WO2021228124A1 - 功率控制方法和功率控制装置 - Google Patents

功率控制方法和功率控制装置 Download PDF

Info

Publication number
WO2021228124A1
WO2021228124A1 PCT/CN2021/093266 CN2021093266W WO2021228124A1 WO 2021228124 A1 WO2021228124 A1 WO 2021228124A1 CN 2021093266 W CN2021093266 W CN 2021093266W WO 2021228124 A1 WO2021228124 A1 WO 2021228124A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
power control
transmission
power
transmission mode
Prior art date
Application number
PCT/CN2021/093266
Other languages
English (en)
French (fr)
Inventor
袁世通
刘凤威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021228124A1 publication Critical patent/WO2021228124A1/zh
Priority to US18/055,392 priority Critical patent/US20230076802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • This application relates to the field of communication technology, and in particular to a power control method and power control device.
  • integrated access and backhaul (IAB) nodes are also called integrated access and backhaul (IAB) nodes in some technical scenarios.
  • the node is the evolution node of the relay technology.
  • relay nodes are usually used to achieve extended coverage or blind area coverage, or to increase system capacity.
  • the IAB node accesses the network. For example, when the IAB node is in the time division multiplexing transmission mode, the IAB node performs data transmission through the power control parameters corresponding to the time division multiplexing transmission mode configured by the base station for the IAB node.
  • the influence of interference needs to be considered when setting the transmit power and receive power of the IAB node. Therefore, how to realize the configuration of power control parameters in different transmission modes of IAB nodes is a problem to be solved urgently in current IAB standardization.
  • the embodiments of the present application provide a power control method and a power control device, which are used to alleviate the problem of transmission capacity reduction caused by interference and improve transmission performance.
  • the first aspect of the embodiments of the present application provides a power control method, which includes:
  • the first node determines a first power control parameter, and the first power control parameter is used to indicate the first transmission power expected by the first node in the first transmission mode; then, the first node sends a first message to the second node.
  • the first message carries the first power control parameter, the first message is used to request the first node to use the first transmission power expected in the first transmission mode, and the second node is the upper node or the host Donor of the first node Base station.
  • the first node can report the first power control parameter expected in the first transmission mode to the second node, so that the second node can communicate with the first node in the first transmission mode.
  • the configuration of the power control parameters under.
  • the first node when the first node reports the first power control parameter to the second node, it associates the transmission mode with the reported power control parameter, which is beneficial to alleviating problems such as a decrease in transmission capacity caused by interference and the like, and improving transmission performance.
  • the first node transmits to the second node through the transmission power determined by the first power control parameter, which effectively alleviates the problem of the decrease in transmission capacity caused by interference and improves the transmission performance.
  • the first message further carries a second power control parameter
  • the second power control parameter is used to indicate the second transmission power expected by the first node in the second transmission mode.
  • the first node can carry two copies of power control parameters expected by different transmission modes in a request message, so as to realize the configuration of the power control parameters of the first node in the first transmission mode by the second node. , And the configuration of the power control parameters of the first node in the second transmission mode.
  • the first power control parameter is also used to indicate the second transmission power expected by the first node in the second transmission mode.
  • the first node requests the first transmission power expected by the first node in the first transmission mode and the second transmission expected by the first node in the second transmission mode through the same power control parameter. Power so that the second node can configure the power control parameters of the first transmission mode and the power control parameters of the second transmission mode respectively.
  • the first power control parameter includes: the value or value range of the reference power, the value or value range of the user-level nominal power, or the reference power offset value.
  • the first power control parameter reported by the first node follows some of the power control parameters used in the existing power control mechanism, and provides a method for building on the basis of the existing power control mechanism.
  • the value of the user-level nominal power is represented by the uplink shared channel-reference power and path loss parameter set index (P0physical uplink shared channel alphaset identity, P0-PUSCH-AlphaSetID).
  • P0-PUSCH-AlphaSet includes P0-PUSCH-AlphaSetID, the value of user-level nominal power, and so on. Therefore, the value of the user-level nominal power in the first power control parameter can carry the configured power control parameter P0-PUSCH-AlphaSet, and is indirectly represented by the P0-PUSCH-AlphaSetID included in the P0-PUSCH-AlphaSet .
  • the first power control parameter further includes a path loss compensation factor and/or a path loss measurement reference signal index.
  • the first power control parameter may further be the path loss compensation factor and/or the path loss measurement reference signal index used by the existing power control mechanism, so that the transmit power of the first node can be increased. The predictability.
  • the path loss compensation factor is represented by the P0-PUSCH-AlphaSetID; the path loss measurement reference signal index is represented by the uplink shared channel-path loss reference signal PUSCH-PathlossReferenceRS configuration.
  • P0-PUSCH-AlphaSet includes P0-PUSCH-AlphaSetID and path loss compensation factor, etc.
  • PUSCH-PathlossReferenceRS includes path loss measurement reference signal index, etc. Therefore, the path loss compensation factor in the first power control parameter may be carried in P0-PUSCH-AlphaSet and indirectly represented by P0-PUSCH-AlphaSetID, and the path loss measurement reference signal index is represented by the PUSCH-PathlossReferenceRS configuration.
  • the first message further carries first indication information, and the first indication information is used to indicate the transmission mode corresponding to the first power control parameter; or, the cell name of the first message is To indicate the transmission mode corresponding to the first power control parameter.
  • the power control method in the embodiment of the present application is suitable for the configuration of power control parameters for multiple transmission modes such as space division multiplexing transmission and full duplex transmission. Therefore, two possible indication methods for indicating the transmission mode corresponding to the first power control parameter are provided here to improve the feasibility and completeness of the solution.
  • the first indication information includes first uplink transmission timing information, and the first uplink transmission timing information is used to indicate the first transmission mode.
  • the first indication information can indicate the transmission mode corresponding to the first power control parameter through the uplink transmission timing information, so as to realize the reported power control parameter An indication of the transmission mode.
  • the first transmission mode is space division multiplexing transmission, and the second transmission mode is full duplex transmission; or, the first transmission mode is full duplex transmission, and the second transmission mode is space division. Multiplexing transmission.
  • multiple specific transmission modes suitable for the power control method provided in the embodiments of the present application are provided.
  • the first message is carried in radio resource control (radio resource control, RRC) signaling, or media (medium) access control control element (MAC CE), or Uplink control information (uplink control information, UCI), or adaptation layer (Backhaul adaptation protocol, BAP) signaling or F1 interface application protocol signaling.
  • RRC radio resource control
  • MAC CE media (medium) access control control element
  • UCI uplink control information
  • BAP Backhaul adaptation protocol
  • the method further includes: the first node receives a reconfiguration message sent by the second node, the reconfiguration message carries a third power control parameter, and the third power control parameter is that the second node is The power control parameter configured by the first node for the first transmission mode; then, the first node transmits in the first transmission mode using the transmission power determined by the third power control parameter.
  • a possible feedback manner of the second node for the first message is provided, and the second node reconfigures the power control parameters of the first node in the first transmission mode.
  • the first power control parameter and the third power control parameter are partly or completely the same.
  • the second node can obtain the third power control parameter by modifying the configuration of part of the power control parameters in the first power control parameter; or, the second node is based on the first power control parameter. Some power control parameters are added above, and the third power control parameter is obtained.
  • the method further includes: when the first condition is met, the first node transmits at the transmission power determined by the power control parameter corresponding to the first transmission mode; the first condition includes the following Either: the first node receives the second indication information sent by the third node, the second indication information is used to instruct the first node to transmit at the transmission power determined by the power control parameter corresponding to the first transmission mode,
  • the third node is the superior node or the donor Donor base station of the first node; the first node receives the first uplink transmission timing indication sent by the second node, and the first uplink transmission timing indication is associated with the first transmission mode ;
  • the first node determines that the current transmission mode of the first node is the first transmission mode according to the current transmission frame structure of the first node; or, when the second condition is met, the first node passes the second transmission mode
  • the second condition includes any one of the following: the first node receives third indication information sent by a third node, and the third
  • multiple possible conditions are provided for the specific first node to apply the transmission power determined by the power control parameter of the first transmission mode or the second transmission mode for transmission.
  • a second aspect of the embodiments of the present application provides a power control method, which includes:
  • the second node receives the first message sent by the first node, the first message carries a first power control parameter, and the first power control parameter is used to indicate the first transmission power expected by the first node in the first transmission mode
  • the first message is used to request the first transmission power expected by the first node in the first transmission mode
  • the second node is an upper node of the first node or a donor Donor base station.
  • the second node receives the first power control parameter expected in the first transmission mode reported by the first node, so as to realize the power of the second node to the first node in the first transmission mode. Configuration of control parameters.
  • the first node reports the first power control parameter to the second node, it associates the transmission mode with the reported power control parameter, which is beneficial to alleviating problems such as a decrease in transmission capacity caused by interference and the like, and improving transmission performance.
  • the first node transmits to the second node through the transmission power determined by the first power control parameter, which effectively alleviates the problem of the decrease in transmission capacity caused by interference and improves the transmission performance.
  • the first message further carries a second power control parameter
  • the second power control parameter is used to indicate the second transmission power expected by the first node in the second transmission mode.
  • the first node can carry two copies of power control parameters expected by different transmission modes in a request message, so as to realize the configuration of the power control parameters of the first node in the first transmission mode by the second node. , And the configuration of the power control parameters of the first node in the second transmission mode.
  • the first power control parameter is also used to indicate the second transmission power expected by the first node in the second transmission mode.
  • the first node requests the first transmission power expected by the first node in the first transmission mode and the second transmission expected by the first node in the second transmission mode through the same power control parameter. Power so that the second node can configure the power control parameters of the first transmission mode and the power control parameters of the second transmission mode respectively.
  • the first power control parameter includes: the value or value range of the reference power, the value or value range of the user-level nominal power, or the reference power offset value.
  • the first power control parameter reported by the first node follows some of the power control parameters used in the existing power control mechanism, and provides a method for building on the basis of the existing power control mechanism.
  • the value of the user-level nominal power is represented by P0-PUSCH-AlphaSetID.
  • P0-PUSCH-AlphaSet includes P0-PUSCH-AlphaSetID, the value of user-level nominal power, and so on. Therefore, the value of the user-level nominal power in the first power control parameter can carry the configured power control parameter P0-PUSCH-AlphaSet, and is indirectly represented by the P0-PUSCH-AlphaSetID included in the P0-PUSCH-AlphaSet .
  • the first power control parameter further includes a path loss compensation factor and/or a path loss measurement reference signal index.
  • the first power control parameter may further be the path loss compensation factor and/or the path loss measurement reference signal index used by the existing power control mechanism, so that the transmit power of the first node can be increased. The predictability.
  • the path loss compensation factor is represented by the P0-PUSCH-AlphaSetID; the path loss measurement reference signal index is represented by the PUSCH-PathlossReferenceRS configuration.
  • P0-PUSCH-AlphaSet includes P0-PUSCH-AlphaSetID and path loss compensation factor, etc.
  • PUSCH-PathlossReferenceRS includes path loss measurement reference signal index, etc. Therefore, the path loss compensation factor in the first power control parameter may be carried in P0-PUSCH-AlphaSet and indirectly represented by P0-PUSCH-AlphaSetID, and the path loss measurement reference signal index is represented by the PUSCH-PathlossReferenceRS configuration.
  • the first message further carries first indication information, and the first indication information is used to indicate the transmission mode corresponding to the first power control parameter; or, the cell name of the first message is To indicate the transmission mode corresponding to the first power control parameter.
  • the power control method in the embodiment of the present application is suitable for the configuration of power control parameters for multiple transmission modes such as space division multiplexing transmission and full duplex transmission. Therefore, two possible indication methods for indicating the transmission mode corresponding to the first power control parameter are provided here to improve the feasibility and completeness of the solution.
  • the first indication information includes first uplink transmission timing information, and the first uplink transmission timing information is used to indicate the first transmission mode.
  • the first indication information can indicate the transmission mode corresponding to the first power control parameter through the uplink transmission timing information, so as to realize the reported power control parameter An indication of the transmission mode.
  • the first transmission mode is space division multiplexing transmission, and the second transmission mode is full duplex transmission; or, the first transmission mode is full duplex transmission, and the second transmission mode is space division. Multiplexing transmission.
  • multiple specific transmission modes suitable for the power control method provided in the embodiments of the present application are provided.
  • the first message is carried on RRC signaling, or MAC CE, or UCI, or BAP signaling or F1 interface application protocol signaling.
  • RRC signaling or MAC CE
  • UCI or BAP signaling
  • F1 interface application protocol signaling an implementation manner in which the first message is carried in the existing signaling is provided, which improves the practicability of the solution.
  • the method further includes: the second node sends a reconfiguration message to the first node, the reconfiguration message carries a third power control parameter, and the third power control parameter is that the second node is the first node.
  • the power control parameter configured by the node for the first transmission mode.
  • a possible feedback manner of the second node for the first message is provided, and the second node reconfigures the power control parameters of the first node in the first transmission mode.
  • the first power control parameter and the third power control parameter are partly or completely the same.
  • the second node can obtain the third power control parameter by modifying the configuration of part of the power control parameters in the first power control parameter; or, the second node is based on the first power control parameter. Some power control parameters are added above, and the third power control parameter is obtained.
  • the method further includes: the second node sends a power control parameter corresponding to the first transmission mode to a fourth node, and the fourth node is an upper node or a host Donor of the first node Base station.
  • the power control parameter corresponding to the first transmission mode is used for the fourth node to transmit at the transmission power determined by the power control parameter corresponding to the first transmission mode in the first transmission mode.
  • the second node may send the power control parameter corresponding to the first transmission mode to the fourth node through F1 signaling.
  • a third aspect of the embodiments of the present application provides a power control method, which includes:
  • the first node sends a second message to the second node, where the second message is used to request the first received power expected by the first node in the first transmission mode, and the second node is the upper node Donor base station of the first node.
  • the first node can request the second node for the expected first received power in the first transmission mode, so as to realize the second node to transmit from the second node to the first node.
  • the third transmission power at the time is adjusted, so as to alleviate the problem of the decrease in transmission capacity caused by interference and improve the transmission performance.
  • the second message is also used to request the second received power expected by the first node in the second transmission mode.
  • the first node implements a configuration request for the first received power in the first transmission mode and a configuration request for the second received power in the second transmission mode through a one-time request message.
  • the second message is a received power request message
  • the received power request message includes: a first offset value and/or a power scaling factor, where the first offset value is relative to a demodulation reference Signal, synchronization/broadcast signal, and channel state information reference signal, the received power or transmission power offset value of any one or more of the signals, the power scaling factor is used to pass the demodulation reference signal, the synchronization/broadcast The received power or transmission power of any signal in the signal and the channel state information reference signal is multiplied by the power scaling factor to obtain the first received power.
  • a specific form of the second message is provided, and the power control parameters carried in the second message are shown for the second node to adjust the second node in the first transmission mode
  • the third transmit power when transmitting to the first node.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries fourth indication information
  • the fourth indication information is used to indicate that the second node is triggered to adjust the third transmission power.
  • the third transmission power is the transmission power when the second node transmits to the first node in the first transmission mode; or, the fourth indication information is used to instruct the second node to increase or decrease the first node Three transmission power.
  • the fourth indication information carried by the second message instructs the second node to adjust and adjust the direction of the second node in the first transmission mode.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries a first adjustment value
  • the first adjustment value is used by the second node to adjust the third transmission power.
  • the third transmission power is the transmission power when the second node transmits to the first node in the first transmission mode; or, the received power adjustment request message carries the first bit, and the first bit corresponds to the first adjustment value.
  • the adjustment value or bit carried by the second message instructs the second node to adjust the second node to the second node in the first transmission mode.
  • the received power adjustment request message is carried on MAC CE, or UCI or RRC signaling.
  • the received power adjustment request message can be carried in existing signaling, which improves the practicability of the solution.
  • the method further includes: the first node receives the first confirmation information sent by the second node; then, the first node determines that the second node has received the second message according to the first confirmation information.
  • a feedback manner for the second node is provided for the second message, so as to notify the first node that the second node has received the second message.
  • a fourth aspect of the embodiments of the present application provides a power control method, which includes:
  • the second node receives a second message sent by the first node, the second message is used to request the first received power expected by the first node in the first transmission mode, and the second node is the superior node of the first node Or host Donor base station.
  • the second node receives the first received power sent by the first node to request the first node to expect the first received power in the first transmission mode, so that the second node can perform the second transmission mode.
  • the third transmission power when the node transmits to the first node is adjusted, so as to alleviate the problem of the decrease in transmission capacity caused by interference and improve the transmission performance.
  • the second message is also used to request the second received power expected by the first node in the second transmission mode.
  • the first node implements a configuration request for the first received power in the first transmission mode and a configuration request for the second received power in the second transmission mode through a one-time request message.
  • the second message is a received power request message
  • the received power request message includes: a first offset value and/or a power scaling factor, where the first offset value is relative to a demodulation reference Signal, synchronization/broadcast signal, and channel state information reference signal, the received power or transmission power offset value of any one or more of the signals, the power scaling factor is used to pass the demodulation reference signal, the synchronization/broadcast The received power or transmission power of any signal in the signal and the channel state information reference signal is multiplied by the power scaling factor to obtain the first received power.
  • a specific form of the second message is provided, and the power control parameters carried in the second message are shown for the second node to adjust the second node in the first transmission mode
  • the third transmit power when transmitting to the first node.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries fourth indication information
  • the fourth indication information is used to indicate that the second node is triggered to adjust the third transmission power.
  • the third transmission power is the transmission power when the second node transmits to the first node in the first transmission mode; or, the fourth indication information is used to instruct the second node to increase or decrease the first node Three transmission power.
  • the fourth indication information carried by the second message instructs the second node to adjust and adjust the direction of the second node in the first transmission mode.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries a first adjustment value
  • the first adjustment value is used by the second node to adjust the third transmission power.
  • the third transmission power is the transmission power when the second node transmits to the first node in the first transmission mode; or, the received power adjustment request message carries the first bit, and the first bit corresponds to the first adjustment value.
  • the adjustment value or bit carried by the second message instructs the second node to adjust the second node to the second node in the first transmission mode.
  • the received power adjustment request message is carried on the MAC CE, or UCI or RRC signaling.
  • the received power adjustment request message can be carried in existing signaling, which improves the practicability of the solution.
  • the method further includes: the second node sends first confirmation information to the first node, and the first confirmation information is used to notify the first node that the second node has received the second node. information.
  • a feedback manner for the second node is provided for the second message, so as to notify the first node that the second node has received the second message.
  • a fifth aspect of the embodiments of the present application provides a power control device, and the power control device includes:
  • a processing module configured to determine a first power control parameter, where the first power control parameter is used to indicate the first transmission power expected by the power control device in the first transmission mode;
  • the transceiver module is configured to send a first message to the second node, the first message carries the first power control parameter, and the first message is used to request the power control device to operate at the desired first transmission power in the first transmission mode.
  • the second node is the Donor base station of the upper node of the power control device.
  • the first message further carries a second power control parameter
  • the second power control parameter is used to indicate the second transmission power expected by the power control apparatus in the second transmission mode.
  • the first power control parameter is also used to indicate the second transmission power expected by the power control apparatus in the second transmission mode.
  • the first power control parameter includes: the value or value range of the reference power, the value or value range of the user-level nominal power, or the reference power offset value.
  • the value of the user-level nominal power is represented by P0-PUSCH-AlphaSetID.
  • the first power control parameter further includes a path loss compensation factor and/or a path loss measurement reference signal index.
  • the path loss compensation factor is represented by the P0-PUSCH-AlphaSetID; the path loss measurement reference signal index is represented by the PUSCH-PathlossReferenceRS configuration.
  • the first message further carries first indication information, and the first indication information is used to indicate the transmission mode corresponding to the first power control parameter; or, the cell name of the first message is To indicate the transmission mode corresponding to the first power control parameter.
  • the first indication information includes first uplink transmission timing information, and the first uplink transmission timing information is used to indicate the first transmission mode.
  • the first transmission mode is space division multiplexing transmission, and the second transmission mode is full duplex transmission; or, the first transmission mode is full duplex transmission, and the second transmission mode is space division. Multiplexing transmission.
  • the first message is carried on RRC signaling, or MAC CE, or UCI, or BAP signaling or F1 interface application protocol signaling.
  • the transceiver module is also used for:
  • the reconfiguration message carrying a third power control parameter, the third power control parameter being the power control configured by the second node for the power control apparatus for the first transmission mode parameter;
  • the processing module is also used to:
  • transmission is performed at the transmission power determined by the third power control parameter.
  • the first power control parameter and the third power control parameter are partly or completely the same.
  • processing module is also used to:
  • the transmission is performed at the transmission power determined by the power control parameter corresponding to the first transmission mode;
  • the first condition includes any one of the following: the power control apparatus receives a second instruction sent by a third node Information, the second indication information is used to instruct the power control device to transmit at the transmission power determined by the power control parameter corresponding to the first transmission mode, and the third node is the upper node of the power control device or the donor Donor base station;
  • the power control apparatus receives the first uplink transmission timing indication sent by the second node, and the first uplink transmission timing indication is associated with the first transmission mode;
  • the power control apparatus is based on the current transmission frame structure of the power control apparatus Determine that the current transmission mode of the power control apparatus is the first transmission mode; or,
  • the transmission is performed at the transmission power determined by the power control parameter corresponding to the second transmission mode;
  • the second condition includes any of the following: the power control apparatus receives the third indication information sent by the third node , The third indication information is used to instruct the power control device to transmit at the transmission power determined by the power control parameter corresponding to the second transmission mode, and the third node is the upper node of the power control device or the donor Donor base station;
  • the power control apparatus receives a second uplink transmission timing indication sent by the second node, and the second uplink transmission timing indication is associated with the second transmission mode;
  • the power control apparatus determines the power according to the current transmission frame structure of the power control apparatus
  • the current transmission mode of the control device is the second transmission mode.
  • a sixth aspect of the embodiments of the present application provides a power control device, and the power control device includes:
  • the transceiver module is configured to receive a first message sent by a first node, where the first message carries a first power control parameter, and the first power control parameter is used to indicate the first node expected by the first node in the first transmission mode.
  • the transmission power, the first message is used to request the first transmission power expected by the first node in the first transmission mode, and the power control device is an upper node of the first node or a donor Donor base station.
  • the first message further carries a second power control parameter
  • the second power control parameter is used to indicate the second transmission power expected by the first node in the second transmission mode.
  • the first power control parameter is also used to indicate the second transmission power expected by the first node in the second transmission mode.
  • the first power control parameter includes: the value or value range of the reference power, the value or value range of the user-level nominal power, or the reference power offset value.
  • the value of the user-level nominal power is represented by P0-PUSCH-AlphaSetID.
  • the first power control parameter further includes a path loss compensation factor and/or a path loss measurement reference signal index.
  • the path loss compensation factor is represented by the P0-PUSCH-AlphaSetID; the path loss measurement reference signal index is represented by the PUSCH-PathlossReferenceRS configuration.
  • the first message further carries first indication information, and the first indication information is used to indicate the transmission mode corresponding to the first power control parameter; or, the cell name of the first message is To indicate the transmission mode corresponding to the first power control parameter.
  • the first indication information includes first uplink transmission timing information, and the first uplink transmission timing information is used to indicate the first transmission mode.
  • the first transmission mode is space division multiplexing transmission, and the second transmission mode is full duplex transmission; or, the first transmission mode is full duplex transmission, and the second transmission mode is space division. Multiplexing transmission.
  • the first message is carried on RRC signaling, or MAC CE, or UCI, or BAP signaling or F1 interface application protocol signaling.
  • the transceiver module is also used for:
  • the reconfiguration message carries a third power control parameter
  • the third power control parameter is a power control parameter configured by the power control apparatus for the first node for the first transmission mode.
  • the first power control parameter and the third power control parameter are partly or completely the same.
  • the transceiver module is also used for:
  • the power control parameter corresponding to the first transmission mode is sent to a fourth node, where the fourth node is an upper node of the first node or a donor Donor base station.
  • a seventh aspect of the embodiments of the present application provides a power control device, and the power control device includes:
  • the transceiver module is used to send a second message to the second node, the second message is used to request the first received power expected by the power control device in the first transmission mode, and the second node is the superior of the power control device Node Donor base station.
  • the second message is also used to request the second received power expected by the power control apparatus in the second transmission mode.
  • the second message is a received power request message
  • the received power request message includes: a first offset value and/or a power scaling factor, where the first offset value is relative to a demodulation reference Signal, synchronization/broadcast signal, and channel state information reference signal, the received power or transmission power offset value of any one or more of the signals, the power scaling factor is used to pass the demodulation reference signal, the synchronization/broadcast The received power or transmission power of any signal in the signal and the channel state information reference signal is multiplied by the power scaling factor to obtain the first received power.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries fourth indication information
  • the fourth indication information is used to indicate that the second node is triggered to adjust the third transmission power.
  • the third transmission power is the transmission power when the second node transmits to the power control apparatus in the first transmission mode; or, the fourth indication information is used to instruct the second node to increase or decrease the second node Three transmission power.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries a first adjustment value
  • the first adjustment value is used by the second node to adjust the third transmission power.
  • the third transmit power is the transmit power when the second node transmits to the power control apparatus in the first transmission mode; or, the receive power adjustment request message carries a first bit, and the first bit corresponds to the first adjustment value.
  • the received power adjustment request message is carried on MAC CE, or UCI or RRC signaling.
  • the transceiver module is also used for:
  • the power control device also includes a processing module
  • the processing module is configured to determine that the second node receives the second message according to the first confirmation information.
  • An eighth aspect of the embodiments of the present application provides a power control device, and the power control device includes:
  • the transceiver module is configured to receive a second message sent by the first node, the second message is used to request the first node's expected first received power in the first transmission mode, and the power control device is the first node's Upper-level node or host Donor base station.
  • the second message is also used to request the second received power expected by the first node in the second transmission mode.
  • the second message is a received power request message
  • the received power request message includes: a first offset value and/or a power scaling factor, where the first offset value is relative to a demodulation reference Signal, synchronization/broadcast signal, and channel state information reference signal, the received power or transmission power offset value of any one or more of the signals, the power scaling factor is used to pass the demodulation reference signal, the synchronization/broadcast The received power or transmission power of any signal in the signal and the channel state information reference signal is multiplied by the power scaling factor to obtain the first received power.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries fourth indication information
  • the fourth indication information is used to instruct to trigger the power control device to adjust the third transmission power.
  • the third transmission power is the transmission power when the power control apparatus transmits to the first node in the first transmission mode; or, the fourth indication information is used to instruct the power control apparatus to increase or decrease the first node Three transmission power.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries a first adjustment value
  • the first adjustment value is used by the power control device to adjust the third transmission power.
  • the third transmission power is the transmission power when the power control apparatus transmits to the first node in the first transmission mode; or, the received power adjustment request message carries a first bit, and the first bit corresponds to the first adjustment value.
  • the received power adjustment request message is carried on MAC CE, or UCI or RRC signaling.
  • the transceiver module is also used for:
  • a ninth aspect of the embodiments of the present application provides a power control device.
  • the flow identification device includes: a processor, a memory, an input/output device, and a bus; the memory stores computer instructions; the processor is executing the computer instructions in the memory When the memory is stored with computer instructions; when the processor executes the computer instructions in the memory, it is used to implement any implementation manner as in the first aspect.
  • the processor, the memory, and the input/output device are respectively connected to the bus.
  • a tenth aspect of the embodiments of the present application provides a power control device.
  • the flow identification device includes: a processor, a memory, an input/output device, and a bus; the memory stores computer instructions; the processor is executing the computer instructions in the memory When the memory is stored with computer instructions; when the processor executes the computer instructions in the memory, it is used to implement any one of the implementation manners in the second aspect.
  • the processor, the memory, and the input/output device are respectively connected to the bus.
  • the eleventh aspect of the embodiments of the present application provides a power control device.
  • the flow identification device includes: a processor, a memory, an input/output device, and a bus; the memory stores computer instructions; the processor is executing the computer in the memory In the case of instructions, computer instructions are stored in the memory; when the processor executes the computer instructions in the memory, it is used to implement any one of the implementation manners in the third aspect.
  • the processor, the memory, and the input/output device are respectively connected to the bus.
  • a twelfth aspect of the embodiments of the present application provides a power control device.
  • the flow identification device includes: a processor, a memory, an input/output device, and a bus; the memory stores computer instructions; the processor is executing the computer in the memory In the case of instructions, computer instructions are stored in the memory; when the processor executes the computer instructions in the memory, it is used to implement any one of the implementation manners in the fourth aspect.
  • the processor, the memory, and the input/output device are respectively connected to the bus.
  • the thirteenth aspect of the embodiments of the present application provides a computer program product including instructions, which is characterized in that, when it is run on a computer, the computer is caused to execute aspects such as the first aspect, the second aspect, the third aspect, and the fourth aspect. Any one of the implementation methods.
  • the fourteenth aspect of the embodiments of the present application provides a computer-readable storage medium, which is characterized in that it includes an instruction, when the instruction is run on a computer, the computer executes operations such as the first aspect, the second aspect, the third aspect, and the third aspect. Any implementation of any of the four aspects.
  • a fifteenth aspect of the embodiments of the present application provides a chip, including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the processor executes the above-mentioned first aspect, Any one of the second aspect, the third aspect, and the fourth aspect.
  • a sixteenth aspect of the embodiments of the present application provides a communication system that includes the power control device of the fifth aspect and the power control device of the sixth aspect; or, the communication system includes the power control device of the seventh aspect and Such as the power control device of the eighth aspect.
  • the first node determines the first power control parameter, and the first power control parameter is used to indicate the first transmission power expected by the first node in the first transmission mode; then, the first node sends the first power control parameter to the second node.
  • a message, the first message carrying the first power control parameter, the first message is used to request the first node to be at the desired first transmission power in the first transmission mode, and the second node is the superior of the first node Node Donor base station. It can be seen from this that for the first transmission mode, the first node can report the first power control parameters expected in the first transmission mode to the second node, so that the second node can communicate with the first node in the first transmission mode.
  • the configuration of power control parameters is the configuration of power control parameters.
  • the first node when the first node reports the first power control parameter to the second node, it associates the transmission mode with the reported power control parameter, which is beneficial to alleviating problems such as a decrease in transmission capacity caused by interference and the like, and improving transmission performance.
  • the first node transmits to the second node through the transmission power determined by the first power control parameter, which effectively alleviates the problem of the decrease in transmission capacity caused by interference and improves the transmission performance.
  • FIG. 1A is a schematic diagram of a communication system according to an embodiment of the application.
  • FIG. 1B is a schematic diagram of a scenario of a backhaul link and an access link according to an embodiment of the application;
  • FIG. 1C is a schematic diagram of the functional structure of an IAB node according to an embodiment of the application.
  • Figure 2(a) is a schematic diagram of a scenario of uplink full-duplex transmission according to an embodiment of the application
  • Fig. 2(b) is a schematic diagram of a sending scenario of space division multiplexing transmission according to an embodiment of the application;
  • Figure 2(c) is a schematic diagram of a scenario of downlink full-duplex transmission according to an embodiment of the application
  • FIG. 2(d) is a schematic diagram of a receiving scene of space division multiplexing transmission according to an embodiment of the application;
  • 3A is a schematic diagram of an embodiment of a power control method according to an embodiment of the application.
  • 3B is a schematic diagram of a scene of a power control method according to an embodiment of this application.
  • FIG. 3C is a schematic diagram of another scenario of a power control method according to an embodiment of this application.
  • FIG. 4 is a schematic diagram of another embodiment of a power control method according to an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a power control device according to an embodiment of the application.
  • FIG. 6 is another schematic structural diagram of a power control device according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of another structure of a power control device according to an embodiment of the application.
  • FIG. 8 is another schematic structural diagram of a power control device according to an embodiment of the application.
  • FIG. 9 is another schematic structural diagram of a power control device according to an embodiment of the application.
  • FIG. 10 is another schematic structural diagram of a power control device according to an embodiment of the application.
  • FIG. 11 is another schematic structural diagram of a power control device according to an embodiment of the application.
  • FIG. 12 is another schematic structural diagram of a power control device according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of a communication system according to an embodiment of the application.
  • the embodiments of the present application provide a power control method and a power control device, which are used to alleviate the problem of transmission capacity reduction caused by interference and improve transmission performance.
  • FIG. 1A shows an IAB system applied in an embodiment of the present application.
  • the IAB system includes at least one base station 101, terminal equipment 104 served by the base station 101, a relay node 103, a relay node 104, and the relay node 102 served ⁇ terminal equipment 105.
  • the base station 101 is called a donor base station, or may also be called a donor node, and the terminal device is also called a terminal.
  • Base stations include but are not limited to: eNB, radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS) , Home base station (for example, home evolved node B, or home node B, HNB), baseband unit (BBU), or new air interface base station (for example, gNB), transmission receiving point TRP, or transmission point TP, etc.
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS base transceiver station
  • Home base station for example, home evolved node B, or home node B, HNB
  • BBU baseband unit
  • new air interface base station for example, gNB
  • the relay node 103 is an upper node of the relay node 102, and the relay node 102 is a lower node of the base station 101.
  • the lower-level node can be regarded as a terminal of the upper-level node.
  • the Donor base station is used to access the core network.
  • the Donor base station serves as an anchor base station of the wireless access network, and accesses the network through the anchor base station.
  • the anchor base station is responsible for packet data convergence protocol (packet data convergence protocol, PDCP) layer data processing, or is responsible for receiving core network data and forwarding to the relay node, or receiving relay node data and forwarding to the core network.
  • PDCP packet data convergence protocol
  • the relay node is referred to as the first node in the following text, and the upper node of the first node is referred to as the second node.
  • the first node is a relay node, or a terminal with a relay function, or any device with a relay function.
  • the second node is a Donor base station, or a relay node, or a terminal with a relay function, or any device with a relay function.
  • the first node is an IAB node
  • the second node is a Donor base station.
  • the first node is the IAB node 2
  • the second node is the Donor base station
  • the Donor base station is the upper node of the IAB node 2.
  • Both the first node and the second node are IAB nodes, and the first node is a subordinate node of the second node.
  • the first node is IAB node 1
  • the second node is IAB node 2
  • IAB node 2 is the upper node of IAB node 1.
  • the influence of interference needs to be considered when configuring the transmit power and receive power of the IAB node.
  • the influence of the interference between the transmit power and the received power of the IAB node is mainly the interference between the backhaul link and the access link. Or in more transmission modes, so that the receiver of the IAB node does not exceed the dynamic range supported by its hardware capability when receiving signals.
  • the Donor base station is the upper-level node of IAB node 2
  • the IAB node 1 is the lower-level node of IAB node 2.
  • the communication link between the IAB node 2 and an upper-level node is usually called a backhaul link.
  • the communication link between the IAB node 2 and the lower-level node is generally referred to as an access link.
  • the communication link between the IAB node and the lower-level node is also called the backhaul link, and the communication link between the IAB node and the terminal device is called the access link .
  • the specific application is not limited.
  • the communication link between the IAB node and the lower-level node or terminal device is called an access link as an example for description.
  • the IAB node is functionally divided into an IAB mobile terminal (mobile terminating, MT) and an IAB distributed unit (DU).
  • IAB MT refers to the IAB node as a terminal device to access the upper-level node.
  • IAB DU refers to the IAB as a distributed unit of the base station, providing access services for the UE and other lower-level nodes.
  • the IAB MT communicates with the upper-level node through the backhaul link
  • the IAB DU communicates with the lower-level node through the backhaul link
  • the IAB DU communicates with the terminal device through the access link.
  • Both the MT and the DU in the IAB node shown in FIG. 1C have complete transceiver modules, and there is an interface between the MT and the DU.
  • MT and DU are logical modules.
  • MT and DU can share some sub-modules.
  • MT and DU share a transceiver antenna, baseband processing module, etc.
  • MT and DU can share hardware, and the present invention does not limit the specific implementation of MT and DU.
  • the embodiments of this application are applicable to transmission modes including but not limited to: space division multiplexing transmission and full duplex transmission.
  • Space division multiplexing transmission means that IAB nodes can send uplink signals to superior nodes through the backhaul link at the same time, and they can also send downlink signals to subordinate nodes or terminal equipment through the access link; or, IAB nodes at the same time It can not only receive the downlink signal sent by the upper-level node on the backhaul link, but also receive the uplink signal sent by the lower-level node or terminal equipment on the access link.
  • Full-duplex transmission means that the IAB node can receive the uplink signal sent by the lower-level node through the access link at the same time, and can also send the uplink signal to the upper-level node through the backhaul link; or, the IAB node can both pass through at the same time
  • the backhaul link receives the downlink signal sent by the superior node, and can also send the downlink signal to the subordinate node through the access link.
  • the frequency band used on the access link and the frequency band used on the backhaul link are the same frequency band or different frequency bands.
  • the access link and the backhaul link can use the same frequency point in the same frequency band, or use different frequencies in the same frequency band. Frequency.
  • FIG. 2(a) is a schematic diagram of a scenario of uplink full-duplex transmission in an embodiment of the application.
  • IAB node1 not only sends uplink signals to the Donor base station through the backhaul link, but also receives the uplink signals sent by IAB node2 through the access link.
  • IAB node1 is the superior node of IAB node2. If the transmission power of the uplink signal sent by IAB node1 to the Donor base station is too large, it will cause interference problems with IAB node1's own receiver. That is, it affects IAB node1's reception of IAB node2's uplink signal, and interferes with IAB's node1's uplink reception.
  • FIG. 2(b) is a schematic diagram of a transmission scenario of space division multiplexing transmission in an embodiment of this application.
  • IAB node1 sends an uplink signal to the Donor base station through the backhaul link, and also sends a downlink signal to IAB node2 through the access link.
  • IAB node1 is the superior node of IAB node2. If the transmission power of IAB node1 to send uplink signals to the Donor base station is too large, it will affect the downlink signal transmission of IAB node1 to IAB node2, and cause interference to the downlink transmission of IAB node1. If the transmission power of IAB node1 to send downlink signals to IAB node2 is too large, it will affect IAB node1 to send uplink signals to the Donor base station, which will interfere with the uplink transmission of IAB node1.
  • the power control method shown in Fig. 3A provided by the embodiment of the present application can realize the above-mentioned IAB node1 in Fig. 2(a) or Fig.
  • the uplink transmission power control in the transmission mode shown in 2(b) can alleviate problems such as the decrease of transmission capacity caused by interference and so on, so as to improve the network transmission performance.
  • FIG. 2(c) is a schematic diagram of a scenario of downlink full-duplex transmission in an embodiment of the application.
  • IAB node1 not only receives the downlink signal sent by the Donor base station through the backhaul link, but also sends the downlink signal to IAB node2 through the access link.
  • IAB node1 is the superior node of IAB node2. If the Donor base station sends a downlink signal to IAB node2 with too much transmission power, it will affect the downlink signal transmission of IAB node1 to IAB node2, and cause interference to the downlink transmission of IAB node1.
  • FIG. 2(d) is a schematic diagram of a receiving scene of space division multiplexing transmission in an embodiment of this application.
  • IAB node1 not only receives the downlink signal sent by the Donor base station through the backhaul link, but also receives the uplink signal sent by IAB node2 through the access link.
  • IAB node1 is the superior node of IAB node2. If the Donor base station sends a downlink signal to IAB node1 with too much power, it will affect the uplink signal reception of IAB node2 or terminal equipment by IAB node1, and interfere with the uplink reception of IAB node1 or terminal equipment.
  • IAB node1 receiving the uplink signal sent by IAB node2 is too large, it will affect IAB node1's reception of the downlink signal of the Donor base station, and interfere with the downlink reception of IAB node1.
  • the power control method shown in Fig. 4 provided by the embodiment of the present application can realize the above-mentioned IAB node1 in Fig. 2(c) or Fig. 2 (d)
  • the control of the downlink received power in the transmission mode shown in the figure can alleviate problems such as a decrease in transmission capacity caused by interference, etc., so as to improve network transmission performance.
  • FIG. 3A is a schematic diagram of an embodiment of a power control method according to an embodiment of the application.
  • the method includes:
  • the first node determines a first power control parameter.
  • the first power control parameter is used to indicate the first transmission power expected by the first node in the first transmission mode.
  • the first power control parameter may include the value or value range of the reference power P O_PUSCH , the value or value range of the user-level nominal power P O_UE_PUSCH , or the reference power offset value.
  • the reference power offset value refers to the offset value relative to the existing reference power in time division multiplexing (TDM) mode, or the offset value of the reference power configured by the power control parameter that the first node has received value.
  • the first power control parameter further includes any one or more of the following: path loss compensation factor, path loss measurement reference signal index, uplink channel or uplink signal-reference power and path loss parameter set index, uplink channel or Uplink signal-path loss reference signal configuration, uplink channel or uplink signal-uplink sounding reference signal resource index-power control parameter configuration, reference power-uplink channel or uplink signal configuration set configuration, the first transmission power of the first transmission mode The limit value, the first lower limit value of the transmission power of the first transmission mode, the value range of the difference between the first upper limit value and the first lower limit value, and the dynamic power control cumulative value.
  • the path loss measurement reference signal index may include synchronization signal/physical broadcasting channel timing index, SS/PBCH timing index, or channel state information reference signal resource index (channel state information reference signal resource ID, CSI) -RS resource ID)
  • the uplink channel is PUSCH, or physical uplink control channel (PUCCH).
  • the uplink signal is an uplink reference signal, for example, an uplink sounding reference signal (SRS).
  • SRS uplink sounding reference signal
  • the first power control parameter further includes a modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • each MCS index range has a corresponding power control parameter.
  • the first power control parameter includes the desired power control parameter and the configured power control parameter.
  • the expected power control parameters include currently defined power control parameters and newly defined power control parameters.
  • the configured power control parameters are existing power control parameters in time division multiplexing (TDM) mode.
  • the defined power control parameters may be determined based on the uplink power control mechanism defined by the 3GPP NR standard.
  • the power control method in the embodiment of the present application is applicable to an uplink channel (for example, a physical uplink shared channel or a physical uplink control channel) or an uplink signal (for example, an uplink reference signal SRS).
  • the following takes the PUSCH channel as an example to introduce the current NR uplink power control mechanism.
  • the UE determines the uplink transmission power on the PUSCH channel, which mainly depends on the following formula 1:
  • PUSCH refers to the PUSCH channel.
  • b represents the current bandwidth (bandwidth part, BWP) of the PUSCH channel.
  • f represents the current carrier frequency of the PUSCH channel.
  • c represents the current cell (cell).
  • i represents the transmission timing of the PUSCH channel.
  • j represents the index of the power control parameter set.
  • q d represents the reference signal used to calculate the path loss.
  • l indicates the power control adjustment status index.
  • P CMAX,f,c(i) is the maximum uplink transmission power of the UE, and the value of P CMAX,f,c(i) is based on legal restrictions and is restricted by the communication protocol.
  • P O_PUSCH is the reference power, which can be understood as a reference value for power control.
  • the reference power is generally related to the configuration of the base station, and the base station adjusts or modifies the power control parameters based on the value of the PO_PUSCH.
  • P O_PUSCH P O_UE_PUSCH + P O_NOMINAL_PUSCH
  • P O_UE_PUSCH is the configured user-level nominal power value
  • P O_NOMINAL_PUSCH is the uplink transmission power when the UE initially successfully accesses the network.
  • bandwidth compensation factor which is related to the current subcarrier spacing and scheduling bandwidth. The larger the bandwidth, the larger the value of the bandwidth compensation factor.
  • ⁇ b,f,c (j) ⁇ PL b,f,c (q d ) is the path loss compensation
  • ⁇ b,f,c (j) is the path compensation factor.
  • the base station can configure the path compensation factor through a parameter set. Normally, the value range of the path compensation factor is [0,1].
  • ⁇ TF, b, f, c (i) is related to the modulation and coding mode and the number of sub-carriers occupied by the reference signal in the bandwidth.
  • ⁇ TF,b,f,c (i) is used by the base station to further supplement the power according to the transmission resource situation during specific scheduling.
  • the base station can be configured not to enable this function.
  • f b, f, c (i, l) characterizes the adjustment result of dynamic power control.
  • the base station may adjust f b, f, c (i, l) through physical layer control signaling DCI.
  • f b, f, c (i, l) is a cumulative value related to the value of the previous transmission opportunity of the PUSCH channel.
  • min(x) represents the smaller value of x.
  • the UE calculates the transmission power according to various parameters, and if it exceeds P CMAX,f,c(i), it transmits the signal according to the transmission power indicated by P CMAX,f,c(i).
  • the first power control parameter reported by the first node in the embodiment of the present application can at least partially use the power control parameter used in the existing uplink power control mechanism, and the first node reports the first power control parameter.
  • a power control parameter to achieve differentiated configuration of power control parameters for more transmission modes For example, the value or range of the reference power P O_PUSCH carried in the first power control parameter, the value or range of the user-level nominal power P O_UE_PUSCH , the reference power offset value, the path loss compensation factor, the path
  • the loss measurement reference signal index and the dynamic power control cumulative value are both power control parameters used in the existing uplink power control mechanism.
  • the dynamic power control cumulative value is used by the second node to determine the uplink transmission power of the first node according to the dynamic power control.
  • the second node defaults the reference cumulative value of the dynamic power control to 0.
  • the second node defaults to the dynamic power control cumulative value in the TDM mode at the previous moment as the reference cumulative value of the dynamic power control.
  • the second node defaults the cumulative value of the dynamic power control during the last full-duplex transmission or space division multiplexing transmission as the reference cumulative value of the dynamic power control .
  • the second node defaults the cumulative value of the dynamic power control to the default value specified by the protocol or configured.
  • the configured power control parameters in the first power control parameters are introduced below.
  • the uplink channel is PUSCH as an example to introduce the configured power control parameters in the first power control parameters.
  • Uplink channel or uplink signal-reference power and path loss parameter set index is P0-PUSCH-AlphaSetID.
  • the first power control parameter includes one or more PO-PUSCH-AlphaSetID.
  • Each P0-PUSCH-AlphaSet includes a P0-PUSCH-AlphaSetID, the value of the user-level nominal power, and the path loss compensation factor (the value of Alpha). Specifically expressed as:
  • P0-PUSCH-AlphaSet includes the value of the user-level nominal power and the path loss compensation factor.
  • the value of the user-level nominal power and the path loss compensation factor carried in the first power control parameter are indirectly represented by P0-PUSCH-AlphaSetID. That is, the value of the nominal power of the user-level meter and the value of the path loss compensation factor can be carried by P0-PUSCH-AlphaSet.
  • the uplink channel or uplink signal-path loss reference signal configuration is the PUSCH-PathlossReferenceRS configuration
  • the first power control parameter includes one or more PUSCH-PathlossReferenceRS configurations.
  • Each PUSCH-PathlossReferenceRS includes PUSCH-PathlossReferenceRS ID, CSI-RS resource ID or SS/PBCH index). Specifically expressed as:
  • the PUSCH-PathlossReferenceRS includes the PUSCH-PathlossReferenceRS ID.
  • the path loss measurement reference signal index carried in the first power control parameter is represented by the PUSCH-PathlossReferenceRS configuration. That is, the path loss measurement reference signal index can be carried through the PUSCH-PathlossReferenceRS configuration.
  • Uplink channel or uplink signal-uplink sounding reference signal resource index-power control parameter is configured as physical uplink shared channel-uplink sounding reference signal resource index-power control parameter (sounding resource index physical uplink shared channel power control, SRI-PUSCH- PowerControl) configuration
  • the first power control parameter includes one or more PUSCH-PowerControl configurations.
  • Each SRI-PUSCH-PowerControl contains SRI-PUSCH-PowerControl ID, sri-PUSCH-PathlossReferenceRS-Id, a sri-P0-PUSCH-AlphaSetId and sri-PUSCH-ClosedLoopIndex. Specifically expressed as:
  • the reference power-uplink channel or uplink signal configuration set is configured as a PO-PUSCH-Set configuration
  • the first power control parameter includes one or more PO-PUSCH-Set configurations.
  • Each P0-PUSCH-Set contains the value of P0-PUSCH-SetID and user-level nominal power P O_UE_PUSCH . Specifically expressed as:
  • the first upper limit value is the upper limit of the transmit power used by the first node in the first transmission mode.
  • the transmission when the transmission power determined by the first node through the power control parameter of the first transmission mode is greater than the first upper limit value, the transmission is performed according to the first upper limit value; and if the first node If the upper limit value is not configured, the first node transmits through the upper limit value of the transmit power in the TDM mode.
  • the upper limit value of the transmission power corresponding to space division multiplexing transmission is PCMAX,SDM
  • the upper limit value of the transmission power corresponding to full-duplex transmission is PCMAX,FD .
  • the first lower limit is the lower limit of the transmit power used by the first node in the first transmission mode.
  • the value range of the difference between the first upper limit value and the first lower limit value is used to indicate the value range of the transmit power used by the first node in the first transmission mode.
  • the first power control parameter is also used to indicate the second transmission power expected by the first node in the second transmission mode.
  • the first node requests the first transmission power expected in the first transmission mode and the second transmission power expected in the second transmission mode through the same power control parameter (first power control parameter). .
  • first transmission mode and the second transmission mode include any one of the following possible implementation manners:
  • the transmission power expected in the first transmission mode is used for space division multiplexing transmission, and the transmission power expected in the second transmission mode is used for full-duplex transmission.
  • the desired transmission power in the first transmission mode is used for full-duplex transmission
  • the desired transmission power in the second transmission mode is used for space division multiplexing transmission
  • the first node sends a first message to the second node.
  • the first message carries the first power control parameter, and the first message is used to request the first transmission power expected by the first node in the first transmission mode.
  • the first node is an IAB node
  • the second node is a Donor base station.
  • the first application scenario is: the first node is the IAB node 2, and the second node is the Donor base station.
  • the second application scenario is: the first node is the IAB node 1, and the second node is the Donor base station.
  • Relation 2 Both the first node and the second node are IAB nodes, and the second node is the superior node of the first node.
  • the first node is IAB node 1
  • the second node is IAB node 2
  • IAB node 2 is the superior node of IAB node 1.
  • the first message is carried on radio resource control RRC signaling, or media access control control element MAC CE, or uplink control information UCI, or adaptation layer BAP signaling or F1 interface application protocol signaling.
  • the first transmission power can be understood as the uplink transmission power of the first node when transmitting to the second node in the first transmission mode.
  • the first message is also used to request the first node to transmit in the second transmission mode.
  • the expected second transmit power in the mode is also used to request the first node to transmit in the second transmission mode.
  • the first node requests the first transmission power expected by the first node in the first transmission mode and the second transmission expected by the first node in the second transmission mode through the same power control parameter. Power so that the second node can configure the power control parameters of the first transmission mode and the power control parameters of the second transmission mode respectively.
  • the first message further carries a second power control parameter, and the second power control parameter is used to indicate the second transmission power expected by the first node in the second transmission mode. Then, the first message is also used to request the second transmission power expected by the first node in the second transmission mode.
  • the content of the second power control parameter is similar to the content of the first power control parameter in the foregoing step 301, and will not be repeated here.
  • the first node carries the first power control parameter and the second power control parameter in one request, so as to realize the reporting of the power control parameters of the two different transmission modes, so as to facilitate the second node to separately control the power control parameters of the first transmission mode. And the configuration of the power control parameters of the second transmission mode.
  • the second power control parameter is partly the same as or different from the first power control parameter.
  • the first power control parameter corresponds to space division multiplexing transmission
  • the second power control parameter corresponds to full duplex transmission
  • the first power control parameter includes the reference power value A1 and the path loss compensation factor B1
  • the second power control parameter includes the reference power value A2 and the path loss compensation factor B1
  • the first power control parameter and the second power control parameter The power control parameters are partly the same.
  • the first node reports the first power control parameter expected in the first transmission mode to the second node, so as to realize the second node's control of the power control parameters of the first node in the first transmission mode. Configuration.
  • the first node when the first node reports the first power control parameter to the second node, it associates the transmission mode with the reported power control parameter, which is beneficial to alleviating problems such as a decrease in transmission capacity caused by interference and the like, and improving transmission performance.
  • the first node transmits to the second node through the transmission power determined by the first power control parameter, which effectively alleviates the problem of the decrease in transmission capacity caused by interference and improves the transmission performance.
  • the embodiment of the present application provides multiple implementation manners, which are respectively introduced below.
  • the first message also includes first indication information.
  • the first indication information is used to indicate the first transmission mode, and the first power control parameter corresponds to the first transmission mode.
  • the first indication information includes a variety of possible implementation manners, which are described below through examples:
  • the first indication information includes first uplink transmission timing information.
  • the first uplink sending timing is associated with the first transmission mode. Therefore, when the first indication information includes the first uplink transmission timing information, the first power control parameter corresponds to the first transmission mode.
  • the first uplink sending timing information indirectly (implicitly) or directly (explicitly) indicates that the first power control parameter corresponds to the first transmission mode, which will be introduced separately below.
  • the first uplink transmission timing information indirectly (implicitly) indicates that the first power control parameter corresponds to the first transmission mode.
  • the first uplink sending timing information includes the ID of a timing advance group (TAG) corresponding to the first transmission mode.
  • TAG timing advance group
  • the transmission mode is associated with uplink transmission timing, and the uplink transmission timing is related to TAGs, and each TAG corresponds to an ID.
  • the second node can determine the transmission mode corresponding to the first power control parameter through the ID of the TAG included in the first uplink sending timing information. For example, if the first uplink transmission timing information includes the ID of the TAG corresponding to the first transmission mode, it can be known that the first power control parameter corresponds to the first transmission mode. When the first uplink transmission timing information includes the second transmission mode corresponding TAG ID indicates that the first power control parameter corresponds to the second transmission mode.
  • the first uplink sending timing information is an identifier.
  • the first power control parameter is space division multiplexing transmission.
  • the first power control parameter is the full duplex transmission mode.
  • the first uplink sending timing information includes a timing advance (TA) value corresponding to the first transmission mode.
  • TA timing advance
  • the transmission mode is associated with uplink transmission timing, and the uplink transmission timing is represented by the value of TA. Then, the second node can determine the transmission mode corresponding to the first power control parameter through the value of the uplink transmission timing. For example, if the first uplink transmission timing information includes the TA value corresponding to the first transmission mode, the first transmission mode corresponding to the first power control parameter can be known.
  • the first uplink transmission timing information directly (explicitly) indicates that the first power control parameter corresponds to the first transmission mode.
  • the first uplink transmission timing information includes a second bit, and the value of the second bit is used to indicate the transmission mode corresponding to the first power control parameter.
  • the value of the second bit is "1", which represents the first transmission mode corresponding to the first power control parameter
  • the value of the second bit is "0", which represents that the first power control parameter corresponds to the second transmission mode.
  • the first indication information includes an index value.
  • the index value is a first preset value
  • the first preset value is used to indicate the first transmission mode
  • the first power control parameter corresponds to the first transmission mode.
  • Table 1 shows the corresponding relationship between the index value and the power control parameter:
  • Power control parameters 00 The first power control parameter of the first transmission mode 01
  • the index value is "00"
  • the index value carried by the first node in the request message is the second preset value
  • the second preset value is used for Indicates the second transmission mode.
  • the second power control parameter is used to request the second transmission power expected by the first node in the second transmission mode. For example, when a field in the request message is "0", it means that the second power control parameter corresponds to the second transmission mode.
  • Implementation manner 2 The cell name of the first message is used to indicate the transmission mode corresponding to the first power control parameter.
  • the cell name of the first message is the first cell name
  • the first cell name is used to indicate that the first power control parameter corresponds to the first transmission mode.
  • the first power control parameter corresponds to space division multiplexing transmission
  • the first power control parameter corresponds to full duplex transmission.
  • the second implementation mode only shows that the transmission mode corresponding to the first power control parameter is indicated by the cell name of the first message.
  • other attribute information of the first message may also be used to indicate the transmission mode corresponding to the first power control parameter. For example, the cell format of the first message, the number of times the first message is sent, and so on.
  • Feedback method 1 The second node feeds back positive confirmation information or negative confirmation information to the first node.
  • step 303a and step 304a further includes step 303a and step 304a, and step 303a and step 304a are executed after step 302.
  • Step 303a If the first node receives the positive confirmation message sent by the second node, the first node performs transmission at the first transmission power determined by the first power control parameter in the first transmission mode.
  • the first node calculates the first transmission power based on the first power control parameter and the above formula.
  • the affirmative confirmation information is used to indicate that the first node agrees to transmit at the first transmission power determined by the first power control parameter.
  • the positive confirmation information is ACK.
  • the second node is the Donor base station
  • the first node is IAB node1.
  • the Donor base station sends a positive confirmation message to IAB node1.
  • Step 304a If the first node receives the negative acknowledgement information sent by the second node, the first node transmits in the first transmission mode at the third transmission power determined by the power control parameter in the TDM mode.
  • the first node calculates the third transmit power according to the power control parameters in the TDM mode and the above formula.
  • the negative confirmation information is used to deny the first node to transmit at the first transmission power determined by the first power control parameter.
  • the negative acknowledgement information is NACK.
  • step 304a if the second node refuses the first node to transmit through the first transmit power control determined by the first power control parameter, then the first node can use the transmit power of the configured power control parameter in the TDM mode to perform the transmission. transmission.
  • the mechanism of step 304a is specified by the communication protocol or determined by the first node.
  • Feedback method 2 The second node only feeds back negative confirmation information.
  • step 303b and step 304b In the second feedback mode, the embodiment shown in FIG. 3A further includes step 303b and step 304b, and step 303b and step 304b are executed after step 302.
  • Step 303b If the first node does not receive the negative acknowledgement information sent by the first node, the first node transmits in the first transmission mode at the first transmission power determined by the first power control parameter, and calculates the first transmission power Please refer to step 303a for the formula.
  • the second node When the second node agrees that the first node transmits the first power control parameter determined by the first power control parameter in the first transmission mode, the second node does not feed back any message to the first node.
  • Step 304b If the first node receives the negative confirmation message sent by the first node, the first node transmits in the first transmission mode at the third transmission power determined by the power control parameters in the TDM mode, and calculates the third transmission For the power formula, please refer to step 304a.
  • step 304b if the second node rejects the first node to perform transmission through the first transmit power control determined by the first power control parameter, then the first node can use the configured transmit power of the power control parameter in the TDM mode to perform transmission.
  • the negative acknowledgement information is NACK.
  • the mechanism of step 304b is specified by the communication protocol or determined by the first node.
  • Feedback method 3 The second node only feeds back positive confirmation information.
  • step 303c and step 304c the embodiment shown in FIG. 3A further includes step 303c and step 304c, and step 303c and step 304c are executed after step 302.
  • Step 303c If the first node receives the positive confirmation message sent by the first node, the first node performs transmission at the first transmission power determined by the first power control parameter in the first transmission mode, and calculates the value of the first transmission power. Please refer to step 303a for the formula.
  • the second node When the second node agrees that the first node transmits the first power control parameter determined by the first power control parameter in the first transmission mode, the second node sends a positive confirmation message to the first node.
  • the positive confirmation information is ACK.
  • Step 304c If the first node does not receive the positive confirmation message sent by the first node, the first node transmits in the first transmission mode at the third transmission power determined by the power control parameter in the TDM mode, and calculates the first transmission power. For the formula of three transmission power, please refer to step 304a.
  • step 304c if the second node refuses the first node to transmit through the first transmit power control determined by the first power control parameter, then the first node can use the configured transmit power of the power control parameter in the TDM mode to perform transmission. transmission.
  • the mechanism of step 304c is specified by the communication protocol or confirmed by the first node.
  • Feedback method 4 The second node feeds back the reconfiguration message to the first node.
  • step 303d and step 304d further includes step 303d and step 304d, and step 203d and step 304d are executed after step 302.
  • Step 303d The second node sends a reconfiguration message to the first node.
  • the reconfiguration message carries a third power control parameter
  • the third power control parameter is a power control parameter configured by the second node for the first node for the first transmission mode.
  • the first power control parameter is partly or completely the same as the third power control parameter.
  • the second node is the Donor base station
  • the first node is IAB node1.
  • the Donor base station sends a reconfiguration message to IAB node1.
  • the following describes the relationship between the first power control parameter and the third power control parameter in combination with the manner in which the second node reconfigures the third power control parameter for the first node.
  • Manner a The second node retains the configuration of part of the power control parameter of the first power control parameter reported by the first node, and modifies the configuration of another part of the power control parameter of the first power control parameter.
  • the second node only feeds back the modified power control parameter in the first power control parameter and includes it in the reconfiguration message.
  • the first node may default to the second node not modifying the power control parameters not included in the reconfiguration message.
  • the first node reports the value of the reference power and the value of the path loss compensation factor.
  • the second node uses the value of the reference power, modifies the value of the path loss compensation factor, and then uses the value of the reference power and the value of the modified path loss compensation factor as the second power control parameter.
  • the first power control parameter reported by the first node may cause inter-user interference or inter-cell interference.
  • Manner b The second node adds the configuration of other power control parameters on the basis of the first power control parameter.
  • the first node only reports the value of the reference power or the value range of the reference power
  • the second node adds the path loss compensation factor and the configuration of the path loss measurement parameter signal in the reconfiguration message. That is, the first power control parameter only includes the value of the reference power, and the second power control parameter includes the value of the reference power, the path loss compensation factor, and the path loss measurement parameter signal.
  • the second node in the manner b, there are multiple configuration reasons for the second node to increase the first power control parameter. For example, the second node believes that adding another part of the power control parameter configuration can increase the predictability of the uplink transmission power of the first node and improve the transmission performance of the first node.
  • Step 304d The first node transmits in the first transmission mode at the transmission power determined by the third power control parameter.
  • the embodiment shown in FIG. 3A further includes step 305 and step 306.
  • Step 305 When the first condition is met, the first node performs transmission at the first transmission power determined by the power control parameter corresponding to the first transmission mode.
  • the first condition includes any of the following:
  • the first node receives the second indication information sent by the third node.
  • the second indication information is used to instruct the first node to perform transmission using the transmission power determined by the power control parameter corresponding to the first transmission mode.
  • the third node is the upper node of the first node or the donor Donor base station.
  • the first application scenario is: the first node is IAB node1, and the second node is the Donor base station. Then in this application scenario, the third node and the second node are the same device, that is, the Donor base station.
  • the Donor base station sends the second indication information to IAB node1.
  • the second application scenario is: the first node is IAB node2, and the second node is the Donor base station. Then in this application scenario, the third node is IAB node1, IAB node1 is the lower node of Donor base station, and IAB node1 is the upper node of IAB node2.
  • the third application scenario is: the first node is IAB node2, the second node and the third node are the same device, that is, IAB node1, and IAB node2 is the superior node of IAB node1.
  • the third node is IAB node2.
  • the IAB DU in IAB node2 sends the second instruction information to IAB node1.
  • the first node receives the first uplink transmission timing indication sent by the second node.
  • the first uplink transmission timing indicated by the first uplink transmission timing indication is associated with the first transmission mode.
  • the communication protocol defines an uplink transmission timing that is different from the time division transmission mode, and the uplink transmission timing is associated with the transmission mode, thereby indirectly realizing the corresponding relationship between the transmission mode and the transmission power parameter.
  • timing advance or timing advance group (TAG) is configured for different transmission modes, so as to distinguish multiple transmission modes through TA or TAG ID; or, to distinguish multiple transmission modes through signaling; Or, by defining transmission parameter sets for different transmission modes, so as to distinguish between multiple transmission modes through the transmission parameter sets; or, by configuring the bandwidth part (BWP) configuration for different transmission modes, so as to realize the distinction between multiple transmission modes through BWP configuration Transmission mode.
  • the transmission parameter set or BWP configuration includes uplink transmission timing information.
  • the first node determines that the current transmission mode of the first node is the first transmission mode according to the current transmission frame structure of the first node.
  • Example 1 The first node is an IAB node, and the IAB MT of the IAB node transmits an uplink signal to the superior node at the same time, and receives the uplink signal sent by the subordinate node at the same time. That is, both IAB MT and IAB DU are scheduled at the same time to form uplink full-duplex transmission, then the IAB node can determine that the current transmission mode is the full-duplex transmission mode.
  • the IAB DU of the IAB node is configured as a hard UL resource type on a certain time resource.
  • the hard UL resource type is a resource type that has been defined in the 3GPP standard protocol.
  • the IAB DU can receive uplink signals on this hard UL resource type, and the behavior of the IAB MT of the IAB node does not affect the uplink reception of the IAB DU. That is, for an IAB node with full duplex capability, at this time, the upper-level node of the IAB node can still schedule the IAB MT for uplink transmission.
  • the IAB node can determine that the current transmission mode is full-duplex transmission, and the IAB node adopts the power control of full-duplex transmission
  • the transmit power determined by the parameter transmits the signal.
  • the technical solutions of the embodiments of this application are not limited to the resource types in the above examples. Since the standard also defines other resource types and transmission directions, as long as IAB MT and IAB DU constitute full-duplex transmission in the general sense, it can be based on this
  • the power control method provided in the application embodiment determines the transmit power of the IAB node in full-duplex transmission.
  • the IAB DU of the IAB node is configured as a hard DL resource type on a certain time resource.
  • the hard DL resource type is a resource type that has been defined in the 3GPP standard protocol.
  • the IAB DU can send downlink signals on the hard DL resource type, and according to the definition of the Release-16 version of the NR protocol, the behavior of the IAB MT of the IAB node does not affect the downlink transmission of the IAB DU.
  • the IAB node that supports the space division transmission capability if the superior node of the IAB node schedules the IAB MT for uplink transmission at this time, the working mode of the space division transmission is formed at the IAB node. Then the IAB node can determine that the current transmission mode is space division multiplexing transmission, and use the transmission power determined by the power control parameter of the space division multiplexing transmission to transmit the signal.
  • the technical solutions of the embodiments of this application are not limited to the resource types in the above examples. Since the standard also defines other resource types and transmission directions, as long as IAB MT and IAB DU constitute a general sense of space division multiplexing transmission, it can be based on The power control method provided in the embodiment of the present application determines the transmit power of the IAB node in space division multiplexing transmission.
  • Step 306 When the second condition is met, the first node transmits at the second transmission power determined by the power control parameter corresponding to the second transmission mode.
  • the second condition includes any of the following:
  • the first node receives the third indication information sent by the third node.
  • the third indication information is used to instruct the first node to perform transmission using the transmission power determined by the power control parameter corresponding to the second transmission mode.
  • the first node receives the second uplink transmission timing indication sent by the second node.
  • the second uplink transmission timing indicated by the second uplink transmission timing indication is associated with the second transmission mode.
  • the first node determines that the current transmission mode of the first node is the second transmission mode according to the current transmission frame structure of the first node.
  • Step 306 is similar to the aforementioned step 305.
  • Step 306 is similar to the aforementioned step 305.
  • any one of the following provisions may be added to the communication protocol:
  • Rule 2 The first node does not expect to receive the dynamic power control instruction sent by the upper node of the first node.
  • Provision 3 When the first node receives the dynamic power control instruction for the first transmission mode sent by the superior node of the first node, the first node ignores or does not apply the power control parameter indicated by the dynamic power control instruction.
  • the dynamic power control indications in 1 to 3 above include an uplink power control indication carried by downlink control information (downlink control indication, DCI).
  • DCI downlink control information
  • SRI indication closed-loop power control parameter set indication
  • TPC transmission power control
  • the embodiment shown in FIG. 3A further includes step 307, and step 307 is performed after step 302.
  • Step 307 The second node sends the power control parameter corresponding to the first transmission mode to the fourth node.
  • the power control parameter corresponding to the first transmission mode is used for the fourth node in the first transmission mode to determine the transmission power by the power control parameter corresponding to the first transmission mode for transmission.
  • the second node may send the power control parameter corresponding to the first transmission mode to the fourth node through F1 signaling.
  • the fourth node is the upper node of the first node or the donor Donor base station.
  • Scenario 1 The first node is IAB node2, and the second node is the Donor base station. So in the scenario, the fourth node is IAB node1, IAB node1 is the lower node of Donor base station, and IAB node2 is the upper node of IAB node1.
  • the Donor base station sends the power control parameters corresponding to the first transmission mode to IAB node1.
  • Scenario 2 The first node is IAB node2, and the second node is IAB node1. Then in scenario 2, the fourth node is the Donor base station, and IAB node2 is the superior node of IAB node1.
  • IAB node1 sends the power control parameter corresponding to the first transmission mode to the Donor base station.
  • FIG. 3A shows a manner in which the first node reports the first power control parameter to the second node to implement the configuration of the power control parameter of the first node in the first transmission mode by the second node.
  • the embodiments of the present application also provide the following two possible implementation manners.
  • the first node may send the fifth indication information to the second node.
  • the fifth indication information is used to instruct the second node to adjust the transmit power of the first node in the first transmission mode; or, the fifth indication information is used to instruct the second node to increase or decrease the transmission power of the first node in the first transmission mode.
  • a transmission power in a transmission mode so as to realize the configuration of the power control parameter of the first node in the first transmission mode by the second node.
  • the fifth indication information is also used to instruct the second node to adjust the transmit power of the first node in the second transmission mode; or, the fifth indication information is also used to instruct the second node to increase or decrease the first node's transmission power.
  • the transmit power of the node in the second transmission mode is also used to instruct the second node to adjust the transmit power of the first node in the second transmission mode.
  • first transmission mode and the second transmission mode include any one of the following possible implementation manners:
  • the transmission power expected in the first transmission mode is used for space division multiplexing transmission, and the transmission power expected in the second transmission mode is used for full-duplex transmission.
  • the desired transmission power in the first transmission mode is used for full-duplex transmission
  • the desired transmission power in the second transmission mode is used for space division multiplexing transmission
  • the second node may send a reconfiguration message to the first node.
  • the reconfiguration message carries the power control parameter of the first transmission mode configured by the second node for the first node, so as to realize the configuration of the power control parameter of the first node in the first transmission mode by the second node.
  • FIG. 4 is a schematic diagram of another embodiment of a power control method according to an embodiment of the present application.
  • the method includes:
  • the first node sends a second message to the second node.
  • the second message is used to request the first received power expected by the first node in the first transmission mode.
  • the second message is used to request the fourth transmission power expected when the second node transmits to the first node in the first transmission mode.
  • the second node is an upper node of the first node or a donor Donor base station.
  • the first node and the second node please refer to the detailed introduction of step 302 in the embodiment shown in FIG. 3A, which will not be repeated here.
  • the first received power can be understood as the downlink received power expected by the first node to receive the signal sent by the second node.
  • the fourth transmission power may be understood as the downlink transmission power expected by the first node for the second node to send a signal to the first node.
  • the first node to request the first received power from the second node, which will be introduced below in combination with the specific form of the second message.
  • Manner 1 The second message is a received power request message.
  • the received power request message includes the first offset value and/or the power scaling factor.
  • the first offset value is an offset value relative to the received power or the transmission power of any one or more of the DMRS, SS/PBCH, and CSI-RS.
  • the power scaling factor is used to obtain the first received power by multiplying the received power or transmission power of any one or more of the DMRS, SS/PBCH, and CSI-RS signals by the power scaling factor.
  • the first received power expected by the first node should be the received power that can alleviate the interference problem of its own receiver. Therefore, the value of the first offset value and the value of the power scaling factor should be determined in conjunction with the interference problem of the first node, so that the third transmission power when the second node transmits from the second node to the first node Make adjustments to solve the interference problem of the first node.
  • Manner 2 The second message is a received power adjustment request message.
  • the content carried in the received power adjustment request message has various forms, which will be introduced separately as follows:
  • the received power adjustment request message carries fourth indication information.
  • the fourth indication information is used to instruct to trigger the second node to adjust the third transmission power; or, the fourth indication information is used to instruct the second node to increase or decrease the third transmission power.
  • the first node may instruct the second node to adjust the third transmission power through the fourth indication information; or, the first node may indicate the specific power adjustment method of the second node through the fourth indication information .
  • the fourth indication information instructs the second node to increase or decrease the third transmission power.
  • the received power adjustment request message carries the first adjustment value.
  • the first adjustment value is used for the second node to adjust the third transmission power.
  • the third adjustment value is 10dB
  • the second node increases the third transmission power by 10dB to obtain the fourth transmission power; and uses the fourth transmission power as the transmission power when the second node transmits to the first node.
  • the received power adjustment request message carries the first bit.
  • the first bit corresponds to the first adjustment value, and the first adjustment value is used by the second node to adjust the third transmission power.
  • Table 2 There is a correspondence between the bits carried in the received power adjustment request message and the adjustment value, as shown in Table 2:
  • the first bit is “00", and "00" corresponds to an adjustment value of 10dB.
  • the second node increases the third transmission power by 10 dB to obtain the fourth transmission power; and uses the fourth transmission power as the transmission power when the second node transmits to the first node.
  • the received power adjustment request message is carried on MAC CE, UCI, or RRC signaling.
  • the second message is also used to request the second received power expected by the first node in the second transmission mode. That is, the first node requests the configuration of the first received power of the first transmission mode and the second received power of the second transmission mode through a request message once.
  • first transmission mode and the second transmission mode include any one of the following possible implementation manners:
  • the expected received power in the first transmission mode is used for space division multiplexing transmission, and the expected received power in the second transmission mode is used for full-duplex transmission.
  • the expected received power in the first transmission mode is used for full-duplex transmission, and the expected received power in the second transmission mode is used for space division multiplexing transmission.
  • FIG. 4 can be understood in conjunction with the foregoing FIG. 2(c) and FIG. 2(d).
  • the embodiment shown in FIG. 4 above further includes step 402 and step 403, and step 402 and step 403 are executed after step 401.
  • Step 402 The second node sends the first confirmation information to the first node.
  • the first confirmation information is used to notify the first node that the second node has received the first confirmation information.
  • the downlink transmission power of the Donor base station to the IAB node is the implementation behavior of the Donor base station side, so it is possible that when the Donor base station receives the second message , The downlink signal is still sent to the IAB node according to the downlink transmission power determined by its own implementation algorithm. Then, after the Donor base station feeds back the first confirmation information to the IAB node, it does not necessarily adjust the downlink transmission power of the Donor base station when transmitting to the IAB node. Or, the Donor base station does not feed back any information to the IAB node.
  • Step 403 The first node determines that the second node has received the second message according to the first confirmation information.
  • the first node sends a second message to the second node, the second message is used to request the first received power expected by the first node in the first transmission mode, and the second node is the first node Donor base station of the superior node. It can be seen from this that for the first transmission mode, the first node can request the second node for the expected first received power in the first transmission mode, so that the second node can transmit from the second node to the first node.
  • the third transmission power is adjusted to alleviate the problem of the decrease in transmission capacity caused by interference and improve the transmission performance.
  • FIG. 5 is a schematic structural diagram of the power control device in the embodiment of the present application.
  • the power control device may be the first node, and the power control device may be used to perform the steps performed by the first node in the embodiment shown in FIG. 3A. You can refer to the related description in the above method embodiment.
  • the power control device includes a processing module 501 and a transceiver module 502.
  • the processing module 501 is configured to determine a first power control parameter, where the first power control parameter is used to indicate the first transmission power expected by the power control device in the first transmission mode;
  • the transceiver module 502 is configured to send a first message to the second node, the first message carries the first power control parameter, and the first message is used to request the power control device to perform the desired first transmission in the first transmission mode.
  • the second node is the Donor base station of the upper node of the power control device.
  • the first message further carries a second power control parameter
  • the second power control parameter is used to indicate the second transmission power expected by the power control apparatus in the second transmission mode.
  • the first power control parameter is also used to indicate the second transmission power expected by the power control apparatus in the second transmission mode.
  • the first power control parameter includes: the value or value range of the reference power, the value or value range of the user-level nominal power, or the reference power offset value.
  • the value of the user-level nominal power is represented by P0-PUSCH-AlphaSetID.
  • the first power control parameter further includes a path loss compensation factor and/or a path loss measurement reference signal index.
  • the path loss compensation factor is represented by the P0-PUSCH-AlphaSetID; the path loss measurement reference signal index is represented by the PUSCH-PathlossReferenceRS configuration.
  • the first message further carries first indication information, and the first indication information is used to indicate the transmission mode corresponding to the first power control parameter; or, the cell name of the first message is To indicate the transmission mode corresponding to the first power control parameter.
  • the first indication information includes first uplink transmission timing information, and the first uplink transmission timing information is used to indicate the first transmission mode.
  • the first transmission mode is space division multiplexing transmission, and the second transmission mode is full duplex transmission; or, the first transmission mode is full duplex transmission, and the second transmission mode is space division. Multiplexing transmission.
  • the first message is carried on RRC signaling, or MAC CE, or UCI, or BAP signaling or F1 interface application protocol signaling.
  • the transceiver module 502 is also used for:
  • the reconfiguration message carrying a third power control parameter, where the third power control parameter is a power control parameter configured by the second node for the power control apparatus for the first transmission mode ;
  • the processing module 501 is also used for:
  • transmission is performed at the transmission power determined by the third power control parameter.
  • the first power control parameter and the third power control parameter are partly or completely the same.
  • processing module 501 is further used for:
  • the transmission is performed at the transmission power determined by the power control parameter corresponding to the first transmission mode;
  • the first condition includes any one of the following: the power control apparatus receives the second indication information sent by the third node , The second indication information is used to instruct the power control device to transmit at the transmission power determined by the power control parameter corresponding to the first transmission mode, and the third node is the upper node of the power control device or the donor Donor base station; the The power control apparatus receives the first uplink transmission timing indication sent by the second node, and the first uplink transmission timing indication is associated with the first transmission mode; the power control apparatus determines the power according to the current transmission frame structure of the power control apparatus The current transmission mode of the control device is the first transmission mode; or,
  • the transmission is performed at the transmission power determined by the power control parameter corresponding to the second transmission mode;
  • the second condition includes any of the following: the power control apparatus receives the third indication information sent by the third node , The third indication information is used to instruct the power control device to transmit at the transmission power determined by the power control parameter corresponding to the second transmission mode, and the third node is the upper node of the power control device or the donor Donor base station;
  • the power control apparatus receives a second uplink transmission timing indication sent by the second node, and the second uplink transmission timing indication is associated with the second transmission mode;
  • the power control apparatus determines the power according to the current transmission frame structure of the power control apparatus
  • the current transmission mode of the control device is the second transmission mode.
  • FIG. 6 a schematic structural diagram of the power control device in the embodiment of the present application.
  • the power control device may be a second node, and the power control device may be used to perform the steps performed by the second node in the embodiment shown in FIG. 3A. You can refer to the related description in the above method embodiment.
  • the power control device includes a transceiver module 601.
  • the transceiver module 601 is configured to receive a first message sent by a first node, the first message carrying a first power control parameter, and the first power control parameter is used to indicate the first node expected by the first node in the first transmission mode.
  • a transmission power the first message is used to request the first transmission power expected by the first node in the first transmission mode
  • the power control device is an upper node of the first node or a donor Donor base station.
  • the first message further carries a second power control parameter
  • the second power control parameter is used to indicate the second transmission power expected by the first node in the second transmission mode.
  • the first power control parameter is also used to indicate the second transmission power expected by the first node in the second transmission mode.
  • the first power control parameter includes: the value or value range of the reference power, the value or value range of the user-level nominal power, or the reference power offset value.
  • the value of the user-level nominal power is represented by P0-PUSCH-AlphaSetID.
  • the first power control parameter further includes a path loss compensation factor and/or a path loss measurement reference signal index.
  • the path loss compensation factor is represented by the P0-PUSCH-AlphaSetID; the path loss measurement reference signal index is represented by the PUSCH-PathlossReferenceRS configuration.
  • the first message further carries first indication information, and the first indication information is used to indicate the transmission mode corresponding to the first power control parameter; or, the cell name of the first message is To indicate the transmission mode corresponding to the first power control parameter.
  • the first indication information includes first uplink transmission timing information, and the first uplink transmission timing information is used to indicate the first transmission mode.
  • the first transmission mode is space division multiplexing transmission, and the second transmission mode is full duplex transmission; or, the first transmission mode is full duplex transmission, and the second transmission mode is space division. Multiplexing transmission.
  • the first message is carried on RRC signaling, or MAC CE, or UCI, or BAP signaling or F1 interface application protocol signaling.
  • the transceiver module 601 is also used for:
  • the reconfiguration message carries a third power control parameter
  • the third power control parameter is a power control parameter configured by the power control apparatus for the first node for the first transmission mode.
  • the first power control parameter and the third power control parameter are partly or completely the same.
  • the transceiver module 601 is also used for:
  • the power control parameter corresponding to the first transmission mode is sent to a fourth node, where the fourth node is an upper node of the first node or a donor Donor base station.
  • FIG. 7 a schematic structural diagram of the power control device in the embodiment of the present application.
  • the power control device may be the first node, and the power control device may be used to perform the steps performed by the first node in the embodiment shown in FIG. 4. You can refer to the related description in the above method embodiment.
  • the power control device includes a transceiver module 701.
  • the power control device further includes a processing module 702.
  • the transceiver module 701 is configured to send a second message to a second node, the second message is used to request the first received power expected by the power control device in the first transmission mode, and the second node is the upper node of the power control device Donor base station.
  • the second message is also used to request the second received power expected by the power control apparatus in the second transmission mode.
  • the second message is a received power request message
  • the received power request message includes: a first offset value and/or a power scaling factor, where the first offset value is relative to a demodulation reference Signal, synchronization/broadcast signal, and channel state information reference signal, the received power or transmission power offset value of any one or more of the signals, the power scaling factor is used to pass the demodulation reference signal, the synchronization/broadcast The received power or transmission power of any signal in the signal and the channel state information reference signal is multiplied by the power scaling factor to obtain the first received power.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries fourth indication information
  • the fourth indication information is used to indicate that the second node is triggered to adjust the third transmission power.
  • the third transmission power is the transmission power when the second node transmits to the power control apparatus in the first transmission mode; or, the fourth indication information is used to instruct the second node to increase or decrease the second node Three transmission power.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries a first adjustment value
  • the first adjustment value is used by the second node to adjust the third transmission power.
  • the third transmit power is the transmit power when the second node transmits to the power control apparatus in the first transmission mode; or, the receive power adjustment request message carries a first bit, and the first bit corresponds to the first adjustment value.
  • the received power adjustment request message is carried on MAC CE, or UCI or RRC signaling.
  • the transceiver module 701 is also used for:
  • the processing module 702 is configured to determine that the second node has received the second message according to the first confirmation information.
  • FIG. 8 is a schematic structural diagram of the power control device in the embodiment of the present application.
  • the power control device may be the second node, and the power control device may be used to perform the steps performed by the second node in the embodiment shown in FIG. 4. You can refer to the related description in the above method embodiment.
  • the power control device includes a transceiver module 801.
  • the transceiver module 801 is configured to receive a second message sent by a first node, the second message is used to request the first received power expected by the first node in the first transmission mode, and the power control device is the first node The upper-level node or the host Donor base station.
  • the second message is also used to request the second received power expected by the first node in the second transmission mode.
  • the second message is a received power request message
  • the received power request message includes: a first offset value and/or a power scaling factor, where the first offset value is relative to a demodulation reference Signal, synchronization/broadcast signal, and channel state information reference signal, the received power or transmission power offset value of any one or more of the signals, the power scaling factor is used to pass the demodulation reference signal, the synchronization/broadcast The received power or transmission power of any signal in the signal and the channel state information reference signal is multiplied by the power scaling factor to obtain the first received power.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries fourth indication information
  • the fourth indication information is used to instruct to trigger the power control device to adjust the third transmission power.
  • the third transmission power is the transmission power when the power control apparatus transmits to the first node in the first transmission mode; or, the fourth indication information is used to instruct the power control apparatus to increase or decrease the first node Three transmission power.
  • the second message is a received power adjustment request message
  • the received power adjustment request message carries a first adjustment value
  • the first adjustment value is used by the power control device to adjust the third transmission power.
  • the third transmission power is the transmission power when the power control apparatus transmits to the first node in the first transmission mode; or, the received power adjustment request message carries a first bit, and the first bit corresponds to the first adjustment value.
  • the received power adjustment request message is carried on MAC CE, or UCI or RRC signaling.
  • the transceiver module 801 is also used for:
  • This application also provides a power control device 900. Please refer to FIG. 9. Another schematic structural diagram of the power control device in an embodiment of this application.
  • the power control device may be the first node, and the power control device may be used to execute FIG. 3A.
  • the steps performed by the first node in the illustrated embodiment reference may be made to the related description in the foregoing method embodiment.
  • the power control apparatus 900 includes a processor 901, a memory 902, an input/output device 903, and a bus 904.
  • the processor 901, the memory 902, and the input/output device 903 are respectively connected to the bus 904, and computer instructions are stored in the memory.
  • the processing module 501 in the foregoing embodiment may specifically be the processor 901 in this embodiment, so the specific implementation of the processor 901 will not be described in detail.
  • the transceiver module 502 in the foregoing embodiment may specifically be the input and output device 903 in this embodiment.
  • the present application also provides a power control device 1000. Please refer to FIG. 10. Another schematic diagram of the power control device in an embodiment of the present application.
  • the power control device may be a second node, and the power control device may be used to execute FIG. 3A.
  • the steps performed by the second node in the illustrated embodiment reference may be made to the related description in the foregoing method embodiment.
  • the power control device 1000 includes a processor 1001, a memory 1002, an input/output device 1003, and a bus 1004.
  • the processor 1001, the memory 1002, and the input/output device 1003 are respectively connected to the bus 1004, and computer instructions are stored in the memory.
  • the transceiver module 601 in the foregoing embodiment may specifically be the input/output device 1003 in this embodiment.
  • This application also provides a power control device 1100. Please refer to FIG. 11, another schematic diagram of the power control device in an embodiment of this application.
  • the power control device may be a first node, and the power control device may be used to execute FIG. 4
  • FIG. 4 For the steps performed by the first node in the illustrated embodiment, reference may be made to the related description in the foregoing method embodiment.
  • the power control apparatus 1100 includes: a processor 1101, a memory 1102, an input/output device 1103, and a bus 1104.
  • the processor 1101, the memory 1102, and the input/output device 1103 are respectively connected to the bus 1104, and computer instructions are stored in the memory.
  • the processing module 702 in the foregoing embodiment may specifically be the processor 1101 in this embodiment, so the specific implementation of the processor 1101 will not be described again.
  • the transceiver module 701 in the foregoing embodiment may specifically be the input and output device 1103 in this embodiment.
  • the present application also provides a power control device 1200. Please refer to FIG. 12, another schematic diagram of the structure of the power control device in an embodiment of the present application.
  • the power control device may be a second node, and the power control device may be used to execute FIG. 4
  • FIG. 4 For the steps performed by the second node in the illustrated embodiment, reference may be made to the related description in the foregoing method embodiment.
  • the power control apparatus 1200 includes: a processor 1201, a memory 1202, an input/output device 1203, and a bus 1204.
  • the processor 1201, the memory 1202, and the input/output device 1203 are respectively connected to the bus 1204, and computer instructions are stored in the memory.
  • the transceiver module 801 in the foregoing embodiment may specifically be the input/output device 1203 in this embodiment, so the specific implementation of the input/output device 1203 will not be described in detail.
  • an embodiment of the present application also provides a communication system that includes a power control device.
  • the power control device may include the power control device shown in FIG. 5 and the power control device shown in FIG. A power control device, wherein the power control device shown in FIG. 5 is used to perform all or part of the steps performed by the first node in the embodiment shown in FIG. 3A, and the power control device shown in FIG. 6 is used to perform the steps shown in FIG. 3A All or part of the steps performed by the second node in the embodiment; or, the power control device may include the power control device shown in FIG. 7 and the power control device shown in FIG. 8, wherein the power control device shown in FIG.
  • the power control device is used to perform all or part of the steps performed by the first node in the embodiment shown in FIG. 4, and the power control device shown in FIG. 8 is used to perform all or part of the steps performed by the second node in the embodiment shown in FIG. 4 Part of the steps.
  • the embodiment of the present application also provides a computer program product including instructions, which when run on a computer, causes the computer to execute the power control method of the embodiment shown in FIG. 3A and FIG. 4.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the power control method of the embodiment shown in FIG. 3A and FIG. 4.
  • the chip when the power control device is a chip in a terminal, the chip includes a processing unit and a communication unit.
  • the processing unit may be a processor, for example, and the communication unit may be an input/output, for example. Interface, pin or circuit, etc.
  • the processing unit can execute the computer-executable instructions stored in the storage unit, so that the chip in the terminal executes the power control method in the embodiment shown in FIG. 3A and FIG. 4.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read-only memory). -only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the processor mentioned in any one of the above can be a general-purpose central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or one or more used to control the above-mentioned FIGS. 3A and 3A.
  • the integrated circuit executed by the program of the power control method in the embodiment shown in FIG. 4.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种功率控制方法和功率控制装置,用于缓解干扰导致的传输容量下降的问题,提高传输性能。本申请实施例方法包括:第一节点确定第一功率控制参数,所述第一功率控制参数用于指示所述第一节点在第一传输模式下所期望的第一发送功率;所述第一节点向第二节点发送第一消息,所述第一消息携带所述第一功率控制参数,所述第一消息用于请求所述第一节点在所述第一传输模式下所期望的第一发送功率,所述第二节点为所述第一节点的上级节点或者宿主Donor基站。

Description

功率控制方法和功率控制装置
本申请要求于2020年5月15日提交中国专利局、申请号为202010418320.4、发明名称为“功率控制方法和功率控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种功率控制方法和功率控制装置。
背景技术
在第五代通信系统(5th generation mobile networks or 5th generation wireless system,5G)中,集成接入和回传(integrated access and backhaul,IAB)节点,在一些技术场景也称为接入回传一体化节点,是中继技术的演进节点。在无线通信网络中,中继节点通常用来实现扩展覆盖或盲区覆盖,或者用于提升系统容量。
目前,IAB节点接入网络,例如,IAB节点在时分复用传输模式下,IAB节点通过基站为IAB节点配置的时分复用传输模式所对应的功率控制参数进行数据传输。但是,在更多应用场景、更多的传输模式下,为了提升网络性能,在设置IAB节点的发送功率和接收功率时需考虑干扰的影响。因此,如何实现对IAB节点的不同传输模式下的功率控制参数的配置,是当前IAB标准化亟待解决的问题。
发明内容
本申请实施例提供了一种功率控制方法和功率控制装置,用于缓解干扰导致的传输容量下降的问题,提高传输性能。
本申请实施例第一方面提供一种功率控制方法,该方法包括:
第一节点确定第一功率控制参数,该第一功率控制参数用于指示第一节点在第一传输模式所期望的第一发送功率;然后,第一节点向第二节点发送第一消息,该第一消息携带该第一功率控制参数,该第一消息用于请求该第一节点在第一传输模式在所期望的第一发送功率,该第二节点为第一节点的上级节点或宿主Donor基站。
本实施例中,针对第一传输模式,第一节点可以向第二节点上报在第一传输模式下所期望的第一功率控制参数,以便于实现第二节点对第一节点在第一传输模式下的功率控制参数的配置。并且,第一节点向第二节点上报第一功率控制参数时,将传输模式与上报的功率控制参数进行关联,这样有利于缓解干扰等造成的传输容量下降等问题,提升传输性能。例如,在空分复用传输下,第一节点通过该第一功率控制参数所确定的发送功率向第二节点进行传输,有效地缓解干扰导致的传输容量下降的问题,提高传输性能。
一种可能的实现方式中,该第一消息还携带第二功率控制参数,该第二功率控制参数用于指示第一节点在第二传输模式下所期望的第二发送功率。
在该可能的实现方式中,第一节点可以通过一次请求消息携带两份不同传输模式所期望的功率控制参数,以实现第二节点对第一节点在第一传输模式下的功率控制参数的配置, 以及对第一节点在第二传输模式下的功率控制参数的配置。
另一种可能的实现方式中,该第一功率控制参数还用于指示第一节点在第二传输模式下所期望的第二发送功率。
在该可能的实现方式中,第一节点通过同一份功率控制参数请求第一节点在第一传输模式下所期望的第一发送功率和第一节点在第二传输模式下所期望的第二发送功率,以便于第二节点分别对第一传输模式的功率控制参数和第二传输模式的功率控制参数的配置。
另一种可能的实现方式中,该第一功率控制参数包括:基准功率的取值或者取值范围、用户级标称功率的取值或取值范围、或者、基准功率偏移值。
在该可能的实现方式中,第一节点上报的第一功率控制参数沿用了已有的功率控制机制所采用的部分功率控制参数,提供了一种建立在已有的功率控制机制基础上用于在更多传输模式下的功率控制参数的配置方式。
另一种可能的实现方式中,该用户级标称功率的取值通过上行共享信道-基准功率与路径损耗参数集合索引(P0physical uplink shared channel alphaset identity,P0-PUSCH-AlphaSetID)表示。
在该可能的实现方式中,P0-PUSCH-AlphaSet包括P0-PUSCH-AlphaSetID、用户级标称功率的取值等。因此,第一功率控制参数中的用户级标称功率的取值可以携带已配置的功率控制参数P0-PUSCH-AlphaSet中,并由该P0-PUSCH-AlphaSet所包括的P0-PUSCH-AlphaSetID间接表示。
另一种可能的实现方式中,该第一功率控制参数还包括路径损耗补偿因子和/或路径损耗测量参考信号索引。
在该可能的实现方式中,该第一功率控制参数还进一步可以已有的功率控制机制所采用的路径损耗补偿因子和/或路径损耗测量参考信号索引,这样能够增加该第一节点的发送功率的可预期性。
另一种可能的实现方式中,该路径损耗补偿因子通过该P0-PUSCH-AlphaSetID表示;该路径损耗测量参考信号索引通过上行共享信道-路径损耗参考信号PUSCH-PathlossReferenceRS配置表示。
在该可能的实现方式中,P0-PUSCH-AlphaSet包括P0-PUSCH-AlphaSetID和路径损耗补偿因子等,PUSCH-PathlossReferenceRS包括路径损耗测量参考信号索引等。因此,该第一功率控制参数中的路径损耗补偿因子可以携带在P0-PUSCH-AlphaSet中,并由P0-PUSCH-AlphaSetID间接表示,而该路径损耗测量参考信号索引通过PUSCH-PathlossReferenceRS配置表示。
另一种可能的实现方式中,该第一消息还携带第一指示信息,该第一指示信息用于指示第一功率控制参数所对应的传输模式;或者,该第一消息的信元名称用于指示第一功率控制参数所对应的传输模式。
在该可能的实现方式中,由于本申请实施例的功率控制方法适用于空分复用传输和全双工传输等多个传输模式的功率控制参数的配置。因此,这里提供两种可能的用于指示第一功率控制参数所对应的传输模式的指示方式,以提高方案的可行性和完整性。
另一种可能的实现方式中,第一指示信息包括第一上行发送定时信息,该第一上行发送定时信息用于指示第一传输模式。
在该可能的实现方式中,当传输模式与上行发送定时关联时,那么第一指示信息可以通过上行发送定时信息来指示第一功率控制参数所对应的传输模式,以实现对上报的功率控制参数的传输模式的指示。
另一种可能的实现方式中,第一传输模式为空分复用传输,第二传输模式为全双工传输;或者,第一传输模式为全双工传输,该第二传输模式为空分复用传输。在该可能的实现方式中,提供了适用于本申请实施例所提供的功率控制方法的多种具体的传输模式。
另一种可能的实现方式中,该第一消息承载在无线资源控制(radio resource control,RRC)信令、或媒体(介质)接入控制控制元素(medium access control control element,MAC CE)、或上行控制信息(uplink control information,UCI)、或适配层(Backhaul adaption protocol,BAP)信令或F1接口应用协议信令上。在该可能的实现方式中,提供了第一消息承载于已有的信令中的实现方式,提高了方案的实用性。
另一种可能的实现方式中,该方法还包括:第一节点接收第二节点发送的重配置消息,该重配置消息携带第三功率控制参数,该第三功率控制参数为该第二节点为该第一节点配置的用于该第一传输模式的功率控制参数;然后,该第一节点在该第一传输模式下通过该第三功率控制参数所确定的发送功率进行传输。
在该可能的实现方式中,提供了第二节点针对第一消息的一种可能的反馈方式,第二节点对第一节点在第一传输模式的功率控制参数进行重配置。
另一种可能的实现方式中,该第一功率控制参数与该第三功率控制参数部分相同或全部相同。在该可能的实现方式中,第二节点可以通过修改第一功率控制参数中的部分功率控制参数的配置,得到该第三功率控制参数;或者是,第二节点在第一功率控制参数的基础上新增部分功率控制参数,得到该第三功率控制参数。
另一种可能的实现方式中,该方法还包括:当满足第一条件时,该第一节点通过该第一传输模式对应的功率控制参数所确定的发送功率进行传输;该第一条件包括以下任一种:该第一节点接收第三节点发送的第二指示信息,该第二指示信息用于指示该第一节点通过该第一传输模式对应的功率控制参数所确定的发送功率进行传输,该第三节点为该第一节点的上级节点或宿主Donor基站;该第一节点接收到该第二节点发送的第一上行发送定时指示,该第一上行发送定时指示与该第一传输模式关联;该第一节点根据该第一节点的当前传输帧结构确定该第一节点的当前传输模式为该第一传输模式;或者,当满足第二条件时,该第一节点通过该第二传输模式对应的功率控制参数所确定的发送功率进行传输;该第二条件包括以下任一种:该第一节点接收第三节点发送的第三指示信息,该第三指示信息用于指示该第一节点通过该第二传输模式对应的功率控制参数所确定的发送功率进行传输,该第三节点为该第一节点的上级节点或Donor基站;该第一节点接收到该第二节点发送的第二上行发送定时指示,该第二上行发送定时指示与该第二传输模式关联;该第一节点根据该第一节点的当前传输帧结构确定该第一节点的当前传输模式为该第二传输模式。
在该可能的实现方式中,提供了具体的第一节点应用该第一传输模式或第二传输模式 的功率控制参数所确定的发送功率进行传输的多种可能的条件。
本申请实施例第二方面提供一种功率控制方法,该方法包括:
第二节点接收第一节点发送的第一消息,该第一消息携带第一功率控制参数,该第一功率控制参数用于指示该第一节点在第一传输模式下所期望的第一发送功率,该第一消息用于请求该第一节点在该第一传输模式下所期望的第一发送功率,该第二节点为该第一节点的上级节点或者宿主Donor基站。
在该可能的实现方式中,第二节点接收第一节点上报的在第一传输模式下所期望的第一功率控制参数,以便于实现第二节点对第一节点在第一传输模式下的功率控制参数的配置。并且,第一节点向第二节点上报第一功率控制参数时,将传输模式与上报的功率控制参数进行关联,这样有利于缓解干扰等造成的传输容量下降等问题,提升传输性能。例如,在空分复用传输下,第一节点通过该第一功率控制参数所确定的发送功率向第二节点进行传输,有效地缓解干扰导致的传输容量下降的问题,提高传输性能。
一种可能的实现方式中,该第一消息还携带第二功率控制参数,该第二功率控制参数用于指示该第一节点在第二传输模式下所期望的第二发送功率。
在该可能的实现方式中,第一节点可以通过一次请求消息携带两份不同传输模式所期望的功率控制参数,以实现第二节点对第一节点在第一传输模式下的功率控制参数的配置,以及对第一节点在第二传输模式下的功率控制参数的配置。
另一种可能的实现方式中,该第一功率控制参数还用于指示第一节点在第二传输模式下所期望的第二发送功率。
在该可能的实现方式中,第一节点通过同一份功率控制参数请求第一节点在第一传输模式下所期望的第一发送功率和第一节点在第二传输模式下所期望的第二发送功率,以便于第二节点分别对第一传输模式的功率控制参数和第二传输模式的功率控制参数的配置。
另一种可能的实现方式中,第一功率控制参数包括:基准功率的取值或者取值范围、用户级标称功率的取值或取值范围、或者、基准功率偏移值。
在该可能的实现方式中,第一节点上报的第一功率控制参数沿用了已有的功率控制机制所采用的部分功率控制参数,提供了一种建立在已有的功率控制机制基础上用于在更多传输模式下的功率控制参数的配置方式。
另一种可能的实现方式中,该用户级标称功率的取值通过P0-PUSCH-AlphaSetID表示。
在该可能的实现方式中,P0-PUSCH-AlphaSet包括P0-PUSCH-AlphaSetID、用户级标称功率的取值等。因此,第一功率控制参数中的用户级标称功率的取值可以携带已配置的功率控制参数P0-PUSCH-AlphaSet中,并由该P0-PUSCH-AlphaSet所包括的P0-PUSCH-AlphaSetID间接表示。
另一种可能的实现方式中,该第一功率控制参数还包括路径损耗补偿因子和/或路径损耗测量参考信号索引。
在该可能的实现方式中,该第一功率控制参数还进一步可以已有的功率控制机制所采用的路径损耗补偿因子和/或路径损耗测量参考信号索引,这样能够增加该第一节点的发送功率的可预期性。
另一种可能的实现方式中,该路径损耗补偿因子通过该P0-PUSCH-AlphaSetID表示;该路径损耗测量参考信号索引通过PUSCH-PathlossReferenceRS配置表示。
在该可能的实现方式中,P0-PUSCH-AlphaSet包括P0-PUSCH-AlphaSetID和路径损耗补偿因子等,PUSCH-PathlossReferenceRS包括路径损耗测量参考信号索引等。因此,该第一功率控制参数中的路径损耗补偿因子可以携带在P0-PUSCH-AlphaSet中,并由P0-PUSCH-AlphaSetID间接表示,而该路径损耗测量参考信号索引通过PUSCH-PathlossReferenceRS配置表示。
另一种可能的实现方式中,该第一消息还携带第一指示信息,该第一指示信息用于指示第一功率控制参数所对应的传输模式;或者,该第一消息的信元名称用于指示第一功率控制参数所对应的传输模式。
在该可能的实现方式中,由于本申请实施例的功率控制方法适用于空分复用传输和全双工传输等多个传输模式的功率控制参数的配置。因此,这里提供两种可能的用于指示第一功率控制参数所对应的传输模式的指示方式,以提高方案的可行性和完整性。
另一种可能的实现方式中,第一指示信息包括第一上行发送定时信息,该第一上行发送定时信息用于指示第一传输模式。
在该可能的实现方式中,当传输模式与上行发送定时关联时,那么第一指示信息可以通过上行发送定时信息来指示第一功率控制参数所对应的传输模式,以实现对上报的功率控制参数的传输模式的指示。
另一种可能的实现方式中,第一传输模式为空分复用传输,第二传输模式为全双工传输;或者,第一传输模式为全双工传输,该第二传输模式为空分复用传输。在该可能的实现方式中,提供了适用于本申请实施例所提供的功率控制方法的多种具体的传输模式。
另一种可能的实现方式中,该第一消息承载在RRC信令、或MAC CE、或UCI、或BAP信令或F1接口应用协议信令上。在该可能的实现方式中,提供了第一消息承载于已有的信令中的实现方式,提高了方案的实用性。
另一种可能的实现方式中,该方法还包括:第二节点向第一节点发送重配置消息,该重配置消息携带第三功率控制参数,该第三功率控制参数为第二节点为第一节点配置的用于第一传输模式的功率控制参数。
在该可能的实现方式中,提供了第二节点针对第一消息的一种可能的反馈方式,第二节点对第一节点在第一传输模式的功率控制参数进行重配置。
另一种可能的实现方式中,第一功率控制参数与该第三功率控制参数部分相同或全部相同。在该可能的实现方式中,第二节点可以通过修改第一功率控制参数中的部分功率控制参数的配置,得到该第三功率控制参数;或者是,第二节点在第一功率控制参数的基础上新增部分功率控制参数,得到该第三功率控制参数。
另一种可能的实现方式中,该方法还包括:该第二节点向第四节点发送该第一传输模式所对应的功率控制参数,该第四节点为该第一节点的上级节点或宿主Donor基站。
在该可能的实现方式中,该第一传输模式所对应的功率控制参数用于该第四节点在第一传输模式下通过该第一传输模式所对应的功率控制参数所确定发送功率进行传输。具体 的,第二节点可以通过F1信令向第四节点发送该第一传输模式所对应的功率控制参数。
本申请实施例第三方面提供一种功率控制方法,该方法包括:
第一节点向第二节点发送第二消息,该第二消息用于请求第一节点在第一传输模式下所期望的第一接收功率,该第二节点为第一节点的上级节点Donor基站。
本实施例中,针对第一传输模式,第一节点可以向第二节点请求在第一传输模式下所期望的第一接收功率,以便于实现第二节点对第二节点向第一节点进行传输时的第三发送功率进行调整,从而缓解干扰导致的传输容量下降的问题,提升传输性能。
一种可能的实现方式中,该第二消息还用于请求该第一节点在第二传输模式下所期望的第二接收功率。
在该可能的实现方式中,第一节点通过一次请求消息实现对第一传输模式的第一接收功率的配置请求和第二传输模式的第二接收功率的配置请求。
另一种可能的实现方式中,该第二消息为接收功率请求消息,该接收功率请求消息包括:第一偏移值和/或功率缩放因子,该第一偏移值为相对于解调参考信号、同步/广播信号和信道状态信息参考信号中的任一种或任多种信号的接收功率或发送功率的偏移值,该功率缩放因子用于通过该解调参考信号、该同步/广播信号和该信道状态信息参考信号中的任一种信号的接收功率或发送功率乘以该功率缩放因子,得到该第一接收功率。
在该可能的实现方式中,提供了第二消息的一种具体形式,并且示出了该第二消息所携带的功率控制参数,以用于第二节点调整第二节点在第一传输模式下向第一节点进行传输时的第三发送功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第四指示信息,该第四指示信息用于指示触发该第二节点调整第三发送功率,该第三发送功率为在该第一传输模式下该第二节点向该第一节点进行传输时的发送功率;或者,该第四指示信息用于指示该第二节点升高或降低该第三发送功率。
在该可能的实现方式中,提供了第二消息的另一种具体形式,并且示出了通过第二消息携带的第四指示信息指示第二节点调整调整第二节点在第一传输模式下向第一节点进行传输时的第三发送功率的方式。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第一调整值,该第一调整值用于该第二节点调整第三发送功率,该第三发送功率为在该第一传输模式下该第二节点向该第一节点进行传输时的发送功率;或者,该接收功率调整请求消息携带第一比特,该第一比特对应该第一调整值。
在该可能的实现方式中,提供了第二消息的另一种具体形式,并且示出了通过第二消息所携带的调整值或比特指示第二节点调整第二节点在第一传输模式下向第一节点进行传输时的第三发送功率的方式。
另一种可能的实现方式中,该接收功率调整请求消息承载在MAC CE、或UCI或RRC信令上。在该可能的实现方式中,该接收功率调整请求消息可以承载在已有的信令中,提升了方案实用性。
另一种可能的实现方式中,该方法还包括:第一节点接收第二节点发送的第一确认信 息;然后,第一节点根据该第一确认信息确定该第二节点接收到第二消息。在该可能的实现方式中,提供了针对第二消息,第二节点的一种反馈方式,以通知第一节点该第二节点接收到该第二消息。
本申请实施例第四方面提供一种功率控制方法,该方法包括:
第二节点接收第一节点发送的第二消息,该第二消息用于请求该第一节点在第一传输模式下所期望的第一接收功率,该第二节点为该第一节点的上级节点或者宿主Donor基站。
本实施例中,针对第一传输模式,第二节点接收第一节点发送的用于请求该第一节点在第一传输模式下所期望的第一接收功率,以便于实现第二节点对第二节点向第一节点进行传输时的第三发送功率进行调整,从而缓解干扰导致的传输容量下降的问题,提升传输性能。
一种可能的实现方式中,该第二消息还用于请求该第一节点在第二传输模式下所期望的第二接收功率。
在该可能的实现方式中,第一节点通过一次请求消息实现对第一传输模式的第一接收功率的配置请求和第二传输模式的第二接收功率的配置请求。
另一种可能的实现方式中,该第二消息为接收功率请求消息,该接收功率请求消息包括:第一偏移值和/或功率缩放因子,该第一偏移值为相对于解调参考信号、同步/广播信号和信道状态信息参考信号中的任一种或任多种信号的接收功率或发送功率的偏移值,该功率缩放因子用于通过该解调参考信号、该同步/广播信号和该信道状态信息参考信号中的任一种信号的接收功率或发送功率乘以该功率缩放因子,得到该第一接收功率。
在该可能的实现方式中,提供了第二消息的一种具体形式,并且示出了该第二消息所携带的功率控制参数,以用于第二节点调整第二节点在第一传输模式下向第一节点进行传输时的第三发送功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第四指示信息,该第四指示信息用于指示触发该第二节点调整第三发送功率,该第三发送功率为在该第一传输模式下该第二节点向该第一节点进行传输时的发送功率;或者,该第四指示信息用于指示该第二节点升高或降低该第三发送功率。
在该可能的实现方式中,提供了第二消息的另一种具体形式,并且示出了通过第二消息携带的第四指示信息指示第二节点调整调整第二节点在第一传输模式下向第一节点进行传输时的第三发送功率的方式。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第一调整值,该第一调整值用于该第二节点调整第三发送功率,该第三发送功率为在该第一传输模式下该第二节点向该第一节点进行传输时的发送功率;或者,该接收功率调整请求消息携带第一比特,该第一比特对应该第一调整值。
在该可能的实现方式中,提供了第二消息的另一种具体形式,并且示出了通过第二消息所携带的调整值或比特指示第二节点调整第二节点在第一传输模式下向第一节点进行传输时的第三发送功率的方式。
另一种可能的实现方式中,该接收功率调整请求消息承载在MAC CE、或UCI或RRC信 令上。在该可能的实现方式中,该接收功率调整请求消息可以承载在已有的信令中,提升了方案实用性。
另一种可能的实现方式中,该方法还包括:该第二节点向该第一节点发送第一确认信息,该第一确认信息用于通知该第一节点该第二节点接收到该第二消息。
在该可能的实现方式中,提供了针对第二消息,第二节点的一种反馈方式,以通知第一节点该第二节点接收到该第二消息。
本申请实施例第五方面提供一种功率控制装置,该功率控制装置包括:
处理模块,用于确定第一功率控制参数,该第一功率控制参数用于指示功率控制装置在第一传输模式所期望的第一发送功率;
收发模块,用于向第二节点发送第一消息,该第一消息携带该第一功率控制参数,该第一消息用于请求该功率控制装置在第一传输模式在所期望的第一发送功率,该第二节点为功率控制装置的上级节点Donor基站。
一种可能的实现方式中,该第一消息还携带第二功率控制参数,该第二功率控制参数用于指示该功率控制装置在第二传输模式下所期望的第二发送功率。
另一种可能的实现方式中,该第一功率控制参数还用于指示该功率控制装置在第二传输模式下所期望的第二发送功率。
另一种可能的实现方式中,该第一功率控制参数包括:基准功率的取值或者取值范围、用户级标称功率的取值或取值范围、或者、基准功率偏移值。
另一种可能的实现方式中,该用户级标称功率的取值通过P0-PUSCH-AlphaSetID表示。
另一种可能的实现方式中,该第一功率控制参数还包括路径损耗补偿因子和/或路径损耗测量参考信号索引。
另一种可能的实现方式中,该路径损耗补偿因子通过该P0-PUSCH-AlphaSetID表示;该路径损耗测量参考信号索引通过PUSCH-PathlossReferenceRS配置表示。
另一种可能的实现方式中,该第一消息还携带第一指示信息,该第一指示信息用于指示第一功率控制参数所对应的传输模式;或者,该第一消息的信元名称用于指示第一功率控制参数所对应的传输模式。
另一种可能的实现方式中,第一指示信息包括第一上行发送定时信息,该第一上行发送定时信息用于指示第一传输模式。
另一种可能的实现方式中,第一传输模式为空分复用传输,第二传输模式为全双工传输;或者,第一传输模式为全双工传输,该第二传输模式为空分复用传输。
另一种可能的实现方式中,该第一消息承载在RRC信令、或MAC CE、或UCI、或BAP信令或F1接口应用协议信令上。
另一种可能的实现方式中,该收发模块还用于:
接收第二节点发送的重配置消息,该重配置消息携带第三功率控制参数,该第三功率控制参数为该第二节点为该该功率控制装置配置的用于该第一传输模式的功率控制参数;
该处理模块还用于:
在该第一传输模式下通过该第三功率控制参数所确定的发送功率进行传输。
另一种可能的实现方式中,该第一功率控制参数与该第三功率控制参数部分相同或全部相同。
另一种可能的实现方式中,该处理模块还用于:
当满足第一条件时,通过该第一传输模式对应的功率控制参数所确定的发送功率进行传输;该第一条件包括以下任一种:该该功率控制装置接收第三节点发送的第二指示信息,该第二指示信息用于指示该功率控制装置通过该第一传输模式对应的功率控制参数所确定的发送功率进行传输,该第三节点为该功率控制装置的上级节点或宿主Donor基站;该该功率控制装置接收到该第二节点发送的第一上行发送定时指示,该第一上行发送定时指示与该第一传输模式关联;该该功率控制装置根据该功率控制装置的当前传输帧结构确定该功率控制装置的当前传输模式为该第一传输模式;或者,
当满足第二条件时,通过该第二传输模式对应的功率控制参数所确定的发送功率进行传输;该第二条件包括以下任一种:该功率控制装置接收第三节点发送的第三指示信息,该第三指示信息用于指示该功率控制装置通过该第二传输模式对应的功率控制参数所确定的发送功率进行传输,该第三节点为该功率控制装置的上级节点或宿主Donor基站;该功率控制装置接收到该第二节点发送的第二上行发送定时指示,该第二上行发送定时指示与该第二传输模式关联;该功率控制装置根据该功率控制装置的当前传输帧结构确定该功率控制装置的当前传输模式为该第二传输模式。
本申请实施例第六方面提供一种功率控制装置,该功率控制装置包括:
收发模块,用于接收第一节点发送的第一消息,该第一消息携带第一功率控制参数,该第一功率控制参数用于指示该第一节点在第一传输模式下所期望的第一发送功率,该第一消息用于请求该第一节点在该第一传输模式下所期望的第一发送功率,该功率控制装置为该第一节点的上级节点或者宿主Donor基站。
一种可能的实现方式中,该第一消息还携带第二功率控制参数,该第二功率控制参数用于指示该第一节点在第二传输模式下所期望的第二发送功率。
另一种可能的实现方式中,该第一功率控制参数还用于指示第一节点在第二传输模式下所期望的第二发送功率。
另一种可能的实现方式中,第一功率控制参数包括:基准功率的取值或者取值范围、用户级标称功率的取值或取值范围、或者、基准功率偏移值。
另一种可能的实现方式中,该用户级标称功率的取值通过P0-PUSCH-AlphaSetID表示。
另一种可能的实现方式中,该第一功率控制参数还包括路径损耗补偿因子和/或路径损耗测量参考信号索引。
另一种可能的实现方式中,该路径损耗补偿因子通过该P0-PUSCH-AlphaSetID表示;该路径损耗测量参考信号索引通过PUSCH-PathlossReferenceRS配置表示。
另一种可能的实现方式中,该第一消息还携带第一指示信息,该第一指示信息用于指示第一功率控制参数所对应的传输模式;或者,该第一消息的信元名称用于指示第一功率控制参数所对应的传输模式。
另一种可能的实现方式中,第一指示信息包括第一上行发送定时信息,该第一上行发 送定时信息用于指示第一传输模式。
另一种可能的实现方式中,第一传输模式为空分复用传输,第二传输模式为全双工传输;或者,第一传输模式为全双工传输,该第二传输模式为空分复用传输。
另一种可能的实现方式中,该第一消息承载在RRC信令、或MAC CE、或UCI、或BAP信令或F1接口应用协议信令上。
另一种可能的实现方式中,该收发模块还用于:
向第一节点发送重配置消息,该重配置消息携带第三功率控制参数,该第三功率控制参数为功率控制装置为第一节点配置的用于第一传输模式的功率控制参数。
另一种可能的实现方式中,第一功率控制参数与该第三功率控制参数部分相同或全部相同。
另一种可能的实现方式中,该收发模块还用于:
向第四节点发送该第一传输模式所对应的功率控制参数,该第四节点为该第一节点的上级节点或宿主Donor基站。
本申请实施例第七方面提供一种功率控制装置,该功率控制装置包括:
收发模块,用于向第二节点发送第二消息,该第二消息用于请求该功率控制装置在第一传输模式下所期望的第一接收功率,该第二节点为该功率控制装置的上级节点Donor基站。
一种可能的实现方式中,该第二消息还用于请求该功率控制装置在第二传输模式下所期望的第二接收功率。
另一种可能的实现方式中,该第二消息为接收功率请求消息,该接收功率请求消息包括:第一偏移值和/或功率缩放因子,该第一偏移值为相对于解调参考信号、同步/广播信号和信道状态信息参考信号中的任一种或任多种信号的接收功率或发送功率的偏移值,该功率缩放因子用于通过该解调参考信号、该同步/广播信号和该信道状态信息参考信号中的任一种信号的接收功率或发送功率乘以该功率缩放因子,得到该第一接收功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第四指示信息,该第四指示信息用于指示触发该第二节点调整第三发送功率,该第三发送功率为在该第一传输模式下该第二节点向该功率控制装置进行传输时的发送功率;或者,该第四指示信息用于指示该第二节点升高或降低该第三发送功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第一调整值,该第一调整值用于该第二节点调整第三发送功率,该第三发送功率为在该第一传输模式下该第二节点向该功率控制装置进行传输时的发送功率;或者,该接收功率调整请求消息携带第一比特,该第一比特对应该第一调整值。
另一种可能的实现方式中,该接收功率调整请求消息承载在MAC CE、或UCI或RRC信令上。
另一种可能的实现方式中,该收发模块还用于:
接收第二节点发送的第一确认信息;
该功率控制装置还包括处理模块;
该处理模块,用于根据该第一确认信息确定该第二节点接收到第二消息。
本申请实施例第八方面提供一种功率控制装置,该功率控制装置包括:
收发模块,用于接收第一节点发送的第二消息,该第二消息用于请求该第一节点在第一传输模式下所期望的第一接收功率,该功率控制装置为该第一节点的上级节点或者宿主Donor基站。
一种可能的实现方式中,该第二消息还用于请求该第一节点在第二传输模式下所期望的第二接收功率。
另一种可能的实现方式中,该第二消息为接收功率请求消息,该接收功率请求消息包括:第一偏移值和/或功率缩放因子,该第一偏移值为相对于解调参考信号、同步/广播信号和信道状态信息参考信号中的任一种或任多种信号的接收功率或发送功率的偏移值,该功率缩放因子用于通过该解调参考信号、该同步/广播信号和该信道状态信息参考信号中的任一种信号的接收功率或发送功率乘以该功率缩放因子,得到该第一接收功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第四指示信息,该第四指示信息用于指示触发该功率控制装置调整第三发送功率,该第三发送功率为在该第一传输模式下该功率控制装置向该第一节点进行传输时的发送功率;或者,该第四指示信息用于指示该功率控制装置升高或降低该第三发送功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第一调整值,该第一调整值用于该功率控制装置调整第三发送功率,该第三发送功率为在该第一传输模式下该功率控制装置向该第一节点进行传输时的发送功率;或者,该接收功率调整请求消息携带第一比特,该第一比特对应该第一调整值。
另一种可能的实现方式中,该接收功率调整请求消息承载在MAC CE、或UCI或RRC信令上。
另一种可能的实现方式中,该收发模块还用于:
向该第一节点发送第一确认信息,该第一确认信息用于通知该第一节点该功率控制装置接收到该第二消息。
本申请实施例第九方面提供一种功率控制装置,该流量识别设备包括:处理器、存储器、输入输出设备以及总线;该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,用于实现如第一方面任意一种实现方式。
在第九方面的一种可能的实现方式中,该处理器、存储器、输入输出设备分别与该总线相连。
本申请实施例第十方面提供一种功率控制装置,该流量识别设备包括:处理器、存储器、输入输出设备以及总线;该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,用于实现如第二方面中的任意一种实现方式。
在第十方面中的一种可能的实现方式中,该处理器、存储器、输入输出设备分别与该总线相连。
本申请实施例第十一方面提供一种功率控制装置,该流量识别设备包括:处理器、存储器、输入输出设备以及总线;该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,用于实现如第三方面中的任意一种实现方式。
在第十一方面中的一种可能的实现方式中,该处理器、存储器、输入输出设备分别与该总线相连。
本申请实施例第十二方面提供一种功率控制装置,该流量识别设备包括:处理器、存储器、输入输出设备以及总线;该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,用于实现如第四方面中的任意一种实现方式。
在第十二方面中的一种可能的实现方式中,该处理器、存储器、输入输出设备分别与该总线相连。
本申请实施例第十三方面提供一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得该计算机执行如第一方面、第二方面、第三方面和第四方面中任一种的实现方式。
本申请实施例第十四方面提供一种计算机可读存储介质,其特征在于,包括指令,当该指令在计算机上运行时,使得计算机执行如第一方面、第二方面、第三方面和第四方面中的任一方面中的任一种实现方式。
本申请实施例第十五方面提供一种芯片,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行计算机程序,使得该处理器执行上述第一方面、第二方面、第三方面和第四方面中的任一方面中的任一种实现方式。
本申请实施例第十六方面提供一种通信系统,该通信系统包括如第五方面的功率控制装置和如第六方面的功率控制装置;或者,该通信系统包括第七方面的功率控制装置和如第八方面的功率控制装置。
从以上技术方案可以看出,本申请实施例具有以下优点:
经由上述方案可知,第一节点确定第一功率控制参数,第一功率控制参数用于指示第一节点在第一传输模式所期望的第一发送功率;然后,第一节点向第二节点发送第一消息,该第一消息携带该第一功率控制参数,该第一消息用于请求该第一节点在第一传输模式在所期望的第一发送功率,该第二节点为第一节点的上级节点Donor基站。由此可知,针对第一传输模式,第一节点可以向第二节点上报在第一传输模式下所期望的第一功率控制参数,以便于实现第二节点对第一节点在第一传输模式下的功率控制参数的配置。并且,第一节点向第二节点上报第一功率控制参数时,将传输模式与上报的功率控制参数进行关联,这样有利于缓解干扰等造成的传输容量下降等问题,提升传输性能。例如,在空分复用传输下,第一节点通过该第一功率控制参数所确定的发送功率向第二节点进行传输,有效地缓解干扰导致的传输容量下降的问题,提高传输性能。
附图说明
图1A为本申请实施例通信系统的一个示意图;
图1B为本申请实施例回传链路和接入链路的一个场景示意图;
图1C为本申请实施例IAB节点的功能结构示意图;
图2(a)为本申请实施例上行全双工传输的一个场景示意图;
图2(b)为本申请实施例空分复用传输的一个发送场景示意图;
图2(c)为本申请实施例下行全双工传输的一个场景示意图;
图2(d)为本申请实施例空分复用传输的一个接收场景示意图;
图3A为本申请实施例功率控制方法的一个实施例示意图;
图3B为本申请实施例功率控制方法的一个场景示意图;
图3C为本申请实施例功率控制方法的另一个场景示意图;
图4为本申请实施例功率控制方法的另一个实施例示意图;
图5为本申请实施例功率控制装置的一个结构示意图;
图6为本申请实施例功率控制装置的另一个结构示意图;
图7为本申请实施例功率控制装置的另一个结构示意图;
图8为本申请实施例功率控制装置的另一个结构示意图;
图9为本申请实施例功率控制装置的另一个结构示意图;
图10为本申请实施例功率控制装置的另一个结构示意图;
图11为本申请实施例功率控制装置的另一个结构示意图;
图12为本申请实施例功率控制装置的另一个结构示意图;
图13为本申请实施例通信系统的一个示意图。
具体实施方式
本申请实施例提供了一种功率控制方法和功率控制装置,用于缓解干扰导致的传输容量下降的问题,提高传输性能。
图1A示出了本申请实施例应用的IAB系统,该IAB系统至少包括一个基站101、该基站101所服务的终端设备104、中继节点103、中继节点104和该中继节点102所服务的终端设备105。通常该基站101被称为宿主基站,或者也可以称为宿主节点,终端设备也称为终端。基站包括但不限于:eNB、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evoled node B,或home node B,HNB)、基带单元(baseband unit,BBU)、或新空口基站(例如,gNB)、传输接收点TRP,或者传输点TP等。
其中,中继节点103为中继节点102的上级节点,而中继节点102为基站101的下级节点。通常,下级节点可以被看作是上级节点的一个终端。
在图1A中,Donor基站用于接入到核心网。或者是,Donor基站作为无线接入网的一个锚点基站,通过该锚点基站接入到网络中。该锚点基站负责分组数据汇聚协议(packet data convergence protocol,PDCP)层的数据处理,或者负责接收核心网的数据并转发给 中继节点,或者接收中继节点的数据并转发给核心网。
为描述方便,在后文中将中继节点称为第一节点,第一节点的上级节点称为第二节点。第一节点为中继节点、或者具有中继功能的终端、或者任何具有中继功能的设备。第二节点为Donor基站、或者中继节点、或者具有中继功能的终端、或者任何具有中继功能的设备。下面以本申请实施例应用于IAB系统为例示出第一节点和第二节点的两种可能的应用场景:
1、第一节点为IAB节点,第二节点为Donor基站。
例如,如图1B所示,第一节点为IAB节点2,第二节点为Donor基站,Donor基站为IAB节点2的上级节点。
2、第一节点和第二节点都为IAB节点,且第一节点为第二节点的下级节点。
例如,如图1B所示,第一节点为IAB节点1,第二节点为IAB节点2,IAB节点2为IAB节点1的上级节点。
本申请实施例中,为了在更多传输模式下提升网络性能,在配置IAB节点的发送功率和接收功率时需考虑干扰的影响。而IAB节点的发送功率和接收功率之间的干扰的影响主要是回传链路和接入链路之间的干扰。或者在更多传输模式下,为了IAB节点的接收机在接收信号时不超过其硬件能力所能支持的动态范围。
下面以图1B所示的场景为例介绍回传链路和接入链路。如图1B所示,Donor基站为IAB节点2的上级节点,IAB节点1为IAB节点2的下级节点。在IAB系统中,IAB节点2与上级节点(例如,Donor基站)之间通信的链路通常称为回传链路。IAB节点2与下级节点(例如,IAB节点1或终端设备1)之间通信的链路通常称为接入链路。
可选的,在一些通信协议或通信架构中,IAB节点与下级节点之间通信的链路也称为回传链路,而IAB节点与终端设备之间通信的链路称为接入链路。具体本申请不做限定。在后文中以IAB节点与下级节点或终端设备之间的通信的链路称为接入链路为例进行说明。
而IAB节点在功能上分为IAB移动终端(mobile terminating,MT)和IAB分布式单元(distributed unit,DU)。具体请参阅图1C,IAB MT指IAB节点作为终端设备接入到上级节点。IAB DU指IAB作为基站分布式单元,为UE和其他下级节点提供接入服务。通常,IAB MT通过回传链路与上级节点进行通信,IAB DU通过回传链路与下级节点进行通信,IAB DU通过接入链路与终端设备进行通信。
上述图1C所示的IAB节点中的MT与DU均为具有完整的收发模块,且MT与DU之间具有接口。但是,MT与DU为逻辑模块,在实际应用中,MT与DU可以共享部分子模块。例如,MT与DU共用收发天线、基带处理模块等。或者MT与DU可以共享硬件,本发明对MT与DU的具体实现方式不做限定。
应当理解的是,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示为单独存在A,单独存在B,同时存在A和B这三组情况。
为了在更多传输模式下提升网络性能,在配置IAB节点的发送功率和接收功率时需考虑干扰的影响或硬件能力的约束。本申请实施例适用于传输模式包括但不限于:空分复用 传输和全双工传输。
空分复用传输指IAB节点在同一时刻既可以通过回传链路向上级节点发送上行信号,又可以通过接入链路向下级节点或终端设备发送下行信号;或者,指IAB节点在同一时刻既可以接收回传链路上的上级节点发送的下行信号,又可以接收接入链路上的下级节点或终端设备发送的上行信号。
全双工传输指IAB节点在同一时刻既可以通过接入链路接收下级节点发送的上行信号,又可以通过回传链路向上级节点发送上行信号;或者,指IAB节点在同一时刻既可以通过回传链路接收上级节点发送的下行信号,又可以通过接入链路向下级节点发送的下行信号。
在全双工传输下,接入链路上所使用的频带和回传链路上所使用的频带为同一频带或不同频带。当接入链路上所使用的频带和回传链路上所使用的频带为同一频带时,接入链路和回传链路可以使用同一频带的同一频点,或者使用同一频带内的不同频点。
下面结合图2(a)至图2(d)通过举例介绍本申请实施例所适用的一些具体的传输场景。对于本申请实施例中未示出且具有类似需求的场景同样适用,本申请不做限定。
请参阅图2(a),图2(a)为本申请实施例中上行全双工传输的一个场景示意图。IAB node1在同一时刻既通过回传链路向Donor基站发送上行信号,又通过接入链路接收IAB node2发送的上行信号。其中,IAB node1为IAB node2的上级节点。而如果IAB node1向Donor基站发送上行信号的发送功率过大,会导致IAB node1自身接收机的干扰问题。即影响IAB node1对IAB node2的上行信号的接收,对IAB node1的上行接收产生干扰作用。
请参阅图2(b),图2(b)为本申请实施例中空分复用传输的一个发送场景示意图。IAB node1在同一时刻既通过回传链路向Donor基站发送上行信号,又通过接入链路向IAB node2发送下行信号。其中,IAB node1为IAB node2的上级节点。而如果IAB node1向Donor基站发送上行信号的发送功率过大,会影响IAB node1对IAB node2的下行信号的发送,对IAB node1的下行发送产生干扰作用。如果IAB node1向IAB node2发送下行信号的发送功率过大时,会影响IAB node1向Donor基站发送上行信号,对IAB node1的上行发送产生干扰作用。
针对上述图2(a)或图2(b)所示的传输场景,本申请实施例所提供的如图3A所示的功率控制方法以实现对上述IAB node1在上述图2(a)或图2(b)所示的传输模式下的上行发送功率的控制,从而缓解干扰等造成的传输容量下降等问题,以提升网络传输性能。
请参阅图2(c),图2(c)为本申请实施例中下行全双工传输的一个场景示意图。IAB node1在同一时刻既通过回传链路接收Donor基站发送的下行信号,又通过接入链路向IAB node2发送的下行信号。其中,IAB node1为IAB node2的上级节点。而如果Donor基站向IAB node2发送下行信号的发送功率过大时,会影响IAB node1对IAB node2的下行信号的发送,对IAB node1的下行发送产生干扰作用。
请参阅图2(d),图2(d)为本申请实施例中空分复用传输的一个接收场景示意图。IAB node1在同一时刻既通过回传链路接收Donor基站发送的下行信号,又通过接入链路接收IAB node2发送的上行信号。其中,IAB node1为IAB node2的上级节点。而如果Donor基站向IAB node1发送下行信号的发送功率过大,会影响IAB node1对IAB node2或终端 设备的上行信号的接收,对IAB node1或终端设备的上行接收产生干扰作用。或者,如果IAB node1接收IAB node2发送的上行信号的接收功率过大时,会影响IAB node1对Donor基站的下行信号的接收,对IAB node1的下行接收产生干扰作用。
针对上述图2(c)或图2(d)所示的传输场景,本申请实施例所提供的如图4所示的功率控制方法以实现对上述IAB node1在图2(c)或图2(d)所示的传输模式下的下行接收功率的控制,从而缓解干扰等造成的传输容量下降等问题,以提升网络传输性能。
请参阅图3A,图3A为本申请实施例功率控制方法的一个实施例示意图。在图3A中,该方法包括:
301、第一节点确定第一功率控制参数。
其中,第一功率控制参数用于指示第一节点在第一传输模式下所期望的第一发送功率。
该第一功率控制参数可以包括基准功率P O_PUSCH的取值或取值范围、用户级标称功率P O_UE_PUSCH的取值或取值范围、或者基准功率偏移值。其中,基准功率偏移值指相对于时分复用(time division multiplexing,TDM)模式下已有的基准功率的偏移值,或者第一节点已经接收的功率控制参数所配置的基准功率的偏移值。
可选的,第一功率控制参数还包括以下任一种或任多种:路径损耗补偿因子、路径损耗测量参考信号索引、上行信道或上行信号-基准功率与路径损耗参数集合索引、上行信道或上行信号-路径损耗参考信号配置、上行信道或上行信号-上行探测参考信号资源索引-功率控制参数配置、基准功率-上行信道或上行信号配置集合配置、第一传输模式的发送功率的第一上限值、第一传输模式的发送功率的第一下限值、第一上限值与第一下限值之间的差值的取值范围、动态功率控制累计值。
其中,路径损耗测量参考信号索引可以包括同步/广播信号索引(synchronization signal/physical broadcasting channel timing index,SS/PBCH timing index),或信道状态信息参考信号资源索引(channel state information reference signal resource ID,CSI-RS resource ID)
可选的,上行信道为PUSCH,或,物理上行控制信道(physical uplink control channel,PUCCH)。上行信号为上行参考信号,例如,上行探测参考信号(sounding reference signal,SRS)。
一种可能的实现方式中,该第一功率控制参数还包括调制与编码方式(modulation and coding scheme,MCS)。其中,每个MCS索引范围都有对应的功率控制参数。例如,MCS索引=17~28,对应一组功率控制参数;MCS索引=10~16,对应另一组功率控制参数。
由上述介绍可知,第一功率控制参数包括期望功率控制参数和已被配置的功率控制参数。其中,期望功率控制参数包括目前已定义的功率控制参数和新定义的功率控制参数。已配置的功率控制参数为时分复用(time division multiplexing,TDM)模式下的已有的功率控制参数。
一、下面对第一功率控制参数中携带的目前已定义的功率控制参数进行介绍。
具体的,已定义的功率控制参数可以是基于3GPP NR标准所定义的上行功率控制机制 确定的。本申请实施例的功率控制方法适用于上行信道(例如,物理上行共享信道或者物理上行控制信道)或上行信号(例如,上行参考信号SRS)。下面以PUSCH信道为例,介绍目前NR的上行功率控制机制。UE在PUSCH信道上确定上行发送功率,主要依赖于以下公式1:
Figure PCTCN2021093266-appb-000001
其中,在P PUSCH,b,f,c(i,j,q d,l)中,PUSCH指PUSCH信道。b表示PUSCH信道的当前带宽(bandwidth part,BWP)。f表示PUSCH信道的当前载频。c表示当前小区(cell)。i表示PUSCH信道的传输时机。j表示功率控制参数集合索引。q d表示用于计算路径损耗的参考信号。l表示功率控制调整状态索引。
P CMAX,f,c(i)为该UE的最大上行发送功率,P CMAX,f,c(i)的取值基于法规限制,由通信协议约束。
P O_PUSCH为基准功率,可以理解为功率控制的基准值。该基准功率一般与基站配置有关,基站调整或修改功率控制参数均基于该P O_PUSCH的取值。具体的,P O_PUSCH=P O_UE_PUSCH+P O_NOMINAL_PUSCH,P O_UE_PUSCH为配置的用户级标称功率的取值,P O_NOMINAL_PUSCH为该UE初始成功接入网络时的上行发送功率。
Figure PCTCN2021093266-appb-000002
为带宽补偿因子,与当前的子载波间隔以及调度带宽相关。带宽越大,则带宽补偿因子的取值越大。
α b,f,c(j)·PL b,f,c(q d)为路径损耗补偿,α b,f,c(j)为路径补偿因子。具体的,基站可以通过参数集进行配置该路径补偿因子。通常情况下,该路径补偿因子的取值范围为[0,1]。PL b,f,c(q d)为基于参考信号q d计算或测量得到的路径损耗。例如,UE已知基站侧参考信号q d的发送功率P,UE对参考信号q d进行测量,得到该参考信号q d的接收功率,那么q d的路径损耗=q d发送功率-q d接收功率。
Δ TF,b,f,c(i)与调制编码方式和参考信号在带宽中占用的子载波个数有关。Δ TF,b,f,c(i)用于基站根据具体调度时的传输资源的情况,对功率进行进一步补充。可选的,基站可以配置不开启此功能。
f b,f,c(i,l)表征动态功率控制的调整结果。具体的,基站可以通过物理层控制信令DCI对f b,f,c(i,l)进行调整。f b,f,c(i,l)是一个累积值,与PUSCH信道的前一个传输时机的值有关。
min(x)表示对x取较小值。UE根据各种参数计算发送功率,若超过P CMAX,f,c(i)则按照 P CMAX,f,c(i)所指示的发送功率发送信号。
由上述基于NR的功率控制参数机制可知,本申请实施例中第一节点上报的第一功率控制参数可以至少部分沿用已有的上行功率控制机制所采用的功率控制参数,通过第一节点上报第一功率控制参数以实现对更多的传输模式的功率控制参数的差异化配置。例如,第一功率控制参数中所携带的基准功率P O_PUSCH的取值或取值范围、用户级标称功率P O_UE_PUSCH的取值或取值范围、基准功率偏移值、路径损耗补偿因子、路径损耗测量参考信号索引和动态功率控制累计值都是已有的上行功率控制机制中所采用的功率控制参数。
其中,动态功率控制累计值用于第二节点根据动态功率控制确定第一节点的上行发送功率。以下针对动态功率控制累计值的几种可能的情况进行说明:
1、当第一功率控制参数不包含动态功率控制累计值时,第二节点默认动态功率控制的参考累计值为0。
2、当第一功率控制参数不包含动态功率控制累计值时,第二节点默认将上一时刻在TDM模式下的动态功率控制累计值作为动态功率控制的参考累计值。
3、当第一功率控制参数不包含动态功率控制参数累计值时,第二节点默认将上一次全双工传输或空分复用传输时的动态功率控制累计值作为动态功率控制的参考累计值。
4、当第一功率控制参数不包含动态功率控制参数累计值时,第二节点默认将动态功率控制累计值设置为协议规定的或已配置的默认值。
二、下面对第一功率控制参数中的已被配置的功率控制参数进行介绍。
这里以上行信道为PUSCH为例介绍第一功率控制参数中的已被配置的功率控制参数。
1、上行信道或上行信号-基准功率与路径损耗参数集合索引为P0-PUSCH-AlphaSetID。该第一功率控制参数包括一个或多个P0-PUSCH-AlphaSetID。每个P0-PUSCH-AlphaSet包含一个P0-PUSCH-AlphaSetID、用户级标称功率的取值和路径损耗补偿因子(Alpha的取值)。具体表示为:
Figure PCTCN2021093266-appb-000003
由上述P0-PUSCH-AlphaSet的组成可知,P0-PUSCH-AlphaSet包括用户级标称功率的取值和路径损耗补偿因子。
因此,可选的,第一功率控制参数中携带的用户级标称功率的取值和路径损耗补偿因子通过P0-PUSCH-AlphaSetID间接表示。即用户级表标称功率的取值和路径损耗补偿因子的取值可以通过P0-PUSCH-AlphaSet携带。
2、上行信道或上行信号-路径损耗参考信号配置为PUSCH-PathlossReferenceRS配置,第一功率控制参数包括一个或多个PUSCH-PathlossReferenceRS配置。每个PUSCH-PathlossReferenceRS包含PUSCH-PathlossReferenceRS ID、CSI-RS resourceID) 或SS/PBCH index)。具体表示为:
Figure PCTCN2021093266-appb-000004
由上述PUSCH-PathlossReferenceRS的组成可知,PUSCH-PathlossReferenceRS包括PUSCH-PathlossReferenceRS ID。
因此,可选的,第一功率控制参数中携带的路径损耗测量参考信号索引通过PUSCH-PathlossReferenceRS配置表示。即路径损耗测量参考信号索引可以通过PUSCH-PathlossReferenceRS配置携带。
3、上行信道或上行信号-上行探测参考信号资源索引-功率控制参数配置为物理上行共享信道-上行探测参考信号资源索引-功率控制参数(sounding resource index physical uplink shared channel power control,SRI-PUSCH-PowerControl)配置,该第一功率控制参数包括一个或多个PUSCH-PowerControl配置。每个SRI-PUSCH-PowerControl包含SRI-PUSCH-PowerControl ID、sri-PUSCH-PathlossReferenceRS-Id,一个sri-P0-PUSCH-AlphaSetId和sri-PUSCH-ClosedLoopIndex。具体表示为:
Figure PCTCN2021093266-appb-000005
4、基准功率-上行信道或上行信号配置集合配置为P0-PUSCH-Set配置,该第一功率控制参数包括一个或多个P0-PUSCH-Set配置。每个P0-PUSCH-Set包含P0-PUSCH-SetID和用户级标称功率P O_UE_PUSCH的取值。具体表示为:
Figure PCTCN2021093266-appb-000006
三、下面对该第一功率控制参数中携带的新定义的功率控制参数分别进行介绍。
a、第一上限值。
该第一上限值为第一节点在第一传输模式下所采用的发送功率的上限值。
在第一传输模式下,当第一节点通过第一传输模式的功率控制参数所确定的发送功率大于该第一上限值时,则按照该第一上限值进行传输;而如果该第一上限值没有被配置,则第一节点通过TDM模式下的发送功率的上限值进行传输。
例如,空分复用传输所对应的发送功率的上限值为P CMAX,SDM,全双工传输所对应的发送功率的上限值为P CMAX,FD
b、第一下限值。
该第一下限值为第一节点在第一传输模式下所采用的发送功率的下限值。
在第一传输模式下,当第一节点通过第一传输模式的功率控制参数所确定的发送功率小于该第一下限值时,则按照该第一下限值进行传输;
c、第一上限值与第一下限值之间的差值的取值范围。
该第一上限值与第一下限值之间的差值的取值范围用于指示第一节点在第一传输模式下所采用的发送功率的取值范围。
一种可能的实现方式中,第一功率控制参数还用于指示第一节点在第二传输模式下所期望的第二发送功率。
在该可能的实现方式中,第一节点通过同一份功率控制参数(第一功率控制参数)请求在第一传输模式所期望的第一发送功率和在第二传输模式所期望的第二发送功率。
其中,第一传输模式和第二传输模式包括以下任一种可能的实现方式:
1、第一传输模式所期望的发送功率用于空分复用传输,第二传输模式所期望的发送功率用于全双工传输。
2、第一传输模式所期望的发送功率用于全双工传输,第二传输模式所期望的发送功率用于空分复用传输。
具体的应用场景可以结合前述图2(a)和图2(b)所示的具体应用场景进行理解。
302、第一节点向第二节点发送第一消息。
其中,第一消息携带第一功率控制参数,第一消息用于请求第一节点在第一传输模式下所期望的第一发送功率。
下面结合具体应用场景介绍第一节点和第二节点之间的关系:
关系1:第一节点为IAB节点,第二节点为Donor基站。
在关系1下,具体包括两种可能的应用场景,下面结合图1B进行介绍。
第一种应用场景为:第一节点为IAB节点2,第二节点为Donor基站。
第二种应用场景为:第一节点为IAB节点1,第二节点为Donor基站。
关系2:第一节点和第二节点都为IAB节点,且第二节点为第一节点的上级节点。
例如,请参阅图1B,该第一节点为IAB节点1,第二节点为IAB节点2,IAB节点2为IAB节点1的上级节点。
本实施例中,第一消息承载在无线资源控制RRC信令、或媒体接入控制控制元素MAC CE、或上行控制信息UCI、或适配层BAP信令或F1接口应用协议信令上。
本实施例中,由于第二节点为第一节点的上级节点,那么第一发送功率可以理解为第一节点在第一传输模式下向第二节点进行传输时的上行发送功率。
一种可能的实现方式中,当第一功率控制参数还用于请求第一节点在第二传输模式下所期望的第二发送功率时,第一消息还用于请求第一节点在第二传输模式下所期望的第二发送功率。
在该可能的实现方式中,第一节点通过同一份功率控制参数请求第一节点在第一传输模式下所期望的第一发送功率和第一节点在第二传输模式下所期望的第二发送功率,以便于第二节点分别对第一传输模式的功率控制参数和第二传输模式的功率控制参数的配置。
另一种可能的实现方式中,第一消息还携带第二功率控制参数,该第二功率控制参数用于指示第一节点在第二传输模式下所期望的第二发送功率。那么,该第一消息还用于请求第一节点在第二传输模式下所期望的第二发送功率。
在该可能的实现方式中,第二功率控制参数的内容与前述步骤301中第一功率控制参数的内容类似,这里不再赘述。第一节点在一次请求中携带第一功率控制参数和第二功率控制参数,以实现对两种不同传输模式的功率控制参数的上报,从而便于第二节点分别对第一传输模式的功率控制参数和第二传输模式的功率控制参数的配置。
可选的,第二功率控制参数与第一功率控制参数部分相同或全部不同。
例如,第一功率控制参数对应空分复用传输,第二功率控制参数对应全双工传输。第一功率控制参数包括基准功率的取值A1和路径损耗补偿因子B1,而第二功率控制参数包括基准功率的取值为A2和路径损耗补偿因子B1,则可知第一功率控制参数与第二功率控制参数部分相同。
本申请实施例中,第一节点向第二节点上报在第一传输模式下所期望的第一功率控制参数,以便于实现第二节点对第一节点在第一传输模式下的功率控制参数的配置。并且,第一节点向第二节点上报第一功率控制参数时,将传输模式与上报的功率控制参数进行关联,这样有利于缓解干扰等造成的传输容量下降等问题,提升传输性能。例如,在空分复用传输下,第一节点通过该第一功率控制参数所确定的发送功率向第二节点进行传输,有效地缓解干扰导致的传输容量下降的问题,提高传输性能。
本实施例中,为了区分第一节点上报的第一功率控制参数所对应的传输模式,本申请实施例提供多种实现方式,下面分别进行介绍。
实现方式一:该第一消息还包括第一指示信息。
其中,第一指示信息用于指示第一传输模式,第一功率控制参数对应第一传输模式。而第一指示信息包括多种可能的实现方式,下面通过举例进行说明:
1、第一指示信息包括第一上行发送定时信息。
其中,第一上行发送定时关联第一传输模式。因此,当第一指示信息包括第一上行发送定时信息时,第一功率控制参数对应第一传输模式。
可选的,该第一上行发送定时信息通过间接(隐式)或直接(显式)指示第一功率控制参数对应第一传输模式,下面分别进行介绍。
首先,先介绍该第一上行发送定时信息通过间接(隐式)指示第一功率控制参数对应 第一传输模式。
a、该第一上行发送定时信息包括第一传输模式所对应的定时提前组(timing advance group,TAG)的ID。
可选的,传输模式关联上行发送定时,而上行发送定时与TAG有关,每个TAG对应一个ID。那么,第二节点通过该第一上行发送定时信息所包括的TAG的ID可以确定第一功率控制参数所对应的传输模式。例如,该第一上行发送定时信息包括第一传输模式所对应的TAG的ID,则可知第一功率控制参数对应第一传输模式,当该第一上行发送定时信息中包括第二传输模式所对应的TAG的ID时,表示第一功率控制参数对应第二传输模式。
b、该第一上行发送定时信息为一个标识。
由于全双工传输可能不需要配置专用的上行发送定时,当第一消息中包含有上行发送定时信息时,则第一功率控制参数为空分复用传输。当第一功率控制参数中未包含有上行发送定时信息时,则第一功率控制参数为全双工传输模式。
c、该第一上行发送定时信息包括第一传输模式所对应的定时提前(timing advance,TA)值。
可选的,传输模式关联上行发送定时,而上行发送定时由TA的取值表示。那么,第二节点通过该上行发送定时的值,可以确定第一功率控制参数所对应的传输模式。例如,该第一上行发送定时信息包括第一传输模式所对应的TA的值,则可知第一功率控制参数对应的第一传输模式。
下面介绍该与第一上行发送定时信息通过直接(显式)指示第一功率控制参数对应第一传输模式。
示例性地,该第一上行发送定时信息包括第二比特,该第二比特的取值用于指示第一功率控制参数所对应的传输模式。例如,第二比特的取值为“1”,代表第一功率控制参数对应的第一传输模式,第二比特的取值为“0”,表示第一功率控制参数对应第二传输模式。
2、第一指示信息包括索引值。
其中,该索引值为第一预设值,第一预设值用于指示第一传输模式,第一功率控制参数对应第一传输模式。下面通过表1示出索引值与功率控制参数的对应关系:
表1
索引值 功率控制参数
00 第一传输模式的第一功率控制参数
01 第二传输模式的第二功率控制参数
例如,当索引值为“00”时,代表第一功率控制参数对应第一传输模式。
需要说明的是,当第一节点向第二节点发送携带第二功率控制参数的请求消息时,第一节点在请求消息中携带的索引值为第二预设值,第二预设值用于指示第二传输模式。该第二功率控制参数用于请求第一节点在第二传输模式下所期望的第二发送功率。例如,该请求消息中的一个字段,且该字段为“0”时,代表第二功率控制参数对应第二传输模式。
实现方式二:第一消息的信元名称用于指示第一功率控制参数所对应的传输模式。
其中,第一消息的信元名称为第一信元名称,第一信元名称用于指示第一功率控制参 数对应第一传输模式。例如,第一信元名称为SDM power control时,第一功率控制参数对应空分复用传输;第一信元名称为FD power control时,第一功率控制参数对应全双工传输。
实现方式二仅仅示出了通过第一消息的信元名称来指示第一功率控制参数所对应的传输模式。而在实际应用中,还可以通过第一消息的其他属性信息来指示第一功率控制参数所对应的传输模式。例如,第一消息的信元格式、第一消息的发送次数等。
本申请实施例中,针对第一节点发送的第一消息,第二节点的反馈方式有多种,下面分别进行介绍。
反馈方式一:第二节点向第一节点反馈肯定确认信息或否定确认信息。
在反馈方式一下,上述图3A所示的实施例还包括步骤303a和步骤304a,且步骤303a和步骤304a在步骤302之后执行。
步骤303a:若第一节点接收到第二节点发送的肯定确认信息,则第一节点在第一传输模式下通过第一功率控制参数所确定的第一发送功率进行传输。
应理解,确定第一发送功率的公式参考如下:
Figure PCTCN2021093266-appb-000007
上述参数的含义请参考上文的描述,这里不再赘述。
第一节点基于第一功率控制参数和上述公式,计算第一发送功率。
其中,该肯定确认信息用于指示同意第一节点通过第一功率控制参数所确定的第一发送功率进行传输。可选的,该肯定确认信息为ACK。
例如,如图3B所示,第二节点为Donor基站,第一节点为IAB node1。Donor基站向IAB node1发送肯定确认信息。
步骤304a:若第一节点接收到第二节点发送的否定确认信息,则第一节点在第一传输模式下通过TDM模式下的功率控制参数所确定的第三发送功率进行传输。
同理地,确定第三发送功率的公式如下:
Figure PCTCN2021093266-appb-000008
第一节点根据TDM模式下的功率控制参数和上述公式,计算第三发送功率。
其中,该否定确认信息用于否定第一节点通过第一功率控制参数所确定的第一发送功率进行传输。可选的,该否定确认信息为NACK。
在步骤304a中,如果第二节点拒绝第一节点通过第一功率控制参数所确定的第一发送功率控制进行传输,那么第一节点可以使用已配置的TDM模式下的功率控制参数的发送功率进行传输。而步骤304a的机制为通信协议规定的,或者为第一节点确定的。
反馈方式二:第二节点仅反馈否定确认信息。
在反馈方式二下,上述图3A所示的实施例还包括步骤303b和步骤304b,且步骤303b和步骤304b在步骤302之后执行。
步骤303b:若第一节点未接收到第一节点发送的否定确认信息,则第一节点在第一传输模式下通过第一功率控制参数所确定的第一发送功率进行传输,计算第一发送功率的公 式请参考步骤303a。
当第二节点同意第一节点在第一传输模式下通过第一功率控制参数所确定的第一功率控制参数进行传输时,第二节点不向第一节点反馈任何消息。
步骤304b:若第一节点接收到第一节点发送的否定确认信息,则第一节点在第一传输模式下通过TDM模式下的功率控制参数所确定的第三发送功率进行传输,计算第三发送功率的公式请参考步骤304a。
在步骤304b中,如果第二节点拒绝第一节点通过第一功率控制参数所确定的第一发送功率控制进行传输,那么第一节点可以使用已配置的TDM模式下的功率控制参数的发送功率进行传输。可选的,该否定确认信息为NACK。
本实施例中,步骤304b的机制为通信协议规定的,或者为第一节点确定的。
反馈方式三:第二节点仅反馈肯定确认信息。
在反馈方式三下,上述图3A所示的实施例还包括步骤303c和步骤304c,且步骤303c和步骤304c在步骤302之后执行。
步骤303c:若第一节点接收到第一节点发送的肯定确认信息,则第一节点在第一传输模式下通过第一功率控制参数所确定的第一发送功率进行传输,计算第一发送功率的公式请参考步骤303a。
当第二节点同意第一节点在第一传输模式下通过第一功率控制参数所确定的第一功率控制参数进行传输时,第二节点向第一节点发送肯定确认信息。可选的,该肯定确认信息为ACK。
步骤304c:若第一节点未接收到第一节点发送的肯定确认信息时,则第一节点在第一传输模式下通过TDM模式下的功率控制参数所确定的第三发送功率进行传输,计算第三发送功率的公式请参考步骤304a。
在步骤304c中,如果第二节点拒绝第一节点通过第一功率控制参数所确定的第一发送功率控制进行传输,那么第一节点可以使用已配置的TDM模式下的功率控制参数的发送功率进行传输。而步骤304c的机制为通信协议规定的,或者为第一节点确认的。
反馈方式四:第二节点向第一节点反馈重配置消息。
在方式四中,上述图3A所示的实施例还包括步骤303d和步骤304d,且步骤203d和步骤304d在步骤302之后执行。
步骤303d:第二节点向第一节点发送重配置消息。
其中,重配置消息携带第三功率控制参数,第三功率控制参数为第二节点为第一节点配置的用于第一传输模式的功率控制参数。第一功率控制参数与第三功率控制参数部分相同或全部相同。
例如,如图3B所示,第二节点为Donor基站,第一节点为IAB node1。Donor基站向IAB node1发送重配置消息。
下面结合第二节点为第一节点重配置该第三功率控制参数的方式介绍该第一功率控制参数与第三功率控制参数之间的关系。
方式a:第二节点保留第一节点上报的第一功率控制参数的部分功率控制参数的配置, 并修改第一功率控制参数的另一部分功率控制参数的配置。
可选的,在方式a下,第二节点仅反馈第一功率控制参数中被修改的功率控制参数,并包含在重配置消息中。对于没有包含在重配置消息中的功率控制参数,第一节点在收到重配置消息后,可以默认为第二节点没有对未包含在重配置消息中的功率控制参数进行修改。
例如,第一节点上报基准功率的取值和路径损耗补偿因子的取值。第二节点沿用该基准功率的取值,修改该路损耗补偿因子的取值,再将该基准功率的取值和该修改后的路径损耗补偿因子的取值作为该第二功率控制参数。
本实施例中,在方式a中,第二节点修改第一功率控制参数的配置原因有多种。例如,第一节点上报的第一功率控制参数可能导致用户间干扰或小区间干扰。
方式b:第二节点在第一功率控制参数的基础上,增加了其他功率控制参数的配置。
例如,第一节点只上报了基准功率的取值或基准功率的取值范围,第二节点在重配置消息中增加了路径损耗补偿因子和路径损耗测量参数信号的配置。即第一功率控制参数只包括基准功率的取值,而第二功率控制参数包括基准功率的取值、路径损耗补偿因子和路径损耗测量参数信号。
本实施例中,在方式b中,第二节点增加第一功率控制参数的配置原因有多种。例如,第二节点认为增加另一部分功率控制参数的配置能够增加第一节点的上行发送功率的可预期性,提升第一节点的传输性能。
步骤304d:第一节点在第一传输模式下通过第三功率控制参数所确定的发送功率进行传输。
本申请实施例中,可选的,在第二节点对第一消息作出反馈之后,上述图3A所示的实施例还包括步骤305和步骤306。
步骤305:当满足第一条件时,第一节点通过第一传输模式对应的功率控制参数所确定的第一发送功率进行传输。
其中,第一条件包括以下任一种:
1、第一节点接收第三节点发送的第二指示信息。
其中,第二指示信息用于指示第一节点通过第一传输模式所对应的功率控制参数所确定的发送功率进行传输。第三节点为第一节点的上级节点或宿主Donor基站。
下面结合图3B所示的应用场景介绍第二节点和第三节点之间的关系。
第一种应用场景为:第一节点为IAB node1,第二节点为Donor基站。那么在该应用场景下,第三节点与第二节点为同一设备,即为Donor基站。
在第一种应用场景下,Donor基站向IAB node1发送该第二指示信息。
第二种应用场景为:第一节点为IAB node2,第二节点为Donor基站。那么在该应用场景下,第三节点为IAB node1,IAB node1为Donor基站的下级节点,IAB node1为IAB node2的上级节点。
第三种应用场景为:第一节点为IAB node2,第二节点与第三节点为同一设备,即为IAB node1,IAB node2为IAB node1的上级节点。
在第二种应用场景和第三种应用场景下,第三节点为IAB node2,具体可以是IAB node2中的IAB DU向IAB node1发送该第二指示信息。
2、第一节点接收到第二节点发送的第一上行发送定时指示。
其中,第一上行发送定时指示所指示的第一上行发送定时与第一传输模式关联。
例如,针对空分传输模式,通信协议中定义了与时分传输模式不同的上行发送定时,且上行发送定时与传输模式相关联,从而间接实现传输模式与发送功率参数的对应关系。
示例性的,通过为不同传输模式配置不同的定时提前(TA)或定时提前组(TAG),以实现通过TA或TAG的ID区分多种传输模式;或者,通过信令区分多种传输模式;或者,通过为不同传输模式定义传输参数集,以实现通过传输参数集区分多种传输模式;或者,通过为不同传输模式配置部分带宽(Bandwidth part,BWP)配置,以实现通过BWP配置区分多种传输模式。其中,该传输参数集或BWP配置中包括上行发送定时信息。
3、第一节点根据第一节点的当前传输帧结构确定第一节点的当前传输模式为第一传输模式。
示例一:第一节点为IAB节点,该IAB节点的IAB MT在同一时刻向上级节点传输上行信号,并在该同一时刻接收下级节点发送的上行信号。即IAB MT与IAB DU两者同时调度形成了上行全双工传输,那么IAB节点可以确定当前的传输模式为全双工传输模式。
示例二:IAB节点的IAB DU在某一时间资源上被配置为hard UL资源类型。其中,该hard UL资源类型为3GPP标准协议已经定义的一种资源类型。IAB DU在该hard UL资源类型上可以接收上行信号,并且该IAB节点的IAB MT的行为不影响IAB DU的上行接收。即对于具有全双工能力的IAB节点来说,此时该IAB节点的上级节点仍然可以调度该IAB MT进行上行发送。当IAB MT的调度结果与IAB DU的资源类型构成了发送与接收同时进行的状态时,那么该IAB节点可以确定当前的传输模式为全双工传输,则IAB节点采用全双工传输的功率控制参数所确定的发送功率发送信号。
本申请实施例的技术方案不限于上述举例中的资源类型,由于标准还定义了其他的资源类型以及传输方向,只要IAB MT和IAB DU构成了一般意义上的全双工传输,则可以根据本申请实施例所提供的功率控制方法确定该IAB节点在全双工传输下的发送功率。
示例三:IAB节点的IAB DU在某一时间资源上被配置为hard DL资源类型。其中,该hard DL资源类型为3GPP标准协议已经定义的一种资源类型。该IAB DU在该hard DL资源类型上可以发送下行信号,并且按照Release-16版本的NR协议的定义,此时该IAB节点的IAB MT的行为不影响IAB DU的下行发送。对于支持空分发送能力的IAB节点而言,如果此时该IAB节点的上级节点调度IAB MT进行上行发送,则在IAB节点处构成了空分发送的工作模式。那么IAB节点可以确定当前的传输模式为空分复用传输,并采用空分复用传输的功率控制参数所确定的发送功率发送信号。
本申请实施例的技术方案不限于上述举例中的资源类型,由于标准还定义了其他的资源类型以及传输方向,只要IAB MT和IAB DU构成了一般意义上的空分复用传输,则可以根据本申请实施例所提供的功率控制方法确定该IAB节点在空分复用传输下的发送功率。
步骤306:当满足第二条件时,第一节点通过第二传输模式对应的功率控制参数所确 定的第二发送功率进行传输。
其中,第二条件包括以下任一种:
1、第一节点接收第三节点发送的第三指示信息。
其中,第三指示信息用于指示第一节点通过第二传输模式对应的功率控制参数所确定的发送功率进行传输。
2、第一节点接收到第二节点发送的第二上行发送定时指示。
其中,第二上行发送定时指示所指示的第二上行发送定时与第二传输模式关联。
3、第一节点根据第一节点的当前传输帧结构确定第一节点的当前传输模式为第二传输模式。
步骤306与前述步骤305类似,具体请参阅前述步骤305的相关说明,这里不再赘述。
本申请实施例中,为了第一节点能够在第一传输模式下通过第一功率控制参数所确定的发送功率进行传输,可以在通信协议中增加以下任一种规定:
规定1:第一节点在第一传输模式下通过第一发送功率进行传输时,该第一节点的上级节点不向第一节点发送动态功率控制指示。
规定2:第一节点不期望接收到第一节点的上级节点发送的动态功率控制指示。
规定3:当第一节点接收到第一节点的上级节点发送的针对第一传输模式的动态功率控制指示时,第一节点忽略或者不应用该动态功率控制指示所指示的功率控制参数。
可选的,上述1至3中的动态功率控制指示包括下行控制信息(downlink control indication,DCI)承载的上行功率控制指示。例如,SRI指示、闭环功率控制参数集合指示、DCI格式2_2或2_3承载的传输功率控制(transmission power control,TPC)指示。
本申请实施例中,可选的,上述图3A所示的实施例还包括步骤307,且步骤307在步骤302之后执行。
步骤307、第二节点向第四节点发送第一传输模式所对应的功率控制参数。
其中,该第一传输模式所对应的功率控制参数用于该第四节点在第一传输模式下通过该第一传输模式所对应的功率控制参数所确定发送功率进行传输。具体的,第二节点可以通过F1信令向第四节点发送该第一传输模式所对应的功率控制参数。
其中,第四节点为第一节点的上级节点或宿主Donor基站。
下面结合图3B所示的应用场景介绍第二节点和第四节点之间的关系。
场景一:第一节点为IAB node2,第二节点为Donor基站。那么在场景一下,第四节点为IAB node1,IAB node1为Donor基站的下级节点,IAB node2为IAB node1的上级节点。
例如,如图3B所示,Donor基站向IAB node1发送第一传输模式所对应的功率控制参数。
场景二:第一节点为IAB node2,第二节点为IAB node1.那么在场景二下,第四节点为Donor基站,IAB node2为IAB node1的上级节点。
例如,如图3C所示,IAB node1向Donor基站发送第一传输模式所对应的功率控制参数。
本申请实施例中,上述图3A示出了第一节点通过向第二节点上报第一功率控制参数以实现第二节点对第一节点在第一传输模式下的功率控制参数的配置的方式。在实际应用中,本申请实施例还提供以下两种可能的实现方式。
实现方式1、第一节点可以向第二节点发送第五指示信息。
其中,该第五指示信息用于指示第二节点调整该第一节点在第一传输模式下的发送功率;或者,第五指示信息用于指示第二节点升高或降低该第一节点在第一传输模式下的发送功率,从而实现第二节点对第一节点在第一传输模式下的功率控制参数的配置。
可选的,该第五指示信息还用于指示第二节点调整第一节点在第二传输模式下的发送功率;或者,该第五指示信息还用于指示第二节点升高或降低第一节点在第二传输模式下的发送功率。
其中,第一传输模式和第二传输模式包括以下任一种可能的实现方式:
1、第一传输模式所期望的发送功率用于空分复用传输,第二传输模式所期望的发送功率用于全双工传输。
2、第一传输模式所期望的发送功率用于全双工传输,第二传输模式所期望的发送功率用于空分复用传输。
实现方式2、第二节点可以向第一节点发送重配置消息。
其中,该重配置消息携带第二节点为第一节点配置的第一传输模式的功率控制参数,从而实现第二节点对第一节点在第一传输模式下的功率控制参数的配置。
请参阅图4,图4为本申请实施例功率控制方法的另一个实施例示意图。在图4中,该方法包括:
401、第一节点向第二节点发送第二消息。
其中,对于第一节点来说,第二消息用于请求第一节点在第一传输模式下所期望的第一接收功率。而对于第二节点来说,第二消息用于请求在第一传输模式下第二节点向第一节点进行传输时所期望的第四发送功率。
本实施例中,第二节点为第一节点的上级节点或宿主Donor基站。具体第一节点与第二节点的关系请参阅前述图3A所示的实施例中的步骤302的详细介绍,这里不再赘述。
本实施例中,由于第二节点为第一节点的上级节点,那么第一接收功率可以理解为第一节点所期望的接收第二节点发送的信号的下行接收功率。第四发送功率可以理解为第一节点所期望的第二节点向第一节点发送信号的下行发送功率。
可选的,第一节点向第二节点请求第一接收功率有多种可能的实现方式,下面结合第二消息的具体形式进行介绍。
方式一:第二消息为接收功率请求消息。
其中,该接收功率请求消息包括第一偏移值和/或功率缩放因子。
第一偏移值为相对于DMRS、SS/PBCH和CSI-RS中的任一种或任多种信号的接收功率或发送功率的偏移值。功率缩放因子用于通过DMRS、SS/PBCH和CSI-RS中的任一种或任多种信号的接收功率或发送功率乘以该功率缩放因子,得到第一接收功率。
本实施例中,第一节点所期望的第一接收功率,应当是能够缓解自身接收机的干扰问 题的接收功率。因此,第一偏移值的取值和功率缩放因子的取值应当是结合第一节点的干扰问题确定的,以便于第二节点对第二节点向第一节点进行传输时的第三发送功率进行调整,从而解决第一节点的干扰问题。
方式二:第二消息为接收功率调整请求消息。
其中,该接收功率调整请求消息携带的内容有多种形式,下面分别进行介绍:
1、该接收功率调整请求消息携带第四指示信息。
其中,该第四指示信息用于指示触发该第二节点调整第三发送功率;或者,第四指示信息用于指示第二节点升高或降低第三发送功率。
由上述第四指示信息可知,第一节点可以通过第四指示信息指示第二节点对第三发送功率进行调整;或者是,第一节点可以通过第四指示信息指示第二节点具体的功率调整方式。例如,第四指示信息指示第二节点升高或降低第三发送功率。
2、该接收功率调整请求消息携带第一调整值。
其中,第一调整值用于第二节点调整第三发送功率。例如,第三调整值为10dB,第二节点将第三发送功率增大10dB,得到第四发送功率;并将第四发送功率作为第二节点向第一节点进行传输时的发送功率。
3、该接收功率调整请求消息携带第一比特。
其中,第一比特对应第一调整值,第一调整值用于第二节点调整第三发送功率。该接收功率调整请求消息携带的比特与调整值之间存在对应关系,通过表2示出:
表2
Figure PCTCN2021093266-appb-000009
例如,第一比特为“00”,“00”对应调整值10dB。那么第二节点将第三发送功率增大10dB,得到第四发送功率;并将第四发送功率作为第二节点向第一节点进行传输时的发送功率。
本实施例中,该接收功率调整请求消息承载在MAC CE、UCI或RRC信令上。
可选的,第二消息还用于请求第一节点在第二传输模式下所期望的第二接收功率。即第一节点通过一次请求消息实现请求对第一传输模式的第一接收功率和第二传输模式的第二接收功率的配置。
其中,第一传输模式和第二传输模式包括以下任一种可能的实现方式:
1、第一传输模式所期望的接收功率用于空分复用传输,第二传输模式所期望的接收功率用于全双工传输。
2、第一传输模式所期望的接收功率用于全双工传输,第二传输模式所期望的接收功率用于空分复用传输。
具体的应用场景可以结合前述图2(c)和图2(d)对图4所示的实施例进行理解。
本实施例中,可选的,上述图4所示的实施例还包括步骤402和步骤403,且步骤402 和步骤403在步骤401之后执行。
步骤402:第二节点向第一节点发送第一确认信息。
其中,第一确认信息用于通知第一节点第二节点接收到该第一确认信息。
具体的,当第二节点为Donor基站,第一节点为IAB节点时,通常Donor基站向IAB节点进行传输的下行发送功率是Donor基站侧的实现行为,所以可能Donor基站接收到该第二消息时,仍然按照自身实现算法确定的下行发送功率向该IAB节点发送下行信号。那么,Donor基站向该IAB节点反馈第一确认信息之后,并不一定调整Donor基站向IAB节点进行传输时的下行发送功率。或者是,Donor基站不向该IAB节点反馈任何信息。
步骤403:第一节点根据该第一确认信息确定第二节点接收到该第二消息。
本申请实施例中,第一节点向第二节点发送第二消息,该第二消息用于请求第一节点在第一传输模式下所期望的第一接收功率,该第二节点为第一节点的上级节点Donor基站。由此可知,针对第一传输模式,第一节点可以向第二节点请求在第一传输模式下所期望的第一接收功率,以便于实现第二节点对第二节点向第一节点进行传输时的第三发送功率进行调整,从而缓解干扰导致的传输容量下降的问题,提升传输性能。
下面对本申请实施例中提供的一种功率控制装置进行描述。请参阅图5,本申请实施例中功率控制装置的一个结构示意图,该功率控制装置可以为第一节点,该功率控制装置可以用于执行图3A所示实施例中第一节点执行的步骤,可以参考上述方法实施例中的相关描述。
该功率控制装置包括处理模块501和收发模块502。
处理模块501,用于确定第一功率控制参数,该第一功率控制参数用于指示该功率控制装置在第一传输模式所期望的第一发送功率;
收发模块502,用于向第二节点发送第一消息,该第一消息携带该第一功率控制参数,该第一消息用于请求该功率控制装置在第一传输模式在所期望的第一发送功率,该第二节点为功率控制装置的上级节点Donor基站。
一种可能的实现方式中,该第一消息还携带第二功率控制参数,该第二功率控制参数用于指示功率控制装置在第二传输模式下所期望的第二发送功率。
另一种可能的实现方式中,该第一功率控制参数还用于指示功率控制装置在第二传输模式下所期望的第二发送功率。
另一种可能的实现方式中,该第一功率控制参数包括:基准功率的取值或者取值范围、用户级标称功率的取值或取值范围、或者、基准功率偏移值。
另一种可能的实现方式中,该用户级标称功率的取值通过P0-PUSCH-AlphaSetID表示。
另一种可能的实现方式中,该第一功率控制参数还包括路径损耗补偿因子和/或路径损耗测量参考信号索引。
另一种可能的实现方式中,该路径损耗补偿因子通过该P0-PUSCH-AlphaSetID表示;该路径损耗测量参考信号索引通过PUSCH-PathlossReferenceRS配置表示。
另一种可能的实现方式中,该第一消息还携带第一指示信息,该第一指示信息用于指示第一功率控制参数所对应的传输模式;或者,该第一消息的信元名称用于指示第一功率 控制参数所对应的传输模式。
另一种可能的实现方式中,第一指示信息包括第一上行发送定时信息,该第一上行发送定时信息用于指示第一传输模式。
另一种可能的实现方式中,第一传输模式为空分复用传输,第二传输模式为全双工传输;或者,第一传输模式为全双工传输,该第二传输模式为空分复用传输。
另一种可能的实现方式中,该第一消息承载在RRC信令、或MAC CE、或UCI、或BAP信令或F1接口应用协议信令上。
另一种可能的实现方式中,该收发模块502还用于:
接收第二节点发送的重配置消息,该重配置消息携带第三功率控制参数,该第三功率控制参数为该第二节点为该功率控制装置配置的用于该第一传输模式的功率控制参数;
该处理模块501还用于:
在该第一传输模式下通过该第三功率控制参数所确定的发送功率进行传输。
另一种可能的实现方式中,该第一功率控制参数与该第三功率控制参数部分相同或全部相同。
另一种可能的实现方式中,该处理模块501还用于:
当满足第一条件时,通过该第一传输模式对应的功率控制参数所确定的发送功率进行传输;该第一条件包括以下任一种:该功率控制装置接收第三节点发送的第二指示信息,该第二指示信息用于指示该功率控制装置通过该第一传输模式对应的功率控制参数所确定的发送功率进行传输,该第三节点为该功率控制装置的上级节点或宿主Donor基站;该功率控制装置接收到该第二节点发送的第一上行发送定时指示,该第一上行发送定时指示与该第一传输模式关联;该功率控制装置根据该功率控制装置的当前传输帧结构确定该功率控制装置的当前传输模式为该第一传输模式;或者,
当满足第二条件时,通过该第二传输模式对应的功率控制参数所确定的发送功率进行传输;该第二条件包括以下任一种:该功率控制装置接收第三节点发送的第三指示信息,该第三指示信息用于指示该功率控制装置通过该第二传输模式对应的功率控制参数所确定的发送功率进行传输,该第三节点为该功率控制装置的上级节点或宿主Donor基站;该功率控制装置接收到该第二节点发送的第二上行发送定时指示,该第二上行发送定时指示与该第二传输模式关联;该功率控制装置根据该功率控制装置的当前传输帧结构确定该功率控制装置的当前传输模式为该第二传输模式。
下面对本申请实施例中提供的一种功率控制装置进行描述。请参阅图6,本申请实施例中功率控制装置的一个结构示意图,该功率控制装置可以为第二节点,该功率控制装置可以用于执行图3A所示实施例中第二节点执行的步骤,可以参考上述方法实施例中的相关描述。
该功率控制装置包括收发模块601。
收发模块601,用于接收第一节点发送的第一消息,该第一消息携带第一功率控制参数,该第一功率控制参数用于指示该第一节点在第一传输模式下所期望的第一发送功率,该第一消息用于请求该第一节点在该第一传输模式下所期望的第一发送功率,该功率控制 装置为该第一节点的上级节点或者宿主Donor基站。
一种可能的实现方式中,该第一消息还携带第二功率控制参数,该第二功率控制参数用于指示该第一节点在第二传输模式下所期望的第二发送功率。
另一种可能的实现方式中,该第一功率控制参数还用于指示第一节点在第二传输模式下所期望的第二发送功率。
另一种可能的实现方式中,第一功率控制参数包括:基准功率的取值或者取值范围、用户级标称功率的取值或取值范围、或者、基准功率偏移值。
另一种可能的实现方式中,该用户级标称功率的取值通过P0-PUSCH-AlphaSetID表示。
另一种可能的实现方式中,该第一功率控制参数还包括路径损耗补偿因子和/或路径损耗测量参考信号索引。
另一种可能的实现方式中,该路径损耗补偿因子通过该P0-PUSCH-AlphaSetID表示;该路径损耗测量参考信号索引通过PUSCH-PathlossReferenceRS配置表示。
另一种可能的实现方式中,该第一消息还携带第一指示信息,该第一指示信息用于指示第一功率控制参数所对应的传输模式;或者,该第一消息的信元名称用于指示第一功率控制参数所对应的传输模式。
另一种可能的实现方式中,第一指示信息包括第一上行发送定时信息,该第一上行发送定时信息用于指示第一传输模式。
另一种可能的实现方式中,第一传输模式为空分复用传输,第二传输模式为全双工传输;或者,第一传输模式为全双工传输,该第二传输模式为空分复用传输。
另一种可能的实现方式中,该第一消息承载在RRC信令、或MAC CE、或UCI、或BAP信令或F1接口应用协议信令上。
另一种可能的实现方式中,该收发模块601还用于:
向第一节点发送重配置消息,该重配置消息携带第三功率控制参数,该第三功率控制参数为功率控制装置为第一节点配置的用于第一传输模式的功率控制参数。
另一种可能的实现方式中,第一功率控制参数与该第三功率控制参数部分相同或全部相同。
另一种可能的实现方式中,该收发模块601还用于:
向第四节点发送该第一传输模式所对应的功率控制参数,该第四节点为该第一节点的上级节点或宿主Donor基站。
下面对本申请实施例中提供的一种功率控制装置进行描述。请参阅图7,本申请实施例中功率控制装置的一个结构示意图,该功率控制装置可以为第一节点,该功率控制装置可以用于执行图4所示实施例中第一节点执行的步骤,可以参考上述方法实施例中的相关描述。
该功率控制装置包括收发模块701。可选的,该功率控制装置还包括处理模块702。
收发模块701,用于向第二节点发送第二消息,该第二消息用于请求功率控制装置在第一传输模式下所期望的第一接收功率,该第二节点为功率控制装置的上级节点Donor基站。
一种可能的实现方式中,该第二消息还用于请求该功率控制装置在第二传输模式下所期望的第二接收功率。
另一种可能的实现方式中,该第二消息为接收功率请求消息,该接收功率请求消息包括:第一偏移值和/或功率缩放因子,该第一偏移值为相对于解调参考信号、同步/广播信号和信道状态信息参考信号中的任一种或任多种信号的接收功率或发送功率的偏移值,该功率缩放因子用于通过该解调参考信号、该同步/广播信号和该信道状态信息参考信号中的任一种信号的接收功率或发送功率乘以该功率缩放因子,得到该第一接收功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第四指示信息,该第四指示信息用于指示触发该第二节点调整第三发送功率,该第三发送功率为在该第一传输模式下该第二节点向该功率控制装置进行传输时的发送功率;或者,该第四指示信息用于指示该第二节点升高或降低该第三发送功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第一调整值,该第一调整值用于该第二节点调整第三发送功率,该第三发送功率为在该第一传输模式下该第二节点向该功率控制装置进行传输时的发送功率;或者,该接收功率调整请求消息携带第一比特,该第一比特对应该第一调整值。
另一种可能的实现方式中,该接收功率调整请求消息承载在MAC CE、或UCI或RRC信令上。
另一种可能的实现方式中,该收发模块701还用于:
接收第二节点发送的第一确认信息;
该处理模块702,用于根据该第一确认信息确定该第二节点接收到第二消息。
下面对本申请实施例中提供的一种功率控制装置进行描述。请参阅图8,本申请实施例中功率控制装置的一个结构示意图,该功率控制装置可以为第二节点,该功率控制装置可以用于执行图4所示实施例中第二节点执行的步骤,可以参考上述方法实施例中的相关描述。
该功率控制装置包括收发模块801。
收发模块801,用于接收第一节点发送的第二消息,该第二消息用于请求该第一节点在第一传输模式下所期望的第一接收功率,该功率控制装置为该第一节点的上级节点或者宿主Donor基站。
一种可能的实现方式中,该第二消息还用于请求该第一节点在第二传输模式下所期望的第二接收功率。
另一种可能的实现方式中,该第二消息为接收功率请求消息,该接收功率请求消息包括:第一偏移值和/或功率缩放因子,该第一偏移值为相对于解调参考信号、同步/广播信号和信道状态信息参考信号中的任一种或任多种信号的接收功率或发送功率的偏移值,该功率缩放因子用于通过该解调参考信号、该同步/广播信号和该信道状态信息参考信号中的任一种信号的接收功率或发送功率乘以该功率缩放因子,得到该第一接收功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第四指示信息,该第四指示信息用于指示触发该功率控制装置调整第三发送功 率,该第三发送功率为在该第一传输模式下该功率控制装置向该第一节点进行传输时的发送功率;或者,该第四指示信息用于指示该功率控制装置升高或降低该第三发送功率。
另一种可能的实现方式中,该第二消息为接收功率调整请求消息,该接收功率调整请求消息携带第一调整值,该第一调整值用于该功率控制装置调整第三发送功率,该第三发送功率为在该第一传输模式下该功率控制装置向该第一节点进行传输时的发送功率;或者,该接收功率调整请求消息携带第一比特,该第一比特对应该第一调整值。
另一种可能的实现方式中,该接收功率调整请求消息承载在MAC CE、或UCI或RRC信令上。
另一种可能的实现方式中,该收发模块801还用于:
向该第一节点发送第一确认信息,该第一确认信息用于通知该第一节点该功率控制装置接收到该第二消息。
本申请还提供一种功率控制装置900,请参阅图9,本申请实施例中功率控制装置的另一个结构示意图,该功率控制装置可以为第一节点,该功率控制装置可以用于执行图3A所示实施例中第一节点执行的步骤,可以参考上述方法实施例中的相关描述。
该功率控制装置900包括:处理器901、存储器902、输入输出设备903以及总线904。
一种可能的实现方式中,该处理器901、存储器902、输入输出设备903分别与总线904相连,该存储器中存储有计算机指令。
前述实施例中的处理模块501具体可以是本实施例中的处理器901,因此该处理器901的具体实现不再赘述。前述实施例中的收发模块502则具体可以是本实施例中的输入输出设备903。
本申请还提供一种功率控制装置1000,请参阅图10,本申请实施例中功率控制装置的另一个结构示意图,该功率控制装置可以为第二节点,该功率控制装置可以用于执行图3A所示实施例中第二节点执行的步骤,可以参考上述方法实施例中的相关描述。
该功率控制装置1000包括:处理器1001、存储器1002、输入输出设备1003以及总线1004。
一种可能的实现方式中,该处理器1001、存储器1002、输入输出设备1003分别与总线1004相连,该存储器中存储有计算机指令。
前述实施例中的收发模块601则具体可以是本实施例中的输入输出设备1003。
本申请还提供一种功率控制装置1100,请参阅图11,本申请实施例中功率控制装置的另一个结构示意图,该功率控制装置可以为第一节点,该功率控制装置可以用于执行图4所示实施例中第一节点执行的步骤,可以参考上述方法实施例中的相关描述。
该功率控制装置1100包括:处理器1101、存储器1102、输入输出设备1103以及总线1104。
一种可能的实现方式中,该处理器1101、存储器1102、输入输出设备1103分别与总线1104相连,该存储器中存储有计算机指令。
前述实施例中的处理模块702具体可以是本实施例中的处理器1101,因此该处理器1101的具体实现不再赘述。前述实施例中的收发模块701则具体可以是本实施例中的输入 输出设备1103。
本申请还提供一种功率控制装置1200,请参阅图12,本申请实施例中功率控制装置的另一个结构示意图,该功率控制装置可以为第二节点,该功率控制装置可以用于执行图4所示实施例中第二节点执行的步骤,可以参考上述方法实施例中的相关描述。
该功率控制装置1200包括:处理器1201、存储器1202、输入输出设备1203以及总线1204。
一种可能的实现方式中,该处理器1201、存储器1202、输入输出设备1203分别与总线1204相连,该存储器中存储有计算机指令。
前述实施例中的收发模块801则具体可以是本实施例中的输入输出设备1203,因此该输入输出设备1203的具体实现不再赘述。
请参阅图13,本申请实施例还提供了一种通信系统,该通信系统包括功率控制装置,具体地,功率控制装置可以包括如上述图5所示的功率控制装置和如图6所示的功率控制装置,其中,图5所示的功率控制装置用于执行图3A所示的实施例中第一节点执行的全部或部分步骤,图6所示的功率控制装置用于执行图3A所示的实施例中第二节点执行的全部或部分步骤;或者,该功率控制装置可以包括如上述图7所示的功率控制装置和如图8所示的功率控制装置,其中,图7所示的功率控制装置用于执行图4所示的实施例中第一节点执行的全部或部分步骤,图8所示的功率控制装置用于执行图4所示的实施例中第二节点执行的全部或部分步骤。
本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如上述图3A和图4所示的实施例的功率控制方法。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行如上述图3A和图4所示的实施例的功率控制方法。
在另一种可能的设计中,当该功率控制装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述图3A和图4所示的实施例中的功率控制方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图3A和图4所示的实施例中的功率控制方法的程序执行的集成电路。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (58)

  1. 一种功率控制方法,其特征在于,所述方法包括:
    第一节点确定第一功率控制参数,所述第一功率控制参数用于指示所述第一节点在第一传输模式下所期望的第一发送功率;
    所述第一节点向第二节点发送第一消息,所述第一消息携带所述第一功率控制参数,所述第一消息用于请求所述第一节点在所述第一传输模式下所期望的第一发送功率,所述第二节点为所述第一节点的上级节点或者宿主Donor基站。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息还携带第二功率控制参数,所述第二功率控制参数用于指示所述第一节点在第二传输模式下所期望的第二发送功率。
  3. 根据权利要求1所述的方法,其特征在于,第一功率控制参数还用于指示所述第一节点在第二传输模式下所期望的第二发送功率。
  4. 根据权利要求1至3中的任一项所述的方法,其特征在于,所述第一功率控制参数包括:
    基准功率的取值或者取值范围,用户级标称功率的取值或取值范围,
    或者,基准功率偏移值。
  5. 根据权利要求4所述的方法,其特征在于,所述用户级标称功率的取值通过上行共享信道-基准功率与路径损耗参数集合索引P0-PUSCH-AlphaSetID表示。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一功率控制参数还包括:
    路径损耗补偿因子和/或路径损耗测量参考信号索引。
  7. 根据权利要求6所述的方法,其特征在于,所述路径损耗补偿因子通过所述P0-PUSCH-AlphaSetID表示;所述路径损耗测量参考信号索引通过上行共享信道-路径损耗参考信号PUSCH-PathlossReferenceRS配置表示。
  8. 根据权利要求1至7中的任一项所述的方法,其特征在于,所述第一消息还携带第一指示信息,所述第一指示信息用于指示所述第一功率控制参数所对应的传输模式;
    或者,
    所述第一消息的信元名称用于指示所述第一功率控制参数所对应的传输模式。
  9. 根据权利要求8所述的方法,其特征在于,所述第一指示信息包括第一上行发送定时信息,所述第一上行发送定时信息用于指示所述第一传输模式。
  10. 根据权利要求2至9中的任一项所述的方法,其特征在于,所述第一传输模式为空分复用传输,所述第二传输模式为全双工传输;或者,
    所述第一传输模式为全双工传输,所述第二传输模式为空分复用传输。
  11. 根据权利要求1至10中的任一项所述的方法,其特征在于,所述第一消息承载在无线资源控制RRC信令、或媒体接入控制控制元素MAC CE、或上行控制信息UCI、或适配层BAP信令或F1接口应用协议信令上。
  12. 根据权利要求1至11中的任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收所述第二节点发送的重配置消息,所述重配置消息携带第三功率控制参数,所述第三功率控制参数为所述第二节点为所述第一节点配置的用于所述第一传输 模式的功率控制参数;
    所述第一节点在所述第一传输模式下通过所述第三功率控制参数所确定的发送功率进行传输。
  13. 根据权利要求12所述的方法,其特征在于,所述第一功率控制参数与所述第三功率控制参数部分相同或全部相同。
  14. 根据权利要求2至13中的任一项所述的方法,其特征在于,所述方法还包括:
    当满足第一条件时,所述第一节点通过所述第一传输模式对应的功率控制参数所确定的发送功率进行传输;
    所述第一条件包括以下任一种:
    所述第一节点接收第三节点发送的第二指示信息,所述第二指示信息用于指示所述第一节点通过所述第一传输模式对应的功率控制参数所确定的发送功率进行传输,所述第三节点为所述第一节点的上级节点或宿主Donor基站;
    所述第一节点接收到所述第二节点发送的第一上行发送定时指示,所述第一上行发送定时指示与所述第一传输模式关联;
    所述第一节点根据所述第一节点的当前传输帧结构确定所述第一节点的当前传输模式为所述第一传输模式;
    或者,
    当满足第二条件时,所述第一节点通过所述第二传输模式对应的功率控制参数所确定的发送功率进行传输;
    所述第二条件包括以下任一种:
    所述第一节点接收第三节点发送的第三指示信息,所述第三指示信息用于指示所述第一节点通过所述第二传输模式对应的功率控制参数所确定的发送功率进行传输,所述第三节点为所述第一节点的上级节点或宿主Donor基站;
    所述第一节点接收到所述第二节点发送的第二上行发送定时指示,所述第二上行发送定时指示与所述第二传输模式关联;
    所述第一节点根据所述第一节点的当前传输帧结构确定所述第一节点的当前传输模式为所述第二传输模式。
  15. 一种功率控制方法,其特征在于,所述方法包括:
    第二节点接收第一节点发送的第一消息,所述第一消息携带第一功率控制参数,所述第一功率控制参数用于指示所述第一节点在第一传输模式下所期望的第一发送功率,所述第一消息用于请求所述第一节点在所述第一传输模式下所期望的第一发送功率,所述第二节点为所述第一节点的上级节点或者宿主Donor基站。
  16. 根据权利要求15所述的方法,其特征在于,所述第一消息还携带第二功率控制参数,所述第二功率控制参数用于指示所述第一节点在第二传输模式下所期望的第二发送功率。
  17. 根据权利要求15所述的方法,其特征在于,所述第一功率控制参数还用于指示所述第一节点在第二传输模式下所期望的第二发送功率。
  18. 根据权利要求15至17中的任一项所述的方法,其特征在于,所述第一功率控制参数包括:
    基准功率的取值或取值范围,用户级标称功率的取值或取值范围,
    或者,基准功率偏移值。
  19. 根据权利要求18所述的方法,其特征在于,所述用户级标称功率的取值通过上行共享信道-基准功率与路径损耗参数集合索引P0-PUSCH-AlphaSetID表示。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一功率控制参数还包括:
    路径损耗补偿因子和/或路径损耗测量参考信号索引。
  21. 根据权利要求20所述的方法,其特征在于,所述路径损耗补偿因子通过所述P0-PUSCH-AlphaSetID表示;所述路径损耗测量参考信号索引通过上行共享信道-路径损耗参考信号PUSCH-PathlossReferenceRS配置表示。
  22. 根据权利要求15至21中的任一项所述的方法,其特征在于,所述第一消息还携带第一指示信息,所述第一指示信息用于指示所述第一功率控制参数所对应的传输模式;
    或者,
    所述第一消息的信元名称用于指示所述第一功率控制参数所对应的传输模式。
  23. 根据权利要求22所述的方法,其特征在于,所述第一指示信息包括第一上行发送定时信息,所述第一上行发送定时信息指示所述第一传输模式。
  24. 根据权利要求16至23中的任一项所述的方法,其特征在于,所述第一传输模式为空分复用传输,所述第二传输模式为全双工传输;或者,
    所述第一传输模式为全双工传输,所述第二传输模式为空分复用传输。
  25. 根据权利要求15至24中的任一项所述的方法,其特征在于,所述第一消息承载在无线资源控制RRC信令、或媒体接入控制控制元素MAC CE、或上行控制信息UCI、或适配层BAP信令或F1接口应用协议信令上。
  26. 根据权利要求15至25中的任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送重配置消息,所述重配置消息携带第三功率控制参数,所述第三功率控制参数为所述第二节点为所述第一节点配置的用于所述第一传输模式的功率控制参数。
  27. 根据权利要求26所述的方法,其特征在于,所述第一功率控制参数与所述第三功率控制参数部分相同或全部相同。
  28. 根据权利要求15至27中的任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点向第三节点发送所述第一传输模式所对应的功率控制参数,所述第三节点为所述第一节点的上级节点或宿主Donor基站。
  29. 一种功率控制装置,其特征在于,所述功率控制装置包括:
    处理模块,用于确定第一功率控制参数,所述第一功率控制参数用于指示所述功率控制装置在第一传输模式下所期望的第一发送功率;
    收发模块,用于向第二节点发送第一消息,所述第一消息携带所述第一功率控制参数,所述第一消息用于请求所述功率控制装置在所述第一传输模式下所期望的第一发送功率, 所述第二节点为所述功率控制装置的上级节点或者宿主Donor基站。
  30. 根据权利要求29所述的功率控制装置,其特征在于,所述第一消息还携带第二功率控制参数,所述第二功率控制参数用于指示所述功率控制装置在第二传输模式下所期望的第二发送功率。
  31. 根据权利要求29所述的功率控制装置,其特征在于,第一功率控制参数还用于指示所述功率控制装置在第二传输模式下所期望的第二发送功率。
  32. 根据权利要求29至31中的任一项所述的功率控制装置,其特征在于,所述第一功率控制参数包括:
    基准功率的取值或者取值范围,用户级标称功率的取值或取值范围,
    或者,基准功率偏移值。
  33. 根据权利要求32所述的功率控制装置,其特征在于,所述用户级标称功率的取值通过上行共享信道-基准功率与路径损耗参数集合索引P0-PUSCH-AlphaSetID表示。
  34. 根据权利要求32或33所述的功率控制装置,其特征在于,所述第一功率控制参数还包括:
    路径损耗补偿因子和/或路径损耗测量参考信号索引。
  35. 根据权利要求34所述的功率控制装置,其特征在于,所述路径损耗补偿因子通过所述P0-PUSCH-AlphaSetID表示;所述路径损耗测量参考信号索引通过上行共享信道-路径损耗参考信号PUSCH-PathlossReferenceRS配置表示。
  36. 根据权利要求29至35中的任一项所述的功率控制装置,其特征在于,所述第一消息还携带第一指示信息,所述第一指示信息用于指示所述第一功率控制参数所对应的传输模式;
    或者,
    所述第一消息的信元名称用于指示所述第一功率控制参数所对应的传输模式。
  37. 根据权利要求36所述的功率控制装置,其特征在于,所述第一指示信息包括第一上行发送定时信息,所述第一上行发送定时信息用于指示所述第一传输模式。
  38. 根据权利要求30至37中的任一项所述的功率控制装置,其特征在于,所述第一传输模式为空分复用传输,所述第二传输模式为全双工传输;或者,
    所述第一传输模式为全双工传输,所述第二传输模式为空分复用传输。
  39. 根据权利要求29至38中的任一项所述的功率控制装置,其特征在于,所述第一消息承载在无线资源控制RRC信令、或媒体接入控制控制元素MAC CE、或上行控制信息UCI、或适配层BAP信令或F1接口应用协议信令上。
  40. 根据权利要求29至39中的任一项所述的功率控制装置,其特征在于,所述收发模块还用于:
    接收所述第二节点发送的重配置消息,所述重配置消息携带第三功率控制参数,所述第三功率控制参数为所述第二节点为所述功率控制装置配置的用于所述第一传输模式的功率控制参数;
    在所述第一传输模式下通过所述第三功率控制参数所确定的发送功率进行传输。
  41. 根据权利要求40所述的功率控制装置,其特征在于,所述第一功率控制参数与所述第三功率控制参数部分相同或全部相同。
  42. 根据权利要求30至41中的任一项所述的功率控制装置,其特征在于,所述处理模块还用于:
    当满足第一条件时,通过所述第一传输模式对应的功率控制参数所确定的发送功率进行传输;
    所述第一条件包括以下任一种:
    所述功率控制装置接收第三节点发送的第二指示信息,所述第二指示信息用于指示所述功率控制装置通过所述第一传输模式对应的功率控制参数所确定的发送功率进行传输,所述第三节点为所述功率控制装置的上级节点或宿主Donor基站;
    所述功率控制装置接收到所述第二节点发送的第一上行发送定时指示,所述第一上行发送定时指示与所述第一传输模式关联;
    所述功率控制装置根据所述功率控制装置的当前传输帧结构确定所述功率控制装置的当前传输模式为所述第一传输模式;
    或者,
    当满足第二条件时,通过所述第二传输模式对应的功率控制参数所确定的发送功率进行传输;
    所述第二条件包括以下任一种:
    所述功率控制装置接收第三节点发送的第三指示信息,所述第三指示信息用于指示所述功率控制装置通过所述第二传输模式对应的功率控制参数所确定的发送功率进行传输,所述第三节点为所述功率控制装置的上级节点或宿主Donor基站;
    所述功率控制装置接收到所述第二节点发送的第二上行发送定时指示,所述第二上行发送定时指示与所述第二传输模式关联;
    所述功率控制装置根据所述功率控制装置的当前传输帧结构确定所述功率控制装置的当前传输模式为所述第二传输模式。
  43. 一种功率控制装置,其特征在于,所述功率控制装置包括:
    收发模块,用于接收第一节点发送的第一消息,所述第一消息携带第一功率控制参数,所述第一功率控制参数用于指示所述第一节点在第一传输模式下所期望的第一发送功率,所述第一消息用于请求所述第一节点在所述第一传输模式下所期望的第一发送功率,所述功率控制装置为所述第一节点的上级节点或者宿主Donor基站。
  44. 根据权利要求43所述的功率控制装置,其特征在于,所述第一消息还携带第二功率控制参数,所述第二功率控制参数用于指示所述第一节点在第二传输模式下所期望的第二发送功率。
  45. 根据权利要求43或44所述的功率控制装置,其特征在于,所述第一功率控制参数还用于指示所述第一节点在第二传输模式下所期望的第二发送功率。
  46. 根据权利要求43至45中的任一项所述的功率控制装置,其特征在于,所述第一功率控制参数包括:
    基准功率的取值或取值范围,用户级标称功率的取值或取值范围,
    或者,基准功率偏移值。
  47. 根据权利要求46所述的功率控制装置,其特征在于,所述用户级标称功率的取值通过上行共享信道-基准功率与路径损耗参数集合索引P0-PUSCH-AlphaSetID表示。
  48. 根据权利要求46或47所述的功率控制装置,其特征在于,所述第一功率控制参数还包括:
    路径损耗补偿因子和/或路径损耗测量参考信号索引。
  49. 根据权利要求48所述的功率控制装置,其特征在于,所述路径损耗补偿因子通过所述P0-PUSCH-AlphaSetID表示;所述路径损耗测量参考信号索引通过上行共享信道-路径损耗参考信号PUSCH-PathlossReferenceRS配置表示。
  50. 根据权利要求43至49中的任一项所述的功率控制装置,其特征在于,所述第一消息还携带第一指示信息,所述第一指示信息用于指示所述第一功率控制参数所对应的传输模式;
    或者,
    所述第一消息的信元名称用于指示所述第一功率控制参数所对应的传输模式。
  51. 根据权利要求50所述的功率控制装置,其特征在于,所述第一指示信息包括第一上行发送定时信息,所述第一上行发送定时信息用于指示所述第一传输模式。
  52. 根据权利要求44至51中的任一项所述的功率控制装置,其特征在于,所述第一传输模式为空分复用传输,所述第二传输模式为全双工传输;或者,
    所述第一传输模式为全双工传输,所述第二传输模式为空分复用传输。
  53. 根据权利要求43至52中的任一项所述的功率控制装置,其特征在于,所述第一消息承载在无线资源控制RRC信令、或媒体接入控制控制元素MAC CE、或上行控制信息UCI、或适配层BAP信令或F1接口应用协议信令上。
  54. 根据权利要求43至53中的任一项所述的功率控制装置,其特征在于,所述收发模块还用于:
    向所述第一节点发送重配置消息,所述重配置消息携带第三功率控制参数,所述第三功率控制参数为所述功率控制装置为所述第一节点配置的用于所述第一传输模式的功率控制参数。
  55. 根据权利要求54所述的功率控制装置,其特征在于,所述第一功率控制参数与所述第三功率控制参数部分相同或全部相同。
  56. 根据权利要求43至55中的任一项所述的功率控制装置,其特征在于,所述收发模块还用于:
    向第三节点发送所述第一传输模式所对应的功率控制参数,所述第三节点为所述第一节点的上级节点或宿主Donor基站。
  57. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1至14中任一项所述的方法,或者,使得所述计算机执行如权利要求15至28中任一项所述的方法。
  58. 一种计算程序产品,其特征在于,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行如权利要求1至14中任一项所述的方法,或者,使得所述计算机执行如权利要求15至28中任一项所述的方法。
PCT/CN2021/093266 2020-05-15 2021-05-12 功率控制方法和功率控制装置 WO2021228124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/055,392 US20230076802A1 (en) 2020-05-15 2022-11-14 Power control method and power control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010418320.4 2020-05-15
CN202010418320.4A CN113677026A (zh) 2020-05-15 2020-05-15 功率控制方法和功率控制装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/055,392 Continuation US20230076802A1 (en) 2020-05-15 2022-11-14 Power control method and power control apparatus

Publications (1)

Publication Number Publication Date
WO2021228124A1 true WO2021228124A1 (zh) 2021-11-18

Family

ID=78525275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093266 WO2021228124A1 (zh) 2020-05-15 2021-05-12 功率控制方法和功率控制装置

Country Status (3)

Country Link
US (1) US20230076802A1 (zh)
CN (1) CN113677026A (zh)
WO (1) WO2021228124A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184438A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 一种消除时分干扰的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200053655A1 (en) * 2018-08-10 2020-02-13 At&T Intellectual Property I, L.P. Downlink power control enhancements for multi-hop integrated access and backhaul
CN110831135A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种功率控制的方法和装置
CN110972211A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种功率控制的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200053655A1 (en) * 2018-08-10 2020-02-13 At&T Intellectual Property I, L.P. Downlink power control enhancements for multi-hop integrated access and backhaul
CN110831135A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种功率控制的方法和装置
CN110972211A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种功率控制的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AT&T: "Summary of 7.2.3.1 Enhancements to support NR backhaul links", 3GPP DRAFT; R1-1813975, vol. RAN WG1, 13 November 2018 (2018-11-13), Spokane, USA, pages 1 - 23, XP051480164 *

Also Published As

Publication number Publication date
CN113677026A (zh) 2021-11-19
US20230076802A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
US11924772B2 (en) System and method for wireless power control
US11570721B2 (en) Uplink power sharing control
US10856274B2 (en) Power headroom reporting method and apparatus
US9107175B2 (en) Uplink transmission power configuration method and apparatus for mobile communication system
WO2018127022A1 (zh) 发送功率的确定方法、装置及系统
WO2019101204A1 (zh) 一种功率控制的方法、装置及系统
WO2019062998A1 (zh) 功率控制方法及装置
JP6585043B2 (ja) ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
WO2019158011A1 (zh) 一种功率控制方法及装置
WO2018171544A1 (zh) 用于上行功率控制的方法和装置
JP2013531435A (ja) 移動通信システムにおけるアップリンクデータ送受信方法及び装置
WO2018192471A1 (zh) 上行参考信号的发送方法及装置
CN105282836B (zh) 一种功率余量的上报方法
WO2016158535A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2019096253A1 (zh) 上行数据的传输方法、终端设备和基站
CN114631361A (zh) 无线通信系统中执行功率余量报告时支持功率回退报告的方法和装置
WO2020094118A1 (zh) 数据传输方法、发送端设备和接收端设备
WO2021228124A1 (zh) 功率控制方法和功率控制装置
WO2020143514A1 (zh) 一种功率控制的方法以及功率控制的装置
US20220209833A1 (en) Method and network device for rank selection
WO2023130211A1 (en) Reference power headroom reports and pathloss measurement for a unified transmission control indicator (tci) framework
WO2015045960A1 (ja) ユーザ端末および無線通信方法
WO2019096316A1 (zh) 通信方法、通信装置和系统
US20240340812A1 (en) Method and device in nodes used for wireless communication
WO2024078464A1 (zh) 上行功率控制方法与装置、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804378

Country of ref document: EP

Kind code of ref document: A1