WO2019158011A1 - 一种功率控制方法及装置 - Google Patents

一种功率控制方法及装置 Download PDF

Info

Publication number
WO2019158011A1
WO2019158011A1 PCT/CN2019/074646 CN2019074646W WO2019158011A1 WO 2019158011 A1 WO2019158011 A1 WO 2019158011A1 CN 2019074646 W CN2019074646 W CN 2019074646W WO 2019158011 A1 WO2019158011 A1 WO 2019158011A1
Authority
WO
WIPO (PCT)
Prior art keywords
power value
cell group
communication device
cells
group
Prior art date
Application number
PCT/CN2019/074646
Other languages
English (en)
French (fr)
Inventor
张茜
张兴炜
刘哲
冯淑兰
邓猛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020543289A priority Critical patent/JP7017639B2/ja
Priority to EP19754405.9A priority patent/EP3755069B1/en
Priority to BR112020016605-7A priority patent/BR112020016605A2/pt
Publication of WO2019158011A1 publication Critical patent/WO2019158011A1/zh
Priority to US16/992,904 priority patent/US11252671B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer

Definitions

  • the present application relates to the field of information technology, and in particular, to a power control method and apparatus.
  • Dual connectivity (DC) technology is introduced in Release 12 of the standard protocol.
  • the DC technology means that the terminal device can connect two cell groups at the same time.
  • the first cell group may be a long term evolution (LTE) cell
  • the second cell group may be a new radio (NR) cell.
  • LTE long term evolution
  • NR new radio
  • the standard protocol stipulates that when the terminal device is in the DC state, the uplink signal can be sent to the primary base station and the secondary base station at the same time, and the power of the uplink signal is sent to the primary base station, and the sum of the power of the uplink signal sent to the secondary base station is Do not exceed the preset maximum power.
  • the power of the uplink signal sent by the terminal device to the primary base station is the first power
  • the power of the uplink signal sent by the terminal device to the secondary base station is the second power
  • the first power + the second power ⁇ the maximum power is always guaranteed.
  • the present application provides a power control method and apparatus for providing a power control method to solve the problem of effectively performing power control of a dual connectivity communication device in different modes.
  • an embodiment of the present application provides a power control method, where the method includes: a communications device first receiving a first power value and a second power value configured by a network side, where the first power value is the network The side is a maximum allowed transmit power value of the first cell group configured by the communications device, and the second power value is a maximum allowed transmit power value of the second cell group configured by the network side for the communications device, And the communication device determines, according to the first power value and the second power value, a total guaranteed power value of the communication device when the first cell group and the second cell group resource overlap, such that When the terminal device is in a DC state of different standards, sending the uplink signal to the primary base station and the secondary base station at the same time does not exceed the total guaranteed power. Therefore, the receiving power of the signal on the network side satisfies the receiving requirement, and does not cause signal interference. .
  • the communication device is operating in a dual connectivity mode, the dual connectivity mode indicating that the communication device is capable of establishing a connection with the first cell group and the second cell group at the same time, for example,
  • a cell group is an LTE cell or multiple LTE cells
  • the second cell group is one or more NR cells.
  • the communication device determines, according to the first power value, a first guaranteed power value of the communications device on the first group of cells; and at the same time, the communications device determines according to the second power value. a second guaranteed power value of the communication device on the second group of cells; and then the communication device is based on the first guaranteed power value and the second guaranteed power value, according to the first power value and the second power value And a value, and at least one of the following power values: a sum of the first guaranteed power value and the second guaranteed power value, and a maximum power of the fourth power value and the fifth power value a value, a minimum power value is determined; the communication device uses the minimum power value as a total guaranteed power value of the communication device when the first cell group and the second cell group resource overlap;
  • the fourth power value is a maximum allowed transmit power value of the communications device on the first cell group, for example, a maximum allowed transmit power value in an LTE cell
  • the fifth power value is the The maximum allowed transmit power value of the communication device on the second group of cells, such as the maximum allowed transmit power value of an NR cell.
  • the time at which the subframes of the first cell group and the second cell group overlap is a first time unit, and the first time unit corresponds to the first cell group.
  • a p-th subframe, and corresponding to the qth time slot to the q+n time slot of the second cell group, where the value of n is the p-th child of the first cell group and the first cell group The time domain position of the last time slot in which the frames overlap;
  • the communication device determines an actual total guaranteed power value according to n+1 pieces of the total guaranteed power value corresponding to the qth time slot to the q+n time slot, where the actual total guaranteed power value is the communication
  • the device is capable of achieving a maximum allowable transmit power value on the first time unit.
  • the embodiment of the present application further provides a power control method.
  • a communications device receives a first power value configured on a network side, where the first power value is a cell group configured by the network side for the communications device. a maximum allowed transmit power value; the communication device then determines a first guaranteed power value of the communication device on the group of cells based on the first power value.
  • the communication device may determine the first guaranteed power value of the communication device on the plurality of LTE cells based on the first power value configured by the network side.
  • the cell group is assumed.
  • the communication device may determine a second guaranteed power value of the communication device on the plurality of NR cells based on the first power value configured on the network side.
  • the communication device is operating in a dual connectivity mode, the dual connectivity mode indicating that the communication device is capable of establishing a connection with the first cell group and the second cell group at the same time, for example,
  • a cell group is an LTE cell or multiple LTE cells
  • the second cell group is one or more NR cells.
  • the communication device determines a minimum power value according to the first power value and at least one of the following power values: a third power value and a fourth power value;
  • the communication device uses the minimum power value as a first guaranteed power value of the communication device on the group of cells;
  • the third power value is a maximum allowed transmit power value configured by the network side to the communications device
  • the fourth power value is a maximum allowed transmit power value of the communications device.
  • the communication device may configure power based on the at least one condition described above.
  • the embodiment of the present application further provides a device, which has a function of implementing the behavior of the communication device in the example method of the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or the software includes one or more modules corresponding to the functions described above.
  • the structure of the device includes a receiving unit and a processing unit, wherein the receiving unit is configured to receive a first power value and a second power value configured on the network side, where the first power value is a maximum allowable transmit power value of the first cell group configured by the network side for the communication device, where the second power value is a maximum allowed transmit power of the second cell group configured by the network side for the communication device value;
  • a processing unit configured to determine, according to the first power value and the second power value, a total guaranteed power value of the communications device when the first cell group and the second cell group resource overlap.
  • the communication device is operating in a dual connectivity mode, the dual connectivity mode indicating that the communication device is capable of establishing a connection with the first cell group and the second cell group at the same time, for example, A cell group is an LTE cell or a plurality of LTE cells, and the second cell group is one or more NR cells.
  • the terminal device is in a DC state of different standards, the uplink signal is sent to the primary base station and the secondary base station simultaneously. The total guaranteed power will be exceeded, thus, so that the receiving power of the signal on the network side satisfies the receiving requirement and does not cause signal interference.
  • the processing unit is further configured to: determine, according to the first power value, a first guaranteed power value of the communications device on the first group of cells;
  • a sum of the first power value and the second power value, and a power value a sum of the first guaranteed power value and the second guaranteed power value, the first Determining a minimum power value by a maximum power value of the fourth power value and the fifth power value;
  • the minimum power value as a total guaranteed power value of the communication device when the first cell group and the second cell group resource overlap
  • the fourth power value is a maximum allowed transmit power value of the communication device on the first cell group
  • the fifth power value is that the communication device is on the second cell group. Maximum allowed transmit power value.
  • the time at which the subframes of the first cell group and the second cell group overlap is a first time unit, and the first time unit corresponds to the first cell.
  • a p-th subframe of the group, and corresponding to the qth time slot to the q+n time slot of the second cell group, where the value of n is the first cell group and the first cell group The time domain position of the last time slot in which the p subframe overlaps;
  • the processing unit is further configured to determine an actual total guaranteed power value according to the n+1 total guaranteed power values corresponding to the qth time slot to the q+n time slot, where the actual total guaranteed power value is the
  • the communication device is capable of achieving a maximum allowable transmit power value on the first time unit.
  • these units may perform the corresponding functions in the foregoing method examples of the first aspect.
  • these units may perform the corresponding functions in the foregoing method examples of the first aspect.
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface, a pin or Circuits, etc.
  • the processing unit may execute computer executed instructions stored by the storage unit to cause the power control method of any of the above aspects to be performed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit outside the chip in the communication device, such as a read-only memory, other types that can store static information and instructions. Static storage devices, random access memories, and the like.
  • the embodiment of the present application further provides a device, which has a function of implementing network device behavior in the foregoing method example of the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or the software includes one or more modules corresponding to the functions described above.
  • the structure of the device includes a receiving unit and a processing unit, wherein the receiving unit is configured to receive a first power value configured on the network side, where the first power value is the network side a maximum allowable transmit power value of the cell group configured by the communications device, the processing unit, configured to determine, according to the first power value, a first guaranteed power value of the communications device on the cell group.
  • the dual connectivity mode indicates that the communication device is capable of establishing a connection with the first cell group and the second cell group simultaneously, for example
  • the first cell group is an LTE cell or a plurality of LTE cells
  • the second cell group is one or more NR cells.
  • processing unit is specifically configured to:
  • the third power value is a maximum allowed transmit power value configured by the network side to the communications device
  • the fourth power value is a maximum allowed transmit power value of the communications device.
  • the units may perform the corresponding functions in the foregoing method examples of the second aspect.
  • the units may perform the corresponding functions in the foregoing method examples of the second aspect.
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface, a pin or Circuits, etc.
  • the processing unit may execute computer executed instructions stored by the storage unit to cause the power control method of any of the above aspects to be performed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit outside the chip in the communication device, such as a read-only memory, other types that can store static information and instructions. Static storage devices, random access memories, and the like.
  • the embodiment of the present application provides an apparatus, including at least one processor, and at least one memory, where the processor is configured to perform the power control method in any one of the foregoing first or second aspect, the memory Coupled with the processor.
  • an embodiment of the present application provides an apparatus, including at least one processor and at least one memory, the at least one memory being coupled to the at least one processor, the at least one memory for storing computer program code,
  • the computer program code includes computer instructions that, when the one or more processors execute the computer instructions, perform the power control method of any of the first or second aspects above.
  • an embodiment of the present application provides an apparatus, including at least one processor, where the processor is configured to perform the power control method in any one of the foregoing first or second aspect.
  • an embodiment of the present application provides a chip, which is in the form of a device, and the chip may be any one of the foregoing aspects.
  • the power control method provided by the embodiment of the present application is applicable to a dual-connection system composed of different systems, for example, a dual-connection system of LTE and NR.
  • the network side configures a maximum allowable transmission power for each cell corresponding to each system, so that the communication device
  • the maximum allowable transmit power of the cell corresponding to the standard communication device is determined by combining the power allowed to be transmitted and the maximum allowable transmit power configured on the network side. Since the dual connectivity corresponds to two types of cells, the communication device also needs to be guaranteed.
  • the final transmit power does not exceed the total guaranteed power, wherein the total guaranteed power value is determined by the communication device according to the maximum allowable transmit power value configured on the network side, so that when the terminal device is in a DC state of different standards, simultaneously to the primary base station and The sending of the uplink signal by the secondary base station does not exceed the total guaranteed power. Therefore, the receiving power of the signal on the network side satisfies the receiving requirement and does not cause signal interference.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a topological diagram of a dual-connected control plane architecture according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a communication method of a first type terminal with dynamic power sharing according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a communication method of a first type terminal that does not have dynamic power sharing according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart 1 of a power control method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart 2 of a power control method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of overlapping resources of different cell groups according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the communication method of the embodiment of the present application.
  • the communication system 100 includes a network device 102 and a communication device 106.
  • the network device 102 can be configured with multiple antennas, and the terminal device can also be configured with multiple antennas.
  • the communication system may also include a network device 104, which may also be configured with multiple antennas.
  • network device 102 or network device 104 may also include multiple components (eg, processors, modulators, multiplexers, demodulators or demultiplexers, etc.) associated with signal transmission and reception.
  • multiple components eg, processors, modulators, multiplexers, demodulators or demultiplexers, etc.
  • the network device is a device with a wireless transceiver function or a chip that can be disposed on the device, and the device includes, but is not limited to, an evolved Node B (eNB) and a radio network controller (RNC).
  • AP access point
  • WIFI wireless fidelity
  • TRP transmission point
  • TRP Transmission point
  • TP Transmission point
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations (including multiple antenna panels) in the 5G system
  • it may be a network node constituting a gNB or a transmission point,
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements radio resource control (RRC), the function of the packet data convergence protocol (PDCP) layer, and the DU implements the wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements the wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture.
  • the network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, and the CU may be divided into network devices in the core network CN, which is not limited herein.
  • a communication device may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • VR virtual reality
  • AR augmented reality
  • the embodiment of the present application does not limit the application scenario.
  • the aforementioned communication terminal device and the chip that can be disposed in the foregoing communication device are collectively referred to as a terminal device.
  • both the network device 102 and the network device 104 can communicate with a plurality of terminal devices, such as the terminal device 106 shown in the figures.
  • Network device 102 and network device 104 can communicate with any number of terminal devices similar to terminal device 106. It should be understood, however, that the terminal device in communication with the network device 102 and the terminal device in communication with the network device 104 may be the same or different.
  • the terminal device 106 shown in FIG. 1 can simultaneously communicate with the network device 102 and the network device 104, but this only shows one possible scenario, in some scenarios, the terminal device may only be associated with the network device 102 or the network device 104 communication, this application does not limit this.
  • FIG. 1 is merely a simplified schematic diagram for ease of understanding.
  • the communication system may also include other network devices or may also include other terminal devices, which are not shown in FIG.
  • the embodiment of the present application provides a power control method.
  • link adaptation, power control, and the like are often important management functions in a communication system.
  • at least one node sends a signal to other nodes, and the purpose of power control is to make the signal sent by at least one node in the network reach the other nodes, and the power can meet the requirements of the system.
  • the node here may refer to a base station, a user equipment, and the like.
  • the power control can be such that the signal power transmitted by one user meets certain power requirements when it arrives at another user.
  • the power control may be such that the signal power transmitted by the user satisfies the power requirement of the base station when it arrives at the base station.
  • the power control may be used to ensure that the signal sent by the base station reaches the power requirement of the user equipment when reaching the user equipment.
  • the power demand in the power control may refer to the power requirement of reaching a node. For example, if the signal is a useful signal to the node, the node needs to meet the demodulation threshold for the power of the received signal, and the demand is the received signal. The power should not be too low, otherwise it will not be correctly received and demodulated. Or, for example, if the signal is a non-useful signal to the node, such as an interference signal, the node needs to meet the interference threshold value for the power of the received signal, and the demand is that the power of the received signal should not be too high. Otherwise, the signal causes strong interference to the useful signal of the node.
  • Power control can occur between one node and another node. For example, the power of one user equipment to another user equipment in a D2D scenario satisfies a certain signal to interference plus noise ratio (SINR); Between multiple nodes and one node, such as uplink in LTE, power control is to allow at least one user equipment in the network to reach the power of the base station, satisfying the signal to interference and noise ratio SINR requirement of the base station; or may occur in multiple nodes. Between multiple nodes, such as in a time division duplex (TDD) network system, there may be both uplink and downlink scheduling in the system (such as dynamic TDD technology in a 5G network). At this time, power control can be used. Many-to-many power requirements for multiple user equipments, multiple base stations in a network.
  • TDD time division duplex
  • the design of the power control is to control the signal transmission power of the nodes in the network, so that the received power of the signal satisfies the reception requirements.
  • the reception requirement may be the power requirement, the SINR requirement, or the like described above, or a singal-noise ratio (SNR) requirement.
  • SNR, SINR, IoT (interference over thermal), RSRP (reference signal received power), and received power of the signal can all be regarded as target parameters in the power control link. These parameters are not They are completely equivalent, but they are related to each other. For example, SINR and RSRP are not completely equal, but in the case of the same interference level, the higher the RSRP, the better the SINR of the signal.
  • the power control in this paper does not limit the target control parameters of the algorithm in practice.
  • the power control method provided by the embodiment of the present application is applicable to a communication system that introduces a dual connectivity technology.
  • the so-called dual connectivity technology is actually carrier aggregation under the premise of non-ideal backward backhaul, which means that one terminal can be connected to two base stations connected by non-ideal backward backhaul for data communication.
  • a typical scenario is that one base station is a macro cell and the other base station is a small cell.
  • Macro cells and small cells are connected via a standard X2 interface.
  • the scheduling of multiple carriers in the carrier aggregation of R10 is performed by one scheduler; in the dual connection, the macrocell and the small cell scheduler respectively manage the radio resources on the respective base stations, so it is necessary to coordinate with each other. .
  • This is to illustrate the essential difference between dual connectivity and carrier aggregation from a system architecture perspective.
  • One advantage of dual connectivity techniques over carrier aggregation techniques is that macro cells and small cells are allowed to be out of sync in system time.
  • FIG. 2 is a topological view of a dual-connected control plane architecture.
  • 201 is a MeNB
  • MeNB is a macro cell
  • 202 is a SeNB
  • SeNB is a small cell
  • 203 is an MME
  • MME is a mobile control entity of the core network.
  • the signaling connection between the terminal, the MeNB and the MME 203 is unchanged from that of the existing system at the time, that is, one terminal has only one Radio Resource Control Signaling (RRC) link and one S1 signaling link.
  • RRC Radio Resource Control Signaling
  • the SeNB and the MeNB are still connected through the X2 interface.
  • Carrier aggregation can be separately configured on the MeNB and the SeNB in FIG. 2.
  • MCG primary cell group
  • SCG secondary cell group
  • the dual-connection technology allows the terminal device to establish a connection with the MCG (master cell group) and the SCG (sencondary cell group) at the same time, which can improve the throughput of a single user.
  • the primary cell group may also be configured by more than one base station
  • the secondary cell group may also be configured by more than one base station.
  • the channel quality indicator may be jointly transmitted through the PUCCH in the MCG and the PUCCH in the SCG. Since the DC is allowed to be asynchronous with the SCG in the system time, the subframes of the different cells scheduled by the MeNB and the SeNB have resource overlap problems during the transmission process.
  • the so-called resource overlap refers to the time of the MCG and the SCG.
  • the current protocol stipulates that the MCG and the SCG are each configured with the maximum power P MeNB and the P SeNB . The total power of each carrier in the MCG cannot exceed the P MeNB .
  • the total power of each carrier in the SCG cannot exceed the P SeNB , and P MeNB and P SeNB and P cmax not exceed the maximum power of all carriers.
  • the power configuration value of the base station for each terminal device on each cell in the dual connectivity mode can be obtained.
  • the double connection mode LTE and LTE-UE are configured by the network side of the maximum allowed transmission power P emax, its own maximum allowed transmission power P powerclass calculated P cmax_MeNB and P cmax_SeNB, and then through P cmax_MeNB and P cmax_SeNB calculated P cmax_dc , and finally by ⁇ MCG ⁇ SCG parameters P cmax multiplied by ⁇ MCG and P cmax multiplied ⁇ sCG, arranged to give a power value dual mode base station is connected to each terminal device in each cell group.
  • the current default E-UTRAN is the primary cell group
  • the NR is the secondary cell group.
  • the standard will dynamically share power. It is defined as a capability.
  • a terminal type with dynamic power sharing capability is a first type terminal
  • a terminal type that does not have a corresponding capability is a second type terminal.
  • the second type terminal can support semi-static power sharing.
  • the primary cell group may also be used by the NR as a primary cell group
  • the secondary cell group may also be used by the LTE as a secondary cell group.
  • the communication behavior of the first type of terminal with dynamic power sharing can be described by using FIG. 3, and the specific process is:
  • step a1 the terminal device reports to the network side that it supports the capability of dynamic power sharing
  • step b1 the terminal device obtains the configured power value delivered by the network, and obtains P CMAX_LTE , P CMAX__NR , and P CMAX__ENDC through calculation.
  • step c1 the terminal device determines whether the sum of the real-time powers on the LTE and NR physical channels is greater than P CMAX__ENDC by using the NR slot length as a time unit. If the C CMAX__ENDC is exceeded, the UE will transmit to the NR side in the EN-DC mode. The power adjustment or the uplink power transmission is not performed at the NR.
  • step a2 the terminal device reports to the network side that it does not support the capability of dynamic power sharing
  • step b2 the terminal device obtains the configured power value delivered by the network, and obtains P CMAX_LTE , P CMAX__NR , and P CMAX__ENDC through calculation.
  • step c2 the terminal device determines whether the sum of the semi-static power configuration values P CMAX_LTE and P CMAX__NR is greater than P CMAX__ENDC , and the terminal can perform the method according to the current network configuration in a single transmission manner.
  • the network side configures the absolute maximum allowable transmit power values for the terminal devices in the MCG and the SCG, respectively, which are assumed to be called P_LTE and P_NR , respectively. Since E-UTRAN and NR are two different systems, P CMAX_LTE and P CMAX_NR , and P CMAX_ENDC need to be recalculated according to P_LTE and P_NR and other related parameters such as P EMAX, P powerclass .
  • Step 501 The communications device receives a first power value configured by the network side, where the first power value refers to a maximum allowed transmit power value of a cell group configured by the network side for the communications device.
  • Step 502 The communications device determines, according to the first power value, a first guaranteed power value of the communications device on the group of cells.
  • the cell group may refer to the MCG or the SCG in the foregoing.
  • the cell group is an LTE cell or multiple LTE cells;
  • the cell group is one or more NR cells.
  • the first power may be referred to as P_LTE
  • the first guaranteed power value may refer to the maximum transmit power P CMAX_LTE configured by the communication device on the MCG, where the first guaranteed power value may refer to The maximum transmit power P CMAX_LTE_L,c configured by the communication device on one LTE cell.
  • the first power may refer to P_NR
  • the first guaranteed power value may refer to the communication device on the SCG.
  • the configured maximum transmit power P CMAX_NR there may be two uplink carriers in one cell, that is, an uplink carrier and a supplementary uplink carrier. Therefore, the first power guarantee value may be defined on the uplink carrier, or may be supplemented. Definition on the upstream carrier.
  • the first guaranteed power value is within a value interval, that is, the value of the first guaranteed power value is between the lower limit P CMAX_L and the upper limit P CMAX_H .
  • P_LTE and P_NR are power configuration values configured separately for the communication device in the EN-DC mode, and the impact of the P_LTE value on the P CMAX_LTE or P CMAX_NR must be considered for the communication device.
  • P CMAX_LTE or P CMAX_NR is the upper limit of the power transmission in the power control process.
  • the EN-DC mode the upper limit power of the LTE or NR side is substituted into P_LTE and P_NR, which can realize independent semi-static adjustment of power and meet EN. -DC network configuration requirements.
  • the communications device determines a minimum power value according to the first power value, and at least one of the following power values: a third power value and a fourth power value;
  • the communication device uses the minimum power value as a first guaranteed power value of the communication device on the group of cells;
  • the third power value is a maximum allowable transmit power value configured by the network side to the communications device, that is, P EMAX,c
  • the fourth power value is a maximum allowed transmit power value of the communications device. , that is, P powerclass .
  • the terminal device calculates by using P EMAX,c and the maximum allowed transmit power value P powerclass_LTE of the communication device on the LTE cell group, and the P_LTE configured on the network side .
  • the first guaranteed power P CMAX_LTE of the terminal device in the LTE cell is obtained , and the calculation manner can be as shown in the formula [1], the formula [2] and the formula [3].
  • P CMAX_LTE_L,c MIN ⁇ P EMAX,c -T c,c ,(P powerclass_LTE - ⁇ P powerclass_LTE )-
  • P CMAX_LTE_H,c MIN ⁇ P EMAX,c ,P powerclass_LTE - ⁇ P powerclass_LTE ,P _LTE ⁇ ...form [3]
  • P CMAX_LTE, c is a power terminal disposed on one LTE cell
  • P CMAX_LTE, c is the lower limit value P CMAX_LTE_L, c, P CMAX_LTE, c upper limit value P CMAX_LTE_H, c
  • P EMAX,c is the maximum allowable transmit power value that the network side configures to the terminal through RRC signaling
  • P powerclass_LTE is the maximum allowable transmit power that the terminal device can achieve in the LTE cell group itself. value.
  • ⁇ P powerclass_LTE is a power adjustment value for a power class terminal device in some cases
  • MPRc is a maximum power backoff value, which is a power backoff value under different bandwidth and RB allocation under the requirement of multiple radio frequency indicators
  • a -MPR c is an additional power backoff value, which can be further retired based on the MPR fallback under certain network signaling.
  • p-MPR c is defined by considering the specific absorption rate (Specific Absorption Rate).
  • the power backoff value, ⁇ T IB,c is the relaxation of the transmission power considering the carrier aggregation, ⁇ T c,c is the relaxation of the transmission power at the edge of the band, and ⁇ T ProSe is the LTE support ProSe: The transmit power is relaxed (for example, D2D service of LTE).
  • the terminal device calculates the terminal device by P EMAX,c and the maximum allowable transmit power value of the communication device on the NR cell group, and the P_NR configured on the network side.
  • the first guaranteed power P CMAX_NR in the NR cell can be calculated as shown in the formula [4], the formula [5], and the formula [6].
  • P CMAX_L,f,c MIN ⁇ P EMAX,c - ⁇ ,(P powerclass_NR - ⁇ P powerclass_NR )-
  • P CMAX_H,f,c MIN ⁇ P EMAX,c ,P powerclass_NR - ⁇ P powerclass_NR ,P _NR ⁇ ...form [6]
  • P CMAX_NR, f, c is the configuration power of the terminal equipment on an uplink carrier in an NR cell
  • the lower limit values of P CMAX_NR, f, c are P CMAX_L, f, c
  • P powerclass_NR value is the maximum allowed transmit power in the terminal device in the group NR cell itself can be achieved.
  • MPRc is the maximum power backoff value, which is the power backoff value under different bandwidth and RB allocations required by multiple radio frequency indicators.
  • A-MPR c is the additional power backoff value, which can be in MPR under some network signaling.
  • p-MPR c is the power back-off value defined by considering the specific absorption rate (Specific Absorption Rate), ⁇ T IB, c is considering the case of carrier aggregation and dual connectivity.
  • ⁇ T c,c is the relaxation of the transmit power at the edge of the band, and the remaining parameters are consistent with the parameter definitions in the formulas [[1], [2], and [3].
  • the communication device determining, according to the first power value and the second power value, the communication device in the first cell group and the second cell The total guaranteed power value when the group resources overlap. Because the default E-UTRAN is the primary base station and the NR is the secondary base station for the EN-DC mode, the first cell group can be understood as an MCG, and the second cell group can be understood as an SCG. That is, the terminal device and then to calculate a value of P CMAX_NR P CMAX_LTE and total transmission power value in the mode P CMAX_ENDC EN_DC specific process, shown in FIG. 6, comprising the following steps.
  • Step 601 The communication device receives the first power value and the second power value configured on the network side.
  • Step 602 The communications device determines, according to the first power value and the second power value, a total guaranteed power of the communications device when the first cell group and the second cell group resource overlap. value.
  • the communication device is configured to: according to the sum of the first power value and the second power value, and at least one of the following power values: the first guaranteed power value and the second guaranteed power Determining a minimum power value by a sum value of the value, the fourth power value, and a maximum power value of the fifth power value;
  • the communication device uses the minimum power value as a total guaranteed power value when the communication device overlaps the first cell group and the second cell group;
  • the fourth power value is a maximum allowed transmit power value of the communication device on the first cell group, that is, P powerclass_LTE
  • the fifth power value is that the communication device is in the second The maximum allowed transmit power value on the cell group, which is P powerclass_NR .
  • P LTE and P _NR are considered in the calculation process of the total guaranteed power value, and the power control process under the EN-DC can be guaranteed first, for each communication device that supports dynamic power sharing.
  • the unit can ensure that the sum of the dynamic powers does not exceed the sum of the power configuration values P_LTE and P_NR under the two cell groups under the EN-DC.
  • this method also gives the base station one layer of power adjustment freedom, making the power control process of the EN-DC UE more flexible.
  • one LTE subframe may overlap with multiple slots of the NR.
  • the main reason is that the NR has different slot lengths depending on the value of the subcarrier spacing. For example, for the subframe overlap diagram shown in FIG.
  • the terminal device can pass the P CMAX_LTE P CMAX_NR and P powerclass_LTE , P powerclass_NR , and P_LTE and P_NR of the network side configuration are calculated, wherein P CMAX_ENDC (p, q) takes values at the lower limit P CMAX_ENDC_L (p, q) and the upper limit P CMAX_ENDC_H (p, q)
  • the calculation method can be as shown in formula [7], formula [8] and formula [9].
  • P powerclass_ENDC MAX ⁇ P powerclass_LTE , P powerclass_NR ⁇ ... formula [7]
  • P powerclass_ENDC is the maximum power value in P powerclass_LTE and P powerclass_NR
  • P CMAX_L, c(1) 1(p) is the p- th subframe of the communication device on the MCG.
  • the lower limit value of the first guaranteed power value, P CMAX_L, c(2) 2(q) is the lower limit value of the second guaranteed power value of the communication device in the qth time slot of the SCG
  • P CMAX_ENDC_L, c is the lower limit value of the total guaranteed power value of the communication device
  • P CMAX_H,c(1) 1(p) in the formula [3] is the first guaranteed power of the communication device in the pth subframe of the MCG
  • the upper limit value of the value, P CMAX_H,c(2) 2(q) is the upper limit value of the second guaranteed power value of the communication device in the qth time slot of the SCG
  • P CMAX_ENDC_H,c is the communication device The upper limit of the total guaranteed power value.
  • the terminal device takes the minimum power value by the values of P cmax_LTE + P cmax_NR , P powerclass_ENDC , P _LTE + P _NR , and takes the minimum power value as P CMAX_ENDC .
  • P CMAX_ENDC_L, c (p, q) can be sequentially calculated according to the formula [10]. +1), P CMAX_ENDC_L, c (p, q+2), ..., P CMAX_ENDC_L, c (p, q+n)
  • P CMAX_ENDC_L, c (p, q+n) A total of N+1 total guaranteed power values, and the formula [10] is as follows.
  • C CMAX,c(1) 1(p) is the first guaranteed power value of the communication device in the pth subframe of the first cell group
  • P CMAX,c(2) 2(i) is a second guaranteed power value of the communication device in the ith time slot of the second cell group
  • P powerclass_ENDC is a maximum power value of the fourth power value and the fifth power value
  • p _LTE +p _NR is a sum of the first power value and the second power value
  • P CMAX (p, i) is a maximum allowable transmit power value of the communication device in the ith time slot
  • the value of i is from q to q+ n.
  • the terminal device determines the actual total guarantee based on P CMAX_ENDC, c (p, q+1), P CMAX_ENDC, c (p, q+2), ..., P CMAX_ENDC, c (p, q+n), and the like.
  • the upper and lower limits of the power value can be calculated as shown in the formula [11] and the formula [12].
  • FIG. 8 is a schematic structural diagram of a device provided by the foregoing application, where the device includes: a receiving unit. 801. Processing unit 802.
  • the receiving unit 801 is configured to receive a first power value and a second power value configured by the network side, where the first power value is a maximum allowed transmit power value of the first cell group configured by the network side for the communications device.
  • the second power value is a maximum allowed transmit power value of the second cell group configured by the network side for the communications device;
  • the processing unit 802 determines, according to the first power value and the second power value, a total guaranteed power value of the communications device when the first cell group and the second cell group resource overlap.
  • the communication device operates in a dual connectivity mode, the dual connectivity mode indicating that the communication device is capable of establishing a connection with the first cell group and the second cell group simultaneously.
  • the first cell group is one LTE cell or multiple LTE cells
  • the second cell group is one or more NR cells.
  • the processing unit 802 is further configured to: determine, according to the first power value, a first guaranteed power value of the communications device on the first group of cells; Determining, by the second power value, a second guaranteed power value of the communications device on the second group of cells;
  • a sum of the first power value and the second power value, and a power value a sum of the first guaranteed power value and the second guaranteed power value, the first Determining a minimum power value by using a maximum power value of the fourth power value and the fifth power value; using the minimum power value as the communication resource in the first cell group and the second cell group resource The total guaranteed power value at the time of overlap.
  • the time at which the subframes of the first cell group and the second cell group overlap is a first time unit, and the first time unit corresponds to the first cell group.
  • a p-th subframe, and corresponding to the qth time slot to the q+n time slot of the second cell group, where the value of n is the p-th child of the first cell group and the first cell group The time domain position of the last time slot in which the frames overlap;
  • the processing unit 802 is further configured to determine an actual total guaranteed power value according to n+1 pieces of the total guaranteed power value corresponding to the qth time slot to the q+n time slot, where the actual total guaranteed power value is
  • the communication device is capable of achieving a maximum allowable transmit power value on the first time unit.
  • these units may perform the corresponding functions in the foregoing method examples of the first aspect.
  • these units may perform the corresponding functions in the foregoing method examples of the first aspect.
  • the present application may divide a functional module into a communication device according to the above method example.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic, and is only a logical function division, and may be further divided in actual implementation.
  • FIG. 9 is a schematic structural diagram of a device provided by the present application, where the device includes: a receiving unit. 901. Processing unit 902, wherein:
  • the receiving unit 901 is configured to receive a first power value configured by the network side, where the first power value is a maximum allowed transmit power value of a cell group configured by the network side for the communications device;
  • the processing unit 902 is configured to determine, according to the first power value, a first guaranteed power value of the communications device on the group of cells.
  • the processing unit 902 is specifically configured to: determine a minimum power value according to the first power value, and at least one of the following power values: a third power value and a fourth power value. ;
  • the third power value is a maximum allowed transmit power value that is configured by the network side to be uplinked to the communications device by a single carrier, and the fourth power value is that the communications device is in the first cell group.
  • the cell group is an LTE cell or multiple LTE cells, or the cell group is one or more NR cells.
  • the device may be used to implement the steps performed by the network device in the method for power control provided by the present application.
  • the device may be used to implement the steps performed by the network device in the method for power control provided by the present application.
  • the application may divide the functional modules of the network device according to the foregoing method example.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the modules in the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the preservation referred to in this application may be stored in one or more memories.
  • the one or more memories may be separate settings, or may be integrated in an encoder or decoder, a processor, a chip, a communication device, or a terminal.
  • the one or more memories may be separately provided in a part, and the part may be integrated in a decoder, a processor, a chip, a communication device, or a terminal.
  • the type of the memory may be any form of storage medium, and the present application does not limited.
  • FIG. 10 is a schematic structural diagram of a communication device 1000.
  • the device 1000 can be used to implement the method described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments.
  • the communication device 1000 can be a chip, a base station, a terminal, or other network device.
  • the communication device 1000 includes one or more processors 1001.
  • the processor 1001 may be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • one or more of the modules of FIGS. 5, 6 may be implemented by one or more processors, or by one or more processors and memories.
  • the communication device 1000 includes one or more of the processors 1001, and the one or more processors 1001 can implement the functions of the power control described above, for example, the communication device can be a base station.
  • the communication device can be a base station.
  • the processor 1001 may include instructions 1003 (sometimes referred to as code or programs) that may be executed on the processor such that the communication device 1000 performs the above-described implementation The method described in the example.
  • the communication device 1000 can also include circuitry that can implement the power control functions of the previous embodiments.
  • the communication device 1000 may include one or more memories 1002 on which an instruction 1004 is stored, the instructions being executable on the processor such that the communication device 1000 performs the method described in the above method embodiments.
  • data may also be stored in the memory.
  • Instructions and/or data can also be stored in the optional processor.
  • the processor and the memory may be provided separately or integrated.
  • the “storage” described in the above embodiments may be in the storage memory 1002, or may be stored in a memory or a storage device of other peripherals.
  • the communication device 1000 may further include a transceiver 1005 and an antenna 1006.
  • the processor 1001 may be referred to as a processing unit that controls a communication device (terminal or base station).
  • the transceiver 1005 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 1006.
  • the embodiment of the present application further provides a chip, where the chip is connected to a memory, where the computer stores a computer program for reading and executing a computer program stored in the memory, so as to implement The method performed by the communication device in the illustrated flow, or the method performed by the communication device in the flow shown in FIG. 6.
  • the embodiment of the present application further provides a computer storage medium, which stores program code, and the stored program code, when executed by the processor, is used to implement the communication device in the flow shown in FIG. 5 in the present application.
  • the embodiment of the present application further provides a computer storage medium storing program code.
  • the stored program code when executed by the processor, is used to implement the method of the communication device in the flow shown in FIG. 6 in this application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes computer software instructions that can be loaded by a processor to implement the method of the communication device in the flow shown in FIG. 5 in the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes computer software instructions that can be loaded by a processor to implement the method of the network device in the flow shown in FIG. 6 in the present application.
  • embodiments of the present application can be provided as a method, apparatus (device), or computer program product.
  • the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects, which are collectively referred to herein as "module” or “system.”
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program is stored/distributed in a suitable medium, provided with other hardware or as part of the hardware, or in other distributed forms, such as over the Internet or other wired or wireless telecommunication systems.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种功率控制方法及装置,该装置包括:通信设备首先接收网络侧配置的第一功率值和第二功率值,因为第一功率值是网络侧为通信设备配置的第一小区群组的最大允许发送功率值,所述第二功率值是网络侧为通信设备配置的第二小区群组的最大允许发送功率值,所以通信设备根据所述第一功率值和所述第二功率值,确定所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值,这样可以解决不同制式下的双连接通信设备有效地进行功率控制的问题。

Description

一种功率控制方法及装置
本申请要求在2018年02月14日提交中国专利局、申请号为201810152273.6、发明名称为“一种功率控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息技术领域,尤其涉及一种功率控制方法及装置。
背景技术
标准协议的版本12(Release12)中引入了双连接(dual connectivity,DC)技术。其中,DC技术是指终端设备可同时连接两个小区群组。比如,第一小区群组可为长期演进(long term evolution,LTE)小区,第二小区群组可为新空口(new radio,NR)小区。
同时,标准协议中还规定,当终端设备处于DC状态时,可同时向主基站和辅基站发送上行信号,且向主基站发送上行信号的功率,与向辅基站发送上行信号的功率之和,不得超过预设的最大功率。比如,终端设备向主基站发送上行信号的功率为第一功率,终端设备向辅基站发送上行信号的功率为第二功率,那么要始终保证第一功率+第二功率≤最大功率。
目前,现有技术仅提供了同一制式内的DC功率控制方式,对于不同制式的DC功率控制,例如E-UTRAN与NR的双连接,目前并没有相关的功率控制技术。
发明内容
有鉴于此,本申请提供了一种功率控制方法及装置,用以提供一种功率控制方法,以解决不同制式下的双连接通信设备有效地进行功率控制的问题。
第一方面,本申请实施例提供了一种功率控制方法,该方法包括:通信设备首先接收网络侧配置的第一功率值和第二功率值,其中,所述第一功率值是所述网络侧为所述通信设备配置的第一小区群组的最大允许发送功率值,所述第二功率值是所述网络侧为所述通信设备配置的第二小区群组的最大允许发送功率值,然后通信设备根据所述第一功率值和所述第二功率值,确定所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值,这样,当终端设备处于不同制式的DC状态时,同时向主基站和辅基站发送上行信号并不会超出总保证功率,因此,也使得网络侧对该信号的接收功率满足接收要求,不会造成信号干扰。
在一种可能的设计中,通信设备是工作于双连接模式,所述双连接模式表示所述通信设备能够同时与所述第一小区群组和所述第二小区群组建立连接,例如第一小区群组是一个LTE小区或者多个LTE小区,第二小区群组为一个或者多个NR小区。
在另一种可能的设计中,通信设备根据所述第一功率值确定该通信设备在所述第一小区群组上的第一保证功率值;同时,通信设备根据所述第二功率值确定所述通信设备在所述第二小区群组上的第二保证功率值;然后通信设备基于第一保证功率值、第二保证功率值,根据所述第一功率值与所述第二功率值的和值、以及以下功率值中的至少一项:所述第一保证功率值与所述第二保证功率值的和值、所述第四功率值和所述第五功率值中的最 大功率值,确定出最小功率值;所述通信设备将所述最小功率值作为所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值;
其中,所述第四功率值是所述通信设备在所述第一小区群组上的最大允许发送功率值,例如在一个LTE小区的最大允许发送功率值,所述第五功率值是所述通信设备在所述第二小区群组上的最大允许发送功率值,例如在一个NR小区的最大允许发送功率值。
在第三种可能的设计中,第一小区群组和所述第二小区群组的子帧交叠处的时间为第一时间单元,所述第一时间单元对应所述第一小区群组的第p子帧,并且对应所述第二小区群组的第q时隙至q+n时隙,n的取值是所述第二小区群组中与第一小区群组的第p子帧交叠的最后一个时隙的时域位置;
进一步地,所述通信设备根据第q时隙至q+n时隙对应的n+1个所述总保证功率值,确定出实际总保证功率值,所述实际总保证功率值是所述通信设备在第一时间单元上能够实现最大允许发送功率值。
第二方面,本申请实施例还提供一种功率控制方法,首先通信设备接收网络侧配置的第一功率值,所述第一功率值是所述网络侧为所述通信设备配置的小区群组的最大允许发送功率值;然后通信设备根据所述第一功率值确定所述通信设备在所述小区群组上的第一保证功率值。
这样,假设小区群组的多个LTE小区,那么,通信设备可以基于网络侧配置的第一功率值确定通信设备在多个LTE小区上的第一保证功率值,同理,假设小区群组的多个NR小区,那么,通信设备可以基于网络侧配置的第一功率值确定通信设备在多个NR小区上的第二保证功率值。
在一种可能的设计中,通信设备是工作于双连接模式,所述双连接模式表示所述通信设备能够同时与所述第一小区群组和所述第二小区群组建立连接,例如第一小区群组是一个LTE小区或者多个LTE小区,第二小区群组为一个或者多个NR小区。
在另一种可能的设计中,所述通信设备根据所述第一功率值,以及以下功率值中的至少一项:第三功率值和第四功率值,确定出最小功率值;
所述通信设备将所述最小功率值作为所述通信设备在所述小区群组上的第一保证功率值;
其中,所述第三功率值是所述网络侧配置给所述通信设备的最大允许发送功率值,所述第四功率值是所述通信设备的最大允许发送功率值。
需要说明的是,在上述实施例中,不同的确定方式可以互相结合,也就是通信设备可以基于上述至少一种条件来配置功率。
第三方面,本申请实施例还提供了一种装置,该装置具有实现上述第一方面方法示例中通信设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或所述软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括接收单元、处理单元,其中,接收单元,用于接收网络侧配置的第一功率值和第二功率值,所述第一功率值是所述网络侧为所述通信设备配置的第一小区群组的最大允许发送功率值,所述第二功率值是所述网络侧为所述通信设备配置的第二小区群组的最大允许发送功率值;
处理单元,用于根据所述第一功率值和所述第二功率值,确定所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值。
在一种可能的设计中,通信设备是工作于双连接模式,所述双连接模式表示所述通信设备能够同时与所述第一小区群组和所述第二小区群组建立连接,例如第一小区群组是一个LTE小区或者多个LTE小区,第二小区群组为一个或者多个NR小区,当终端设备处于不同制式的DC状态时,同时向主基站和辅基站发送上行信号并不会超出总保证功率,这样,因此,也使得网络侧对该信号的接收功率满足接收要求,不会造成信号干扰。
在一种可能的设计中,所述处理单元还用于:根据所述第一功率值确定所述通信设备在所述第一小区群组上的第一保证功率值;
根据所述第二功率值确定所述通信设备在所述第二小区群组上的第二保证功率值;
根据所述第一功率值与所述第二功率值的和值、以及以下功率值中的至少一项:所述第一保证功率值与所述第二保证功率值的和值、所述第四功率值和所述第五功率值中的最大功率值,确定出最小功率值;
将所述最小功率值作为所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值;
其中,所述第四功率值是所述通信设备在所述第一小区群组上的最大允许发送功率值,所述第五功率值是所述通信设备在所述第二小区群组上的最大允许发送功率值。
在另一种可能的设计中,所述第一小区群组和所述第二小区群组的子帧交叠处的时间为第一时间单元,所述第一时间单元对应所述第一小区群组的第p子帧,并且对应所述第二小区群组的第q时隙至q+n时隙,n的取值是所述第二小区群组中与第一小区群组的第p子帧交叠的最后一个时隙的时域位置;
所述处理单元,还用于根据第q时隙至q+n时隙对应的n+1个所述总保证功率值,确定出实际总保证功率值,所述实际总保证功率值是所述通信设备在第一时间单元上能够实现最大允许发送功率值。
本申请实施中,这些单元可以执行上述第一方面方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的设计中,当该装置为通信设备内的芯片时,芯片包括:处理单元和通信单元,处理单元例如可以是处理器,通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第一方面任意一项的功率控制方法被执行。可选地,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是通信设备内的位于芯片外部的存储单元,如只读存储器、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器等。
第四方面,本申请实施例还提供了一种装置,该装置具有实现上述第二方面方法示例中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或所述软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该装置的结构中包括接收单元、处理单元,其中,接收单元,用于接收网络侧配置的第一功率值,所述第一功率值是所述网络侧为所述通信设备配置的小区群组的最大允许发送功率值,处理单元,用于根据所述第一功率值确定所述通信设备在所述小区群组上的第一保证功率值。
在一种可能的设计中,当通信设备是工作于双连接模式,所述双连接模式表示所述通信设备能够同时与所述第一小区群组和所述第二小区群组建立连接,例如第一小区群组是一个LTE小区或者多个LTE小区,第二小区群组为一个或者多个NR小区,当终端设备处 于不同制式的DC状态时,同时向主基站和辅基站发送上行信号并不会超出总保证功率,这样,因此,也使得网络侧对该信号的接收功率满足接收要求,不会造成信号干扰。
在另一种可能的设计中,所述处理单元具体用于:
根据所述第一功率值,以及以下功率值中的至少一项:第三功率值和第四功率值,确定出最小功率值;
将所述最小功率值作为所述通信设备在所述小区群组上的第一保证功率值;
其中,所述第三功率值是所述网络侧配置给所述通信设备的最大允许发送功率值,所述第四功率值是所述通信设备的最大允许发送功率值。
本申请实施中,这些单元可以执行上述第二方面方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的设计中,当该装置为网络设备内的芯片时,芯片包括:处理单元和通信单元,处理单元例如可以是处理器,通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第一方面任意一项的功率控制方法被执行。可选地,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是通信设备内的位于芯片外部的存储单元,如只读存储器、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器等。
第五方面,本申请实施例提供了一种装置,包括至少一个处理器和至少一个存储器,所述处理器用于执行上述第一方面或第二方面任一项中的功率控制方法,所述存储器与所述处理器耦合。
第六方面,本申请实施例提供了一种装置,包括至少一个处理器和至少一个存储器,所述至少一个存储器与所述至少一个处理器耦合,所述至少一个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,所述装置执行上述第一方面或第二方面任一项中的功率控制方法。
第七方面,本申请实施例提供了一种装置,包括至少一个处理器,所述处理器用于执行上述第一方面或第二方面任一项中的功率控制方法。
第八方面,本申请实施例提供了一种芯片,该芯片以装置的形式存在,该芯片可以为上述方面中的任意一种装置。
本申请实施例提供的功率控制方法适用于由不同制式构成的双连接系统,例如LTE与NR的双连接系统,这时网络侧会分别为各个制式对应的小区配置最大允许发送功率,这样通信设备再结合自身允许发送的功率、网络侧配置的最大允许发送功率,来确定最终通信设备在该制式对应的小区的最大允许发送功率,因为双连接对应两种类型的小区,所以通信设备还需要保证最终发送功率不超过总的保证功率,其中,总保证功率值由通信设备根据网络侧配置的最大允许发送功率值来确定,这样,当终端设备处于不同制式的DC状态时,同时向主基站和辅基站发送上行信号并不会超出总保证功率,因此,也使得网络侧对该信号的接收功率满足接收要求,不会造成信号干扰。
附图说明
图1为本申请实施例提供的一种通信系统架构示意图;
图2为本申请实施例提供的一种双连接的控制面架构拓扑图;
图3为本申请实施例提供的具备动态功率共享的第一类型终端的通信方法示意图;
图4为本申请实施例提供的不具备动态功率共享的第一类型终端的通信方法示意图;
图5为本申请实施例提供的一种功率控制方法流程示意图一;
图6为本申请实施例提供的一种功率控制方法流程示意图二;
图7为本申请实施例提供的一种不同小区组资源重叠示意图;
图8为本申请实施例提供的一种装置的结构示意图;
图9为本申请实施例提供的另一种装置的结构示意图;
图10为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信方法的通信系统的示意图。如图1所示,该通信系统100包括网络设备102和通信设备106,网络设备102可配置有多个天线,终端设备也可配置有多个天线。可选地,该通信系统还可包括网络设备104,网络设备104也可配置有多个天线。
应理解,网络设备102或网络设备104还可包括与信号发送和接收相关的多个部件(例如,处理器、调制器、复用器、解调器或解复用器等)。
其中,网络设备为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
通信设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑 (Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。为便于描述,本申请下文中将前述通信端设备及可设置于前述通信设备的芯片统称为终端设备。
在该通信系统100中,网络设备102和网络设备104均可以与多个终端设备(例如图中示出的终端设备106)通信。网络设备102和网络设备104可以与类似于终端设备106的任意数目的终端设备通信。但应理解,与网络设备102通信的终端设备和与网络设备104通信的终端设备可以是相同的,也可以是不同的。图1中示出的终端设备106可同时与网络设备102和网络设备104通信,但这仅示出了一种可能的场景,在某些场景中,终端设备可能仅与网络设备102或网络设备104通信,本申请对此不做限定。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
本申请实施例提供了一种功率控制方法,为了提高系统性能,链路自适应、功率控制等常常是通信系统中重要的管理功能。在通信网络中,至少一个节点向其他节点发送信号,而功率控制的目的,是使得网络中,由至少一个节点发送的信号,到达其他节点的时候,功率能够满足系统的需求。
这里的节点,可以是指基站、用户设备等等。如,功率控制可以是,使得一个用户发送的信号功率,在到达另一个用户的时候,满足一定的功率要求。或者如,功率控制可以是,使得用户发送的信号功率,在到达基站的时候,满足基站的功率要求。或者如,可以通过功率控制,使得基站发送的信号,到达用户设备的时候,满足用户设备的功率需求。
功率控制中的功率需求,可以是指到达一个节点的功率需求,如,若信号对该节点是有用信号,则该节点对接收信号的功率有需要满足解调门限的需求,该需求为接收信号的功率应不能太低,否则导致无法正确接收、解调。或者,如,若该信号对该节点是非有用信号,如为干扰信号,则该节点对该接收信号的功率有需要满足干扰门限值的需求,该需求为该接收信号的功率应不能太高,否则导致该信号对该节点的有用信号造成较强的干扰。
功率控制可以发生在一个节点与另一个节点之间,如D2D场景为了一个用户设备到另一个用户设备的功率满足一定的信号干扰噪声比(signal to interference plus noise ratio,SINR);也可以发生在多个节点与一个节点之间,如LTE中的上行,功率控制是为了让网络中的至少一个用户设备,到达基站的功率,满足基站的信号干扰噪声比SINR需求;也可以发生在多个节点到多个节点之间,如在时分双工(time division duplex,TDD)网络制式中,系统中可能同时存在上行和下行调度(如5G网络中的动态TDD技术),此时功率控制可以用来关系网络中的多个用户设备、多个基站的多对多的功率要求。
功率控制的设计,是控制网络中节点的信号发送功率,使得该信号的接收功率,满足接收要求。这里,接收要求可以是上文所述的功率要求、SINR要求等,或者是信噪比(singal-noise ratio,SNR)要求。SNR、SINR、IoT(interference over thermal,干扰比热)、RSRP(reference signal received power,参考信号接收功率)、信号的接收功率等,都可以 看成是功率控制环节中的目标参数,这些参数不完全等价,但是是互相联系的。如,SINR和RSRP不完全相等,但在干扰水平相同的情况下,RSRP越高,意味着信号的SINR越好。本文中的功率控制,并不限定实际中算法的目标控制参数。
本申请实施例提供的功率控制方法适用于引入双连接技术的通信系统。所谓双连接技术其实就是在非理想后向回程前提下的载波聚合,指的是一个终端可以同时连接到两个通过非理想后向回程相连的基站进行数据通讯。其中,典型的场景是有一个基站是宏蜂窝,另外一个基站是小蜂窝。宏蜂窝和小蜂窝通过标准的X2接口相连。R10的载波聚合中多个载波的调度都是由一个调度器来完成的;而在双连接中,宏蜂窝和小蜂窝的调度器分别管理各自基站上的无线资源,所以需要相互之间进行协调。这是从系统架构的角度来说明双连接和载波聚合之间的本质差别。双连接技术与载波聚合技术相比的一个优点是允许宏蜂窝和小蜂窝在系统时间上不同步。
图2是双连接的控制面架构拓扑图。其中,201为MeNB,MeNB表示宏蜂窝,202为SeNB,SeNB表示小蜂窝,203为MME,MME是核心网的移动控制实体。终端、MeNB和MME203之间的信令连接和当时的现有系统相比没有发生变化,也就是说一个终端只有一个无线资源控制信令(RRC)链路和一个S1信令链路。SeNB和MeNB之间依旧通过X2接口相连。
在图2中的MeNB和SeNB上可以分别配置载波聚合。为了做一进步的区分,MeNB上所有配置的服务载波称为主小区群组(MCG,Master Cell Group),SeNB上所有配置的服务载波称为辅小区群组(SCG,Secondary Cell Group)。双连接技术允许终端设备同时分别与MCG(master cell group)和SCG(sencondary cell group)建立连接,这样能够提高单用户的吞吐量。在双连接场景,所述主小区群组也可以由多于一个基站配置,所述辅小区群组也可以由多于一个基站配置。
对于LTE与LTE的双连接模式,上行控制信息(Channel Quality Indicator,UCI)可以通过MCG中的PUCCH和SCG中的PUCCH共同发送。DC由于允许MCG与SCG在系统时间上是不同步的,那么,在MeNB和SeNB调度下的不同小区的子帧在传输过程中就存在资源重叠问题,所谓资源重叠指的是MCG与SCG的时域资源重叠,目前协议规定,MCG与SCG各自有配置有最大功率P MeNB与P SeNB,MCG中各载波的总功率不能超过P MeNB,同样,SCG中各载波的总功率不能超过P SeNB,且P MeNB与P SeNB的和不能超过所有载波的最大功率P cmax。网络侧的MeNB和SeNB上对每个终端设备上的配置功率通过γ MCG和γ SCG来进行分配,γ MCG和γ SCG为百分比值,即用P cmax乘以γ MCG和P cmax乘以γ sCG,就可以得到双连接模式下基站对每个终端设备在每个小区上的功率配置值。
因为LTE与LTE的双连接模式下UE是通过网络侧配置的最大允许发送功率P emax,自身的最大允许发送功率P powerclass来计算P cmax_MeNB和P cmax_SeNB,然后再通过P cmax_MeNB和P cmax_SeNB计算P cmax_dc,最终通过γMCG和γSCG参数,用P cmax乘以γ MCG和P cmax乘以γ sCG,得到双连接模式下基站对每个终端设备在每个小区群组上的功率配置值。
对于E-UTRAN与LTE的双连接模式(简称为EN-DC模式),考虑到网络的演进步骤,目前默认E-UTRAN为主小区群组,NR为辅小区群组,目前标准将动态功率共享定义成一种能力,具备动态功率共享能力的终端类型为第一类型终端,不具备相应能力的为第二类型终端,这里可以理解为第二类型终端能够支持半静态的功率共享。在EN-DC模式下,所述主小区群组也可以由NR作为主小区群组,所述辅小区群组也可以由LTE作为辅小区 群组。
其中,具备动态功率共享的第一类型终端的通信行为可通过图3来描述,具体流程为:
步骤a1,终端设备向网络侧上报自身支持具备动态功率共享的能力;
步骤b1,终端设备获取网络下发的配置功率值,通过计算得到P CMAX_LTE、P CMAX__NR和P CMAX__ENDC
步骤c1,终端设备以NR时隙长度为时间单元对各LTE和NR物理信道上的实时功率的总和是否大于P CMAX__ENDC进行判断,如果超过P CMAX__ENDC,EN-DC模式下UE将对NR侧进行发射功率调整或不在NR进行上行功率发射。
其中,不具备动态功率共享的第二类型终端的通信行为可通过图4来描述,具体流程为:
步骤a2,终端设备向网络侧上报自身不支持具备动态功率共享的能力;
步骤b2,终端设备获取网络下发的配置功率值,通过计算得到P CMAX_LTE、P CMAX__NR和P CMAX__ENDC
步骤c2,终端设备判断半静态功率配置值P CMAX_LTE和P CMAX__NR的总和是否大于P CMAX__ENDC进行判断,终端可以根据当前的网络配置情况按照单发的方式进行。
而目前5G标准定义EN-DC模式下,网络侧为终端设备分别在MCG和SCG配置了最大允许发送功率绝对值,假设分别称为P _LTE和P _NR。由于E-UTRAN和NR为两种不同的制式,因此P CMAX_LTE和P CMAX_NR,以及P CMAX_ENDC需要重新根据P _LTE和P _NR以及其它相关参数例如P EMAX、P powerclass计算。
基于上述概念,本申请实施例进一步对功率控制方法的具体过程进行详细说明,具体步骤如图5所示。
步骤501,通信设备接收网络侧配置的第一功率值,该第一功率值指的是网络侧为通信设备配置的小区群组的最大允许发送功率值。
步骤502,通信设备根据所述第一功率值,确定所述通信设备在该小区群组上的第一保证功率值。
具体地,在上述步骤中,小区群组可以指的是上文中的MCG或者是SCG,针对EN_DC模式,小区群组是MCG时,该小区群组为一个LTE小区或者多个LTE小区;小区群组是SCG时,该小区群组为一个或者多个NR小区。另外,小区群组是MCG时,该第一功率可以指的是P _LTE,第一保证功率值可以指的是通信设备在MCG上配置的最大发送功率P CMAX_LTE,第一保证功率值可以指的是通信设备在一个LTE小区上配置的最大发送功率P CMAX_LTE_L,c,小区群组是SCG时,该第一功率可以指的是P _NR,第一保证功率值可以指的是通信设备在SCG上配置的最大发送功率P CMAX_NR,对于NR而言,一个小区中可能存在两个上行载波,即包括上行载波和补充上行载波,因此第一功率保证值可以为上行载波上的定义,也可以为补充上行载波上的定义。其中,第一保证功率值在一个取值区间内,也就是说,第一保证功率值的取值位于下限P CMAX_L和上限P CMAX_H之间。
本申请实施例中,P _LTE和P _NR是在EN-DC模式下,网络侧为通信设备单独配置的功率配置值,那么对于通信设备而言必须考虑P _LTE值对P CMAX_LTE或P CMAX_NR的影响。 P CMAX_LTE或P CMAX_NR是功率控制过程中功率发射上限取值,在EN-DC模式下,LTE或NR侧的上限功率将P_LTE和P_NR代入运算,能够实现对功率的独立半静态调整,且满足EN-DC的网络配置需求。
具体来说,在步骤102中,所述通信设备根据所述第一功率值,以及以下功率值中的至少一项:第三功率值和第四功率值,确定出最小功率值;
所述通信设备将所述最小功率值作为所述通信设备在所述小区群组上的第一保证功率值;
其中,所述第三功率值是所述网络侧配置给所述通信设备的最大允许发送功率值,也就是P EMAX,c,所述第四功率值是所述通信设备的最大允许发送功率值,也就是P powerclass
也就是说,针对EN-DC模式中的LTE小区,终端设备通过P EMAX,c和所述通信设备在LTE小区群组上的最大允许发送功率值P powerclass_LTE,以及网络侧配置的P _LTE,计算得到终端设备在LTE小区中的第一保证功率P CMAX_LTE,计算方式可以如公式[1]、公式[2]和公式[3]所示。
P CMAX_LTE_L,c≤P CMAX_LTE,c≤P CMAX_LTE_H,c     ……公式[1]
P CMAX_LTE_L,c=MIN{P EMAX,c-T c,c,(P powerclass_LTE-ΔP powerclass_LTE)-
MAX(MPR c+A-MPR c+ΔT IB,c+ΔT c,c+ΔT ProSe,p-MPR c),P _LTE-ΔT c,c}  …公式[2]
P CMAX_LTE_H,c=MIN{P EMAX,c,P powerclass_LTE-ΔP powerclass_LTE,P _LTE}      ……公式[3]
其中,公式[1]中P CMAX_LTE,c为终端设备在一个LTE小区中的配置功率,P CMAX_LTE,c的下限值为P CMAX_LTE_L,c,P CMAX_LTE,c的上限值为P CMAX_LTE_H,c。公式[2]和公式[3]中,P EMAX,c是网络侧通过RRC信令配置给终端的最大允许发射功率值,P powerclass_LTE是终端设备在LTE小区群组自身能够实现的最大允许发射功率值。ΔP powerclass_LTE是针对一种功率等级终端设备在某些情况下的功率调整值,MPRc是最大功率回退值,这是多重射频指标的要求下在不同带宽和RB分配下的功率回退值,A-MPR c是附加功率回退值,在某些网络信令下可以在MPR回退基础上再进一步回退的功率值,p-MPR c是考虑特定吸收率(Specific Absorption Rate)的达标而定义的功率回退值,ΔT IB,c是考虑载波聚合情况下的发射功率放松,ΔT c,c是频带边缘处的发射功率放松,ΔT ProSe是LTE支持近距离通信业务(ProSe:Proximity sevice)的发射功率放松(例如LTE的D2D业务)。
同理,针对EN-DC模式中的NR小区,终端设备通过P EMAX,c和所述通信设备在NR小区群组上的最大允许发送功率值,以及网络侧配置的P _NR,计算得到终端设备在NR小区中的第一保证功率P CMAX_NR,计算方式可以如公式[4]、公式[5]和公式[6]所示。
P CMAX_L,f,c≤P CMAX_NR,f,c≤P CMAX_H,f,c       ……公式[4]
P CMAX_L,f,c=MIN{P EMAX,c-Δ,(P powerclass_NR-ΔP powerclass_NR)-
MAX(MPR c+A-MPR c+ΔT IB,c+ΔT c,c,P-MPR c),P _NR-ΔT c,c}
                  ……公式[5]
P CMAX_H,f,c=MIN{P EMAX,c,P powerclass_NR-ΔP powerclass_NR,P _NR}       ……公式[6]
其中,公式[4]中P CMAX_NR,f,c为终端设备在一个NR小区中的某个上行载波上的配置功率,P CMAX_NR,f,c的下限值为P CMAX_L,f,c,P CMAX_NR,f,c的上限值为P CMAX_H,f,c,P powerclass_NR是终端设备在NR小区群组中自身能够实现的最大允许发射功率值。MPRc是最大功率回退值,这是多重射频指标的要求下在不同带宽和RB分配下的功率回退值,A-MPR c是附加功率回退值,在某些网络信令下可以在MPR回退基础上再进一步回退的功率值,p-MPR c是考虑特定吸收率(Specific Absorption Rate)的达标而定义的功率回退值,ΔT IB,c是考虑载波聚合情况下和双连接情况下的发射功率放松,ΔT c,c是频带边缘处的发射功率放松,其余参数与公式[[1]、公式[2]和公式[3]中的参数定义一致。
基于上述公式计算得到的P CMAX_LTE和P CMAX_NR,所述通信设备根据所述第一功率值和所述第二功率值,确定所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值。因为针对EN-DC模式,目前默认E-UTRAN为主基站,NR为辅基站,所以第一小区群组可以理解为MCG,第二小区群组可以理解为SCG。也就是说,终端设备再通过P CMAX_LTE和P CMAX_NR的值去计算EN_DC模式下的总发送功率值P CMAX_ENDC的值,具体过程,如图6所示,包括如下步骤。
步骤601,通信设备接收网络侧配置的第一功率值和第二功率值。
步骤602,所述通信设备根据所述第一功率值和所述第二功率值,确定所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值。
具体来说,所述通信设备根据所述第一功率值与所述第二功率值的和值、以及以下功率值中的至少一项:所述第一保证功率值与所述第二保证功率值的和值、所述第四功率值和所述第五功率值中的最大功率值,确定出最小功率值;
所述通信设备将所述最小功率值作为所述通信设备在所述第一小区群组和所述第二小区群组重叠时的总保证功率值;
其中,所述第四功率值是所述通信设备在所述第一小区群组上的最大允许发送功率值,也就是P powerclass_LTE,所述第五功率值是所述通信设备在所述第二小区群组上的最大允许发送功率值,也就是P powerclass_NR
本申请实施例中,在总保证功率值的计算过程中考虑P _LTE和P _NR,首先可以保证在EN-DC下的功率控制过程,对于支持动态功率共享的通信设备,在每一个所述时间单元上都能够保证动态的功率之和不会超过EN-DC下的两个小区群组下的功率配置值P _LTE和P _NR的总和。另外,这种方法也给了基站多一层的功率调整的自由度,使得EN-DC UE的功率控制过程更加灵活。
对于EN-DC双连接模式下的子帧交叠,一个LTE子帧可能和NR的多个时隙交叠。主要是因为NR根据子载波间隔的取值不同,使得时隙长度有所不同。例如,对于如图7所示的子帧交叠示意图,对于LTE第P子帧与NR的第q时隙的交叠部分的总功率值P CMAX_ENDC(p,q),终端设备可以通过P CMAX_LTE、P CMAX_NR和P powerclass_LTE、P powerclass_NR,以及网络侧配置的P_LTE、P_NR计算得到,其中P CMAX_ENDC(p,q)取值位于下限P CMAX_ENDC_L(p,q)和上限P CMAX_ENDC_H(p,q)之间,计算方式可以如公式[7]、公式[8]和公式[9]所示。
P powerclass_ENDC=MAX{P powerclass_LTE,P powerclass_NR}         ……公式[7]
Figure PCTCN2019074646-appb-000001
Figure PCTCN2019074646-appb-000002
其中,公式[1]中P powerclass_ENDC为P powerclass_LTE与P powerclass_NR中的最大功率值,公式[2]中P CMAX_L,c(1)1(p)为所述通信设备在MCG上的第p子帧时的第一保证功率值的下限值,P CMAX_L,c(2)2(q)为所述通信设备在SCG的第q时隙时的第二保证功率值的下限值,P CMAX_ENDC_L,c为所述通信设备的总保证功率值的下限值,公式[3]中P CMAX_H,c(1)1(p)为所述通信设备在MCG的第p子帧时的第一保证功率值的上限值,P CMAX_H,c(2)2(q)为所述通信设备在SCG的第q时隙时的第二保证功率值的上限值,P CMAX_ENDC_H,c为所述通信设备的总保证功率值的上限值。
换句话说,终端设备通过P cmax_LTE+P cmax_NR、P powerclass_ENDC、P _LTE+P _NR三项的值取最小功率值,将最小功率值作为P CMAX_ENDC
从图7中可见,假设LTE的第P子帧还与NR的第q+1时隙直至第q+n时隙交叠,按照公式[10]可以依次计算出P CMAX_ENDC_L,c(p,q+1)、P CMAX_ENDC_L,c(p,q+2)、…、P CMAX_ENDC_L,c(p,q+n)共N+1个总保证功率值,公式[10]如下。
Figure PCTCN2019074646-appb-000003
其中,P CMAX,c(1)1(p)为所述通信设备在第一小区群组的第p子帧时的第一保证功率值,P CMAX,c(2)2(i)为所述通信设备在第二小区群组的第i时隙时的第二保证功率值,P powerclass_ENDC为所述第四功率值和所述第五功率值中的最大功率值,p _LTE+p _NR为所述第一功率值与所述第二功率值的和值,P CMAX(p,i)为所述通信设备在第i时隙的最大允许发送功率值,i的取值从q至q+n。
进一步地,终端设备基于P CMAX_ENDC,c(p,q+1)、P CMAX_ENDC,c(p,q+2)、…、P CMAX_ENDC,c(p,q+n)等,确定出实际总保证功率值的上下限,计算方式可以如公式[11]和公式[12]所示。
P' CMAX_ENDC_L,c(p,q)=MIN{P CMAX_ENDC_L,c(p,q),P CMAX_ENDC_L,c(p,q+1),...,
P CMAX_ENDC_L,c(p,q+n)}
                                ……公式[11]
P' CMAX_ENDC_H,c(p,q)=MAX{P CMAX_ENDC_H,c(p,q),P CMAX_ENDC_H,c(p,q+1),...,
P CMAX_ENDC_H,c(p,q+n)}
                                ……公式[12]
应理解,上述情况仅仅是一个示例,在其它情况下,所述MCG也可以是NR小区或多个NR小区;所述SCG也可以是LTE小区或多个LTE小区,或再下一代通信技术小区。针对上述通信设备执行的传输方法流程,本申请提供一种装置,该装置的具体执行内容可参照上述方法实施,图8为本申请提供的一种装置的结构示意图,所述装置包括:接收单元801、处理单元802。
接收单元801,用于接收网络侧配置的第一功率值和第二功率值,所述第一功率值是所述网络侧为所述通信设备配置的第一小区群组的最大允许发送功率值,所述第二功率值是所述网络侧为所述通信设备配置的第二小区群组的最大允许发送功率值;
处理单元802,根据所述第一功率值和所述第二功率值,确定所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值。
在一种实施例中,所述通信设备工作于双连接模式,所述双连接模式表示所述通信设备能够同时与所述第一小区群组和所述第二小区群组建立连接。
在另一种实施例中,所述第一小区群组为一个LTE小区或者多个LTE小区,所述第二小区群组为一个或者多个NR小区。
一种可能的设计中,所述处理单元802所述处理单元还用于:根据所述第一功率值确定所述通信设备在所述第一小区群组上的第一保证功率值;根据所述第二功率值确定所述 通信设备在所述第二小区群组上的第二保证功率值;
根据所述第一功率值与所述第二功率值的和值、以及以下功率值中的至少一项:所述第一保证功率值与所述第二保证功率值的和值、所述第四功率值和所述第五功率值中的最大功率值,确定出最小功率值;将所述最小功率值作为所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值。
在另一种可能的设计中,第一小区群组和所述第二小区群组的子帧交叠处的时间为第一时间单元,所述第一时间单元对应所述第一小区群组的第p子帧,并且对应所述第二小区群组的第q时隙至q+n时隙,n的取值是所述第二小区群组中与第一小区群组的第p子帧交叠的最后一个时隙的时域位置;
所述处理单元802,还用于根据第q时隙至q+n时隙对应的n+1个所述总保证功率值,确定出实际总保证功率值,所述实际总保证功率值是所述通信设备在第一时间单元上能够实现最大允许发送功率值。
本申请实施中,这些单元可以执行上述第一方面方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
本申请可以根据上述方法示例对通信设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
针对上述网络设备执行的传输方法流程,本申请提供一种装置,该装置的具体执行内容可参照上述方法实施,图9为本申请提供的一种装置的结构示意图,所述装置包括:接收单元901、处理单元902,其中:
接收单元901,用于接收网络侧配置的第一功率值,所述第一功率值是所述网络侧为所述通信设备配置的小区群组的最大允许发送功率值;
处理单元902,用于根据所述第一功率值确定所述通信设备在所述小区群组上的第一保证功率值。
在一种可能的设计中,所述处理单元902具体用于:根据所述第一功率值,以及以下功率值中的至少一项:第三功率值和第四功率值,确定出最小功率值;
将所述最小功率值作为所述通信设备在所述小区群组上的第一保证功率值;
其中,所述第三功率值是所述网络侧配置给所述通信设备在单载波下上行传输的最大允许发送功率值,所述第四功率值是所述通信设备在所述第一小区群组上的最大允许发送功率值。
其中,所述小区群组为一个LTE小区或者多个LTE小区,或者所述小区群组为一个或者多个NR小区。
应理解,该装置可以用于实现本申请提供的功率控制的方法中由网络设备执行的步骤,相关特征可以参照上文,此处不再赘述。
本申请可以根据上述方法示例对网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另 外的划分方式。
本申请中涉及的保存,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、芯片、通信装置、或者终端。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、芯片、通信装置、或者终端中,存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
本申请实施例提供还一种通信装置,所述通信装置包括处理器和存储器。所述存储器中存储有计算机程序,所述处理器读取并执行所述存储器中存储的计算机程序时,使得所述通信装置实现如图5和图6所示的流程中的通信设备所执行的方法,或者网络设备所执行的方法。图10给出了一种通信装置1000的结构示意图,装置1000可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置1000可以是芯片,基站,终端或者其他网络设备。
所述通信装置1000包括一个或多个处理器1001。所述处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的涉及中,如图5、图6中的一个或者多个模块可能由一个或者多个处理器来实现,或者一个或者多个处理器和存储器来实现。
在一种可能的设计中,所述通信装置1000包括一个或多个所述处理器1001,所述一个或多个处理器1001可实现上述功率控制的功能,例如通信装置可以是基站。关于确定功率值可以参见图5和图6相关部分的描述,在此不再赘述。
可选的,在一种设计中,处理器1001可以包括指令1003(有时也可以称为代码或程序),所述指令可以在所述处理器上被运行,使得所述通信装置1000执行上述实施例中描述的方法。在又一种可能的设计中,通信装置1000也可以包括电路,所述电路可以实现前述实施例中的功率控制功能。
可选的,在一种设计中,所述通信装置1000中可以包括一个或多个存储器1002,其上存有指令1004,所述指令可在所述处理器上被运行,使得所述通信装置1000执行上述方法实施例中描述的方法。
可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,上述实施例中所述的“保存”可以是保存存储器1002中,也可以是保存在其他的外设的存储器或者存储设备中。
可选的,所述通信装置1000还可以包括收发器1005以及天线1006。所述处理器1001可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发器1005可以称为收发单元、收发机、收发电路、或者收发器等,用于通过天线1006实现通信装置的收发功能.
上述装置实施例的具体实现方式与方法实施例相对应,其具体实现方式和有益效果和参加方式实施例的相关描述。
本申请实施例还提供一种芯片,所述芯片与存储器相连,所述存储器中存储有计算机程序,所述芯片用于读取并执行所述存储器中存储的计算机程序,以实现如图5所示的流 程中的通信设备所执行的方法、或者图6所示的流程中的通信设备执行的方法。
本申请实施例还提供了一种计算机存储介质,储存程序代码,存储的程序代码在被处理器执行时用于实现本申请中如图5所示的流程中的通信设备的方法。
本申请实施例还提供了一种计算机存储介质,储存程序代码。存储的程序代码在被处理器执行时用于实现本申请中如图6所示的流程中的通信设备的方法。
本申请实施例还提供了计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现本申请中如图5所示的流程中的通信设备的方法。
本申请实施例还提供了计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现本申请中如图6所示的流程中的网络设备的方法。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
本申请是参照本申请实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附 权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种功率控制方法,其特征在于,该方法包括:
    通信设备接收网络侧配置的第一功率值和第二功率值,所述第一功率值是所述网络侧为所述通信设备配置的第一小区群组的最大允许发送功率值,所述第二功率值是所述网络侧为所述通信设备配置的第二小区群组的最大允许发送功率值;
    所述通信设备根据所述第一功率值和所述第二功率值,确定所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值。
  2. 根据权利要求1所述的方法,其特征在于,所述通信设备工作于双连接模式,所述双连接模式表示所述通信设备能够同时与所述第一小区群组和所述第二小区群组建立连接。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一小区群组为一个LTE小区或者多个LTE小区,所述第二小区群组为一个或者多个NR小区。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,还包括:
    所述通信设备根据所述第一功率值确定所述通信设备在所述第一小区群组上的第一保证功率值;
    所述通信设备根据所述第二功率值确定所述通信设备在所述第二小区群组上的第二保证功率值;
    所述通信设备根据所述第一功率值和所述第二功率值,确定所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值,包括:
    所述通信设备根据所述第一功率值与所述第二功率值的和值、以及以下功率值中的至少一项:所述第一保证功率值与所述第二保证功率值的和值、所述第四功率值和所述第五功率值中的最大功率值,确定出最小功率值;
    所述通信设备将所述最小功率值作为所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值;
    其中,所述第四功率值是所述通信设备在所述第一小区群组上的最大允许发送功率值,所述第五功率值是所述通信设备在所述第二小区群组上的最大允许发送功率值。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一小区群组和所述第二小区群组的子帧交叠处的时间为第一时间单元,所述第一时间单元对应所述第一小区群组的第p子帧,并且对应所述第二小区群组的第q时隙至q+n时隙,n的取值是所述第二小区群组中与第一小区群组的第p子帧交叠的最后一个时隙的时域位置;
    所述通信设备根据第q时隙至q+n时隙对应的n+1个所述总保证功率值,确定出实际总保证功率值,所述实际总保证功率值是所述通信设备在第一时间单元上能够实现最大允许发送功率值。
  6. 一种功率控制方法,其特征在于,该方法包括:
    通信设备接收网络侧配置的第一功率值,所述第一功率值是所述网络侧为所述通信设备配置的小区群组的最大允许发送功率值;
    所述通信设备根据所述第一功率值确定所述通信设备在所述小区群组上的第一保证功率值。
  7. 根据权利要求6所述的方法,其特征在于,所述通信设备根据所述第一功率值确 定所述通信设备在所述小区群组上的第一保证功率值,包括,
    所述通信设备根据所述第一功率值,以及以下功率值中的至少一项:第三功率值和第四功率值,确定出最小功率值;
    所述通信设备将所述最小功率值作为所述通信设备在所述小区群组上的第一保证功率值;
    其中,所述第三功率值是所述网络侧配置给所述通信设备的最大允许发送功率值,所述第四功率值是所述通信设备的最大允许发送功率值。
  8. 根据权利要求6或7所述的方法,其特征在于,所述小区群组为一个LTE小区或者多个LTE小区,或者所述小区群组为一个或者多个NR小区。
  9. 一种装置,其特征在于,该装置包括:
    接收单元,用于接收网络侧配置的第一功率值和第二功率值,所述第一功率值是所述网络侧为所述通信设备配置的第一小区群组的最大允许发送功率值,所述第二功率值是所述网络侧为所述通信设备配置的第二小区群组的最大允许发送功率值;
    处理单元,用于根据所述第一功率值和所述第二功率值,确定所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值。
  10. 根据权利要求9所述的装置,其特征在于,所述通信设备工作于双连接模式,所述双连接模式表示所述通信设备能够同时与所述第一小区群组和所述第二小区群组建立连接。
  11. 根据权利要求9或10所述的装置,其特征在于,所述第一小区群组为一个LTE小区或者多个LTE小区,所述第二小区群组为一个或者多个NR小区。
  12. 根据权利要求9至11任一项所述的装置,其特征在于,所述处理单元还用于:
    根据所述第一功率值确定所述通信设备在所述第一小区群组上的第一保证功率值;
    根据所述第二功率值确定所述通信设备在所述第二小区群组上的第二保证功率值;
    根据所述第一功率值与所述第二功率值的和值、以及以下功率值中的至少一项:所述第一保证功率值与所述第二保证功率值的和值、所述第四功率值和所述第五功率值中的最大功率值,确定出最小功率值;
    将所述最小功率值作为所述通信设备在所述第一小区群组和所述第二小区群组资源重叠时的总保证功率值;
    其中,所述第四功率值是所述通信设备在所述第一小区群组上的最大允许发送功率值,所述第五功率值是所述通信设备在所述第二小区群组上的最大允许发送功率值。
  13. 根据权利要求9至11任一项所述的装置,其特征在于,所述第一小区群组和所述第二小区群组的子帧交叠处的时间为第一时间单元,所述第一时间单元对应所述第一小区群组的第p子帧,并且对应所述第二小区群组的第q时隙至q+n时隙,n的取值是所述第二小区群组中与第一小区群组的第p子帧交叠的最后一个时隙的时域位置;
    所述处理单元,还用于根据第q时隙至q+n时隙对应的n+1个所述总保证功率值,确定出实际总保证功率值,所述实际总保证功率值是所述通信设备在第一时间单元上能够实现最大允许发送功率值。
  14. 一种装置,其特征在于,该装置包括:
    接收单元,用于接收网络侧配置的第一功率值,所述第一功率值是所述网络侧为所述通信设备配置的小区群组的最大允许发送功率值;
    处理单元,用于根据所述第一功率值确定所述通信设备在所述小区群组上的第一保证功率值。
  15. 根据权利要求14所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一功率值,以及以下功率值中的至少一项:第三功率值和第四功率值,确定出最小功率值;
    将所述最小功率值作为所述通信设备在所述小区群组上的第一保证功率值;
    其中,所述第三功率值是所述网络侧配置给所述通信设备的最大允许发送功率值,所述第四功率值是所述通信设备的最大允许发送功率值。
  16. 根据权利要求14或15所述的装置,其特征在于,所述小区群组为一个LTE小区或者多个LTE小区,或者所述小区群组为一个或者多个NR小区。
PCT/CN2019/074646 2018-02-14 2019-02-02 一种功率控制方法及装置 WO2019158011A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020543289A JP7017639B2 (ja) 2018-02-14 2019-02-02 電力制御方法および装置
EP19754405.9A EP3755069B1 (en) 2018-02-14 2019-02-02 Method and device for controlling power
BR112020016605-7A BR112020016605A2 (pt) 2018-02-14 2019-02-02 Método de controle de potência, aparelho e meio de armazenamento
US16/992,904 US11252671B2 (en) 2018-02-14 2020-08-13 Power control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810152273.6A CN110167123B (zh) 2018-02-14 2018-02-14 一种功率控制方法及装置
CN201810152273.6 2018-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,904 Continuation US11252671B2 (en) 2018-02-14 2020-08-13 Power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2019158011A1 true WO2019158011A1 (zh) 2019-08-22

Family

ID=67619735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074646 WO2019158011A1 (zh) 2018-02-14 2019-02-02 一种功率控制方法及装置

Country Status (6)

Country Link
US (1) US11252671B2 (zh)
EP (1) EP3755069B1 (zh)
JP (1) JP7017639B2 (zh)
CN (1) CN110167123B (zh)
BR (1) BR112020016605A2 (zh)
WO (1) WO2019158011A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002887A (zh) * 2019-11-08 2022-09-02 Oppo广东移动通信有限公司 功率余量上报方法及其装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092835A1 (ja) * 2017-11-09 2019-05-16 株式会社Nttドコモ ユーザ端末及び無線通信方法
BR112020022376A2 (pt) * 2018-05-09 2021-02-02 Ntt Docomo, Inc. aparelho de estação base, terminal, método de comunicação executado por um aparelho de estação base e por um terminal
CN113647155B (zh) * 2019-04-01 2024-04-26 联想(新加坡)私人有限公司 用于管理辅载波上的最大功率的方法和装置
CN110677867B (zh) * 2019-10-09 2022-07-15 中国联合网络通信集团有限公司 信号强度显示方法和信号强度显示系统
CN112867129B (zh) * 2019-11-08 2023-08-11 荣耀终端有限公司 功率余量上报发送方法和装置
WO2021088005A1 (en) * 2019-11-08 2021-05-14 Qualcomm Incorporated Methods and apparatus to facilitate dual connectivity power control mode
CN113055994B (zh) * 2019-12-27 2022-08-19 华为技术有限公司 通信方法以及终端设备
CN111511005B (zh) * 2020-04-17 2022-11-29 展讯通信(上海)有限公司 上行功率分配方法及装置、存储介质、终端
CN115865239B (zh) * 2021-09-27 2023-08-08 中国电信股份有限公司 基于载波聚合的信息上报方法、装置、介质及电子设备
CN114424633A (zh) * 2021-12-27 2022-04-29 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
CN114499554B (zh) * 2021-12-31 2024-06-11 华为技术有限公司 一种发送数据的方法、射频装置和控制装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106031257A (zh) * 2014-04-30 2016-10-12 夏普株式会社 终端装置、基站装置以及方法
CN106465293A (zh) * 2014-05-21 2017-02-22 夏普株式会社 终端装置以及方法
US20170078977A1 (en) * 2014-03-21 2017-03-16 Innovative Technology Lab Co., Ltd. Method and apparatus for pusch/pucch power scaling considering dual connectivity in power limited state

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169848A (ja) * 2011-02-14 2012-09-06 Sharp Corp 無線制御装置、無線通信システム、制御プログラムおよび集積回路
KR101999094B1 (ko) * 2012-01-25 2019-07-11 한국전자통신연구원 무선 통신 시스템에서 단말 대 단말 통신 방법
EP2854460B1 (en) * 2013-09-27 2017-04-05 Sun Patent Trust Power control and power headroom reporting for dual connectivity
US20170078975A1 (en) 2014-05-08 2017-03-16 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
KR102006088B1 (ko) * 2014-09-29 2019-07-31 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 이중 연결에서의 pcmax 도출
CN107690154B (zh) * 2016-08-05 2019-09-17 电信科学技术研究院 一种小区配置方法及装置
WO2018064128A1 (en) * 2016-09-28 2018-04-05 Idac Holdings, Inc. 5g nr data delivery for flexible radio services
EP3639577A1 (en) * 2017-06-14 2020-04-22 IDAC Holdings, Inc. Methods, apparatuses and systems for adaptive uplink power control in a wireless network
US11044675B2 (en) * 2018-02-13 2021-06-22 Idac Holdings, Inc. Methods, apparatuses and systems for adaptive uplink power control in a wireless network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170078977A1 (en) * 2014-03-21 2017-03-16 Innovative Technology Lab Co., Ltd. Method and apparatus for pusch/pucch power scaling considering dual connectivity in power limited state
CN106031257A (zh) * 2014-04-30 2016-10-12 夏普株式会社 终端装置、基站装置以及方法
CN106465293A (zh) * 2014-05-21 2017-02-22 夏普株式会社 终端装置以及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "TP on Power Control for LTE-NR NSA Operation", 3GPP TSG RAN WGI AD HOC MEETING R1-1801177, 29 January 2018 (2018-01-29), XP051385408 *
See also references of EP3755069A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002887A (zh) * 2019-11-08 2022-09-02 Oppo广东移动通信有限公司 功率余量上报方法及其装置
CN115002887B (zh) * 2019-11-08 2024-01-16 Oppo广东移动通信有限公司 功率余量上报方法及其装置

Also Published As

Publication number Publication date
EP3755069A1 (en) 2020-12-23
EP3755069B1 (en) 2023-07-26
CN110167123A (zh) 2019-08-23
BR112020016605A2 (pt) 2020-12-15
CN110167123B (zh) 2021-06-15
US11252671B2 (en) 2022-02-15
JP2021514583A (ja) 2021-06-10
US20200374808A1 (en) 2020-11-26
EP3755069A4 (en) 2021-04-07
JP7017639B2 (ja) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2019158011A1 (zh) 一种功率控制方法及装置
US11122523B2 (en) Information transmission method and apparatus
JP7453326B2 (ja) Nrユーザ機器のための選択的クロススロットスケジューリング
US10342036B2 (en) Secondary scheduling request
JP6585043B2 (ja) ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
WO2015170725A1 (ja) ユーザ端末、無線基地局、無線通信方法及び無線通信システム
US10420103B2 (en) Uplink inter-site carrier aggregation based on UE transmission power and secondary cell load
TW202046804A (zh) 整體存取和回載中的機會性通訊
US20210168735A1 (en) Power Determining Method and Apparatus
US11445450B2 (en) Uplink data transmission method, terminal device, and base station
CN111148151B (zh) 发射功率的调整方法、装置、存储介质及终端设备
US20220078660A1 (en) Data transmission method and terminal device
WO2019191949A1 (zh) 通信方法、通信装置和系统
US20170195997A1 (en) Base station and user terminal
WO2020157994A1 (ja) 端末装置、基地局装置、及び無線通信方法
KR20200129855A (ko) 동적 전력 공유 지원을 위한 파워 헤드룸 보고를 트리거링하는 방법 및 장치
WO2021088006A1 (zh) 通信方法和通信装置
WO2019096273A1 (zh) 一种信息发送、接收的方法及装置
TWI839496B (zh) 用於支援存取回載一體化網路中的空分多工操作的本端協調
WO2023202530A1 (zh) 一种功率确定方法、装置、芯片及模组设备
US20230189122A1 (en) Admission control based on network energy saving
KR20210056197A (ko) 무선통신 시스템에서 파워헤드룸 보고 시 파워백오프 보고를 지원하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754405

Country of ref document: EP

Effective date: 20200914

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020016605

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020016605

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200814