WO2018171418A1 - 功率控制方法、终端和网络设备 - Google Patents

功率控制方法、终端和网络设备 Download PDF

Info

Publication number
WO2018171418A1
WO2018171418A1 PCT/CN2018/078080 CN2018078080W WO2018171418A1 WO 2018171418 A1 WO2018171418 A1 WO 2018171418A1 CN 2018078080 W CN2018078080 W CN 2018078080W WO 2018171418 A1 WO2018171418 A1 WO 2018171418A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmit power
network device
power control
uplink channel
Prior art date
Application number
PCT/CN2018/078080
Other languages
English (en)
French (fr)
Inventor
窦圣跃
王婷
任海豹
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710687604.1A external-priority patent/CN108632971A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18772580.9A priority Critical patent/EP3585111B1/en
Publication of WO2018171418A1 publication Critical patent/WO2018171418A1/zh
Priority to US16/579,568 priority patent/US11134447B2/en
Priority to US17/465,490 priority patent/US11832191B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present application relates to the field of communications, and more particularly to a power control method, terminal, and network device.
  • NR new radio access technology
  • CoMP coordinated multiple point
  • data may be sent to the base station of the serving cell and the base station of the coordinated cell through the uplink channel, or the uplink control information (UCI) may be reported.
  • the UCI may be, for example, information such as channel state information (CSI), acknowledgement (ACK), and negative acknowledgement (NACK).
  • CSI channel state information
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the method of reporting the CSI by using the air interface may be considered. That is, the terminal measures the CSI1 between the terminal and the base station of the serving cell and the CSI2 of the base station between the terminal and the coordinated cell through a physical uplink control channel (PUCCH) or a physical uplink shared channel (physical uplink).
  • the shared channel (PUSCH) is respectively fed back to the base station of the serving cell and the base station of the coordinated cell.
  • the terminal may report one PUCCH or one PUSCH with a certain transmit power, where the PUCCH or the PUSCH includes both the CSI1 of the base station of the serving cell and the CSI2 of the base station of the coordinated cell. It is also possible for the terminal to report one PUCCH or PUSCH with a certain transmission power for each base station.
  • the uplink power control is required regardless of the manner in which the terminal reports.
  • the terminal reports UCI or sends uplink data through the uplink channel how to perform the transmission power control of the uplink channel becomes an urgent problem to be solved.
  • the present application provides a power control method, a terminal, and a network device, which can determine an uplink channel transmit power according to multiple transmit power control commands, thereby ensuring efficient and reasonable power allocation and improving overall system performance.
  • the first aspect provides a power control method, including: receiving, by a terminal, at least one downlink control information (DCI) sent by at least one network device, where the at least one DCI includes at least two transmit power control commands; And determining uplink transmit power in the same carrier according to the at least two transmit power control commands.
  • DCI downlink control information
  • the uplink channel may be a PUCCH and/or a PUSCH.
  • the transmit power control command may be a TPC (transmission power control) command.
  • the terminal can determine the uplink channel transmit power according to multiple transmit power control commands, thereby ensuring efficient and reasonable power allocation and improving overall system performance.
  • the terminal receives the at least one downlink control information DCI sent by the at least one network device, where the terminal receives the DCI sent by the first network device, where the DCI sent by the first network device includes the terminal
  • the transmit power control command may be a TPC command. Therefore, according to the embodiment of the present application, an existing TPC command for the terminal may be extended to multiple TPC commands for the terminal, and the actual requirements of the system have been met.
  • the at least two transmit power control commands occupy n bits, and n is a positive integer greater than 2, and the correspondence between the n bits and the at least two transmit power control commands is High-level signaling is configured or predefined.
  • the high layer signaling may be radio resource control (RRC) signaling or media access control control element (MAC CE) signaling.
  • RRC radio resource control
  • MAC CE media access control control element
  • the terminal determines, according to the at least two transmit power control commands, an uplink channel transmit power in the same carrier, including: the adjustment step or absolute indicated by the terminal according to each transmit power control command.
  • the power adjustment value determines the uplink channel transmission power.
  • the terminal determines, according to the at least two transmit power control commands, the uplink channel transmit power in the same carrier, where the terminal determines the target transmit power control command in the at least two transmit power control commands.
  • the terminal determines an uplink channel transmit power in the same carrier according to the target transmit power control command.
  • the terminal determines the target transmit power control command in the at least two transmit power control commands, including: the resource location, the aggregation level, the scrambling mode, and the included number of the terminal according to the at least one DCI
  • the at least one of the indication information determines the target transmission power control command.
  • the terminal determines, as the target transmit power control command, a transmit power control command included in a DCI that satisfies at least one of the following conditions in the at least one DCI:
  • the first indication information included in the target resource location, the aggregation level is the target aggregation level, and the scrambling mode is the target scrambling mode, and the first indication information included is the target first indication information.
  • the determining, by the terminal, the target transmit power control command in the at least two transmit power control commands the determining, by the terminal, the candidate DCI in the at least one DCI, where the candidate DCI is determined by a predefined manner or It is determined by the interaction between network devices;
  • the terminal determines a transmit power control command included in the candidate DCI as the target transmit power control command.
  • the determining, by the terminal, the candidate DCI in the at least one DCI including: at least one of the resource location, the aggregation level, the scrambling mode, and the included first indication information, where the terminal is located according to the multiple DCIs And determining the candidate DCI.
  • the determining, by the terminal, the candidate DCI in the at least one DCI the determining, by the terminal, the DCI that satisfies at least one of the following conditions as the candidate DCI: carrying the target resource location, and the aggregation level is the target
  • the aggregation level and the scrambling mode are the target scrambling mode
  • the first indication information included is the target first indication information.
  • the candidate DCI is sent by a serving network device of the terminal.
  • the resource location is any one of the following:
  • the terminal determines, according to the at least two transmit power control commands, the uplink channel transmit power in the same carrier, where the terminal determines, according to the at least two transmit power control commands, at least two candidates respectively. Transmit power, the at least two candidate transmit powers are in one-to-one correspondence with the at least two transmit power control commands; the terminal determines the uplink channel transmit power according to the at least two candidate transmit powers.
  • the terminal determines, according to the at least two candidate transmit powers, the uplink channel transmit power in the same carrier, including: the terminal, the minimum transmit power of the at least two candidate transmit powers, the minimum The transmit power, or an average of the at least two candidate transmit powers, is determined as the uplink channel transmit power.
  • determining the maximum transmit power of the at least two candidate transmit powers as the uplink channel transmit power uplink channel transmission stability can be ensured.
  • determining the minimum transmit power of the at least two candidate transmit powers as the uplink channel transmit power interference to other terminals of the own cell can be reduced.
  • the terminal determines, according to the at least two candidate transmit powers, the uplink channel transmit power in the same carrier, where: the terminal may determine, by using a weighted sum of the at least two candidate transmit powers, the uplink channel. Transmit power.
  • the weight of each candidate transmit power may be calculated by the terminal, or may be configured by the network device, or may be predefined, which is not specifically limited in this embodiment of the present application.
  • the terminal determines the uplink channel transmit power in the same carrier according to the at least two transmit power control commands, including: the terminal according to the first transmit power in the at least two transmit power control commands Control commands to determine the uplink channel transmit power.
  • a second aspect provides a power control method, including: receiving, by a terminal, downlink control information DCI sent by a first network device, where the DCI includes at least two transmit power control commands of the terminal; and the terminal according to the at least two transmit powers Controlling a command, determining an uplink channel transmit power of each of the at least two network devices, the at least two network devices being in one-to-one correspondence with the at least two transmit power control commands, the at least two network devices including the first Internet equipment.
  • the terminal can determine the uplink channel transmit power according to multiple transmit power control commands, thereby ensuring efficient and reasonable power allocation and improving overall system performance.
  • the at least two transmit power control commands occupy n bits, and n is a positive integer greater than 2, and the correspondence between the n bits and the at least two transmit power control commands is High-level signaling is configured or predefined.
  • the terminal determines, according to the at least two transmit power control commands, an uplink channel transmit power of each of the at least two network devices, including: the terminal controls commands according to each transmit power.
  • the indicated adjustment step or absolute power adjustment value determines the uplink channel transmission power of each network device.
  • the terminal determines, according to the adjustment step or the absolute power adjustment value indicated by each transmit power control command, the uplink channel transmit power of each network device, including: the terminal according to each The adjustment step indicated by the transmit power control command and the propagation loss corresponding to the uplink channel of each network device, or the absolute power adjustment value indicated by the each transmit power control command and the uplink channel of each network device The corresponding propagation loss determines the uplink channel transmit power of each network device.
  • the propagation loss corresponding to the uplink channel of each network device is indicated by the indication information or the high layer signaling in the DCI.
  • the terminal determines, according to the at least two transmit power control commands, an uplink channel transmit power of each of the at least two network devices, including:
  • the terminal determines an ith candidate transmit power P 1i of the at least two candidate transmit powers according to an ith transmit power control command of the at least two transmit power control commands, the at least two transmit power control commands and the at least The two candidate transmit powers are in one-to-one correspondence, i traverses the value in the range of [1, N], and i is a positive integer, N is the number of the at least two uplink channels, and N is a positive integer greater than 1, P 1i >0;
  • the terminal determines that the transmit power of the uplink channel of the i th network device of the at least two network devices is P 1i ; or
  • the terminal determines the transmit power P 2i of the i-th uplink channel according to any of the following formulas:
  • P 2i is the maximum transmit power of the terminal
  • a 0 and a i are scaling factors, 0 ⁇ a 0 ⁇ 1, a i ⁇ 0.
  • the terminal can ensure that the power of the uplink transmission is smaller than the maximum transmission power of the terminal by means of power scaling according to the received multiple power control commands.
  • the scaling factor a i is determined according to a priority of an uplink channel of the i th network device.
  • a third aspect provides a power control method, including: a network device sending downlink control information DCI to a terminal, where the DCI includes at least two transmit power control commands of the terminal, where the at least two transmit power control commands are used for the terminal Determining a transmit power of the at least one uplink channel; the network device receiving the first uplink channel of the at least one uplink channel sent by the terminal.
  • the at least two transmit power control commands occupy n bits, and n is a positive integer greater than 2, and the correspondence between the n bits and the at least two transmit power control commands is High-level signaling is configured or predefined.
  • the DCI further includes indication information, where the indication information is used to indicate a propagation loss corresponding to each of the at least one uplink channel.
  • a terminal for performing the method of the first aspect or any possible implementation of the first aspect.
  • the terminal comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a terminal for performing the method of the second aspect or any possible implementation of the second aspect.
  • the terminal comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a network device for performing the method of any of the third or third possible implementations.
  • the terminal comprises means for performing the method of any of the third or third aspects of the possible implementation.
  • a terminal comprising a memory and a processor, the memory for storing a computer program, the processor for calling and running the computer program from the memory, such that the system performs the first aspect and the first A method in any possible implementation on the one hand.
  • a terminal comprising a memory and a processor, the memory for storing a computer program, the processor for calling and running the computer program from the memory, such that the system performs the second aspect and the A method in any of the possible implementations of the two aspects.
  • a network device comprising a memory and a processor for storing a computer program, the processor for calling and running the computer program from the memory, such that the system performs the third aspect described above And a method in any of the possible implementations of the third aspect.
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the methods of the above aspects and any of the possible implementations of the above aspects.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the methods of the above aspects and any of the possible implementations of the above aspects.
  • a twelfth aspect provides a power control method, including: determining, by a terminal, a first propagation loss of a first uplink channel, where the first propagation loss is based on a measurement of a first downlink reference signal of the plurality of downlink reference signals Obtaining; the terminal determines a transmit power of the first uplink channel according to the first propagation loss.
  • the multiple downlink reference signals correspond to multiple network devices.
  • the terminal may determine the transmit power of the first PUCCH in combination with the first propagation loss. Because the propagation loss between the network device and the terminal is fully considered, the method of power control in the embodiment of the present application can improve the probability that the network device correctly receives the uplink channel, thereby improving system performance.
  • the terminal determines the first propagation loss of the first uplink channel, including: the terminal receives physical layer signaling and/or high layer signaling sent by the network device, the physical layer signaling and/or The high-level signaling includes a quasi-co-located (QCL) indication information, where the QCL indication information is used to indicate a QCL relationship between antenna ports that send the multiple downlink reference signals; the terminal according to the QCL relationship, Determining the first downlink reference signal to determine the first propagation loss, or determining, by the terminal, the first propagation loss corresponding to the first downlink reference signal according to the QCL relationship.
  • QCL quasi-co-located
  • the terminal determines the first propagation loss of the first uplink channel, including: the terminal receives physical layer signaling and/or high layer signaling sent by the network device, the physical layer signaling and/or The high-level signaling includes first indication information, where the first indication information is used to indicate the information of the downlink reference signal corresponding to the first uplink channel, and the terminal determines the first downlink reference signal according to the first indication information, The first propagation loss is determined.
  • the information of the downlink reference signal may be, for example, a resource index of the first downlink reference signal, antenna port information of the first downlink reference signal, a pattern of the first downlink reference signal, and the like.
  • the downlink reference signal includes at least one of the following: a secondary synchronization signal (SSS), a primary synchronization signal (PSS), and a channel state information reference signal (channel). State information reference signal (CSI-RS) and demodulation reference signal (DMRS).
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • channel channel state information reference signal
  • CSI-RS State information reference signal
  • DMRS demodulation reference signal
  • the PSS and/or the SSS may be sent through the SS block, that is, the PSS, the SSS, and the physical broadcast channel (PBCH) are simultaneously sent, and the PSS and/or the SSS may also be sent without using the SS block, that is, may be separately sent.
  • PSS and / or SSS may be sent through the SS block, that is, the PSS, the SSS, and the physical broadcast channel (PBCH) are simultaneously sent, and the PSS and/or the SSS may also be sent without using the SS block, that is, may be separately sent.
  • a thirteenth aspect provides a power control method, including: a first network device sends a first downlink reference signal to a terminal, where the first downlink reference signal is used by the terminal to determine a first propagation loss; the first network The device receives the first uplink channel sent by the terminal, and the transmit power of the first uplink channel is determined by the terminal according to the first propagation loss.
  • the multiple downlink reference signals correspond to multiple network devices.
  • the terminal may determine the transmit power of the first PUCCH in combination with the first propagation loss. Because the propagation loss between the network device and the terminal is fully considered, the method of power control in the embodiment of the present application can improve the probability that the network device correctly receives the uplink channel, thereby improving system performance.
  • the first propagation loss corresponding to the first downlink reference signal or the first downlink reference signal is determined by the terminal according to the quasi-co-located QCL indication information, where the QCL indication information is
  • the network device sends the QCL relationship between the antenna ports that send the multiple downlink reference signals by using the physical layer signaling and/or the high layer signaling, where the multiple downlink reference signals include the A downlink reference signal.
  • the first downlink reference signal is determined by the terminal according to the first indication information, where the first indication information is sent by the network device by using physical layer signaling and/or high layer signaling.
  • the first indication information is used to indicate the information of the downlink reference signal corresponding to the first uplink channel, and the information of the downlink reference signal is used to indicate the first downlink reference signal.
  • the information of the downlink reference signal may be, for example, a resource index of the first downlink reference signal, antenna port information of the first downlink reference signal, a pattern of the first downlink reference signal, and the like.
  • the downlink reference signal includes at least one of the following: a secondary synchronization signal SSS, a primary synchronization signal PSS, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • a terminal for performing the method of any of the possible implementations of the twelfth aspect or the twelfth aspect.
  • the terminal comprises means for performing the method of any of the possible implementations of the twelfth or twelfth aspect.
  • a network device for performing the method of any of the thirteenth aspect or the thirteenth aspect.
  • the network device comprises means for performing the method of any of the thirteenth aspect or any of the possible implementations of the thirteenth aspect.
  • an apparatus comprising a memory and a processor for storing a computer program for calling and running the computer program from the memory such that the apparatus performs the twelfth aspect described above And a method in any of the possible implementations of the twelfth aspect.
  • an apparatus comprising a memory and a processor for storing a computer program for calling and running the computer program from the memory such that the apparatus performs the thirteenth aspect described above And a method in any of the possible implementations of the thirteenth aspect.
  • a computer readable storage medium for storing a computer program, the computer program comprising the twelfth aspect and/or the thirteenth aspect and the twelfth aspect and/or An instruction of a method in any of the possible implementations of the thirteenth aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the twelfth aspect and/or the thirteenth aspect and the twelfth aspect and/or tenth aspect The method in any of the possible implementations of the three aspects.
  • FIG. 1 is a schematic diagram of a system architecture of a power control method according to the present application.
  • FIG. 2 is a schematic flow chart of a power control method according to the present application.
  • FIG. 3 is a schematic flow chart of a specific embodiment of a power control method according to the present application.
  • FIG. 4 is a schematic flow chart of another specific embodiment of a power control method according to the present application.
  • FIG. 5 is a schematic flow chart of another power control method according to the present application.
  • Figure 6 is a schematic block diagram of a terminal in accordance with the present application.
  • FIG. 7 is a schematic block diagram of another terminal in accordance with the present application.
  • Figure 8 is a schematic block diagram of a network device in accordance with the present application.
  • FIG. 9 is a schematic block diagram of a terminal in accordance with the present application.
  • FIG. 10 is a schematic block diagram of another terminal in accordance with the present application.
  • FIG. 11 is a schematic block diagram of a network device in accordance with the present application.
  • FIG. 12 is a schematic flow chart of another power control method according to the present application.
  • Figure 13 is a schematic block diagram of another terminal in accordance with the present application.
  • Figure 14 is a schematic block diagram of a network device in accordance with the present application.
  • FIG. 15 is a schematic block diagram of another terminal in accordance with the present application.
  • 16 is a schematic block diagram of a network device in accordance with the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • UMTS universal mobile telecommunication system
  • 5G system or NR system
  • FIG. 1 illustrates a wireless communication system 100 suitable for use with embodiments of the present application.
  • the wireless communication system 100 can include a plurality of network devices, such as the first network device 110 and the second network device 120 shown in FIG. Both the first network device 110 and the second network device 120 can communicate with the terminal 130 through a wireless air interface.
  • the first network device 110 and the second network device 120 can provide communication coverage for a particular geographic area and can communicate with terminals located within the coverage area.
  • the first network device 110 or the second network device 120 may be a base transceiver station (BTS) in a GSM system or a CDMA system, or may be a base station (NodeB) in a WCDMA system, or may be an evolution in an LTE system.
  • BTS base transceiver station
  • NodeB base station
  • the embodiment of the present application is not particularly limited in the embodiment of the present application, such as an evolutional Node B (eNB or eNodeB), or a transmission and reception point (TRP).
  • the network device involved in the embodiment of the present application may be a network device adopting a CU-DU architecture.
  • the network device that performs the method of the embodiment of the present application may be a centralized unit (CU) or a distributed unit (DU), where the CU may also be referred to as a central unit or a control. Control unit.
  • the wireless communication system 100 also includes one or more terminals 130 located within the coverage of the first network device 110 and the second network device 120.
  • the terminal 130 can be mobile or fixed.
  • the terminal 130 may communicate with one or more core networks via a radio access network (RAN), and the terminal may be referred to as a terminal device, an access terminal, a user equipment (UE), and a user.
  • RAN radio access network
  • the terminal can be referred to as a terminal device, an access terminal, a user equipment (UE), and a user.
  • RAN radio access network
  • UE user equipment
  • Unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function.
  • the wireless communication system 100 can support CoMP transmission, i.e., multiple cells or multiple transmission points can cooperate to transmit data to the same terminal within the same carrier and for the same time period.
  • the multiple cells may belong to the same network device or different network devices, and may be selected according to channel gain or path loss, received signal strength, received signal instructions, and the like.
  • the terminal 130 in the wireless communication system 100 can support multipoint transmission, that is, the terminal 130 can communicate with the first network device 110 or with the second network device 120, wherein the first network device 110 can serve as a service network.
  • the device or serving cell, the second network device 120 can function as a cooperative network device or a coordinated cell.
  • the first network device 110 can function as a cooperative network device or a coordinated cell
  • the second network device 120 can serve as a serving network device or a serving cell.
  • the service network device refers to the network device that provides the terminal with the RRC connection, the non-access stratum (NAS) mobility management, and the security input through the wireless air interface protocol.
  • NAS non-access stratum
  • the first network device is a serving network device
  • the second network device is a cooperative network device.
  • the number of the second network devices may be one or more. It can be understood that the first network device and the second network device can both be service network devices.
  • the search space may include: a common search space and a UE-specific search space.
  • the common search space is used for transmitting common information at the cell level, and may include, for example, control information related to paging, random access response (RAR), broadcast control channel (BCCH), and the like.
  • the UE-specific search space is used for transmitting terminal (or UE) level information, and may include, for example, a downlink shared channel (DL-SCH), an uplink shared channel (UL-SCH), and the like. Control information.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • the common search space and the UE-specific search space are two types of search spaces defined in the LTE protocol.
  • the UE-specific search space is taken as an example for illustration, but this application should not constitute any limitation, and the application does not exclude The possibility of re-division or redefinition of the search space may be defined as a UE-specific search space described in the embodiment of the present application as long as it is a resource for transmitting information at the terminal level.
  • a search space is defined for a CCE aggregation level.
  • a terminal device may have multiple search spaces, and CCEs in each search space may be continuously distributed.
  • the terminal device needs to monitor a group of PDCCH control channels, and the group of monitored PDCCH control channels may be referred to as a “control channel candidate set”. (candidate control channel set)", or "control channel candidate”.
  • a CCE is composed of 9 resource element groups (REGs), and one REG is composed of resource elements (REs) of consecutive non-reference signals (RSs) in the frequency domain, that is, one
  • the CCE consists of 36 REs.
  • the control channel can be divided into a plurality of control resource sets, each control resource set being a set of REGs.
  • the terminal device can listen to the PDCCH on one or more sets of control resources.
  • a control resource set may be understood as a resource occupied by a control channel; for a terminal device, a search space of a PDCCH of each terminal device belongs to the control resource set.
  • the network device may determine, from the set of control resources, a resource used for transmitting the PDCCH, and the terminal device may determine a search space of the PDCCH from the set of control resources.
  • the control resource set may include time-frequency resources, for example, the frequency domain may be a piece of bandwidth, or one or more sub-bands, etc.; the time domain may be the number of time units, for example, a subframe or a time slot or a micro time. The number of symbols in the slot; the time-frequency domain may be a continuous or discontinuous resource unit, for example, a continuous resource block (RB) or a discontinuous RB.
  • the definition of the RB may be a resource defined in an existing LTE protocol, or may be a resource defined in a future protocol, or may be replaced with another naming.
  • the time unit may be a subframe, or may be a slot, or may be a radio frame, a mini slot or a sub slot, multiple aggregated slots, and multiple aggregated subframes.
  • the symbol, the symbol, and the like may even be a transmission time interval (TTI), which is not specifically limited in the embodiment of the present application.
  • TTI transmission time interval
  • the terminal may simultaneously send UCI or data to the first network device and the second network device, where the UCI or data may be considered as common information of the first network device and the second network device.
  • the terminal may also send the first network device-specific UCI or data to the first network device and the second network device-specific UCI or data to the second network device.
  • the uplink channel can be used to carry UCI or data, and the embodiment of the present application does not limit whether the UCI or the data carried by the uplink channel is specific.
  • the serving cell c related to the embodiment of the present application can be understood as a carrier c.
  • the transmission of the terminal in the serving cell c can be understood as the transmission of the terminal on the carrier c.
  • the serving cell may be an RRC connected serving cell or a coordinated cell.
  • the uplink channel may be a PUCCH and/or a PUSCH.
  • the high layer signaling involved in the embodiment of the present application may be RRC signaling, MAC CE signaling, or the like.
  • the “carrier” described in this application corresponds to a certain frequency band, for example, a frequency band of 800M in the center frequency band or a frequency band of 900M in the center frequency point.
  • the sending of the uplink channel described in this application can be understood as transmitting UCI or data, and the UCI or data is carried on the uplink channel.
  • the higher layer involved in the present application may be a MAC layer other than the physical layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, or the like.
  • RLC radio link control
  • PDCP packet data convergence protocol
  • the transmit power control command involved in the present application may be a TPC command.
  • the TPC command may be a relative type command or an absolute type command.
  • the so-called relative command can be understood as the terminal's adjustment effect of the transmit power after receiving the transmit power control command is similar to the relative adjustment based on the current transmit power.
  • the relative type command can also be called the cumulative command.
  • the so-called absolute type command can be understood as the adjustment effect of the transmission power of the terminal after receiving the transmission power control command is similar to the adjustment based on the initial transmission power.
  • the specific form of the transmit power control command may be related to the network requirement or the specific transport format. The embodiment of the present application does not limit the configuration, for example, the configuration of the transmit power control command by using the high layer signaling indication.
  • the uplink channel transmission power is calculated as follows (it should be understood that the unit of the calculation result of the following formula is d Bm):
  • the uplink channel is PUSCH, the calculation of the uplink channel transmit power:
  • the subframe i transmits the PUSCH, but the PUCCH is not transmitted at the same time, then the PUSCH transmission power is as follows:
  • the PUSCH transmission power is as follows:
  • P CMAX,c (i) is the configured maximum transmit power of the terminal on the serving cell c subframe i, Is the linear value of P CMAX,c (i). If the terminal transmits PUCCH without PUSCH in the serving cell c subframe i, the received TPC command accumulation on the PUCCH on the DCI format 3/3A is accumulated.
  • TPC Packet Radio Access Network
  • P PUCCH (i) a linear value
  • P PUCCH (i) is defined in the subsequent description.
  • M PUSCH,c (i) is the bandwidth of the allocated PUSCH resource on the subframe i of the serving cell c, and is represented by the number of valid Resource Blocks (RBs).
  • the terminal configures the upper layer parameter UplinkPowerControlDedicated-v12x0 and if the subframe i belongs to the uplink power control subframe set 2 indicated by the higher layer parameter tpc-SubframeSet-r12,
  • P O_UE_PUSCH, 2 (0) and P O_NOMINAL_PUSCH, 2 (0) are provided by the higher layer parameters p0-terminal-PUSCH-Persistent-SubframeSet2-r12 and p0-NominalPUSCH-Persistent-SubframeSet2-r12.
  • P O_UE_PUSCH, 2 (1) and P O_NOMINAL_PUSCH, 2 (1) are provided by the higher layer parameters p0-terminal-PUSCH-SubframeSet2-r12 and p0-NominalPUSCH-SubframeSet2-r12. (5.3).
  • preambleInitialReceivedTargetPower(P O_PRE ) and ⁇ PREAMBLE_Msg3 are defined in the upper layer.
  • the terminal configures the upper layer parameter UplinkPowerControlDedicated-v12x0 and if the subframe i belongs to the uplink power control subframe set 2 indicated by the higher layer parameter tpc-SubframeSet-r12,
  • ⁇ c (j) ⁇ c,2 ⁇ 0,0.4,0.5,0.6,0.7,0.8,0.9,1 ⁇ .
  • ⁇ c, 2 is the parameter alpha-SubframeSet2-r12 provided by the upper layer.
  • ⁇ c (j) 1.
  • PL c is the propagation loss calculated for the terminal estimate of the serving cell c.
  • PL c referenceSignalPower - Reference Signal Received Power (RSRP), where referenceSignalPower is provided by the upper layer, and RSRP is defined by the reference serving cell.
  • RSRP Reference Signal Received Power
  • ⁇ PUSCH, c is a correlation value, calculated according to the TPC command.
  • the terminal is configured with the upper layer parameter UplinkPowerControlDedicated-v12x0 and if the subframe i belongs to the uplink power control subframe set 2 indicated by the higher layer parameter tpc-SubframeSet-r12, the current PUSCH power control adjustment state is given by f c, 2 (i) And the terminal will use F c,2 (i) instead of f c (i) to determine P PUSCH,c (i). Otherwise, the current PUSCH power control adjustment state is given by f c (i).
  • f c,2 (i) and f c (i) are defined as:
  • mapping of the foregoing TPC command domain may be as shown in Table 1 and Table 2 below.
  • the TPC command is an accumulation type command
  • the terminal can determine the adjustment step size according to the value of the TPC command field, that is, the accumulated ⁇ PUSCH.
  • determining the transmit power of the PUSCH if the format of the DCI for transmitting the TPC command is 0/4, the TPC command is an absolute command, and the terminal may determine the power adjustment value according to the value of the TPC command field, that is, an absolute ⁇ PUSCH , which in turn can determine the transmit power of the PUSCH.
  • the uplink channel is PUCCH
  • the calculation of the uplink channel transmit power is PUCCH
  • the PUCCH transmission power on subframe i is as follows:
  • the PUCCH transmission power for the accumulation of the TPC commands of the PUCCH is as follows:
  • ⁇ F_PUCCH (F) is provided by the upper layer.
  • Each ⁇ F_PUCCH (F) value corresponds to a PUCCH format (F) associated with PUCCH format 1A, where PUCCH format (F) is defined in Table 5.4-1 in 3GPP TS-GRAN 36.211, as shown in Table 3 below. PUCCH format.
  • PUCCH format Modulation scheme Number of bits per subframe M bit 1 N/A N/A 1a BPSK 1 1b QPSK 2 2 QPSK 20 2a QPSK+BPSK twenty one 2b QPSK+BPSK twenty two 3 QPSK 48
  • ⁇ TxD (F') is provided by the upper layer, where the PUCCH format F' is defined in Table 5.4-1 in 3GPP TS-GRAN 36.211 (as in Table 3 above) ); otherwise ⁇ TxD (F').
  • SR Scheduling Request
  • P O_NOMINAL_PUCCH is provided by higher layers and provides high-level parameter and the parameter P O_UE_PUCCH sum thereof.
  • PL c is the propagation loss calculated for the terminal estimate of the serving cell c.
  • PL c referenceSignalPower - Reference Signal Received Power (RSRP), where referenceSignalPower is provided by the upper layer, and RSRP is defined by the reference serving cell.
  • RSRP Reference Signal Received Power
  • ⁇ PUCCH is a correlation value calculated according to the TPC command.
  • g(i) is the current PUCCH power control adjustment state
  • g(0) is the initial value after reset
  • mapping of the TPC command domain described above may be as shown in Tables 4 and 5 below.
  • the terminal may determine the adjustment step size, that is, ⁇ PUCCH according to the value of the TPC command field, and further determine the transmit power of the PUCCH.
  • FIG. 2 is a schematic diagram of a power control method 200 according to an embodiment of the present application.
  • the method 200 can be used in a communication system for communicating over a wireless air interface, the communication system can include at least one network device and at least one terminal.
  • the communication system can be the wireless communication system 100 shown in FIG.
  • the network device may be a transmitting and receiving point (TRP), a base station, or other network device for sending DCI, which is not specifically limited in this application.
  • TRP transmitting and receiving point
  • base station a base station
  • DCI DCI
  • first”, “second” and the like in the embodiments of the present application are only used to distinguish the description, and should not be construed as limiting the invention.
  • first network device and the second network device are only for distinguishing between different network devices.
  • the terminal receives at least one downlink control information DCI sent by the at least one network device in the same carrier.
  • the at least one DCI includes multiple transmit power control commands of the terminal, and the multiple transmit power control commands are in one-to-one correspondence with multiple network devices. That is to say, each transmit power control command corresponds to one network device, and the terminal may determine the uplink channel transmit power of the corresponding network device according to each transmit power control command.
  • the at least one DCI including two transmit power control commands (for example, referred to as a first transmit power control command and a second transmit power control command) as an example
  • first transmit power control command corresponds to the first in the system 100
  • second transmit power control command corresponds to the second network device in the system 100
  • the terminal may determine, according to the first transmit power control command, an uplink channel corresponding to the first network device (for example, recorded as the first uplink channel).
  • the power according to the second transmit power control command, determines an uplink channel (eg, referred to as a second uplink channel) corresponding to the second network device.
  • the first uplink channel may be a PUCCH or a PUSCH, or the first uplink channel includes a PUCCH and a PUSCH.
  • the second uplink channel may be a PUCCH or a PUSCH, or the first uplink channel includes a PUCCH and a PUSCH.
  • the at least one DCI including the multiple transmit power control commands may be scrambled by using a cell radio network temporary identifier (C-RNTI).
  • C-RNTI cell radio network temporary identifier
  • the DCI received by the terminal may be sent by a certain network device (for example, the first network device or the second network device in the system 100), or may be multiple network devices (for example, in the system 100).
  • the first network device and the second network device are sent. Below, these two cases are described in detail.
  • the terminal receives at least one DCI sent by a certain network device on the same carrier.
  • the terminal receives at least two DCIs (for example, a first DCI and a second DCI) sent by the first network device on the same carrier.
  • DCIs for example, a first DCI and a second DCI
  • one of the at least two transmit power control commands is included in each DCI.
  • the first DCI includes a first transmit power control command and the second DCI includes a second transmit power control command.
  • the first DCI may further include a transmit power control command of the other terminal than the first transmit power control command
  • the second DCI may further include a transmit power control command of the other terminal than the second transmit power control command.
  • the first DCI and the second DCI may be sent by the first network device in a time division manner, and the first network device may send the first DCI at the first moment and the second DCI at the second moment.
  • the first network device may send the first DCI in the first subframe, the first time slot, or the first mini-slot, in the second subframe, the second time slot, or the second mini-timer The slot sends a second DCI.
  • Scene (2) The terminal receives a DCI sent by the first network device on the same carrier (hereinafter, for convenience of description, it is recorded as a target DCI).
  • the terminal receives the target DCI sent by the first network device, where the target DCI includes at least two transmit power control commands of the terminal, such as a first transmit power control command and a second transmit power control command.
  • target DCI may include only multiple transmit power control commands of the terminal, and may also include transmit power control commands of other terminals except the terminal.
  • the format of the target DCI may be any of 3/3A/3B.
  • the target DCI may include a transmission power control command of a plurality of terminals.
  • the transmit power control command for each terminal includes at least two. At least two transmit power control commands for each terminal may occupy n bits, n being a positive integer greater than two.
  • the number of transmission power control commands for each terminal is m (m ⁇ 2).
  • each transmit power control command can occupy a bit.
  • each transmit power control command can occupy a different bit.
  • the first transmit power control command and the second transmit power control command of each terminal can occupy 2 bits.
  • the first transmit power control command of each terminal may occupy 1 bit
  • the second transmit power control command may occupy 3 bits.
  • the format of the target DCI may also be any one of 1A/1B/1D/1/2A/2/2B/2C/2D.
  • at least two transmit power control commands for the terminal may be included in the target DCI.
  • at least two transmit power control commands for the terminal may occupy n bits, and n is a positive integer greater than 2.
  • the first transmit power control command occupies the first 2 bits
  • the second transmit power control command can occupy the last 2 bits.
  • the first transmit power control command occupies the last 2 bits
  • the second transmit power control command can occupy the first 2 bits.
  • the first transmit power control command may occupy 1 bit
  • the second transmit power control command may occupy 3 bits.
  • the first transmit power control command may occupy the first 1 bit
  • the second transmit power control command may occupy the last 3 bits.
  • the first transmit power control command can occupy the last 1 bit
  • the second transmit power control command can occupy the first 3 bits.
  • the correspondence between the specific bit and the transmit power control command may be configured by higher layer signaling or may be predefined.
  • each of the at least two transmit power control commands may be represented by a transmit power control command number, such as a TPC command number.
  • a transmit power control command number such as a TPC command number.
  • the TPC command number 1 may indicate a first transmit power control command
  • the TPC command number 2 may indicate a second transmit power control command.
  • the specific correspondence between the transmit power control command number and the transmit power control command is not limited in this embodiment of the present application.
  • the corresponding relationship may be configured by the first network device by using high layer signaling, or may be predefined by the first network device and the terminal.
  • the format of the DCI described above is only an exemplary description, and the format of the DCI may also be other formats defined by the future 5G.
  • the format of the DCI is not specifically limited in this embodiment of the present application.
  • the first network device first acquires the C-RNTI of the terminal.
  • the first network device may acquire the C-RNTI from a network device (for example, a second network device) of the serving cell, and use the C-RNTI to scramble the DCI sent by the first network device.
  • the terminal receives one DCI transmitted by each of the plurality of network devices (eg, the first network device and the second network device) on the same carrier.
  • the plurality of network devices eg, the first network device and the second network device
  • one transmit power control command for the terminal is included in each DCI.
  • the terminal receives the first DCI sent by the first network device, where the first DCI includes a first transmit power control command, and receives a second DCI sent by the second network device, where the second DCI includes a second transmit power control command.
  • the first network device is a network device of the coordinated cell
  • the first network device first needs to acquire the C-RNTI of the terminal from the second network device, and use the C-RNTI to scramble the first DCI.
  • the second network device is a network device of the coordinated cell
  • the second network device first needs to acquire the C-RNTI of the terminal from the first network device, and use the C-RNTI to scramble the second DCI.
  • the terminal determines, according to the at least two transmit power control commands, an uplink channel transmit power in the same carrier.
  • the terminal may determine the uplink channel transmit power according to an adjustment step or an absolute power adjustment value indicated by each transmit power control command.
  • the at least two transmit power control commands are carried in a DCI, such as the target DCI above, then the at least two transmit power control commands are all relative commands or all are absolute commands. .
  • the at least two transmit power control commands may be partially relative commands, and some are absolute commands. This embodiment of the present application does not specifically limit this.
  • the terminal when determining, by the terminal, the uplink channel transmit power in the same carrier according to the at least two transmit power control commands, the terminal may first determine, according to the at least two transmit power control commands, at least two candidate transmit powers, where the at least two candidate transmit powers are determined. The two candidate transmit powers are in one-to-one correspondence with the at least two transmit power control commands. Then, the terminal determines the uplink channel transmit power according to the at least two candidate transmit powers.
  • the terminal can directly calculate the corresponding transmit power, that is, the candidate transmit power, according to the adjustment step or absolute power adjustment value corresponding to each transmit power control command. Then, the uplink channel transmit power is determined according to the calculated multiple transmit powers.
  • the terminal may determine the maximum transmit power, the minimum transmit power, or the average of the at least two candidate transmit powers of the at least two candidate transmit powers as the uplink channel transmit power.
  • the terminal uses the maximum transmit power of the at least two candidate transmit powers as the uplink channel transmit power, the reliability of the transmission can be improved.
  • the terminal uses the minimum transmit power of the at least two candidate transmit powers as the uplink channel transmit power, interference to adjacent terminals in the local cell can be reduced.
  • the terminal may use the weighted sum of the at least two candidate transmit powers as the uplink channel transmit power.
  • the weight of each candidate transmit power may be calculated by the terminal, or may be configured by the network device, or may be predefined, which is not specifically limited in this embodiment of the present application.
  • the terminal may directly transmit, according to one of the at least two transmit power control commands, a transmit power control command (eg, , as the target transmission power control command), determine the uplink channel transmission power.
  • a transmit power control command eg, , as the target transmission power control command
  • the terminal does not need to calculate the candidate transmit power corresponding to the at least two transmit power control commands respectively, but only needs to select one transmit power control command from the at least two transmit power control commands according to actual performance requirements, and then according to the The selected transmit power control command determines the uplink channel transmit power.
  • the terminal may select the indicated transmission power control command with the adjusted adjustment step or the absolute power adjustment value as the first transmission power control command, that is, the adjustment indicated by the target transmission power control command.
  • the step or absolute power adjustment is maximum.
  • the target transmit power control command may be a transmit power control command with the indicated adjustment step size or absolute power adjustment value being the smallest.
  • the terminal may determine the target transmit power control command according to at least one of a resource location, an aggregation level, a scrambling mode, and a first indication information included in the at least one DCI.
  • the terminal determines a transmit power control command included in the candidate DCI as a target transmit power control command, and the target DCI satisfies at least one of the following conditions:
  • the aggregation level is the target aggregation level
  • the scrambling method is the target scrambling method
  • the first indication information included is the target first indication information.
  • the protocol or the system may specify that the terminal only uses the transmit power control command satisfying any one of the above conditions (1) to (4) or any combination as the effective transmit power control command, but will not satisfy the corresponding condition.
  • the transmit power control command is considered to be an invalid transmit power control command.
  • the network device may notify the terminal, by using the high layer signaling or the DCI, at least one of the target resource location, the target aggregation level, the target scrambling mode, and the target first indication information.
  • the target location may be any one of a target search space, a target control channel candidate set, a target carrier, and a target control resource set, or a combination thereof.
  • the time-frequency resource carrying the at least one DCI is located in at least one search space of the terminal.
  • the terminal determines a transmission power control command included in the DCI detected in the target search space in the at least one search space as a target transmission power control command.
  • the at least one search space is in one-to-one correspondence with the at least one DCI, that is, each search space carries one DCI.
  • the terminal transmits a transmission power control command included in the DCI detected in the target search space (for example, the search space #J) in the at least one search space as a target transmission power control command.
  • the at least one search space may be predefined or pre-configured.
  • the search space #J corresponds to the service network device of the terminal, that is, the service network device can use the time-frequency resource in the search space #J, and the cooperative network device can use the time-frequency resource in the other search space.
  • the terminal may detect the DCI sent by the serving network device in the search space #J, and detect the DCI sent by the cooperative network device in other search spaces.
  • the DCI detected by the terminal in the search space #J is sent by the serving network device, and the DCI detected in the other search space is sent by the cooperative network device, and the terminal includes the DCI sent by the serving network device.
  • the transmit power control command is determined as the target transmit power control command.
  • the at least one DCI may be carried on at least one control channel candidate set in the same search space.
  • the terminal determines a transmit power control command included in the DCI detected by the target control channel candidate set in the at least one control channel candidate set as a target transmit power control command.
  • the at least one control channel candidate set corresponds to at least one DCI, that is, each control channel candidate set carries one DCI.
  • the terminal transmits, as the target transmission power control command, a transmission power control command included in the DCI detected on the target control channel candidate set (for example, the control channel candidate set #Q) in the at least one control channel candidate set.
  • the at least one control channel candidate set may be predefined or pre-configured.
  • control channel candidate set #Q corresponds to the serving network device of the terminal, that is, the DCI transmitted by the serving network device on the control channel candidate set #Q, and the DCI transmitted by the cooperative network device on the other control channel candidate set.
  • the terminal may detect the DCI sent by the serving network device on the control channel candidate set #Q, and detect the DCI sent by the cooperative network device on the other control channel candidate set.
  • the DCI detected by the terminal on the control channel candidate set #Q is sent by the serving network device, and the DCI detected on the other control channel candidate set is sent by the cooperative network device, and the terminal sends the serving network device.
  • the transmit power control command included in the DCI is determined as the target transmit power control command.
  • the at least one DCI may be carried on at least one carrier.
  • the terminal determines a transmit power control command included in the DCI detected by the target carrier in the at least one carrier as a target transmit power control command.
  • the at least one carrier is in one-to-one correspondence with the at least one DCI, that is, one DCI is sent on each carrier.
  • the terminal transmits, as a target transmission power control command, a transmission power control command included in the DCI detected on the target carrier (for example, the carrier #R) in the at least one carrier.
  • the at least one carrier may be predefined or pre-configured.
  • the carrier #R corresponds to the serving network device of the terminal, that is, the DCI transmitted by the serving network device on the carrier #R, and the DCI transmitted by the cooperative network device on the other carriers in the at least one carrier.
  • the terminal may detect the DCI sent by the serving network device on the carrier #R, and detect the DCI sent by the cooperative network device on the other carriers.
  • the DCI detected by the terminal on the carrier #R is transmitted by the serving network device, and the DCI detected on the other carrier is sent by the cooperative network device, and the terminal includes the transmission included in the DCI sent by the serving network device.
  • the power control command is determined as the target transmit power control command.
  • the at least one DCI may be carried in at least one control resource set.
  • the terminal determines a transmit power control command included in the DCI detected by the target control resource set in the at least one control resource set as a target transmit power control command.
  • the at least one control resource set is in one-to-one correspondence with the at least one DCI, that is, one DCI is sent on a resource in each control resource set.
  • the terminal transmits, as the target transmission power control command, a transmission power control command included in the DCI detected on the target control resource set (for example, the control resource set #V) in the at least one control resource set.
  • the at least one control resource set may be predefined or pre-configured.
  • control resource set #V corresponds to the service network device of the terminal, that is, the DCI sent by the service network device on the resource in the control resource set #R, and the DCI sent by the cooperative network device on the resources in the other control resource set.
  • the terminal may detect the DCI sent by the serving network device on the resource in the control resource set #V, and detect the DCI sent by the cooperative network device on the resources in the other control resource set.
  • the DCI detected by the terminal on the resource in the control resource set #V is sent by the serving network device, and the DCI detected on the resource in the other control resource set is sent by the cooperative network device, and the terminal will
  • the transmit power control command included in the DCI transmitted by the serving network device is determined as the target transmit power control command.
  • control channel candidate set only exemplarily explain the manner in which the terminal determines the target transmit power control command according to the detected position of the DCI, but this should not constitute any limitation on the present application.
  • the present application may also define or distinguish the location of the DCI in other manners, for example, the time-frequency resource location, the sub-carrier spacing, and the like, which are not limited in this embodiment of the present application.
  • the at least one DCI received by the terminal is generated by using at least one aggregation level.
  • the terminal determines to use the transmit power control command included in the target aggregated DCI in the at least one aggregation level as the target transmit power control command.
  • the at least one aggregation level is in one-to-one correspondence with the at least one DCI, that is, different DCIs are generated by using different aggregation levels.
  • the terminal may use a transmission power control command included in the DCI whose aggregation level is the target aggregation level (for example, the aggregation level #S,) as the target transmission power control command.
  • the at least one aggregation level may be predefined or pre-configured.
  • the aggregation level #S corresponds to the service network device of the terminal, that is, the service network device generates the DCI #S according to the aggregation level #S and transmits it to the terminal.
  • the terminal determines the transmit power control command included in the DCI transmitted by the serving network device as the target transmit power control command.
  • the at least one DCI may be scrambled by using at least one scrambling method.
  • the terminal determines the target transmit power control command by using the transmit power control command included in the DCI of the target scrambling mode in at least one scrambling mode.
  • the at least one scrambling manner is in one-to-one correspondence with the at least one DCI, that is, different DCIs are generated by using different scrambling modes.
  • the terminal After receiving the at least one DCI, the terminal descrambles the respective DCI by using a descrambling manner respectively corresponding to the at least one scrambling manner. If a certain DCI can be descrambled by the target descrambling method (for example, the descrambling method #T, the descrambling method #T corresponds to the scrambling method #T), the transmission power control command included in the DCI is determined as Target transmit power control command.
  • the at least one scrambling manner may be predefined or pre-configured.
  • a terminal identity (UE identity) + a cell ID (cell ID) may be used for cyclic redundancy check (CRC) scrambling.
  • the UE ID may be, for example, a cell radio network temporary identify (C-RNTI), and the cell ID may be, for example, a physical layer cell identity (PCI).
  • C-RNTI cell radio network temporary identify
  • PCI physical layer cell identity
  • the scrambling mode #T corresponds to the serving network device of the terminal, that is, the serving network device generates DCI #T according to the scrambling mode #T, and sends the signal to the terminal.
  • the terminal can descramble the DCI #T according to the descrambling method #T, thereby determining the transmission power control command included in the DCI #T (ie, the DCI transmitted by the serving network device) as the target transmission power control command.
  • the embodiment of the present application does not specifically limit the scrambling manner of the at least one scrambling mode, as long as the scrambling mode #T is matched with the serving network device. It should also be understood that the UE ID and the cell identifier are not specifically limited in the embodiment of the present application, and the foregoing enumerated UE ID and cell identifier are only illustrative.
  • each DCI of the at least one DCI may include first indication information.
  • the first indication information may be one bit (1 bit) in the DCI, and the bit may be '1' or '0'.
  • the terminal may specify or pre-configure, and the terminal sets the first indication information as the target first indication information, for example, the transmit power control command included in the DCI with the first indication information being '1' as the target transmit power. control commands.
  • the first indication information may be part of a transmit power control command.
  • the first indication information may be used to indicate whether the corresponding DCI is sent by the serving network device or sent by the cooperative network device, for example, when the bit is '0', indicating that the corresponding DCI is sent by the cooperative network device.
  • the terminal sets the transmit power control command included in the DCI including the first indication information of '1' as the target transmit power control command, that is, the terminal determines the transmit power control command included in the DCI sent by the serving network device as the target transmit. Power control commands.
  • the terminal will use the transmission power control command in the DCI that satisfies any combination of the conditions (1) to (4) as the target transmission power control command.
  • the conditions (1) to (4) are used in combination, for the sake of brevity, details will not be described herein. Specifically, the above description of the conditions (1) to (4) can be referred to.
  • the terminal may first determine a candidate DCI in the at least one DCI (for example, and record it as DCI #D); and then determine a transmit power control command in the DCI #D as a target transmit power. control commands.
  • the candidate DCI is determined in a predefined manner or by means of interaction between the terminal and the network device.
  • the candidate DCI is specified as a DCI sent by the serving network device in a predefined manner or in a manner of interaction between the terminal and the network device.
  • the terminal only uses the transmit power control command in the DCI sent by the serving network device as a valid transmit power control command, and ignores the transmit power control command sent by the protocol network device. In this case, the terminal needs to distinguish which DCI is sent for the serving network device and which DCI is sent for the cooperative network device.
  • the terminal may determine the DCI#D according to the detected location of the DCI, the aggregation level, the scrambling mode, and the included second indication information, thereby determining the target. Transmit power control command.
  • the serving network device and the assisting network device may send the DCI at different resource locations, using different aggregation levels, employing different scrambling modes, and according to at least one of different second indication information.
  • the system or protocol may pre-specify or configure DCI information, which may be defined as at least one of a location, an aggregation level, a scrambling mode, and a second indication information included in the DCI transmitted by the serving network device.
  • the network device and the terminal side both store the DCI information, so the terminal may be configured according to the corresponding location, aggregation level, scrambling mode, and included second indication information of each DCI in the at least one DCI. At least one of determining the DCI sent by the serving network device, namely DCI #D.
  • the second indication information may be used to indicate whether the corresponding DCI is sent by the serving network device or sent by the cooperative network device.
  • the second indication information may be the same as the first indication information, and the second indication information may refer to the description of the first indication information in the foregoing. For brevity, no further details are provided herein.
  • the terminal may determine the DCI #D according to the search space, the control channel candidate set, or the carrier where the DCI is located.
  • the specific implementation process of the terminal determining the DCI #D according to the detected location of the DCI, the aggregation level, the scrambling mode, and the included second indication information may be correspondingly described in the foregoing manner. For the sake of brevity, it will not be repeated here.
  • the candidate DCI may also be a DCI sent by the cooperative network device, which is not limited in this embodiment of the present application.
  • the information that needs to be pre-configured may be controlled by, for example, radio resource control (RRC) signaling or media access control.
  • RRC radio resource control
  • High-level signaling configuration such as media access control control element (MAC CE).
  • the terminal may determine the uplink channel transmit power in the same carrier according to the at least two transmit power control commands in multiple manners.
  • the foregoing exemplary description is only for helping a person skilled in the art to better understand the present application. This application shall constitute any limitation.
  • the TPC1 and the TPC2 are used as an example for the at least two transmit power control commands received by the terminal, and specific embodiments for determining, by the terminal, the uplink channel transmit power according to the adjustment step or the absolute power adjustment value are specifically described.
  • the serving cell where the terminal is located is c
  • the network device of the serving cell c is the first network device.
  • the following calculated transmit power refers to the transmit power of the terminal transmitting the uplink channel on the serving cell c subframe i.
  • the terminal may transmit the transmit power of the uplink channel on the serving cell c subframe i as the uplink channel transmit power.
  • the transmit power of the PUSCH can be calculated as follows:
  • Subframe i transmits PUSCH, but PUCCH is not transmitted at the same time, then PUSCH transmit power can be determined by any of the following formulas:
  • the PUSCH transmit power can be determined by any of the following formulas:
  • the PUSCH transmit power may be determined by any of the following formulas:
  • the PL c here is the propagation loss of the first network device to the terminal calculated for the terminal. It should also be noted that f 1c (i) and f 2c (i) correspond to f c (i) above, and f 1c (i) is determined according to the adjustment step or power adjustment value indicated by TPC1, f 2c (i) is determined according to the adjustment step or power adjustment value indicated by TPC2.
  • the values of k 11 , k 12 , k 21 , k 22 , k 31 , and k 32 are all greater than or equal to 0, and they may be the same or different.
  • the k 11 , k 12 , k 21 , k 22 , k 31 , k 32 may be pre-configured, or may be pre-acquired by the terminal from the network device, or may be calculated by the terminal itself.
  • the source is not limited.
  • the terminal can determine the transmission power of the PUSCH (an example of an uplink channel).
  • the transmission power of the PUCCH can be calculated as follows:
  • the PUCCH transmission power on subframe i is as follows:
  • the PUCCH transmission power for the accumulation of the TPC commands of the PUCCH is as follows:
  • the PL c here is the propagation loss of the first network device to the terminal calculated for the terminal. It should also be noted that g 1c (i) and g 2c (i) correspond to g c (i) above, and g 1c (i) is determined according to the adjustment step indicated by TPC1, f 2c (i) It is determined according to the adjustment step indicated by TPC2.
  • T 11 P 0_PUCCH +PL c +h(n CQI , n HARQ, n SR )+ ⁇ F_PUCCH (F)+ ⁇ TxD (F′)+g 1c (i),
  • T 12 P 0_PUCCH + PL c + h (n CQI , n HARQ, n SR ) + ⁇ F_PUCCH (F) + ⁇ TxD (F') + g 2c (i).
  • the values of k 41 , k 42 , k 51 , and k 52 are all greater than or equal to 0, and they may be the same or different.
  • the k 41 , k 42 , k 51 , and k 52 may be pre-configured, or may be pre-acquired by the terminal from the network device, or may be calculated by the terminal itself.
  • the specific source of the application is not limited.
  • the terminal can determine the transmission power of the PUCCH (another example of the uplink channel).
  • the foregoing terminal determines the uplink channel transmit power according to the adjustment step or the absolute power adjustment value.
  • the embodiment is only an exemplary description, but only to help the person skilled in the art to better understand the present application, and should not constitute the present application. Any restrictions.
  • the method may further include:
  • the terminal sends the uplink channel to the at least one network device in the same carrier.
  • the terminal transmits UCI or data according to the uplink channel transmit power determined in step S220, and the UCI or data is carried on the uplink channel.
  • the terminal can determine the uplink channel transmit power according to the multiple transmit power control commands, thereby ensuring efficient and reasonable power allocation and improving overall system performance.
  • FIG. 3 is a schematic diagram of a power control method 300 in accordance with an embodiment of the present application.
  • the first network device acquires the C-RNTI of the terminal from the second network device.
  • the C-RNTI of the terminal needs to be obtained from the network device of the serving cell, that is, the second network device. If the first network device is a network device of the serving cell, the first network device does not need to perform this step.
  • the first network device determines a target DCI.
  • the target DCI includes a first transmit power control command and a second transmit power control command of the terminal.
  • the target DCI is scrambled by using the C-RNTI of the terminal.
  • the terminal may determine, according to the first transmit power control command, the bearer of the DCI or data for the first network device.
  • An uplink channel transmit power.
  • the terminal can determine a second uplink channel transmit power that carries DCI or data for the second network device.
  • the first network device sends the target DCI to the terminal in the same carrier.
  • the terminal receives the target DCI, and descrambles the target DCI according to the C-RNTI of the terminal, and then the terminal may determine the first transmit power control command and the second according to the high layer signaling or a predefined rule. Transmit power control command.
  • the first network device determines an uplink channel transmit power in the same carrier according to the first transmit power control command and the second transmit power control command.
  • the first network device determines the transmit power determined according to the first transmit power control command as the uplink channel transmit power, or determines the weighted sum of the first transmit power control command and the second transmit power control command as the uplink channel transmit power.
  • the terminal sends the uplink channel to the first network device and the second network device in the same carrier.
  • the uplink channel carries the terminal to the CSI1 of the first network device, and the terminal to the second network device CSI2.
  • the terminal can determine the uplink channel transmit power according to the multiple transmit power control commands, thereby ensuring efficient and reasonable power allocation and improving overall system performance.
  • the first network device is used as the network device of the serving cell
  • the second network device is the network device of the coordinated cell as an example.
  • the first network device sends a first DCI to the terminal, where the first DCI includes a first transmit power control command.
  • the terminal may determine, according to the first transmit power control command, to carry the DCI or data for the first network device.
  • the first uplink channel transmit power.
  • first DCI and/or the first transmit power control command may be referenced above.
  • the second network device sends a request message to the first network device, where the request message is used to obtain the C-RNTI of the terminal.
  • the first network device sends a response message to the second network device according to the request message, where the response message includes a C-RNTI of the terminal.
  • step S410 may be performed before steps S420 and S430, or may be performed after steps S420 and S430, or may be performed simultaneously with steps S420 and S430, which is not limited by the embodiment of the present application.
  • the second network device sends a second DCI to the terminal, where the second DCI includes a second transmit power control command.
  • the second DCI is scrambled using the C-RNTI of the terminal.
  • the terminal may determine, according to the second DCI, a second uplink channel transmit power that carries DCI or data for the second network device.
  • first DCI and/or the first transmit power control command may be referenced above.
  • the terminal determines an uplink channel transmit power in the same carrier according to the first transmit power control command and the second transmit power control command.
  • the uplink channel carries the terminal to the CSI1 of the first network device, and the terminal to the CSI2 of the second network device.
  • the terminal may determine the uplink channel transmit power according to the first transmit power control command and the second transmit power control command. For details, reference may be made to the above description.
  • the terminal sends the uplink channel in the same carrier according to the uplink channel transmit power.
  • the terminal can determine the uplink channel transmit power according to the multiple transmit power control commands, thereby ensuring efficient and reasonable power allocation and improving overall system performance.
  • FIG. 5 is a schematic diagram of another power control method 500 in accordance with the present application.
  • the method 500 can be used in a communication system for communicating over a wireless air interface, which can include at least two network devices and at least one terminal.
  • the communication system can be the wireless communication system 100 shown in FIG.
  • the network device may be a transmission point (TRP), a base station, or other network device for sending DCI, which is not specifically limited in this application.
  • TRP transmission point
  • base station a base station
  • DCI DCI
  • the network device may be a network device of the serving cell or a network device of the coordinated cell, which is not specifically limited in this application.
  • the terminal receives the downlink control information DCI sent by the network device (hereinafter, referred to as the first network device for convenience of description) in the same carrier.
  • the network device hereinafter, referred to as the first network device for convenience of description
  • the DCI includes at least two transmit power control commands of the terminal.
  • the at least two transmit power control commands are in one-to-one correspondence with at least two network devices.
  • the at least two network devices include the first network device.
  • the DCI format may be any one of 1A/1B/1D/1/2A/2/2B/2C/2D, and the DCI format may also be any one of 3/3A/3B.
  • the at least two transmit power control commands occupy n bits, and n is a positive integer greater than two.
  • n bits and the at least two transmit power control commands is configured or predefined by higher layer signaling. Specifically, reference may be made to the above description, and for brevity, no further details are provided herein.
  • the terminal determines, according to the at least two transmit power control commands, an uplink channel transmit power of each of the at least two network devices.
  • the terminal may determine, according to the first transmit power control command, the transmit power of the uplink channel (for example, referred to as the first uplink channel) corresponding to the first network device, And determining, according to the second transmit power control command, an uplink channel (eg, referred to as a second uplink channel) corresponding to the second network device.
  • the first transmit power control command corresponds to the first network device in the system 100.
  • the second transmit power control command corresponds to the second network device in the system 100
  • the terminal may determine, according to the first transmit power control command, the transmit power of the uplink channel (for example, referred to as the first uplink channel) corresponding to the first network device, And determining, according to the second transmit power control command, an uplink channel (eg, referred to as a second uplink channel) corresponding to the second network device.
  • an uplink channel eg, referred to as a second uplink channel
  • the first uplink channel may be a PUCCH or a PUSCH, or the first uplink channel includes a PUCCH and a PUSCH.
  • the second uplink channel may be a PUCCH or a PUSCH, or the first uplink channel includes a PUCCH and a PUSCH.
  • the DCI may be scrambled by using a cell radio network temporary identifier (C-RNTI). If the first network device that sends the DCI is the network device of the coordinated cell, the first network device may first obtain the C-RNTI from the network device of the serving cell, and then use the C-RNTI to perform scrambling with the DCI, and the terminal After receiving the DCI, the DCI is descrambled by using the C-RNTI.
  • C-RNTI cell radio network temporary identifier
  • the terminal may determine an uplink channel transmit power of each network device according to an adjustment step or an absolute power adjustment value indicated by each of the at least two transmit power control commands.
  • the terminal may determine an adjustment step of the first uplink channel transmit power according to the first transmit power control command, and further determine the first uplink channel transmit power, according to the second transmit power.
  • the control command determines an adjustment step size of the second uplink channel transmit power, and further determines the second uplink channel transmit power.
  • the transmit power control command is an absolute type command
  • the terminal may determine an absolute power adjustment value of the first uplink channel transmit power according to the first transmit power control command, and further determine the first uplink channel transmit power, according to the second transmit.
  • the power control command determines an absolute power adjustment value of the second uplink channel transmit power, and further determines a second uplink channel transmit power.
  • the terminal may determine, according to the at least two transmit power control commands and the propagation loss corresponding to the corresponding uplink channel, an uplink channel transmit power of each of the at least two network devices.
  • the terminal may determine the corresponding uplink channel by combining the adjustment step indicated by the transmit power control command with the propagation loss corresponding to the corresponding uplink channel, or combining the absolute power adjustment value with the propagation loss corresponding to the corresponding uplink channel. Transmit power.
  • the terminal may determine the first uplink channel transmit power according to the propagation loss between the first network device and the terminal according to the adjustment step or the absolute power adjustment value indicated by the first transmit power control command, and control the command according to the second transmit power according to the second transmit power control command.
  • the indicated adjustment step or absolute power adjustment value determines the first uplink channel transmission power in conjunction with the propagation loss between the second network device and the terminal.
  • the transmit power P PUSCH1c (i) of the first uplink channel is as follows:
  • the transmit power P PUSCH2,c (i) of the second uplink channel is as follows:
  • PL 1 represents a propagation loss between the terminal estimated by the terminal and the first network device
  • PL 2 represents a propagation loss between the terminal estimated by the terminal and the second network device.
  • f 1c (i) is determined by the adjustment step or absolute power adjustment value indicated by the first transmission power control command
  • f 2c (i) is determined by the adjustment step or absolute power adjustment value indicated by the second transmission power control command.
  • the propagation loss corresponding to the uplink channel corresponding to each network device may be determined by using the indication information in the DCI or the indication information in the high layer signaling.
  • the first network device may be indicated by higher layer signaling or DCI terminal calculated using PL 1 P PUSCH1, c (i), calculated using PL 2 P PUSCH2, c (i).
  • the method for determining the propagation loss corresponding to the first PUCCH (for example, the first propagation loss) is described in detail with the uplink channel corresponding to the first network device as the first PUCCH.
  • the uplink channel corresponding to each network device may be configured by using high layer signaling, and the network device may trigger the uplink channel resource by using the DCI, and the terminal may send the uplink channel resource triggered by the network device. Upstream channel.
  • the first PUCCH may transmit ACK/NACK, and the first PUCCH may also transmit other information of non-ACK/NACK, such as CSI.
  • the content of the information transmitted by the PUCCH is not specifically limited by the present application.
  • the uplink channel resource may include at least one of the following: a time domain resource (for example, an initial orthogonal frequency division multiplexing (OFDM) symbol and a PUCCH occupied in one time unit. End OFDM symbols, or the number of OFDM symbols occupied by the start symbols occupied by the PUCCH in one time unit), frequency domain resources, used parameters, such as subcarrier spacing, etc., used sequences.
  • a time domain resource for example, an initial orthogonal frequency division multiplexing (OFDM) symbol and a PUCCH occupied in one time unit. End OFDM symbols, or the number of OFDM symbols occupied by the start symbols occupied by the PUCCH in one time unit
  • frequency domain resources for example, an initial orthogonal frequency division multiplexing (OFDM) symbol and a PUCCH occupied in one time unit. End OFDM symbols, or the number of OFDM symbols occupied by the start symbols occupied by the PUCCH in one time unit
  • used parameters such as subcarrier spacing, etc., used sequences
  • the time unit may be a subframe, a time slot, a mini-slot, or a time unit defined in the NR system, or a time unit defined in a future system, which is not limited in this embodiment of the present application.
  • the first PUCCH resource is triggered by the first DCI, and the terminal sends the first PUCCH to the first network device on the first PUCCH resource as an example to describe various embodiments of the present application.
  • the first DCI may also schedule one PDSCH (for example, as the first PDSCH) while triggering the first PUCCH.
  • the first PDSCH may be used to transmit downlink data of the first network device, and the second PDSCH may be used for transmission.
  • the terminal may feed back the ACK/NACK to the first network device by using the first PUCCH, and indicate to the first network device by using the ACK/NACK whether the terminal correctly receives the first network device.
  • Downstream data Generally, the propagation loss (or path loss) of the terminal to different network devices is different. In order for the network device to correctly receive the uplink channel sent by the terminal, it is necessary to first determine the propagation loss between the terminal and the network device, according to the terminal. The propagation loss to the network device determines the transmit power of the upstream channel.
  • the propagation loss involved in this application refers to the large-scale fading related to the distance. Therefore, the propagation loss of the network device to the terminal and the propagation loss of the terminal to the network device are the same. Knowing the propagation loss of the network device to the terminal, it is known. The propagation loss of the terminal to the network device. Therefore, the propagation loss between the terminal and the first network device, that is, the first propagation loss, can be determined by determining the propagation loss of the first network device to the terminal.
  • the first propagation loss is equal to the difference between the received power of the reference signal transmitted by the first network device received by the terminal and the transmitted power of the reference signal transmitted by the first network device.
  • the power of the first network device to transmit the reference signal is configured by the upper layer, so that it is only necessary to know that the terminal receives the power of the reference signal sent by the first network device (hereinafter, simply referred to as the received power).
  • the received power can be obtained by measuring the first reference signal sent by the first network device, so the terminal first needs to determine which one of the multiple reference signals it receives is sent by the first network device, that is, the terminal first needs to determine the first network.
  • the first reference signal in the reference signal transmitted by the device.
  • the downlink reference signal involved in the embodiments of the present application may be a synchronization signal (for example, a primary synchronization signal (PSS) and/or a secondary synchronization signal (SSS)), and a channel state information reference.
  • a synchronization signal for example, a primary synchronization signal (PSS) and/or a secondary synchronization signal (SSS)
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • the PSS and/or the SSS can be sent through the SS block, that is, the PSS, the SSS, and the physical broadcast channed (PBCH) are simultaneously transmitted.
  • PBCH physical broadcast channed
  • the PSS and/or the SSS can also be sent without using the SS block, that is, the PSS and/or the PSS can be sent separately.
  • SSS for example, a primary synchronization signal (PSS) and/or a secondary synchronization signal (SSS)
  • CSI-RS channel state
  • the terminal may determine the first downlink reference signal by using the following manner.
  • the terminal may receive the physical layer signaling (eg, the first DCI) and/or the high layer signaling sent by the network device, and according to the quasi-co-location (Quasi-co-located, carried by the physical layer signaling and/or the high layer signaling, QCL) indicates a QCL relationship between antenna ports transmitting the plurality of downlink reference signals indicated by the information, and determines a first downlink reference signal.
  • the physical layer signaling eg, the first DCI
  • QCL quasi-co-location
  • the terminal may determine a QCL relationship between antenna ports that send the multiple downlink reference signals.
  • the terminal can determine, according to the first DCI, the antenna port that the first network device sends the DMRS, so the terminal can determine, according to the QCL relationship, the CSI-RS and/or the synchronization signal that is sent by the first network device to send the DMRS antenna port that meets the QCL relationship.
  • the antenna port can determine the antenna port of the first network device to send the CSI-RS and/or the synchronization signal, so that the CSI-RS and/or the synchronization signal sent by the first network device, that is, the first downlink reference signal, can be determined. .
  • the QCL indication information may indicate that the antenna port 15 transmitting the CSI-RS and the antenna port 7 transmitting the DMRS satisfy the QCL relationship. Since the reference signal satisfying the QCL relationship is from the same network device, the terminal may determine that the CSI-RS transmitted by the antenna port 15 is from the same network device as the DMRS of the antenna port 7 indicated in the first DCI, that is, the first network device. That is, the terminal can determine the CSI-RS sent by the first network device. Then, the terminal can obtain the path loss between the first network device and the terminal by measuring the CSI-RS sent by the antenna port 15, so that the path loss corresponding to the first PUCCH, that is, the first path loss, can be determined.
  • the terminal may determine the first downlink reference signal by receiving the physical layer signaling and/or the high layer signaling sent by the network device, and according to the first indication information included in the physical layer signaling and/or the high layer signaling.
  • the first indication information may indicate information (eg, referred to as first resource information) of the first downlink reference signal corresponding to the first PUCCH.
  • the first resource information may be, for example, a resource index of the first downlink reference signal, antenna port information for transmitting the first downlink reference signal, and a pattern of the first downlink reference signal.
  • the terminal may determine, according to the first resource information, a downlink reference signal corresponding to the first PUCCH, that is, the first downlink reference signal. Then, the terminal can obtain the propagation loss between the first network device and the terminal according to the measurement of the first downlink reference signal, and determine the propagation loss corresponding to the first PUCCH, that is, the first propagation loss.
  • the first indication information may also directly indicate the first propagation loss corresponding to the first PUCCH.
  • the physical layer signaling involved in the embodiment of the present application may be DCI (for example, the first DCI), and the high layer signaling may be referred to as RRC signaling or MAC CE.
  • the terminal may directly determine the DMRS sent by the first network device according to the DMRS antenna port information indicated by the first DCI, so that the first propagation loss may be determined by measuring the DMRS sent by the first network device.
  • the terminal may determine the transmit power of the first uplink channel according to the formula described above.
  • the first propagation loss is the PL c in the formula described above.
  • the network device may pre-configure the correspondence between the propagation loss and the PUCCH resource by using physical layer signaling (for example, the first DCI) or the high layer signaling, that is, the network device may indicate through physical layer signaling or high layer signaling.
  • the network device may indicate through physical layer signaling or high layer signaling.
  • Which PUCCH resource corresponds to which propagation loss.
  • the network device when the network device configures the first PUCCH resource by using the high layer signaling, the network device can simultaneously configure the propagation loss of the first PUCCH sent on the first PUCCH resource.
  • the first network device may indicate the propagation loss corresponding to the first PUCCH resource, that is, the first propagation loss, in the first DCI when transmitting the first DCI.
  • the terminal device may determine the first propagation loss corresponding to the first PUCCH resource according to the correspondence between the propagation loss and the PUCCH resource. That is, the terminal may determine the first propagation loss corresponding to the first PUCCH according to the correspondence between the propagation loss and the PUCCH resource.
  • the first propagation loss may be directly notified to the terminal by the network device (for example, the first network device and/or the second network device), or may be said to be measured by the terminal according to the downlink reference signal.
  • the terminal may determine the transmit power of the first PUCCH in conjunction with the first propagation loss.
  • the power control method of the embodiment of the present application can improve the probability that the network device correctly receives the uplink channel, thereby improving system performance, since the propagation loss between the network device and the terminal is fully considered.
  • the terminal may determine the first propagation loss and the second propagation loss according to various manners.
  • each mode will be described in detail.
  • the terminal determines, according to the at least two transmit power control commands, an uplink channel transmit power of each of the at least two network devices:
  • the i-th candidate transmit power P 1i of the at least two candidate transmit powers may be first determined according to an ith transmit power control command of the at least two transmit power control commands.
  • the at least two transmit power control commands are in one-to-one correspondence with the at least two candidate transmit powers, i traverses the value in the range of [1, N], and i is a positive integer, and N is the at least two uplink channels.
  • the number, N is a positive integer greater than 1, P 1i >0.
  • the terminal may use the transmit power directly calculated according to the adjustment step or the absolute power adjustment value corresponding to the ith transmit power control command as the ith candidate transmit power P 1i .
  • the terminal determines that the transmit power of the uplink channel of the i th network device of the at least two network devices is P 1i ;
  • the terminal determines the transmit power P 2i of the i-th uplink channel according to any of the following formulas:
  • P 2i is the maximum transmit power of the terminal
  • a 0 and a i are scaling factors, 0 ⁇ a 0 ⁇ 1, a i ⁇ 0.
  • the terminal may determine the transmit power of the at least two uplink channels according to the foregoing embodiment. Specifically, if the sum of the transmit powers directly calculated according to the at least two transmit power control commands is less than or equal to the maximum transmit power of the terminal, the terminal may use the directly calculated transmit power as the transmit of the corresponding uplink channel. power. If the sum of the transmit powers directly calculated according to the at least two transmit power control commands is greater than the maximum transmit power of the terminal, the terminal compares the scaling factor with the product of the transmit power directly calculated according to the corresponding transmit power control command, as a corresponding Uplink channel transmit power.
  • the terminal may use P PUSCH1,c (i) as the transmit power of the first uplink channel, P PUSCH2,c (i) as the transmit power of the second uplink channel; in the case of P PUSCH1,c (i)+P PUSCH2,c (i)>P 0 , the terminal may be a 1 *P PUSCH1,c ( The product of i) is used as the transmission power of the first uplink channel, and a 2 *P PUSCH2,c (i) is used as the transmission power of the second uplink channel. Wherein a 1 *P PUSCH1,c (i)+a 2 *P PUSCH2,c (i) ⁇ P 0 .
  • the scaling factor a i is determined according to the priority of the uplink channel of the i th network device.
  • the corresponding scaling factor when the channel priority is high, the corresponding scaling factor is large, and when the channel priority is low, the corresponding scaling factor is small.
  • the priority of the uplink channel corresponding to the serving network device of the terminal may be higher than the priority of the uplink channel corresponding to the coordinated network device of the terminal, and the uplink channel corresponding to the serving network device of the terminal (for example, referred to as the first PUCCH)
  • the corresponding scaling factor is greater than the scaling factor corresponding to the uplink channel (eg, referred to as the second PUCCH) corresponding to the assisted network device of the terminal.
  • the priority of the PUCCH is higher than the priority of the PUSCH, and the scaling factor corresponding to the PUCCH may be set to 1.
  • the transmit power of the PUCCH and the PUSCH may be determined according to the following formula:
  • the transmission power of the first uplink channel is P PUCCH
  • the transmission power of the second uplink channel is ⁇ P PUSCH .
  • the scaling factor a i may be pre-configured, or may be obtained by the terminal from the network device, or may be calculated by the terminal itself.
  • the specific source of the scaling factor a i is not limited in the embodiment of the present application.
  • the method may further include:
  • the terminal transmits, according to the transmit power of the corresponding uplink channel, the corresponding uplink channel to the at least two network devices in the same carrier.
  • the terminal sends corresponding UCI or data to the corresponding network device according to the transmit power of the uplink channel determined in step S520, where the UCI or data is carried on the corresponding uplink channel.
  • the terminal may send, according to the first uplink channel transmit power determined in step S520, the UCI or data of the first network device, where the UCI or data is carried on the first uplink channel; and the first determined in step S520 And transmitting, by the second uplink channel, the UCI or data of the second network device, where the UCI or data is carried on the second uplink channel.
  • the terminal determines the transmit power of each uplink channel according to the multiple transmit power control commands, thereby ensuring efficient and reasonable power allocation and improving overall system performance.
  • FIG. 6 is a schematic block diagram of a terminal 600 according to an embodiment of the present application. As shown in FIG. 6, the terminal 600 includes a receiving unit 610 and a processing unit 620.
  • the receiving unit 610 is configured to receive at least one downlink control information DCI sent by at least one network device, where the at least one DCI includes at least two transmit power control commands;
  • the processing unit 620 is configured to determine uplink channel transmit power in the same carrier according to the at least two transmit power control commands.
  • the terminal of the embodiment of the present application can ensure that the power of the uplink transmission is smaller than the maximum transmission power of the terminal by using a power scaling manner.
  • each unit in the terminal 600 is used to perform each action or process performed by the terminal in each of the above methods.
  • a detailed description thereof will be omitted.
  • FIG. 7 is a schematic block diagram of a terminal 700 according to an embodiment of the present application. As shown in FIG. 7, the terminal 700 includes a receiving unit 710 and a processing unit 720.
  • the receiving unit 710 is configured to receive downlink control information DCI sent by the first network device, where the DCI includes at least two transmit power control commands of the terminal;
  • the processing unit 720 is configured to determine, according to the at least two transmit power control commands, an uplink channel transmit power of each of the at least two network devices, the at least two network devices and the at least two transmit powers
  • the control commands are in one-to-one correspondence, and the at least two network devices include the first network device.
  • each unit in the terminal 700 is used to perform each action or process performed by the terminal in the above method 500.
  • a detailed description thereof will be omitted.
  • FIG. 8 is a schematic block diagram of a network device 800 in accordance with an embodiment of the present application. As shown in FIG. 8, the network device 800 includes a transmitting unit 810 and a receiving unit 820.
  • the sending unit 810 is configured to send downlink control information DCI to the terminal, where the DCI includes at least two transmit power control commands of the terminal, where the at least two transmit power control commands are used by the terminal to determine at least one uplink channel. Transmit power
  • the receiving unit 820 is configured to receive a first uplink channel in the at least one uplink channel that is sent by the terminal.
  • each unit in the network device 800 is used to perform each action or process in the above method.
  • a detailed description thereof will be omitted.
  • FIG. 9 shows a schematic structural diagram of a terminal 900 according to an embodiment of the present application.
  • the terminal 900 includes a transceiver 910, a processor 920, and a memory 930.
  • the transceiver 910, the processor 920, and the memory 930 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the transceiver 910 is configured to receive at least one downlink control information DCI sent by at least one network device, where the at least one DCI includes at least two transmit power control commands;
  • the processor 920 is configured to determine an uplink channel transmit power in the same carrier according to the at least two transmit power control commands.
  • the processor 920 calls and runs the computer program from memory, the processor 920 can be used to perform the method 200, the method 300, and the method 400, and implement the functions of the method, such as the terminal, of the method.
  • FIG. 10 shows a schematic structural diagram of a terminal 1000 according to an embodiment of the present application.
  • the terminal 1000 includes a transceiver 1010, a processor 1020, and a memory 1030.
  • the transceiver 1010, the processor 1020, and the memory 1030 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the transceiver 1010 is configured to receive downlink control information DCI sent by the first network device, where the DCI includes at least two transmit power control commands of the terminal;
  • the processor 1020 is configured to determine, according to the at least two transmit power control commands, an uplink channel transmit power of each of the at least two network devices, where the at least two network devices and the at least two transmit powers The control commands are in one-to-one correspondence, and the at least two network devices include the first network device.
  • processor 1020 calls and runs the computer program from memory
  • the processor 1020 can be used to perform the method 500 and implement the functionality of the method, such as the functionality of the terminal.
  • FIG. 11 shows a schematic structural diagram of a network device 1100 according to an embodiment of the present application.
  • the network device 1100 includes a transceiver 1110, a processor 1120, and a memory 1130.
  • the transceiver 1110, the processor 1120, and the memory 1130 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the transceiver 1110 is configured to send downlink control information DCI to the terminal, where the DCI includes at least two transmit power control commands of the terminal, where the at least two transmit power control commands are used by the terminal to determine at least one uplink channel. Transmitting power; receiving a first uplink channel of the at least one uplink channel sent by the terminal.
  • processor 1120 calls and runs the computer program from the memory
  • the processor 1120 can be used to execute the various method embodiments described above, and implement the functions of the execution body of the method embodiment, such as a network device.
  • the method 1200 can be used in a communication system for communicating over a wireless air interface, the communication system can include at least one network device and at least one terminal.
  • the communication system can be the wireless communication system 100 shown in FIG.
  • the network device may be a transmission point (TRP), a base station, or other network device for sending DCI, which is not specifically limited in this application.
  • TRP transmission point
  • base station a base station
  • DCI DCI
  • the network device may be a network device of the serving cell or a network device of the coordinated cell, which is not specifically limited in this application.
  • the terminal receives multiple downlink reference signals sent by multiple network devices (for example, the first network device and the second network device).
  • multiple network devices for example, the first network device and the second network device.
  • the multiple downlink reference signals are all downlink reference signals or partial downlink reference signals sent by the first network device and the second network device.
  • a network device can send a downlink reference signal, and can also send multiple downlink reference signals, which is not limited in this embodiment of the present application.
  • first network device and the second network device may be two network devices that are geographically separated, and may also be understood as different antenna panels of the same network device (for example, the first network device), or may be understood as The different beams of the same network device are not limited in this embodiment of the present application.
  • the downlink reference signal involved in each embodiment of the present application may be one or more of a synchronization signal (such as PSS and/or SSS), CSI-RS, and DMRS.
  • a synchronization signal such as PSS and/or SSS
  • the PSS and/or SSS can be sent through the SS block, that is, the PSS, SSS, and PBCH are simultaneously transmitted, and the PSS and/or SSS can also be sent without using the SS block, that is, the PSS and/or the SSS can be separately transmitted.
  • the multiple downlink reference signals include a CSI-RS sent by the first network device and a CSI-RS sent by the second network device.
  • the plurality of downlink reference signals include a CSI-RS and a DMRS sent by the first network device, and a CSI-RS and a DMRS sent by the second network device.
  • the number and type of downlink reference signals sent by each network device are not limited in this embodiment of the present application.
  • S1220 The terminal determines a first propagation loss of the first uplink channel according to the measurement of the first downlink reference signal of the multiple downlink reference signals.
  • the first uplink channel is an uplink channel that the terminal sends to the first network device, that is, the first uplink channel corresponds to the first network device.
  • the uplink channel may be an uplink control channel (PUCCH) for carrying ACK/NACK information and/or channel state information corresponding to downlink data, and may be an uplink data sharing channel PUSCH, may be an uplink access channel PRACH, or a channel for transmitting a sounding signal SRS. .
  • the above-mentioned line channel is a PUCCH as an example, and the terminal may use the DCI sent by the first network device (for example, as the first DCI), and optionally, the DCI sent by the network device through the downlink control channel, using any one of the following methods or a combination thereof. Determining the first PUCCH, which may be decoupled (independently) from other parts of the application, or may be combined with other parts, which is not limited in this application.
  • the terminal determines the first uplink channel according to the indication information in the first DCI.
  • the first DCI may include an indication information, where the indication information may indicate an uplink channel resource.
  • the uplink channel resource indicated by the indication information may be a network device, for example, the first network device is configured by high layer signaling (eg, RRC signaling, MAC CE). That is, the first DCI may indicate one of the plurality of uplink channel resources configured by the higher layer signaling.
  • the uplink channel resource may carry one uplink channel, and the uplink channel may be, for example, a PUCCH. Therefore, the terminal may determine the first PUCCH according to the indication information in the first DCI.
  • the terminal may determine an uplink channel resource according to the resource location of the first DCI, for example, the location or number of the CCE used to send the DCI, where the determined uplink channel resource is the resource that sends the first PUCCH.
  • the terminal determines the uplink channel resource according to the resource location of the DCI can refer to the prior art and the foregoing description. For brevity, details are not described herein again.
  • the correspondence between the first DCI and the PUCCH may be configured by a high-level signaling (such as RRC signaling, MAC signaling, etc.).
  • the first DCI and the PUCCH may be determined according to a location where the network device sends the DCI, for example, a different control resource set (CORESET), or a different candidate PDCCH, or a different search space, or a different CCE or the like.
  • CORESET control resource set
  • the first DCI can use CORESET1
  • the second DCI can use CORESET2.
  • the DCI in the CORESET1 can be configured by the high-level signaling to configure the DCI corresponding to the first PUCCH in the CORESET1, and the DCI in the CORESET2 corresponds to the second PUCCH.
  • Pre-defined relationship (protocol stipulation, local pre-configuration or pre-storage) or high-level signaling configuration information, determining that the uplink channel that needs to be sent in the DCI received by the first CORESET1 is the first PUCCH, and the terminal receives the second PURESET1.
  • the DCI corresponding to the uplink channel to be transmitted is the second PUCCH.
  • the DMRS group used by the downlink control channel PDCCH for transmitting the DCI and the PUCCH may be configured by using a high-level signaling (such as RRC signaling, MAC signaling) to be configured by a pre-defined (protocol, local pre-configuration or pre-storage) relationship.
  • a high-level signaling such as RRC signaling, MAC signaling
  • the DMRS transmitted by the first network device using the DMRS antenna port in the DMRS group 1 may be pre-defined or configured by the higher layer signaling to transmit the first DCI on the downlink control channel PDCCH, and the second network device uses the DMRS antenna in the DMRS group 2
  • the DMRS sent by the port sends the second DCI on the downlink control channel PDCCH, so that the terminal can determine the correspondence between the first DCI and the first PUCCH according to the correspondence between the DMRS group and the PUCCH configured by the predefined or higher layer signaling.
  • the first PUCCH can be determined.
  • the first DMRS group includes one or more DMRS antenna ports, and the DMRS transmitted by the one or more DMRS antenna ports is used to demodulate the first PDCCH.
  • the second DMRS group includes one or more DMRS antenna ports, and the DMRS transmitted by the one or more DMRS antenna ports is used to demodulate the second PDCCH.
  • the DMRS antenna port included in the first DMRS group and the DMRS antenna port included in the second DMRS group are different or orthogonal.
  • the terminal may determine the first PUCCH according to the downlink pilot and the QCL relationship of the uplink pilot used by the first PUCCH.
  • the definition of QCL in this embodiment may refer to the definition in LTE, that is, the signal sent from the antenna port of the QCL will undergo the same large-scale fading, and the large-scale fading includes one or more of the following: delay extension, Doppler Le expansion, Doppler shift, average channel gain, and average delay.
  • the definition of QCL in the embodiment of the present application can also refer to the definition of QCL in 5G.
  • the definition of QCL is similar to that of the LTE system, but the airspace information is added, for example, the signal sent from the antenna port of the QCL.
  • the airspace parameters may be the emission angle (AOA), the main emission angle (Dominant AoA), the average arrival angle (Average AoA), the angle of arrival (AOD), the channel correlation matrix, the power spread spectrum, the power angle spread spectrum of the angle of arrival, and the average Starting Angle (Average AoD), power angle spread spectrum of the departure angle, transmit channel correlation, receive channel correlation, transmit beamforming, receive beamforming, spatial channel correlation, spatial filter, spatial filtering parameters, or spatial reception One or more of the parameters, etc.
  • the QCL relationship includes a channel state information-reference signal (CSI-RS) that satisfies the QCL relationship, a DMRS, and a phase tracking reference signal (PTRS) (also referred to as a phase compensation reference signal (phase). Compensation reference signal, PCRS), or phase noise reference signal (referred to as phase noise reference signal), sync block (SS block) (including one or more of synchronization signal and broadcast channel, the synchronization signal includes primary synchronization signal PSS and / Or one or more of the synchronization signal SSS), the sounding reference signal (SRS), the uplink DMRS, the uplink random access channel, and the like.
  • CSI-RS channel state information-reference signal
  • PTRS phase tracking reference signal
  • phase noise reference signal also referred to as a phase compensation reference signal (phase).
  • phase noise reference signal phase noise reference signal
  • SS block including one or more of synchronization signal and broadcast channel, the synchronization signal includes primary synchronization signal PSS and / Or one or more of the synchron
  • the DMRS of the downlink data of the first DCI scheduled according to the predefined or higher layer signaling such as RRC signaling, MAC signaling
  • the DMRS of the downlink control channel used by the first DCI or the downlink CSI-RS Or the downlink SS block (including the downlink synchronization signal PSS and/or SSS and/or PBCH), or the downlink phase noise pilot PTRS and the DMRS used by the first PUCCH, or the QCL relationship between the SRS or the PRACH, determining the first Corresponding relationship between the DCI and the first PUCCH, thereby determining the first PUCCH.
  • the predefined or higher layer signaling such as RRC signaling, MAC signaling
  • the DMRS of the downlink control channel used by the first DCI or the downlink CSI-RS Or the downlink SS block (including the downlink synchronization signal PSS and/or SSS and/or PBCH), or the downlink phase noise pilot PTRS and the DMRS used by the first
  • the reference signal may also be referred to as a pilot.
  • the network device can use the DCI sent by the downlink control channel, and the relationship between the first DCI and the first PUCCH is determined in the foregoing manners 1 to 5, and can also be understood as determining the first downlink control channel and the first downlink control channel carrying the DCI.
  • the relationship of an uplink channel is not limited in this application.
  • the first uplink channel may also be independent of the sent downlink control information DCI.
  • the first uplink channel PUCCH may determine the resource information of the PUCCH according to the periodic CSI feedback configured by the network device through the high layer signaling and/or the first CSI-RS information configured by the network device, and the terminal may periodically feed back the PUCCH.
  • the propagation loss used by the terminal to transmit the first PUCCH power control may be measured according to the first CSI-RS reference signal.
  • the uplink channel in this application is not limited to the PUCCH.
  • the uplink channel may also be an uplink data sharing channel PUSCH, an uplink access channel PRACH, or a channel for transmitting a sounding signal SRS.
  • the uplink channel resource may include at least one of: a time domain resource (eg, a starting OFDM symbol and an ending OFDM symbol occupied by a PUCCH in one time unit, or a PUCCH occupied in one time unit) The number of OFDM symbols occupied by the start symbol, the frequency domain resources, the parameters used, such as the subcarrier spacing, etc., the sequence used.
  • the time unit may be a subframe, a time slot, a mini-slot, or a time unit defined in the NR system, or a time unit defined in a future system, which is not limited in this embodiment of the present application.
  • the terminal determines, according to the first propagation loss, a transmit power of the first uplink channel.
  • the propagation loss (or path loss) of the terminal to different network devices is different.
  • the network device In order for the network device to correctly receive the uplink channel sent by the terminal, it is necessary to first determine the propagation loss between the terminal and the network device, according to the terminal.
  • the propagation loss to the network device determines the transmit power of the upstream channel.
  • the propagation loss involved in this application refers to the large-scale fading related to the distance. Therefore, the propagation loss of the network device to the terminal and the propagation loss of the terminal to the network device are the same. Knowing the propagation loss of the network device to the terminal, it is known. The propagation loss of the terminal to the network device. Therefore, the propagation loss between the terminal and the first network device, that is, the first propagation loss, can be determined by determining the propagation loss of the first network device to the terminal.
  • the first propagation loss is equal to the difference between the received power of the reference signal transmitted by the first network device received by the terminal and the transmitted power of the reference signal transmitted by the first network device.
  • the power of the first network device to transmit the reference signal is configured by the upper layer, so that it is only necessary to know that the terminal receives the power of the reference signal sent by the first network device (hereinafter, simply referred to as the received power).
  • the received power can be obtained by measuring the first reference signal sent by the first network device, so the terminal first needs to determine which one of the multiple reference signals it receives is sent by the first network device, that is, the terminal first needs to determine the first network.
  • the first reference signal in the reference signal transmitted by the device.
  • the terminal may determine the first downlink reference signal by using the following manner.
  • the terminal may receive the physical layer signaling (eg, the first DCI) and/or the high layer signaling sent by the network device, and send according to the quasi-co-located QCL indication information carried by the physical layer signaling and/or the high layer signaling. Determining a first downlink reference signal by a QCL relationship between antenna ports of the plurality of downlink reference signals.
  • the physical layer signaling eg, the first DCI
  • the high layer signaling sent by the network device
  • the terminal may determine a QCL relationship between antenna ports that send the multiple downlink reference signals.
  • the terminal can determine, according to the first DCI, the antenna port that the first network device sends the DMRS, so the terminal can determine, according to the QCL relationship, the CSI-RS and/or the synchronization signal that is sent by the first network device to send the DMRS antenna port that meets the QCL relationship.
  • the antenna port can determine the antenna port of the first network device to send the CSI-RS and/or the synchronization signal, so that the CSI-RS and/or the synchronization signal sent by the first network device, that is, the first downlink reference signal, can be determined. .
  • the QCL indication information may indicate that the antenna port 15 transmitting the CSI-RS and the antenna port 7 transmitting the DMRS satisfy the QCL relationship. Since the reference signal satisfying the QCL relationship is from the same network device, the terminal may determine that the CSI-RS transmitted by the antenna port 15 is from the same network device as the DMRS of the antenna port 7 indicated in the first DCI, that is, the first network device. That is, the terminal can determine the CSI-RS sent by the first network device. Then, the terminal can obtain the path loss between the first network device and the terminal by measuring the CSI-RS sent by the antenna port 15, so that the path loss corresponding to the first PUCCH, that is, the first path loss, can be determined.
  • the terminal may determine the first downlink reference signal by receiving the physical layer signaling and/or the high layer signaling sent by the network device, and according to the first indication information included in the physical layer signaling and/or the high layer signaling.
  • the first indication information may indicate information (eg, referred to as first resource information) of the first downlink reference signal corresponding to the first PUCCH.
  • the first resource information may be, for example, a resource index of the first downlink reference signal, antenna port information for transmitting the first downlink reference signal, and a pattern of the first downlink reference signal.
  • the terminal may determine, according to the first resource information, a downlink reference signal corresponding to the first PUCCH, that is, the first downlink reference signal. Then, the terminal can obtain the propagation loss between the first network device and the terminal according to the measurement of the first downlink reference signal, and determine the propagation loss corresponding to the first PUCCH, that is, the first propagation loss.
  • the first indication information may also directly indicate the first propagation loss corresponding to the first PUCCH.
  • the physical layer signaling involved in the embodiment of the present application may be DCI (for example, the first DCI), and the high layer signaling may be referred to as RRC signaling or MAC CE.
  • the terminal may directly determine the DMRS sent by the first network device according to the DMRS antenna port information indicated by the first DCI, so that the first propagation loss may be determined by measuring the DMRS sent by the first network device.
  • the terminal may determine the transmit power of the first uplink channel according to the formula described above.
  • the first propagation loss is the PL c in the formula described above.
  • the network device may pre-configure the correspondence between the propagation loss and the PUCCH resource by using physical layer signaling (for example, the first DCI) or the high layer signaling, that is, the network device may indicate through physical layer signaling or high layer signaling.
  • the network device may indicate through physical layer signaling or high layer signaling.
  • Which PUCCH resource corresponds to which propagation loss.
  • the network device when the network device configures the first PUCCH resource by using the high layer signaling, the network device can simultaneously configure the propagation loss of the first PUCCH sent on the first PUCCH resource.
  • the first network device may indicate the propagation loss corresponding to the first PUCCH resource, that is, the first propagation loss, in the first DCI when transmitting the first DCI.
  • the terminal device may determine the first propagation loss corresponding to the first PUCCH resource according to the correspondence between the propagation loss and the PUCCH resource. That is, the terminal may determine the first propagation loss corresponding to the first PUCCH according to the correspondence between the propagation loss and the PUCCH resource.
  • the method may further include: S1240, the terminal sends the first uplink channel according to a transmit power of the first uplink channel.
  • the first propagation loss may be directly notified to the terminal by the network device (for example, the first network device and/or the second network device), or may be said to be measured by the terminal according to the downlink reference signal.
  • the terminal may determine the transmit power of the first PUCCH in conjunction with the first propagation loss. Because the propagation loss between the network device and the terminal is fully considered, the method of power control in the embodiment of the present application can improve the probability that the network device correctly receives the uplink channel, thereby improving system performance.
  • FIG. 13 is a schematic block diagram of a terminal 1300 according to an embodiment of the present application. As shown in FIG. 13, the terminal 1300 includes: a processing unit 1310.
  • the processing unit 1310 is configured to determine a first propagation loss of the first uplink channel, where the first propagation loss is obtained according to the measurement of the first downlink reference signal of the multiple downlink reference signals;
  • the processing unit 1310 is further configured to determine, according to the first propagation loss, a transmit power of the first uplink channel.
  • each unit in the terminal 1300 is used to perform each action or process performed by the terminal in the above method 1200.
  • a detailed description thereof will be omitted.
  • FIG. 14 is a schematic block diagram of a network device 1400 in accordance with an embodiment of the present application. As shown in FIG. 14, the network device 1400 includes a transmitting unit 1410 and a receiving unit 1420.
  • the sending unit 1410 is configured to send, to the terminal, a first downlink reference signal, where the first downlink reference signal is used by the terminal to determine a first propagation loss;
  • the receiving unit 1420 is configured to receive a first uplink channel that is sent by the terminal, where a transmit power of the first uplink channel is determined by the terminal according to the first propagation loss.
  • each unit in the network device 1400 is used to perform various actions or processes performed by the network device in the method 1200 described above. Here, in order to avoid redundancy, a detailed description thereof will be omitted.
  • FIG. 15 shows a schematic structural diagram of a terminal 1500 according to an embodiment of the present application.
  • the terminal 1500 includes a transceiver 1510, a processor 1520, and a memory 1530.
  • the transceiver 1510, the processor 1520 and the memory 1530 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the processor 1520 determines a first propagation loss of the first uplink channel, where the first propagation loss is obtained according to the measurement of the first downlink reference signal of the multiple downlink reference signals;
  • the processor 1520 is further configured to determine, according to the first propagation loss, a transmit power of the first uplink channel.
  • processor 1520 calls and runs the computer program from memory
  • the processor 1520 can be used to perform the method 1200 and implement the functions of the method, such as the terminal, of the method.
  • FIG. 16 shows a schematic structural diagram of a network device 1600 according to an embodiment of the present application.
  • the network device 1600 includes a transceiver 1610, a processor 1620, and a memory 1630.
  • the transceiver 1610, the processor 1620, and the memory 1630 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the transceiver 1610 is configured to send a first downlink reference signal to the terminal, where the first downlink reference signal is used by the terminal to determine a first propagation loss, and receive a first uplink channel sent by the terminal, where the first The transmit power of the uplink channel is determined by the terminal according to the first propagation loss.
  • processor 1620 calls and runs the computer program from memory
  • the processor 1620 can be used to perform the method 1200 and implement the functions of the method, such as a network device.
  • the embodiment of the present invention further provides a device, which may be in the form of a product of a chip, and the device may include: a processor and a memory;
  • a memory for coupling with a processor for storing program instructions and data necessary for the device, the processor for executing program instructions stored in the memory, such that the device performs operations performed by the terminal or network device in any of the above method embodiments The corresponding function.
  • the embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a central processing unit (CPU), the processor may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software in the decoding processor.
  • the software can be located in a random storage medium, such as a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous DRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DRRAM direct memory bus random access memory
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种功率控制方法、终端和网络设备,该功率控制方法包括:终端接收至少一个网络设备发送的至少一个下行控制信息(DCI),该至少一个DCI包括至少两个发射功率控制命令;该终端根据该至少两个发射功率控制命令,确定同一载波内的上行信道发射功率。本申请实施例的功率控制方法,终端能够根据多个发射功率控制命令确定上行信道发射功率,从而能够保证高效合理的功率分配,提高系统整体性能。

Description

功率控制方法、终端和网络设备
本申请要求于2017年3月24日提交中国专利局、申请号为201710183222.5、申请名称为“功率控制方法、终端和网络设备”的中国专利申请的优先权,2017年6月15日提交中国专利局、申请号为201710451379.1、申请名称为“功率控制方法、终端和网络设备”的中国专利申请的优先权,以及2017年8月11日提交中国专利局、申请号为201710687604.1、申请名称为“功率控制方法、终端和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种功率控制方法、终端和网络设备。
背景技术
在新一代无线接入技术(new radio access technology,NR)系统中,多点协作(coordinated multiple point,CoMP)传输作为能够提升边缘小区终端性能的关键技术,已被广泛研究。在CoMP场景下,可以通过上行信道向服务小区的基站以及协作小区的基站分别发送数据,或者上报上行控制信息(uplink control information,UCI)。UCI例如可以是信道状态信息(channel state information,CSI)、确认(acknowledge,ACK)、否认(negative acknowledge,NACK)等信息。
例如,在NR系统中,为了避免服务小区和协作小区之间由于非理想回传链路(non-ideal backhaul links)交互CSI的时延问题,可考虑使用空口上报CSI的方式。也就是说,终端将测量终端与服务小区的基站之间的CSI1和终端与协作小区之间的基站的CSI2,通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)分别反馈给服务小区的基站和协作小区的基站。终端在上报时,可以以一定的发射功率上报一个PUCCH或一个PUSCH,所述PUCCH或PUSCH既包含到服务小区的基站的CSI1,又包含到协作小区的基站的CSI2。终端也有可能针对每个基站,以一定发射功率上报一个PUCCH或PUSCH。
可见,无论终端采用何种方式上报,都需要进行上行功率控制。终端通过上行信道上报UCI或发送上行数据时,如何进行上行信道的发射功率控制,成了亟需解决的问题。
发明内容
本申请提供一种功率控制方法、终端和网络设备,能够根据多个发射功率控制命令确定上行信道发射功率,从而能够保证高效合理的功率分配,提高系统整体性能。
第一方面,提供了一种功率控制方法,包括:终端接收至少一个网络设备发送的至少一个下行控制信息(downlink control information,DCI),该至少一个DCI包括至少两个发射功率控制命令;该终端根据该至少两个发射功率控制命令,确定同一载波内的上行信道发射功率。
可选地,上行信道可以是PUCCH和/或PUSCH。
可选地,所述发射功率控制命令可以是TPC(transmission power control)命令。
本申请实施例的功率控制方法,终端能够根据多个发射功率控制命令确定上行信道发射功率,从而能够保证高效合理的功率分配,提高系统整体性能。
在一种可能的实现方式中,该终端接收至少一个网络设备发送的至少一个下行控制信息DCI,包括:该终端接收第一网络设备发送的DCI,该第一网络设备发送的DCI包括该终端的该至少两个发射功率控制命令,该第一网络设备为该至少一个网络设备中的任一网络设备。
发射功率控制命令可以是TPC命令,因此根据本申请实施例,可以将现有的针对终端的一个TPC命令扩展为针对该终端的多个TPC命令,已满足系统的实际需求。
在一种可能的实现方式中,该至少两个发射功率控制命令占用n个比特位,n为大于2的正整数,该n个比特位与该至少两个发射功率控制命令的对应关系是由高层信令配置的或预定义的。
可选地,高层信令可以是无线资源控制(radio resource control,RRC)信令或媒体接入控制控制信令(media access control control element,MAC CE)信令。
在一种可能的实现方式中,该终端根据该至少两个发射功率控制命令,确定同一载波内的上行信道发射功率,包括:该终端根据每个发射功率控制命令所指示的调整步长或绝对功率调整值,确定该上行信道发射功率。
在一种可能的实现方式中,终端根据该至少两个发射功率控制命令,确定同一载波内的上行信道发射功率,包括:终端确定所述至少两个发射功率控制命令中的目标发送功率控制命令;终端根据所述目标发送功率控制命令确定同一载波内的上行信道发射功率。
可选地,终端确定所述至少两个发射功率控制命令中的目标发送功率控制命令,包括:所述终端根据所述至少一个DCI所在的资源位置、聚合等级、加扰方式和所包括的第一指示信息中的至少一种,确定所述目标发射功率控制命令。
可选地,所述终端将所述至少一个DCI中的满足下述条件中的至少一个条件的DCI所包括的发射功率控制命令确定为所述目标发射功率控制命令:
承载于目标资源位置、聚合等级为目标聚合等级、加扰方式为目标加扰方式、所包括的第一指示信息为目标第一指示信息。
可选地,终端确定所述至少两个发射功率控制命令中的目标发送功率控制命令,包括:终端确定所述至少一个DCI中的候选DCI,所述候选DCI是通过预定义的方式确定的或是通过网络设备之间交互的方式确定的;
所述终端将所述候选DCI所包括的发射功率控制命令确定为所述目标发射功率控制命令。
可选地,终端确定所述至少一个DCI中的候选DCI,包括:所述终端根据所述多个DCI所在的资源位置、聚合等级、加扰方式和所包括的第一指示信息中的至少一种,确定所述候选DCI。
可选地,终端确定所述至少一个DCI中的候选DCI,包括:所述终端将满足下述条件中的至少一个条件的DCI确定为所述候选DCI:承载于目标资源位置、聚合等级为目标聚合等级、加扰方式为目标加扰方式、所包括的第一指示信息为目标第一指示信息。
可选地,所述候选DCI为所述终端的服务网络设备发送的。
可选地,所述资源位置为下述中的任一种:
搜索空间、控制信道候选集和控制资源集合。
在一种可能的实现方式中,该终端根据该至少两个发射功率控制命令,确定同一载波内的上行信道发射功率,包括:该终端根据该至少两个发射功率控制命令分别确定至少两个候选发射功率,该至少两个候选发射功率与该至少两个发射功率控制命令一一对应;该终端根据该至少两个候选发射功率,确定该上行信道发射功率。
在一种可能的实现方式中,该终端根据该至少两个候选发射功率,确定同一载波内的该上行信道发射功率,包括:该终端将该至少两个候选发射功率中的最大发射功率、最小发射功率、或该至少两个候选发射功率的平均值确定为该上行信道发射功率。
通过将该至少两个候选发射功率中的最大发射功率确定为上行信道发射功率,能够保证上行信道传输稳定性。通过将该至少两个候选发射功率中的最小发射功率确定为上行信道发射功率,能够减小对本小区的其他终端的干扰。
在一种可能的实现方式中,该终端根据该至少两个候选发射功率,确定同一载波内的该上行信道发射功率,包括:终端可以该至少两个候选发射功率的加权和确定为该上行信道发射功率。
可选地,对于每个候选发射功率的权值,可以是终端计算的,也可以是网络设备配置的,或者还可以是预定义的,本申请实施例对此不作具体限定。
在一种可能的实现方式中,该终端根据该至少两个发射功率控制命令,确定同一载波内的上行信道发射功率,包括:该终端根据该至少两个发射功率控制命令中的第一发射功率控制命令,确定该上行信道发射功率。
第二方面,提供了一种功率控制方法,包括:终端接收第一网络设备发送的下行控制信息DCI,该DCI包括该终端的至少两个发射功率控制命令;该终端根据该至少两个发射功率控制命令,确定至少两个网络设备中的每个网络设备的上行信道发射功率,该至少两个网络设备与该至少两个发射功率控制命令一一对应,该至少两个网络设备包括该第一网络设备。
本申请实施例的功率控制方法,终端能够根据多个发射功率控制命令确定上行信道发射功率,从而能够保证高效合理的功率分配,提高系统整体性能。
在一种可能的实现方式中,该至少两个发射功率控制命令占用n个比特位,n为大于2的正整数,该n个比特位与该至少两个发射功率控制命令的对应关系是由高层信令配置的或预定义的。
在一种可能的实现方式中,该终端根据该至少两个发射功率控制命令,确定至少两个网络设备中的每个网络设备的上行信道发射功率,包括:该终端根据每个发射功率控制命令所指示的调整步长或绝对功率调整值,确定该每个网络设备的上行信道发射功率。
在一种可能的实现方式中,该终端根据每个发射功率控制命令所指示的调整步长或绝对功率调整值,确定该每个网络设备的上行信道发射功率,包括:该终端根据该每个发射功率控制命令所指示的调整步长和该每个网络设备的上行信道所对应的传播损耗,或根据该每个发射功率控制命令所指示的绝对功率调整值和该每个网络设备的上行信道所对应的传播损耗,确定该每个网络设备的上行信道发射功率。
在一种可能的实现方式中,该每个网络设备的上行信道所对应的传播损耗是通过该DCI中的指示信息或高层信令指示的。
在一种可能的实现方式中,该终端根据该至少两个发射功率控制命令,确定至少两个网络设备中的每个网络设备的上行信道发射功率,包括:
该终端根据该至少两个发射功率控制命令中的第i个发射功率控制命令,确定至少两个候选发射功率中的第i个候选发射功率P 1i,该至少两个发射功率控制命令与该至少两个候选发射功率一一对应,i在[1,N]的范围内遍历取值,且i为正整数,N为该至少两个上行信道的数量,N为大于1的正整数,P 1i>0;
在P 11+P 12+…+P 1N≤P 0的情况下,该终端确定该至少两个网络设备中的第i个网络设备的上行信道的发射功率为P 1i;或
在P 11+P 12+…+P 1N>P 0的情况下,该终端根据以下任一公式确定第i个上行信道的发射功率P 2i
a 0*(P 11+P 12+…+P 1N)≤P 0,且P 2i=a 0*P 1i
a 1*P 11+a 2*P 12+…+a N*P 1N≤P 0,且P 2i=a i*P 1i
其中,P 2i>0,P 0为该终端的最大发射功率,a 0和a i为缩放因子,0<a 0<1,a i≥0。
根据本申请实施例的方法,终端根据接收到多个发射功率控制命令,能够通过功率缩放的方式,能够保证上行传输的功率小于终端的最大发射功率。
在一种可能的实现方式中,该缩放因子a i是根据该第i个网络设备的上行信道的优先级确定的。
第三方面,提供了一种功率控制方法,包括:网络设备向终端发送下行控制信息DCI,该DCI包括该终端的至少两个发射功率控制命令,该至少两个发射功率控制命令用于该终端确定至少一个上行信道的发射功率;该网络设备接收该终端发送的该至少一个上行信道中的第一上行信道。
在一种可能的实现方式中,该至少两个发射功率控制命令占用n个比特位,n为大于2的正整数,该n个比特位与该至少两个发射功率控制命令的对应关系是由高层信令配置的或预定义的。
在一种可能的实现方式中,该DCI还包括指示信息,该指示信息用于指示与该至少一个上行信道中的每个上行信道对应的传播损耗。
第四方面,提供了一种终端,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端,用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,该终端包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第六方面,提供了一种网络设备,用于执行第三方面或第三方面的任意可能的实现方式中的方法。具体地,该终端包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的单元。
第七方面,提供了一种终端,该终端包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该系统执行上述第一方面 及第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种终端,该终端包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该系统执行上述第二方面及第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种网络设备,该网络设备包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该系统执行上述第三方面及第三方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面及上述各方面的任意可能的实现方式中的方法的指令。
第十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面及上述各方面的任意可能的实现方式中的方法。
第十二方面,提供了一种功率控制方法,包括:终端确定第一上行信道的第一传播损耗,该第一传播损耗是根据对多个下行参考信号中的第一下行参考信号的测量得到的;该终端根据该第一传播损耗确定该第一上行信道的发射功率。
可选地,所述多个下行参考信号与多个网络设备对应。
本申请提供的功率控制方法,终端可以结合第一传播损耗,确定第一PUCCH的发射功率时。由于充分考虑了网络设备和终端之间的传播损耗,因此,本申请实施例的功率控制的方法能够提高网络设备正确接收上行信道的概率,从而能够提高系统性能。
在一种可能的实现方式中,该终端确定第一上行信道的第一传播损耗,包括:该终端接收网络设备发送的物理层信令和/或高层信令,该物理层信令和/或该高层信令包括准共址(Quasi-co-located,QCL)指示信息,该QCL指示信息用于指示发送该多个下行参考信号的天线端口之间的QCL关系;该终端根据该QCL关系,确定该第一下行参考信号,以确定该第一传播损耗,或该终端根据该QCL关系,确定该第一下行参考信号对应的该第一传播损耗。
在一种可能的实现方式中,该终端确定第一上行信道的第一传播损耗,包括:该终端接收网络设备发送的物理层信令和/或高层信令,该物理层信令和/或该高层信令包括第一指示信息,该第一指示信息用于指示该第一上行信道所对应的下行参考信号的信息,该终端根据该第一指示信息,确定该第一下行参考信号,以确定该第一传播损耗。
可选地,所述下行参考信号的信息如可以是第一下行参考信号的资源索引、发送该第一下行参考信号的天线端口信息、该第一下行参考信号的图样等信息。
在一种可能的实现方式中,该下行参考信号包括以下中的至少一种:辅同步信号(secondary synchronization signal,SSS)、主同步信号(primary synchronization signal,PSS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)和解调参考信号(demodulation reference signal,DMRS)。
可选地,PSS和/或SSS可以通过SS block发送,即PSS、SSS和物理广播信道(physical broadcast channel,PBCH)同时发送,PSS和/或SSS也可以不通过SS block发送,即可以单独发送PSS和/或SSS。
第十三方面,提供了一种功率控制方法,包括:第一网络设备向终端发送第一下行参考信号,该第一下行参考信号用于该终端确定第一传播损耗;该第一网络设备接收该终端 发送的第一上行信道,该第一上行信道的发射功率是该终端根据该第一传播损耗确定的。
可选地,所述多个下行参考信号与多个网络设备对应。
本申请提供的功率控制方法,终端可以结合第一传播损耗,确定第一PUCCH的发射功率时。由于充分考虑了网络设备和终端之间的传播损耗,因此,本申请实施例的功率控制的方法能够提高网络设备正确接收上行信道的概率,从而能够提高系统性能。
在一种可能的实现方式中,该第一下行参考信号或该第一下行参考信号对应的该第一传播损耗是该终端根据准共址QCL指示信息确定的,该QCL指示信息为该网络设备通过物理层信令和/或高层信令发送的,该QCL指示信息用于指示发送该多个下行参考信号的天线端口之间的QCL关系,所述多个下行参考信号包括所述第一下行参考信号。
在一种可能的实现方式中,该第一下行参考信号是该终端根据第一指示信息确定的,该第一指示信息为该网络设备通过物理层信令和/或高层信令发送的,该第一指示信息用于指示该第一上行信道所对应的下行参考信号的信息,该下行参考信号的信息用于指示该该第一下行参考信号。
可选地,所述下行参考信号的信息如可以是第一下行参考信号的资源索引、发送该第一下行参考信号的天线端口信息、该第一下行参考信号的图样等信息。
在一种可能的实现方式中,该下行参考信号包括以下中的至少一种:辅同步信号SSS、主同步信号PSS、信道状态信息参考信号CSI-RS、解调参考信号DMRS。
第十四方面,提供了一种终端,用于执行第十二方面或第十二方面的任意可能的实现方式中的方法。可选地,该终端包括用于执行第十二方面或第十二方面的任意可能的实现方式中的方法的单元。
第十五方面,提供了一种网络设备,用于执行第十三方面或第十三方面的任意可能的实现方式中的方法。可选地,该网络设备包括用于执行第十三方面或第十三方面的任意可能的实现方式中的方法的单元。
第十六方面,提供了一种装置,该装置包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该装置执行上述第十二方面及第十二方面的任意可能的实现方式中的方法。
第十七方面,提供了一种装置,该装置包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该装置执行上述第十三方面及第十三方面的任意可能的实现方式中的方法。
第十八面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第十二方面和/或第十三方面及上述第十二方面和/或第十三方面的任意可能的实现方式中的方法的指令。
第十九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第十二方面和/或第十三方面及上述第十二方面和/或第十三方面的任意可能的实现方式中的方法。
附图说明
图1是根据本申请的功率控制方法的一个系统架构示意图。
图2是根据本申请的一种功率控制方法的示意性流程图。
图3是根据本申请的一种功率控制方法的一个具体实施例的示意性流程图。
图4是根据本申请的一种功率控制方法的另一具体实施例的示意性流程图。
图5是根据本申请的另一种功率控制方法的示意性流程图。
图6是根据本申请的一个终端的示意性框图。
图7是根据本申请的另一终端的示意性框图。
图8是根据本申请的网络设备的示意性框图。
图9是根据本申请的一个终端的示意性框图。
图10是根据本申请的另一终端的示意性框图。
图11是根据本申请的网络设备的示意性框图。
图12是根据本申请的另一功率控制方法的示意性流程图。
图13是根据本申请的另一终端的示意性框图。
图14是根据本申请的网络设备的示意性框图。
图15是根据本申请的另一终端的示意性框图。
图16是根据本申请的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、5G系统(或称为NR系统)等。
图1示出了适用于本申请实施例的无线通信系统100。该无线通信系统100可以包括多个网络设备,例如,图1所示的第一网络设备110和第二网络设备120。第一网络设备110和第二网络设备120均可以与终端130通过无线空口进行通信。第一网络设备110和第二网络设备120可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。该第一网络设备110或第二网络设备120可以是GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB),还可以是LTE系统中的演进型基站(evolutional Node B,eNB或eNodeB),或者是发送接收点(transmission reception point,TRP)等,本申请实施例对此并未特别限定。
另外,本申请实施例所涉及的网络设备可以是采用CU-DU架构的网络设备。执行本申请实施例的方法的网络设备可以是中央控制单元(centralized unit,CU),也可以是分布式单元(distributed unit,DU),其中,CU也可以称为中央节点(central unit)或者控制节点(control unit)。
该无线通信系统100还包括位于第一网络设备110和第二网络设备120覆盖范围内的一个或多个终端130。该终端130可以是移动的或固定的。终端130可以经无线接入网(radio access network,RAN)与一个或多个核心网(core network)进行通信,终端可称为终端 设备、接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备等。
该无线通信系统100可以支持CoMP传输,即,多个小区或多个传输点可以协作以在同一载波内以及同一时间段内向同一个终端发送数据。其中,该多个小区可以属于相同的网络设备或者不同的网络设备,并且可以根据信道增益或路径损耗、接收信号强度、接收信号指令等来选择。
该无线通信系统100中的终端130可以支持多点传输,即,该终端130可以与第一网络设备110通信,也可以与第二网络设备120通信,其中,第一网络设备110可以作为服务网络设备或服务小区,第二网络设备120可以作为协作网络设备或协作小区。或者,第一网络设备110可以作为协作网络设备或协作小区,第二网络设备120可以作为服务网络设备或服务小区。服务网络设备是指该通过无线空口协议为终端提供,RRC连接、非接入层(non-accessstratum,NAS)移动性管理和安全性输入等服务的网络设备。
以第一网络设备为服务网络设备,第二网络设备为协作网络设备为例,该第二网络设备的数量可以是一个或多个。可以理解的是,第一网络设备和第二网络设备可以都为服务网络设备。
下面对本申请实施例中所涉及到的一些通用概念或者定义做出解释。
1)搜索空间(search space):
搜索空间可以包括:公共搜索空间(common search space)和UE专用搜索空间(UE-specific search space)。公共搜索空间用于传输小区级别的公共信息,例如可以包括:与寻呼(paging)、随机接入响应(random access response,RAR)、广播控制信道(broadcast control channel,BCCH)等相关的控制信息;UE专用搜索空间用于传输终端(或者说,UE)级别的信息,例如可以包括:下行共享信道(downlink share channel,DL-SCH)、上行共享信道(unlink share channel,UL-SCH)等相关的控制信息。
应理解,公共搜索空间和UE专用搜索空间是LTE协议中定义的两类搜索空间,本申请中以UE专用搜索空间为例来说明,但这不应对本申请构成任何限定,本申请并不排除对搜索空间的重新划分或者重新定义的可能,只要是用于传输终端级别的信息的资源,均可以定义为本申请实施例中所述的UE专用搜索空间。
一个搜索空间是对某一CCE聚合等级定义的。一个终端设备可以有多个搜索空间,每个搜索空间中的CCEs可以是连续分布的,终端设备需监听一组PDCCH控制信道,这一组被监听的PDCCH控制信道可以称为“控制信道候选集(candidate control channel set)”,或者称“控制信道候选(PDCCH candidates)”。
2)聚合等级(aggregation level,AL):
表示一个PDCCH占用的连续CCE的个数。一个CCE由9个资源元素组(resource element group,REG)组成,一个REG由4个频域上连续的非参考信号(reference signal,RS)的资源粒子(resource element,RE)组成,即,一个CCE由36个RE组成。
3)控制资源集合(control resource set):
控制信道可以划分为多个控制资源集合,每个控制资源集合是一组REG的集合。终端设备可以在一个或多个控制资源集合上监听PDCCH。
在本发明实施例中,对于网络设备而言,控制资源集合可以理解为发送控制信道所占的资源;对于终端设备而言,每个终端设备的PDCCH的搜索空间都属于该控制资源集合。或者说,网络设备可以从该控制资源集合中确定发送PDCCH使用的资源,终端设备可以从该控制资源集合中确定PDCCH的搜索空间。其中,控制资源集合可以包括时频资源,例如,频域上可以是一段带宽,或者一个或者多个子带等;时域上可以是时间单元的个数,例如,子帧或者时隙或者微时隙中的符号个数;时频域上可以是连续或不连续的资源单元,例如,连续的资源块(resource block,RB)或者不连续的RB。
应理解,上述列举的频域资源、时域资源、时频域资源的具体内容仅为示例性说明,而不应对本发明实施例构成任何限定。例如,RB的定义可以为现有LTE协议中定义的资源,也可以为未来协议中定义的资源,或者,还可以使用其他的命名来替代。又例如,时间单元,可以是子帧,也可以是时隙(slot),还可以是无线帧、微时隙(mini slot或sub slot)、多个聚合的时隙、多个聚合的子帧、符号等等,甚至还可以是传输时间间隔(transmission time interval,TTI),本申请实施例对此并未特别限定。
本申请实施例中,终端可以同时向第一网络设备和第二网络设备发送UCI或数据,该UCI或数据可以认为是第一网络设备和第二网络设备的公共信息。终端也可以分别向第一网络设备发送第一网络设备专有的UCI或数据,向第二网络设备发送第二网络设备专有的UCI或数据。
应理解,上述UCI或数据承载于上行信道。也就是说,上行信道可以用于承载UCI或数据,本申请实施例对于上行信道所承载的具体是UCI还是数据不作限定。
本申请实施例所涉及服务小区c,可以理解为载波c。终端在服务小区c的传输,可以理解为终端在载波c上的传输。此外,服务小区可以是RRC连接的服务小区,也可以是协作小区。
可选地,上行信道可以是PUCCH和/或PUSCH。
可选地,本申请实施例所涉及的高层信令可以是RRC信令,MAC CE信令等。
可选地,本申请中所述的“载波”,对应于某一频段,例如中心频点为800M频段或中心频点为900M的频段。
另外,本申请中所描述的发送上行信道,可以理解为发送UCI或数据,该UCI或数据承载于该上行信道。
此外,本申请所涉及的高层可以是除物理层以外的MAC层、无线链路控制(radio link control,RLC)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层等。
可选地,本申请所涉及的发射功率控制命令可以TPC命令。
具体而言,该TPC命令可以是相对型的命令,也可以是绝对型的命令。所谓相对型的命令可以理解为终端在接收到该发射功率控制命令后,其发射功率的调整效果类似于在当前的发射功率基础上进行相对的调整,相对型的命令也可以叫做累积型的命令;所谓绝对型的命令,可以理解为终端在接收到该发射功率控制命令后,其发射功率的调整效果类似于在初始发射功率的基础上进行调整。具体的发射功率控制命令的形式可能与网络需求 或者具体的传输格式等因素相关,本申请实施例对此不做限定,例如可以是通过高层信令指示配置发射功率控制命令的形式。
在详细描述本申请实施例的功率控制方法之前,首先介绍相关的现有技术。
根据现有技术,假设终端所在的服务小区为c,终端在服务小区c子帧i上传输上行信道,那么上行信道发射功率计算如下(应理解,以下公式计算结果的单位为d Bm):
一、如果上行信道为PUSCH,则上行信道发射功率的计算:
1、子帧i传输PUSCH,但PUCCH不同时传输,那么PUSCH发射功率如下:
Figure PCTCN2018078080-appb-000001
2、如果子帧i传输PUSCH的同时也传输PUCCH,那么PUSCH发射功率如下:
Figure PCTCN2018078080-appb-000002
3、如果子帧i不传输PUSCH,对于接收到的在DCI格式3/3A上关于PUCCH的发射机功率控制命令积累,那么PUSCH发射功率如下:
Figure PCTCN2018078080-appb-000003
其中,各符号参数含义如下:
(1).min表示取最小值,log表示取对数。
(2).P CMAX,c(i)是配置的在服务小区c子帧i上终端的最大发射功率,
Figure PCTCN2018078080-appb-000004
是P CMAX,c(i)的线性值。如果终端在服务小区c子帧i传输PUCCH without PUSCH,对于接收到的在DCI格式3/3A上的关于PUCCH的TPC命令累计。如果终端在服务小区c子帧i没有传输PUCCH和PUSCH,对于接收到的在DCI格式3/3A上的关于PUCCH的TPC命令累计,P CMAX,c(i)按照假设MPR=0dB,A-MPR=0dB,P-MPR=0dB和TC=0dB计算,具体定义可以参照现有的标准,例如3GPP技术说明书分组无线接入网(Technical Specification Group Radio Access Network,TS-GRAN)36.101。
(3).
Figure PCTCN2018078080-appb-000005
是P PUCCH(i)的线性值,P PUCCH(i)定义在后续描述。
(4).M PUSCH,c(i)是在服务小区c的子帧i上的分配的PUSCH资源的带宽,用有效的资源块(Resource Block,RB)数目表示。
(5).如果对于服务小区c,终端配置了高层参数UplinkPowerControlDedicated-v12x0并且如果子帧i属于通过高层参数tpc-SubframeSet-r12指示的上行功率控制子帧集合2,
(5.1).当j=0,P O_PUSCH,c(0)=P O_UE_PUSCH,c,2(0)+P O_NOMINAL_PUSCH,c,2(0),其中j=0用于对应semi-persistent grant的PUSCH传输/重传。P O_UE_PUSCH,2(0)和P O_NOMINAL_PUSCH,2(0)是通过高层参数p0-终端-PUSCH-Persistent-SubframeSet2-r12和p0-NominalPUSCH-Persistent -SubframeSet2-r12提供。
(5.2).当j=1,P O_PUSCH,c(1)=P O_UE_PUSCH,c,2(1)+P O_NOMINAL_PUSCH,c,2(1),其中j=1用于对应dynamic scheduled grant的PUSCH传输/重传。P O_UE_PUSCH,2(1)和P O_NOMINAL_PUSCH,2(1)是通过高层参数p0-终端-PUSCH-SubframeSet2-r12和p0-NominalPUSCH-SubframeSet2-r12提供。(5.3).当j=2,P O_PUSCH,c(2)=P O_UE_PUSCH,c(2)+P O_NOMINAL_PUSCH,c(2),其中j=2用于对应random access response grant的PUSCH传输/重传。P O_UE_PUSCH,c(2)=0,P O_NOMINAL_PUSCH,c(2)=P O_PREPREAMBLE_Msg3
其中参数,preambleInitialReceivedTargetPower(P O_PRE)和Δ PREAMBLE_Msg3在高层中定义。
否则
(5.4)P O_PUSCH,c(j)由高层提供的参数部分P O_NOMINAL_PUSCH,c(j),j=0与j=1和参数部分P O_UE_PUSCH,c(j),j=0与j=1的和组成。对应semi-persistent grant的PUSCH传输(重传),j=0;对应dynamic scheduled grant的PUSCH传输(重传),j=1;对应random access response grant的PUSCH传输(重传),j=2。P O_UE_PUSCH,c(2)=0,P O_NOMINAL_PUSCH,c(2)=P O_PREPREAMBLE_Msg3,其中参数preambleInitialReceivedTargetPower(P O_PRE)和Δ PREAMBLE_Msg3在高层中定义。
(6).如果对于服务小区c,终端配置了高层参数UplinkPowerControlDedicated-v12x0并且如果子帧i属于通过高层参数tpc-SubframeSet-r12指示的上行功率控制子帧集合2,
(6.1).对于j=0或者j=1,α c(j)=α c,2∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1}。其中,α c,2是通过高层提供的参数alpha-SubframeSet2-r12。对于j=2,α c(j)=1。
否则
(6.2).对于j=0或者j=1,α c∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1}是通过高层提供的3比特的参数。For j=2,α c(j)=1。
(7).PL c是对于服务小区c的终端估计计算得到的传播损耗。PL c=referenceSignalPower-高层参考信号接收功率(Reference Signal Received Power,RSRP),其中referenceSignalPower是由高层提供,RSRP对应参考服务小区定义。
(8).
Figure PCTCN2018078080-appb-000006
(9).δ PUSCH,c是一个相关值,依据TPC命令计算。
如果终端配置了高层参数UplinkPowerControlDedicated-v12x0并且如果子帧i属于通过高层参数tpc-SubframeSet-r12指示的上行功率控制子帧集合2,那么当前PUSCH功率控制调整状态由f c,2(i)给出,并且终端将用f c,2(i)代替f c(i)来确定P PUSCH,c(i)。否则,当前PUSCH功率控制调整状态由f c(i)给出。f c,2(i)和f c(i)定义为:
f c(i)=f c(i-1)+δ PUSCH,c(i-K PUSCH),f c,2(i)=f c,2(i-1)+δ PUSCH,c(i-K PUSCH)
其中,上述的TPC命令域的映射可以如下述的表一和表二所示。
表一
Figure PCTCN2018078080-appb-000007
表二
Figure PCTCN2018078080-appb-000008
根据以上描述可知,如果TPC命令的DCI的格式为0/3/4/3A,则说明该TPC命令为累积型命令,终端可以根据该TPC命令域的值确定调整步长,即累积的δ PUSCH,进而可以确定PUSCH的发射功率;如果传输TPC命令的DCI的格式为0/4,则说明该TPC命令为绝对型命令,终端可以根据该该TPC命令域的值确定功率调整值,即绝对的δ PUSCH,进而可以确定PUSCH的发射功率。
二、如果上行信道为PUCCH,则上行信道发射功率的计算:
1.在子帧i上的PUCCH发射功率如下:
Figure PCTCN2018078080-appb-000009
2.如果对于服务小区终端不传输PUCCH,对于PUCCH的TPC命令的累计,PUCCH发射功率如下:
Figure PCTCN2018078080-appb-000010
其中,各符号参数含义如下:
(1).min表示取最小值,log表示取对数。
(2).P CMAX,c(i)是配置的在服务小区c子帧i上终端的最大发射功率。如果终端在服务小区c子帧i传输PUCCH without PUSCH,对于接收到的在DCI格式3/3A上的关于PUCCH的TPC命令累计。如果终端在服务小区c子帧i没有传输PUCCH和PUSCH,对于接收到的在DCI格式3/3A上的关于PUCCH的TPC命令累计,P CMAX,c(i)按照假设MPR=0dB,A-MPR=0dB,P-MPR=0dB和TC=0dB计算,具体定义可以参照现有的标准,例如3GPP TS-GRAN 36.101。
(3).Δ F_PUCCH(F)由高层提供。每一个Δ F_PUCCH(F)值对应一个与PUCCH格式1A相关的PUCCH格式(F),其中PUCCH格式(F)定义在3GPP TS-GRAN 36.211中的表格5.4-1,如下表三所示为所支持的PUCCH格式。
表三
PUCCH格式 调制方案 每个子帧的比特数M bit
1 N/A N/A
1a BPSK 1
1b QPSK 2
2 QPSK 20
2a QPSK+BPSK 21
2b QPSK+BPSK 22
3 QPSK 48
(4).如果终端通过高层配置在2个天线端口上传输PUCCH,那么Δ TxD(F')通过高层提供,其中PUCCH格式F'定义在3GPP TS-GRAN 36.211中表格5.4-1(如上表三);否则Δ TxD(F')。
(5).h(n CQI,n HARQ,n SR)是与PUCCH格式相关的值,其中n CQI代表信道质量信息的信息比特的数目。如果子帧i为没有任何UL-SCH相关的传输块的终端的调度请求(Scheduling Request,SR)配置子帧,则n SR=1;否则n SR=0。n HARQ,为终端发送的HARQ-ACK比特数目。
(6).P 0_PUCCH是由高层提供的参数P O_NOMINAL_PUCCH和高层提供的参数P O_UE_PUCCH之和组成的参数。
(7).PL c是对于服务小区c的终端估计计算得到的传播损耗。PL c=referenceSignalPower-高层参考信号接收功率(Reference Signal Received Power,RSRP),其中referenceSignalPower是由高层提供,RSRP对应参考服务小区定义。
(8).δ PUCCH是一个相关值,依据TPC命令计算。
Figure PCTCN2018078080-appb-000011
其中,g(i)是当前PUCCH功率控制调整状态,g(0)为复位后的初始值。
其中,上述的TPC命令域的映射可以如下述的表四和表五所示。
表四
Figure PCTCN2018078080-appb-000012
表五
Figure PCTCN2018078080-appb-000013
根据以上描述可知,根据传输TPC命令的DCI的格式,终端可以根据该TPC命令域的值确定调整步长,即δ PUCCH,进而可以确定PUCCH的发射功率。
下面将结合附图,对本申请实施例所提供的方案进行详细描述。
图2为本申请实施例提供的一种功率控制方法200的示意图。该方法200可以用于通过无线空口进行通信的通信系统,该通信系统可以包括至少一个网络设备和至少一个终端。例如,该通信系统可以为图1中所示的无线通信系统100。
可选地,该网络设备可以为发送接收点(TRP)、基站,或者,也可以为其他用于发送DCI的网络设备,本申请对此并未特别限定。
应理解,本申请实施例中的“第一”、“第二”等仅用于区分说明,而不应对本发明构成任何限定。例如,第一网络设备和第二网络设备仅是为了区分不同的网络设备。
S210,终端在同一载波内接收至少一个网络设备发送的至少一个下行控制信息DCI。
具体地,该至少一个DCI包括该终端的多个发射功率控制命令,该多个发射功率控制命令与多个网络设备一一对应。也就是说,每个发射功率控制命令对应一个网络设备,终端可以根据每个发射功率控制命令确定对应的网络设备的上行信道发射功率。
以该至少一个DCI包括两个发射功率控制命令(例如,记作第一发射功率控制命令和第二发射功率控制命令)为例来讲,假设第一发射功率控制命令对应系统100中的第一网络设备,第二发射功率控制命令对应系统100中的第二网络设备,那么终端可以根据第一 发射功率控制命令确定与第一网络设备对应的上行信道(例如,记作第一上行信道)发射功率,根据第二发射功率控制命令确定与第二网络设备对应的上行信道(例如,记作第二上行信道)发射功率。
应理解,第一上行信道可以是PUCCH或PUSCH,或者第一上行信道包括PUCCH和PUSCH。第二上行信道可以是PUCCH或PUSCH,或者第一上行信道包括PUCCH和PUSCH。
另外,需要说明的是,包括所述多个发射功率控制命令的所述至少一个DCI可以采用小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)进行加扰。终端则采用该C-RNTI对所述至少一个DCI进行解扰。
本申请实施例中,终端接收的DCI可以是某一网络设备(例如,系统100中的第一网络设备或第二网络设备)发送的,也可以是多个网络设备(例如,系统100中的第一网络设备和第二网络设备)发送的。下面,对这两种情况进行详细描述。
情况一:
终端在同一载波上接收某一网络设备发送的至少一个DCI。
对于情况一,以下,不失一般性,以终端在同一载波上从第一网络设备接收DCI为例进行说明。
针对情况一,具体可以分为两种场景。
场景(一):终端在同一载波上接收第一网络设备发送的至少两个DCI(例如,第一DCI和第二DCI)。
具体地,每个DCI中包括该至少两个发射功率控制命令中的其中一个发射功率控制命令。
举例来说,第一DCI包括第一发射功率控制命令,第二DCI包括第二发射功率控制命令。此外,第一DCI还可以包括除第一发射功率控制命令外的其他终端的发射功率控制命令,同样地,第二DCI还可以包括除第二发射功率控制命令外的其他终端的发射功率控制命令。
可选地,第一DCI和第二DCI可以是第一网络设备以时分的方式发送的,第一网络设备可以在第一时刻发送第一DCI,在第二时刻发送第二DCI。比如,第一网络设备可以在第一子帧、第一时隙、或第一迷你时隙(mini-slot)发送第一DCI,在第二子帧、第二时隙、或第二迷你时隙发送第二DCI。
场景(二):终端在同一载波上接收第一网络设备发送的一个DCI(以下,为了描述方便,记作目标DCI)。
具体来讲,终端接收第一网络设备发送的目标DCI,目标DCI包括该终端的至少两个发射功率控制命令,例如第一发射功率控制命令和第二发射功率控制命令。
应理解,目标DCI中可以只包括该终端的多个发射功率控制命令,也可以包括除该终端外的其他终端的发射功率控制命令。
可选地,目标DCI的格式可以是3/3A/3B中的任一种。
此时,目标DCI中可以包括多个终端的发射功率控制命令。其中,针对每个终端的发射功率控制命令至少包括两个。针对每个终端的至少两个发射功率控制命令可以占用n个比特位,n为大于2的正整数。
以针对每个终端的发射功率控制命令的数量为m(m≥2)举例来说,针对每个终端的发射功率控制命令可以占用a*m(a*m=n)个比特位。其中,每个发射功率控制命令可以占用a个比特位。或者,每个发射功率控制命令可以占用不同的比特位。例如,a=2,m=2时,每个终端的第一个发射功率控制命令和第二个发射功率控制命令均可以占用2个比特位。或者,每个终端的第一个发射功率控制命令可以占用1比特,第二个发射功率控制命令可以占用3比特。对于具体的比特位与发射功率控制命令的对应关系可以第一网络设备通过高层信令配置的,也可以是第一网络设备和终端预定义的。比如,n=4时,该n个比特位中的前两个比特位可以表示第一发射功率控制命令,后两个比特位可以表示第二发射功率控制命令。
应理解,以上描述仅为示例性的说明,只是为了帮助本领域技术人员更好的理解本申请。本申请对于该n个比特位与该至少两个发射功率控制命令的对应关系,以及终端获知该对应关系的方式不作具体限定。
可选地,目标DCI的格式也可以是1A/1B/1D/1/2A/2/2B/2C/2D中的任一种。此时,目标DCI中可以只包括针对该终端的至少两个发射功率控制命令。其中,针对该终端的至少两个发射功率控制命令可以占用n个比特位,n为大于2的正整数。
以目标DCI中包括该终端的两个发射功率控制命令(第一发射功率控制命令和第二发射功率控制命令),且n=4为例,第一发射功率控制命令和第二个发射功率控制命令均可以占用2个比特位。比如,第一发射功率控制命令占用前2个比特位,第二发射功率控制命令可以占用后2个比特位。再如,第一发射功率控制命令占用后2个比特位,第二发射功率控制命令可以占用前2个比特位。此外,第一发射功率控制命令可以占用1个比特位,第二发射功率控制命令可以占用3个比特位。比如,第一发射功率控制命令可以占用前1个比特位,第二发射功率控制命令可以占用后3个比特位。再如,第一发射功率控制命令可以占用最后1个比特位,第二发射功率控制命令可以占用前3个比特位。对于具体的比特位与发射功率控制命令的对应关系可以高层信令配置,也可以预定义。
应理解,以上描述仅为示例性的说明,只是为了帮助本领域技术人员更好的理解本申请。本申请对于该n个比特位与该至少两个发射功率控制命令的对应关系,以及终端获知该对应关系的方式不作具体限定。
进一步地,所述至少两个发射功率控制命令中的每个发射控制命令可以用发射功率控制命令编号,例如TPC命令编号表示。比如,TPC命令编号1为可以表示第一发射功率控制命令,TPC命令编号为2可以表示第二发射功率控制命令。
应理解,本申请实施例对发射功率控制命令编号与发射功率控制命令的具体对应关系不作限定。该对应关系可以是第一网络设备通过高层信令配置的,也可以是第一网络设备和终端预定义的。
还应理解,上述所描述的DCI的格式仅为示例性说明,DCI的格式还可以是未来5G定义的其他格式,本申请实施例对于DCI的格式不作具体限定。
还需要说明的是,对于情况一,如果第一网络设备为协作小区的网络设备,那么第一网络设备首先获取该终端的C-RNTI。比如,第一网络设备可以从服务小区的网络设备(例如,第二网络设备)处获取该C-RNTI,采用该C-RNTI对第一网络设备发送的DCI进行加扰。
情况二:
终端在在同一载波上接收多个网络设备(例如,第一网络设备和第二网络设备)各自发送的一个DCI。
在该情况下,每个DCI中包括该终端的一个发射功率控制命令。
例如,终端接收第一网络设备发送的第一DCI,第一DCI包括第一发射功率控制命令,接收第二网络设备发送的第二DCI,第二DCI包括第二发射功率控制命令。
需要说明的是,如果第一网络设备为协作小区的网络设备,那么第一网络设备首先需要从第二网络设备处获取该终端的C-RNTI,采用该C-RNTI对第一DCI进行加扰。如果第二网络设备为协作小区的网络设备,那么第二网络设备首先需要从第一网络设备处获取该终端的C-RNTI,采用该C-RNTI对第二DCI进行加扰。
该情况与情况一中的场景(一)类似。应理解,对于情况二和情况一中的场景(一),具体地可以参照现有技术中网络设备发送TPC的相关技术,为了简洁,此处不再详述。
S220,终端根据该至少两个发射功率控制命令,确定同一载波内的上行信道发射功率。
比如,终端可以根据每个发射功率控制命令所指示的调整步长或绝对功率调整值,确定所述上行信道发射功率。
在该情况下,如果该至少两个发射功率控制命令承载于一个DCI,比如上文中的目标DCI,那么该至少两个发射功率控制命令全部都是相对型的命令或全部都是绝对型的命令。另外,如果该至少两个发射功率控制命令中的每个发射功率控制命令各承载于一个DCI上,那么该至少两个发射功率控制命令可以部分是相对型的命令,部分是绝对型的命令,本申请实施例对此不作特殊限定。
可选地,在终端根据该至少两个发射功率控制命令,确定同一载波内的上行信道发射功率时,终端可以首先根据该至少两个发射功率控制命令分别确定至少两个候选发射功率,该至少两个候选发射功率与该至少两个发射功率控制命令一一对应。然后,该终端根据该至少两个候选发射功率,确定该上行信道发射功率。
举例来说,终端可以根据每个发射功率控制命令所对应的调整步长或绝对功率调整值,直接计算出对应的发射功率,即候选发射功率。然后,再根据所计算出的多个发射功率,确定所述上行信道发射功率。
比如,该终端可以将该至少两个候选发射功率中的最大发射功率、最小发射功率、或该至少两个候选发射功率的均值确定为该上行信道发射功率。
当该终端将该至少两个候选发射功率中的最大发射功率作为该上行信道发射功率时,能够提高传输的可靠性。当该终端将该至少两个候选发射功率中的最小发射功率作为该上行信道发射功率时,能够减小对本小区内相邻终端的干扰。
再如,终端可以将该至少两个候选发射功率的加权和作为该上行信道发射功率。其中,对于每个候选发射功率的权值,可以是终端计算的,也可以是网络设备配置的,或者还可以是预定义的,本申请实施例对此不作具体限定。
可选地,在终端根据该至少两个发射功率控制命令,确定同一载波内的上行信道发射功率时,终端也可以直接根据该至少两个发射功率控制命令中的其中一个发射功率控制命令(例如,记作目标发射功率控制命令),确定该上行信道发射功率。
此时,终端不需要计算该至少两个发射功率控制命令分别对应的候选发射功率,而只 需要根据实际性能需要从该至少两个发射功率控制命令中选择出一个发射功率控制命令,再根据所选择的发射功率控制命令确定所述上行信道发射功率。例如,为了保障传输的可靠性,终端可以选择所指示的调整步长或绝对功率调整值最大的发射功率控制命令作为第一发射功率控制命令,也就是说,目标发射功率控制命令所指示的调整步长或绝对功率调整最大。再如,为了减小对相邻终端的干扰,目标发射功率控制命令可以是所指示的调整步长或绝对功率调整值最小的发射功率控制命令。
作为示例而非限定,所述终端可以根据所述至少一个DCI所在的资源位置、聚合等级、加扰方式和所包括的第一指示信息中的至少一种,确定所述目标发射功率控制命令。
具体来讲,终端将候选DCI所包括的发射功率控制命令确定为目标发射功率控制命令,所述目标DCI满足下述条件中的至少一个条件:
(1)承载于目标资源位置;
(2)聚合等级为目标聚合等级;
(3)加扰方式为目标加扰方式;
(4)所包括的第一指示信息为目标第一指示信息。
举例来讲,协议或者系统可以规定,终端只将满足上述条件(1)~(4)中任一条件或任意组合的发射功率控制命令作为有效的发射功率控制命令,而将不满足相应条件的发射功率控制命令认为是无效的发射功率控制命令。
可选地,网络设备可以通过高层信令或DCI,通知终端上述目标资源位置、目标聚合等级、目标加扰方式以及所述目标第一指示信息中的至少一种。
下面,针对上述所描述的各条件进行详细说明。
条件(1):
可选地,目标位置可以是目标搜索空间、目标控制信道候选集、目标载波和目标控制资源集合中的任一种或其组合。
作为本申请一个实施例,承载所述至少一个DCI的时频资源位于终端的至少一个搜索空间内。终端将在所述至少一个搜索空间中的目标搜索空间检测到的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
可选地,所述至少一个搜索空间与所述至少一个DCI一一对应,即每个搜索空间承载一个DCI。终端将在所述至少一个搜索空间中的目标搜索空间(例如,记为搜索空间#J)检测到的DCI所包括的发射功率控制命令作为目标发射功率控制命令。可选地,所述至少一个搜索空间可以是预定义的或者预配置的。
进一步地,搜索空间#J与终端的服务网络设备对应,即,服务网络设备可以使用搜索空间#J内的时频资源,协作网络设备可以使用其他搜索空间内的时频资源。在此情况下,终端可以在搜索空间#J内检测到服务网络设备发送的DCI,在其他搜索空间中检测到协作网络设备发送的DCI。或者,换句话说,终端在搜索空间#J内检测到的DCI为服务网络设备发送的,在其他搜索空间内检测到的DCI为协作网络设备发送的,终端将服务网络设备发送的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
作为本申请的另一实施例,所述至少一个DCI可以承载于同一搜索空间中的至少一个控制信道候选集上。终端将在所述至少一个控制信道候选集中的目标控制信道候选集检测到的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
可选地,所述至少一个控制信道候选集与至少一个DCI一一对应,即每个控制信道候选集承载一个DCI。终端将在至少一个控制信道候选集中的目标控制信道候选集(例如,记为控制信道候选集#Q)上检测到的DCI所包括的发射功率控制命令作为目标发射功率控制命令。可选地,至少一个控制信道候选集可以是预定义的或者预配置的。
进一步地,控制信道候选集#Q与终端的服务网络设备对应,即,服务网络设备在控制信道候选集#Q上发送的DCI,协作网络设备在其他的控制信道候选集上发送的DCI。相应地,终端可以在控制信道候选集#Q上检测到服务网络设备发送的DCI,在其他控制信道候选集上检测到协作网络设备发送的DCI。或者,换句话说,终端在控制信道候选集#Q上检测到的DCI为服务网络设备发送的,在其他控制信道候选集上检测到的DCI为协作网络设备发送的,终端将服务网络设备发送的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
作为本申请的又一实施例,所述至少一个DCI可以承载于至少一个载波上。终端将在所述至少一个载波中的目标载波检测到的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
可选地,所述至少一个载波与所述至少一个DCI一一对应,即每个载波上发送一个DCI。终端将在所述至少一个载波中的目标载波(例如,记为载波#R)上检测到的DCI所包括的发射功率控制命令作为目标发射功率控制命令。可选地,所述至少一个载波可以是预定义的或者预配置的。
进一步地,载波#R与终端的服务网络设备对应,即,服务网络设备在载波#R上发送的DCI,协作网络设备在所述至少一个载波中的其他载波上发送的DCI。相应地,终端可以在载波#R上检测到服务网络设备发送的DCI,在其他载波上检测到协作网络设备发送的DCI。或者,换句话说,终端在载波#R上检测到的DCI为服务网络设备发送的,在其他载波上检测到的DCI为协作网络设备发送的,终端将服务网络设备发送的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
作为本申请的又一实施例,所述至少一个DCI可以承载于至少一个控制资源集合中。终端将在所述至少一个控制资源集合中的目标控制资源集合检测到的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
可选地,所述至少一个控制资源集合与所述至少一个DCI一一对应,即在每个控制资源集合中的资源上发送一个DCI。终端将在至少一个控制资源集合中的目标控制资源集合(例如,记为控制资源集合#V)上检测到的DCI所包括的发射功率控制命令作为目标发射功率控制命令。可选地,至少一个控制资源集合可以是预定义的或者预配置的。
进一步地,控制资源集合#V与终端的服务网络设备对应,即,服务网络设备在控制资源集合#R中的资源上发送的DCI,协作网络设备在其他控制资源集合中的资源上发送的DCI。相应地,终端可以在控制资源集合#V中的资源上检测到服务网络设备发送的DCI,在其他控制资源集合中的资源上检测到协作网络设备发送的DCI。或者,换句话说,终端在控制资源集合#V中的资源上检测到的DCI为服务网络设备发送的,在其他控制资源集合中的资源上检测到的DCI为协作网络设备发送的,终端将服务网络设备发送的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
应理解,上述的搜索空间、控制信道候选集、控制资源集合载波仅示例性地说明了终 端根据检测到的DCI的位置确定目标发射功率控制命令的方式,但这不应对本申请构成任何限定,本申请还可以采用其他方式定义或者区分DCI的位置,例如可以具体到时频资源位置、子载波间隔等,本申请实施例对此不作限定。
条件(2):
具体来讲,终端接收到的所述至少一个DCI是采用至少一个聚合等级所生成的。终端将采用所述至少一个聚合等级中的目标聚合的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
可选地,所述至少一个聚合等级与所述至少一个DCI一一对应,即不同的DCI是采用不同个聚合等级生成的。终端可以将聚合等级为目标聚合等级(例如,记为聚合等级#S,)的DCI所包括的发射功率控制命令作为目标发射功率控制命令。可选地,所述至少一个聚合等级可以是预定义的或者预配置的。
进一步地,聚合等级#S与终端的服务网络设备对应,即,服务网络设备根据聚合等级#S生成DCI#S,并向终端发送。在此情况下,终端将服务网络设备发送的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
条件(3):
具体来讲,所述至少一个DCI可以采用至少一个加扰方式进行加扰。终端将采用至少一个加扰方式中的目标加扰方式的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
可选地,所述至少一个加扰方式与所述至少一个DCI一一对应,即不同的DCI是采用不同的加扰方式生成的。终端在接收到所述至少一个DCI后,采用与所述至少一个加扰方式分别对应的解扰方式对各自DCI进行解扰。若某一DCI可以通过目标解扰方式(例如,记为解扰方式#T,解扰方式#T与加扰方式#T对应)解扰,则将该DCI所包括的发射功率控制命令确定为目标发射功率控制命令。可选地,所述至少一个加扰方式可以是预定义的或者预配置的。
进一步地,在对DCI加扰时,可以采用终端标识(UE identity,UE ID)+小区标识(cell ID)进行循环冗余校验(cyclic redundancy check,CRC)加扰。UE ID例如可以是小区无线网络临时识别(cell radio network temporary identify,C-RNTI),小区ID例如可以是物理层小区ID(physical layer cell identity,PCI)。
可选地,加扰方式#T与终端的服务网络设备对应,即,服务网络设备根据加扰方式#T生成DCI#T,并向终端发送。在此情况下,终端能够根据解扰方式#T,解扰DCI#T,从而将DCI#T(即,服务网络设备发送的DCI)所包括的发射功率控制命令确定为目标发射功率控制命令。
应理解,本申请实施例并不对所述至少一个加扰方式具体是何种加扰方式作具体限定,只要满足加扰方式#T与服务网络设备对应即可。还应理解,本申请实施例也不对UE ID和小区标识作特殊限定,上述所列举的UE ID和小区标识仅是示意性地说明。
条件(4):
可选地,所述至少一个DCI中的每个DCI可以包括第一指示信息。比如,第一指示信息可以是DCI中的一个比特位(1bit),该比特位可以为'1'或'0'。在本申请实施例中,可以规定或者预配置,终端将第一指示信息为目标第一指示信息,例如,将第一指示信息 为'1'的DCI所包括的发射功率控制命令作为目标发射功率控制命令。
可选地,所述第一指示信息可以是发射功率控制命令的一部分。
可选地,第一指示信息可以用于指示对应的DCI是服务网络设备发送的还是协作网络设备发送的,例如,当该比特位为'0'时,表示对应的DCI为协作网络设备发送的,当该比特位为'1'时,表示对应的DCI为服务网络设备发送的。从而,终端将包括的第一指示信息为'1'的DCI所包括的发射功率控制命令作为目标发射功率控制命令,即终端将服务网络设备发送的DCI所包括的发射功率控制命令确定为目标发射功率控制命令。
应理解,上述条件(1)~(4)可以结合使用,此时,终端将满足条件(1)~(4)中任意组合的DCI中的发射功率控制命令作为目标发射功率控制命令。对于条件(1)~(4)结合使用的情况,为了简洁,此处不再详述,具体地可以参照上述对条件(1)~(4)的描述。
作为本申请的另一实施例,终端可以首先确定所述至少一个DCI中的候选DCI(例如,并记作DCI#D);然后,将DCI#D中的发射功率控制命令确定为目标发射功率控制命令。
具体地,所述候选DCI是通过预定义的方式确定的或是通过终端和网络设备之间交互的方式确定的。比如,通过预定义的方式或者终端和网络设备之间交互的方式,规定候选DCI为由服务网络设备发送的DCI。终端只将由服务网络设备发送的DCI中的发射功率控制命令作为有效的发射功率控制命令,而忽略由协议网络设备发送的发射功率控制命令。在此情况下,终端需要区分哪个DCI为服务网络设备发送的,哪个DCI为协作网络设备发送的。
可选地,在一种可能的实现方式中,终端可以根据检测到的DCI的位置、聚合等级、加扰方式、所包括的第二指示信息中的任一种确定DCI#D,从而确定目标发射功率控制命令。
具体而言,服务网络设备和协助网络设备可以在不同的资源位置、采用不同的聚合等级、采用不同的加扰方式以及根据不同的第二指示信息中的至少一种,发送DCI。系统或协议可以预先规定或者配置DCI信息,该DCI信息可以定义为服务网络设备发送的DCI的位置、聚合等级、加扰方式以及所包括的第二指示信息中的至少一种。因网络设备和终端侧均保存有该DCI信息,因此终端可以根据检测到的所述至少一个DCI中每个DCI的相应的位置、聚合等级、加扰方式以及所包括的第二指示信息中的至少一种,确定出由服务网络设备发送的DCI,即DCI#D。
应理解,第二指示信息可以用于指示对应的DCI是服务网络设备发送的还是协作网络设备发送的。例如,第二指示信息可以与第一指示信息相同,第二指示信息具体可以参照上文中对第一指示信息的描述,为了简洁,此处不再赘述。
可选地,终端根据检测到的DCI的位置确定DCI#D时,具体可以根据DCI所在的搜索空间、控制信道候选集或载波,确定DCI#D。
应理解,终端根据检测到的DCI的位置、聚合等级、加扰方式、所包括的第二指示信息中的任一种确定DCI#D的具体实现过程可以参照上文方式二中相应地描述,为了简洁,此处不再赘述。
还应理解,候选DCI也可以是协作网络设备发送的DCI,本申请实施例对此不作限定。
可选地,本申请所涉及的需要预配置的信息,例如上文所描述的搜索空间、聚合等级 等,可以通过例如无线资源控制(radio resource control,RRC)信令或媒体接入控制控制信令(media access control control element,MAC CE)等高层信令配置。
应理解,终端可以采用多种方式来根据该至少两个发射功率控制命令确定同一载波内的上行信道发射功率,以上示例性的说明仅是为了帮助本领域技术人员更好的理解本申请,不应对本申请构成任何限定。
下面,以终端接收的至少两个发射功率控制命令为TPC1和TPC2为例,具体描述终端根据调整步长或绝对功率调整值确定所述上行信道发射功率的多个实施例。
假设终端所在的服务小区为c,服务小区c的网络设备为第一网络设备,以下所计算的发射功率是指终端在服务小区c子帧i上传输上行信道的发射功率。本申请实施例中,可以将终端在服务小区c子帧i上传输上行信道的发射功率作为所述上行信道发射功率。
应理解,以下公式计算结果的单位为d Bm。
一、如果上行信道为PUSCH,则PUSCH的发射功率可以采用如下的计算方式:
1、子帧i传输PUSCH,但PUCCH不同时传输,那么PUSCH发射功率可以由以下任一公式确定:
Figure PCTCN2018078080-appb-000014
Figure PCTCN2018078080-appb-000015
Figure PCTCN2018078080-appb-000016
2、如果子帧i传输PUSCH的同时也传输PUCCH,那么PUSCH发射功率可以由以下任一公式确定:
Figure PCTCN2018078080-appb-000017
Figure PCTCN2018078080-appb-000018
Figure PCTCN2018078080-appb-000019
3、如果子帧i不传输PUSCH,对于接收到的在DCI格式3/3A上关于PUCCH的发射机功率控制命令积累,那么PUSCH发射功率可以由以下任一公式确定:
Figure PCTCN2018078080-appb-000020
Figure PCTCN2018078080-appb-000021
Figure PCTCN2018078080-appb-000022
其中,上述一些参数的定义,例如P CMAX,c(i)、M PUSCH,c(i)、α c(j)等可以参照前文的描述,为了简洁,此处不作赘述。
需要说明的是,此处的PL c是对于终端估计计算得到第一网络设备到终端的传播损耗。还需要说明的是,f 1c(i)和f 2c(i)对应于上文中的f c(i),f 1c(i)是根据TPC1所指示的调整步长或功率调整值确定的,f 2c(i)是根据TPC2所指示的调整步长或功率调整值确定的。
另外,上述S 11=10log 10(M PUSCH,c(i))+P O_PUSCH,c(j)+α c(j)·PL cTF,c(i)+f 1c(i),
S 12=10log 10(M PUSCH,c(i))+P O_PUSCH,c(j)+α c(j)·PL cTF,c(i)+f 2c(i)。
此外,k 11、k 12、k 21、k 22、k 31、k 32的取值均大于或等于0,它们可以相同,也可以不同。k 11、k 12、k 21、k 22、k 31、k 32可以预配置,也可以是终端从网络设备处预获取的,或者还可以是终端自己计算得到的,本申请实施例对于其具体来源不作限定。
因此,根据上述任一公式,终端可以确定PUSCH(上行信道的一例)的发射功率。
二、如果上行信道为PUCCH,则PUCCH的发射功率可以采用如下的计算方式:
1.在子帧i上的PUCCH发射功率如下:
Figure PCTCN2018078080-appb-000023
Figure PCTCN2018078080-appb-000024
Figure PCTCN2018078080-appb-000025
2.如果对于服务小区终端不传输PUCCH,对于PUCCH的TPC命令的累计,PUCCH发射功率如下:
Figure PCTCN2018078080-appb-000026
Figure PCTCN2018078080-appb-000027
Figure PCTCN2018078080-appb-000028
其中,上述一些参数的定义可以参照前文的描述,为了简洁,此处不作赘述。
需要说明的是,此处的PL c是对于终端估计计算得到第一网络设备到终端的传播损耗。还需要说明的是,g 1c(i)和g 2c(i)对应于上文中的g c(i),g 1c(i)是根据TPC1所指示的调整步长确定的,f 2c(i)是根据TPC2所指示的调整步长确定的。
另外,上述T 11=P 0_PUCCH+PL c+h(n CQI,n HARQ,n SR)+Δ F_PUCCH(F)+Δ TxD(F')+g 1c(i),
T 12=P 0_PUCCH+PL c+h(n CQI,n HARQ,n SR)+Δ F_PUCCH(F)+Δ TxD(F')+g 2c(i)。
此外,k 41、k 42、k 51、k 52的取值均大于或等于0,它们可以相同,也可以不同。k 41、k 42、k 51、k 52可以预配置,也可以是终端从网络设备处预获取的,或者还可以是终端自己计算得到的,本申请实施例对于其具体来源不作限定。
因此,根据上述任一公式,终端可以确定PUCCH(上行信道的另一例)的发射功率。
应理解,以上终端根据调整步长或绝对功率调整值确定所述上行信道发射功率的实施例仅为示例性的说明,只是为了帮助本领域技术人员更好的理解本申请,不应对本申请构成任何限定。
可选地,该方法还可以包括:
S230,终端在同一载波内向该至少一个网络设备发送该上行信道。
具体地,终端以S220步骤所确定的上行信道发射功率发送UCI或数据,该UCI或数据承载于该上行信道。
因此本申请实施例的功率控制方法,终端能够根据多个发射功率控制命令确定上行信道发射功率,从而能够保证高效合理的功率分配,提高系统整体性能。
以下,结合背景技术所描述的终端反馈CSI的例子,并结合图3和图4,详细描述根据本申请的功率控制方法的两个实施例。
图3是根据本申请一个具体实施例的功率控制方法300的示意图。
可选地,S310,第一网络设备从第二网络设备处获取终端的C-RNTI。
如果第一网络设备为协作小区的网络设备,则需要从服务小区的网络设备,即第二网络设备处获取该终端的C-RNTI。如果第一网络设备为服务小区的网络设备,则第一网络设备不需要执行此步骤。
S320,第一网络设备确定目标DCI。
具体地,该目标DCI包括终端的第一发射功率控制命令和第二发射功率控制命令。其中该目标DCI采用该终端的C-RNTI进行加扰。
如果终端在接收到目标DCI后,需要向第一网络设备发送针对第一网络设备的DCI或数据,那么终端可以根据第一发射功率控制命令确定承载该针对第一网络设备的DCI或数据的第一上行信道发射功率。类似地,终端可以确定承载针对第二网络设备的DCI 或数据的第二上行信道发射功率。
关于目标DCI可以参照上文的描述,为了简洁,此处不作赘述。
S330,第一网络设备在同一载波内向终端发送目标DCI。
相应地,终端接收该目标DCI,并且,根据该终端的C-RNTI对该目标DCI进行解扰然后,终端可以根据高层信令或者预定义的规则,确定出第一发射功率控制命令和第二发射功率控制命令。
S340,第一网络设备根据第一发射功率控制命令和第二发射功率控制命令,确定同一载波内的上行信道发射功率。
比如,第一网络设备将根据第一发射功率控制命令所确定的发射功率确定为上行信道发射功率,或者将第一发射功率控制命令和第二发射功率控制命令的加权和确定为上行信道发射功率。具体地,可以参照上文的描述,为了简洁,此处不作赘述。
S350,终端在同一载波内向第一网络设备和第二网络设备发送该上行信道。
其中,该上行信道承载终端到第一网络设备的CSI1,以及终端到第二网络设备CSI2。
因此,本申请实施例的功率控制方法,终端能够根据多个发射功率控制命令确定上行信道发射功率,从而能够保证高效合理的功率分配,提高系统整体性能。
图4是根据本申请另一具体实施例的功率控制方法的示意图。图4所示的实施例中,以第一网络设备为服务小区的网络设备,第二网络设备为协作小区的网络设备为例进行描述。
S410,第一网络设备向终端发送第一DCI,第一DCI包括第一发射功率控制命令。
如果终端在接收到第一DCI后,需要向第一网络设备发送针对第一网络设备的DCI或数据,那么终端可以根据第一发射功率控制命令确定承载该针对第一网络设备的DCI或数据的第一上行信道发射功率。
应理解,关于第一DCI和/或第一发射功率控制命令的具体形式或格式可以参照上文描述。
S420,第二网络设备向第一网络设备发送请求消息,该请求消息用于获取该终端的C-RNTI。
S430,第一网络设备根据该请求消息向第二网络设备发送响应消息,该响应消息包括该终端的C-RNTI。
应理解,步骤S410可以在步骤S420和S430之前执行,也可以在步骤S420和S430之后执行,或者还可以与步骤S420和S430同时执行,本申请实施例对此不作限定。
S440,第二网络设备向终端发送第二DCI,第二DCI包括第二发射功率控制命令。
应理解,第二DCI采用该终端的C-RNTI进行加扰。
与S410类似,终端可以根据该第二DCI确定承载针对第二网络设备的DCI或数据的第二上行信道发射功率。
应理解,关于第一DCI和/或第一发射功率控制命令的具体形式或格式可以参照上文描述。
S450,终端根据第一发射功率控制命令和第二发射功率控制命令确定同一载波内的上行信道发射功率。
具体地,该上行信道承载终端到第一网络设备的CSI1,以及终端到第二网络设备的 CSI2。
应理解,终端根据第一发射功率控制命令和第二发射功率控制命令确定上行信道发射功率具体可以参照上文描述,为了简洁,此处不作赘述。
S460,终端根据该上行信道发射功率在同一载波内发送该上行信道。
因此,本申请实施例的功率控制方法,终端能够根据多个发射功率控制命令确定上行信道发射功率,从而能够保证高效合理的功率分配,提高系统整体性能。
图5是根据本申请另一种功率控制方法500的示意图。该方法500可以用于通过无线空口进行通信的通信系统,该通信系统可以包括至少两个网络设备和至少一个终端。例如,该通信系统可以为图1中所示的无线通信系统100。
可选地,该网络设备可以为传输点(TRP)、基站,或者,也可以为其他用于发送DCI的网络设备,本申请对此并未特别限定。
可选地,该网络设备可以为服务小区的网络设备,也可以为协作小区的网络设备,本申请对此并未特别限定。
S510,终端在同一载波内接收网络设备(以下,为了描述方便,记作第一网络设备)发送的下行控制信息DCI。
具体地,该DCI包括该终端的至少两个发射功率控制命令。该至少两个发射功率控制命令与至少两个网络设备一一对应。其中,该至少两个网络设备包括第一网络设备。
可选地,该DCI格式可以是1A/1B/1D/1/2A/2/2B/2C/2D中的任一种,该DCI格式也可以是3/3A/3B中的任一种。
可选地,该至少两个发射功率控制命令占用n个比特位,n为大于2的正整数。
进一步地,该n个比特位与该至少两个发射功率控制命令的对应关系是由高层信令配置的或预定义的。具体地,可以参照上文的描述,为了简洁,此处不作赘述。
S520,该终端根据该至少两个发射功率控制命令,确定该至少两个网络设备中的每个网络设备的上行信道发射功率。
以该DCI包括两个发射功率控制命令(例如,记作第一发射功率控制命令和第二发射功率控制命令)为例来讲,假设第一发射功率控制命令对应系统100中的第一网络设备,第二发射功率控制命令对应系统100中的第二网络设备,那么终端可以根据第一发射功率控制命令确定与第一网络设备对应的上行信道(例如,记作第一上行信道)发射功率,根据第二发射功率控制命令确定与第二网络设备对应的上行信道(例如,记作第二上行信道)发射功率。
应理解,第一上行信道可以是PUCCH或PUSCH,或者第一上行信道包括PUCCH和PUSCH。第二上行信道可以是PUCCH或PUSCH,或者第一上行信道包括PUCCH和PUSCH。
另外,需要说明的是,该DCI可以采用小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)进行加扰。如果发送该DCI的第一网络设备为协作小区的网络设备,则第一网络设备首先可以从服务小区的网络设备处获取该C-RNTI,然后采用该C-RNTI用该DCI进行加扰,终端在接收到该DCI后,则采用该C-RNTI对该DCI进行解扰。
可选地,该终端可以根据该至少两个发射功率控制命令中每个发射功率控制命令所指 示的调整步长或绝对功率调整值,确定每个网络设备的上行信道发射功率。
例如,当发射功率控制命令是相对型的命令时,终端可以根据第一发射功率控制命令确定第一上行信道发射功率的调整步长,进而可以确定第一上行信道发射功率,根据第二发射功率控制命令确定第二上行信道发射功率的调整步长,进而可以确定第二上行信道发射功率。或者,当发射功率控制命令是绝对型的命令时,终端可以根据第一发射功率控制命令确定第一上行信道发射功率的绝对功率调整值,进而可以确定第一上行信道发射功率,根据第二发射功率控制命令确定第二上行信道发射功率的绝对功率调整值,进而可以确定第二上行信道发射功率。
可选地,终端可以根据该至少两个发射功率控制命令和对应的上行信道所对应的传播损耗,确定该至少两个网络设备中的每个网络设备的上行信道发射功率。
进一步地,终端可以结合发射功率控制命令所指示的调整步长与对应的上行信道所对应的传播损耗,或结合绝对功率调整值与对应的上行信道所对应的传播损耗,确定对应的上行信道的发射功率。
比如,终端可以根据第一发射功率控制命令所指示的调整步长或绝对功率调整值,结合第一网络设备与终端之间的传播损耗确定第一上行信道发射功率,根据第二发射功率控制命令所指示的调整步长或绝对功率调整值,结合第二网络设备与终端之间的传播损耗确定第一上行信道发射功率。
举例来说,当第一上行信道和第二上行信道均为PUSCH时,并且传输PUSCH的同时也传输PUCCH,那么第一上行信道的发射功率P PUSCH1c(i)如下:
Figure PCTCN2018078080-appb-000029
第二上行信道的发射功率P PUSCH2,c(i)如下:
Figure PCTCN2018078080-appb-000030
上式中,相同的参数可以参照前文的描述。
其中,PL 1表示终端估计计算得到的终端与第一网络设备之间的传播损耗,PL 2表示终端估计计算得到的终端与第二网络设备之间的传播损耗。f 1c(i)由第一发射功率控制命令所指示的调整步长或绝对功率调整值确定,f 2c(i)由第二发射功率控制命令所指示的调整步长或绝对功率调整值确定。
可选地,本申请实施例中,每个网络设备所对应的上行信道所对应的传播损耗可以通过所述DCI中的指示信息或高层信令中的指示信息确定。比如,第一网络设备可以通过DCI或高层信令指示终端采用PL 1计算P PUSCH1,c(i),采用PL 2计算P PUSCH2,c(i)。
以下,以第一网络设备对应的上行信道为第一PUCCH,详细描述确定第一PUCCH对应的传播损耗(例如,记为第一传播损耗)的方法。首先,应理解,在本申请中,每个网络设备对应的上行信道可以是通过高层信令配置的,网络设备可以通过DCI触发上行信道资源,终端可以在网络设备所触发的上行信道资源上发送上行信道。
还应理解,第一PUCCH可以传输ACK/NACK,第一PUCCH还可以传输非ACK/NACK的其他信息,例如CSI,本申请并不对PUCCH所传输的信息的内容作具体限 定。
可选地,所述上行信道资源可以包括以下中的至少一种:时域资源(例如PUCCH在一个时间单元内所占用的起始正交频分复用(orthogonal frequency division multiplexing,OFDM)符号和结束OFDM符号、或者PUCCH在一个时间单元内所占用的起始符号所占用的OFDM符号的个数)、频域资源、所使用的参数,如子载波间隔等、所使用的序列。
所述时间单元可以是子帧、时隙、迷你时隙(mini-slot),或者NR系统中定义的时间单元,或者未来系统中定义的时间单元,本申请实施例对此不作限定。
为了便于理解,下文中,以第一DCI触发第一PUCCH资源,终端在第一PUCCH资源上向第一网络设备发送第一PUCCH为例,描述本申请的各实施例。
应理解,第一DCI在触发第一PUCCH的同时还可以调度一个PDSCH(例如,记作第一PDSCH)第一PDSCH可以用于传输第一网络设备的下行数据,第二PDSCH可以用于传输第二网络设备的下行数据。在终端接收到第一网络设备发送的下行数据后,可以通过第一PUCCH向第一网络设备反馈ACK/NACK,通过ACK/NACK向第一网络设备指示该终端是否正确接收第一网络设备发送的下行数据。一般地,终端到不同网络设备的传播损耗(或者称为路径损耗)是不同的,为了使网络设备能够正确接收终端发送的上行信道,需要首先确定终端到网络设备之间的传播损耗,根据终端到网络设备的传播损耗来确定上行信道的发射功率。
本申请所涉及的传播损耗是指与距离相关的大尺度衰落,因此网络设备到终端的传播损耗和终端到网络设备的传播损耗是相同的,知道了网络设备到终端的传播损耗,也就知道了终端到网络设备的传播损耗。因此,可以通过确定第一网络设备到终端的传播损耗来确定终端到第一网络设备之间的传播损耗,即第一传播损耗。
第一传播损耗等于终端接收到的第一网络设备发送的参考信号的接收功率和第一网络设备发送参考信号的发送功率之间的差值。第一网络设备发送参考信号的功率由高层配置,因此只需获知终端接收第一网络设备发送的参考信号的功率(以下,简称为接收功率)即可。该接收功率可以通过测量第一网络设备发送的第一参考信号得到,因此终端首先需要确定其接收的多个参考信号中哪个或哪些是第一网络设备发送的,即终端首先需要确定第一网络设备发送的参考信号中的第一参考信号。
可选地,本申请各实施例所涉及的下行参考信号可以是同步信号(例如主同步信号(primary synchronization signal,PSS)和/或辅同步信号(secondary synchronization signal,SSS))、信道状态信息参考信号(channel state information reference signal,CSI-RS)和解调参考信号(demodulation reference signal,DMRS)中的一种或多种。PSS和/或SSS可以通过SS block发送,即PSS、SSS和物理广播信道(physical broadcast channed,PBCH)同时发送,PSS和/或SSS也可以不通过SS block发送,即可以单独发送PSS和/或SSS。
可选地,终端可以通过以下方式确定第一下行参考信号。
方式一
终端可以通过接收网络设备发送的物理层信令(例如第一DCI)和/或高层信令,并根据该物理层信令和/或高层信令携带的准共址(Quasi-co-located,QCL)指示信息所指示的发送所述多个下行参考信号的天线端口之间的QCL关系,确定第一下行参考信号。
具体地,根据QCL指示信息,终端可以确定发送所述多个下行参考信号的天线端口 之间的QCL关系。由于终端能够根据第一DCI获知第一网络设备发送DMRS的天线端口,因此终端可以根据QCL关系,确定与第一网络设备发送DMRS的天线端口满足QCL关系的发送的CSI-RS和/或同步信号的天线端口,即可以确定第一网络设备发送CSI-RS和/或同步信号的天线端口,从而可以确定第一网络设备所发送的CSI-RS和/或同步信号,即第一下行参考信号。举例来说,QCL指示信息可以指示发送CSI-RS的天线端口15与发送DMRS的天线端口7满足QCL关系。因满足QCL关系的参考信号来自同一网络设备,因此终端可以确定天线端口15发送的CSI-RS与第一DCI中所指示的天线端口7的DMRS来自同一网络设备,即第一网络设备。也就是说,终端可以确定第一网络设备发送的CSI-RS。然后,终端可以通过对天线端口15发送的CSI-RS的测量,得到第一网络设备到终端之间的路径损耗,从而可以确定第一PUCCH所对应的路径损耗,即第一路径损耗。
方式二
终端可以通过接收网络设备发送的物理层信令和/或高层信令,并根据物理层信令和/或高层信令所包括的第一指示信息,确定第一下行参考信号。
具体地,第一指示信息可以指示与第一PUCCH对应的第一下行参考信号的信息(例如,记作第一资源信息)。第一资源信息例如可以是第一下行参考信号的资源索引、发送该第一下行参考信号的天线端口信息、该第一下行参考信号的图样等信息。根据第一资源信息,终端可以确定第一PUCCH对应的下行参考信号,即第一下行参考信号。然后,终端根据对第一下行参考信号的测量,可以得到第一网络设备到终端之间的传播损耗,进行可以确定与第一PUCCH对应的传播损耗,即第一传播损耗。
可选的,第一指示信息还可以直接指示与第一PUCCH对应的第一传播损耗。
应理解,本申请实施例所涉及的物理层信令可以是DCI(例如,第一DCI),高层信令可以说RRC信令或MAC CE。
方式三
终端直接根据第一DCI所指示的DMRS天线端口信息可以确定第一网络设备发送的DMRS,从而通过对第一网络设备发送的DMRS的测量,可以确定第一传播损耗。
可选地,在确定第一传播损耗后,终端可以根据前文所描述的公式确定第一上行信道的发射功率。在此情况下,第一传播损耗即为前文所描述的公式中的PL c
可选地,网络设备可以通过物理层信令(例如,第一DCI)或高层信令预先配置传播损耗与PUCCH资源的对应关系,即网络设备可以通过物理层信令或高层信令,指示哪一个PUCCH资源对应哪一个传播损耗。比如,网络设备在通过高层信令配置第一PUCCH资源时,可以同时配置第一PUCCH资源上发送的第一PUCCH的传播损耗。又如,第一网络设备可以在发送第一DCI时,同时在第一DCI中指示第一PUCCH资源所对应的传播损耗,即第一传播损耗。终端设备可以根据传播损耗与PUCCH资源的对应关系,确定出第一PUCCH资源对应的第一传播损耗。即,终端可以根据传播损耗与PUCCH资源的对应关系,确定出第一PUCCH对应的第一传播损耗。
综上,在本申请中,第一传播损耗可以是网络设备(例如,第一网络设备和/或第二网络设备)直接告知终端的,也可以说终端根据下行参考信号测量得到的。终端可以结合第一传播损耗,确定第一PUCCH的发射功率时。由于充分考虑了网络设备和终端之间的传播损耗,因此,本申请实施例的功率控制的方法能够提高网络设备正确接收上行信道的 概率,从而能够提高系统性能。
可选地,本申请中,终端可以根据多种方式确定第一传播损耗和第二传播损耗。以下,将对各方式进行详细描述。
可选地,该终端根据该至少两个发射功率控制命令,确定该至少两个网络设备中的每个网络设备的上行信道发射功率时:
可以首先根据该至少两个发射功率控制命令中的第i个发射功率控制命令,确定至少两个候选发射功率中的第i个候选发射功率P 1i。其中,该至少两个发射功率控制命令与该至少两个候选发射功率一一对应,i在[1,N]的范围内遍历取值,且i为正整数,N为该至少两个上行信道的数量,N为大于1的正整数,P 1i>0。例如,终端可以将根据第i个发射功率控制命令所对应的调整步长或绝对功率调整值直接计算出的发射功率作为第i个候选发射功率P 1i。
然后,在P 11+P 12+…+P 1N≤P 0的情况下,该终端确定该至少两个网络设备中的第i个网络设备的上行信道的发射功率为P 1i
或在P 11+P 12+…+P 1N>P 0的情况下,该终端根据以下任一公式确定第i个上行信道的发射功率P 2i
a 0*(P 11+P 12+…+P 1N)≤P 0,且P 2i=a 0*P 1i,或
a 1*P 11+a 2*P 12+…+a N*P 1N≤P 0,且P 2i=a i*P 1i
其中,P 2i>0,P 0为该终端的最大发射功率,a 0和a i为缩放因子,0<a 0<1,a i≥0。
进一步地,如果该至少两个上行信道在时域内完全重合,那么终端可以根据上述实施例,确定该至少两个上行信道的发射功率。具体来讲就是,如果根据该至少两个发射功率控制命令直接计算出的发射功率之和小于或等于终端的最大发射功率,则终端可以将该直接计算出的发射功率作为对应的上行信道的发射功率。如果根据该至少两个发射功率控制命令直接计算出的发射功率之和大于终端的最大发射功率,则终端将缩放因子与根据对应的发射功率控制命令直接计算出的发射功率的乘积,作为相应的上行信道发射功率。
例如,结合上述实施例,在P PUSCH1,c(i)+P PUSCH2,c(i)≤P 0的情况下,终端可以将P PUSCH1,c(i)作为第一上行信道的发射功率,将P PUSCH2,c(i)作为第二上行信道的发射功率;在P PUSCH1,c(i)+P PUSCH2,c(i)>P 0的情况下,终端可以将a 1*P PUSCH1,c(i)的乘积作为第一上行信道的发射功率,将a 2*P PUSCH2,c(i)作为第二上行信道的发射功率。其中,a 1*P PUSCH1,c(i)+a 2*P PUSCH2,c(i)≤P 0。
进一步地,该缩放因子a i是根据该第i个网络设备的上行信道的优先级确定的。
比如,信道优先级高时,对应的缩放因子较大,信道优先级低时,对应的缩放因子较小。举例来说,终端的服务网络设备对应的上行信道的优先级可以高于终端的协作网络设备对应的上行信道的优先级,则终端的服务网络设备对应的上行信道(例如,记作第一PUCCH)所对应的缩放因子大于终端的协助网络设备对应的上行信道(例如,记作第二PUCCH)所对应的缩放因子。
又如,PUCCH的优先级高于PUSCH的优先级,可以将PUCCH所对应的缩放因子设置为1。
举例来说,当终端发送的两个上行信道,即,第一上行信道和第二上行信道,分别为PUCCH和PUSCH时,可以根据以下公式确定PUCCH和PUSCH的发射功率:
a 1P PUSCH+P PUCCH≤P 0
也就是说,a 2=1,第一上行信道的发射功率为P PUCCH,第二上行信道的发射功率为ηP PUSCH
本申请实施例中,该缩放因子a i可以预配置,也可以是终端从网络设备处获取的,或者还可以是终端自己计算得到的。本申请实施例对于缩放因子a i的具体来源不作限定。
可选地,该方法还可以包括:
S530,终端根据对应的上行信道的发射功率,在同一载波内向该至少两个网络设备发射发送对应的上行信道。
具体地,终端以S520步骤中所确定的上行信道的发射功率,向对应的网络设备发送相应地UCI或数据,其中,该UCI或数据承载于相应地上行信道上。
例如,终端可以以S520步骤中确定的第一上行信道发射功率,向第一网络设备发送第一网络设备的UCI或数据,该UCI或数据承载于第一上行信道;以S520步骤中确定的第二上行信道发射功率,向第二网络设备发送第二网络设备的UCI或数据,该UCI或数据承载于第二上行信道。
因此,根据本申请实施例的功率控制方法,终端通过根据多个发射功率控制命令,确定每个上行信道的发射功率,从而能够保证高效合理的功率分配,提高整体系统性能。
上文中结合图2至图5,描述了根据本申请实施例的功率控制方法。下面,结合图6至图11,描述根据本申请实施例的终端和网络设备。
图6是根据本申请实施例的终端600的示意性框图。如图6所示,该终端600包括:接收单元610和处理单元620。
接收单元610,用于接收至少一个网络设备发送的至少一个下行控制信息DCI,所述至少一个DCI包括至少两个发射功率控制命令;
处理单元620,用于根据所述至少两个发射功率控制命令,确定同一载波内的上行信道发射功率。
本申请实施例的终端根据接收到多个发射功率控制命令,能够通过功率缩放的方式,能够保证上行传输的功率小于终端的最大发射功率。
应理解,该终端600中各单元分别用于执行上述各方法中由终端执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。
图7是根据本申请实施例的终端700的示意性框图。如图7所示,该终端700包括:接收单元710和处理单元720。
接收单元710,用于接收第一网络设备发送的下行控制信息DCI,所述DCI包括所述终端的至少两个发射功率控制命令;
处理单元720,用于根据所述至少两个发射功率控制命令,确定至少两个网络设备中的每个网络设备的上行信道发射功率,所述至少两个网络设备与所述至少两个发射功率控制命令一一对应,所述至少两个网络设备包括所述第一网络设备。
应理解,该终端700中各单元分别用于执行上述方法500中由终端执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。
图8是根据本申请实施例的网络设备800的示意性框图。如图8所示,该网络设备800包括:发送单元810和接收单元820。
发送单元810,用于向终端发送下行控制信息DCI,所述DCI包括所述终端的至少两个发射功率控制命令,所述至少两个发射功率控制命令用于所述终端确定至少一个上行信道的发射功率;
接收单元820,用于接收所述终端发送的所述至少一个上行信道中的第一上行信道。
应理解,该网络设备800中各单元分别用于执行上述方法中的各动作或处理过程。这里,为了避免赘述,省略其详细说明。
图9示出了根据本申请实施例的终端900的示意性结构图。如图9所示,该终端900包括:收发器910、处理器920和存储器930。其中,收发器910、处理器920和存储器930之间通过内部连接通路互相通信,传递控制和/或数据信号。
收发器910,用于接收至少一个网络设备发送的至少一个下行控制信息DCI,所述至少一个DCI包括至少两个发射功率控制命令;
处理器920,用于根据所述至少两个发射功率控制命令,确定同一载波内的上行信道发射功率。
应理解,在该处理器920从存储器中调用并运行该计算机程序时,处理器920可用于执行方法200、方法300和方法400,并实现该方法的执行主体,例如终端的功能。
图10示出了根据本申请实施例的终端1000的示意性结构图。如图10所示,该终端1000包括:收发器1010、处理器1020和存储器1030。其中,收发器1010、处理器1020和存储器1030之间通过内部连接通路互相通信,传递控制和/或数据信号。
收发器1010,用于接收第一网络设备发送的下行控制信息DCI,所述DCI包括所述终端的至少两个发射功率控制命令;
处理器1020,用于根据所述至少两个发射功率控制命令,确定至少两个网络设备中的每个网络设备的上行信道发射功率,所述至少两个网络设备与所述至少两个发射功率控制命令一一对应,所述至少两个网络设备包括所述第一网络设备。
应理解,在该处理器1020从存储器中调用并运行该计算机程序时,处理器1020可用于执行方法500,并实现该方法的执行主体,例如终端的功能。
图11示出了根据本申请实施例的网络设备1100的示意性结构图。如图11所示,该网络设备1100包括:收发器1110、处理器1120和存储器1130。其中,收发器1110、处理器1120和存储器1130之间通过内部连接通路互相通信,传递控制和/或数据信号。
收发器1110,用于向终端发送下行控制信息DCI,所述DCI包括所述终端的至少两个发射功率控制命令,所述至少两个发射功率控制命令用于所述终端确定至少一个上行信道的发射功率;接收所述终端发送的所述至少一个上行信道中的第一上行信道。
应理解,在该处理器1120从存储器中调用并运行该计算机程序时,处理器1120可用于执行上述各方法实施例,并实现该方法实施例的执行主体,例如网络设备的功能。
图12是根据本申请另一功率控制方法1200的示意图。该方法1200可以用于通过无线空口进行通信的通信系统,该通信系统可以包括至少一个网络设备和至少一个终端。例如,该通信系统可以为图1中所示的无线通信系统100。
可选地,该网络设备可以为传输点(TRP)、基站,或者,也可以为其他用于发送DCI的网络设备,本申请对此并未特别限定。
可选地,该网络设备可以为服务小区的网络设备,也可以为协作小区的网络设备,本 申请对此并未特别限定。
S1210,终端接收多个网络设备(例如,第一网络设备和第二网络设备)发送的多个下行参考信号。
其中,所述多个下行参考信号为所述第一网络设备和第二网络设备发送的全部下行参考信号或部分下行参考信号。一个网络设备可以发送一种下行参考信号,也可以发送多种下行参考信号,本申请实施例对此不作限定。
应理解,所述第一网络设备和第二网络设备可以是地理上分离的两个网络设备,也可以理解为同一网络设备(例如,第一网络设备)的不同的天线面板,或者可以理解为同一网络设备的不同波束,本申请实施例对此不作限定。
可选地,本申请各实施例所涉及的下行参考信号可以是同步信号(例如PSS和/或SSS)、CSI-RS和DMRS中的一种或多种。PSS和/或SSS可以通过SS block发送,即PSS、SSS和PBCH同时发送,PSS和/或SSS也可以不通过SS block发送,即可以单独发送PSS和/或SSS。
举例来说,所述多个下行参考信号包括所述第一网络设备发送的CSI-RS、第二网络设备发送的CSI-RS。或者,所述多个下行参考信号包括所述第一网络设备发送的CSI-RS和DMRS、第二网络设备发送的CSI-RS和DMRS。本申请实施例对各网络设备所发送的下行参考信号的数量以及类型不作限定。
S1220,终端根据对多个下行参考信号中的第一下行参考信号的测量,确定第一上行信道的第一传播损耗。
第一上行信道是终端发送给第一网络设备的上行信道,即第一上行信道与第一网络设备对应。上行信道可以是上行控制信道PUCCH,用于承载下行数据对应的ACK/NACK信息和/或信道状态信息,可以是上行数据共享信道PUSCH,可以是上行接入信道PRACH,或者发送探测信号SRS的信道。以上行信道为PUCCH为例,终端可以根据第一网络设备发送的DCI(例如,记作第一DCI),可选的,网络设备通过下行控制信道发送的DCI,采用以下任一方式或其组合确定第一PUCCH,这部分可以与本申请其他部分解耦(独立)应用,也可以与其他部分组合应用,本申请不予限定。
方式一
终端根据第一DCI中的指示信息确定第一上行信道。
具体来讲,第一DCI可以包括一个指示信息,该指示信息可以指示一个上行信道资源。该指示信息所指示的上行信道资源可以是网络设备,例如第一网络设备通过高层信令(例如,RRC信令、MAC CE)配置的。也就是说,第一DCI可以指示高层信令配置的多个上行信道资源中的一个上行信道资源。该上行信道资源可以承载一个上行信道,上行信道例如可以是PUCCH。因此,根据第一DCI内的指示信息,终端可以确定第一PUCCH。
方式二
终端可以根据第一DCI的资源位置,例如发送DCI所使用的CCE的位置或编号,确定一个上行信道资源,所确定的上行信道资源即为发送第一PUCCH的资源。具体地终端如何根据DCI的资源位置确定上行信道资源可以参照现有技术和上文描述,为了简洁,此处不再赘述。
方式三
可选的,可预定义或者由高层信令(如RRC信令,MAC信令等)配置第一DCI与PUCCH的对应关系。例如,可根据网络设备发送DCI的位置,例如,不同的控制资源集合(control resource set,CORESET),或者不同的候选PDCCH,或者不同的搜索空间,或者不同的CCE等确定第一DCI与PUCCH的一一对应关系。举例来说,第一DCI可以使用CORESET1,第二DCI可使用CORESET2,可预定义或者由高层信令通过配置信息配置CORESET1内的DCI对应第一PUCCH,CORESET2内的DCI对应第二PUCCH,终端根据预定义关系(协议规定,本地预配置或预存储)或者高层信令的配置信息,确定在第一CORESET1接收到的DCI对应需要发送的上行信道即为第一PUCCH,终端在第二CORESET1接收到的DCI对应需要发送的上行信道即为第二PUCCH。
方式四
可选的,可预定义(协议规定,本地预配置或预存储)或者由高层信令(如RRC信令,MAC信令)配置发送DCI的下行控制信道PDCCH所使用的DMRS组与PUCCH的对应关系。例如,可预定义或者由高层信令配置第一网络设备使用DMRS组1中的DMRS天线端口发送的DMRS在下行控制信道PDCCH上发送第一DCI,第二网络设备使用DMRS组2中的DMRS天线端口发送的DMRS在下行控制信道PDCCH上发送第二DCI,这样,终端即可根据预定义或者高层信令配置的DMRS组和PUCCH的对应关系,确定第一DCI和第一PUCCH的对应关系,进而可以确定第一PUCCH。
应理解,第一DMRS组包括一个或多个DMRS天线端口,该一个或多个DMRS天线端口发送的DMRS用于解调第一PDCCH。第二DMRS组包括一个或多个DMRS天线端口,该一个或多个DMRS天线端口发送的DMRS用于解调第二PDCCH。第一DMRS组所包括的DMRS天线端口与第二DMRS组所包括的DMRS天线端口各不相同或正交。
方式五
可选的,终端可根据下行导频和第一PUCCH所使用的上行导频的QCL关系确定第一PUCCH。本申请实施例中QCL的定义可以参考LTE中的定义,即从QCL的天线端口发送出的信号会经过相同的大尺度衰落,大尺度衰落包括以下一项或多项:时延扩展、多普勒扩展、多普勒频移、平均信道增益和平均时延等。本申请实施例中QCL的定义还可以参考5G中QCL的定义,在新无线NR系统中,对QCL的定义与LTE系统类似,但增加了空域信息,如:从QCL的天线端口发送出的信号会经过相同的大尺度衰落,其中,大尺度衰落包括以下参数中的一项或多项:时延扩展、多普勒扩展、多普勒频移、平均信道增益、平均时延和空域参数等,空域参数可以为发射角(AOA),主发射角(Dominant AoA),平均到达角(Average AoA),到达角(AOD),信道相关矩阵,功率扩展谱,到达角的功率角度扩展谱,平均出发角(Average AoD),出发角的功率角度扩展谱,发射信道相关性,接收信道相关性,发射波束成型,接收波束成型,空间信道相关性,空间滤波器,空间滤波参数,或,空间接收参数等中的一项或多项。
QCL关系包括满足QCL关系的信道状态信息参考信号(channel state information-reference signal,CSI-RS),DMRS,相位跟踪参考信号(phase tracking reference signal,PTRS)(也可称为相位补偿参考信号(phase compensation reference signal,PCRS),或,相位噪声参考信号(简称相噪参考信号),同步块(SS block)(包括同步信号和广播信道中的一个或多个,同步信号包括主同步信号PSS和/或从同步信号SSS),上行探 测信号SRS(sounding reference signal,SRS),上行DMRS,上行随机接入信道等中一个或多个。
例如,可根据预定义或者高层信令(如RRC信令,MAC信令)配置的第一DCI调度的下行数据的DMRS,或者第一DCI所使用的下行控制信道的DMRS,或者下行CSI-RS,或者下行SS block(包括下行同步信号PSS和/或SSS和/或PBCH),或者下行相噪导频PTRS与第一PUCCH所使用的DMRS,或者SRS或者PRACH之间的QCL关系,确定第一DCI和第一PUCCH的对应关系,进而确定第一PUCCH。
本申请中,参考信号也可以称为导频。
可选的,网络设备可通过下行控制信道发送的DCI,上述方式一至方式五中确定第一DCI和第一PUCCH的关系,也可以理解为确定承载所述DCI的第一下行控制信道与第一上行信道的关系,本申请对此不做限定。
此外,本申请实施例中,第一上行信道还可以与发送的下行控制信息DCI无关。例如,第一上行信道PUCCH可根据网络设备通过高层信令配置的周期性CSI反馈和/或网络设备配置的第一CSI-RS信息,确定PUCCH的资源信息,终端可周期性的反馈PUCCH。终端发送第一PUCCH功率控制所使用的传播损耗可根据所述第一CSI-RS参考信号测量得到。
本申请以上举例以PUCCH为例,但本申请中的上行信道并不限于PUCCH。例如,上行信道还可以是上行数据共享信道PUSCH、上行接入信道PRACH或者发送探测信号SRS的信道等。可选地,所述上行信道资源可以包括以下中的至少一种:时域资源(例如PUCCH在一个时间单元内所占用的起始OFDM符号和结束OFDM符号、或者PUCCH在一个时间单元内所占用的起始符号所占用的OFDM符号的个数)、频域资源、所使用的参数,如子载波间隔等、所使用的序列。
所述时间单元可以是子帧、时隙、迷你时隙(mini-slot),或者NR系统中定义的时间单元,或者未来系统中定义的时间单元,本申请实施例对此不作限定。
S1230,所述终端根据所述第一传播损耗确定所述第一上行信道的发射功率。
一般地,终端到不同网络设备的传播损耗(或者称为路径损耗)是不同的,为了使网络设备能够正确接收终端发送的上行信道,需要首先确定终端到网络设备之间的传播损耗,根据终端到网络设备的传播损耗来确定上行信道的发射功率。
本申请所涉及的传播损耗是指与距离相关的大尺度衰落,因此网络设备到终端的传播损耗和终端到网络设备的传播损耗是相同的,知道了网络设备到终端的传播损耗,也就知道了终端到网络设备的传播损耗。因此,可以通过确定第一网络设备到终端的传播损耗来确定终端到第一网络设备之间的传播损耗,即第一传播损耗。
第一传播损耗等于终端接收到的第一网络设备发送的参考信号的接收功率和第一网络设备发送参考信号的发送功率之间的差值。第一网络设备发送参考信号的功率由高层配置,因此只需获知终端接收第一网络设备发送的参考信号的功率(以下,简称为接收功率)即可。该接收功率可以通过测量第一网络设备发送的第一参考信号得到,因此终端首先需要确定其接收的多个参考信号中哪个或哪些是第一网络设备发送的,即终端首先需要确定第一网络设备发送的参考信号中的第一参考信号。
可选地,终端可以通过以下方式确定第一下行参考信号。
方式一
终端可以通过接收网络设备发送的物理层信令(例如第一DCI)和/或高层信令,并根据该物理层信令和/或高层信令携带的准共址QCL指示信息所指示的发送所述多个下行参考信号的天线端口之间的QCL关系,确定第一下行参考信号。
具体地,根据QCL指示信息,终端可以确定发送所述多个下行参考信号的天线端口之间的QCL关系。由于终端能够根据第一DCI获知第一网络设备发送DMRS的天线端口,因此终端可以根据QCL关系,确定与第一网络设备发送DMRS的天线端口满足QCL关系的发送的CSI-RS和/或同步信号的天线端口,即可以确定第一网络设备发送CSI-RS和/或同步信号的天线端口,从而可以确定第一网络设备所发送的CSI-RS和/或同步信号,即第一下行参考信号。举例来说,QCL指示信息可以指示发送CSI-RS的天线端口15与发送DMRS的天线端口7满足QCL关系。因满足QCL关系的参考信号来自同一网络设备,因此终端可以确定天线端口15发送的CSI-RS与第一DCI中所指示的天线端口7的DMRS来自同一网络设备,即第一网络设备。也就是说,终端可以确定第一网络设备发送的CSI-RS。然后,终端可以通过对天线端口15发送的CSI-RS的测量,得到第一网络设备到终端之间的路径损耗,从而可以确定第一PUCCH所对应的路径损耗,即第一路径损耗。
方式二
终端可以通过接收网络设备发送的物理层信令和/或高层信令,并根据物理层信令和/或高层信令所包括的第一指示信息,确定第一下行参考信号。
具体地,第一指示信息可以指示与第一PUCCH对应的第一下行参考信号的信息(例如,记作第一资源信息)。第一资源信息例如可以是第一下行参考信号的资源索引、发送该第一下行参考信号的天线端口信息、该第一下行参考信号的图样等信息。根据第一资源信息,终端可以确定第一PUCCH对应的下行参考信号,即第一下行参考信号。然后,终端根据对第一下行参考信号的测量,可以得到第一网络设备到终端之间的传播损耗,进行可以确定与第一PUCCH对应的传播损耗,即第一传播损耗。
可选的,第一指示信息还可以直接指示与第一PUCCH对应的第一传播损耗。
应理解,本申请实施例所涉及的物理层信令可以是DCI(例如,第一DCI),高层信令可以说RRC信令或MAC CE。
方式三
终端直接根据第一DCI所指示的DMRS天线端口信息可以确定第一网络设备发送的DMRS,从而通过对第一网络设备发送的DMRS的测量,可以确定第一传播损耗。
可选地,在确定第一传播损耗后,终端可以根据前文所描述的公式确定第一上行信道的发射功率。在此情况下,第一传播损耗即为前文所描述的公式中的PL c
可选地,网络设备可以通过物理层信令(例如,第一DCI)或高层信令预先配置传播损耗与PUCCH资源的对应关系,即网络设备可以通过物理层信令或高层信令,指示哪一个PUCCH资源对应哪一个传播损耗。比如,网络设备在通过高层信令配置第一PUCCH资源时,可以同时配置第一PUCCH资源上发送的第一PUCCH的传播损耗。又如,第一网络设备可以在发送第一DCI时,同时在第一DCI中指示第一PUCCH资源所对应的传播损耗,即第一传播损耗。终端设备可以根据传播损耗与PUCCH资源的对应关系,确定出第一PUCCH资源对应的第一传播损耗。即,终端可以根据传播损耗与PUCCH资源的对应关系,确定出第一PUCCH对应的第一传播损耗。
可选地,该方法还可以包括:S1240,所述终端根据第一上行信道的发射功率发送所述第一上行信道。
综上,在本申请中,第一传播损耗可以是网络设备(例如,第一网络设备和/或第二网络设备)直接告知终端的,也可以说终端根据下行参考信号测量得到的。终端可以结合第一传播损耗,确定第一PUCCH的发射功率时。由于充分考虑了网络设备和终端之间的传播损耗,因此,本申请实施例的功率控制的方法能够提高网络设备正确接收上行信道的概率,从而能够提高系统性能。
图13是根据本申请实施例的终端1300的示意性框图。如图13所示,该终端1300包括:处理单元1310。
处理单元1310,确定第一上行信道的第一传播损耗,所述第一传播损耗是根据对多个下行参考信号中的第一下行参考信号的测量得到的;
所述处理单元1310还用于,根据所述第一传播损耗确定所述第一上行信道的发射功率。
应理解,该终端1300中各单元分别用于执行上述方法1200中由终端执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。
图14是根据本申请实施例的网络设备1400的示意性框图。如图14所示,该网络设备1400包括:发送单元1410和接收单元1420。
发送单元1410,用于向终端发送第一下行参考信号,所述第一下行参考信号用于所述终端确定第一传播损耗;
接收单元1420,用于接收所述终端发送的第一上行信道,所述第一上行信道的发射功率是所述终端根据所述第一传播损耗确定的。
应理解,该网络设备1400中各单元分别用于执行上述方法1200中由网络设备执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。
图15示出了根据本申请实施例的终端1500的示意性结构图。如图15所示,该终端1500包括:收发器1510、处理器1520和存储器1530。其中,收发器1510、处理器1520和存储器1530之间通过内部连接通路互相通信,传递控制和/或数据信号。
处理器1520,确定第一上行信道的第一传播损耗,所述第一传播损耗是根据对多个下行参考信号中的第一下行参考信号的测量得到的;
所述处理器1520还用于,根据所述第一传播损耗确定所述第一上行信道的发射功率。
应理解,在该处理器1520从存储器中调用并运行该计算机程序时,处理器1520可用于执行方法1200,并实现该方法的执行主体,例如终端的功能。
图16示出了根据本申请实施例的网络设备1600的示意性结构图。如图16所示,该网络设备1600包括:收发器1610、处理器1620和存储器1630。其中,收发器1610、处理器1620和存储器1630之间通过内部连接通路互相通信,传递控制和/或数据信号。
收发器1610,用于向终端发送第一下行参考信号,所述第一下行参考信号用于所述终端确定第一传播损耗;接收所述终端发送的第一上行信道,所述第一上行信道的发射功率是所述终端根据所述第一传播损耗确定的。
应理解,在该处理器1620从存储器中调用并运行该计算机程序时,处理器1620可用于执行方法1200,并实现该方法的执行主体,例如网络设备的功能。
在采用集成的单元的情况下,本发明实施例还提供了一种装置,该装置可以以芯片的产品形态存在,该装置可以包括:处理器、存储器;
存储器,用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述任一方法实施例中与终端或者网络设备执行的操作相应的功能。
本申请实施例可以应用于处理器中,或者由处理器实现。处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理单元(central processing unit,CPU)、该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种终端,其特征在于,包括:
    接收单元,用于接收至少一个网络设备发送的至少一个下行控制信息DCI,所述至少一个DCI包括至少两个发射功率控制命令;
    处理单元,用于根据所述至少两个发射功率控制命令,确定同一载波内的上行信道发射功率。
  2. 如权利要求1所述的终端,其特征在于,所述接收单元具体用于:
    接收第一网络设备发送的DCI,所述第一网络设备发送的DCI包括所述终端的所述至少两个发射功率控制命令,所述第一网络设备为所述至少一个网络设备中的任一网络设备。
  3. 如权利要求2所述的终端,其特征在于,所述至少两个发射功率控制命令占用n个比特位,n为大于2的正整数,所述n个比特位与所述至少两个发射功率控制命令的对应关系是由高层信令配置的或预定义的。
  4. 如权利要求1至3中任一项所述的终端,其特征在于,所述处理单元具体用于:
    根据每个发射功率控制命令所指示的调整步长或绝对功率调整值,确定所述上行信道发射功率。
  5. 如权利要求1至4中任一项所述的终端,其特征在于,所述处理单元具体用于:
    根据所述至少两个发射功率控制命令分别确定至少两个候选发射功率,所述至少两个候选发射功率与所述至少两个发射功率控制命令一一对应;
    所述终端根据所述至少两个候选发射功率,确定所述上行信道发射功率。
  6. 如权利要求5所述的终端,其特征在于,所述处理单元具体用于:
    将所述至少两个候选发射功率中的最大发射功率、最小发射功率、或所述至少两个候选发射功率的平均值确定为所述上行信道发射功率。
  7. 如权利要求1至4中任一项所述的终端,其特征在于,所述处理单元具体用于:
    根据所述至少两个发射功率控制命令中的第一发射功率控制命令,确定所述上行信道发射功率。
  8. 一种终端,其特征在于,包括:
    接收单元,用于接收第一网络设备发送的下行控制信息DCI,所述DCI包括所述终端的至少两个发射功率控制命令;
    处理单元,用于根据所述至少两个发射功率控制命令,确定至少两个网络设备中的每个网络设备的上行信道发射功率,所述至少两个网络设备与所述至少两个发射功率控制命令一一对应,所述至少两个网络设备包括所述第一网络设备。
  9. 如权利要求8所述的终端,其特征在于,所述至少两个发射功率控制命令占用n个比特位,n为大于2的正整数,所述n个比特位与所述至少两个发射功率控制命令的对应关系是由高层信令配置的或预定义的。
  10. 如权利要求8或9所述的终端,其特征在于,所述处理单元具体用于:
    根据每个发射功率控制命令所指示的调整步长或绝对功率调整值,确定所述每个网络设备的上行信道发射功率。
  11. 如权利要求10所述的终端,其特征在于,所述处理单元具体用于:
    根据所述每个发射功率控制命令所指示的调整步长和所述每个网络设备的上行信道所对应的传播损耗,或根据所述每个发射功率控制命令所指示的绝对功率调整值和所述每个网络设备的上行信道所对应的传播损耗,确定所述每个网络设备的上行信道发射功率。
  12. 如权利要求11所述的终端,其特征在于,所述每个网络设备的上行信道所对应的传播损耗是通过所述DCI中的指示信息或高层信令指示的。
  13. 如权利要求9至12中任一项所述的终端,其特征在于,所述处理单元具体用于:
    根据所述至少两个发射功率控制命令中的第i个发射功率控制命令,确定至少两个候选发射功率中的第i个候选发射功率P 1i,所述至少两个发射功率控制命令与所述至少两个候选发射功率一一对应,i在[1,N]的范围内遍历取值,且i为正整数,N为所述至少两个上行信道的数量,N为大于1的正整数,P 1i>0;
    在P 11+P 12+…+P 1N≤P 0的情况下,确定所述至少两个网络设备中的第i个网络设备的上行信道的发射功率为P 1i;或
    在P 11+P 12+…+P 1N>P 0的情况下,根据以下任一公式确定第i个上行信道的发射功率P 2i
    a 0*(P 11+P 12+…+P 1N)≤P 0,且P 2i=a 0*P 1i
    a 1*P 11+a 2*P 12+…+a N*P 1N≤P 0,且P 2i=a i*P 1i
    其中,P 2i>0,P 0为所述终端的最大发射功率,a 0和a i为缩放因子,0<a 0<1,a i≥0。
  14. 如权利要求13所述的终端,其特征在于,所述缩放因子a i是根据所述第i个网络设备的上行信道的优先级确定的。
  15. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端发送下行控制信息DCI,所述DCI包括所述终端的至少两个发射功率控制命令,所述至少两个发射功率控制命令用于所述终端确定至少一个上行信道的发射功率;
    接收单元,用于接收所述终端发送的所述至少一个上行信道中的第一上行信道。
  16. 如权利要求15所述的网络设备,其特征在于,所述至少两个发射功率控制命令占用n个比特位,n为大于2的正整数,所述n个比特位与所述至少两个发射功率控制命令的对应关系是由高层信令配置的或预定义的。
  17. 如权利要求15或16所述的网络设备,其特征在于,所述DCI还包括指示信息,所述指示信息用于指示与所述至少一个上行信道中的每个上行信道对应的传播损耗。
  18. 一种终端,其特征在于,包括:
    处理单元,确定第一上行信道的第一传播损耗,所述第一传播损耗是根据对多个下行参考信号中的第一下行参考信号的测量得到的;
    所述处理单元还用于,根据所述第一传播损耗确定所述第一上行信道的发射功率。
  19. 如权利要求18所述的终端,其特征在于,所述终端还包括:
    接收单元,用于接收网络设备发送的物理层信令和/或高层信令,所述物理层信令和/或所述高层信令包括准共址QCL指示信息,所述QCL指示信息用于指示发送所述多个下行参考信号的天线端口之间的QCL关系;
    所述处理单元具体用于,根据所述QCL关系,确定所述第一下行参考信号,以确定所述第一传播损耗。
  20. 如权利要求18所述的终端,其特征在于,所述终端还包括:
    接收单元,用于接收网络设备发送的物理层信令和/或高层信令,所述物理层信令和/或所述高层信令包括第一指示信息,所述第一指示信息用于指示所述第一上行信道所对应的下行参考信号的信息,所述下行参考信号的信息用于指示所述所述第一下行参考信号;
    所述处理单元具体用于,根据所述第一指示信息,确定所述第一下行参考信号,以确定所述第一传播损耗,或根据所述QCL关系,确定所述第一下行参考信号对应的所述第一传播损耗。
  21. 如权利要求18至20中任一项所述的终端,其特征在于,所述下行参考信号包括以下中的至少一种:
    辅同步信号SSS、主同步信号PSS、信道状态信息参考信号CSI-RS、解调参考信号DMRS。
  22. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端发送第一下行参考信号,所述第一下行参考信号用于所述终端确定第一传播损耗;
    接收单元,用于接收所述终端发送的第一上行信道,所述第一上行信道的发射功率是所述终端根据所述第一传播损耗确定的。
  23. 如权利要求22所述的网络设备,其特征在于,所述第一下行参考信号是所述终端根据准共址QCL指示信息确定的,所述QCL指示信息为所述网络设备通过物理层信令和/或高层信令发送的,所述QCL指示信息用于指示发送多个下行参考信号的天线端口之间的QCL关系,所述多个下行参考信号包括所述第一下行参考信号。
  24. 如权利要求22所述的网络设备,其特征在于,所述第一下行参考信号是所述终端根据第一指示信息确定的,所述第一指示信息为所述网络设备通过物理层信令和/或高层信令发送的,所述第一指示信息用于指示所述第一上行信道所对应的下行参考信号的信息,所述下行参考信号的信息用于指示所述所述第一下行参考信号。
  25. 如权利要求22至24中任一项所述的网络设备,其特征在于,所述下行参考信号包括以下中的至少一种:
    辅同步信号SSS、主同步信号PSS、信道状态信息参考信号CSI-RS、解调参考信号DMRS。
  26. 一种功率控制方法,其特征在于,包括:
    接收至少一个网络设备发送的至少一个下行控制信息DCI,所述至少一个DCI包括至少两个发射功率控制命令;
    根据所述至少两个发射功率控制命令,确定同一载波内的上行信道发射功率;
    或者,
    接收第一网络设备发送的下行控制信息DCI,所述DCI包括所述终端的至少两个发射功率控制命令;
    根据所述至少两个发射功率控制命令,确定至少两个网络设备中的每个网络设备的上行信道发射功率,所述至少两个网络设备与所述至少两个发射功率控制命令一一对应, 所述至少两个网络设备包括所述第一网络设备;
    或者,
    确定第一上行信道的第一传播损耗,所述第一传播损耗是根据对多个下行参考信号中的第一下行参考信号的测量得到的;
    根据所述第一传播损耗确定所述第一上行信道的发射功率。
  27. 一种功率控制方法,其特征在于,包括:
    向终端发送下行控制信息DCI,所述DCI包括所述终端的至少两个发射功率控制命令,所述至少两个发射功率控制命令用于所述终端确定至少一个上行信道的发射功率;
    接收所述终端发送的所述至少一个上行信道中的第一上行信道;
    或者,
    向终端发送第一下行参考信号,所述第一下行参考信号用于所述终端确定第一传播损耗;
    接收所述终端发送的第一上行信道,所述第一上行信道的发射功率是所述终端根据所述第一传播损耗确定的。
  28. 一种通信装置,其特征在于,用于执行如权利要求26或27所述的方法。
  29. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得如权利要求26或27所述的方法被执行。
PCT/CN2018/078080 2017-03-24 2018-03-06 功率控制方法、终端和网络设备 WO2018171418A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18772580.9A EP3585111B1 (en) 2017-03-24 2018-03-06 Power control method, terminal and network device
US16/579,568 US11134447B2 (en) 2017-03-24 2019-09-23 Power control method for transmitting uplink channel
US17/465,490 US11832191B2 (en) 2017-03-24 2021-09-02 Power control method, terminal, and network device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710183222 2017-03-24
CN201710183222.5 2017-03-24
CN201710451379.1 2017-06-15
CN201710451379 2017-06-15
CN201710687604.1 2017-08-11
CN201710687604.1A CN108632971A (zh) 2017-03-24 2017-08-11 功率控制方法、终端和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/579,568 Continuation US11134447B2 (en) 2017-03-24 2019-09-23 Power control method for transmitting uplink channel

Publications (1)

Publication Number Publication Date
WO2018171418A1 true WO2018171418A1 (zh) 2018-09-27

Family

ID=63584986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078080 WO2018171418A1 (zh) 2017-03-24 2018-03-06 功率控制方法、终端和网络设备

Country Status (2)

Country Link
US (1) US11832191B2 (zh)
WO (1) WO2018171418A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199853A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 数据接收和发送方法及装置
RU2792878C1 (ru) * 2019-05-13 2023-03-28 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159568A1 (ja) * 2018-02-16 2019-08-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信機及び送信方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107885A2 (en) * 2009-03-17 2010-09-23 Interdigital Patent Holdings, Inc. Method and apparatus for uplink power control in multiple-input multiple-output
CN102395184A (zh) * 2011-06-30 2012-03-28 电信科学技术研究院 一种实施上行功率控制的方法及装置
CN102695261A (zh) * 2011-03-22 2012-09-26 中国移动通信集团公司 上行功率控制方法、装置及系统
CN103327594A (zh) * 2012-03-22 2013-09-25 电信科学技术研究院 上行功率控制方法、设备及系统
CN104301979A (zh) * 2013-07-19 2015-01-21 华为技术有限公司 一种ue的上行发射功率控制方法、装置、ue及基站
CN104619000A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 一种上行功率控制方法、系统和相关设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173162B1 (en) * 1997-06-16 2001-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Multiple code channel power control in a radio communication system
US7539507B2 (en) * 2003-11-21 2009-05-26 Qualcomm Incorporated Peer-to-peer communications
US8514771B2 (en) * 2005-12-22 2013-08-20 Qualcomm Incorporated Methods and apparatus for communicating and/or using transmission power information
BRPI0718530A2 (pt) * 2006-11-08 2013-11-19 Ntt Docomo Inc Sistema de comunicação móvel, estação base, estação móvel e método de controle de comunicação
CN101754338A (zh) 2008-12-05 2010-06-23 华为技术有限公司 基站、用户设备、上行多载波系统中功率控制方法及系统
US8934417B2 (en) 2009-03-16 2015-01-13 Google Technology Holdings LLC Resource allocation in wireless communication systems
US9585108B2 (en) 2009-05-04 2017-02-28 Qualcomm Incorporated Method and apparatus for uplink power control in a multicarrier wireless communication system
US9763197B2 (en) 2009-10-05 2017-09-12 Qualcomm Incorporated Component carrier power control in multi-carrier wireless network
EP2343934A1 (en) 2010-01-11 2011-07-13 Panasonic Corporation Transmit power control signaling for communication systems using carrier aggregation
US20110249638A1 (en) 2010-04-07 2011-10-13 Yu-Chih Jen Communication devices and methods thereof
US8965442B2 (en) * 2010-05-07 2015-02-24 Qualcomm Incorporated Uplink power control in aggregated carrier communication systems
JP5669664B2 (ja) * 2011-05-16 2015-02-12 京セラ株式会社 無線基地局及び通信制御方法
CN102938930B (zh) 2011-08-16 2015-07-08 华为技术有限公司 CoMP系统中上行功率控制的补偿方法及基站、用户设备
WO2013049769A1 (en) * 2011-09-30 2013-04-04 Interdigital Patent Holdings, Inc. Multipoint transmission in wireless communication
CN103096448B (zh) 2011-10-28 2016-08-24 华为技术有限公司 上行功率控制的方法、用户设备和接入点
WO2014054903A1 (ko) 2012-10-04 2014-04-10 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
US9307521B2 (en) 2012-11-01 2016-04-05 Samsung Electronics Co., Ltd. Transmission scheme and quasi co-location assumption of antenna ports for PDSCH of transmission mode 10 for LTE advanced
CN103929800B (zh) 2013-01-11 2017-09-29 电信科学技术研究院 一种pucch功率控制方法及装置
US9210670B2 (en) * 2013-03-18 2015-12-08 Samsung Electronics Co., Ltd. Uplink power control in adaptively configured TDD communication systems
US9414335B2 (en) * 2014-02-06 2016-08-09 Electronics And Telecommunications Research Instit Method and apparatus for transmitting uplink signal or uplink channel
CN105451314A (zh) 2014-08-01 2016-03-30 华为技术有限公司 信息发送方法、用户设备和基站
US9503990B2 (en) * 2015-01-30 2016-11-22 Innovative Technology Lab Co., Ltd. Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation
US10631191B2 (en) * 2015-03-24 2020-04-21 Ofinno, Llc Uplink transmission power control of a wireless device in a wireless network
US9629095B2 (en) * 2015-03-24 2017-04-18 Ofinno Technologies, Llc Control channel power control in a wireless network using primary and secondary transmit power control indexes
CN108282202B (zh) 2017-01-06 2021-09-14 华为技术有限公司 一种功率配置方法及相关设备
US10477484B2 (en) 2017-03-10 2019-11-12 Qualcomm Incorporated Multi-link transmit power control for a plurality of uplink beam pairs
CN108632970B (zh) 2017-03-24 2021-02-09 华为技术有限公司 功率控制方法、终端和网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107885A2 (en) * 2009-03-17 2010-09-23 Interdigital Patent Holdings, Inc. Method and apparatus for uplink power control in multiple-input multiple-output
CN102695261A (zh) * 2011-03-22 2012-09-26 中国移动通信集团公司 上行功率控制方法、装置及系统
CN102395184A (zh) * 2011-06-30 2012-03-28 电信科学技术研究院 一种实施上行功率控制的方法及装置
CN103327594A (zh) * 2012-03-22 2013-09-25 电信科学技术研究院 上行功率控制方法、设备及系统
CN104301979A (zh) * 2013-07-19 2015-01-21 华为技术有限公司 一种ue的上行发射功率控制方法、装置、ue及基站
CN104619000A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 一种上行功率控制方法、系统和相关设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199853A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 数据接收和发送方法及装置
RU2792878C1 (ru) * 2019-05-13 2023-03-28 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи

Also Published As

Publication number Publication date
US11832191B2 (en) 2023-11-28
US20210400592A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
EP3585111B1 (en) Power control method, terminal and network device
US11424866B2 (en) Radio base station and radio communication method
WO2020063560A1 (en) Method and apparatus for triggering power headroom reports
CN110999125B (zh) 通信装置、通信控制方法和计算机程序
CN108632970B (zh) 功率控制方法、终端和网络设备
US10397884B2 (en) Power determining method and user equipment
WO2017193398A1 (zh) 功率控制方法和装置
WO2020228589A1 (zh) 通信方法和通信装置
WO2018202083A1 (zh) 功率余量的上报方法和装置
WO2019062998A1 (zh) 功率控制方法及装置
WO2017173920A1 (zh) 一种功率控制方法及设备
EP2946513B1 (en) Repetition transmission for downlink control signal
WO2019213873A1 (zh) 无线通信方法和终端
TW202101023A (zh) 具有半持續性或非週期性時序行為之定位參考信號抹除模式
WO2013166864A1 (zh) 测量参考信号的功率控制方法、装置和系统
US11444731B2 (en) Transmission method, terminal, and network device
WO2019191949A1 (zh) 通信方法、通信装置和系统
US11832191B2 (en) Power control method, terminal, and network device
WO2020206581A1 (zh) 传输信号的方法、终端设备和网络设备
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
JP6019199B2 (ja) 無線通信システム、ユーザ端末及び無線通信方法
KR101642361B1 (ko) 무선통신시스템에서 단말의 전송전력 제어 방법 및 이를 수행하는 장치
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2018171417A1 (zh) 功率控制方法、终端和网络设备
WO2017132957A1 (zh) 传输上行信息的方法、用户设备、基站和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018772580

Country of ref document: EP

Effective date: 20190919