same information bits.
  • the method further includes: the terminal separately processes the first PDSCH and the second PDSCH to obtain soft information, and soft merges the obtained soft information. This method can improve the reliability of data transmission and increase the success rate of data decoding.
  • the method provided in this application is applicable to a multipoint coordinated transmission scenario of multiple TRPs, and each TRP can use a method similar to the foregoing first TRP or second TRP to schedule downlink data for downlink data scheduling.
  • first and second embodiments of the present application take the communication between two TRPs and the terminal as an example to illustrate the method provided in the present application.
  • each network element such as a TRP and a terminal
  • each network element includes at least one of a hardware structure and a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the TRP and the terminal into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 15 shows a schematic diagram of a possible structure of the communication device (denoted as the communication device 150) involved in the above embodiment.
  • the communication device 150 includes a processing unit 1501 and a communication unit 1502. , May also include a storage unit 1503.
  • the schematic structural diagram shown in FIG. 15 may be used to illustrate the structure of the TRP and the terminal involved in the foregoing embodiment.
  • the processing unit 1501 is used to control and manage the actions of the terminal.
  • the processing unit 1501 is used to support the terminal to execute FIG. 7 and FIG. 701 and 702 in 10, 1103 and 1104 in FIG. 11, (11) and (12) in FIG. 14, and/or actions performed by the terminal in other processes described in the embodiments of this application.
  • the processing unit 1501 may communicate with other network entities through the communication unit 1502, for example, communicate with the first TRP and the second TRP shown in FIG. 10.
  • the storage unit 1503 is used to store the program code and data of the terminal.
  • the communication device 150 may be a terminal or a chip in the terminal.
  • the processing unit 1501 is used to control and manage the actions of the TRP.
  • the processing unit 1501 is used to support the TRP to execute the TRP in FIG. 700a (at this time, TRP is the first TRP) and 700b (at this time, TRP is the second TRP), 1101 (at this time, TRP is the first TRP) and 1102 (at this time, TRP is the second TRP) ), (11) and (12) in FIG. 14, and/or actions performed by the TRP in other processes described in the embodiments of the present application.
  • the processing unit 1501 may communicate with other network entities through the communication unit 1502, for example, communicate with the terminal shown in FIG. 10.
  • the storage unit 1503 is used to store TRP program codes and data.
  • the communication device 150 may be a TRP or a chip in the TRP.
  • the processing unit 1501 may be a processor or a controller, and the communication unit 1502 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, etc.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 1503 may be a memory.
  • the processing unit 1501 may be a processor or a controller, and the communication unit 1502 may be an input/output interface, a pin, or a circuit.
  • the storage unit 1503 may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in a terminal or TRP.
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 150 can be regarded as the communication unit 1502 of the communication device 150, and the processor with processing function can be regarded as the processing unit 1501 of the communication device 150.
  • the device for implementing the receiving function in the communication unit 1502 may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device for implementing the sending function in the communication unit 1502 can be regarded as a sending unit, the sending unit is used to perform the sending steps in the embodiment of the present application, and the sending unit can be a transmitter, a transmitter, a sending circuit, and the like.
  • the integrated unit in FIG. 15 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • a computer readable storage medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a TRP, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory (read-only memory, referred to as ROM), random access memory (random access memory, referred to as RAM), magnetic disks or optical disks, etc.
  • the medium of the program code include: U disk, mobile hard disk, read-only memory (read-only memory, referred to as ROM), random access memory (random access memory, referred to as RAM), magnetic disks or optical disks, etc.
  • the unit in FIG. 15 may also be called a module, for example, the processing unit may be called a processing module.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device (denoted as the communication device 160). See FIG. 16 or FIG. 17.
  • the communication device 160 includes a processor 1601, and optionally, a communication device connected to the processor 1601. ⁇ Memory 1602.
  • the processor 1601 may be a general-purpose central processing unit (central processing unit, CPU for short), microprocessor, application-specific integrated circuit (ASIC for short), or one or more programs for controlling the program of this application Implementation of integrated circuits.
  • the processor 1601 may also include multiple CPUs, and the processor 1601 may be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 1602 may be a ROM or other types of static storage devices that can store static information and instructions, RAM, or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM for short
  • compact disc read-only memory CD-ROM for short
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • the embodiments of this application do not impose any limitation on this.
  • the memory 1602 may exist independently or may be integrated with the processor 1601. Wherein, the memory 1602 may contain computer program code.
  • the processor 1601 is configured to execute the computer program code stored in the memory 1602, so as to implement the method provided in the embodiment of the present application.
  • the communication device 160 further includes a transceiver 1603.
  • the processor 1601, the memory 1602, and the transceiver 1603 are connected by a bus.
  • the transceiver 1603 is used to communicate with other devices or communication networks.
  • the transceiver 1603 may include a transmitter and a receiver.
  • the device used for implementing the receiving function in the transceiver 1603 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
  • the device used in the transceiver 1603 to implement the sending function can be regarded as a transmitter, and the transmitter is used to perform the sending steps in the embodiment of the present application.
  • FIG. 16 may be used to illustrate the structure of the TRP or terminal involved in the foregoing embodiment.
  • the processor 1601 is used to control and manage the actions of the terminal.
  • the processor 1601 is used to support the terminal to execute FIGS. 7 and 701 and 702 in 10, 1103 and 1104 in FIG. 11, (11) and (12) in FIG. 14, and/or actions performed by the terminal in other processes described in the embodiments of this application.
  • the processor 1601 may communicate with other network entities through the transceiver 1603, for example, communicate with the first TRP and the second TRP shown in FIG. 10.
  • the memory 1602 is used to store program codes and data of the terminal.
  • the processor 1601 is used to control and manage the actions of the TRP.
  • the processor 1601 is used to support the TRP to execute the TRP in FIG. 700a (at this time, TRP is the first TRP) and 700b (at this time, TRP is the second TRP), 1101 (at this time, TRP is the first TRP) and 1102 (at this time, TRP is the second TRP) ), (11) and (12) in FIG. 14, and/or actions performed by the TRP in other processes described in the embodiments of the present application.
  • the processor 1601 may communicate with other network entities through the transceiver 1603, for example, communicate with the terminal shown in FIG. 10.
  • the memory 1602 is used to store TRP program codes and data.
  • the processor 1601 includes a logic circuit and at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • FIG. 17 The schematic structural diagram shown in FIG. 17 may be used to illustrate the structure of the TRP or the terminal involved in the foregoing embodiment.
  • the processor 1601 is used to control and manage the actions of the terminal.
  • the processor 1601 is used to support the terminal to execute FIGS. 7 and 701 and 702 in 10, 1103 and 1104 in FIG. 11, (11) and (12) in FIG. 14, and/or actions performed by the terminal in other processes described in the embodiments of this application.
  • the processor 1601 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the first TRP and the second TRP shown in FIG. 10.
  • the memory 1602 is used to store program codes and data of the terminal.
  • the processor 1601 is used to control and manage the actions of the TRP.
  • the processor 1601 is used to support the TRP to execute the TRP in FIG. 700a (at this time, TRP is the first TRP) and 700b (at this time, TRP is the second TRP), 1101 (at this time, TRP is the first TRP) and 1102 (at this time, TRP is the second TRP) ), (11) and (12) in FIG. 14, and/or actions performed by the TRP in other processes described in the embodiments of the present application.
  • the processor 1601 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the terminal shown in FIG. 10.
  • the memory 1602 is used to store TRP program codes and data.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a terminal (denoted as terminal 180) and TRP (denoted as TRP190). For details, refer to FIG. 18 and FIG. 19 respectively.
  • FIG. 18 is a schematic diagram of the hardware structure of the terminal 180. For ease of description, FIG. 18 only shows the main components of the terminal. As shown in FIG. 18, the terminal 180 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program. For example, it is used to control the terminal to execute 701 and 702 in Figure 7 and Figure 10. 1103 and 1104 in 11, (11) and (12) in FIG. 14, and/or actions performed by the terminal in other processes described in the embodiments of this application.
  • the memory is mainly used to store software programs and data.
  • the control circuit also called a radio frequency circuit
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the control circuit in the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. send.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 18 only shows a memory and a processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal and execute software. Programs, which process the data of software programs.
  • the processor in FIG. 18 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • TRP190 may include one or more radio frequency units, such as remote radio unit (RRU) 1901 and one or more baseband units (BBU) (also known as digital unit (digital unit, abbreviated as BBU) DU)) 1902.
  • RRU remote radio unit
  • BBU baseband units
  • BBU digital unit (digital unit, abbreviated as BBU) DU
  • the RRU 1901 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1911 and a radio frequency unit 1912.
  • the RRU1901 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the RRU 1901 and the BBU 1902 may be physically set together, or may be physically separated, for example, a distributed base station.
  • the BBU1902 is the TRP control center, which can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU 1902 can be composed of one or more single boards, and multiple single boards can jointly support a single access indication radio access network (such as an LTE network), or can respectively support wireless access networks of different access standards. Access network (such as LTE network, 5G network or other networks).
  • the BBU 1902 also includes a memory 1921 and a processor 1922, and the memory 1921 is used to store necessary instructions and data.
  • the processor 1922 is used to control the TRP to perform necessary actions.
  • the memory 1921 and the processor 1922 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • TRP190 shown in FIG. 19 can execute 700a (at this time, TRP is the first TRP) and 700b (at this time, TRP is the second TRP), and 1101 in FIG. 11 (at this time, TRP is The first TRP) and 1102 (in this case, the TRP is the second TRP), (11) and (12) in FIG. 14, and/or actions performed by the TRP in other processes described in the embodiments of the present application.
  • the operation, function, or operation and function of each module in the TRP190 are respectively set to implement the corresponding process in the above method embodiment. For details, please refer to the descriptions in the above method embodiments. To avoid repetition, detailed descriptions are appropriately omitted here.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • FIG. 18 and FIG. 19 refer to the description about the processor in FIG. 16 and FIG. 17, which will not be repeated.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any of the above methods.
  • An embodiment of the present application also provides a communication system, including: the above TRP and a terminal.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, referred to as DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据接收和发送方法及装置,该方法中,终端接收第一PDSCH和第二PDSCH,第一PDSCH的发送时刻早于第二PDSCH的发送时刻,第一PDSCH和第二PDSCH所关联的空间信息不同;在第一PDSCH和第二PDSCH之间的实际时间间隔小于预定义时间间隔的情况下,当且仅当满足预设条件时,终端接收第二PDSCH。预设条件包括以下条件中的一个或多个:预定义时间间隔与第二PDSCH的符号长度的比值小于或等于第一预设阈值;预定义时间间隔和实际时间间隔之间的差值与第二PDSCH的符号长度的比值小于或等于第二预设阈值;第二PDSCH的码率小于或等于第三预设阈值。本申请涉及通信技术领域。

Description

数据接收和发送方法及装置
本申请要求于2019年03月29日提交国家知识产权局、申请号为201910253505.1、申请名称为“数据接收和发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据接收和发送方法及装置。
背景技术
现代通信系统,为了提高频谱利用率,网络中的多个小区可以部署在相同的频段。该情况下,当终端处于小区的边缘时,终端的通信可能会受到服务小区的邻区发送的信号的干扰。为了解决该问题,可以通过多点传输技术有效地避免干扰,提高用户速率。其中,多点是指多个传输接收点(transmission reception point,简称TRP),多个TRP可以通过交互信息,进行协作,从而避免干扰。在多点传输的场景下,为了增加终端传输数据的可靠性,多个TRP可以分别向终端发送数据。但是在一些场景下,终端的接收效率不高。
发明内容
本申请实施例提供了一种数据接收和发送方法及装置,用于提高终端的接收效率。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供了一种数据接收方法,包括:终端接收第一PDSCH和第二PDSCH,所述第一PDSCH的发送时刻早于所述第二PDSCH的发送时刻,所述第一PDSCH和所述第二PDSCH所关联的空间信息不同;在所述第一PDSCH和所述第二PDSCH之间的实际时间间隔小于预定义时间间隔的情况下,当且仅当满足预设条件时,所述终端接收所述第二PDSCH,所述实际时间间隔是指所述第一PDSCH所占用符号中的结束符号和所述第二PDSCH所占用符号中的起始符号之间的时间间隔;所述预设条件包括以下条件中的一个或多个:所述预定义时间间隔与所述第二PDSCH的符号长度的比值小于或等于第一预设阈值;所述预定义时间间隔和所述实际时间间隔之间的差值与所述第二PDSCH的符号长度的比值小于或等于第二预设阈值;所述第二PDSCH的码率小于或等于第三预设阈值。
第一方面提供的方法,在终端侧,预定义一个时间间隔,终端可以根据该预定义时间间隔确定是否接收第二PDSCH。由于AGC响应时间的影响,在不满足上述预设条件的情况下,终端很可能无法解码第二PDSCH,则终端跳过第二PDSCH的接收,提高终端的接收效率。从而最大限度地减少AGC响应时间对终端的数据接收带来的影响,提升终端整体的接收效率和性能。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH通过同一个DCI调度;或者,所述第一PDSCH和所述第二PDSCH通过不同的DCI调度。
在一种可能的实现方式中,所述预定义时间间隔为X微秒,X大于0;或者,所述预定义时间间隔为Y个符号,Y为大于0的整数。
在一种可能的实现方式中,所述预定义时间间隔与子载波间隔对应。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH对应相同的信息比特。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH所占用的符号位于同一个时隙。
第二方面,提供了一种数据发送方法,包括:第二TRP发送第二PDSCH,所述第二PDSCH的发送时刻晚于第一PDSCH的发送时刻,所述第二PDSCH所占用符号中的起始符号与所述第一PDSCH所占用符号中的结束符号之间的时间间隔大于或等于预定义时间间隔,所述第一PDSCH和所述第二PDSCH所关联的空间信息不同。
第二方面提供的方法,由于第一PDSCH和第二PDSCH关联不同的空间信息。因此,终端接收第一PDSCH和第二PDSCH时可能存在较大的信号接收功率差。如果第二PDSCH占用的符号中的起始符号与第一PDSCH占用的符号中的结束符号之间相邻,则AGC电路可能无法及时的进行功率调整从而造成信号失真。实施例二提供的方法中,第二PDSCH占用的时域资源的起始符号与第一PDSCH占用的时域资源的结束符号之间存在一个预定义时间间隔。通过合理的配置预定义时间间隔,可以使得预定义时间间隔满足AGC电路的响应时间,从而保证AGC电路及时的进行功率调整,避免信号失真,提高终端的接收效率。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH通过同一个DCI调度;或者,所述第一PDSCH和所述第二PDSCH通过不同的DCI调度。
在一种可能的实现方式中,所述预定义时间间隔为X微秒,X大于0;或者,所述预定义时间间隔为Y个符号,Y为大于0的整数。
在一种可能的实现方式中,所述预定义时间间隔与子载波间隔对应。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH对应相同的信息比特。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
第三方面,提供了一种数据接收装置,包括:通信单元和处理单元;所述处理单元,用于通过所述通信单元接收第一PDSCH和第二PDSCH,所述第一PDSCH的发送时刻早于所述第二PDSCH的发送时刻,所述第一PDSCH和所述第二PDSCH所关联的空间信息不同;在所述第一PDSCH和所述第二PDSCH之间的实际时间间隔小于预定义时间间隔的情况下,当且仅当满足预设条件时,所述处理单元,还用于通过所述通信单元接收所述第二PDSCH,所述实际时间间隔是指所述第一PDSCH所占用符号中的结束符号和所述第二PDSCH所占用符号中的起始符号之间的时间间隔;所述预设条件包括以下条件中的一个或多个:所述预定义时间间隔与所述第二PDSCH的符号长度的比值小于或等于第一预设阈值;所述预定义时间间隔和所述实际时间间隔之间的差值与所述第二PDSCH的符号长度的比值小于或等于第二预设阈值;所述第二PDSCH的码率小于或等于第三预设阈值。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH通过同一个DCI调度;或者,所述第一PDSCH和所述第二PDSCH通过不同的DCI调度。
在一种可能的实现方式中,所述预定义时间间隔为X微秒,X大于0;或者,所述预定义时间间隔为Y个符号,Y为大于0的整数。
在一种可能的实现方式中,所述预定义时间间隔与子载波间隔对应。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH对应相同的信息比特。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH所占用的符号位于同一个时隙。
第四方面,提供了一种数据发送装置,包括:通信单元和处理单元;所述处理单元,通过所述通信单元发送第二PDSCH,所述第二PDSCH的发送时刻晚于第一PDSCH的发送时刻,所述第二PDSCH所占用符号中的起始符号与所述第一PDSCH所占用符号中的结束符号之间的时间间隔大于或等于预定义时间间隔,所述第一PDSCH和所述第二PDSCH所关联的空间信息不同。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH通过同一个DCI调度;或者,所述第一PDSCH和所述第二PDSCH通过不同的DCI调度。
在一种可能的实现方式中,所述预定义时间间隔为X微秒,X大于0;或者,所述预定义时间间隔为Y个符号,Y为大于0的整数。
在一种可能的实现方式中,所述预定义时间间隔与子载波间隔对应。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH对应相同的信息比特。
在一种可能的实现方式中,所述第一PDSCH和所述第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
第五方面,提供了一种通信方法,包括:终端接收用户能力查询请求消息,所述用户能力查询请求消息用于请求所述终端的能力信息;所述终端向所述网络设备发送用户能力查询响应消息,所述用户能力查询响应消息中包括所述终端的能力信息,所述终端的能力信息中包括用于指示所述终端的AGC响应时间或预定义时间间隔的信息。
第六方面,提供了一种通信方法,包括:网络设备向终端发送用户能力查询请求消息,所述用户能力查询请求消息用于请求所述终端的能力信息;所述网络设备从所述终端接收用户能力查询响应消息,所述用户能力查询响应消息中包括所述终端的能力信息,所述终端的能力信息中包括用于指示所述终端的AGC响应时间或预定义时间间隔的信息。
第七方面,提供了一种通信装置,包括:通信单元和处理单元;所述处理单元,用于通过所述通信单元接收用户能力查询请求消息,所述用户能力查询请求消息用于请求所述终端的能力信息;所述处理单元,还用于通过所述通信单元向所述网络设备发送用户能力查询响应消息,所述用户能力查询响应消息中包括所述终端的能力信息,所述终端的能力信息中包括用于指示所述终端的AGC响应时间或预定义时间间隔的信息。
第八方面,一种通信装置,包括:通信单元和处理单元;所述处理单元,用于通过所述通信单元向终端发送用户能力查询请求消息,所述用户能力查询请求消息用于请求所述终端的能力信息;所述处理单元,还用于通过所述通信单元从所述终端接收用户能力查询响应消息,所述用户能力查询响应消息中包括所述终端的能力信息,所述终端的能力信息中包括用于指示所述终端的AGC响应时间或预定义时间间隔的信息。
第九方面,提供了一种数据接收装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第一方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若 为后者,存储器可以位于数据接收装置内,也可以位于数据接收装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,数据接收装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,数据接收装置以芯片的产品形态存在。
第十方面,提供了一种数据发送装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第二方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于数据发送装置内,也可以位于数据发送装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,数据发送装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,数据发送装置以芯片的产品形态存在。
第十一方面,提供了一种通信装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第五方面或第六方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于通信装置内,也可以位于通信装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,通信装置以芯片的产品形态存在。
第十二方面,提供了一种通信系统,包括:第三方面提供的数据接收装置和第四方面提供的数据发送装置。
第十三方面,提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行第一方面或第二方面或第五方面或第六方面提供的任意一种方法。
第十四方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面或第二方面或第五方面或第六方面提供的任意一种方法。
第三方面、第四方面、第七方面、第八方面至第十四方面中的任一种实现方式所带来的技术效果可参见第一方面、第二方面、第五方面或第六方面中对应实现方式所带来的技术效果,此处不再赘述。
其中,需要说明的是,上述各个方面中的任意一个方面的各种可能的实现方式,在方案不矛盾的前提下,均可以进行组合。
附图说明
图1为本申请实施例提供的一种网络架构组成示意图;
图2为本申请实施例提供的AGC电路位置示意图;
图3为本申请实施例提供的多点协作传输的场景示意图;
图4为本申请实施例提供的TRP与终端通信的示意图;
图5和图6分别为本申请实施例提供的一种数据占用的时域资源的示意图;
图7为本申请实施例提供的一种数据接收方法的流程图;
图8和图9分别为本申请实施例提供的一种数据占用的时域资源的示意图;
图10和图11分别为本申请实施例提供的一种数据发送和接收的方法的流程图;
图12和图13分别为本申请实施例提供的一种数据占用的时域资源的示意图;
图14为本申请实施例提供的一种数据发送和接收方法的流程图;
图15为本申请实施例提供的一种通信装置的组成示意图;
图16和图17分别为本申请实施例提供的一种通信装置的硬件结构示意图;
图18为本申请实施例提供的一种终端的硬件结构示意图;
图19为本申请实施例提供的一种网络设备的硬件结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址(orthogonal frequency-division multiple access,简称OFDMA)、单载波频分多址(single carrier frequency-division multiple access,简称SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved universal terrestrial radio access,简称E-UTRA)、超级移动宽带(ultra mobile broadband,简称UMB)等无线技术。E-UTRA是通用移动通信系统(universal mobile telecommunications system,简称UMTS)演进版本。第三代合作伙伴计划(3rd generation partnership project,简称3GPP)在长期演进(long term evolution,简称LTE)和基于LTE演进的各种版本是使用E-UTRA的新版本。第五代(5th-generation,简称5G)通信系统、新空口(new radio,简称NR) 是正在研究当中的下一代通信系统。其中,5G通信系统包括非独立组网(non-standalone,简称NSA)的5G通信系统,独立组网(standalone,简称SA)的5G通信系统,或者,NSA的5G通信系统和SA的5G通信系统。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此。
本申请实施例提供的技术方案可以应用于多种通信场景。例如,机器对机器(machine to machine,简称M2M)、宏微通信、增强型移动宽带(enhanced mobile broadband,简称eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,简称URLLC)以及海量物联网通信(massive machine type communication,简称mMTC)等场景。
本申请提供的技术方案所适用的通信系统中可以包括至少一个TRP和至少一个终端。至少一个终端中的一个或多个终端可以和至少一个TRP中的一个或多个TRP通信。第一种情况下,参见图1,一个终端可以和多个TRP(例如,TRP1和TRP2)通信,即多个TRP均可以向终端发送信令和下行数据,反之,终端也可以向多个TRP发送上行数据。该情况下,终端处在多个TRP的协作传输状态下,TRP之间可以进行理想回传(ideal backhaul),即TRP之间基本没有传输时延。第二种情况下,一个TRP可以采用不同的波束与一个终端通信,例如,一个TRP采用不同的波束在不同的时域资源向终端发送下行数据。
TRP为网络侧的一种用于发送信号,接收信号,或者,发送信号和接收信号的实体。TRP可以为部署在无线接入网(radio access network,简称RAN)中为终端提供无线通信功能的装置。示例性的,TRP可以为:基站、基站上的天线面板、各种形式的控制节点、未来演进的公共陆地移动网络(public land mobile network,简称PLMN)中的TRP等。
其中,基站可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,简称AP)等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,全球移动通信系统(global system for mobile communication,简称GSM)或码分多址(code division multiple access,简称CDMA)网络中可以称为基站收发信台(base transceiver station,简称BTS),宽带码分多址(wideband code division multiple access,简称WCDMA)中可以称为基站(NodeB),LTE系统中可以称为演进型基站(evolved NodeB,简称eNB或eNodeB),5G通信系统或NR通信系统中可以称为下一代基站节点(next generation node base station,简称gNB),本申请对基站的具体名称不作限定。
控制节点可以连接多个基站,并为多个基站覆盖下的多个终端配置资源。控制节点可以包括网络控制器、云无线接入网络(cloud radio access network,简称CRAN)场景下的无线控制器等。
终端是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端用于向用户提供语音服务和数据连通性服务中的一种或多种。终端还可以称为用户设备(user equipment,简称UE)、终端设备、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端可以是移动站(mobile station,简称MS)、用户单元(subscriber unit)、无人机、物联网(internet of things,简称IoT)设备、无线局域网(wireless local area networks,简称WLAN)中的站点(station,简称ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、 无线数据卡、平板型电脑、会话启动协议(session initiation protocol,简称SIP)电话、无线本地环路(wireless local loop,简称WLL)站、个人数字处理(personal digital assistant,简称PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,简称MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端还可以为下一代通信系统中的终端,例如,5G通信系统中的终端或者未来演进的PLMN中的终端,NR通信系统中的终端等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为了使得本申请实施例更加的清楚,以下对与本申请实施例相关的概念和部分内容作简单介绍。
1、自动增益控制(automatic gain control,简称AGC)电路
AGC电路是无线电接收设备(例如,终端)中的重要电路,参见图2,该电路可以将幅度变化很大的输入信号调整为幅度在小范围内变化的信号后,输入至无线电接收设备的射频器件。由于无线电接收设备的射频器件在设计之初便有一个最佳接收信号强度区间,射频器件接收到的在这个区间内的输入信号不会失真。但是在实际通信过程中,由于各种原因的影响,射频器件的接收信号可能超过最佳接收信号强度区间,因此需要在射频器件前端通过AGC电路将输入信号的强度缩放至最佳接收信号强度区间。
AGC电路是通过对可控增益放大器的增益的控制来实现对输出信号振幅变化的限制,而增益变化又取决于输入信号强度的变化。因此,当输入信号的强度从一个值变为另一个值时,AGC电路需要将可控增益放大器的增益从一个值变为另一个值。而可控增益放大器的增益从一个值变为另一个值需要一定的时间,该时间可以称为AGC电路的响应时间。如果响应时间过短,AGC电路的输出信号的强度容易随输入信号的瞬时波动而波动,从而导致输出信号失真,如果响应时间过长,则AGC电路的调整时延会影响通信系统的接收效率。因此,该响应时间的设定需要符合通信系统的实际需求。例如,若两个输入信号的幅度相差6dB时,AGC的响应时间大约为10微秒(us)。
2、波束(beam)
高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过大规模天线阵列进行加权处理,将信号能量集中在一个较小的范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。
波束包括发射波束和接收波束。发射波束可以是指信号经天线发射出去后在空间不同 方向上形成的信号强度的分布,接收波束可以是指天线阵列对无线信号在空间不同方向上进行加强或削弱接收的分布。
3、空间信息(准共址信息)
空间信息可以由天线端口准共址(quasi colocation,简称QCL)关系来进行指示。具体地,可以在指示信息(例如,下行控制信息(downlink control information,简称DCI))中指示一个参考信号资源(或天线端口)与另一个参考信号资源(或天线端口)具有QCL关系,来表示这两个参考信号资源(或天线端口)具有QCL关系。
具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。资源标识可以包括:信道状态信息参考信号(channel state information reference signal,简称CSI-RS)资源标识,或探测参考信号(sounding reference signal,简称SRS)资源标识,或同步信号广播信道块(synchronous signal/physical broadcast channel block,可以简称为SS/PBCH block,也可以简称为SSB)资源标识,或物理随机接入信道(physical random access channel,简称PRACH)上传输的前导序列的资源标识,或解调参考信号(demodulation reference signal,简称DMRS)的资源标识,用于指示资源上的波束。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;类型D(type D):空间接收参数。
其中类型为D的QCL用于指示不同的波束,即,基于空间接收参数定义的QCL。波束具有相同的空间特征,可以采用同一个接收波束来接收。波束在协议中具体地可以通过各种信号的标识来表示,例如CSI-RS的资源索引,SSB的索引,SRS的资源索引,跟踪参考信号(tracking reference signal,简称TRS)的资源索引。
4、多点传输技术
多点传输技术即多个TRP进行数据传输的技术。在多点传输技术中,多个TRP可以通过协作为用户发送下行信号,和/或,通过协作接收用户的上行信号。
多点传输技术主要分为联合传输(Joint transmission,简称JT)、动态点选择(dynamic point selection,简称DPS)、动态小区选择(dynamic cell selection,简称DCS)、协调波束成型(coordinated beam forming,简称CB)、协调调度(coordinated scheduling,简称CS) 等。
本申请涉及到的多点传输主要是联合传输(或称为多点协作传输)场景,通过多个TRP的联合传输,能够提升处于小区边缘的终端的传输速率。示例性的,在非联合传输场景,参见图3中的(a),当终端处于小区的边缘,终端的通信会受到服务小区的邻区发送的信号的干扰。图3中的(a)和(b)中的实线表示对终端产生的有用数据,虚线表示对终端产生的干扰。在联合传输场景,参见图3中的(b),多个TRP联合给一个终端发送数据,终端收到多份有用数据,因此,服务小区的邻区发送的信号不仅不会对终端产生干扰,反而可以提升处于小区边缘的终端的传输速率。
需要说明的是,不同的TRP对应的空间信息不同。
5、基于多DCI的多点传输(multi-DCI based multi-TRP transmission)
在联合传输场景下,多个TRP可以向同一个终端发送各自的包含DCI的物理下行控制信道(physical downlink control channel,简称PDCCH),每个PDCCH调度对应的物理下行共享信道(physical downlink shared channel,简称PDSCH)。该情况下,多个TRP可以在有限的交互下,相对独立地调度数据,此种传输方式可以称为基于多DCI的多点传输。
6、多点协作的重复传输
5G及未来演进通信技术中,URLLC是重要业务类型之一。在URLLC业务中,数据吞吐量往往不再是主要的衡量指标,相比之下,低误码率和低时延成为最关键的指标。在多点传输技术中,多个TRP的信道之间存在信道多样性,如果采用重复发送的方式可以提升通信链路的可靠性,因此多点传输技术可用于URLLC业务的可靠性增强。
为了提高数据传输可靠性,多个TRP可以以时分的方式通过不同的信道向终端重复发送数据。示例性的,参见图4,TRP1和TRP2可以分别在t1和t2发送对应相同的信息比特的数据给同一个终端。此时,一个处于多点协作下的终端可以以时分的方式接收来自多个TRP发送的对应相同的信息比特的数据。终端在收到多个数据后可以对接收到的数据进行处理,得到软信息,再对软信息做软合并(soft combining),提升数据的解码成功率。
7、时隙
在NR中,对于常规(normal)循环前缀(cyclic prefix,简称CP),1个时隙包含14个正交频分复用(orthogonal frequency division multiplexing,简称OFDM)符号(以下简称符号)。对于扩展(extended)CP,1个时隙包含12个符号。
为了便于描述,在本申请实施例中,若未作出特别说明,1个时隙包含14个符号。在时隙中,14个符号按照从小到大的顺序依次编号,最小的编号为0,最大的编号为13。本申请实施例中将索引(即编号)为i的符号记为符号#i,则一个时隙包含符号#0至符号#13。另外,本申请下文中将索引(即编号)为j的时隙记为时隙#j。j为大于等于0的整数,i为大于等于0小于等于13的整数。
8、PDSCH时域资源分配表
PDSCH时域资源分配表用于分配发送PDSCH的时域资源。PDSCH的时域资源分配表中包含网络允许的PDSCH的时域资源的起始符号(记为S)和符号长度(记为L)的信息。S和L的取值与PDSCH的映射类型(Mapping Type)以及CP类型有关,具体可参见表1。
表1
Figure PCTCN2020078304-appb-000001
Figure PCTCN2020078304-appb-000002
注:PDSCH的映射类型包括类型(Type)A和类型B。CP类型包括常规CP和扩展CP。DMRS是指解调参考信号(demodulation reference signal)。
以常规CP为例,PDSCH的S在映射类型为类型A时可以为一个时隙中的符号#0至符号#3,而在映射类型为类型B时可以为一个时隙中的符号#0至符号#12。PDSCH的L在映射类型为类型A时可以为3至14个符号,而在类型B时可以为2,4,7个符号。
在多点传输技术的时分传输方案中,一个可能的应用场景为:2个TRP调用的2个PDSCH所占用的符号为连续的符号,即第一个PDSCH所占用的符号中的结束符号(即最后一个符号)与第二个PDSCH所占用的符号中的起始符号(即第一个符号)相邻。
示例性的,若2个TRP时分调用的2个PDSCH的映射类型都是TypeB。根据表1可知,映射类型为TypeB时,PDSCH的长度可以为2,4,7个符号,比一个时隙所占用的符号数量小很多。这种调度方式在mini-slot(小/微时隙)结构下最为常见,即一次只调度很少的符号完成一个时隙的数据传输功能。
参见图5,若TRP1发送的第1个PDSCH占用的时域资源中的S=2,L=4,TRP2发送的第2个PDSCH占用的时域资源中的S=6,L=4。此时,第1个PDSCH占用的符号中的最后一个符号与第2个PDSCH占用的符号中的第1个符号相邻。在这种情况下,若两个PDSCH存在较大的信号接收功率差,例如,它们分别来自于不同的TRP,且该终端与该不同的TRP之间存在路径差,再例如,它们分别由宽窄不同的波束发送,此时,终端的AGC电路可能无法及时的将可控增益放大器从适配前一个PDSCH接收功率的增益调整为适配后一个PDSCH接收功率的增益,即无法及时的完成功率调整,便会造成信号失真,从而降低终端的接收效率。
基于目前通信网络的高可靠以及低时延的要求,TRP可能会有目的连续调度多个映射类型都是TypeB的PDSCH,此时该多个PDSCH可以对应相同的信息比特以增强可靠性,并且连续发送以减少时延。这种场景下,上述信号失真的问题可能会频繁的发生。
另外,针对位于两个连续的时隙中的PDSCH,参见图6中的(a),由于两个连续的时隙中间间隔了CP和PDCCH。因此,CP和PDCCH在时域上的时间长度一般可以满足AGC的响应时间的要求。但是,由于5G通信系统支持灵活的子载波间隔(subcarrier spacing,简称SCS)配置。例如120K赫兹(Hz),240KHz等。未来通信系统演进并不排除会支持更高的子载波间隔配置的可能。在这种更大的子载波间隔配置下,符号的持续时间也是按比例缩小,这会造成CP所占绝对时间的大大缩短。从而使得在不同时隙上调度的PDSCH之间也可能会存在由于AGC电路无法及时完成功率调整,造成信号失真的问题。例如,参见图6,当两个时隙之间的CP和符号的持续时间从图6中的(a)变为图6中的(b)时,AGC响应时间从小于CP和PDCCH符号长度,变成了超过CP和PDCCH符号长度,从而影响到前几个PDSCH符号的接收,造成信号失真,降低终端的接收效率。
为了提高终端的接收效率,本申请实施例提供了一种数据接收和发送方法,以下通过实施例一和实施例二分别进行描述。需要指出的是,本申请各实施例中涉及的名词或术语可以相互参考,不予限制。
实施例一
实施例一提供了一种数据接收方法,如图7所示,该方法包括:
701、终端接收第一PDSCH和第二PDSCH。
其中,第一PDSCH的发送时刻早于第二PDSCH的发送时刻。第一PDSCH和第二PDSCH关联的空间信息不同。
空间信息的具体含义可参考上文。更为具体的,通信系统中空间信息可通过DCI中的传输配置指示(transmission configuration indicator,简称TCI)进行指示。在DCI中的传输指示域中,指示一个TCI state ID(传输配置指示状态序号),该TCI state ID可以关联一个QCL信息,具体可参考现有技术。
可选的,第一PDSCH和第二PDSCH由同一个DCI调度,或者,第一PDSCH和第二PDSCH分别由不同的DCI调度。
示例性的,通过同一个DCI调度第一PDSCH和第二PDSCH时,该DCI可以指示一个PDSCH时域资源的组合,该组合可以用于终端确定第一PDSCH和第二PDSCH占用的符号。示例性的,参见表2,DCI可以指示索引为5的PDSCH时域资源的组合。该情况下,该DCI调度的第一PDSCH和第二PDSCH占用的符号可参见图8。
表2
Figure PCTCN2020078304-appb-000003
示例性的,通过不同的DCI调度第一PDSCH和第二PDSCH时,一个DCI可以指示一个PDSCH时域资源,另一个DCI可以指示另一个PDSCH时域资源。示例性的,参见表3,一个DCI可以指示索引为3的PDSCH时域资源,另一个DCI可以指示索引为7的PDSCH时域资源。该情况下,两个DCI调度的第一PDSCH和第二PDSCH占用的符号也可参见图8。
表3
索引 PDSCH时域资源
3 PDSCH mapping type B,S=2,L=4
7 PDSCH mapping type B,S=6,L=4
需要说明的是,表2和表3可以为网络设备在某个在先时刻通过RRC信令(例如, RRC信令中的PDSCH_config信息单元中的PDSCH_TimeDomainAllocationList)或MAC CE信令配置给终端的,后续网络设备仅需要通过DCI(例如,DCI中的Time domain resource assignment域)指示上述表格中的一项或多项,为终端分配PDSCH占用的符号。
702、在第一PDSCH和第二PDSCH之间的实际时间间隔小于预定义时间间隔的情况下,当且仅当满足预设条件时,终端接收第二PDSCH。
换言之,在第一PDSCH和第二PDSCH之间的实际时间间隔小于预定义时间间隔的情况下,当不满足预设条件时,终端不接收第二PDSCH或认定第二PDSCH无效或跳过第二PDSCH的接收。在这种情况下,终端可以在针对第二PDSCH的否定确认(negative acknowledgement,简称NACK)反馈信息中增加一个指示比特,当该指示比特取特定值(例如,0或1)时,该指示比特向网络设备指示第二PDSCH发送失败的原因,即该指示信息指示实际时间间隔小于预定义时间间隔,且不满足预设条件。
其中,实际时间间隔是指第一PDSCH所占用符号中的结束符号和第二PDSCH所占用符号中的起始符号之间的时间间隔(例如,符号长度)。
步骤702在具体实现时,首先,终端可以确定预定义时间间隔和实际时间间隔。其次,终端判断实际时间间隔是否小于预定义时间间隔。在实际时间间隔小于预定义时间间隔的情况下,进一步判断是否满足预设条件,从而确定是否接收第二PDSCH。
预定义时间间隔可以根据AGC响应时间或实际的通信场景确定(例如,根据业务需要满足的时延确定),也可以结合AGC响应时间和实际的通信场景确定。预定义时间间隔还可以为预配置的或协议规定的或网络设备通过RRC信令或媒体接入控制(medium access control,简称MAC)控制元素(control element,简称CE)信令或DCI为终端配置的。预定义时间间隔在未来通信协议中也可以表述为“最小调度时间间隔”,“波束切换时延”,“数据调度时域偏差(offset)”等相同技术本质的术语。下文中以预定义时间间隔根据AGC响应时间确定为例对预定义时间间隔的取值进行说明。
关于预定义时间间隔的取值,可以有以下4种情况。
第一种情况:预定义时间间隔为X微秒(us),X大于0。X的时间单位也可以为其他,例如,毫秒(ms),秒(s)等,本申请实施例中以us为例进行说明。
在第一种情况下,预定义时间间隔为一个固定值。该情况下,示例性的,X微秒可以为AGC响应时间。随着硬件能力的提升,AGC的响应时间如果可以做到更短。那么X的值也可以相应减小。
在第一种情况下,终端可以直接确定预定义时间间隔。终端判断实际时间间隔是否小于预定义时间间隔时,可以将预定义时间间隔转化为符号个数,再与实际时间间隔的符号数进行比较。
其中,将预定义时间间隔转化为符号个数的方法可以为:预定义时间间隔的符号个数
Figure PCTCN2020078304-appb-000004
第二种情况:预定义时间间隔为Y个符号,Y为大于0的整数。
在第二种情况下,预定义时间间隔为一个相对值。预定义时间间隔的长短随着单个符号的时间长度变化。
在第二种情况下,终端可以直接确定预定义时间间隔的符号个数。终端判断实际时间间隔是否小于预定义时间间隔时,可以将预定义时间间隔的符号数与实际时间间隔的符号 数进行比较。
第三种情况:预定义时间间隔与子载波间隔对应。
在第三种情况下,终端可以根据当前子载波间隔确定预定义时间间隔。与子载波间隔对应的预定义时间间隔可以为若干微秒,也可以为若干个符号。预定义时间间隔与子载波间隔之间的对应关系可以为预配置的或协议规定的。
示例性的,表4示例性的示出了预定义时间间隔与子载波间隔之间的一种可能的对应关系。其中,A1、B1、C1和D1四个参数中的任意两个参数的值可以相同,也可以不同。A2、B2、C2和D2四个参数中的任意两个参数的值可以相同,也可以不同,本申请实施例对此不作具体限定。
表4
SCS 预定义时间间隔
15kHz A1微秒或A2个符号
30kHz B1微秒或B2个符号
60kHz C1微秒或C2个符号
120kHz D1微秒或D2个符号
需要说明的是,假设终端的AGC响应时间为x微秒,x微秒是子载波间隔配置为15KHz下一个符号的时间长度的4分之一。假如通信系统只有一个确定的AGC响应时间,那么为了兼顾15KHz下通信系统的运作,预定义时间间隔只能按照4*x微秒(即子载波间隔配置为15KHz下一个符号的时间长度)来设置。该情况下,当子载波间隔配置为240KHz时,预定义时间间隔相当于占用16个符号,会造成通信资源的浪费。
而第三种情况下,可以让预定义时间间隔随子载波间隔变化,则可以在不同的子载波间隔配置下取最短的时延。例如,15KHz下,1个OFDM符号,240KHz下,按照实际x微秒换算,只要4个OFDM符号就可以满足AGC响应时延,相比于上面16个大大缩短。这样可以满足URLLC业务的低时延要求。
第四种情况:预定义时间间隔与终端的类型对应。
其中,不同类型的终端可以是指不同的生产厂商的终端、不同成本的终端等。
未来通信系统支持终端的多样性,AGC电路作为一个前端电路,也可能在技术演进的过程中分化出不同成本和不同性能表现(即相应时延)。因此,不同类型的终端中的AGC电路的响应时间可能不同。例如,低成本终端中的AGC电路的响应时间可能较长,高成本终端中的AGC电路的响应时间可能较短,甚至可调。因此,预定义时间间隔可以与终端的类型对应。
在第四种情况下,该方法还可以包括:
11)网络设备向终端发送用户能力查询请求消息。相应的,终端接收用户能力查询请求消息。用户能力查询请求消息用于请求终端的能力信息。
12)终端向网络设备发送用户能力查询响应消息。相应的,网络设备从终端接收用户能力查询响应消息。用户能力查询响应消息中包括终端的能力信息,终端的能力信息中包括用于指示预定义时间间隔或终端的AGC响应时间的信息。
上述预设条件包括以下条件1至条件3中的一个或多个。
条件1、预定义时间间隔与第二PDSCH的符号长度的比值小于或等于第一预设阈值。
条件2、预定义时间间隔和实际时间间隔之间的差值与第二PDSCH的符号长度的比值小于或等于第二预设阈值。
条件3、第二PDSCH的码率小于或等于第三预设阈值。
其中,第一预设阈值、第二预设阈值和第三预设阈值可以根据实际的应用场景确定。示例性的,第一预设阈值可以为0.3。第二预设阈值可以为0.2。第三预设阈值可以为0.3。
参见图9,当第一PDSCH的结束符号与第二PDSCH的起始符号之间间隔3个符号,而AGC响应时间为4个符号时,第二PDSCH中的第一个符号(即符号#9)上承载的数据可能由于不满足AGC响应时间而失真,但是其他符号上承载的数据没有影响。当第二PDSCH中的受AGC的响应时间影响的部分较少时,终端有可能通过编码纠错将受影响的部分解出来。当第二PDSCH中的受AGC的响应时间影响的部分较多时,终端无法正确的解码第二PDSCH。
当第二PDSCH满足上述条件1至条件3中的一个或多个条件时,认为第二PDSCH中的受AGC的响应时间影响的部分较少。此时,终端可以正常接收第二PDSCH。否则,终端可以不接收第二PDSCH。
实施例一提供的方法,在终端侧,预定义一个时间间隔,终端可以根据该预定义时间间隔确定是否接收第二PDSCH。由于AGC响应时间的影响,在不满足上述预设条件的情况下,终端很可能无法解码第二PDSCH,则终端跳过第二PDSCH的接收,提高终端的接收效率。从而最大限度地减少AGC响应时间对终端的数据接收带来的影响,提升终端整体的接收效率和性能。
由于在一些通信场景下比较容易出现两个PDSCH的调度不满足AGC的响应时间的要求的情况。因此,终端可以在某些场景下执行上述方法,示例性的,终端可以在场景1至场景3中的一个或多个场景下执行上述方法。
场景1、第一PDSCH和第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
在场景1下,终端可以根据上述DCI的调度确定第一PDSCH和第二PDSCH的映射类型。
场景2、第一PDSCH和第二PDSCH所占用的符号位于同一个时隙。
在场景2下,终端可以根据上述DCI的调度确定第一PDSCH和第二PDSCH所占用的符号,进而判断第一PDSCH和第二PDSCH是否位于同一个时隙。
场景3、第一PDSCH和第二PDSCH对应相同的信息比特。
第一PDSCH和第二PDSCH对应相同的信息比特是指第一PDSCH和第二PDSCH对应的码字在编码前的传输块或码块包含相同的信息比特。
在场景3下,为了满足低时延高可靠性要求,终端在重复传输场景下需要考虑预定义时间间隔。
终端可以通过网络设备的显示配置确定当前是否为重复传输场景。具体的,终端可以通过高层信令获知当前是否为重复传输场景。例如,通信协议可能会针对URLLC下的重复传输场景配置一个高层信令(例如,RRC信令),该高层信令中可以包含参数PDSCHRepetitionFactor,该参数配置为ON/OFF,或,具体的重复次数。当该信令为ON 或重复次数配置为大于1时,终端根据该参数确定当前场景为重复传输场景。
终端也可以通过与其他的参数默认绑定关系来判断当前是否为重复传输场景,例如,第一PDSCH和第二PDSCH关联不同RV或不同扰码或不同调制阶数时,终端确定处于重复传输场景。
终端还可以通过其他方式确定当前是否为重复传输场景。本申请实施例对此不作具体限定。
预定义时间间隔对终端的接收行为有一定的限制,在可靠性不敏感的应用场景中,可能这种不必要的限制反而会影响实际的通信效率。因此,通过添加适用场景,可以将这种影响限制在重要的有针对性的场景下。
需要说明的是,场景1至场景3仅用于对执行上述方法的场景作示例性说明。随着子载波间隔配置的变化,若分别在两个时隙中调度的PDSCH之间的时间间隔也无法满足AGC的响应时间的要求时,终端也需要执行上述方法。具体可以根据实际的应用场景确定。
可选的,在步骤701之前,参见图10,上述方法包括:
700a、第一TRP向终端发送第一PDSCH。
700b、第二TRP向终端发送第二PDSCH。
该情况下,步骤701在具体实现时可以包括:终端从第一TRP接收第一PDSCH,从第二TRP接收第二PDSCH。
其中,第一TRP和第二TRP可以为以下情况中的任意一种情况。
情况1、第一TRP和第二TRP为不同的TRP。
在情况1下,第一种可能的实现方式,第一TRP和第二TRP为不同的基站。此时,第一TRP和第二TRP可以各自通过DCI调度PDSCH。例如,第一TRP通过第一DCI调度第一PDSCH,第二TRP通过第二DCI调度第二PDSCH。
在情况1下,第二种可能的实现方式,第一TRP和第二TRP为同一个基站的不同的天线面板。此时,该基站可以通过DCI调度第一PDSCH和第二PDSCH,并通过第一TRP和第二TRP发送给终端。
在情况1下,第三种可能的实现方式,第一TRP和第二TRP中,一个TRP可以为一个基站(记为第一基站),另一个TRP为另一个基站(记为第二基站)的天线面板。该情况下,这两个基站可以各自通过DCI调度PDSCH。例如,第一基站调度第一PDSCH,并向终端发送第一PDSCH,第二基站调度第二PDSCH,并通过TRP(即天线面板)向终端发送第二PDSCH。
情况2、第一TRP和第二TRP为同一个TRP。
在情况2下,第一TRP和第二TRP可以为一个基站或一个基站的一个天线面板。
在情况2下,第一PDSCH和第二PDSCH可以为一个TRP通过不同的波束发送的两个PDSCH。
可选的,第一PDSCH和第二PDSCH对应相同的信息比特。也就是说,第一PDSCH和第二PDSCH为同一个数据的两次重复传输。该情况下,在步骤701之后,可选的,该方法还包括:终端对第一PDSCH和第二PDSCH分别进行处理得到软信息,并对得到的软信息进行软合并。该方法可以提升数据传输的可靠性,提高数据解码成功率。
实施例一中,对第一TRP和第二TRP调度数据的方式不作限定。
实施例二
本申请实施例提供了一种数据发送方法,如图11所示,该方法包括:
1101、第一TRP发送第一PDSCH。
1102、第二TRP发送第二PDSCH。
其中,关于第一TRP和第二TRP的相关描述可参见实施例一,在此不再赘述。
其中,参见图12,第二PDSCH的发送时刻晚于第一PDSCH的发送时刻,第二PDSCH所占用符号中的起始符号与第一PDSCH所占用符号中的结束符号之间的时间间隔大于或等于预定义时间间隔。需要说明的是,第二TRP在对第二PDSCH进行调度时,需要根据预定义时间间隔进行调度,即调度的第二PDSCH所占用符号中的起始符号与第一PDSCH所占用符号中的结束符号之间的时间间隔要大于或等于预定义时间间隔。
第一PDSCH和第二PDSCH关联的空间信息不同。
空间信息的具体含义可参考上文。更为具体的,通信系统中空间信息可通过DCI中的TCI进行指示。在DCI中的传输指示域中,指示一个TCI state ID(传输配置指示状态序号),该TCI state ID可以关联一个QCL信息,具体可参考现有技术。
可选的,第一PDSCH和第二PDSCH由同一个DCI调度,或者,第一PDSCH和第二PDSCH分别由不同的DCI调度。
示例性的,通过同一个DCI调度第一PDSCH和第二PDSCH时,该DCI可以指示一个PDSCH时域资源的组合,该组合中的第二PDSCH所占用符号中的起始符号与第一PDSCH所占用符号中的结束符号之间的时间间隔需要大于或等于预定义时间间隔。示例性的,假设预定义时间间隔为1个符号,参见表5,DCI可以指示索引为5的PDSCH时域资源的组合。该情况下,该DCI调度的第一PDSCH和第二PDSCH占用的符号可参见图13。
表5
索引 PDSCH时域资源的组合
5 PDSCH mapping type B,S=2,L=2&PDSCH mapping type B,S=5,L=2
示例性的,通过不同的DCI调度第一PDSCH和第二PDSCH时,一个DCI可以指示第一PDSCH的时域资源,另一个DCI可以指示第二PDSCH时域资源。第二PDSCH所占用符号中的起始符号与第一PDSCH所占用符号中的结束符号之间的时间间隔需要大于或等于预定义时间间隔。示例性的,假设预定义时间间隔为1个符号,参见表6,一个DCI可以指示索引为3的PDSCH时域资源,另一个DCI可以指示索引为7的PDSCH时域资源。该情况下,两个DCI调度的第一PDSCH和第二PDSCH占用的符号也可参见图13。
表6
索引 PDSCH时域资源
3 PDSCH mapping type B,S=2,L=2
7 PDSCH mapping type B,S=5,L=2
需要说明的是,表5和表6可以为网络设备在某个在先时刻通过RRC信令(例如,RRC信令中的PDSCH_config信息单元中的PDSCH_TimeDomainAllocationList)或MAC CE信令配置给终端的,后续网络设备仅需要通过DCI(例如,DCI中的Time domain resource assignment域)指示上述表格中的一项或多项,为终端分配PDSCH占用的符号。
预定义时间间隔可以根据终端的AGC响应时间或实际的通信场景确定(例如,根据业务需要满足的时延确定),也可以结合AGC响应时间和实际的通信场景确定。预定义时间间隔还可以为预配置的或协议规定的。预定义时间间隔在未来通信协议中也可以表述为“最小调度时间间隔”,“波束切换时延”,“数据调度时域偏差(offset)”等相同技术本质的术语。下文中以预定义时间间隔根据AGC响应时间确定为例对预定义时间间隔的取值进行说明。
关于预定义时间间隔的取值,可以有以下4种情况。
第一种情况:预定义时间间隔为Xus,X大于0。X的时间单位也可以为其他,例如,毫秒(ms),秒(s)等,本申请实施例中以us为例进行说明。
在第一种情况下,预定义时间间隔为一个固定值。该情况下,示例性的,X微秒可以为AGC响应时间。随着硬件能力的提升,AGC的响应时间如果可以做到更短。那么X的值也可以相应减小。
在第一种情况下,第二TRP在调度第二PDSCH时,可以直接确定预定义时间间隔。在具体实现时,第二TRP可以将预定义时间间隔转化为符号个数,再根据该符号个数调度第二PDSCH。
其中,将预定义时间间隔转化为符号个数的方法可以为:预定义时间间隔的符号个数
Figure PCTCN2020078304-appb-000005
第二种情况:预定义时间间隔为Y个符号,Y为大于0的整数。
在第二种情况下,预定义时间间隔为一个相对值。预定义时间间隔的长短随着单个符号的时间长度变化。
在第二种情况下,若在最大子载波间隔配置下,AGC的响应时间也不会超过1个符号的时间长度,则可以直接预配置或在协议中约定预定义时间间隔为1个符号。
在第二种情况下,第二TRP可以直接确定预定义时间间隔的符号个数,并根据该符号个数调度第二PDSCH。
第三种情况:预定义时间间隔与子载波间隔对应。
在第三种情况下,第二TRP可以根据当前子载波间隔确定预定义时间间隔。与子载波间隔对应的预定义时间间隔可以为若干微秒,也可以为若干个符号。预定义时间间隔与子载波间隔之间的对应关系可以为预配置的或协议规定的。
预定义时间间隔与子载波间隔之间的一种可能的对应关系的一个示例可参见实施例一中的表4。
需要说明的是,假设终端的AGC响应时间为x微秒,x微秒是子载波间隔配置为15KHz下一个符号的时间长度的4分之一。假如通信系统只有一个确定的AGC响应时间,那么为了兼顾15KHz下通信系统的运作,预定义时间间隔只能按照4*x微秒(即子载波间隔配 置为15KHz下一个符号的时间长度)来设置。该情况下,当子载波间隔配置为240KHz时,预定义时间间隔相当于占用16个符号,会造成通信资源的浪费。
而第三种情况下,可以让预定义时间间隔随子载波间隔变化,则可以在不同的子载波间隔配置下取最短的时延。例如,15KHz下,1个OFDM符号,240KHz下,按照实际x微秒换算,只要4个OFDM符号就可以满足AGC响应时延,相比于上面16个大大缩短。这样可以满足URLLC业务的低时延要求。第四种情况:预定义时间间隔与终端的类型对应。
其中,不同类型的终端可以是指不同的生产厂商的终端、不同成本的终端等。
未来通信系统支持终端的多样性,AGC电路作为一个前端电路,也可能在技术演进的过程中分化出不同成本和不同性能表现(即相应时延)。因此,不同类型的终端中的AGC电路的响应时间可能不同。例如,低成本终端中的AGC电路的响应时间可能较长,高成本终端中的AGC电路的响应时间可能较短,甚至可调。因此,预定义时间间隔可以与终端的类型对应。
在第四种情况下,参见图14,上述方法还可以包括:
(11)第二TRP向终端发送用户能力查询请求消息。相应的,终端接收用户能力查询请求消息。用户能力查询请求消息用于请求终端的能力信息;
(12)终端向第二TRP发送用户能力查询响应消息。相应的,网络设备从终端接收用户能力查询响应消息。用户能力查询响应消息中包括终端的能力信息,终端的能力信息中包括用于指示预定义时间间隔或终端的AGC响应时间的信息。
1103、终端从第一TRP接收第一PDSCH。
1104、终端从第二TRP接收第二PDSCH。
步骤1103和步骤1104的执行顺序不分先后。实施例二中,对终端接收第一PDSCH和第二PDSCH的方式不作限定,终端可以直接在第一TRP和/或第二TRP配置的时域资源上接收第一PDSCH和第二PDSCH,也可以采用实施例一所示的方法接收第一PDSCH和第二PDSCH。
实施例二提供的方法,由于第一PDSCH和第二PDSCH关联不同的空间信息。因此,终端接收第一PDSCH和第二PDSCH时可能存在较大的信号接收功率差。如果第二PDSCH占用的符号中的起始符号与第一PDSCH占用的符号中的结束符号之间相邻,则AGC电路可能无法及时的进行功率调整从而造成信号失真。实施例二提供的方法中,第二PDSCH占用的时域资源的起始符号与第一PDSCH占用的时域资源的结束符号之间存在一个预定义时间间隔。通过合理的配置预定义时间间隔,可以使得预定义时间间隔满足AGC电路的响应时间,从而保证AGC电路及时的进行功率调整,避免信号失真,提高终端的接收效率。
由于在一些通信场景下,比较容易出现需要调度两个连续的PDSCH的情况,从而使得PDSCH占用的符号之间的时间间隔不满足AGC的响应时间的要求。因此,第二TRP可以在某些场景下根据预定义时间间隔调度第二PDSCH,示例性的,第二TRP可以在场景1和场景2中的一个或多个场景下执行上述方法。
场景1、第一PDSCH和第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
在场景1下,终端可以根据上述DCI的调度确定第一PDSCH和第二PDSCH的映射类型。
场景2、第一PDSCH和第二PDSCH对应相同的信息比特。
第一PDSCH和第二PDSCH对应相同的信息比特是指第一PDSCH和第二PDSCH对应的码字在编码前的传输块或码块包含相同的信息比特。
在场景2下,需要说明的是,第二TRP可能会在URLLC下的重复传输场景下根据预定义时间间隔调度第二PDSCH,以满足URLLC的高时延高可靠性要求。
预定义时间间隔对第二TRP的接收行为有一定的限制,在可靠性不敏感的应用场景中,可能这种不必要的限制反而会影响实际的通信效率。因此,通过添加适用场景,可以将这种影响限制在重要的有针对性的场景下。
需要说明的是,场景1和场景2仅用于对执行上述方法的场景作示例性说明。随着子载波间隔配置的变化,若分别在两个时隙中调度的PDSCH之间的时间间隔也无法满足AGC的响应时间的要求时,第二TRP都需要根据预定义时间间隔调度第二PDSCH。
可选的,第一PDSCH和第二PDSCH对应相同的信息比特。该情况下,在步骤1104之后,可选的,该方法还包括:终端对第一PDSCH和第二PDSCH分别进行处理得到软信息,并对得到的软信息进行软合并。该方法可以提升数据传输的可靠性,提高数据解码成功率。
本申请提供的方法适用于多个TRP的多点协作传输场景中,每个TRP都可采用类似上述第一TRP或第二TRP调度下行数据的方法进行下行数据的调度。为了方便描述,本申请上述实施例一和实施例二以2个TRP与终端通信为例对本申请提供的方法作示例性说明。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,TRP和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对TRP和终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的通信装置(记为通信装置150)的一种可能的结构示意图,该通信装置150包括处理单元1501和通信单元1502,还可以包括存储单元1503。图15所示的结构示意图可以用于示意上述实施例中所涉及的TRP和终端的结构。
当图15所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理单元1501用于对终端的动作进行控制管理,例如,处理单元1501用于支持终端执行图7和图10中的701和702,图11中的1103和1104,图14中的(11)和(12),和/或本申请实施 例中所描述的其他过程中的终端执行的动作。处理单元1501可以通过通信单元1502与其他网络实体通信,例如,与图10中示出的第一TRP和第二TRP通信。存储单元1503用于存储终端的程序代码和数据。
当图15所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,通信装置150可以是终端,也可以是终端内的芯片。
当图15所示的结构示意图用于示意上述实施例中所涉及的TRP的结构时,处理单元1501用于对TRP的动作进行控制管理,例如,处理单元1501用于支持TRP执行图10中的700a(此时,TRP为第一TRP)和700b(此时,TRP为第二TRP),图11中的1101(此时,TRP为第一TRP)和1102(此时,TRP为第二TRP),图14中的(11)和(12),和/或本申请实施例中所描述的其他过程中的TRP执行的动作。处理单元1501可以通过通信单元1502与其他网络实体通信,例如,与图10中示出的终端通信。存储单元1503用于存储TRP的程序代码和数据。
当图15所示的结构示意图用于示意上述实施例中所涉及的TRP的结构时,通信装置150可以是TRP,也可以是TRP内的芯片。
其中,当通信装置150为终端或TRP时,处理单元1501可以是处理器或控制器,通信单元1502可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元1503可以是存储器。当通信装置150为终端或TRP内的芯片时,处理单元1501可以是处理器或控制器,通信单元1502可以是输入/输出接口、管脚或电路等。存储单元1503可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是终端或TRP内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
其中,通信单元也可以称为收发单元。通信装置150中的具有收发功能的天线和控制电路可以视为通信装置150的通信单元1502,具有处理功能的处理器可以视为通信装置150的处理单元1501。可选的,通信单元1502中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元1502中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
图15中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者TRP等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,简称ROM)、随机存取存储器(random access memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图15中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种通信装置(记为通信装置160)的硬件结构示意图,参见图16或图17,该通信装置160包括处理器1601,可选的,还包括与处理器1601连接的存储器1602。
处理器1601可以是一个通用中央处理器(central processing unit,简称CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,简称ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器1601也可以包括多个CPU,并且处理器1601可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器1602可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,简称EEPROM)、只读光盘(compact disc read-only memory,简称CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器1602可以是独立存在,也可以和处理器1601集成在一起。其中,存储器1602中可以包含计算机程序代码。处理器1601用于执行存储器1602中存储的计算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图16,通信装置160还包括收发器1603。处理器1601、存储器1602和收发器1603通过总线相连接。收发器1603用于与其他设备或通信网络通信。可选的,收发器1603可以包括发射机和接收机。收发器1603中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器1603中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
基于第一种可能的实现方式,图16所示的结构示意图可以用于示意上述实施例中所涉及的TRP或终端的结构。
当图16所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器1601用于对终端的动作进行控制管理,例如,处理器1601用于支持终端执行图7和图10中的701和702,图11中的1103和1104,图14中的(11)和(12),和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理器1601可以通过收发器1603与其他网络实体通信,例如,与图10中示出的第一TRP和第二TRP通信。存储器1602用于存储终端的程序代码和数据。
当图16所示的结构示意图用于示意上述实施例中所涉及的TRP的结构时,处理器1601用于对TRP的动作进行控制管理,例如,处理器1601用于支持TRP执行图10中的700a(此时,TRP为第一TRP)和700b(此时,TRP为第二TRP),图11中的1101(此时,TRP为第一TRP)和1102(此时,TRP为第二TRP),图14中的(11)和(12),和/或本申请实施例中所描述的其他过程中的TRP执行的动作。处理器1601可以通过收发器1603与其他网络实体通信,例如,与图10中示出的终端通信。存储器1602用于存储TRP的程序代码和数据。
在第二种可能的实现方式中,处理器1601包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图17,图17所示的结构示意图可以用于示意上述实施例中所涉及的TRP或终端的结构。
当图17所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器1601用于对终端的动作进行控制管理,例如,处理器1601用于支持终端执行图7和图10中的701和702,图11中的1103和1104,图14中的(11)和(12),和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理器1601可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图10中示出的第一TRP和第二TRP通信。存储器1602用于存储终端的程序代码和数据。
当图17所示的结构示意图用于示意上述实施例中所涉及的TRP的结构时,处理器1601用于对TRP的动作进行控制管理,例如,处理器1601用于支持TRP执行图10中的700a(此时,TRP为第一TRP)和700b(此时,TRP为第二TRP),图11中的1101(此时,TRP为第一TRP)和1102(此时,TRP为第二TRP),图14中的(11)和(12),和/或本申请实施例中所描述的其他过程中的TRP执行的动作。处理器1601可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,例如,与图10中示出的终端通信。存储器1602用于存储TRP的程序代码和数据。
另外,本申请实施例还提供了一种终端(记为终端180)和TRP(记为TRP190)的硬件结构示意图,具体可分别参见图18和图19。
图18为终端180的硬件结构示意图。为了便于说明,图18仅示出了终端的主要部件。如图18所示,终端180包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如,用于控制终端执行图7和图10中的701和702,图11中的1103和1104,图14中的(11)和(12),和/或本申请实施例中所描述的其他过程中的终端执行的动作。存储器主要用于存储软件程序和数据。控制电路(也可以称为射频电路)主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过天线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路中的控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图18仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图18中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器, 通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
图19为TRP190的硬件结构示意图。TRP190可包括一个或多个射频单元,如远端射频单元(remote radio unit,简称RRU)1901和一个或多个基带单元(baseband unit,简称BBU)(也可称为数字单元(digital unit,简称DU))1902。
该RRU1901可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1911和射频单元1912。该RRU1901部分主要用于射频信号的收发以及射频信号与基带信号的转换。该RRU1901与BBU1902可以是物理上设置在一起,也可以物理上分离设置的,例如,分布式基站。
该BBU1902为TRP的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一个实施例中,该BBU1902可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。该BBU1902还包括存储器1921和处理器1922,该存储器1921用于存储必要的指令和数据。该处理器1922用于控制TRP进行必要的动作。该存储器1921和处理器1922可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图19所示的TRP190能够执行图10中的700a(此时,TRP为第一TRP)和700b(此时,TRP为第二TRP),图11中的1101(此时,TRP为第一TRP)和1102(此时,TRP为第二TRP),图14中的(11)和(12),和/或本申请实施例中所描述的其他过程中的TRP执行的动作。TRP190中的各个模块的操作,功能,或者,操作和功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。图18和图19中的关于处理器的其他描述可参见图16和图17中的与处理器相关的描述,不再赘述。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:上述TRP和终端。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程 序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (35)

  1. 一种数据接收方法,其特征在于,包括:
    终端接收第一物理下行共享信道PDSCH和第二PDSCH,所述第一PDSCH的发送时刻早于所述第二PDSCH的发送时刻,所述第一PDSCH和所述第二PDSCH所关联的空间信息不同;
    在所述第一PDSCH和所述第二PDSCH之间的实际时间间隔小于预定义时间间隔的情况下,当且仅当满足预设条件时,所述终端接收所述第二PDSCH,所述实际时间间隔是指所述第一PDSCH所占用符号中的结束符号和所述第二PDSCH所占用符号中的起始符号之间的时间间隔;
    所述预设条件包括以下条件中的一个或多个:所述预定义时间间隔与所述第二PDSCH的符号长度的比值小于或等于第一预设阈值;所述预定义时间间隔和所述实际时间间隔之间的差值与所述第二PDSCH的符号长度的比值小于或等于第二预设阈值;所述第二PDSCH的码率小于或等于第三预设阈值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一PDSCH和所述第二PDSCH通过同一个下行控制信息DCI调度;或者,所述第一PDSCH和所述第二PDSCH通过不同的DCI调度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预定义时间间隔为X微秒,X大于0;或者,所述预定义时间间隔为Y个符号,Y为大于0的整数。
  4. 根据权利要求1或2所述的方法,其特征在于,所述预定义时间间隔与子载波间隔对应。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一PDSCH和所述第二PDSCH对应相同的信息比特。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一PDSCH和所述第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一PDSCH和所述第二PDSCH所占用的符号位于同一个时隙。
  8. 一种数据发送方法,其特征在于,包括:
    第二传输接收点TRP发送第二物理下行共享信道PDSCH,所述第二PDSCH的发送时刻晚于第一PDSCH的发送时刻,所述第二PDSCH所占用符号中的起始符号与所述第一PDSCH所占用符号中的结束符号之间的时间间隔大于或等于预定义时间间隔,所述第一PDSCH和所述第二PDSCH所关联的空间信息不同。
  9. 根据权利要求8所述的方法,其特征在于,所述第一PDSCH和所述第二PDSCH通过同一个下行控制信息DCI调度;或者,所述第一PDSCH和所述第二PDSCH通过不同的DCI调度。
  10. 根据权利要求8或9所述的方法,其特征在于,所述预定义时间间隔为X微秒,X大于0;或者,所述预定义时间间隔为Y个符号,Y为大于0的整数。
  11. 根据权利要求8或9所述的方法,其特征在于,所述预定义时间间隔与子载波间隔对应。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述第一PDSCH和所述第二PDSCH对应相同的信息比特。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述第一PDSCH和所述第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
  14. 一种数据接收装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,用于通过所述通信单元接收第一物理下行共享信道PDSCH和第二PDSCH,所述第一PDSCH的发送时刻早于所述第二PDSCH的发送时刻,所述第一PDSCH和所述第二PDSCH所关联的空间信息不同;
    在所述第一PDSCH和所述第二PDSCH之间的实际时间间隔小于预定义时间间隔的情况下,当且仅当满足预设条件时,所述处理单元,还用于通过所述通信单元接收所述第二PDSCH,所述实际时间间隔是指所述第一PDSCH所占用符号中的结束符号和所述第二PDSCH所占用符号中的起始符号之间的时间间隔;
    所述预设条件包括以下条件中的一个或多个:所述预定义时间间隔与所述第二PDSCH的符号长度的比值小于或等于第一预设阈值;所述预定义时间间隔和所述实际时间间隔之间的差值与所述第二PDSCH的符号长度的比值小于或等于第二预设阈值;所述第二PDSCH的码率小于或等于第三预设阈值。
  15. 根据权利要求14所述的装置,其特征在于,所述第一PDSCH和所述第二PDSCH通过同一个下行控制信息DCI调度;或者,所述第一PDSCH和所述第二PDSCH通过不同的DCI调度。
  16. 根据权利要求14或15所述的装置,其特征在于,所述预定义时间间隔为X微秒,X大于0;或者,所述预定义时间间隔为Y个符号,Y为大于0的整数。
  17. 根据权利要求14或15所述的装置,其特征在于,所述预定义时间间隔与子载波间隔对应。
  18. 根据权利要求14-17任一项所述的装置,其特征在于,所述第一PDSCH和所述第二PDSCH对应相同的信息比特。
  19. 根据权利要求14-18任一项所述的装置,其特征在于,所述第一PDSCH和所述第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
  20. 根据权利要求14-19任一项所述的装置,其特征在于,所述第一PDSCH和所述第二PDSCH所占用的符号位于同一个时隙。
  21. 一种数据发送装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,通过所述通信单元发送第二物理下行共享信道PDSCH,所述第二PDSCH的发送时刻晚于第一PDSCH的发送时刻,所述第二PDSCH所占用符号中的起始符号与所述第一PDSCH所占用符号中的结束符号之间的时间间隔大于或等于预定义时间间隔,所述第一PDSCH和所述第二PDSCH所关联的空间信息不同。
  22. 根据权利要求21所述的装置,其特征在于,所述第一PDSCH和所述第二PDSCH通过同一个下行控制信息DCI调度;或者,所述第一PDSCH和所述第二PDSCH通过不同的DCI调度。
  23. 根据权利要求21或22所述的装置,其特征在于,所述预定义时间间隔为X微秒,X大于0;或者,所述预定义时间间隔为Y个符号,Y为大于0的整数。
  24. 根据权利要求21或22所述的装置,其特征在于,所述预定义时间间隔与子载波间隔对应。
  25. 根据权利要求21-24任一项所述的装置,其特征在于,所述第一PDSCH和所述第二PDSCH对应相同的信息比特。
  26. 根据权利要求21-25任一项所述的装置,其特征在于,所述第一PDSCH和所述第二PDSCH中的一个PDSCH的映射类型为类型A或类型B,另一个PDSCH的映射类型为类型B。
  27. 一种数据接收装置,其特征在于,包括:处理器;
    所述处理器与存储器连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置实现如权利要求1-7任一项所述的方法。
  28. 一种数据发送装置,其特征在于,包括:处理器;
    所述处理器与存储器连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置实现如权利要求8-13任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-7任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求8-13任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,包括指令,当该指令在计算机上运行时,使得计算机执行如权利要求1-7任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,包括指令,当该指令在计算机上运行时,使得计算机执行如权利要求8-13任一项所述的方法。
  33. 一种芯片,其特征在于,包括:处理器和接口,所述处理器通过所述接口与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,使得如权利要求1-7任一项所述的方法被执行。
  34. 一种芯片,其特征在于,包括:处理器和接口,所述处理器通过所述接口与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,使得如权利要求8-13任一项所述的方法被执行。
  35. 一种通信系统,其特征在于,包括:权利要求14-20任一项所述的数据接收装置,和/或,权利要求21-26任一项所述的数据发送装置。
PCT/CN2020/078304 2019-03-29 2020-03-06 数据接收和发送方法及装置 WO2020199853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253505.1 2019-03-29
CN201910253505.1A CN111757351B (zh) 2019-03-29 2019-03-29 数据接收和发送方法及装置

Publications (1)

Publication Number Publication Date
WO2020199853A1 true WO2020199853A1 (zh) 2020-10-08

Family

ID=72664910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078304 WO2020199853A1 (zh) 2019-03-29 2020-03-06 数据接收和发送方法及装置

Country Status (2)

Country Link
CN (1) CN111757351B (zh)
WO (1) WO2020199853A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115915426A (zh) * 2021-08-06 2023-04-04 华为技术有限公司 一种资源调度的方法与通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171418A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 功率控制方法、终端和网络设备
CN109391424A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种数据发送方法、设备及系统
CN109474403A (zh) * 2017-09-08 2019-03-15 电信科学技术研究院 一种传输方法、装置、终端、基站及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9451601B2 (en) * 2010-04-30 2016-09-20 Interdigital Patent Holdings, Inc. Method for multiplexing data for multiple wireless transmit/receive units for high speed downlink channels
CN103404188B (zh) * 2012-12-27 2017-06-16 华为技术有限公司 频谱资源共享方法及基站
US9451625B2 (en) * 2013-09-19 2016-09-20 Telefonaktiebolaget Lm Ericsson (Publ) System and method for providing interference characteristics for interference mitigation
KR102169260B1 (ko) * 2017-09-08 2020-10-26 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 빔 포밍 전송을 고려한 무허가 스펙트럼에서의 채널 사용 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171418A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 功率控制方法、终端和网络设备
CN109391424A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种数据发送方法、设备及系统
CN109474403A (zh) * 2017-09-08 2019-03-15 电信科学技术研究院 一种传输方法、装置、终端、基站及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA; NOKIA SHANGHAI BELL: "Enhancements on Multi-TRP/Panel Transmission", 3GPP DRAFT; R1-1813489, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 18, XP051479828 *

Also Published As

Publication number Publication date
CN111757351A (zh) 2020-10-09
CN111757351B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2020220849A1 (zh) 数据接收和发送方法及装置
US11082103B2 (en) Apparatus and method for beam management in wireless communication system
US20220069867A1 (en) Communication method, communications apparatus, network device, and terminal
US20210091900A1 (en) Communication method and communications apparatus
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
CN110089046B (zh) 毫米波wlan的多维波束细化过程和信令
WO2020215981A1 (zh) 辅小区激活方法和装置
CN108809370B (zh) 用于使用无线网络中的多个频带进行通信的系统
US11240794B2 (en) Method for indicating PDSCH receiving information, data receiving method, and apparatus
KR20220097490A (ko) Ptrs-dmrs 포트 연관
WO2021063372A1 (zh) 一种资源确定方法及装置
WO2023051188A1 (zh) 分组管理方法和通信装置
US11075674B2 (en) Method, system and apparatus
CN116783840A (zh) 对多trp场景中波束组报告的增强
WO2022027518A1 (zh) 上行数据的发送方法、装置和系统
WO2022027515A1 (zh) 上行控制信息的发送方法、装置和系统
WO2020199853A1 (zh) 数据接收和发送方法及装置
US11683789B2 (en) Information indication method and apparatus
US20220209833A1 (en) Method and network device for rank selection
WO2022027509A1 (zh) 上行数据的发送方法、装置和系统
WO2021062795A1 (zh) 一种通信方法及装置
WO2024016837A1 (zh) 一种通信方法及装置
WO2023206303A1 (zh) 转发器及其传输方法、网络设备和通信系统
US20210337524A1 (en) Data transmission method and apparatus
WO2023088114A1 (zh) 波束恢复方法、波束失败检测方法以及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782320

Country of ref document: EP

Kind code of ref document: A1