WO2018202083A1 - 功率余量的上报方法和装置 - Google Patents

功率余量的上报方法和装置 Download PDF

Info

Publication number
WO2018202083A1
WO2018202083A1 PCT/CN2018/085471 CN2018085471W WO2018202083A1 WO 2018202083 A1 WO2018202083 A1 WO 2018202083A1 CN 2018085471 W CN2018085471 W CN 2018085471W WO 2018202083 A1 WO2018202083 A1 WO 2018202083A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
calculating
power
average
terminal
Prior art date
Application number
PCT/CN2018/085471
Other languages
English (en)
French (fr)
Other versions
WO2018202083A9 (zh
Inventor
纪刘榴
任海豹
秦龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18795154.6A priority Critical patent/EP3614750B1/en
Publication of WO2018202083A1 publication Critical patent/WO2018202083A1/zh
Priority to US16/673,509 priority patent/US10856274B2/en
Publication of WO2018202083A9 publication Critical patent/WO2018202083A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and an apparatus for reporting power headroom.
  • the power headroom (PH) is the difference between the maximum transmit power allowed by the terminal and the required transmit power, which can reflect how much transmit power the terminal can use in addition to the required transmit power.
  • the terminal reports the PH to the network side, and the network side can use the PH as a reference for allocating resources to the terminal. For example, when the PH value is negative, it indicates that the required transmit power has exceeded the maximum transmit power allowed by the terminal, and the network side can reduce the bandwidth resources allocated to the terminal; when the PH value is positive, it indicates that the maximum transmit power allowed by the terminal can be To bear the power required for current information transmission, the network side can allocate more bandwidth resources to the terminal.
  • the embodiment of the present application provides a method and a device for reporting power headroom, so as to improve the accuracy of PH reporting.
  • a method for reporting a power headroom including: calculating, by a terminal, a power headroom (PH) on a subframe of a serving cell, and reporting a power headroom report (PHR).
  • the terminal uses K beams or groups of beams to transmit on the subframe of the serving cell, where K is a positive integer greater than or equal to 2, and the terminal calculates the power headroom including:
  • the PHR reported by the terminal includes:
  • the reference PH value is a PH value of the K1 PH values
  • the offset value is an offset value of the other PH values of the K1 PH values with respect to the reference PH value.
  • the reference PH value is the reference PH value
  • the offset value is the offset value of the K1 PH values from the reference PH value;
  • the beam level power control parameter includes one or more of the following parameters: a nominal power P 0 , a path loss adjustment factor ⁇ , a path loss PL c , a power offset value ⁇ TF, c (i), and a power adjustment value.
  • f c (i) and the transmission bandwidth M c (i).
  • the terminal calculates a PH according to a first parameter of the K beams or a beam set, wherein the first parameter is a nominal power P 0 , a path loss adjustment factor ⁇ , a path loss PL c , and a power offset value ⁇ TF, c (i), one of the power adjustment value f c (i) and the transmission bandwidth M c (i).
  • the first parameter is a nominal power P 0 , a path loss adjustment factor ⁇ , a path loss PL c , and a power offset value ⁇ TF, c (i), one of the power adjustment value f c (i) and the transmission bandwidth M c (i).
  • the terminal calculates the PH according to the first parameters of the K beams or the beam group, including: calculating an average value of the first parameters of the K beams or the beam groups, where the average value includes a decibel dB average value or a linear average value;
  • the pH is calculated from the calculated average value.
  • the terminal calculates the PH according to the first parameters of the K beams or the beam group, including: calculating a sum of the first parameters of the K beams or the beam groups, where the sum includes a sum of the values of the dB values or a linear value; Calculated and calculated PH.
  • the terminal calculates the PH based on a plurality of parameters of the K beams or beam groups, wherein the plurality of parameters are a nominal power P 0 , a path loss adjustment factor ⁇ , a path loss PL c , and a power offset value ⁇ TF,c (i), power adjustment value f c (i), and some or all of the parameters in the transmission bandwidth M c (i).
  • the plurality of parameters are a nominal power P 0 , a path loss adjustment factor ⁇ , a path loss PL c , and a power offset value ⁇ TF,c (i), power adjustment value f c (i), and some or all of the parameters in the transmission bandwidth M c (i).
  • the terminal calculates the PH according to multiple parameters of the K beams or the beam group, including the following methods:
  • the average value is calculated as PH; or,
  • a PH reporting device including means or means for performing the various steps of the above methods.
  • a reporting device providing a PH comprising at least one processing element for storing programs and data, and at least one processing element for performing any of the above methods .
  • a program is provided that, when executed by a processor, is used to perform any of the above methods.
  • a program product such as a computer readable storage medium, can also be provided, including the program.
  • the embodiment of the present application provides a method and a device for reporting power headroom, and considers the influence of the introduction of multi-beam transmission on the PH, thereby calculating and reporting the PH more accurately, which is beneficial to improving scheduling decisions on the network side and improving communication performance.
  • a method for reporting a power headroom including: the terminal calculating a PH on a subframe of a serving cell, and reporting the PHR.
  • the terminal supports nu time-frequency resource configuration, where nu is a positive integer greater than or equal to 2, and the terminal calculates PH including:
  • the PH is calculated for the nu1 time-frequency resource configuration respectively, and nu1 PH values are obtained, where nu1 is less than or equal to nu.
  • the PHR reported by the terminal includes information about the PH value calculated according to the time-frequency resource configuration level power control parameter of the nu time-frequency resource configuration.
  • the PHR includes the information of the nu1 PH values calculated above.
  • the PHR includes information of a reference PH value and a value of an offset value, wherein the reference PH value is a PH value of nu1 PH values, and the offset value is nu1 PH values, and other PH values are relative
  • the offset value of the reference PH value has nu1-1 offset values at this time; or the reference PH value is the reference PH value, and the offset value is an offset value of nu1 PH values relative to the reference PH value.
  • the time-frequency resource configuration level power control parameter includes one or all of the following parameters: a nominal power P 0 (or P O ), and a transmission bandwidth M c (i).
  • the terminal calculates the PH according to a first parameter of the nu time-frequency resource configurations, wherein the first parameter is one of a nominal power P 0 (or P O ) and a transmission bandwidth M c (i).
  • the terminal calculates the PH according to the first parameter of the nu time-frequency resource configuration, including: calculating a sum of the first parameters of the nu time-frequency resource configurations, where the sum includes a sum of the dB values or a linear value; Calculated and calculated PH.
  • the terminal calculates a PH according to a plurality of parameters configured by nu time-frequency resources, wherein the plurality of parameters are a nominal power P 0 (or P O ) and a transmission bandwidth M c (i).
  • the terminal calculates the PH according to multiple parameters configured by the nu time-frequency resources, including the following methods:
  • a PH reporting device including means or means for performing the various steps of the above methods.
  • a reporting device providing a PH comprising at least one processing element for storing programs and data, and at least one processing element for performing any of the above methods .
  • a program is provided that, when executed by a processor, is used to perform any of the above methods.
  • a program product such as a computer readable storage medium, can also be provided, including the program.
  • the embodiment of the present application provides a method and a device for reporting a power headroom, and considers the impact of the introduction of multi-time-frequency resource configuration on the PH, thereby more accurately calculating and reporting the PH, which is beneficial to improving scheduling decisions on the network side and improving communication performance.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a multi-beam transmission scenario according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of another multi-beam transmission scenario according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a method for reporting a PH according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another method for reporting a PH according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another method for reporting a PH according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another method for reporting a PH according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another method for reporting a PH according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a RAN node according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a terminal according to an embodiment of the present application.
  • the terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Devices for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • augmented reality, AR augmented reality, AR
  • wireless terminals in industrial control wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • a radio access network is a part of a network that connects a terminal to a wireless network.
  • a RAN node (or device) is a node (or device) in a radio access network, which may also be referred to as a base station.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • B, NB base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • Wifi access point AP
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system, and the functions of some protocol layers are centrally controlled in the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU by the CU. Centrally control the DU.
  • LTE long term evolution
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • terminal 120 accesses a wireless network through RAN node 110 to acquire services of an external network (e.g., the Internet) through a wireless network, or to communicate with other terminals through a wireless network.
  • the radio resources communicated between the terminal 120 and the RAN node 110 are allocated by the RAN node 110.
  • the RAN node 110 may allocate excessive transmission bandwidth to the terminal, so that the signal to interference ratio (signal to interference) The plus noise ratio (SINR) is low. Therefore, the terminal 120 provides the PH information to the RAN node 110 so that the RAN node adjusts the transmission bandwidth allocated to the terminal with the PH as a reference.
  • SINR signal to interference ratio
  • the transmit power may also be referred to as transmit power.
  • the PH can reflect how much of the transmit power the terminal can use in addition to the required transmit power.
  • the terminal reports the PH to the RAN node, and the RAN node can use the PH as a reference for allocating resources to the terminal.
  • the PH reported by the terminal can be referred to as a power headroom report (PHR).
  • PHR power headroom report
  • the PH value in the PHR can be positive, negative or zero.
  • the PH value When the PH value is negative, it indicates that the required transmit power has exceeded the maximum transmit power allowed by the terminal, and the RAN node can reduce the bandwidth resource allocated to the terminal, thereby improving the signal quality of the signal transmitted by the terminal uplink to the RAN node;
  • the PH value When the PH value is positive, it indicates that the maximum transmit power allowed by the terminal can bear the power required for the current information transmission, and the RAN node can allocate more bandwidth resources to the terminal to improve resource utilization.
  • the PH is valid for the subframe i of the serving cell c, that is, the value of the PH is calculated based on the subframe i of the serving cell c, reflecting the maximum transmit power allowed by the terminal on the subframe i of the serving cell c and the required transmit power. The difference.
  • the maximum transmission power allowed by the terminal is simply referred to as the maximum transmission power.
  • PH usually has three types of calculations, which are described below:
  • the first type (or Type 1): the required transmit power is the transmit power required to transmit the physical uplink shared channel (PUSCH), that is, the maximum transmit power allowed by the terminal and the transmit power required to transmit the PUSCH. The difference between.
  • PUSCH physical uplink shared channel
  • the PH can be calculated by the following formula 1:
  • PH type1,c (i) P CMAX,c (i)- ⁇ 10log 10 (M PUSCH,c (i))+P O_PUSCH,c (j)+ ⁇ c (j) ⁇ PL c + ⁇ TF,c (i)+f c (i) ⁇ (1)
  • PH type1,c (i) represents the PH calculated by the serving cell c on the subframe i under the first type.
  • P CMAX,c (i) represents the maximum transmit power (also known as the maximum transmit power, similar below).
  • M PUSCH,c (i) represents the transmission bandwidth of the PUSCH, which is expressed in terms of the number of resource blocks (RBs), that is, in units of RBs.
  • P O_PUSCH,c (j) denotes the nominal (or reference) power of the PUSCH (which may also be referred to as a power density reference value), including the cell nominal power of the PUSCH (P O_NOMINAL_PUSCH, c (j)) and the terminal specific label of the PUSCH
  • ⁇ c (j) represents a path loss adjustment factor (or compensation factor).
  • PL c represents the path loss.
  • ⁇ TF,c (i) denotes a power offset value related to the modulation coding mode or the content of the signal, which embodies the influence of the modulation coding mode or the content of the signal on the power, and the content of the signal refers to the control transmitted in the PUSCH.
  • Information such as when a channel quality indicator (CQI) is transmitted in the PUSCH, the RAN node would like to have better received power, and correspondingly send PUSCH with greater power, this "larger" offset
  • CQI channel quality indicator
  • f c (i) represents the power adjustment value formed by the closed loop power control of the terminal.
  • the meaning of c and i in each parameter in the above formula means that the parameter is a parameter to the serving cell c, subframe i.
  • the PH can be calculated by the following formula (2):
  • the terminal does not transmit the PUSCH in the subframe i to the serving cell c, or when the uplink transmission terminal is configured with an authorized-assisted access (LAA) secondary cell (LAA SCell) and the terminal is on the serving cell c Received downlink control information (DCI) (DCI Format 0A/0B/4A/4B) in the format 0A/0B/4A/4B, when the cell "PUSCH trigger A" in the DCI is set to 1 If the terminal reports the PH in the PUSCH transmission corresponding to the DCI in the serving cell c, the PH can be calculated by using the following formula (3):
  • the second type (or Type 2):
  • the required transmit power is the transmit power required to transmit the PUSCH and the PUCCH, that is, the difference between the maximum transmit power allowed by the terminal and the transmit power required to simultaneously transmit the PUCCH and PUSCH.
  • the PH can be calculated by the following formula (4):
  • P 0_PUCCH represents the nominal (or reference) power to the PUCCH (which may also be referred to as the power density reference value), including the cell nominal power (P O_NOMINAL_PUCCH ) for the PUCCH and the terminal-specific nominal power ( P O_UE_PUCCH ) for the PUCCH.
  • h(n CQI , n HARQ , n SR ) represents the power offset associated with the PUCCH format, which embodies the influence of the content of the signaling transmitted in the PUCCH on the power, h(n CQI , n HARQ , n SR ) and The CQI transmitted in the PUCCH, the hybrid automatic repeat request (HARQ) feedback information (for example, ACK/NACK), the number of bits of the scheduling request (SR), and the like.
  • HARQ hybrid automatic repeat request
  • ⁇ F_PUCCH (F) denotes a power offset related to the PUCCH format
  • the parameter is provided by a higher layer
  • the value of the parameter represents a power offset of the PUCCH format F relative to the PUCCH format 1a, where the format F may be the format 1, 1b, 2, 2a, 2b, 3, 4, 5 or 1b with channel selection.
  • ⁇ TxD (F′) represents the power offset associated with the PUCCH format F′ when the terminal transmits the PUCCH by using the transmit diversity technique.
  • the value of the parameter is provided by the upper layer, otherwise The value of this parameter is 0, where the format F' can be format 1, 1a/1b, 1b with channel selection, 2/2a/2b or 3.
  • g(i) represents the power adjustment value (or compensation value) formed by the closed loop power control of the terminal.
  • the PH can be calculated by the following formula (5):
  • the PH can be calculated by the following formula (6):
  • the PH can be calculated by the following formula (7):
  • the terminal Before detecting the PDCCH (or the enhanced physical downlink control channel EPDCCH) and generating the PH, the terminal cannot determine whether there is a PUCCH transmission corresponding to the physical downlink shared channel (PDSCH) transmission in the subframe i for the primary cell.
  • the PH can be calculated by the following formula (8). The following conditions are met: the PUCCH format 1b with channel selection and the simultaneous PUCCH-PUSCH are configured for the terminal (that is, the configuration field simultaneousPUCCH-PUSCH) The terminal is allowed to simultaneously transmit PUCCH and PUSCH), or, for a terminal configured with PUCCH format 3 and configured with simultaneous PUCCH-PUSCH, PUCCH format 1b with channel selection is used for HARQ information feedback.
  • the third type (or Type 3): the required transmit power is the transmit power required to transmit a sounding reference signal (SRS), ie, between the maximum transmit power allowed by the computing terminal and the transmit power required to transmit the SRS. Poor.
  • SRS sounding reference signal
  • the PH may be calculated by the following formula (9), if the terminal For the serving cell c, the SRS is not transmitted in the subframe i, and the PH can be calculated by the following formula (10):
  • PH type 3,c (i) represents the PH calculated on the subframe i for the serving cell c under the third type.
  • M SRS,c represents the transmission bandwidth of the SRS, which is expressed in the number of RBs, that is, in units of RBs.
  • ⁇ SRS,c represents the path loss adjustment factor (or compensation factor) of the SRS.
  • PL c represents the path loss.
  • f SRS,c (i) represents the power adjustment value of the SRS formed by the closed-loop power control of the terminal, that is, the closed-loop power adjustment value of the SRS.
  • the meaning of c and i in each parameter in the above formula means that the parameter is a parameter to the serving cell c, subframe i.
  • a terminal can communicate with a RAN node through multiple beams, hereinafter referred to as a multi-beam transmission technique.
  • the RAN node may configure a plurality of time-frequency resource configurations for the terminal, where the time-frequency resource configuration includes one or all of the following configurations: a frequency domain length of a resource element (RE), that is, a sub-carrier spacing; The length of the domain, that is, the length of time of orthogonal frequency division multiplexing (OFDM) symbols; the number of time resource units in the scheduling time unit; the cyclic prefix (CP) type of the OFDM symbol.
  • the subcarrier spacing may be 15 kHz, 30 kHz, or 60 kHz, and the like.
  • the length of time of an OFDM symbol is inversely proportional to the subcarrier spacing, so the length of time of a plurality of OFDM symbols can be configured.
  • the scheduling time unit is a unit or granularity of scheduling resources in the time domain.
  • the scheduling time unit is called a transmission time interval (TTI) in the LTE system, and the time resource unit is a resource unit in the time domain.
  • TTI transmission time interval
  • the number of time resource units in the scheduling time unit refers to the number of time resource units scheduled in the time domain.
  • the scheduling time unit is one subframe
  • the number of time resource units in the scheduling time unit may be The number of OFDM symbols scheduled once in the subframe.
  • the CP type may include a regular CP or an extended CP or the like.
  • the multiple time-frequency resource configuration techniques can be referred to as Numerology technology.
  • the terminal supports a waveform technique in the uplink transmission, that is, single carrier-orthogonal frequency division multiplexing (SC-OFDM) technology, along with the technology.
  • SC-OFDM single carrier-orthogonal frequency division multiplexing
  • the terminal can also support Cyclic prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) technology in uplink transmission, for example, based on Discrete Fourier Transform (DFT) extension.
  • DFT Discrete Fourier Transform
  • the terminal adopts multi-beam transmission technology, or uses multiple time-frequency resource configurations, or supports more than one waveform technology in uplink transmission
  • the existing PH reporting is only for a single beam, a single time-frequency resource configuration or a single waveform.
  • the technically reported PHR cannot accurately reflect the terminal PH.
  • the following embodiments provide a PH reporting method and apparatus, and consider multi-beam transmission, multi-time-frequency resource configuration, or introduction of multiple uplink waveform technologies.
  • the influence of the margin, and thus the more accurate calculation and reporting of the power headroom, is beneficial to improve the scheduling decision on the network side and improve the communication performance.
  • a terminal can communicate with multiple RAN nodes through multiple beams on one carrier.
  • the terminal can communicate with different RAN nodes through different beams; the terminal can also communicate with one RAN node through multiple beams on one carrier, that is, the terminal can communicate with the same RAN node through different beams.
  • FIG. 2 is a schematic diagram of a multi-beam transmission scenario according to an embodiment of the present disclosure.
  • a terminal communicates with different RAN nodes through different beams.
  • FIG. 3 is a schematic diagram of another multi-beam transmission scenario according to an embodiment of the present disclosure.
  • a terminal communicates with a same RAN node through different beams.
  • the terminal is described as an example in which the terminal communicates with the RAN node through two beams, but is not intended to limit the present application.
  • the terminal can also use both communication methods at the same time.
  • terminal 210 communicates with RAN node 220 and RAN node 230 on a carrier (or serving cell) via different beams, respectively.
  • terminal 310 communicates with RAN node 320 on a carrier over different beams.
  • a beam can be understood as a spatial resource, and transmission over multiple beams can improve resource utilization.
  • transmission on multiple beams can reduce the impact of signal blockage; for example, when transmission on one beam is blocked by obstacles such as cars and people, the other beam can Communication is maintained so that current communications are not interrupted, thus reducing the effects of signal blocking.
  • the beam is represented by an arrow in the figure, which can be understood as a distribution of signal strength.
  • a transmit beam can be understood as a signal intensity distribution formed in a spatial direction after a signal is transmitted through an antenna
  • a receive beam can be understood as a signal intensity distribution in a spatial direction of a wireless signal received from an antenna.
  • the transmit beam and the receive beam may be the same or different.
  • the antenna When the signal is transmitted or received, the antenna is processed by weighting or the like, so that the energy of the signal is concentrated in a specific spatial direction, and the aggregation of the signal energy in the direction can be understood as a beam.
  • the beam resource has spatial directivity, and the signal is pre-coded to make the signal intensity concentrated in a specific spatial direction, and the signal is received in the spatial direction, which has better receiving power, and the characteristic can be called spatial directivity (or Energy transfer directivity).
  • the terminal can use different antenna ports to form different beams. For example, in the scenarios of FIG. 2 and FIG. 3, the terminal can form one beam direction through the antenna ports PortD0 to D3, and form another beam direction through the antenna ports PortD4 to D7.
  • the terminal reports the PH the multi-beam is not considered, and only the PH of the single beam is calculated and reported, so that the basis for the RAN node to allocate resources to the terminal is not accurate enough, which affects the communication performance.
  • the beam condition of the terminal in the subframe of the serving cell is taken into account in the reporting of the PH, so that the reported PH more accurately reflects the power situation of using multiple beam transmissions, which is beneficial to the RAN node.
  • Scheduling decisions When the terminal uses multiple beams to transmit at the same time, the terminal can calculate the PH for each beam, and report the multiple PH information to the RAN node when the trigger condition is met.
  • the PH at this time is for a single beam, which can be called Beam-specific PH, which calculates or reports the PH separately for each beam.
  • the terminal may calculate the PH by combining multiple beams, and when the trigger condition is met, the terminal reports a PH information, which may be referred to as a combined PH (joint PH), which is a beam considering multiple beams. Calculated under the beam-specific parameter.
  • the beam-specific parameters are also called beam-level power control parameters.
  • the so-called beam-level power control parameters are independent parameters of the pointer to the beam (or beam group).
  • the terminal has uplink beams B1-Bn, and parameters P1-Pn exist independently for each beam, that is, parameter P1 is for beam B1, parameter P2 is for beam B2, and so on, and parameter Pn is for beam Bn. of.
  • the terminal has beams B1-Bn, which are divided into beam groups G1-Gm, and parameters P1-Pm exist independently for each beam group, wherein the parameter P1 is for the beam group G1, and the beam in the beam group G1 Both are applicable; the parameter P2 is for the beam group G2, which is applicable to the beams in the beam group G2; and so on, the parameter Pm is used for the beam group Gm, which is applicable to the beam in the beam group Gm, wherein , m and n are both positive integers.
  • the power control parameters that may be affected include:
  • Path loss PL c path loss adjustment factor ⁇ :
  • the propagation paths experienced by multiple beams may be different, so their path loss may be different.
  • the beamforming weights of different beams are different, their beamforming gains are also different, and at high frequencies, path loss may be affected. Differently, if the same transmit power is used, the beam with a high beamforming gain will have a higher received power, so the path loss is smaller.
  • Nominal (or reference) power P 0 (or P O ):
  • the RAN node can configure different P 0 for different beams; the terminal calculates the path loss of the reference beam without distinguishing the path loss of different beams. In this case, P 0 can be different, but the path loss is the same.
  • the terminal communicates with multiple RAN nodes through multiple beams, different RAN nodes may have different expectations for received power due to different interference levels in different cells, so the terminal may be configured based on beams (or beam groups). ) P 0 .
  • the data format transmitted to different cells may be different, such as modulation coding scheme used for two cells (modulation) Different from the coding scheme (MCS), different ⁇ TF,c (i) values may be configured at this time.
  • the corresponding transmission bandwidth M SRS,c can be SRS.
  • M c (i) it is collectively referred to as a transmission bandwidth M c (i), that is, M c (i) may include M PUSCH, c (i) or M SRS,c .
  • the beam level power control parameter can include, for example, one or more of the following parameters: nominal (or reference) power P 0 (or P O ), path loss adjustment factor ⁇ , path loss PL c , power offset value ⁇ TF,c (i), power adjustment value f c (i), transmission bandwidth M c (i).
  • P 0 corresponds to P O_PUSCH, c (j), P 0_PUCCH , and P O_SRS in the above formulas
  • c (m) respectively correspond to ⁇ c (j) in the above formula in different scenarios.
  • ⁇ SRS,c the transmission bandwidth M c (i) respectively corresponds to M PUSCH,c (i) or M SRS,c in the above formula in different scenarios.
  • the information of the PH reported by the terminal may be the calculated PH itself, or may be indication information indicating the PH, such as an index or an offset value.
  • the information of the PH reported by the terminal is hereinafter referred to as PHR.
  • FIG. 4 is a schematic diagram of a PH reporting method according to an embodiment of the present application.
  • the method is performed by the terminal, and the terminal transmits on K subframes (or beam groups) on subframe i of the serving cell c, where K is a positive integer greater than or equal to two.
  • the method includes the following steps:
  • the terminal calculates the PH on the subframe of the serving cell, where the terminal may calculate a PH value according to the beam level power control parameters of the K beams (or beam groups); or, the terminal may separately target the K1 beams (or Beam group) calculates PH to obtain K1 PH values, where K1 is less than or equal to K, that is, the terminal can calculate the PH value of all or part of the beam (or beam group).
  • the terminal reports the PHR.
  • the PHR includes information on the PH value calculated from the beam level power control parameters of the K beams (or beam groups) above.
  • the PHR includes information of K1 PH values calculated above.
  • the PHR includes information on the average of the K1 PH values.
  • the PHR includes information of a reference PH value and a value of an offset value, wherein the reference PH value is a PH value of K1 PH values, and the offset value is relative to other PH values of the K1 PH values.
  • the offset value of the reference PH value has K1-1 offset values at this time; or the reference PH value is the reference PH value, and the offset value is the offset value of the K1 PH values relative to the reference PH value.
  • the information of the PH value may be the PH value itself, or may be information indicating the PH value, such as an index.
  • the information of the offset value is similar, and may be the offset value itself or information indicating the offset value, such as an index.
  • the terminal calculates the PH value for all the beams, and reports the calculated PH value information or the information of the average value of all PH values.
  • the average value herein may be a dB average or a linear average, which will be described in detail in the following examples.
  • the K1 beams may be specified by the RAN node; or may be information of a predetermined maximum K1 PH value, or a minimum K1 PH value information, or a maximum K1/2 PH value. The information and the minimum K1/2 PH value information will be described in detail in the following examples.
  • the terminal calculates the PH according to the beam-level power control parameters of the K beams (or beam groups), and the case of obtaining a PH value may be applied to the case of sharing power between antenna ports (or antenna port groups) forming multiple beams, such as an antenna. Maximum transmit power sharing between ports (or antenna port groups).
  • the case where the terminal calculates a plurality of PH values may be applied to the case where the power is not shared between the antenna ports (or the antenna port groups), and may also be applied to the case where the power is shared between the antenna ports (or the antenna port groups).
  • the terminal calculates the PH based on the beam-level power control parameters of the K beams (or beam groups) to obtain a PH value.
  • the beam level power control parameters may, for example, include one or more of the following parameters: nominal (or reference) power P 0 (or P O ), path loss adjustment factor ⁇ , path loss PL c , power offset value ⁇ TF, c (i), power adjustment value f c (i).
  • the terminal can calculate the PH value using only one or a part of the parameters.
  • the first case for the case where the terminal calculates the PH value using only one beam-level power control parameter, the average value of the parameters of the plurality of beams, for example, a decibel (dB) average value or a linear average value is used to calculate the PH.
  • the parameter is described by taking the nominal power P 0 (or P O ) as an example, and other parameters are similar.
  • the nominal power P 0 (P or O) PH used in calculating the average of a plurality of nominal power P 0 of the beam (P or O), e.g., decibels (dB) average or a linear average.
  • the dB average can be written as The linear average can be written as Alternatively, the influence of the number of antenna ports can be ignored to reduce the computational complexity.
  • the dB average can be written as The linear average can be written as Where N is the number of uplink antenna ports of the terminal, that is, there are N antenna ports in the terminal uplink; k represents any beam (or beam group); N k represents the number of antenna ports forming a beam (or beam group) k, and K represents a beam The number of (or beam groups).
  • a beam group refers to a beam that is configured with the same beam-specific parameters or a beam that is configured with the same power control parameters.
  • the above average value may also be replaced by a sum, which may be the sum of the dB values or the sum of the linear values, at this time P O_PUSCH,c (j )as follows:
  • P 0_PUCCH and P O_SRS,c (m) are similar to that of P O_PUSCH,c (j), and the PH is calculated after being calculated into the corresponding formula, and will not be described here.
  • the manner in which the PH is calculated using any of the other beam level power control parameters is similar to the manner in which the PH is calculated using the nominal power P 0 (or P O ) above.
  • the other beam level power control parameters are, for example, a path loss adjustment factor ⁇ , a path loss PL c , a power offset value ⁇ TF, c (i), and a power adjustment value f c (i).
  • PL c as an example, first calculate the dB average or linear average of the path loss PL c of multiple beams, and then substitute the dB average or linear average into the formula for calculating the PH corresponding to the scene according to the scene.
  • the formula for calculating the dB mean or linear mean of the path loss PL c is similar to the formula for calculating the dB mean or linear mean of the nominal power P 0 (or P O ), except that P 0 (or P O ) Replace with PL c as follows:
  • the above average value may also be replaced by a sum, which may be the sum of the dB values or the sum of the linear values, where PL c is as follows:
  • the second case for the case where the terminal calculates the PH value by using multiple beam-level power control parameters, the terminal can calculate the PH in a manner similar to the above-mentioned first case. That is, the average value of each parameter is calculated separately, and then the average value of these parameters is used to calculate the PH.
  • the nominal power P 0 (or P O ) dB average or linear average of the multiple beams, and the dB average or linear average of the path losses PL c of the multiple beams are calculated. Then, according to the scene, it is brought into one of the above formulas (1) to (8). Wherein the nominal power P 0 (or P O ) dB average or linear average, and the dB average or linear average of the path loss PL c of the plurality of beams are calculated in the same manner as in the first case above, I will not repeat them here.
  • the average value is separately calculated for each beam level power control parameter, and then calculated according to the scene into the corresponding formula.
  • the combined average of the specific parameters of these beams is calculated, and the PH is calculated together with other parameters. At this time, the formula form is changed.
  • beam-level power control includes nominal power P 0 (or P O ) and path loss PL c , although the path loss adjustment factor ⁇ may be set as a beam-level power control parameter or may not be set as a beam-level power control parameter. , but since it is a coefficient of PL c , it can be included in the separately calculated part.
  • the average value at this time also includes the dB average and the linear average. Taking the scene of the above formula (1) as an example, the formula for calculating PH at this time is as follows (11) or (12):
  • the power portion of these beam-specific parameters (which may be referred to as the beam-level power portion) is calculated, the calculated beam-level power portions are summed, and others
  • the parameters calculate the PH together.
  • the formula for calculating PH at this time is as follows (15) or (16):
  • the power estimation value ie, the required transmission power
  • the average value of the power power estimation values is calculated, where the average value includes a dB average value or a linear average value.
  • the form of the formula has changed. Taking the scene of the above formula (1) as an example, the formula for calculating PH at this time is as follows (17) or (18):
  • the PH can be calculated using one of the equations (17) to (20). That is to say, the power estimation value corresponding to each beam is calculated, and the average value of the power power estimation values is calculated, and the method of calculating the PH using the average value can be applied to the above first case.
  • the number of beam-level power control parameters used in calculating the power estimation value of each beam is not limited, and may be one or more, that is, part or all of the above possible beam-level power control parameters, and some of them. Including one case.
  • the calculation formula of the PH is as follows (21) or (22):
  • the PH can be calculated using the formula (21) or (22) regardless of whether the terminal uses all of the above possible beam-level power control parameters (including one) or all of them to calculate the PH. That is to say, the power estimation value corresponding to each beam is calculated, and the sum of these power power estimation values is calculated, and the method of calculating the PH by using the sum can be applied to the above first case.
  • the number of beam-level power control parameters used in calculating the power estimation value of each beam is not limited, and may be one or more, that is, part or all of the above possible beam-level power control parameters, and some of them. Including one case.
  • the terminal calculates the PH for the K1 beams (or the beam group), obtains the K1 PH values, and reports the information of the K1 PH values or the average of the K1 PH values is described.
  • the average value here can be either a dB average or a linear average.
  • the case where the information of the K1 PH value is reported may be replaced by the information of the reference PH value and the information of the offset value.
  • the terminal calculates the corresponding PH value for each of the K beams (or beam groups) according to one of the above formulas (1) to (10), which is recorded as PH 1 to PH K , and the terminal reports the PH 1 ⁇ PH K information. That is, for the beam (or beam group) used for the current transmission, all the PH values are reported. In addition, the terminal may also report only a PH value, which is an average of K PH values, which may be a dB average or a linear average.
  • the second case the terminal reports the information of the K1 PH values indicated by the RAN node.
  • the K1 beams corresponding to the K1 PH values may be configured by the RAN node to the terminal, for example, the RAN node is configured to the terminal by using high layer information or physical layer signaling, and the high layer signaling or physical layer signaling includes indication information for indicating the K1. Beams.
  • the indication information is, for example, a beam number, a channel state information-reference signal (CSI-RS) resource number, a sounding reference signal (SRS) resource number, an SRS antenna port number, and the like.
  • the K1 beams can be predefined, such as beams 1-4.
  • K1 PH values may be PH values satisfying a preset rule, such as information of the maximum K1 PH values, or information of the smallest K1 PH values, or information of the largest K1/2 PH values and the smallest K1/2 PH information.
  • the terminal calculates corresponding PH values for K beams (or beam groups) according to one of the above formulas (1) to (10) according to the scene, and records them as PH 1 to PH K . Then, the terminal may report the information of the K1 PH value according to the indication of the RAN node, or report the information of the PH value on the preset K1 beams, or report the information of the K1 PH values that satisfy the preset rule.
  • the terminal may also select the PH value to be reported and notify the RAN node of the beam corresponding to the PH value reported by the RAN node.
  • the terminal may also report only a PH value, which is an average of K1 PH values, which may be a dB average or a linear average.
  • the third case the terminal calculates the corresponding PH value for each of the K beams (or beam groups) according to one of the above formulas (1) to (10) according to the scene, and records it as PH 1 to PH K , and the terminal reports one of the PHs.
  • the reported content is: PH 1 , PH 2 -PH 1 ,..., PH K -PH 1 .
  • the method of reporting the offset value may also be adopted. That is, a PH value is reported as a reference PH value, and an offset value of other PH values relative to the reference PH value is reported.
  • the reference PH value may not be the value of the K1 PH values, and may be a set value or a PH value of N PH values in addition to the K1 PH values. At this time, the reference PH value is referred to as a reference PH value.
  • the terminal uses one beam transmission in the subframe of the serving cell, the PH value is calculated by using the prior art, and the information of the PH value is reported. After that, the terminal may report the K1 PH value information under the instruction of the RAN node or the user's own selection, and the reporting manner is the same as the above embodiment, and details are not described herein again.
  • the terminal can support the existence of multiple time-frequency resource configurations. Based on this, in an embodiment of the present application, the time-frequency resource configuration of the terminal in the subframe i of the serving cell is considered to be in the reporting of the PH, so that the reported PH more accurately reflects the configuration of multiple time-frequency resources.
  • the power situation is beneficial to the scheduling decision of the RAN node.
  • the terminal When the terminal supports multiple time-frequency resource configurations, different values or configurations of the same parameter may exist in the parameters used in calculating the PH value for different time-frequency resource configurations.
  • the nominal power P 0 (or P O ), different time-frequency resource configurations (eg, sub-carrier spacing) under different transmission conditions, the error rate that can be achieved is different, therefore, the RAN node pairs different time-frequency
  • the expected received power of the resource configuration may be different, and different nominal powers P 0 may be configured for the terminal for different time-frequency resource configurations.
  • the PUSCH transmission bandwidth M PUSCH,c (i) different time-frequency resource configurations can be frequency-division multiplexed in the same subframe of the serving cell, occupying different bandwidths respectively, and the scenario can be applied to multiple services.
  • the RAN node will be able to allocate bandwidth for multiple time-frequency resource configurations.
  • the same frequency domain resource is allocated, since the size of the frequency domain unit configured by different time-frequency resources (for example, the size of the sub-carrier spacing) is different, the same frequency domain resource is not The actual bandwidth occupied in the frequency domain under the same-frequency resource configuration is different.
  • the transmission bandwidths M PUSCH,c (i) of the PUSCH may be different under different time-frequency resource configurations.
  • the transmission bandwidth M SRS,c of the SRS is similar.
  • these parameters are referred to as time-frequency resource configuration level power control parameters, or Numerology power control parameters, or time-frequency resource configuration specific parameters, or Numerology specific parameters.
  • the real-time resource configuration level power control parameters include one or all of the following parameters: nominal power P 0 (or P O ), and transmission bandwidth M c (i).
  • the first case when the terminal supports multiple time-frequency resource configurations, and the current time-frequency resource configuration is used for transmission, the terminal may calculate the PH value and report the calculated PH value by using the current parameter of the time-frequency resource configuration.
  • Information can be.
  • the reference time-frequency resource configuration may be configured, and the power control parameters affected by the time-frequency resource configuration are converted according to the currently used time-frequency resource configuration and the reference time-frequency resource configuration, and the PH value is calculated by using the converted power control parameter. And report the PH value information.
  • the power control parameters are M PUSCH,c (i), and the time-frequency resources are configured as sub-carrier spacing as an example.
  • the formula for calculating the pH value is as shown in the following formula (23):
  • the SubSacing current and the SubSacing reference are the current subcarrier spacing and the reference subcarrier spacing, respectively.
  • the reference subcarrier spacing may be any one of the terminal supported subcarrier spacings, for example 15 KHz.
  • FIG. 5 is a schematic diagram of another PH reporting method provided by an embodiment of the present application.
  • the method is supported by the terminal, and the terminal supports multiple time-frequency resource configurations, and the terminal transmits the time-frequency resource configuration on the subframe i of the serving cell c.
  • the time-frequency resource configuration is called the current time-frequency resource configuration, as shown in the figure.
  • the method includes the following steps:
  • S510 The terminal converts the power control parameter according to the current time-frequency resource configuration and the reference time-frequency resource configuration.
  • S520 The terminal calculates the PH according to the converted power control parameter to obtain a PH value
  • the power control parameter is, for example, the transmission bandwidth M PUSCH,c (i) of the PUSCH .
  • the transmission bandwidth M SRS,c of the SRS is similar.
  • the second case when the terminal supports multiple time-frequency resource configurations, and currently uses more than one time-frequency resource configuration for transmission, a PH reporting scheme similar to that in the above multi-beam transmission scenario may be adopted.
  • the difference is that, unlike the averaging scheme, the powers of different time-frequency resource configurations here are additive, not averaging.
  • the power control parameter is described by taking the nominal power P 0 (or P O ) as an example, and other parameters are similar.
  • Resource allocation nominal power P 0 (or P O) and used in calculating various PH nominal power P 0 (or P O) is the frequency when the terminal used, e.g., linear or values, and the dB value And, where the sum of the dB values is The sum of the linear values is Then, the sum of the sum or the linear value of the dB value is substituted as P O_PUSCH,c (j) into one of the above formulas (1) to (8) according to the scene to calculate the PH.
  • c (j) is changed in the formula, and other parameters may be consistent with the prior art, and will not be described herein.
  • the terminal can calculate the PH in a manner similar to the above when only one power control parameter is affected by the time-frequency resource configuration. That is, the sum of the sum of the dB values of the respective parameters or the linear values is calculated separately, and then the sum of the dB values of the parameters or the sum of the linear values is used to calculate the PH.
  • the sum is calculated separately for each power control parameter, and then calculated according to the scene into the corresponding formula.
  • the sum of these parameters is comprehensively calculated, and the sum is called the sum of the power components of the time-frequency resource configuration level, and the sum of the power components of the time-frequency resource configuration level is calculated together with other parameters, and at this time, the formula The form has changed.
  • nu represents the number of time-frequency resource configurations, which is the number of time-frequency resource configurations currently used by the terminal.
  • the power estimation value ie, the required transmission power
  • the sum of the power power estimation values may be calculated, where the sum includes a sum or a linear value of the dB value.
  • the form of the formula has changed. Taking the scene of the above formula (1) as an example, the formula for calculating PH at this time is as follows (26) or (27):
  • the PH can be calculated by the formula (26) or (27) regardless of whether the terminal uses all of the above possible time-frequency resource configuration level power control parameters (including one) or all to calculate the PH.
  • the number of time-frequency resource configuration-level power control parameters used in calculating the power estimation value of each time-frequency resource configuration is not limited, and may be one or more, that is, the above-mentioned possible time-frequency resource configuration-level power control Some or all of the parameters, some of which include one.
  • the terminal may calculate the PH for the multiple time-frequency resource configurations, obtain multiple PH values, and report the information of the multiple PH values.
  • the terminal when the terminal currently uses the nu-type time-frequency resource configuration for transmission, the terminal can calculate the PH according to the CU-type time-frequency resource configuration, and obtain nu PH values, which are recorded as PH 1 to PH nu , and the terminal reports the Information from PH 1 to PH nu .
  • the terminal may also use one of the PH values as a reference value to report an offset value (or a difference value) of other PH values with respect to the reference value.
  • the terminal may also be reported for the RAN node to make a decision.
  • the information of the PHs for which the time-frequency resource configuration is reported may be predetermined, for example, the information of the PHs whose subcarrier spacing is 15k, 30k, 60k is reported by default.
  • the RAN node may indicate that the RAN node sends the indication signaling to the terminal, where the indication signaling is used to indicate the time-frequency resource configuration of the information that the terminal reports the PH.
  • the terminal receives the indication signaling, and reports information indicating the PH of the time-frequency resource configuration indicated by the signaling.
  • the terminal may select a time-frequency resource configuration for reporting the information of the PH.
  • FIG. 6 is a schematic diagram of a PH reporting method according to an embodiment of the present application.
  • the method is performed by the terminal, and the terminal adopts nu time-frequency resource configuration, where nu is a positive integer greater than or equal to 2.
  • the method includes the following steps:
  • the terminal calculates the PH on the subframe of the serving cell, where the terminal may calculate a PH value according to the time-frequency resource configuration level power control parameter configured by the nu time-frequency resources, or the terminal may separately target the nu1 time-frequency.
  • the resource configuration calculates PH, and obtains nu1 PH values, where nu1 is less than or equal to nu, that is, the terminal can calculate the PH value of all or part of the time-frequency resource configuration.
  • the terminal reports the PHR.
  • the PHR includes the information of the PH value calculated according to the time-frequency resource configuration level power control parameter configured by the nu time-frequency resources.
  • the PHR includes the information of the nu1 PH values calculated above.
  • the PHR includes information of a reference PH value and a value of an offset value, wherein the reference PH value is a PH value of nu1 PH values, and the offset value is nu1 PH values other PH values are relative
  • the offset value of the reference PH value has nu1-1 offset values at this time; or the reference PH value is the reference PH value, and the offset value is an offset value of nu1 PH values relative to the reference PH value.
  • the terminal calculates the PH value for all time-frequency resource configurations and reports the calculated PH value.
  • the nu1 time-frequency resource configuration may be specified by the RAN node; or may be predetermined.
  • the terminal uplink supports more than one waveform technology, for example, when supporting SC-OFDM technology and DFT-S-OFDM technology.
  • the terminal does not use two waveform technologies for transmission at the same time. Therefore, when calculating the PH corresponding to each waveform technology, the existing formula can be used for calculation without adjusting the formula.
  • different values or configurations of the same parameter may exist in the parameters used in calculating the PH value, such as the maximum transmit power P CMAX,c (i) or Since the peak-to-average power ratio (PAPR) of the two waveforms is different, different power backoffs may be used in different waveforms, resulting in different maximum transmit powers configured by the terminal.
  • the terminal selects the parameter corresponding to the waveform technology to calculate the PH value and reports the calculated PH value information according to the waveform technology used by the terminal to transmit on the subframe of the serving cell.
  • the terminal may calculate the PH values of the two waveforms according to the parameter configuration of the two waveforms, and in addition to reporting the PH information of the current waveform in the reporting process, the terminal may also report the other waveform.
  • Whether the terminal reports the PH of another waveform may be determined by: first, default or setting the terminal to report the PH information of the two waveforms; second, the RAN node instructing the terminal to report the PH of the other waveform.
  • Information For example, the RAN node sends the indication signaling to the terminal, where the indication signaling is used to indicate that the terminal reports the PH of another waveform. After receiving the indication signaling, the terminal reports the PH information of another waveform according to the indication of the RAN node. Or the indication signaling is used to indicate whether the terminal reports the PH information of the two waveforms.
  • the terminal instructs the terminal to report the PH information of the two waveforms the terminal reports the information of the PH of the other waveform according to the indication of the RAN node.
  • the terminal can report the PH information of the two waveforms at the same time, or report the PH information of the current waveform, and then report the PH information of the other waveform.
  • the manner in which the terminal reports the information of the PH of another waveform and the information of the PH of the current waveform includes the following:
  • the embodiment of the present application provides a PH reporting method for a terminal, where the terminal supports the first waveform and the second waveform. Please refer to FIG. 7, the method includes the following steps:
  • S710 The terminal reports information about the PH value of the current first waveform to the RAN node.
  • S720 The terminal reports the information of the PH of the second waveform to the RAN node, where the information of the PH of the second waveform includes the information of the PH value of the second waveform, or includes the PH value of the second waveform relative to the PH value of the first waveform.
  • the offset value, or the maximum transmit power of the second waveform is the information of the PH of the second waveform.
  • the RAN node After receiving the information of the PH value of the first waveform, the RAN node determines the PH value of the first waveform to perform a scheduling decision, that is, determines whether to adjust the bandwidth resource allocated to the terminal.
  • the information of the PH value of the first waveform and the PH of the second waveform may be reported simultaneously.
  • the method before the terminal reports the PH information of the second waveform to the RAN node, the method further includes:
  • the terminal receives the indication signaling of the RAN node, where the indication signaling is used to indicate that the terminal reports the PH of the second waveform, and the terminal reports the information of the PH of the second waveform according to the indication signaling. Or the indication signaling is used to indicate whether the terminal can report the information of the PHs of the two waveforms. When the indication information indicates that the terminal can report the information of the PH of the two waveforms, the terminal reports the information of the PH of the second waveform.
  • FIG. 8 is a schematic diagram of a PH reporting method according to an embodiment of the present application. As shown in FIG. 8, the method includes the following steps:
  • the RAN node sends a power control parameter to the terminal, where the terminal performs uplink power control.
  • power control parameters are parameters used by the terminal to calculate the PH.
  • Type 1 comprising a power control parameter M PUSCH, c (i), for determining P O_PUSCH, c (j) of P O_NOMINAL_PUSCH, c (j) and P O_UE_PUSCH, c (j), ⁇ c ( j), ⁇ TF, c (i), f c (i).
  • the RAN node here may be one or more RAN nodes, and is not limited herein.
  • the power control parameters that are configured differently for different beams (or beam groups) are called beam level power control parameters, and the power control parameters that are configured differently for different time-frequency resource configurations are called time-frequency resource configurations.
  • Level power control parameters, power control parameters that are configured differently for different waveforms are called waveform level power control parameters.
  • the RAN node is configured with P O_NOMINAL_PUSCH, c (j) and P O_UE_PUSCH, c (j), which are used to obtain P O_PUSCH, c (j), so the power control parameters are described by P O_PUSCH, c (j), and others.
  • the nominal power is similar.
  • the beam level power control parameters may, for example, include one or more of the following parameters: nominal (or reference) power P 0 (or P O ), path loss adjustment factor ⁇ , path loss PL c , power offset value ⁇ TF, c (i), power adjustment value f c (i), transmission bandwidth M c (i).
  • the time-frequency resource configuration level power control parameters include one or all of the following parameters: nominal power P 0 (or P O ), and transmission bandwidth M c (i).
  • the waveform level power control parameters include one or all of the following parameters: maximum transmit power P CMAX,c (i) or Nominal power P 0 (or P O ).
  • the RAN node sends a reference signal to the terminal.
  • the reference signal can be used for the terminal to calculate the path loss.
  • the path loss is also a power control parameter and may be different for different beams, and thus may be a beam level power control parameter.
  • the terminal can calculate the PH according to the path loss and the power control parameters configured by the RAN node.
  • the reference signal may be, for example, a CSI-RS, or a demodulation reference signal (DMRS) or the like.
  • the RAN node may send different reference signals, and the different reference signals may have the antenna port number, resource ID, signal type, and reference signal characteristics of the reference signal, such as CSI-RS resource ID, antenna port number, and time frequency. Resource location (pattern of the reference signal), or initialization seed ID generated by the pilot sequence (eg ) to distinguish.
  • the terminal measures the reference signal to obtain the path loss, and the terminal can calculate the path loss according to the difference between the transmit power of the reference signal and the reference signal received power (RSRP) of the reference signal.
  • the transmit power of the reference signal is configured by the RAN node to the terminal, and the RAN node can configure the reference signal power parameter to the terminal through high layer signaling, such as radio resource control (RRC) signaling. After receiving the parameter, the terminal knows the transmit power of the reference signal.
  • RRC radio resource control
  • the terminal When the terminal communicates with the RAN node through multiple beams, the terminal can measure multiple path losses, that is, calculate path loss on these beams respectively, so the path loss PL c can be a beam level power control parameter.
  • the mapping between the downlink resource measured by the terminal and the uplink transmission resource of the terminal may be set, so that the corresponding relationship between the path loss measured by the terminal and the uplink beam is obtained.
  • the downlink resources here are, for example, a CSI-RS resource ID, a CSI-RS antenna port, a DMRS antenna port, a codeword (CW) number, a downlink beam ID, an ID of a pilot used for beam management, and a mobile reference signal. ID, etc.
  • the uplink transmission resource herein may refer to an antenna port number, a resource number, a beam number, and the like of PUSCH ⁇ PUCCH ⁇ PRACH ⁇ SRS. The correspondence may be predefined or may be indicated by the RAN node, for example, by downlink control information (DCI) or higher layer signaling.
  • DCI downlink control information
  • the RAN node sends a configuration parameter to the terminal, where the configuration parameter indicates a correspondence between the downlink reference signal and the uplink sending resource, and the corresponding relationship is as follows:
  • the terminal receives the configuration parameter, and can obtain such a correspondence. That is, the path loss calculated by the downlink reference signal C0 corresponds to the uplink resource of D0 to D3; the path loss calculated by the downlink reference signal C1 corresponds to the uplink resource of D4 to D7. Different antenna ports (or antenna port groups) correspond to different beams, so the terminal can obtain path loss of different beams.
  • S830 The terminal calculates the PH according to the power control parameter sent by the RAN node and the measured path loss.
  • S840 The terminal reports the PHR.
  • the method for calculating the PH by the terminal and the manner for reporting the PHR are the same as those in the foregoing embodiment, and details are not described herein again.
  • the RAN node may perform a scheduling decision according to the PHR to determine whether to change the bandwidth resource allocated to the terminal.
  • the embodiment of the present application further provides an apparatus for implementing the above method, for example, providing an apparatus including a unit (or means) for implementing various steps performed by a terminal in any of the foregoing implementation methods.
  • an apparatus including means (or means) for implementing the various steps performed by the RAN node in any of the above implementation methods.
  • FIG. 9 is a schematic diagram of an apparatus according to an embodiment of the present application.
  • the apparatus 900 is for a terminal, as shown in FIG. 9, the apparatus 900 includes means or means for performing the steps performed by the terminal in any of the method embodiments of the above method, and detailed descriptions of these steps are It can be applied to the embodiment of the device.
  • the device 900 includes a computing unit 910 and a reporting unit 920, wherein the computing unit 910 is configured to calculate a PH value, and the reporting unit 920 is configured to report a PHR.
  • the calculation unit 910 is used for the calculation operation of any of FIGS. 4 to 6.
  • the reporting unit 920 can report information through an interface (for example, an air interface) between the RAN node and the terminal.
  • an interface for example, an air interface
  • the interface here is a logical concept.
  • the corresponding logical unit needs to be set to meet the protocol requirements of the corresponding interface.
  • the reporting unit 920 is a unit for controlling reporting, and can report information to the RAN node by using a sending device of the terminal, such as an antenna and a radio frequency device.
  • the apparatus 900 can further include an interface unit 930 for receiving information sent by the RAN node.
  • the terminal receives information from the RAN node through the receiving device, and the interface unit 930 receives the information sent by the RAN node to the terminal from the receiving device of the terminal for interpretation and processing. For example, the power control parameters and reference signals in FIG. 8 are received.
  • each unit of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these units may all be implemented in the form of software by means of processing component calls; they may all be implemented in the form of hardware; some units may be implemented in software in the form of processing component calls, and some units are implemented in hardware.
  • the computing unit 910 may be a separately set processing element, or may be implemented in one chip of the terminal, or may be stored in a memory in the form of a program, which is called and executed by a processing element of the terminal. The function.
  • the implementation of other units is similar.
  • all or part of these units can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 10 is a schematic diagram of an apparatus according to an embodiment of the present application.
  • the apparatus 1000 is for a RAN node, as shown in FIG. 10, the apparatus 1000 includes means or means for performing the steps performed by the RAN node in any of the method embodiments of the above method, and with respect to the details in these steps The description can be applied to the embodiment of the device.
  • the apparatus 1000 includes a configuration unit 1010, a transmitting unit 1020, and an interface unit 1030, wherein the configuration unit 1010 is configured to configure power control parameters, including power control parameters for calculating PH.
  • the sending unit 1020 is configured to send information to the terminal, for example, send a power control parameter and a reference signal.
  • the interface unit 1030 is configured to receive information sent by the terminal, for example, receive the PH.
  • the sending unit 1020 can send information to the terminal through an interface (for example, an air interface) between the RAN node and the terminal.
  • the interface here is a logical concept. In the implementation, the corresponding logical unit needs to be set to meet the protocol requirements of the corresponding interface.
  • the transmitting unit 1020 is a unit for controlling transmission, and can transmit information to the terminal through a transmitting device of the RAH node, such as an antenna and a radio frequency device.
  • the RAN node receives information from the terminal through the receiving device, and the interface unit 1030 receives the information transmitted by the terminal from the receiving device of the RAN node for interpretation and processing.
  • each unit of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented in software in the form of processing component calls, and some units may be implemented in hardware.
  • the configuration unit 1010 may be a separately set processing element, or may be implemented in one chip of the RAN node, or may be stored in a memory in the form of a program, which is called and executed by a processing element of the RAN node. The function of the unit.
  • the implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the RAN node includes an antenna 1110, a radio frequency device 1120, and a baseband device 1130.
  • the antenna 1110 is connected to the radio frequency device 1120.
  • the radio frequency device 1120 receives the information transmitted by the terminal through the antenna 1110, and transmits the information transmitted by the terminal to the baseband device 1130 for processing.
  • the baseband device 1130 processes the information of the terminal and sends it to the radio frequency device 1120.
  • the radio frequency device 1120 processes the information of the terminal and sends the information to the terminal through the antenna 1110.
  • the above apparatus for the RAN node may be located in the baseband apparatus 1130.
  • the various units shown in FIG. 10 are implemented in the form of a processing element scheduling program, for example, the baseband apparatus 1130 includes processing elements 1131 and storage elements 1132, processing elements 1131 invokes a program stored by storage element 1132 to perform the method performed by the RAN node in the above method embodiments.
  • the baseband device 1130 may further include an interface 1133 for interacting with the radio frequency device 1120, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the various elements shown in FIG. 10 may be one or more processing elements configured to implement the methods performed by the RAN node above, the processing elements being disposed on the baseband device 1130, where the processing elements may be An integrated circuit, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, and the like. These integrated circuits can be integrated to form a chip.
  • the various units shown in FIG. 10 can be integrated together in the form of a system-on-a-chip (SOC), for example, the baseband device 1130 includes a SOC chip for implementing the above method.
  • the processing element 1131 and the storage element 1132 may be integrated in the chip, and the method executed by the above RAN node or the function of each unit shown in FIG. 10 may be implemented by the processing element 1131 in the form of a stored program of the storage element 1132; or, the chip may be Integrating at least one integrated circuit for implementing the above method performed by the RAN node or the functions of the respective units shown in FIG. 10; or, in combination with the above implementation manner, the functions of the partial units are implemented by the processing component calling program, and the functions of the partial units are It is realized in the form of an integrated circuit.
  • the above apparatus for a RAN node includes at least one processing element and storage element, wherein at least one processing element is used to perform the method performed by the RAN node provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the RAN node in the above method embodiment in a manner of executing the program stored in the storage element in the first manner; or in a second manner: by hardware in the processor element
  • the integrated logic circuit performs some or all of the steps performed by the RAN node in the foregoing method embodiment in combination with the instructions; of course, some or all of the steps performed by the RAN node in the foregoing method embodiment may be performed in combination with the first mode and the second mode. .
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present application. It can be the terminal in the above embodiment, and is used to implement the operation of the terminal in the above embodiment.
  • the terminal includes a processing component 1210, a storage component 1220, and a transceiver component 1230.
  • the transceiver component 1230 can be coupled to an antenna.
  • the transceiver component 1230 receives the information transmitted by the RAN node through the antenna and transmits the information to the processing component 1210 for processing.
  • processing component 1210 processes the data of the terminal and transmits it to the RAN node via transceiver component 1230.
  • the storage element 1220 is for storing a program implementing the above method embodiment, and the processing element 1210 calls the program to perform the operations of the above method embodiments.
  • the various units in FIG. 9 above may be one or more processing elements configured to implement the method performed by the above terminal, the processing elements being disposed on a circuit board of the terminal, where the processing elements may be integrated Circuitry, for example: one or more ASICs, or one or more DSPs, or one or more FPGAs, etc. These integrated circuits can be integrated to form a chip.
  • the various units in FIG. 9 above may be integrated together in the form of a system-on-a-chip (SOC), for example, the terminal includes the SOC chip for implementing the above method.
  • the processing element 1210 and the storage element 1220 may be integrated in the chip, and the functions of the above methods or the above units in FIG. 9 may be implemented by the processing element 1210 in the form of a stored program calling the storage element 1220; or, at least one integration may be integrated in the chip.
  • the circuit is used to implement the functions of the above methods or the units in FIG. 9 above; or, in combination with the above implementation manner, the functions of some units are implemented by the processing element calling program, and the functions of some units are implemented by the form of an integrated circuit.
  • the above configuration apparatus includes at least one processing element and storage element, wherein at least one processing element is used to perform the method provided by the above method embodiments.
  • the processing element may perform part or all of the steps of the terminal in the above method embodiment in a manner of executing the program stored in the storage element in the first manner; or in the second manner: through the integrated logic circuit of the hardware in the processing element
  • the processing elements herein, as described above, may be general purpose processing elements, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above methods, such as: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singular processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSP digital singular processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供功率余量的上报方法和装置,考虑了多波束传输、多时频资源配置、或多上行波形技术的引入对功率余量的影响,进而更准确的计算和上报功率余量,有利于提高网络侧的调度决策,提高通信性能。

Description

功率余量的上报方法和装置
本申请要求于2017年05月05日提交中国专利局、申请号为201710313801.7、申请名称为“功率余量的上报方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,特别涉及功率余量的上报方法和装置。
背景技术
功率余量(power headroom,PH)是终端允许的最大发射功率与所需发射功率之间的差值,其可以反映除了所需发射功率之外,终端还有多少发射功率可以使用。终端向网络侧上报PH,网络侧可以将该PH作为为终端分配资源的一个参考依据。例如,当PH值为负时,表示所需发射功率已经超过终端允许的最大发射功率,网络侧可以减少给该终端分配的带宽资源;当PH值为正时,表示终端允许的最大发射功率能够承担当前信息传输所需的功率,网络侧可以为终端分配更多的带宽资源。
可见,PH的正确上报将影响网络侧对终端的资源分配,对通信性能有着重要的影响。
发明内容
本申请实施例提供了功率余量的上报方法和装置,以期提高PH上报的准确性。
一方面,提供一种功率余量的上报方法,包括:终端计算服务小区的子帧上的功率余量(PH),并上报功率余量报告(PHR)。其中,终端在服务小区的子帧上利用K个波束或波束组进行传输,K为大于或等于2的正整数,且终端计算功率余量包括:
根据K个波束或波束组的波束级功控参数计算PH,得到一个PH值;或者
分别针对K1个波束或波束组计算PH,得到K1个PH值,其中K1小于或等于K;
终端上报的PHR包括:
根据K个波束或波束组的波束级功控参数计算得到的PH值的信息;或者,
K1个PH值的信息;或者
参考PH值的信息和偏移值的信息,其中,参考PH值为K1个PH值中的一PH值,偏移值为K1个PH值中其它PH值相对于该参考PH值的偏移值,或者参考PH值为基准PH值,偏移值为K1个PH值相对于基准PH值的偏移值;或者
K1个PH值的平均值的信息。
可选的,波束级功控参数包括以下参数之一或多个:标称功率P 0,路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i),和传输带宽M c(i)。
在一种实现中,终端根据K个波束或波束组的第一参数计算PH,其中所述第一参数为标称功率P 0,路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i)和传输带宽M c(i)之一。
可选的,终端根据K个波束或波束组的第一参数计算PH,包括:计算K个波束或波束组的第一参数的平均值,其中该平均值包括分贝dB平均值或线性平均值;根据计算出的平均值计算PH。
可选的,终端根据K个波束或波束组的第一参数计算PH,包括:计算K个波束或波束组的第一参数的和,其中该和包括dB值的和或线性值的和;根据计算出的和计算PH。
在一种实现中,终端根据K个波束或波束组的多个参数计算PH,其中所述多个参数为标称功率P 0,路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i),和传输带宽M c(i)中的部分或全部参数。
可选的,终端根据K个波束或波束组的多个参数计算PH,包括以下几种方式:
分别计算所述K个波束或波束组的多个参数的平均值,其中所述平均值包括分贝dB平均值或线性平均值;根据计算出的多个平均值计算PH;或者,
分别计算所述K个波束或波束组的多个参数的和,其中所述和包括分贝dB值的和或线性值的和;根据计算出的多个和计算PH;或者,
计算所述多个参数的综合平均值,其中所述综合平均值包括分贝dB平均值或线性平均值;根据计算出的综合平均值计算PH;或者,
计算所述多个参数的波束级功率部分的和,其中所述和包括分贝dB值的和或线性值的和;根据计算出的和计算PH;或者,
分别计算所述K个波束或波束组的功率估计值;计算所述K个功率估计值的平均值,其中所述平均值包括分贝dB平均值或线性平均值;根据所述K个功率估计值的平均值计算PH;或者,
分别计算所述K个波束或波束组的功率估计值;计算所述K个功率估计值的和,其中所述和包括分贝dB值的和或线性值的和;根据所述K个功率估计值的和计算PH。
此外,还提供一种PH的上报装置,包括用于执行以上方法中各个步骤的单元或手段(means)。还可以提供提供一种PH的上报装置,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行以上任一种方法。
此外,还提供一种程序,该程序在被处理器执行时用于执行以上任一种方法。还可以提供一种程序产品,例如计算机可读存储介质,包括该程序。
本申请实施例提供功率余量的上报方法和装置,考虑了多波束传输的引入对PH的影响,进而更准确的计算和上报PH,有利于提高网络侧的调度决策,提高通信性能。
另一方面,提供一种功率余量的上报方法,包括:终端计算服务小区的子帧上的PH,并上报PHR。其中,终端支持nu个时频资源配置,nu为大于或等于2的正整数,且终端计算PH包括:
根据nu个时频资源配置的时频资源配置级功控参数,计算得到一个PH值;或者,
分别针对nu1个时频资源配置计算PH,得到nu1个PH值,其中nu1小于或等于nu。
终端上报的PHR包括根据nu个时频资源配置的时频资源配置级功控参数计算得到的PH值的信息。或者,该PHR包括以上计算得到的nu1个PH值的信息。或者, 该PHR包括参考PH值的信息和偏移值的信息,其中,所述参考PH值为nu1个PH值中的一PH值,所述偏移值为nu1个PH值中其它PH值相对于该参考PH值的偏移值,此时具有nu1-1个偏移值;或者参考PH值为基准PH值,偏移值为nu1个PH值相对于基准PH值的偏移值,此时具有nu1个偏移值。
可选的,时频资源配置级功控参数包括以下参数之一或全部:标称功率P 0(或P O),传输带宽M c(i)。
在一种实现中,终端根据nu个时频资源配置的第一参数计算PH,其中所述第一参数为标称功率P 0(或P O)和传输带宽M c(i)之一。
可选的,终端根据nu个时频资源配置的第一参数计算PH,包括:计算nu个时频资源配置的第一参数的和,其中该和包括dB值的和或线性值的和;根据计算出的和计算PH。
在一种实现中,终端根据nu个时频资源配置的多个参数计算PH,其中所述多个参数为标称功率P 0(或P O)和传输带宽M c(i)。
可选的,终端根据nu个时频资源配置的多个参数计算PH,包括以下几种方式:
分别计算所述nu个时频资源配置的多个参数的和,其中所述和包括分贝dB值的和或线性值的和;根据计算出的多个和计算PH;或者,
计算所述多个参数的时频资源配置级功率部分的和,其中所述和包括分贝dB值的和或线性值的和;根据计算出的和计算PH;或者,
分别计算所述nu个时频资源配置的功率估计值;计算所述nu个功率估计值的和,其中所述和包括分贝dB值的和或线性值的和;根据所述nu个功率估计值的和计算PH。
此外,还提供一种PH的上报装置,包括用于执行以上方法中各个步骤的单元或手段(means)。还可以提供提供一种PH的上报装置,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行以上任一种方法。
此外,还提供一种程序,该程序在被处理器执行时用于执行以上任一种方法。还可以提供一种程序产品,例如计算机可读存储介质,包括该程序。
本申请实施例提供功率余量的上报方法和装置,考虑了多时频资源配置的引入对PH的影响,进而更准确的计算和上报PH,有利于提高网络侧的调度决策,提高通信性能。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种多波束传输场景的示意图;
图3为本申请实施例提供的另一种多波束传输场景的示意图;
图4为本申请实施例提供的一种PH的上报方法的示意图;
图5为本申请实施例提供的另一种PH的上报方法的示意图;
图6为本申请实施例提供的另一种PH的上报方法的示意图;
图7为本申请实施例提供的另一种PH的上报方法的示意图;
图8为本申请实施例提供的又一种PH的上报方法的示意图;
图9为本申请实施例提供的一种装置的示意图;
图10为本申请实施例提供的另一种装置的示意图;
图11为本申请实施例提供的一种RAN节点的示意图;
图12为本申请实施例提供的一种终端的示意图。
具体实施方式
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、无线接入网(radio access network,RAN)是网络中将终端接入到无线网络的部分。RAN节点(或设备)为无线接入网中的节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或Wifi接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)、“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
请参考图1,其为本申请实施例提供的一种通信系统的示意图。如图1所示,终端120通过RAN节点110接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。终端120与RAN节点110之间通信的无线资源由RAN节点110分配,RAN节点110在不了解终端的功率情况时,可能会为终端分配过高的传输带宽,使得信号干扰噪声比(signal to interference plus noise ratio,SINR)较低。因此,终端120向RAN节点110提供PH信息,以便RAN节点以PH作为一个参考依据,调整分配给终端的传输带宽。
PH是终端允许的最大发射功率与所需发射功率之间的差值,其中所需发射功率是终端估算出的功率值,即该所需发射功率是功率估计值,并非是终端的实际发射功率。在本申请中,发射功率又可以称为传输功率。
PH可以反映除了所需发射功率之外,终端还有多少发射功率可以使用。终端向RAN节点上报PH,RAN节点可以将该PH作为为终端分配资源的一个参考依据。终端上报的PH可以称为功率余量报告(power headroom report,PHR)。且该PHR中的PH值可以为正值,负值或零。当PH值为负时,表示所需发射功率已经超过终端允许的最大发射功率,RAN节点可以减少给该终端分配的带宽资源,以此来提高终端上行传输的信号到达RAN节点的信号质量;当PH值为正时,表示终端允许的最大发射功率能够承担当前信息传输所需的功率,RAN节点可以为终端分配更多的带宽资源,以提高资源利用率。
PH对服务小区c的子帧i有效,即PH的值是基于服务小区c的子帧i计算的,反映了服务小区c的子帧i上终端允许的最大发射功率与所需发射功率之间的差值。以下将终端允许的最大发射功率简称为最大发射功率。目前,PH通常有三种类型(type)的计算方式,现描述如下:
第一种类型(或Type 1):所需发射功率为传输物理上行共享信道(physical uplink shared channel,PUSCH)所需的发射功率,即计算终端允许的最大发射功率与传输PUSCH所需的发射功率之间的差。
当终端对服务小区c在子帧i中传输PUSCH,但不传输物理上行控制信道(physical uplink control channel,PUCCH)时,PH可以采用如下公式1进行计算:
PH type1,c(i)=P CMAX,c(i)-{10log 10(M PUSCH,c(i))+P O_PUSCH,c(j)+α c(j)·PL cTF,c(i)+f c(i)}     (1)
其中,PH type1,c(i)表示第一种类型下,对服务小区c在子帧i上计算的PH。P CMAX,c(i)表示最大发射功率(又可以称为最大传输功率,以下类似)。M PUSCH,c(i)表示PUSCH的传输带宽,其以资源块(resource block,RB)的数量来表达,即以RB为单位。P O_PUSCH,c(j)表示PUSCH的标称(或基准)功率(又可以称为功率密度基准值),包括PUSCH的小区标称功率(P O_NOMINAL_PUSCH,c(j))和PUSCH的终端特定标称功率(P O_UE_PUSCH,c(j)),其中,j=0,1或2,例如半静态调度时j=0,动态调度时,j=1,随机接入时,j=2。α c(j)表示路径损耗调整因子(或补偿因子)。PL c表示路径损耗。Δ TF,c(i)表示与调制编码方式或信号的内容有关的功率偏移值,其体现了调制编码方式或信号的内容对功率的影响,该信号的内容是指在PUSCH里传输的控制信息,例如当PUSCH中传输信道质量指示(channel quality indicator,CQI)时,RAN节点会希望有更好的接收功率,相应地会以更大的功率去发PUSCH,这个“更大”的偏移值就由Δ TF,c(i)体现。f c(i)表示由终端闭环功控所形成的功率调整值。以上公式中的各参数中c和i的含义是指该参数是对服务小区c,子帧i的参数。
当终端对服务小区c在子帧i中传输PUSCH和PUCCH时,PH可以采用如下公式(2)进行计算:
Figure PCTCN2018085471-appb-000001
其中,
Figure PCTCN2018085471-appb-000002
表示最大发射功率,
Figure PCTCN2018085471-appb-000003
是假设子帧i只有PUSCH传输计算得来的。其它参数的描述参照以上公式中的描述,在此不再赘述。
当终端对服务小区c在子帧i中不传输PUSCH时,或者当为上行传输终端被配置了授权辅助接入(licensed-assisted access,LAA)辅小区(LAA SCell)并且终端在服务小区c上接收了格式为0A/0B/4A/4B的下行控制信息(downlink control information,DCI)(DCI Format 0A/0B/4A/4B),该DCI中的信元“PUSCH trigger A”被设为1时,如果终端在服务小区c中该DCI对应的PUSCH传输中上报PH,则PH可以采用如下公式(3)进行计算:
Figure PCTCN2018085471-appb-000004
其中,
Figure PCTCN2018085471-appb-000005
表示最大发射功率,是假设MPR=0dB,A-MPR=0dB,P-MPR=0dB,且T C=0dB计算出来的,其中,MPR是指最大回退功率(maximum power reduction),A-MPR是指最大额外功率回退(additional maximum power reduction),P-MPR是指功率管理功能设置的最大功率回退(maximum power reduction set by power management function)。T C与P-MPR是否会影响所选择的上行传输路径的最大上行性能有关的值,例如,当影响时,取值为1.5dB,不影响时,取值为0dB。其它参数的描述参照以上公式中的描述,在此不再赘述。
第二种类型(或Type 2):所需发射功率为传输PUSCH和PUCCH所需的发射功率,即计算终端允许的最大发射功率与同时传输PUCCH和PUSCH所需的发射功率之间的差。
当终端对主小区(primary cell)在子帧i中同时传输PUSCH和PUCCH时,PH可以采用如下公式(4)进行计算:
Figure PCTCN2018085471-appb-000006
其中,PH type2(i)表示第二种类型下,在子帧i上计算的PH。P 0_PUCCH表示对PUCCH的标称(或基准)功率(又可以称为功率密度基准值),包括对PUCCH的小区标称功率(P O_NOMINAL_PUCCH)和对PUCCH的终端特定标称功率(P O_UE_PUCCH)。h(n CQI,n HARQ,n SR)表示与PUCCH格式相关的功率偏移量,其体现了PUCCH中传输的信令的内容对功率的影响,h(n CQI,n HARQ,n SR)与PUCCH中传输的CQI,混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息(例如ACK/NACK),调度请求(scheduling request,SR)的比特数等有关。Δ F_PUCCH(F)表示与PUCCH格式有关的功率偏移量,该参数由高层提供,且该参数的值表示PUCCH格式F相对于PUCCH格式1a的功率偏移量,其中格式F可以为格式1,1b,2,2a,2b,3,4,5或具有信道选择的1b(1b with channel selection)。Δ TxD(F')表示终端采用发射分集技术传输PUCCH时与PUCCH格式F’相关的功率偏移量,例如,如果终端被配置在两个天线端口传输PUCCH,该参数的值由高层提供,否则该参数的值为0,其中格式F’可以为格式1,1a/1b,1b with channel selection,2/2a/2b或3。g(i)表示由终端闭环功控所形成的功率调整值(或补偿值)。 其它参数的描述参照以上公式中的描述,在此不再赘述。
当终端对主小区在子帧i中传输PUSCH,不传输PUCCH时,PH可以采用如下公式(5)进行计算:
Figure PCTCN2018085471-appb-000007
各个参数的描述参照以上公式中的描述,在此不再赘述。
当终端对主小区在子帧i中传输PUCCH,不传输PUSCH时,PH可以采用如下公式(6)进行计算:
Figure PCTCN2018085471-appb-000008
各个参数的描述参照以上公式中的描述,在此不再赘述。
当终端对主小区在子帧i中既不传输PUCCH,也不传输PUSCH时,PH可以采用如下公式(7)进行计算:
Figure PCTCN2018085471-appb-000009
其中,
Figure PCTCN2018085471-appb-000010
表示最大发射功率,是假设MPR=0dB,A-MPR=0dB,P-MPR=0dB,且T C=0dB计算出来的。其它参数的描述参照以上公式中的描述,在此不再赘述。
在检测到PDCCH(或增强的物理下行控制信道EPDCCH),生成PH之前,终端不能确定对于主小区在子帧i中是否有对应于物理下行共享信道(physical downlink shared channel,PDSCH)传输的PUCCH传输,或者不确定所使用的PUCCH资源时,PH可以采用如下公式(8)进行计算,此时具有以下条件:对终端配置了PUCCH格式1b with channel selection和同时PUCCH-PUSCH(即配置字段simultaneousPUCCH-PUSCH允许终端同时发送PUCCH和PUSCH),或者,对于配置了PUCCH格式3的终端且配置了simultaneousPUCCH-PUSCH,PUCCH格式1b with channel selection被用于HARQ信息反馈。
Figure PCTCN2018085471-appb-000011
各个参数的描述参照以上公式中的描述,在此不再赘述。
第三种类型(或Type 3):所需发射功率为传输探测参考信号(sounding reference signal,SRS)所需的发射功率,即计算终端允许的最大发射功率与传输SRS所需的发射功率之间的差。
对具有帧结构类型2(frame structure type2)的服务小区c,没有配置PUSCH/PUCCH传输,如果终端对服务小区c在子帧i中传输SRS,PH可以采用以下公式(9)进行计算,如果终端对服务小区c在子帧i中不传输SRS,PH可以采用以下公式(10)进行计算:
PH type3,c(i)=P CMAX,c(i)-{10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c+f SRS,c(i)}       (9)
Figure PCTCN2018085471-appb-000012
其中,PH type3,c(i)表示第三种类型下,对服务小区c在子帧i上计算的PH。
Figure PCTCN2018085471-appb-000013
表示最大发射功率,是假设在子帧i中传输SRS且假设MPR=0dB,A-MPR=0dB,P-MPR=0dB,且T C=0dB计算出来的。M SRS,c表示SRS的传输带宽,其以RB的数量来表达,即以RB为单位。P O_SRS,c(m)表示SRS的标称(或基准)功率(又可以称为功率密度基准值),包括SRS的小区标称功率(P O_NOMINAL_SRS,c(m))和SRS的终端特定标称功率(P O_UE_SRS,c(m)),其中m=0或1。α SRS,c表示SRS的路径损耗调整因子(或补偿因子)。PL c表示路径损耗。f SRS,c(i)表示由终端闭环功控所形成的SRS的功率调整值,即SRS的闭环功率调整值。以上公式中的各参数中c和i的含义是指该参数是对服务小区c,子帧i的参数。
随着无线通信技术的发展,现有的PH上报方法可能会不适应技术的演进,从而引起PH不准确,进而影响RAN节点在根据终端上报的PH分配传输带宽时的准确性,导致系统性能下降。例如,随着天线技术的发展,终端可以通过多个波束与RAN节点进行通信,以下称为多波束传输技术。再如,RAN节点可以为终端配置多种时频资源配置,该时频资源配置包括以下配置之一或全部:资源单元(resource element,RE)的频域长度,即子载波间隔;RE的时域长度,即正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的时间长度;调度时间单元内的时间资源单元的个数;OFDM符号的循环前缀(cyclic prefix,CP)类型等。例如,子载波间隔可以为15KHz、30KHz、或60KHz等。OFDM符号的时间长度与子载波间隔成反比,因此可以配置多种OFDM符号的时间长度。调度时间单元是时域上调度资源的单位或粒度,该调度时间单元在LTE系统中称为传输时间间隔(transmission time interval,TTI),时间资源单元是时域上的一种资源单位。可见,调度时间单元内的时间资源单元的个数是指时域上一次调度的时间资源单位的数量,例如,调度时间单元为一个子帧时,调度时间单元内的时间资源单元的个数可以为该子帧内一次调度的OFDM符号个数。CP类型可以包括常规CP或扩展CP等。该多种时频资源配置技术可以称为Numerology技术。再如,在LTE系统中,终端在上行传输中支持一种波形(waveform)技术,即单载波正交频分复用(Single carrier-Orthogonal frequency division multiplexing,SC-OFDM)技术,随着技术的演进,终端在上行传输中还可以支持循环前缀正交频分复用(Cyclic prefix-Orthogonal frequency division multiplexing,CP-OFDM)技术,例如基于离散傅里叶变换(Discrete Fourier Transform,DFT)扩展的正交频分复用DFT-S-OFDM技术。当终端采用多波束传输技术,或者采用多种时频资源配置时,或者在上行传输中支持不止一种波形技术时,现有的PH上报仅仅是针对单一波束,单一时频资源配置或单一波形技术上报的PHR,无法准确的反应终端PH情况,基于此,本申请以下实施例中提供了PH上报方法和装置,考虑了多波束传输、多时频资源配置、或多上行波形技术的引入对功率余量的影响,进而更准确的计算和上报功率余量,有利于提高网络侧的调度决策,提高通信性能。
在多波束传输技术中,终端可以在一个载波上通过多个波束与多个RAN节点通信。终端可以通过不同波束与不同RAN节点通信;终端也可以在一个载波上通过多个波束与一个RAN节点通信,即终端可以通过不同波束与同一个RAN节点通信。
请参考图2,其为本申请实施例提供的一种多波束传输场景的示意图,在图2中,终端通过不同波束与不同的RAN节点通信。请参考图3,其为本申请实施例提供的另一种多波束传输场景的示意图,在图3中,终端通过不同波束与相同的RAN节点通信。为了便于理解,在此,以终端通过两个波束与RAN节点通信为例进行说明,但并非用于限制本申请。此外,终端也可以同时采用这两种通信方式。
如图2所示,终端210通过不同波束在一个载波(或服务小区)上分别与RAN节点220和RAN节点230通信。如图3所示,终端310通过不同波束在一个载波上与RAN节点320通信。波束可以理解为空间资源,多个波束上的传输可以提高资源利用率。此外,对于图3所示的场景,多个波束上的传输可以减少信号阻塞(blockage)的影响;例如,当一个波束上的传输由于被车、人等障碍物遮挡时,另一个波束上可以保持通信,使得当前的通信不被中断,因此减少了信号阻塞的影响。其中,波束用图中的箭头表示,其可以理解为信号强度的分布。例如,发射波束可以理解为信号经天线发射出去后在空间方向上形成的信号强度分布,接收波束可以理解为从天线接收到的无线信号在空间方向上的信号强度分布。发射波束和接收波束可以相同也可以不同。
信号在发射或接收时,天线经过加权等方式处理,使得信号的能量在特定的空间方向上聚集,该方向上信号能量的聚集可以理解为波束。波束资源具有空间指向性,信号经过预编码处理后使得信号强度集中分布在特定的空间方向上,在该空间方向上接收信号,具有较好的接收功率,该特性可以称为空间指向性(或能量传输指向性)。
终端可以使用不同的天线端口来形成不同的波束,例如,在图2和图3的场景中,终端可以通过天线端口PortD0~D3形成一个波束方向,通过天线端口PortD4~D7形成另一个波束方向。现有技术中终端在上报PH时,并没有考虑到多波束的存在,仅计算和上报单一波束的PH,使得RAN节点后续为终端分配资源的依据不够准确,影响通信性能。
基于此,本申请一实施例中,将终端在服务小区的子帧上的波束情况考虑到PH的上报中,使得上报的PH更加准确地反映使用多个波束传输的功率情况,有利于RAN节点的调度决策。当终端同时使用多个波束进行传输时,终端可以针对每个波束计算PH,并在满足触发条件时,向RAN节点上报多个PH的信息,此时的PH是针对单个波束的,可以称为波束特定PH(beam-specific PH),即针对每个波束单独计算或上报PH。或者,终端可以结合多个波束计算PH,并在满足触发条件时,终端上报一个PH的信息,该一个PH可以称为结合PH(joint PH),该结合PH是在考虑了多个波束的波束特定参数(beam-specific parameter)下计算出来的。
波束特定参数又称为波束级功控参数,所谓波束级功控参数是指针对波束(或波束组)独立的存在参数。例如终端具有上行波束B1-Bn,针对每个波束独立存在参数P1-Pn,即参数P1是用于波束B1的,参数P2是用于波束B2的,以此类推,参数Pn是用于波束Bn的。再如,终端具有波束B1-Bn,其划分为波束组G1-Gm,针对每个波束组独立存在参数P1-Pm,其中参数P1是用于波束组G1的,其对波束组G1中的波束均适用;参数P2是用于波束组G2的,其对波束组G2中的波束均适用;以此类推,参数Pm是用于波束组Gm的,其对波束组Gm中的波束均适用,其中,m和n均为正整数。
在多波束传输的情况下,可能影响的功控参数包括:
路径损耗PL c,路径损耗调整因子α:当终端通过多个波束与多个RAN节点通信时,多个波束经历的传播路径可能不同,因此它们的路径损耗可能会不同。此外,当终端通过多个波束与一个或多个RAN节点通信时,由于不同的波束的波束成型权值不同,它们的波束赋形增益也不同,在高频下,可能会影响到路径损耗的不同,如用同样的发射功率,但波束赋形增益高的波束对应的接收功率会更高,因此路径损耗更小。
标称(或基准)功率P 0(或P O):路径损耗不同时,开环功控结果不同。RAN节点可以对不同的波束配置不同的P 0;终端计算基准波束的路径损耗,不区别不同波束的路径损耗,这种情况下,可以是P 0不同,但路径损耗一样。或者,当终端通过多个波束与多个RAN节点通信时,由于不同小区内的干扰水平不同,不同的RAN节点对接收功率的期望会不一样,因此可能会对终端配置基于波束(或波束组)的P 0
功率偏移值Δ TF,c(i):当终端通过多个波束与多个RAN节点通信时,由于向不同的小区传输的数据格式可能不同,如对两个小区使用的调制编码方案(modulation and coding scheme,MCS)不同,这时可能配置不同的Δ TF,c(i)值。
功率调整值f c(i):当终端通过多个波束与多个RAN节点通信时,由于不同小区内的干扰水平不同,当小区内的干扰水平发生变化时,可能需要只调整对应小区波束的发射功率,因此会有不同的动态调整值。
PUSCH的传输带宽M PUSCH,c(i):为了灵活调度,多个RAN节点可能会独立调度上行资源,对终端的不同的波束分配不同的带宽资源。在Type3的场景下,相应可以为SRS的传输带宽M SRS,c。以下统一称为传输带宽M c(i),即M c(i)可以包括M PUSCH,c(i)或M SRS,c
可见,波束级功控参数例如可以包括以下参数中的一个或多个:标称(或基准)功率P 0(或P O),路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i),传输带宽M c(i)。其中,P 0在不同场景下分别对应以上公式中的P O_PUSCH,c(j)、P 0_PUCCH、和P O_SRS,c(m),α在不同场景下分别对应以上公式中的α c(j)、和α SRS,c,传输带宽M c(i)在不同场景下分别对应以上公式中的M PUSCH,c(i)或M SRS,c等。
终端上报的PH的信息可以是计算出的PH本身,也可以是指示该PH的指示信息,例如索引、或偏移值的信息等,以下将终端上报的PH的信息称为PHR。
请参考图4,其为本申请实施例提供的一种PH的上报方法的示意图。该方法由终端执行,且终端在服务小区c的子帧i上利用K个波束(或波束组)进行传输,其中K为大于或等于2的正整数。如图4所示,该方法包括如下步骤:
S410:终端计算服务小区的子帧上的PH,其中,终端可以根据K个波束(或波束组)的波束级功控参数,计算得到一个PH值;或者,终端可以分别针对K1个波束(或波束组)计算PH,得到K1个PH值,其中K1小于或等于K,也就是说,终端 可以计算全部或部分波束(或波束组)的PH值。
S420:终端上报PHR。该PHR包括以上根据K个波束(或波束组)的波束级功控参数计算得到的PH值的信息。或者,该PHR包括以上计算得到的K1个PH值的信息。或者该PHR包括该K1个PH值的平均值的信息。或者,该PHR包括参考PH值的信息和偏移值的信息,其中,所述参考PH值为K1个PH值中的一PH值,所述偏移值为K1个PH值中其它PH值相对于该参考PH值的偏移值,此时具有K1-1个偏移值;或者参考PH值为基准PH值,偏移值为K1个PH值相对于基准PH值的偏移值,此时具有K1个偏移值。
其中,PH值的信息可以是PH值本身,也可以是指示该PH值的信息,例如索引。偏移值的信息与之类似,可以是偏移值本身,也可以是指示该偏移值的信息,例如索引。
K1等于K时,即终端对所有波束均计算PH值,并上报计算出的PH值的信息或上报所有PH值的平均值的信息。这里的平均值可以是dB平均值或线性平均值,具体将在以下实施例中详细描述。当K1小于K时,该K1个波束可以由RAN节点指定;也可以是预定的最大的K1个PH值的信息,或者最小的K1个PH值的信息,或者是最大的K1/2个PH值的信息和最小的K1/2个PH值的信息,具体将在以下实施例中详细描述。
终端根据K个波束(或波束组)的波束级功控参数计算PH,得到一个PH值的情况可以适用于形成多个波束的天线端口(或天线端口组)之间功率共享的情况,例如天线端口(或天线端口组)之间最大发射功率共享。终端计算多个PH值的情况可以适用于天线端口(或天线端口组)之间功率不共享的情况,也可以适用于天线端口(或天线端口组)之间功率共享的情况。
首先,描述终端根据K个波束(或波束组)的波束级功控参数计算PH,得到一个PH值的情况。
波束级功控参数例如可以包括以下参数中的一个或多个:标称(或基准)功率P 0(或P O),路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i)。终端可以只利用其中一个或部分参数计算PH值。
第一种情况:对于终端只利用一个波束级功控参数计算PH值的情况,使用多个波束的该参数的平均值,例如,分贝(dB)平均值或线性平均值来计算PH。以该参数为标称功率P 0(或P O)为例进行描述,其它参数与之类似。在计算PH时使用的标称功率P 0(或P O)为多个波束的标称功率P 0(或P O)的平均值,例如,分贝(dB)平均值或线性平均值。
以P O_PUSCH,c(j)为例,其中dB平均值可写为
Figure PCTCN2018085471-appb-000014
线性平均值可写为
Figure PCTCN2018085471-appb-000015
或者,可以不考虑天线端口数量的影响,以减少计算的复杂度,此时,dB平均值可写为
Figure PCTCN2018085471-appb-000016
线性平均值可写为
Figure PCTCN2018085471-appb-000017
其中,N表示终端上行天线端口的数量,即终端上行共有N个天线端口;k表示任一波束(或波束组);N k表示形成波束(或波束组)k的天线端口数,K表示波束(或波束组)的数量。波束组是指被配置了相同波束特定参数的波束或者指被配置了相同功控参数的波束。
或者,在最大发射功率表示的是多天线的总功率的情况下,以上平均值也可以由和来代替,该和可以为dB值的和或线性值的和,此时P O_PUSCH,c(j)如下:
dB值的和可写为
Figure PCTCN2018085471-appb-000018
线性值的和可写为
Figure PCTCN2018085471-appb-000019
而后根据场景将该dB平均值或线性平均值作为P O_PUSCH,c(j)代入以上公式(1)至(8)之一中以计算PH。在以上计算方法中,除了P O_PUSCH,c(j)在公式中做了变化,其它参数可以与现有技术一致,在此不再赘述。
P 0_PUCCH和P O_SRS,c(m)的计算与P O_PUSCH,c(j)类似,且计算出之后带入到以上对应的公式中即可计算出PH,在此不再赘述。
此外,对于利用其它任一波束级功控参数计算PH的方式与以上利用标称功率P 0(或P O)计算PH的方式类似。该其它波束级功控参数例如为路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),和功率调整值f c(i)。以PL c为例,先算出多个波束的路径损耗PL c的dB平均值或线性平均值,然后根据场景将该dB平均值或线性平均值代入该场景对应的计算PH的公式中。计算路径损耗PL c的dB平均值或线性平均值的公式与计算标称功率P 0(或P O)的dB平均值或线性平均值的公式类似,只是将其中的P 0(或P O)用PL c代替,具体如下:
Figure PCTCN2018085471-appb-000020
或,
Figure PCTCN2018085471-appb-000021
或,
Figure PCTCN2018085471-appb-000022
或,
Figure PCTCN2018085471-appb-000023
或者,在最大发射功率表示的是多天线的总功率的情况下,以上平均值也可以由和来代替,该和可以为dB值的和或线性值的和,此时PL c如下:
Figure PCTCN2018085471-appb-000024
或,
Figure PCTCN2018085471-appb-000025
对于其它波束级功控参数的平均值计算的公式在此不一一举出,只需将以上计算标称功率P 0或路径损耗PL c的平均值的公式中的P 0或PL c替换为其它波束级功控参数即可。
第二种情况:对于终端利用多个波束级功控参数计算PH值的情况,终端可以采用类似以上第一种情况中的方式计算PH。即分别计算各个参数的平均值,而后利用这些参数的平均值来计算PH。
为了方便理解,在此以两个参数为例进行描述,更多参数类推即可。假设该两个参数为标称功率P 0(或P O)和路径损耗PL c
首先计算出多个波束的标称功率P 0(或P O)dB平均值或线性平均值,以及多个波束的路径损耗PL c的dB平均值或线性平均值。而后根据场景将其带入以上公式(1)至(8)之一。其中标称功率P 0(或P O)dB平均值或线性平均值,以及多个波束的路径损耗PL c的dB平均值或线性平均值的计算公式同以上第一种情况中的计算公式,在此不再赘述。
在以上计算方式中,针对每个波束级功控参数单独计算平均值,再根据场景带入相应的公式中计算。在另一种计算方式中,计算这些波束特定参数的综合平均值,再和其它参数一起计算PH,此时,公式形式有所改变。
例如,波束级功控包括标称功率P 0(或P O)和路径损耗PL c,虽然路径损耗调整因子α可能被设为波束级功控参数,也可能不被设为波束级功控参数,但是由于它是PL c的系数,因此,可以包含在单独计算的部分中。且此时的平均值也包括dB平均值和线性平均值。以以上公式(1)的场景为例,此时PH的计算公式如下公式(11)或(12):
Figure PCTCN2018085471-appb-000026
Figure PCTCN2018085471-appb-000027
同样,可以不考虑天线端口数量的影响,以减少计算的复杂度,此时,PH的计算公式如下公式(13)或(14):
Figure PCTCN2018085471-appb-000028
Figure PCTCN2018085471-appb-000029
或者,在最大发射功率表示的是多天线的总功率的情况下,计算这些波束特定参数的功率部分(可以称为波束级功率部分),在将计算出的波束级功率部分取和,和其它参数一起计算PH。以波束级功率为开环功率密度为例,此时PH的计算公式如下公式(15)或(16):
Figure PCTCN2018085471-appb-000030
Figure PCTCN2018085471-appb-000031
对于其它场景的公式改进与之类似,在此不再赘述。
在又一种计算方式中,可以计算每个波束对应的功率估计值(即所需发射功率),再算出这些功率功率估计值的平均值,这里的平均值包括dB平均值或线性平均值。此时,公式形式有所改变。以以上公式(1)的场景为例,此时PH的计算公式如下公式(17)或(18):
Figure PCTCN2018085471-appb-000032
Figure PCTCN2018085471-appb-000033
同样,可以不考虑天线端口数量的影响,以减少计算的复杂度,此时,PH的计算公式如下公式(19)或(20):
Figure PCTCN2018085471-appb-000034
Figure PCTCN2018085471-appb-000035
无论终端采用以上所有可能的波束级功控参数中的部分(包括一个)还是全部来计算PH,都可以采用该公式(17)至(20)之一的方式来计算PH。也就是说,计算每个波束对应的功率估计值,再算出这些功率功率估计值的平均值,进而利用该平均值计算PH的方式可以适用于以上第一种情况。在计算每个波束的功率估计值时用到的波束级功控参数的数量不做限制,可以是一个也可以是多个,即以上可能的波束级功控参数中的部分或全部,其中部分包括一个的情况。
或者,在最大发射功率表示的是多天线的总功率的情况下,PH的计算公式如下公式(21)或(22):
Figure PCTCN2018085471-appb-000036
Figure PCTCN2018085471-appb-000037
无论终端采用以上所有可能的波束级功控参数中的部分(包括一个)还是全部来计算PH,都可以采用该公式(21)或(22)的方式来计算PH。也就是说,计算每个波束对应的功率估计值,再算出这些功率功率估计值的和,进而利用该和计算PH的方式可以适用于以上第一种情况。在计算每个波束的功率估计值时用到的波束级功控参数的数量不做限制,可以是一个也可以是多个,即以上可能的波束级功控参数中的部分或全部,其中部分包括一个的情况。
对于其它场景的公式改进与之类似,在此不再赘述。
下面,描述终端分别针对K1个波束(或波束组)计算PH,得到K1个PH值,且上报该K1个PH值的信息或该K1个PH值的平均值的信息的情况。这里的平均值 是可以是dB平均值或线性平均值。此外上报K1个PH值的信息的情况还可以以上报参考PH值的信息和偏移值的信息来代替。
第一种情况:终端根据场景采用以上公式(1)至(10)之一分别对K个波束(或波束组)计算出对应的PH值,记为PH 1~PH K,终端上报该PH 1~PH K的信息。也就是对于当前传输所使用的波束(或波束组),上报所有的PH值的信息。此外,终端也可以只上报一个PH值的信息,该PH值为K个PH值的平均值,该平均值是可以是dB平均值或线性平均值。
第二种情况:终端上报RAN节点所指示的K1个PH值的信息。K1个PH值对应的K1个波束可以由RAN节点配置给终端,例如RAN节点通过高层信息或者物理层信令配置给终端,该高层信令或物理层信令包括指示信息,用于指示该K1个波束。该指示信息例如为波束的编号、信道状态信息参考信号(channel state information-reference signal,CSI-RS)的资源编号、探测参考信号(sounding reference signal,SRS)的资源编号、SRS的天线端口编号等。K1个波束可以是预定义好的,例如波束1~4。或者K1个PH值可以是满足预设规则的PH值,例如最大的K1个PH值的信息,或者最小的K1个PH值的信息,或者是最大的K1/2个PH值的信息和最小的K1/2个PH值的信息。
终端根据场景采用以上公式(1)至(10)之一分别对K个波束(或波束组)计算出对应的PH值,记为PH 1~PH K。而后终端可以根据RAN节点的指示上报其中K1个PH值的信息,或者上报预设的K1个波束上的PH值的信息,或者上报满足预设规则的K1个PH值的信息。
此外,终端还可以自己选择上报的PH值,并通知RAN节点其上报的PH值的信息所对应的波束。例如,以位图(bitmap)的方式通知RAN节点。举例而言,当RAN节点指示终端上报2个PH值,即在K1=2时,【0011】代表选择了后两个波束的PH值进行上报。
在这种情况下,终端也可以只上报一个PH值的信息,该PH值为K1个PH值的平均值,该平均值是可以是dB平均值或线性平均值。
第三种情况:终端根据场景采用以上公式(1)至(10)之一分别对K个波束(或波束组)计算出对应的PH值,记为PH 1~PH K,终端上报其中一个PH值的信息,并计算其它PH值相对于该PH值的偏移值,进而上报其它PH值的偏移值的信息。即终端上报PH k和其余的PH值-PH k,其中k根据某种原则选定,PH k为参考PH值,原则可以是k=1,或者k为PH值最大(正值大于负值)的波束(或波束组)。
以k=1为例,上报内容为:PH 1,PH 2-PH 1,…,PH K-PH 1
此外,终端可以上报K1个PH值的信息的时候,也可以采用这种利用偏移值上报的方式。即上报一个PH值作为参考PH值,并上报其它PH值相对于该参考PH值的偏移值。
此外,参考PH值可以不是该K1个PH值中的值,可以是设定值或者是除了该K1个PH值以外,N个PH值中的一个PH值。此时,将该参考PH值称为基准PH值。
当终端在服务小区的子帧上值采用一个波束传输时,采用现有技术计算PH值,并上报该PH值的信息。此后,终端可以在RAN节点的指示下或者自己的选择下上报K1个PH值的信息,上报方式同以上实施例,在此不再赘述。
在Numerology技术中,终端可以支持多种时频资源配置的存在。基于此,本申请一实施例中,将终端在服务小区的子帧i上的时频资源配置的情况考虑到PH的上报中,使得上报的PH更加准确地反映多种时频资源配置下的功率情况,有利于RAN节点的调度决策。
当终端支持多种时频资源配置时,针对不同的时频资源配置,在计算PH值时用到的参数中可能存在同一参数的不同取值或配置。例如,标称功率P 0(或P O),不同的时频资源配置(例如子载波间隔)在相同的传输条件下,能够达到的误码率是不同的,因此,RAN节点对不同时频资源配置的预期接收功率可以不同,即可针对不同的时频资源配置为终端配置不同的标称功率P 0。再如,PUSCH的传输带宽M PUSCH,c(i),不同的时频资源配置可以在服务小区的同一个子帧内频分复用,分别占据不同的带宽,这种场景可以适用于多种业务并存的时候,此时,RAN节点将可以为多种时频资源配置分别分配带宽。另外,对于不同的时频资源配置,在分配一样的频域资源后,由于不同时频资源配置的频域单元的大小(例如,子载波间隔的大小)不同,则同样的频域资源在不同时频资源配置下在频域上占据的实际带宽是不同的。因此,PUSCH的传输带宽M PUSCH,c(i)在不同时频资源配置下可能不同。SRS的传输带宽M SRS,c与之类似。以下将这些参数称为时频资源配置级功控参数,或者Numerology功控参数,或者时频资源配置特定参数,或者Numerology特定参数。即时频资源配置级功控参数包括以下参数之一或全部:标称功率P 0(或P O),传输带宽M c(i)。
第一种情况:当终端支持多种时频资源配置,当前采用一种时频资源配置进行传输时,终端可以采用当前该时频资源配置对应的参数计算PH值并上报计算出的PH值的信息即可。或者,可以配置参考时频资源配置,并根据当前使用的时频资源配置和参考时频资源配置折算受该时频资源配置影响的功控参数,并利用折算后的功控参数计算PH值,并上报该PH值的信息。
以功控参数为M PUSCH,c(i),时频资源配置为子载波间隔为例。此时,PH值的计算公式如下公式(23)所示:
Figure PCTCN2018085471-appb-000038
其中,SubSacing current和SubSacing reference分别是当前子载波间隔和参考子载波间隔。参考子载波间隔可以在终端支持子载波间隔中任选一个,例如15KHz。
对于其它场景的公式改进与之类似,在此不再赘述。
请参考图5,其为本申请实施例提供的另一种PH的上报方法的示意图。该方法由终端支持,终端支持多种时频资源配置,且终端在服务小区c的子帧i上采用一直时频资源配置进行传输,该时频资源配置称为当前时频资源配置,如图5所示,该方法包括如下步骤:
S510:终端根据当前时频资源配置和参考时频资源配置折算功控参数;
S520:终端根据折算后的功控参数计算PH,得到PH值;
S530:终端上报计算得到的PH值的信息。
该功控参数例如为PUSCH的传输带宽M PUSCH,c(i)。SRS的传输带宽M SRS,c与之类似。
第二种情况:当终端支持多种时频资源配置,当前采用不止一种时频资源配置进行传输时,可以采用与以上多波束传输的场景中类似的PH上报方案。不同之处在于,与取平均值的方案不同,这里不同时频资源配置上的功率是相加的关系,不是取平均的关系。
假设只有一个功控参数是受时频资源配置影响的,即只有一个功控参数在不同的时频资源配置下是不同的。以该功控参数为标称功率P 0(或P O)为例进行描述,其它参数与之类似。在计算PH时使用的标称功率P 0(或P O)为终端所采用的多种时频资源配置的标称功率P 0(或P O)的和,例如,dB值的和或线性值的和,其中,dB值的和为
Figure PCTCN2018085471-appb-000039
线性值的和为
Figure PCTCN2018085471-appb-000040
而后根据场景将该dB值的和或线性值的和作为P O_PUSCH,c(j)代入以上公式(1)至(8)之一中以计算PH。在以上计算方法中,除了P O_PUSCH,c(j)在公式中做了变化,其它参数可以与现有技术一致,在此不再赘述。
假设不止一个功控参数是受时频资源配置影响的,即不止一个功控参数在不同的时频资源配置下是不同的。
终端可以采用类似以上只有一个功控参数受时频资源配置影响时的方式计算PH。即分别计算各个参数的dB值的和或线性值的和,而后利用这些参数的dB值的和或线性值的和来计算PH。
在以上计算方式中,针对每个功控参数单独计算和,再根据场景带入相应的公式中计算。在另一种计算方式中,综合计算这些参数的和,该和称为时频资源配置级功率部分的和,再时频资源配置级功率部分的和与其它参数一起计算PH,此时,公式形式有所改变。
以功控参数P O_PUSCH,c(j)和M PUSCH,c(i),以及公式(1)的场景为例,此时PH的计算公式如下公式(24)或(25):
Figure PCTCN2018085471-appb-000041
Figure PCTCN2018085471-appb-000042
其中,nu表示时频资源配置的个数,其为终端当前采用的时频资源配置的个数。
对于其它场景的公式改进与之类似,在此不再赘述。
在又一种计算方式中,可以计算每个时频资源配置对应的功率估计值(即所需发射功率),再算出这些功率功率估计值的和,这里的和包括dB值的和或线性值的和。此时,公式形式有所改变。以以上公式(1)的场景为例,此时PH的计算公式如下公式(26)或(27):
Figure PCTCN2018085471-appb-000043
Figure PCTCN2018085471-appb-000044
无论终端采用以上所有可能的时频资源配置级功控参数中的部分(包括一个)还是全部来计算PH,都可以采用该公式(26)或(27)的方式来计算PH。在计算每个时频资源配置的功率估计值时用到的时频资源配置级功控参数的数量不做限制,可以是一个也可以是多个,即以上可能的时频资源配置级功控参数中的部分或全部,其中部分包括一个的情况。
对于其它场景的公式改进与之类似,在此不再赘述。
在又一种计算方式中,终端可以分别针对多个时频资源配置计算PH,得到多个PH值,且上报该多个PH值的信息。
例如终端当前采用nu种时频资源配置进行传输时,终端可以分别根据该nu种时频资源配置各自的功控参数计算PH,得到nu个PH值,记为PH 1~PH nu,终端上报该PH 1~PH nu的信息。此外,终端也可以将其中一个PH值作为参考值,上报其它PH值相对于该参考值的偏移值(或差值)。
此外,终端虽然当前使用一个时频资源配置进行传输,当也可以上报其它时频资源配置的PH的信息,以供RAN节点调度决策。上报哪些时频资源配置的PH的信息可以是预定好的,例如默认上报子载波间隔为15k、30k、60k的PH的信息。或者,可以由RAN节点指示,例如RAN节点向终端发送指示信令,该指示信令用于指示终端上报PH的信息的时频资源配置。终端接收该指示信令,上报指示信令所指示的时频资源配置的PH的信息。或者,终端可以选择上报PH的信息的时频资源配置。
请参考图6,其为本申请实施例提供的一种PH的上报方法的示意图。该方法由终端执行,且终端采用nu种时频资源配置,其中nu为大于或等于2的正整数。如图6所示,该方法包括如下步骤:
S610:终端计算服务小区的子帧上的PH,其中,终端可以根据nu个时频资源配置的时频资源配置级功控参数,计算得到一个PH值;或者,终端可以分别针对nu1个时频资源配置计算PH,得到nu1个PH值,其中nu1小于或等于nu,也就是说,终端可以计算全部或部分时频资源配置的PH值。
S620:终端上报PHR。该PHR包括以上根据nu个时频资源配置的时频资源配置级功控参数计算得到的PH值的信息。或者,该PHR包括以上计算得到的nu1个PH值的信息。或者,该PHR包括参考PH值的信息和偏移值的信息,其中,所述参考PH值为nu1个PH值中的一PH值,所述偏移值为nu1个PH值中其它PH值相对于该参考PH值的偏移值,此时具有nu1-1个偏移值;或者参考PH值为基准PH值,偏移值为nu1个PH值相对于基准PH值的偏移值,此时具有nu1个偏移值。
nu1等于nu时,即终端对所有时频资源配置均计算PH值,并上报计算出的PH值的信息。当nu1小于nu时,该nu1个时频资源配置可以由RAN节点指定;也可以是预定的。
当终端上行支持不止一种波形技术时,例如支持SC-OFDM技术和DFT-S-OFDM技术时。终端不会同时采用两种波形技术进行传输,因此在计算每种波形技术对应的PH时,可以采用现有公式进行计算,无需对公式进行调整。只是对于不同的波形技术,在计算PH值时用到的参数中可能存在同一参数的不同取值或配置,例如最大发射功 率P CMAX,c(i)或
Figure PCTCN2018085471-appb-000045
由于两种波形对应的峰均功率比(peak-to-average power ratio,PAPR)不同,在不同的波形下可能会采用不同的功率回退,导致终端所配置的最大发射功率不一样。再如标称功率P 0(或P O),不同的波形的接收信噪比不同,RAN节点可能会为不同的波形配置不同的P 0。因此,终端根据其在服务小区的子帧上进行传输所采用的波形技术,选择该波形技术对应的参数计算PH值并上报计算出的PH值的信息即可。
在一种实现方式中,终端可以按照两种波形的参数配置,计算该两种波形的PH值,且在上报过程中除了上报当前的波形的PH的信息外,还可以上报另一种波形的PH的信息,以供RAN节点调度决策。
终端是否上报另一种波形的PH的信息可以由以下方式来决定:第一、默认或设定终端上报两种波形的PH的信息;第二、由RAN节点指示终端上报另一种波形的PH的信息。如RAN节点向终端发送指示信令,该指示信令用于指示终端上报另一种波形的PH的信息。当终端收到该指示信令后,根据RAN节点的指示上报另一种波形的PH的信息。或者改指示信令用于指示终端是否上报两种波形的PH的信息,当指示终端上报两种波形的PH的信息时,终端根据RAN节点的指示上报另一种波形的PH的信息。
终端可以同时上报两个波形的PH的信息,也可以上报当前波形的PH的信息之后,再上报另一波形的PH的信息。其中,终端上报另一种波形的PH的信息和当前波形的PH的信息的方式包括如下几种:
第一、上报两种波形的PH值的信息;
第二、上报当前波形的PH值的信息和另一种波形的PH值相对于当前波形的PH值的偏移值(或差值);
第三、上报另一种波形的最大发射功率P CMAX,c(i)或
Figure PCTCN2018085471-appb-000046
因为除了最大发射功率之外,标称功率P 0可以由RAN节点配置,其它参数不受波形影响。但由于最大发射功率是由终端决定的且不同的波形可能不同,所以可以只上报另一种波形对应的最大发射功率,RAN节点可以当前波形的PH值和另一种波形的最大发射功率折算出不同波形下的调度能力需求。
因此,本申请实施例提供了一种PH的上报方法,用于终端,该终端上行支持第一波形和第二波形。请参考图7,该方法包括如下步骤:
S710:终端向RAN节点上报当前的第一波形的PH值的信息;
S720:终端向RAN节点上报第二波形的PH的信息,该第二波形的PH的信息包括第二波形的PH值的信息,或者包括第二波形的PH值相对于第一波形的PH值的偏移值,或者包括第二波形的最大发射功率。
RAN节点接收第一波形的PH值的信息之后,确定第一波形的PH值以进行调度判决,即确定是否调整为终端分配的带宽资源。
可选的,该第一波形的PH值的信息和第二波形的PH的信息可以同时上报。
可选的,终端向RAN节点上报第二波形的PH的信息之前,还包括:
S730:终端接收RAN节点的指示信令,该指示信令用于指示终端上报第二波形的PH的信息,终端根据该指示信令上报第二波形的PH的信息。或者该指示信令用于指示终端是否可以上报两个波形的PH的信息。当指示信息指示终端可以上报两个波形的PH的信息时,终端上报第二波形的PH的信息。
请参考图8,其为本申请实施例提供的一种PH的上报方法的示意图。如图8所示,该方法包括如下步骤:
S810:RAN节点向终端发送功控参数,用于终端进行上行功率控制。这些功控参数中包括终端用于计算PH的参数。以Type 1的场景为例,包括功控参数M PUSCH,c(i),用于确定P O_PUSCH,c(j)的P O_NOMINAL_PUSCH,c(j)和P O_UE_PUSCH,c(j),α c(j),Δ TF,c(i),f c(i)。
这里的RAN节点可以是一个或多个RAN节点,在这里不做限制。
这些功控参数中,针对不同波束(或波束组)进行了不同配置的功控参数称为波束级功控参数,针对不同时频资源配置进行了不同配置的功控参数称为时频资源配置级功控参数,针对不同波形进行了不同配置的功控参数称为波形级功控参数。RAN节点配置的是P O_NOMINAL_PUSCH,c(j)和P O_UE_PUSCH,c(j),用于得到的P O_PUSCH,c(j),故功控参数中以P O_PUSCH,c(j)进行描述,其它标称功率与之类似。
波束级功控参数例如可以包括以下参数中的一个或多个:标称(或基准)功率P 0(或P O),路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i),传输带宽M c(i)。时频资源配置级功控参数包括以下参数之一或全部:标称功率P 0(或P O),传输带宽M c(i)。波形级功控参数包括以下参数之一或全部:最大发射功率P CMAX,c(i)或
Figure PCTCN2018085471-appb-000047
标称功率P 0(或P O)。
S820:RAN节点向终端发送参考信号。该参考信号可以用于终端进行路径损耗的计算。该路径损耗也是功控参数,且对于不同波束可能不同,因此可以为波束级功控参数。进而,终端可以根据路径损耗和RAN节点配置的功控参数,计算PH。
该参考信号例如可以为CSI-RS,或解调参考信号(demodulation reference signal,DMRS)等。RAN节点可以发送不同的参考信号,不同的参考信号可以以参考信号的天线端口号、资源ID、信号类型、参考信号的特征有资源编号(如CSI-RS resource ID)、天线端口号、时频资源位置(参考信号的pattern)、或导频序列生成的初始化种子ID(如
Figure PCTCN2018085471-appb-000048
)等来区分。
终端对参考信号进行测量得到路径损耗,终端可以根据参考信号的发射功率和参考信号的参考信号接收功率(reference signal received power,RSRP)的差值计算出路径损耗。参考信号的发射功率由RAN节点配置给终端,RAN节点可以通过高层信令,例如无线资源控制(radio resource control,RRC)信令,向终端配置参考信号功率参数。终端接收该参数之后,得知参考信号的发射功率。
在终端通过多个波束与RAN节点通信时,终端可以测量多个路径损耗,即分别在这些波束上计算路径损耗,因此路径损耗PL c可以为波束级功控参数。
可选的,可以设置终端所测量的路径损耗的下行资源与终端上行发送资源的对应 关系,从而获知终端所测量的路径损耗与上行波束的对应关系。这里的下行资源例如为CSI-RS资源ID、CSI-RS天线端口、DMRS天线端口、码字(codeword,CW)号、下行的波束ID、用于波束管理的导频的ID、移动参考信号的ID等。这里的上行发送资源可以是指PUSCH\PUCCH\PRACH\SRS等的天线端口编号、资源编号、波束编号等。该对应关系可以是预定义的,也可以是RAN节点指示的,例如通过下行控制信息(downlink control information,DCI)或高层信令指示。
举例而言,RAN节点向终端发送配置参数,该配置参数指示了下行参考信号和上行发送资源之间的对应关系,该对应关系如下表1:
表1
DL CSI-RS端口 UL DMRS端口
C0 {D0~D3}
C1 {D4~D7}
终端接收该配置参数,可以得到这样的对应关系。即,用下行参考信号C0计算出的路径损耗,对应D0~D3的上行资源;用下行参考信号C1计算出的路径损耗,对应D4~D7的上行资源。不同的天线端口(或天线端口组)对应了不同的波束,因此终端可以得到不同的波束的路径损耗。
S830:终端根据RAN节点发送的功控参数以及测量得到的路径损耗,计算PH。
S840:终端上报PHR。
终端计算PH的方法以及上报PHR的方式同以上实施例中的描述,在此不再赘述。
RAN节点接收到PHR后,便可以根据PHR进行调度判决,确定是否改变分配给终端的带宽资源。
本申请实施例还提供用于实现以上方法的装置,例如,提供一种装置包括用以实现以上任一种实现方法中终端所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种实现方法中RAN节点所执行的各个步骤的单元(或手段)。
请参考图9,其为本申请实施例提供的一种装置的示意图。该装置900用于终端,如图9所示,该装置900包括执行以上方法任一方法实施例中终端的所执行的各个步骤的单元或手段(means),且关于这些步骤中的详细描述都可以适用于本装置实施例。该装置900包括计算单元910和上报单元920,其中计算单元910用于计算PH值,上报单元920用于上报PHR。计算单元910用于图4至图6中任一种的计算操作。上报单元920可以通过RAN节点与终端之间的接口(例如,空口)上报信息。这里的接口是逻辑概念,在实现上需要设置对应的逻辑单元,满足相应接口的协议要求。该上报单元920是一种控制上报的单元,可以通过终端的发送装置,例如天线和射频装置向RAN节点上报信息。
此外,该装置900还可以包括接口单元930,用于接收RAN节点发送的信息。终端通过接收装置从RAN节点接收信息,该接口单元930从终端的接收装置接收RAN节点发送给终端的信息,进行解读和处理。例如,接收图8中的功控参数和参考信号。
应理解以上装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件 通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,计算单元910可以为单独设立的处理元件,也可以集成在终端的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由终端的某一个处理元件调用并执行该单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
请参考图10,其为本申请实施例提供的一种装置的示意图。该装置1000用于RAN节点,如图10所示,该装置1000包括执行以上方法任一方法实施例中RAN节点的所执行的各个步骤的单元或手段(means),且关于这些步骤中的详细描述都可以适用于本装置实施例。该装置1000包括配置单元1010、发送单元1020、和接口单元1030,其中配置单元1010用于配置功控参数,包括用于计算PH的功控参数。发送单元1020用于向终端发送信息,例如发送功控参数和参考信号。接口单元1030用于接收终端发送的信息,例如接收PH。发送单元1020可以通过RAN节点与终端之间的接口(例如,空口)向终端发送信息。这里的接口是逻辑概念,在实现上需要设置对应的逻辑单元,满足相应接口的协议要求。该发送单元1020是一种控制发送的单元,可以通过RAH节点的发送装置,例如天线和射频装置向终端发送信息。RAN节点通过接收装置从终端接收信息,该接口单元1030从RAN节点的接收装置接收终端发送的信息,进行解读和处理。
应理解以上装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,配置单元1010可以为单独设立的处理元件,也可以集成在RAN节点的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由RAN节点的某一个处理元件调用并执行该单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门 阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
请参考图11,其为本申请实施例提供的一种RAN节点的结构示意图,用于实现以上实施例中RAN节点的操作。如图11所示,该RAN节点包括:天线1110、射频装置1120、基带装置1130。天线1110与射频装置1120连接。在上行方向上,射频装置1120通过天线1110接收终端发送的信息,将终端发送的信息发送给基带装置1130进行处理。在下行方向上,基带装置1130对终端的信息进行处理,并发送给射频装置1120,射频装置1120对终端的信息进行处理后经过天线1110发送给终端。
以上用于RAN节点的装置可以位于基带装置1130,在一种实现中,图10所示的各个单元通过处理元件调度程序的形式实现,例如基带装置1130包括处理元件1131和存储元件1132,处理元件1131调用存储元件1132存储的程序,以执行以上方法实施例中RAN节点执行的方法。此外,该基带装置1130还可以包括接口1133,用于与射频装置1120交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
在另一种实现中,图10所示的各个单元可以是被配置成实施以上RAN节点执行的方法的一个或多个处理元件,这些处理元件设置于基带装置1130上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,图10所示的各个单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置1130包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件1131和存储元件1132,由处理元件1131调用存储元件1132的存储的程序的形式实现以上RAN节点执行的方法或图10所示各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上RAN节点执行的方法或图10所示各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上用于RAN节点的装置包括至少一个处理元件和存储元件,其中至少一个处理元件用于执行以上方法实施例所提供的RAN节点执行的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中RAN节点执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中RAN节点执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例中RAN节点执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图12,其为本申请实施例提供的一种终端的结构示意图。其可以为以上实施例中的终端,用于实现以上实施例中终端的操作。如图12所示,该终端包括:处理元件1210、存储元件1220、收发元件1230。收发元件1230可以与天线连接。在下行方向上,收发元件1230通过天线接收RAN节点发送的信息,并将信息发送给处理元件1210进行处理。在上行方向上,处理元件1210对终端的数据进行处理,并通过收发元件1230发送给RAN节点。
该存储元件1220用于存储实现以上方法实施例的程序,处理元件1210调用该程序,执行以上方法实施例的操作。
在另一种实现中,以上图9中的各个单元可以是被配置成实施以上终端执行的方法的一个或多个处理元件,这些处理元件设置于终端的电路板,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,以上图9中的各个单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,终端包括该SOC芯片,用于实现以上方法。该芯片内可以集成处理元件1210和存储元件1220,由处理元件1210调用存储元件1220的存储的程序的形式实现以上方法或以上图9中各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上方法或以上图9中各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上配置装置包括至少一个处理元件和存储元件,其中至少一个处理元件用于执行以上方法实施例所提供的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中终端的部分或全部步骤;也可以以第二种方式:即通过处理元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中终端的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例终端的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理元件,例如中央处理元件(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理元件(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (16)

  1. 一种功率余量的上报方法,包括:
    终端计算服务小区的子帧上的功率余量PH,其中所述终端在所述服务小区的所述子帧上利用K个波束或波束组进行传输,所述K为大于或等于2的正整数,且所述终端计算功率余量包括:根据所述K个波束或波束组的波束级功控参数计算PH,得到一个PH值;或者分别针对K1个波束或波束组计算PH,得到K1个PH值,其中K1小于或等于K;
    所述终端上报功率余量报告PHR,所述PHR包括:
    根据所述K个波束或波束组的波束级功控参数计算得到的PH值的信息;或者,
    所述K1个PH值的信息;或者
    参考PH值的信息和偏移值的信息,其中,所述参考PH值为所述K1个PH值中的一PH值,所述偏移值为所述K1个PH值中其它PH值相对于该参考PH值的偏移值,或者所述参考PH值为基准PH值,所述偏移值为所述K1个PH值相对于所述基准PH值的偏移值;或者
    所述K1个PH值的平均值的信息。
  2. 如权利要求1所述的方法,其特征在于,所述波束级功控参数包括以下参数之一或多个:
    标称功率P 0,路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i),和传输带宽M c(i)。
  3. 如权利要求2所述的方法,其特征在于,所述终端根据所述K个波束或波束组的波束级功控参数计算PH,包括:
    所述终端根据所述K个波束或波束组的第一参数计算PH,其中所述第一参数为标称功率P 0,路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i)和传输带宽M c(i)之一。
  4. 如权利要求3所述的方法,其特征在于,所述终端根据所述K个波束或波束组的第一参数计算PH,包括:
    计算所述K个波束或波束组的第一参数的平均值,其中所述平均值包括分贝dB平均值或线性平均值;根据计算出的平均值计算PH;或者,
    计算所述K个波束或波束组的第一参数的和,其中所述和包括dB值的和或线性值的和;根据计算出的和计算PH。
  5. 如权利要求2所述的方法,其特征在于,所述终端根据所述K个波束或波束组的波束级功控参数计算PH,包括:
    所述终端根据所述K个波束或波束组的多个参数计算PH,其中所述多个参数为标称功率P 0,路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i),和传输带宽M c(i)中的部分或全部参数。
  6. 如权利要求5所述的方法,其特征在于,所述终端根据所述K个波束或波束组的多个参数计算PH,包括:
    分别计算所述K个波束或波束组的多个参数的平均值,其中所述平均值包括分贝dB平均值或线性平均值;根据计算出的多个平均值计算PH;或者,
    分别计算所述K个波束或波束组的多个参数的和,其中所述和包括分贝dB值的和或线性值的和;根据计算出的多个和计算PH;或者,
    计算所述多个参数的综合平均值,其中所述综合平均值包括分贝dB平均值或线性平均值;根据计算出的综合平均值计算PH;或者,
    计算所述多个参数的波束级功率部分的和,其中所述和包括分贝dB值的和或线性值的和;根据计算出的和计算PH;或者,
    分别计算所述K个波束或波束组的功率估计值;计算所述K个功率估计值的平均值,其中所述平均值包括分贝dB平均值或线性平均值;根据所述K个功率估计值的平均值计算PH;或者,
    分别计算所述K个波束或波束组的功率估计值;计算所述K个功率估计值的和,其中所述和包括分贝dB值的和或线性值的和;根据所述K个功率估计值的和计算PH。
  7. 一种功率余量的上报装置,包括:
    计算单元,用于计算服务小区的子帧上的功率余量PH,其中所述终端在所述服务小区的所述子帧上利用K个波束或波束组进行传输,所述K为大于或等于2的正整数,且所述终端计算功率余量包括:根据所述K个波束或波束组的波束级功控参数计算PH,得到一个PH值;或者分别针对K1个波束或波束组计算PH,得到K1个PH值,其中K1小于或等于K;
    上报单元,用于上报功率余量报告PHR,所述PHR包括:
    根据所述K个波束或波束组的波束级功控参数计算得到的PH值的信息;或者,
    所述K1个PH值的信息;或者
    参考PH值的信息和偏移值的信息,其中,所述参考PH值为所述K1个PH值中的一PH值,所述偏移值为所述K1个PH值中其它PH值相对于该参考PH值的偏移值,或者所述参考PH值为基准PH值,所述偏移值为所述K1个PH值相对于所述基准PH值的偏移值;或者
    所述K1个PH值的平均值的信息。
  8. 如权利要求7所述的装置,其特征在于,所述波束级功控参数包括以下参数之一或多个:
    标称功率P 0,路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i),和传输带宽M c(i)。
  9. 如权利要求8所述的装置,其特征在于,所述计算单元用于:
    根据所述K个波束或波束组的第一参数计算PH,其中所述第一参数为标称功率P 0,路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i)和传输带宽M c(i)之一。
  10. 如权利要求9所述的装置,其特征在于,所述计算单元用于:
    计算所述K个波束或波束组的第一参数的平均值,其中所述平均值包括分贝dB平均值或线性平均值;根据计算出的平均值计算PH;或者,
    计算所述K个波束或波束组的第一参数的和,其中所述和包括dB值的和或线性值的和;根据计算出的和计算PH。
  11. 如权利要求8所述的装置,其特征在于,所述计算单元用于:
    根据所述K个波束或波束组的多个参数计算PH,其中所述多个参数为标称功率P 0,路径损耗调整因子α,路径损耗PL c,功率偏移值Δ TF,c(i),功率调整值f c(i),和传输带宽M c(i)中的部分或全部参数。
  12. 如权利要求11所述的装置,其特征在于,所述计算单元用于:
    分别计算所述K个波束或波束组的多个参数的平均值,其中所述平均值包括分贝dB平均值或线性平均值;根据计算出的多个平均值计算PH;或者,
    分别计算所述K个波束或波束组的多个参数的和,其中所述和包括分贝dB值的和或线性值的和;根据计算出的多个和计算PH;或者,
    计算所述多个参数的综合平均值,其中所述综合平均值包括分贝dB平均值或线性平均值;根据计算出的综合平均值计算PH;或者,
    计算所述多个参数的波束级功率部分的和,其中所述和包括分贝dB值的和或线性值的和;根据计算出的和计算PH;或者,
    分别计算所述K个波束或波束组的功率估计值;计算所述K个功率估计值的平均值,其中所述平均值包括分贝dB平均值或线性平均值;根据所述K个功率估计值的平均值计算PH;或者,
    分别计算所述K个波束或波束组的功率估计值;计算所述K个功率估计值的和,其中所述和包括分贝dB值的和或线性值的和;根据所述K个功率估计值的和计算PH。
  13. 一种功率余量的上报装置,包括:至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行如权利要求1至6任一项所述的方法。
  14. 一种终端,包括如权利要求7-13任一项所述的装置。
  15. 一种计算机程序,用于执行权利要求1至6任一项所述方法。
  16. 一种计算机可读存储介质,包括程序,用于执行权利要求1至6任一项所述方法。
PCT/CN2018/085471 2017-05-05 2018-05-03 功率余量的上报方法和装置 WO2018202083A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18795154.6A EP3614750B1 (en) 2017-05-05 2018-05-03 Power headroom reporting
US16/673,509 US10856274B2 (en) 2017-05-05 2019-11-04 Power headroom reporting method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313801.7 2017-05-05
CN201710313801.7A CN108810964B (zh) 2017-05-05 2017-05-05 功率余量的上报方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/673,509 Continuation US10856274B2 (en) 2017-05-05 2019-11-04 Power headroom reporting method and apparatus

Publications (2)

Publication Number Publication Date
WO2018202083A1 true WO2018202083A1 (zh) 2018-11-08
WO2018202083A9 WO2018202083A9 (zh) 2019-11-21

Family

ID=64016835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085471 WO2018202083A1 (zh) 2017-05-05 2018-05-03 功率余量的上报方法和装置

Country Status (4)

Country Link
US (1) US10856274B2 (zh)
EP (1) EP3614750B1 (zh)
CN (1) CN108810964B (zh)
WO (1) WO2018202083A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3603220B1 (en) * 2017-03-24 2020-07-15 Telefonaktiebolaget LM Ericsson (publ) Qos flows inactivity counters
CN109089268B (zh) * 2017-06-14 2020-09-01 维沃移动通信有限公司 一种phr触发方法和用户终端
WO2019013485A1 (en) * 2017-07-10 2019-01-17 Lg Electronics Inc. METHOD OF TRANSMITTING POWER MARGIN RATIO IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR
US11265825B2 (en) * 2018-07-16 2022-03-01 Qualcomm Incorporated Power headroom reporting for wireless communication
CN111148207B (zh) * 2018-11-02 2021-07-16 华为技术有限公司 一种功率余量报告的上报方法、获取方法及装置
CN112020129A (zh) * 2019-05-31 2020-12-01 华为技术有限公司 数据传输方法、装置及系统
US11152989B1 (en) * 2020-04-07 2021-10-19 Charter Communications Operating, Llc Location-based beamforming management in a network
CN113973363B (zh) * 2020-07-22 2023-09-12 维沃移动通信有限公司 P-mpr报告的发送、接收方法、装置及电子设备
CN115707078A (zh) * 2021-08-05 2023-02-17 维沃移动通信有限公司 P-mpr的上报方法、装置和终端设备
CN116744427A (zh) * 2022-03-03 2023-09-12 华为技术有限公司 一种功率余量上报方法及装置
CN117676782A (zh) * 2022-09-07 2024-03-08 华为技术有限公司 一种能力上报方法及通信装置
WO2024073954A1 (en) * 2022-12-23 2024-04-11 Lenovo (Beijing) Ltd. Methods and apparatus of reporting phr for supporting dynamic waveform switching

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893679A (zh) * 2010-02-12 2013-01-23 松下电器产业株式会社 用于未调度的上行链路分量载波的功率余量报告
CN104780561A (zh) * 2014-01-15 2015-07-15 电信科学技术研究院 一种功率余量上报方法及装置
CN104871611A (zh) * 2013-01-17 2015-08-26 富士通株式会社 功率余量的报告方法和装置
CN105103642A (zh) * 2014-01-28 2015-11-25 华为技术有限公司 一种功率余量的上报方法、装置和用户设备
CN105592539A (zh) * 2014-10-22 2016-05-18 普天信息技术有限公司 功率余量的获取方法和宏基站
US20160174236A1 (en) * 2012-12-24 2016-06-16 Innovative Sonic Corporation Method and apparatus of small cell enhancement in a wireless communication system
CN106162853A (zh) * 2015-03-24 2016-11-23 中兴通讯股份有限公司 功率余量上报phr处理方法、装置、终端及基站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017830A1 (zh) * 2009-08-10 2011-02-17 华为技术有限公司 一种功率余量上报与估计方法、终端及基站
EP2949055A1 (en) * 2013-01-25 2015-12-02 Interdigital Patent Holdings, Inc. Methods and apparatus for vertical beamforming
CN105766034B (zh) * 2013-03-28 2019-09-13 华为技术有限公司 一种协作多点通信的功率余量报告方法和装置
CN105830483B (zh) * 2014-09-23 2021-01-29 华为技术有限公司 波束配置方法、基站及用户设备
US10375719B2 (en) * 2017-03-21 2019-08-06 Motorola Mobility Llc Method and apparatus for power headroom reporting procedure for new radio carrier aggregation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893679A (zh) * 2010-02-12 2013-01-23 松下电器产业株式会社 用于未调度的上行链路分量载波的功率余量报告
US20160174236A1 (en) * 2012-12-24 2016-06-16 Innovative Sonic Corporation Method and apparatus of small cell enhancement in a wireless communication system
CN104871611A (zh) * 2013-01-17 2015-08-26 富士通株式会社 功率余量的报告方法和装置
CN104780561A (zh) * 2014-01-15 2015-07-15 电信科学技术研究院 一种功率余量上报方法及装置
CN105103642A (zh) * 2014-01-28 2015-11-25 华为技术有限公司 一种功率余量的上报方法、装置和用户设备
CN105592539A (zh) * 2014-10-22 2016-05-18 普天信息技术有限公司 功率余量的获取方法和宏基站
CN106162853A (zh) * 2015-03-24 2016-11-23 中兴通讯股份有限公司 功率余量上报phr处理方法、装置、终端及基站

Also Published As

Publication number Publication date
CN108810964A (zh) 2018-11-13
EP3614750A1 (en) 2020-02-26
WO2018202083A9 (zh) 2019-11-21
US20200145987A1 (en) 2020-05-07
EP3614750B1 (en) 2022-07-06
EP3614750A4 (en) 2020-04-29
CN108810964B (zh) 2023-08-22
US10856274B2 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2018202083A1 (zh) 功率余量的上报方法和装置
US11924772B2 (en) System and method for wireless power control
US11516754B2 (en) Communication method, communications apparatus, and communications system
US8839362B2 (en) Method and apparatus for managing transmit power for device-to-device communication
US20180103433A1 (en) Method and apparatus for deriving transmit power of ul (uplink) rs (reference signal) in a wireless communication system
EP3787359B1 (en) Beam training method, apparatus, and system
WO2018127022A1 (zh) 发送功率的确定方法、装置及系统
CN108055879A (zh) 多用户功率控制方法及过程
WO2017173920A1 (zh) 一种功率控制方法及设备
EP3605930B1 (en) Transmitting uplink reference signal
WO2020069175A1 (en) Power control for vehicle-to-everything (v2x) communication
WO2019062387A1 (zh) 参数获取方法及装置
JP2022183303A (ja) 端末、無線通信方法、基地局及びシステム
WO2018059248A1 (zh) 上行信号发送功率的处理方法及装置、基站、终端
JPWO2019026296A1 (ja) ユーザ端末及び無線通信方法
WO2021228124A1 (zh) 功率控制方法和功率控制装置
WO2015058725A1 (zh) 控制上行发送功率的方法及装置
WO2019096316A1 (zh) 通信方法、通信装置和系统
US20240187162A1 (en) Systems and methods for handling limited set of path loss reference signals
TWI840742B (zh) 用於單個及多個傳輸/接收點(trps)之信號閉路功率控制
WO2023139519A1 (en) Medium access control (mac) control element (ce) design for multiple power management maximum power reduction (p-mpr) reporting
CN117560755A (zh) 一种功率余量的处理方法、装置及通信设备
KR20230047448A (ko) 전력 제어 상태들을 위한 프레임워크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018795154

Country of ref document: EP

Effective date: 20191118