WO2021088006A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2021088006A1
WO2021088006A1 PCT/CN2019/116786 CN2019116786W WO2021088006A1 WO 2021088006 A1 WO2021088006 A1 WO 2021088006A1 CN 2019116786 W CN2019116786 W CN 2019116786W WO 2021088006 A1 WO2021088006 A1 WO 2021088006A1
Authority
WO
WIPO (PCT)
Prior art keywords
scg
terminal device
mcg
suspended
information
Prior art date
Application number
PCT/CN2019/116786
Other languages
English (en)
French (fr)
Inventor
胡星星
张宏平
王瑞
彭文杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980101986.2A priority Critical patent/CN114631395A/zh
Priority to PCT/CN2019/116786 priority patent/WO2021088006A1/zh
Priority to EP19951888.7A priority patent/EP4037421A4/en
Publication of WO2021088006A1 publication Critical patent/WO2021088006A1/zh
Priority to US17/738,171 priority patent/US20220264486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • This application relates to the field of communication, and in particular, to a communication method and communication device.
  • the core network and terminal equipment can communicate data through two base stations (master node, MN) and secondary station (secondary node, SN). .
  • MN master node
  • SN secondary node
  • the terminal equipment needs to simultaneously monitor and transmit data on the two air interface links of the master cell group (MCG) provided by the master station and the secondary cell group (SCG) provided by the secondary station.
  • MCG master cell group
  • SCG secondary cell group
  • the power consumption is large.
  • the data rate of the terminal device fluctuates frequently, for example, when it is often in a low data rate state, if the terminal device is always in the DC working mode, it will cause a waste of energy consumption in the SCG link.
  • the SN in the high data rate state, the SN is added to make the terminal device in the DC working mode, and in the low data rate state, the SN is released to make the terminal device in the single connection working mode. Since the process of adding SN and releasing SN involves multiple information exchanges between MN and SN, and the MN needs to reconfigure terminal equipment on the air interface link, additional signaling overhead and delay are brought.
  • a method is mentioned in the existing solution, which is to instruct the terminal device to suspend (store, suspend) the configuration of the SCG when the rate is low, and no longer use the SCG for data transmission, but when the SCG link is needed (For example, when the data rate of the terminal device is high), the terminal device is instructed to restore (restore, resume) the configuration of the SCG, and continue data transmission through the SCG.
  • the available configuration of the terminal device is reduced, resulting in a decrease in the data transmission rate.
  • the present application provides a communication method and communication device, which can optimize the configuration of the terminal device when the SCG is suspended.
  • a communication method includes: receiving first information from a network device, where the first information is used to instruct a terminal device to suspend a secondary cell group SCG, and suspend the SCG according to the first information, And change the configuration parameters of the MCG of the primary cell group.
  • the configuration parameters include at least one of the following parameters: available uplink transmission period, maximum transmission power, or blind detection parameters of the control channel.
  • the terminal device when the SCG is suspended, changes the original configuration parameters of the MCG, that is, changes the configuration parameters of the MCG, so that the configuration parameters of the MCG are more suitable for the scene after the SCG is suspended, so that the terminal device can only pass through In the case of data transmission by MCG, it can also have a better transmission effect.
  • the network device may be MN or SN, that is, the first information may be sent by MN or SN.
  • suspend/suspension described in this application can also be referred to as deactive/deactivation, can also be referred to as inactive/inactivation, or can also be referred to as hibernation or sleep ( dormancy) and so on.
  • the suspend state described in this application can also be called a deactive state, can also be called an inactive state, or can also be called a dormant state or a dormant state, etc. .
  • the suspension may mean that the terminal device temporarily stops data transmission through the communication link of the SCG, but the terminal device retains or stores part or all of the SN configuration to quickly resume the communication of the SCG link.
  • the PScell being in the suspended state means that the configuration of the PScell can be reserved but the data transmission through the PScell is suspended.
  • the method further includes: the terminal device may change the configuration parameter of the MCG according to the preset configuration parameter sent by the network device.
  • the preset configuration parameters include MCG configuration parameters and SCG configuration parameters. After receiving the preset configuration parameters, the terminal device changes the configuration parameters of the MCG according to the preset configuration parameters corresponding to when the SCG is suspended.
  • the foregoing preset configuration parameters include the configuration parameters of the MCG and the SCG respectively corresponding to when the SCG is suspended and when the SCG is not suspended.
  • different configuration parameters are preset when the SCG is suspended and when the SCG is not suspended, and the terminal device can select the configuration parameters according to the current actual state of the SCG. For example, if the available uplink transmission periods when the SCG is suspended and when the SCG is not suspended are respectively configured in the preset configuration parameters, the terminal device can select the pre-allocated available uplink transmission period according to whether the SCG is suspended in the actual state. For another example, the blind detection parameters when the SCG is suspended and when the SCG is not suspended are respectively configured in the preset configuration parameters, and the terminal device can select the pre-allocated blind detection parameters according to whether the SCG is actually suspended.
  • the method further includes: changing the allocation of configuration parameters between the MCG and the SCG. After the SCG is suspended, by reallocating the configuration parameters, the resource corresponding to each configuration parameter can be reallocated, so that the configuration of the MCG can be optimized to meet the special needs of the SCG when the SCG is suspended.
  • the allocation ratio or rules of the configuration parameters of the SCG and the configuration parameters of the MCG when the SCG is not suspended can also be adjusted, thereby changing the configuration parameters of the MCG.
  • the available uplink transmission period of the terminal equipment is T
  • the SCG and MCG are respectively T/2 and T/3 before the SCG is suspended.
  • the MCG ratio can be increased.
  • the original SCG Part or all of the uplink transmission period T/3 is transferred to the MCG, or the available uplink transmission period of the MCG is directly changed to T, etc.
  • the method further includes: when the configuration parameter includes an available uplink transmission period, the available uplink transmission period of the MCG can be extended.
  • the available uplink transmission time period refers to the time period during which the terminal device can send uplink data, that is, it is used to indicate the time period or time during which the terminal device can send uplink data. If the SCG is not suspended, the network device configures the terminal equipment with the respective available uplink transmission periods of the MCG and the SCG, that is, it limits the periods in which the MCG and the SCG can send uplink data. Therefore, when the SCG is suspended, the available uplink transmission period of the MCG can be extended and changed, so that the MCG can perform data out-transmission in more periods.
  • MCG can disobey the original allocation rules, and can transmit uplink data in more data transmission periods, that is, it is not affected by the terminal equipment issued by the previous master station.
  • the available uplink transmission period of the MCG before the SCG is suspended may include the available uplink transmission period of the SCG when the SCG is not suspended and/or other available uplink transmissions other than the available uplink transmission period of the MCG and SCG Part or all of the time period.
  • the available uplink transmission period of the terminal device may also be determined as the available uplink transmission period of the MCG when the SCG is suspended.
  • the terminal device when the terminal device suspends the SCG, it allocates part or all of the available uplink transmission period originally allocated to the SCG to the MCG, or allocates the previously vacant available period (ie The available uplink transmission period except for the available uplink transmission period of MCG and SCG) is allocated to the MCG.
  • This method is equivalent to extending the available uplink transmission period of the MCG, so that the MCG can transmit uplink data in more periods.
  • the method further includes: when the above configuration parameter includes the maximum transmission power, increasing the maximum transmission power of the MCG by changing.
  • the sum of the two is determined as the maximum transmission power of the MCG; when the sum of the two is greater than When the maximum transmission power of the terminal device is used, the maximum transmission power of the terminal device is determined as the maximum transmission power of the MCG.
  • the terminal device can make full use of more uplink power to send uplink data when the SCG is suspended, thereby increasing the throughput of the terminal device to send data.
  • the maximum transmission power of the SCG can also be proportionally or evenly allocated to the maximum transmission power of each carrier of the master station. In this way, finer changes can be achieved, and the maximum transmit power of each carrier can be controlled from the carrier level.
  • the method further includes: when the above configuration parameters include the blind detection parameters of the control channel, changing the blind detection of the MCG according to the preset blind detection parameters configured by the network device parameter.
  • the physical downlink control channel (PDCCH) blind detection parameter may be, for example, the cell reference number of the PDCCH blind detection corresponding to each CG (MCG or SCG) of the terminal device.
  • the network device pre-configures the terminal device with two sets of PDCCH blind detection parameters respectively corresponding to when the SCG is suspended and when the SCG is not suspended. Then the terminal device can select pre-configured PDCCH blind detection parameters according to whether the SCG is suspended.
  • the preset blind inspection parameters configured by the network device may include a first preset blind inspection parameter and a second preset blind inspection parameter, where the first preset blind inspection parameter is the blind inspection parameter used by MCG when the SCG is suspended.
  • the second preset blind test parameter is the blind test parameter used by MCG when the SCG is not suspended. Then the terminal device can select the corresponding blind inspection parameters according to the current actual state. For example, the first preset blind detection parameter is selected when the SCG is suspended, and the second preset blind detection parameter is selected when the SCG is not suspended.
  • the network device pre-configures the terminal device with two sets of PDCCH blind detection parameters corresponding to the terminal device in the single connection state and the dual connection state. Then the terminal device can select PDCCH blind detection parameters according to whether the SCG is suspended.
  • the preset blind inspection parameters configured by the network device may also include a third preset blind inspection parameter and a fourth preset blind inspection parameter, where the third preset blind inspection parameter is the blind inspection parameter used by the terminal device in a single connection state.
  • Checking parameters, the fourth preset blind checking parameter is a blind checking parameter used when the terminal device is in a dual connection state. Then the terminal device can select the corresponding blind inspection parameters according to the current actual state.
  • the third preset blind detection parameter is selected when the SCG is suspended, and the fourth preset blind detection parameter is selected when the SCG is not suspended.
  • the terminal device can use the blind detection parameters of the single connection, which is equivalent to returning the blind detection capability of the MN to the single connection.
  • the PDCCH blind detection capability of the terminal equipment in the MN is only limited by the number of serving cells configured in the MN or only limited by the sum of the number of serving cells currently configured by the MN and SN.
  • the terminal device can change the blind detection parameters of the terminal device in the MCG according to the preset value when the SCG is suspended, so that the terminal device can detect more PDCCHs in the MCG, so that the network device can More flexible use of various PDCCH scheduling terminal equipment, improve the throughput rate of terminal equipment.
  • the method further includes: when the above configuration parameters include band combination, measurement or transmission of uplink when the SCG is not suspended can be performed according to whether the above configuration parameters include band combination. Data, determine whether to change the frequency band combination.
  • the MN and SN can re-negotiate the frequency band combination, that is, before and after the SCG is suspended, the MN and the SN can Use different frequency band combinations.
  • the terminal device may not perform the measurement configuration before the SCG or not send uplink data when the SCG is suspended, the terminal device can be made to retain the SCG configuration before the SCG is suspended, but the frequency band combination may not be affected by the previous Limitations, such as configuring more MCG frequency points or using higher MIMO capabilities.
  • the above changes to the configuration parameters of the frequency band combination enable the network equipment to configure the MCG more flexibly when the SCG is suspended, such as configuring more MCG frequencies or adopting higher MIMO capabilities, thereby increasing the throughput of the terminal equipment .
  • a communication method includes: receiving second information from a network device, the second information being used to instruct a terminal device to stop suspending an SCG, and to stop suspending the SCG according to the second information.
  • the network device that sends the second information may be the same as or different from the first aspect.
  • the execution process of the method described in the second aspect may be at any time before, during and after the execution process of the first aspect. That is, there is no restriction on the order of the two, as long as the combination can be logically established.
  • the second information may further include information used to indicate a first preset value, where the first preset value is used to indicate the duration of the SCG suspension of the terminal device.
  • the terminal device measures the actual duration of the SCG suspended state. Therefore, when the actual SCG suspension time measured by the terminal device is greater than or equal to the first preset value, it automatically enters the SCG non-suspend state.
  • the terminal device sets a timer, and when the timer expires, it enters the SCG non-suspended state.
  • the first preset value may also be a value stored in the terminal device.
  • the terminal device may determine whether to enter the SCG non-standard value based on the actual measured duration and the first preset value. Suspend state without waiting for instructions from network devices.
  • the first preset value may be configured according to the service type. For example, for services with relatively high service delay requirements, a first preset value corresponding to a shorter duration may be defined; for services with relatively low service delay requirements, a first preset value corresponding to a longer duration may be defined.
  • the first preset value may also be determined according to the statistical data of the historical suspension time.
  • the terminal device may stop suspending the SCG after receiving the second information. For example, if the terminal device is suspending the SCG or has suspended the SCG when the second information is received, the SCG can be restored to the state when the SCG was not suspended according to the second information; if the second information is received, the terminal The device does not suspend the SCG, that is, the SCG is in the non-suspended state, which is equivalent to maintaining the non-suspended state of the SCG.
  • the second information includes information for instructing the terminal device to stop suspending the SCG.
  • the terminal device receives the second information, it can directly stop suspending the SCG according to the second information.
  • the second information may further include information used to indicate a first preset value, where the first preset value is used to indicate the duration of the SCG suspension of the terminal device.
  • the terminal device measures the actual duration of the SCG suspension state, and stops suspending the SCG when the actual duration of the SCG suspension measured by the terminal device is greater than or equal to the first preset value.
  • the first preset value may also be a value stored in the terminal device, and the terminal device may determine whether to stop the suspension of the SCG by itself according to the actually measured SCG suspension duration and the first preset value. Wait for the instructions from the network device.
  • the terminal device When the terminal device stops suspending the SCG, it can reuse the previous configuration parameters of the MN and SN when they were not suspended.
  • the step of sending the second information may not be executed. For example, when the terminal device can determine whether to stop suspending the SCG according to the pre-stored first preset value, the step of sending the second information is not required.
  • a communication method comprising: sending instruction information for instructing the terminal device to suspend the SCG to a terminal device, or sending instruction information for instructing the terminal device to stop suspending the SCG to the terminal device.
  • the third aspect is the elaboration and description of the sources of the first and second information involved in the first and second aspects from the perspective of network equipment.
  • a communication method includes: a network device sends third information for instructing a terminal device to initiate random access, the terminal device receives the third information, and responds according to whether the SCG is currently suspended or not.
  • the third information is processed differently, and the reconfiguration completion information corresponding to the SCG is sent to the MN, and the response to the third information is sent to the network device, and the network device receives the terminal device's response to the third information.
  • the network device can also be an MN or an SN.
  • the terminal device when the terminal device is not suspended in the SCG, the terminal device performs a random access procedure in the target SN, and sends the RRC reconfiguration completion information corresponding to the SCG to the MN.
  • the terminal device does not perform the random access procedure, and sends the RRC reconfiguration complete message corresponding to the SCG to the MN; or
  • the terminal device first performs a random access process in the target SN, and sends the RRC reconfiguration complete message corresponding to the SCG to the MN.
  • the terminal device stops random access in the target SN the terminal device resumes suspending the SCG by itself.
  • random access stop includes many situations, such as random access failure, random access suspension, random access completion, etc., which can all be referred to as random access stop, and will not be repeated here.
  • the terminal device after the terminal device receives the third information sent by the network device instructing to initiate random access, according to whether the current SCG is suspended, the random access at this time is processed differently according to the situation. Especially when the SCG is suspended and random access must be performed, the terminal device can resume suspending the SCG after the SN performs random access, without the need for the network device to notify the terminal device to suspend the SCG again, reducing the number of terminal devices and network Information exchange between devices.
  • the fifth aspect it provides several different processing methods when the terminal equipment needs to send uplink data when the SCG is suspended, and can send out the uplink data that needs to be sent from the suspended SCG.
  • the data that originally needs to be sent through the SCG can still be sent after the SCG is suspended.
  • the terminal device can still send a physical random access channel (PRACH) in the SCG after the SCG is suspended, then when the terminal device is in When there is uplink data to be sent from SCG after SCG is suspended, PRACH can be sent.
  • PRACH physical random access channel
  • a timer can be introduced, and the PRACH is not sent within the time length specified by the timer, so as to avoid frequent PRACH triggered by some small packets.
  • the network device configures and sends the preset duration to the terminal device, and the terminal device receives the preset duration and does not send the PRACH within the preset duration.
  • the timer can be started when the network device notifies the terminal device to suspend the SCG.
  • a threshold for buffering data can also be introduced, and PRACH is sent only when the buffered data exceeds the threshold, so as to avoid frequent PRACH caused by some small packets.
  • the network device sends fourth information to the terminal device.
  • the fourth information is used to indicate a preset period of time during which the terminal device does not send PRACH.
  • the terminal device After the terminal device receives the fourth information, it determines the preset period of time according to the fourth information. , And prohibit sending PRACH within the preset time period.
  • the network device sends fifth information to the terminal device, the fifth information is used to instruct the terminal device to send a PRACH buffer data threshold, and when the terminal device receives the fifth information, it determines the buffer data threshold according to the fifth information , And prohibit sending PRACH when the amount of cached data is less than the cached data threshold.
  • the terminal can use the terminal The information exchange between the equipment, the primary station and the secondary station makes the SCG stop suspending, and the uplink data is sent out from the restored SCG.
  • the terminal device sends sixth information to the master station, the sixth information is used to indicate that the terminal device needs to send uplink data from the suspended SCG; the master station receives the sixth information, and sends to the terminal device for instructions
  • the second information that the terminal device stops suspending the SCG, and the notification information that the terminal device needs to send data from the SCG or the information that the terminal device wants to stop suspending the SCG is sent to the secondary station.
  • the sixth information sent by the terminal device is indication information of the MAC layer.
  • the indication information is used to indicate the buffer status report (BSR) of the SN, and the MN informs the terminal device to stop suspending the SCG and send the BSR
  • BSR buffer status report
  • the instruction information is sent to the SN to indicate that the SN can send uplink data according to the instruction information after entering the non-suspended state. This method can make the uplink data that needs to be sent when the SCG is suspended and sent out after the SCG is suspended.
  • the sixth information sent by the terminal device is indication information of the physical layer, and the MN informs the SN that the terminal device needs to send uplink data from the suspended SCG, so that the SN schedules the terminal device through the PDCCH.
  • the MN notifies the terminal device to stop suspending the SCG, and notifies the SN that the terminal device is about to stop suspending the SCG. This method enables the SN to learn the information that the terminal device has stopped suspending earlier.
  • the terminal device stops suspending the SCG and sends uplink data from the SCG, avoiding the loss of these uplink data in the suspended state.
  • the uplink data to be sent can be sent from the MCG by changing the SCG bearer to the MCG bearer or changing the main path corresponding to the SCG split bearer.
  • the network device can pre-configure an alternative MCG bearer for the SCG bearer, so that when the SCG is suspended, the terminal device can change the SCG bearer to the MCG bearer.
  • a certain MCG bearer may be instructed in advance to correspond to certain SCG bearers, or certain MCG bearers correspond to certain SCG bearers, etc., that is, to establish a mapping relationship between multiple MCG bearers and multiple SCG bearers, and It can be determined which data radio bearer (DRB) needs to be configured with an alternative MCG bearer of the SCG bearer.
  • DRB data radio bearer
  • the terminal device needs to transmit uplink data from the suspended SCG, it can determine the MCG bearer corresponding to the SCG bearer of the suspended SCG according to the mapping relationship, so as to use the corresponding MCG bearer to send the uplink data.
  • the terminal device may set the main path corresponding to the SCG split bearer as the MCG.
  • the main path may be SCG or MCG.
  • the terminal device can use the new primary path to send uplink data.
  • the terminal device can initiate the RACH process. Or, the terminal device informs the MN that it needs to send uplink data from the suspended SCG, so that the network device adopts some measures to stop the terminal device from suspending the SCG and send the uplink data on the SCG, or through some measures, the terminal device can send the uplink data on the SCG.
  • the data that originally needed to be sent in the SCG was changed to be sent in the MCG.
  • a method for adding or modifying a secondary station includes: a source MN sends a request message for adding or modifying an SN to the source SN, and the information carries the services that the source MN can use for the SCG allocated to the source SN Cell index range; after a period of time, the source MN sends to the target MN the handover request information of the MN corresponding to the handover terminal device; the target MN adds the target SN for the terminal device, sends the SN increase request information to the target SN, and sends the handover request to the source MN Confirm the information, and notify the terminal device to switch the PCell.
  • the target MN when adding or modifying the SN, by carrying information such as the serving cell index range or serving cell index in the request information of the interaction process, the target MN does not need to reconfigure a new serving cell index range for the SN. And the SN does not need to reconfigure a new serving cell index for the terminal device, that is, it saves the information exchange of reconfiguration after addition or modification, thereby reducing the signaling overhead.
  • a communication device which includes various modules or units for executing the method in any one of the possible implementation manners of the first aspect to the sixth aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions or data in the memory to implement the method in any one of the possible implementation manners of the first aspect to the sixth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the possible implementation manners of the first aspect to the sixth aspect.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter to execute the method in any one of the possible implementation manners of the first aspect to the sixth aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the above tenth aspect may be one or more chips.
  • the processor in the processing device can be implemented by hardware or software.
  • the processor may be a logic circuit, integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may Integrated in the processor, can be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute the first aspect to the The method in any possible implementation of the sixth aspect.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first aspect to The method in any possible implementation of the sixth aspect.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned network equipment and terminal equipment.
  • Figure 1 is a schematic diagram of EN-DC deployment scenario
  • Figure 2 is a schematic diagram of a deployment scenario NE-DC
  • Figure 3 is a schematic diagram of the deployment scenario NG EN-DC
  • FIG. 4 is a schematic diagram of a communication system suitable for the communication method provided by the embodiment of the present application.
  • Figure 5 is a schematic flow chart of the process of adding SN
  • Fig. 6 is a schematic flow chart of the release process of SN
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a method for adding or modifying a secondary station according to an embodiment of the present application
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • new radio new radio, NR
  • 5G fifth-generation
  • the network device may be any device with a wireless transceiver function.
  • Network equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), home base station (for example, home evolved Node B, Or home Node B, HNB), baseband unit (BBU), access point (AP) in wireless fidelity (WIFI) system, wireless relay node, wireless backhaul node, transmission Point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • home base station for example, home evolved Node B, Or home Node B, HNB
  • BBU baseband unit
  • AP access point
  • WIFI wireless fidelity
  • WIFI wireless fidelity
  • TP transmission Point
  • TRP transmission and reception point
  • One or a group of (including multiple antenna panels) antenna panels or, may also be a network node constituting a gNB or transmission point
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB, and DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) The function of the layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU may be divided into an access network device or a core network (core network, CN) device, which is not limited in this application.
  • core network core network, CN
  • the CU is divided into access network equipment.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.), and may also belong to a base station corresponding to a small cell (small cell).
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, and so on. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home (smart home), cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local Loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wear
  • SIP session
  • wearable devices can also be called wearable smart devices, which are the general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • This application does not limit the specific form of the terminal device.
  • Cell The cell is described by the higher layers from the perspective of resource management or mobility management or service unit.
  • the coverage area of each network device can be divided into one or more cells, and each cell can correspond to one or more frequency points, or in other words, each cell can be regarded as the coverage area of one or more frequency points.
  • a cell may be an area within the coverage of the wireless network of the network device.
  • Carrier aggregation (CA) technology specifically refers to configuring multiple carriers (cells) for a single terminal device to perform data transmission together.
  • Primary cell A primary cell is a cell working on a primary carrier.
  • the terminal device performs the initial connection establishment process in this cell, or starts the connection re-establishment process. During the handover, the cell is indicated as the primary cell.
  • Primary and secondary cells are cells belonging to the SCG, and the terminal equipment is instructed to perform random access or initial physical uplink control channel (PUSCH) transmission (for example, perform When the SCG changes the procedure, the cell in the random access procedure is omitted.
  • PUSCH physical uplink control channel
  • Secondary cell A secondary cell is a cell working on a secondary carrier. Once the RRC connection is established, the secondary cell may be configured to provide additional radio resources. Another point that needs to be explained is that in the DC architecture, in some protocols, all cells in the MCG except the PCell can be called SCells, and the cells in the SCG except the PSCell can all be called SCells. In some protocols, PSCell is also called a kind of SCell.
  • Serving cell terminal equipment in RRC_CONNECTED state, if CA/DC is not configured, if there is only one serving cell, namely PCell; if CA/DC is configured, the serving cell set is composed of PCell and PSCell and SCell composition. Each component carrier (CC) corresponds to an independent Cell.
  • the terminal equipment configured with CA/DC is connected to 1 PCell and up to 31 SCells.
  • the PCell and all SCells of a terminal device form the serving cell set of the terminal device.
  • the serving cell may refer to PCell, PSCell, or SCell.
  • Handover In a wireless communication system, when a terminal device moves/closes from one cell to another cell, in order to keep the communication of the terminal device uninterrupted, handover is required.
  • Random access is the process from when the terminal device starts to send a random access preamble to the network device trying to access, until a connection is established between the terminal device and the network device.
  • the random access procedure may occur in procedures such as handover, RRC re-establishment, etc., for example.
  • the embodiments of the present application mainly focus on the description of the dual-connection scenario.
  • the following introduces several deployment scenarios of the dual-connection first. Take 4G wireless communication system and 5G wireless communication system as examples.
  • a 5G wireless communication system its overall architecture consists of 5GC (also known as 5G Core, 5GCN, 5G core network) and NG-RAN (also known as 5G-RAN, etc.), of which 5GC is the core network of the 5G wireless communication system
  • NG-RAN is the radio access network (RAN) of the 5G wireless communication system.
  • NG-RAN includes two types of RAN nodes, namely gNB and ng-eNB.
  • the gNB provides terminal devices with new radio (NR) user plane and control plane protocol stack termination points (trminations).
  • the ng-eNB provides the terminal equipment of the evolved universal terrestrial radio access (E-UTRA) user plane and control plane protocol stack.
  • Multi-Radio dual connectivity (MR-DC) is an important scenario for 5G wireless communication systems.
  • FIG 1 is a schematic diagram of the deployment scenario EN-DC.
  • EN-DC E-UTRA NR DC
  • Option3series LTE base station (e.g. eNB) serves as the primary station and NR base station (e.g. gNB) as secondary station Dual connectivity (DC) is performed, where the primary station may also be referred to as an anchor base station or a master node (master node, MN), and the secondary station may also be referred to as a secondary node (secodary node, SN).
  • LTE base station e.g. eNB
  • NR base station e.g. gNB
  • DC Dual connectivity
  • FIG 2 is a schematic diagram of NE-DC deployment scenario.
  • NE-DC NR E-UTRA DC
  • NR base station such as gNB
  • LTE base station such as ng-eNB
  • both the primary station and the secondary station are connected to the 5GC, specifically, there is a control plane connection between the NR base station and the 5GC, and there may also be a data plane connection, and there may be a data plane connection between the LTE base station and 5G.
  • Both the base station and the NR base station can provide air interface transmission resources for data transmission between the terminal equipment and the 5GC.
  • FIG 3 is a schematic diagram of the deployment scenario NG EN-DC.
  • NG EN-DC next generation E-UTRA NR DC
  • NR base station for example, gNB
  • both the primary and secondary stations are connected to 5GC.
  • there is a control plane connection between the LTE base station and 5GC and there can also be a data plane connection, and there can be a data plane connection between the NR base station and 5G.
  • Both LTE base stations and NR base stations can provide air interface transmission resources for data transmission between terminal equipment and 5GC.
  • the primary station and the secondary station are both NR base stations (such as gNB), and both are connected to 5GC.
  • the NR base station as the primary station and There is a control plane connection between 5GCs, and there can also be a data plane connection.
  • Both the master station and the secondary station can provide air interfaces for data transmission between the terminal equipment and the 5GC. Transmission resources.
  • LTE/5GC DC that is, the primary station and secondary station are both LTE base stations (such as ng-eNB), and both are connected to 5GC.
  • LTE base stations such as ng-eNB
  • there is a control plane between the LTE base station as the primary station and the 5GC Connection there may also be a data plane connection.
  • Both the primary station and the secondary station can provide air interface transmission resources for data transmission between the terminal device and the 5GC.
  • the serving cell group provided by MN for terminal equipment can also be called master cell group (MCG), similar SN is the serving cell provided by UE
  • MCG master cell group
  • SCG secondary cell group
  • MCG and SCG each contain at least one Cell.
  • the Cell is the primary cell of the terminal equipment, that is, the PCell.
  • the Cell is the primary and secondary cell of the UE, that is, the PSCell.
  • PCell and PSCell are collectively referred to as Special Cell (SpCell).
  • SpCell Special Cell
  • the SCell and SpCell in each cell group perform carrier aggregation to jointly provide transmission resources for the terminal equipment.
  • the terminal device is configured with DC operation, the terminal device needs to monitor and transmit data on the two air interface links of MCG and SCG at the same time.
  • Fig. 4 is a schematic diagram of a communication system suitable for the communication method and the communication device according to the embodiments of the present application.
  • the communication system 400 may include at least one network device, such as the network device 410 and the network device 420 shown in FIG. 4; the communication system 400 may also include at least one terminal device, such as the terminal shown in FIG. Equipment 430. Wherein, the terminal device 430 may be mobile or fixed.
  • the network device 410 and the network device 420 are both devices that can communicate with the terminal device 430 via a wireless link, such as a base station or a base station controller. Each network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area (cell).
  • the wireless communication system 400 may further include at least one core network, such as the core network 440 shown in FIG. 4, and the core network 440 may be a 4G core network or a 5G core network.
  • the core network 440 and the terminal device 430 may form a dual-connection architecture in the deployment scenario described above.
  • the network device 410 is an LTE base station as a primary station
  • the network device 420 is an NR base station as a secondary station
  • the core network 440 is a 4G core network EPC
  • the network device 410 corresponds to the LTE eNB shown in FIG. 1
  • the network device 420 corresponds to the gNB shown in FIG. 1
  • the core network corresponds to the EPC shown in FIG. 1.
  • the communication system shown in FIG. 4 can also form a dual-connection architecture for other deployment scenarios described above.
  • Fig. 4 exemplarily shows two network devices and one terminal device, but this should not constitute any limitation to this application.
  • the communication system 400 may include more network devices, and the coverage of each network device may include other numbers of terminal devices.
  • the communication system 400 may also include multiple core network devices. The embodiments of this application do not limit this.
  • Each of the aforementioned communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers, etc.). , Demodulator, demultiplexer or antenna, etc.). Therefore, multiple antenna technology can be used to communicate between network devices and terminal devices.
  • the wireless communication system 400 may also include other network entities such as a network controller and a mobility management entity, and the embodiment of the present application is not limited thereto.
  • Fig. 5 is a schematic flow chart of the process of adding SN in EN-DC. As shown in FIG. 5, the increase of SN includes step 501 to step 508.
  • the MN sends SN addition request information to the SN to request the SN to allocate resources for the UE's bearer.
  • the bearer can refer to the evolved radio access bearer (E-RAB); under the DC architecture connected to 5GC, the bearer can refer to the protocol data unit (PDU). ) session or service quality flow (quality of service flow, QOS flow).
  • the SN sends an SN addition request confirmation message to the MN.
  • the SN provides configuration information for the UE.
  • the SN For bearers that need to allocate SCG air interface resources, the SN provides SCG and RLC bearer configuration, as well as SCG cell configuration (that is, PSCell and SCell).
  • SCG cell configuration that is, PSCell and SCell.
  • the PDCP entity of the UE is terminated on the SN, the SN provides PDCP configuration, and processes the data of the core network through PDCP, and then sends it to the UE through the SCG RLC bearer and/or MCG bearer.
  • the SN triggers the UE to perform RACH, so as to obtain synchronization of the SN air interface resources.
  • the SN sends the configuration information provided for the UE to the MN.
  • the MN sends a reconfiguration message to the UE.
  • the message contains the configuration of the SN to the UE.
  • the UE sends a reconfiguration complete message to the MN. That is, the UE successfully applies the configuration in the reconfiguration message, and the UE sends a reconfiguration complete message to the MN.
  • the MN informs the SN that the UE has completed the reconfiguration.
  • the UE initiates random access to the SN, and subsequently starts data transmission.
  • the master station sends an increase request to the auxiliary station.
  • the master station After the auxiliary station responds to the increase request, the master station reconfigures the terminal device so that the terminal device can communicate with the auxiliary station. transmission.
  • Fig. 6 is a schematic flow chart of the release process of the SN.
  • MN sends SN release request information to SN.
  • the SN sends a message confirming the release of the SN to the MN. That is, the SN confirms the release of the SN and sends the confirmation message to the MN.
  • the MN sends reconfiguration information to the UE to make the UE release the entire SCG configuration.
  • the UE sends a reconfiguration complete message to the MN. That is, the UE successfully applies the configuration in the reconfiguration message, and the UE sends a reconfiguration complete message to the MN.
  • the master station sends a release request to the auxiliary station, and the auxiliary station sends the confirmation message to the master station after confirming, and the master station reconfigures the terminal equipment so that the terminal equipment releases the SN Configuration.
  • both the increase and release of SN require multiple information exchanges between the UE and the MN and between the MN and the SN, and the UE needs to be reconfigured on the air interface.
  • the UE needs to completely release the SCG configuration, and then add a complete set of SCG configuration when the SN is added later.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Figure 7 illustrates the process of suspending the SCG from the perspective of the terminal device.
  • the terminal device receives first information, where the first information is used to instruct the terminal device to suspend the SCG.
  • the first information is sent by a network device, and the network device can be MN or SN, that is, the first information can be sent by MN or SN, MN or
  • the SN can send the first information to the terminal device in a variety of ways, for example, through a MAC control element (CE) or an RRC message or L1 indication information.
  • CE MAC control element
  • the terminal device suspends the SCG according to the first information.
  • suspend/suspension described in this application can also be referred to as deactive/deactivation, can also be referred to as inactive/inactivation, or can also be referred to as hibernation or sleep ( dormancy) and so on.
  • the suspend state described in this application can also be called a deactive state, can also be called an inactive state, or can also be called a dormant state or a dormant state (dormant state) Wait.
  • the suspension may mean that the terminal device temporarily stops data transmission through the communication link of the SCG, but the terminal device retains or stores part or all of the SN configuration to quickly resume the communication of the SCG link.
  • the PScell being in the suspended state means that the configuration of the PScell can be reserved but the data transmission through the PScell is suspended.
  • the terminal device changes the configuration parameters of the MCG.
  • the terminal device In the normal state (in the embodiment of this application, it means when the SCG is not suspended or after the SCG is not suspended), the terminal device has different restrictions on the MN and SN, such as different restrictions on power allocation, PDCCH blind detection allocation, etc. Another example is to limit the time period during which the terminal device sends uplink data.
  • These restrictions can be understood as the configuration parameters that control the different operations of the terminal equipment, and can also be understood as the configuration parameters for establishing or maintaining the connection between the terminal equipment and the MN and between the terminal equipment and the SN.
  • the terminal equipment can only be configured in the corresponding configuration parameters. Perform corresponding operations within the restricted range to establish and maintain connections with MN and SN. For example, by configuring the available uplink transmission period of the terminal device, it is possible to control which period or time the terminal device can send uplink data.
  • the throughput of the terminal device when the SCG is suspended, by changing the original configuration parameters of the MCG, that is, changing the configuration parameters of the MCG, the throughput of the terminal device is improved.
  • changing the configuration parameters of the MCG can be understood as changing the behavior of the terminal device corresponding to the configuration parameters.
  • the above-mentioned configuration parameters may include, for example, one or more of various parameters such as available uplink transmission time period, maximum transmit power, blind detection parameters of control channels, and band combination.
  • the above-mentioned configuration parameters may include one or more of the configuration parameters of the terminal device, the configuration parameters of the MCG, and the configuration parameters of the SCG.
  • the configuration parameters of the terminal device may include one of the available uplink transmission period of the terminal device, the maximum transmission power of the terminal device, the blind detection parameter of the downlink control channel of the terminal device, the frequency band combination of the terminal device, and other parameters. Many kinds. Similarly, there are various configuration parameters of MCG and various configuration parameters of SCG, which will not be repeated here.
  • the terminal device When describing according to whether the terminal device is suspended in the SCG, it can be divided into configuration parameters when the SCG is suspended and configuration parameters when the SCG is not suspended.
  • the configuration parameters when the SCG is suspended can be understood as the configuration parameters of the SCG suspension state, the configuration parameters after the SCG suspension, or the configuration parameters corresponding to the SCG suspension state.
  • the configuration parameters when SCG is not suspended can be understood as the configuration parameters when SCG is not suspended, the configuration parameters before SCG suspension, the configuration parameters after SCG end/stop suspension, the configuration parameters of SCG non-suspended state, normal The configuration parameters in the state, the original configuration parameters, etc.
  • the terminal device can change the configuration parameters of the MCG according to the preset configuration parameters sent by the network device.
  • the preset configuration parameters include MCG configuration parameters and SCG configuration parameters.
  • the foregoing preset configuration parameters include the configuration parameters of the MCG and the SCG respectively corresponding to when the SCG is suspended and when the SCG is not suspended.
  • the terminal device After receiving the preset configuration parameters, the terminal device changes the configuration parameters of the MCG according to the preset configuration parameters corresponding to when the SCG is suspended.
  • different configuration parameters are preset when the SCG is suspended and when the SCG is not suspended, and the terminal device can select the configuration parameters according to the current actual state of the SCG. For example, if the available uplink transmission periods when the SCG is suspended and when the SCG is not suspended are respectively configured in the preset configuration parameters, the terminal device can select the pre-allocated available uplink transmission period according to whether the SCG is suspended in the actual state. For another example, the blind detection parameters when the SCG is suspended and when the SCG is not suspended are respectively configured in the preset configuration parameters, and the terminal device can select the pre-allocated blind detection parameters according to whether the SCG is actually suspended.
  • the foregoing preset configuration parameters may be sent by the network device to the terminal device, or may be pre-stored in the terminal device.
  • the foregoing preset configuration parameters, MCG configuration parameters and other configuration parameters may include one or more of the available uplink transmission period, maximum transmission power, blind detection parameters of the control channel, and other parameters.
  • the allocation of the configuration parameters between the MCG and the SCG can also be changed. That is to say, adjust the allocation ratio or rules of the configuration parameters of the SCG and the configuration parameters of the MCG when the SCG is not suspended, so as to change the configuration parameters of the MCG.
  • the available uplink transmission period of the terminal equipment is T
  • the SCG and MCG are respectively T/2 and T/3 before the SCG is suspended.
  • the MCG ratio can be increased.
  • the original SCG Part or all of the uplink transmission period T/3 is transferred to the MCG, or the available uplink transmission period of the MCG is directly changed to T, etc.
  • the network device configures the available subframe assignment (subframeAssignment) in the MCG. If the network device configures the subframeAssignment in the MCG for the terminal device, when the SCG is not suspended, the terminal device cannot send uplink physical channels or signals on any subframe except the offset uplink subframe.
  • the offset uplink subframe here is an uplink subframe obtained by the terminal device after quoting an offset in the subframeAssignment of the MCG configured by the network device.
  • the offset is also configured by the network device to the terminal device.
  • the restriction of the subframeAssignment can be only when the frame type of the serving cell is frame type 1 (for full-duplex or half-duplex FDD communication system) or frame type 2 (for TDD communication system) Take effect.
  • the uplink subframes available for the terminal device to send uplink physical channels or signals are not restricted by the subframeAssignment in the MCG when the SCG is not suspended, that is, the terminal device can send uplink physical on all the uplink subframes of the MCG Channel or signal.
  • the terminal device can change the configuration parameters of the MCG according to the configuration parameters sent by the network device.
  • the configuration parameters sent by the network device may include one or more of MCG configuration parameters, SCG configuration parameters, and terminal device configuration parameters.
  • the terminal device can directly assign the configuration parameters of the terminal device to the configuration parameters of the MCG, thereby changing the configuration parameters of the MCG.
  • the terminal device can transfer the configuration parameters of the SCG to be allocated to the MCG, thereby changing the configuration parameters of the MCG.
  • the terminal device can also change the configuration parameters of the MCG according to the original configuration parameters of the SCG (that is, the configuration parameters of the SCG in the non-suspended state).
  • the following method can be used to change the configuration parameters of the MCG in the suspended state.
  • the available uplink transmission period refers to the period during which the terminal device can transmit the uplink physical channel or signal, that is, it is used to indicate the period or time in which the terminal device can transmit the uplink physical channel or signal. If the SCG is not suspended, the network device configures the terminal equipment with the respective available uplink transmission periods of the MCG and the SCG, that is, it limits the periods in which the MCG and the SCG can send uplink physical channels or signals, respectively. Therefore, when the SCG is suspended, the available uplink transmission period of the MCG can be expanded and changed, so that the MCG can perform data transmission in more periods.
  • MCG can disobey the original allocation rules, and can transmit uplink data in more periods when data can be transmitted, that is, it is not issued by the previous master station.
  • the available uplink transmission period of the MCG when the SCG is not suspended so that it also includes the available uplink transmission period of the SCG when the SCG is not suspended, and the part of the available uplink transmission period except for MCG and SCG Or all. It is equivalent to appending part or all of the available uplink transmission period originally allocated to the SCG to the MCG, and may also include appending other available periods except the available uplink transmission period originally allocated to the MCG and SCG to the MCG.
  • the available uplink transmission period of the terminal device may also be determined as the available uplink transmission period of the MCG after suspension.
  • the available uplink transmission time period allocated by the network device to the terminal device is T1-T10
  • the MCG can be allocated for uplink transmission during the time period T1-T5
  • the SCG can be used for uplink transmission during the time period T9-T10.
  • the available uplink transmission period of the MCG can be changed as follows:
  • the terminal device when the terminal device suspends the SCG, it allocates part or all of the available uplink transmission period originally allocated to the SCG to the MCG, or allocates the previously vacant available period (ie The available uplink transmission period except for the available uplink transmission period of MCG and SCG) is allocated to the MCG.
  • This method is equivalent to extending the available uplink transmission period of the MCG, so that the MCG can transmit uplink data in more periods.
  • the available uplink transmission period can be sent by the MN to the terminal device, or sent by the SN to the terminal device, or sent by both the MN and the SN, for example, in the existing standard, it is sent by the MN.
  • the MN For terminal equipment.
  • the available uplink transmission period sent by the network device may include one or more of the available uplink transmission period of the terminal device, the available uplink transmission period of the MCG, and the available uplink transmission period of the SCG.
  • the network device can only send the available uplink transmission period of the terminal device, and the terminal device can change the available uplink transmission period of the MCG to the available uplink transmission period of the terminal device, that is, the terminal device can be in the available uplink transmission period of all terminal devices Perform uplink transmission.
  • the network device can send the available uplink transmission period of the MCG and the available uplink transmission period of the SCG, and the terminal device can allocate part or all of the available uplink transmission period originally allocated to the SCG to the MCG.
  • the network device can send the available uplink transmission period of the terminal device and the SCG available uplink transmission period, then the terminal device can allocate part or all of the available uplink transmission period originally allocated to the SCG to the MCG, and can also assign the available uplink transmission period of the original terminal device to the MCG. Part or all of the available uplink transmission period except for the available uplink transmission period of MCG and SCG in the uplink transmission period is allocated to the MCG.
  • the configuration parameters include the maximum transmit power
  • the following methods can be used to change the MCG configuration parameters when the SCG is suspended.
  • the network device configures the maximum transmission power of the terminal device in the MCG as Pmax_mcg through the RRC message, and configures the maximum transmission power of the terminal device in the SCG as Pmax_scg, and the sum of Pmax_mcg and Pmax_scg is less than or equal to the terminal device The maximum transmit power Pmax.
  • the terminal device can change the maximum transmission power of the MCG to Pmax_mcg+Pmax_scg, or change the maximum transmission power of the MCG to the maximum transmission power of the terminal device (for example, the pre-appointed maximum transmission power of the terminal device) or Change to the pre-appointed maximum transmission power of the terminal equipment in the MCG (for example, the maximum transmission power of the terminal equipment in the MCG specified by RAN4 in 3GPP).
  • Pmax_scg can also be allocated to the maximum transmission power of each carrier of the MN in proportion or evenly, so as to limit the maximum transmission power of the terminal equipment on each carrier.
  • Pmax_mcg may be configured by the MN for the terminal device, or configured by the SN for the terminal device.
  • the network device configures the maximum transmission power of the terminal device in the MCG to Pmax_mcg through the RRC message, and configures the maximum transmission power of the terminal device in the SCG Pmax_scg, and the sum of Pmax_mcg and Pmax_scg is greater than the maximum transmission of the terminal device Power Pmax. Then, when the SCG is suspended, the terminal device can change the maximum transmission power of the MCG to the maximum transmission power of the terminal device (for example, the pre-appointed maximum transmission power of the terminal device). Further, Pmax_scg can also be allocated to the maximum transmission power of each carrier of the MN in proportion or evenly, so as to limit the maximum transmission power of the terminal equipment on each carrier.
  • the terminal equipment when the sum of the maximum transmission power Pmax_mcg of the terminal equipment at the MCG and the maximum transmission power Pmax_scg at the SCG is less than or equal to the maximum transmission power of the terminal equipment, the sum of the two is determined as the maximum transmission power of the MCG; When the sum of the two is greater than the maximum transmission power of the terminal device, the maximum transmission power of the terminal device is determined as the maximum transmission power of the MCG.
  • the terminal equipment increases the maximum transmission power of the MCG when the SCG is suspended.
  • the SCG's maximum transmission power is proportionally or evenly allocated to the maximum transmission power of each carrier of the master station, which can also realize more refined changes, and control the maximum transmission power of each carrier from the carrier level.
  • the maximum transmission power of the terminal equipment in the MCG can also be configured according to different situations. For example, when the terminal equipment has overlap in the uplink transmission of the MCG and the SCG (for example, the terminal equipment has the uplink transmission time slot of the MCG and the SCG. Overlap), MCG uses the maximum transmit power when the SCG is not suspended, otherwise the MCG uses the pre-appointed maximum transmit power of the terminal device (for example, the maximum transmit power of the terminal device specified by RAN4 in 3GPP).
  • the terminal device may only judge whether the uplink transmission of the MCG and the SCG overlap when the MCG has an uplink physical channel or signal transmission, or may realize the judgment according to a certain rule.
  • the terminal device can make full use of more uplink power to transmit uplink data when the SCG is suspended, thereby increasing the throughput of the terminal device to transmit data.
  • the configuration parameters include the blind detection parameters of the control channel
  • the following methods can be used to change the MCG configuration parameters when the SCG is suspended.
  • the physical downlink control channel (PDCCH) blind detection parameter can be, for example, the reference number of cells corresponding to the PDCCH blind detection corresponding to each CG (MCG or SCG) of the terminal device (the reference number of cells for PDCCH blind). detection for the CG).
  • the network device pre-configures the terminal device with two sets of PDCCH blind detection parameters respectively corresponding to when the SCG is suspended and when the SCG is not suspended. Then the terminal device can select pre-configured PDCCH blind detection parameters according to whether the SCG is suspended.
  • the preset blind inspection parameters configured by the network device may include a first preset blind inspection parameter and a second preset blind inspection parameter, where the first preset blind inspection parameter is the blind inspection parameter used by MCG when the SCG is suspended.
  • the second preset blind test parameter is the blind test parameter used by MCG when the SCG is not suspended. Then the terminal device can select the corresponding blind inspection parameters according to the current actual state. For example, the first preset blind detection parameter is selected when the SCG is suspended, and the second preset blind detection parameter is selected when the SCG is not suspended.
  • the terminal device can select PDCCH blind detection parameters according to whether the SCG is suspended. For example, when the SCG is suspended, the blind detection capability of the terminal device in the MCG is only limited by the capability of the terminal device. In other words, when the SCG is suspended, the terminal device can use the blind detection parameters of the single connection, which is equivalent to returning the blind detection capability of the MN to the single connection.
  • the terminal device reports the carrier aggregation PDCCH blind detection capability PDCCH-BlindDetectionCA (for example, the terminal device configures the PDCCH blind detection capability after more than 4 carriers), you can set the MN's PDCCH blind detection capability to be only affected by the PDCCH-BlindDetectionCA Restriction is equivalent to considering only the blind detection parameter PDCCH-BlindDetectionCA; otherwise, the PDCCH blind detection capability of the terminal equipment in the MN is only limited by the number of serving cells configured in the MN or the sum of the number of serving cells currently configured by the MN and SN limits.
  • PDCCH-BlindDetectionCA for example, the terminal device configures the PDCCH blind detection capability after more than 4 carriers
  • the terminal device can change the blind detection parameters of the terminal device in the MCG according to the preset value when the SCG is suspended, so that the terminal device can detect more PDCCHs in the MCG, so that the network device can More flexible use of various PDCCH scheduling terminal equipment, improve the throughput rate of terminal equipment.
  • the following method can be used to change the MCG configuration parameters when the SCG is suspended.
  • the frequency band combination can include two parts, one part is the Band parameter, mainly the Band number corresponding to the frequency point, and the bandwidth level corresponding to the CA that has been performed in the Band number; the other part is the feature set, including the uplink and downlink can be used Some of the capabilities, such as whether to support cross-carrier scheduling in a certain sub-carrier interval of a carrier for transmission of different sub-carrier intervals of other carriers, and whether to support two physical downlink control channel (PUCCH) groups, which are supported in the downlink The number of layers of multi-input multi-output (MIMO), the modulation order supported by the downlink, etc.
  • MIMO multi-input multi-output
  • the MN and SN can re-negotiate the frequency band combination, that is, before and after the SCG is suspended, the MN and SN Different combinations of frequency bands can be used between them.
  • the terminal device can be made to retain the SCG configuration before the SCG suspension, but the frequency bands can be combined Not subject to previous restrictions, such as configuring more MCG frequencies or using higher MIMO capabilities.
  • the above changes to the configuration parameters of the frequency band combination enable the network equipment to configure the MCG more flexibly when the SCG is suspended, such as configuring more MCG frequencies or adopting higher MIMO capabilities, thereby increasing the throughput of the terminal equipment .
  • the terminal device when the SCG is suspended, the terminal device can only transmit data through the MCG, and by changing the configuration parameters of the MCG, the configuration parameters of the MCG are more suitable for the situation after the suspension. Compared with the configuration parameters when the SCG is not suspended, the configuration parameter settings are more reasonable.
  • resources originally allocated to the SCG or unused resources are added to the MCG, so that the resources that the MCG can use increase, thereby increasing the throughput of the terminal device.
  • the terminal device can also stop suspending the SCG by using the method shown in FIG. 8, that is, recovering from the suspended state to the non-suspended state.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • the terminal device receives second information, where the second information is used to instruct the terminal device to enter the SCG non-suspended state.
  • the second information may be sent by a network device, and the network device may be an MN or an SN. It should also be understood that the network device that sends the second information may be the same as the network device that sends the first information described in FIG. 7, or may be different from the network device that sends the first information described in FIG. 7.
  • the second information includes information for instructing the terminal device to stop suspending the SCG. Therefore, after receiving the second information, the terminal device can directly stop suspending the SCG according to the second information.
  • the second information may further include information used to indicate a first preset value, where the first preset value is used to indicate the duration of the SCG suspension of the terminal device.
  • the terminal device measures the actual duration of the SCG suspended state. Therefore, when the actual SCG suspension time measured by the terminal device is greater than or equal to the first preset value, it automatically enters the SCG non-suspend state.
  • the terminal device sets a timer, and when the timer expires, it enters the SCG non-suspended state.
  • the first preset value may also be a value stored in the terminal device.
  • the terminal device may determine whether to enter the SCG non-standard value based on the actual measured duration and the first preset value. Suspend state without waiting for instructions from network devices.
  • the first preset value may be configured according to the service type. For example, for services with relatively high service delay requirements, a first preset value corresponding to a shorter duration may be defined; for services with relatively low service delay requirements, a first preset value corresponding to a longer duration may be defined.
  • the first preset value may also be determined according to the statistical data of the historical suspension time.
  • the terminal device stops suspending the SCG according to the second information.
  • the terminal device may stop suspending the SCG after receiving the second information. For example, when receiving the second information, the terminal device is in the SCG suspended state, it can be restored from the SCG suspended state to the SCG non-suspended state according to the second information; when the second information is received, the terminal device is not in the SCG suspended state.
  • the process of SCG suspension or the state after the expiration, that is, in the SCG non-suspended state, is equivalent to maintaining the non-suspended state of the SCG.
  • the second information includes information for instructing the terminal device to stop suspending the SCG.
  • the terminal device receives the second information, it can directly enter the SCG non-suspended state according to the second information.
  • the second information may further include information used to indicate a first preset value, where the first preset value is used to indicate the duration of the SCG suspension of the terminal device.
  • the terminal device measures the actual duration of the SCG suspension state, and stops suspending the SCG when the actual duration of the SCG suspension measured by the terminal device is greater than or equal to the first preset value.
  • the first preset value may also be a value stored in the terminal device, and the terminal device may determine whether to enter the SCG non-suspended state according to the actually measured SCG suspension duration and the first preset value, and No need to wait for instructions from network devices.
  • the terminal device When the terminal device stops suspending the SCG, it can reuse the previous configuration parameters of the MN and SN in the non-suspended state.
  • step 801 may not be performed.
  • step 801 of sending the second information is not required.
  • the communication processes shown in Figures 7 and 8 can be implemented individually or in combination. When implemented in combination, there is no restriction on the sequence of the two communication processes. For example, it may be received first. The first message, and the SCG is suspended according to the first message; it may also be that the second message is received first, and the SCG suspension is stopped according to the second message, etc., which will not be repeated here.
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the network device can send the first information to the terminal device, so that the terminal device can suspend the configuration of the SCG according to the first information, and the network device can also send the second information to the terminal device, so that the terminal device can according to the first information. Second, the information is restored from the SCG suspended state to the normal state.
  • Figure 9 illustrates an embodiment of the present application from the perspective of a network device.
  • the network device sends first information to the terminal device, where the first information is used to instruct the terminal device to suspend the SCG.
  • the network device that sends the first information may be an MN or an SN, and the manner of sending the first information through the SN is not shown in FIG. 9.
  • the network device sends second information to the terminal device, where the second information is used to instruct the terminal device to enter the SCG non-suspended state according to the second information.
  • the second information may directly indicate that the terminal device enters the SCG non-suspended state.
  • the second information may further include information used to indicate a first preset value, where the first preset value is used to indicate the duration of the SCG suspension of the terminal device.
  • FIG. 10 is a schematic flowchart of a communication method provided by an embodiment of the present application. As shown in FIG. 10, the terminal device may perform different processing on the random access process according to different situations when receiving the first information indicating the suspension or the second information indicating the suspension of the SCG. Figure 10 illustrates the processing method of random access when the SCG is suspended from the perspective of the terminal device.
  • a terminal device receives third information from a network device, where the third information is used to instruct the terminal device to initiate adding, modifying, or changing a PSCell.
  • the third information may be sent by the MN to the terminal device, or sent by the SN to the terminal device.
  • SN will generate RRC message to terminal equipment, SN will send it to MN first, MN will embed the RRC message sent by SN into MN's own RRC message and send it to terminal equipment.
  • the RRC message sent to the terminal device includes a container (contanier), and the contanier includes the RRC message sent by the SN.
  • the third information may be a reconfiguration message with synchronization (ReconfigurationWithSync).
  • the terminal device responds to the third information.
  • the terminal device When the terminal device is not suspended in the SCG, the terminal device performs a random access procedure for the target SN, and sends the RRC reconfiguration complete message corresponding to the SCG to the MN.
  • the terminal device does not perform the random access procedure, and sends the RRC reconfiguration complete message corresponding to the SCG to the MN; or,
  • the terminal device first performs a random access process for the target SN, and sends an RRC reconfiguration complete message corresponding to the SCG to the MN.
  • the terminal device stops random access to the target SN the terminal device resumes suspending the SCG by itself.
  • random access stop includes many situations, such as random access failure, random access suspension, or random access completion, etc., which can all be called random access stop, and will not be repeated here.
  • the terminal device sends a response to the third information to the network device.
  • the terminal device sends a response to the third information to the MN. If the third information carries the RRC message sent by the SN, the terminal device also needs to send a response to the SN.
  • the terminal equipment includes the response information to the SN in the RRC message of the MN, and the MN sends the response message corresponding to the SN to the SN.
  • step 1002 there is no limitation on the execution order of step 1002 and step 1003.
  • the terminal device After the terminal device receives the third information sent by the network device indicating the initiation of random access, according to whether the current SCG is suspended, the random access at this time is processed differently depending on the situation. Especially when the SCG is suspended and random access must be performed, the terminal device can automatically resume the suspension of the SCG after the random access to the target SN is stopped, without the need for the network device to re-inform the terminal device to perform the SCG suspension, which reduces the number of terminal devices Information exchange with network equipment.
  • This embodiment of the application provides several different processing methods for the terminal device to send uplink data on the SCG when the SCG is suspended. The following Introduce these methods.
  • the terminal device can still send the physical random access channel (PRACH) in the SCG after the SCG is suspended, when the terminal device has uplink data to send from the SCG after the SCG is suspended, it can send the PRACH .
  • PRACH physical random access channel
  • a timer can be introduced, and the PRACH is not sent within the time length specified by the timer.
  • the network device configures and sends the preset duration to the terminal device, and the terminal device receives the preset duration and does not send the PRACH within the preset duration.
  • the timer can be started when the network device notifies the terminal device to suspend the SCG.
  • a threshold for buffered data can also be introduced, and the PRACH is sent only when the buffered data that needs to be sent through the SCG exceeds the threshold.
  • the network device configures and sends a preset buffer data threshold to the terminal device, and the PRACH is sent only after the data actually buffered by the terminal device exceeds the preset buffer data threshold.
  • the network device sends fourth information to the terminal device.
  • the fourth information is used to indicate a preset period of time during which the terminal device does not send PRACH.
  • the terminal device After the terminal device receives the fourth information, it determines the preset period of time according to the fourth information. , And do not send PRACH within the preset time period.
  • the network device sends fifth information to the terminal device, the fifth information is used to instruct the terminal device to send a PRACH buffer data threshold, and when the terminal device receives the fifth information, it determines the buffer data threshold according to the fifth information , And do not send PRACH when the amount of cached data is less than the cached data threshold.
  • FIG. 11 is a schematic flowchart of a communication method provided by an embodiment of the present application. As shown in Figure 11, the uplink data can be sent through the information exchange between the terminal equipment, the primary station and the secondary station.
  • the terminal device sends to the MN an instruction information for sending uplink data from the suspended SCG.
  • the terminal device sends sixth information to the MN, and the sixth information is used to instruct the terminal device to send uplink data from the suspended SCG.
  • the sixth information may be indication information of the MAC layer, or indication information of the physical layer, or indication information of the RRC layer.
  • the MN sends information to the UE instructing the UE to stop suspending the SCG.
  • the MN sends second information to the terminal device, and the second information is used to instruct the terminal device to stop suspending the SCG, that is, to enter the SCG non-suspended state.
  • the second information may be the second information described in FIG. 9.
  • the MN after receiving the sixth information, the MN knows that the terminal device needs to send data from the SCG according to the sixth information, and can send the second information to notify the terminal device to restore the suspended SCG to the non-suspended state.
  • the MN informs the SN terminal device that it needs to send uplink data from the suspended SCG, or informs the SN terminal device to stop suspending the SCG.
  • the MN determines the seventh information to be sent to the SN according to the sixth information, and sends the seventh information to the SN.
  • the sixth information may be a buffer status report (buffer status report, BSR), and the terminal device carries the BSR information of the SN in the BSR sent to the MN.
  • BSR buffer status report
  • the MN sends the SN's BSR information, that is, the seventh information to the SN to instruct the SN to schedule uplink data according to the seventh information after the SCG enters the non-suspended state.
  • This method enables the network device to be notified after the uplink data that needs to be sent when the SCG is suspended, so that the network device notifies the terminal device to stop the SCG suspension, thereby scheduling the uplink data on the SCG.
  • the seventh information may be used to notify the SN to schedule the terminal device through the PDCCH.
  • the seventh information may be used to notify the SN that the terminal device is about to stop suspending the SCG.
  • the MN after receiving the sixth message, the MN sends the second message to the terminal device and the seventh message to the SN, without waiting for the terminal device to stop suspending the SCG before sending the seventh message.
  • the terminal device stops suspending the SCG and sends uplink data from the SCG, avoiding the loss of these uplink data in the suspended state.
  • the uplink can be sent by the following method data.
  • the network device may pre-configure an alternative MCG bearer for the SCG bearer, so that when the SCG is suspended, the terminal device can change the SCG bearer to the MCG bearer.
  • a certain MCG bearer may be instructed in advance to correspond to certain SCG bearers, or certain MCGs correspond to certain SCG bearers, etc., that is, to establish a mapping relationship between multiple MCG bearers and multiple SCG bearers, and It can be determined which data radio bearer (DRB) needs to be configured with an alternative MCG bearer of the SCG bearer. Then when the terminal device needs to transmit uplink data from the suspended SCG, it can determine the MCG bearer corresponding to the SCG bearer of the suspended SCG according to the mapping relationship, so as to use the corresponding MCG bearer to send the uplink transmission data. .
  • DRB data radio bearer
  • the terminal device may set the primary path (primayPath) corresponding to the SCG separated bearer to MCG.
  • the main path may be SCG or MCG.
  • the terminal device can use the new primary path to send uplink data.
  • Case 1 When the DRB is configured with the PDCP layer for replication but the replication is not activated, the PDCP of the terminal device will place the PDCP DATA PDU in the RLC entity corresponding to the main path (ie, the RLC entity corresponding to the SCG or the RLC entity corresponding to the MCG). If the network device previously set the SCG as the primary path, after the SCG is suspended, when there is uplink data to be transmitted on the SCG, the terminal device sets the primary path of the DRB as the MCG.
  • Case 2 The DRB is not configured with the PDCP layer copy function, and the total amount of data to be transmitted by the PDCP and the amount of data to be transmitted by the RLC layer is less than the threshold of data transmission (it can be understood as the data volume threshold for data transmission, only when When the data volume reaches the threshold, the data will be split to two RLC entities), the terminal device will put the PDCP DATA PDU in the RLC entity corresponding to the main path. If the network device previously set the SCG as the primary path, after the SCG is suspended, when there is uplink data to be transmitted on the SCG, the terminal device sets the primary path of the DRB as the MCG.
  • the threshold of data transmission it can be understood as the data volume threshold for data transmission, only when When the data volume reaches the threshold, the data will be split to two RLC entities
  • the terminal device will put the PDCP DATA PDU in the RLC entity corresponding to the main path. If the network device previously set the SCG as the primary path, after the SCG is suspended, when
  • the terminal device needs to send uplink data from the suspended SCG. If PRACH can be sent at this time, some time interval or buffer data restrictions are imposed on the sending of PRACH, that is, only when the preset conditions are met , The terminal device can initiate the RACH process. Or, the terminal device informs the MN that it needs to send uplink data from the suspended SCG, so that the network device adopts some measures to stop the terminal device from suspending the SCG and send the uplink data on the SCG, or through some measures, the terminal device can send the uplink data on the SCG. The data that originally needed to be sent in the SCG was changed to be sent in the MCG.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of this application. .
  • the MN when a secondary station is added, the MN will send the SN the range of the serving cell index under the SCG available to the SN.
  • the cell configuration information CG-ConfigInfo from the MN to the SN carries the lower limit of the serving cell index that can be used by the SCG And upside.
  • the SN can only use the serving cell index within this range.
  • the SN needs to carry the serving cell index corresponding to each serving cell in the configuration information for the terminal device.
  • the target MN may give the SN (source SN or target SN) a new serving cell index range.
  • FIG. 12 is a schematic flowchart of a method for adding or modifying a secondary station according to an embodiment of the present application.
  • the source MN sends a request for adding or modifying an SN to the source SN.
  • This information carries the serving cell index range that the source MN can use for the SCG allocated to the source SN.
  • the source MN sends handover request information to the target MN.
  • the source MN decides to switch the MN corresponding to the terminal device.
  • the source MN sends the handover request information of the MN corresponding to the handover terminal device to the target MN.
  • the handover request information carries the indication information of the terminal device to the MN to send uplink data from the suspended SCG.
  • the handover preparation information in the handover request information from the source MN to the target SN carries the index range of the serving cell under the SCG previously allocated by the source MN to the source SN.
  • the target MN adds a target SN to the terminal device.
  • the target SN may be the same SN as the source SN, or it may not be the same SN.
  • the target MN sends SN addition request information to the target SN, and the request information may carry the index range of the serving cell under the SCG previously allocated by the source MN to the source SN.
  • the target SN configures relevant information for the terminal device.
  • the target SN may allocate the serving cell index according to the serving cell index range under the SCG sent by the target MN. For example, the target SN may maintain the index of each serving cell previously allocated by the source SN to the terminal device.
  • the target SN sends a response message for the SN addition request to the target MN. That is, the target SN confirms to the target MN the response information of adding SN.
  • the target MN sends a handover request confirmation message to the source MN.
  • the target MN When the target MN confirms that the MN corresponding to the terminal device is changed from the source MN to itself, it sends a handover confirmation message to the source MN.
  • the target MN notifies the terminal device to perform PCell handover.
  • the signaling overhead when adding or modifying the SN, by carrying the serving cell index range or the serving cell index in the request information of the interaction process, the signaling overhead can be reduced.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application. As shown in FIG. 13, the communication device 1300 may include a processing unit 1310 and a transceiving unit 1320.
  • the communication device 1300 can implement the operations corresponding to the terminal device in the above method embodiments.
  • the communication device can be a terminal device, or a component configured in the terminal device, such as a chip or Circuit.
  • the communication device 1300 can implement the corresponding operations of the terminal equipment in the method embodiments shown in FIG. 7 to FIG. 12, and/or implement the above-mentioned uplink data transmission method after the SCG is suspended.
  • the communication device 1300 may include a unit for executing the method executed by the terminal device in the method embodiments shown in FIG. 7 to FIG. 12, and/or for executing the method executed by the terminal device in the uplink data transmission method after the SCG is suspended Unit.
  • each unit in the communication device 1300 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes in the above-mentioned method embodiments.
  • the communication device 1300 further includes a storage unit, which can be used to store instructions or data, and the processing unit can call the instructions or data stored in the storage unit to implement corresponding operations.
  • the storage unit may also be used to store the above-mentioned mapping relationship between MCG bearers and SCG bearers.
  • the transceiver unit 1320 in the communication device 1300 may be implemented by a transceiver or a communication interface, for example, may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 15.
  • the processing unit 1310 in the communication device 1300 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the terminal device 2000 shown in FIG. 15.
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1400 may include a processing unit 1410 and a transceiving unit 1420.
  • the communication device 1400 can implement the operations corresponding to the terminal device in the above method embodiments.
  • the communication device can be a terminal device, or a component configured in the terminal device, such as a chip or Circuit.
  • the communication device 1400 can implement the corresponding operations of the network equipment in the method embodiments shown in FIG. 7 to FIG. 12.
  • the communication apparatus 1400 may include a unit for executing the method executed by the network device in the method embodiments shown in FIG. 7 to FIG. 12.
  • the units in the communication device 1400 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes in the above-mentioned method embodiments.
  • the communication device 1400 may further include a storage unit, the storage unit may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • transceiving unit 1420 in the communication device 1400 may correspond to the transceiving unit 3100 shown in FIG. 16, for example.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 4 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2020, and the memory 2030 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the above-mentioned processor 2010 and the memory 2030 may be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to realize the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit 1310 in FIG. 13.
  • the aforementioned transceiver 2020 may correspond to the transceiver unit 1320 in FIG. 13.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 15 can implement various processes involving the terminal device in the method embodiments shown in FIGS. 7 to 12.
  • the operations and/or functions of the various modules in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 can be used to execute the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • FIG. 16 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 3000 can be applied to the system as shown in FIG. 4 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also known as distributed unit (DU) )) 3300.
  • RRU 3100 may be called a transceiver unit, which corresponds to the transceiver unit 1420 in FIG. 14.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 3100 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 3300 part of the BBU is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 3100 and the BBU 3300 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3300 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1410 in FIG. 14, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 3300 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3300 further includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 3000 shown in FIG. 15 can implement each process involving the target network device in the method embodiments shown in FIG. 7 to FIG. 12.
  • the operations and/or functions of the various modules in the base station 3000 are respectively for implementing the corresponding procedures in the foregoing method embodiments.
  • the above-mentioned BBU 3300 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the base station 3000 shown in FIG. 16 is only a possible architecture of the network device, and should not constitute any limitation in this application.
  • the method provided in this application can be applied to network devices of other architectures.
  • network equipment including CU, DU, and active antenna unit (AAU). This application does not limit the specific architecture of the network device.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the foregoing method embodiments.
  • the aforementioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the above-mentioned embodiments The method of any embodiment.
  • the present application also provides a computer-readable storage medium that stores program code, which when the program code runs on a computer, causes the computer to execute the above-mentioned The method of any one of the embodiments.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above-mentioned device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit executes the receiving or the terminal equipment in the method embodiments.
  • the processing unit executes the functions of specific units, refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server, or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk, SSD
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, ROM, random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.
  • used to indicate may include used for direct indication and used for indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain piece of information is called information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated or the information to be indicated.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to use a pre-arranged (for example, protocol stipulation) whether there is a certain cell to indicate the information to be indicated, so as to reduce the indication overhead to a certain extent.
  • protocol stipulation for example, protocol stipulation
  • saving may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the "protocols" involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B, and c.
  • a, b, and c can be single or multiple.
  • the multiple embodiments described in the present application may be combined in any combination or interleaved among steps.
  • the second information shown in FIG. 8 may also be received, so that the process of stopping the suspension shown in FIG. 8 is executed instead.
  • the third information shown in FIG. 10 may also be received, so that the random access is processed first according to one of the methods shown in FIG. 10 and then executed as shown in FIG.
  • the step of suspending the SCG according to the first message Therefore, the execution order of each embodiment and the execution order between the steps of each embodiment are not fixed, nor are they limited to those shown in the figure, the execution order of each embodiment and the cross execution of each step of each embodiment The sequence should be determined by its function and internal logic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置。该方法包括:接收来自于网络设备的第一信息,并根据该第一信息将辅小区组SCG挂起,变更主小区组MCG的配置参数,该配置参数包括以下至少一种参数:可用上行传输时段、最大发射功率或控制信道的盲检参数。在该方法中,通过变更MCG在挂起SCG后的配置参数,使得变更后的配置参数更适用于在此期间终端设备的数据传输。

Description

通信方法和通信装置 技术领域
本申请涉及通信领域,并且具体地,涉及一种通信方法和通信装置。
背景技术
在通信领域的双连接(dual connectivity,DC)的应用场景中,即核心网和终端设备之间可以通过主站(master node,MN)和辅站(secondary node,SN)两个基站进行数据通信。在此期间,终端设备需要同时对主站所提供的主小区组(master cell group,MCG)和辅站所提供的辅小区组(secondary cell group,SCG)两个空口链路进行监听和数据传输,耗电量较大。当终端设备的数据速率波动较频繁时,例如经常处于低数据速率的状态时,若终端设备一直处于DC工作模式,则造成在SCG链路的能量消耗的浪费。在现有方案中,在高数据速率状态时,增加SN,让终端设备处于DC工作模式,而在低数据速率状态时,释放SN,让终端设备处于单连接工作模式。由于增加SN和释放SN的过程涉及MN和SN的多条信息交互,以及MN需要在空口链路上为终端设备进行重配置,带来了额外的信令开销和时延。
对于这些问题,在现有方案中提到了一种方法,即在速率低时指示终端设备挂起(store,suspend)SCG的配置,不再通过SCG进行数据传输,而在需要使用SCG链路时(例如终端设备的数据速率高时),指示终端设备恢复(restore,resume)SCG的配置,并继续通过SCG进行数据传输。但在挂起SCG的配置后,终端设备的可用配置减少,导致数据传输速率下降。
发明内容
本申请提供一种通信方法和通信装置,能够优化终端设备在SCG挂起时的配置。
第一方面,提供了一种通信方法,该方法包括:接收来自于网络设备的第一信息,该第一信息用于指示终端设备将辅小区组SCG挂起,根据第一信息挂起SCG,并变更主小区组MCG的配置参数,该配置参数包括以下至少一种参数:可用上行传输时段、最大发射功率或控制信道的盲检参数。
需要说明的是,变更MCG的配置参数可以发生在开始SCG挂起、进行SCG挂起期间和SCG挂起以后(也可以称之为SCG挂起状态)的任何时间,由不需要具体区分处于哪个时间段,因此为了方便描述,统一使用“挂起SCG”或“SCG挂起时”等能反映对“挂起SCG”这一过程的描述。
基于上述技术方案,终端设备在SCG挂起时,通过改变MCG原有的配置参数,即变更MCG的配置参数,使得MCG的配置参数更适合挂起SCG后的场景,从而使得终端设备在只通过MCG进行数据传输的情况下,也能有较好的传输效果。
可选地,该网络设备可以是MN也可以是SN,也就是说,该第一信息可以是MN发 送的,也可以是SN发送的。
需要说明的是,本申请所述的挂起(suspend/suspension)也可以称为去激活(deactive/deactivation),还可以称为非活跃(inactive/inactivation),或者还可以称为休眠或睡眠(dormancy)等。本申请所述的挂起状态(suspendstate)也可以称为去激活状态(deactive state),还可以称为非活跃状态(inactive state),或者还可以称为休眠状态或睡眠状态(dormant state)等。
在本申请中,所述的挂起可以是指终端设备暂时停止通过SCG的通信链路进行数据传输,但终端设备保留或存储SN的部分或全部配置,以用于快速恢复所述SCG的通信链路。类似地,PScell为挂起状态表示PScell的配置可以被保留但通过该PScell的数据传输暂停。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:终端设备可以根据网络设备发送的预设配置参数,变更MCG的配置参数。该预设配置参数包括MCG的配置参数和SCG的配置参数。当终端设备接收到该预设配置参数后,根据其中对应于SCG挂起时的预设配置参数,变更MCG的配置参数。
需要说明的是,上述预设配置参数包括分别对应于SCG挂起时和SCG未挂起时各自的MCG的配置参数和SCG的配置参数。
也就是说,对于SCG挂起时和SCG未挂起时预设了不同的配置参数,终端设备可以根据现在的SCG的实际状态进行配置参数的选择。例如,在预设配置参数中分别配置了SCG挂起时和SCG未挂起时的可用上行传输时段,则终端设备可以根据实际状态是否挂起SCG,选择预先分配的可用上行传输时段。又例如,在预设配置参数中分别配置了SCG挂起时和SCG未挂起时的盲检参数,则终端设备可以根据实际SCG是否挂起,选择预先分配的盲检参数。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:变更配置参数在MCG与所述SCG之间的分配。在SCG挂起后,通过对配置参数的重新分配,能够实现对各配置参数所对应的资源的重新分配,使得MCG的配置得到优化,以适应SCG挂起时的特殊需求。
也就是说,在变更MCG的配置参数时,还可以对SCG的配置参数和MCG的配置参数的在SCG未挂起时的分配比例或规则进行调整,从而改变MCG的配置参数。例如,终端设备的可用上行传输时段为T,SCG和MCG在SCG挂起前分别为T/2和T/3,则在SCG挂起后可以增大MCG的配比,例如可以将原先SCG的上行传输时段T/3的部分和全部转为分配给MCG,或者直接将MCG的可用上行传输时段变更为T等。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:当配置参数包括可用上行传输时段时,可以扩展MCG的可用上行传输时段。
可用上行传输时段是指终端设备可以发送上行数据的时段,即用于表示终端设备可以在哪些时段或哪些时刻发送上行数据。如果在没有挂起SCG时,网络设备给终端设备配置了MCG和SCG各自可用的上行传输时段,即限制了MCG和SCG分别在哪些时段可以发送上行数据。因此在SCG挂起时,可以将MCG的可用上行传输时段进行扩展变更,使得MCG能够在更多的时段上进行数据出传输。
通过上述对MCG的可用上行传输时段的扩展,MCG可以不遵守原有的分配规则, 能够在更多的可传输数据的时段进行上行数据的传输,即不受之前主站下发的终端设备在MCG所能用的上行时段的配置参数的限制。
例如,将SCG挂起前MCG的可用上行传输时段进行扩展,使其还包括在SCG未挂起时SCG的可用上行传输时段和/或除MCG和SCG的可用上行传输时段以外的其它可用上行传输时段中的部分或全部。又例如,还可以将终端设备的可用上行传输时段确定为SCG挂起时MCG的可用上行传输时段。
在上述对MCG的可用上行传输时段变更的过程中,当终端设备挂起SCG后,将原先分配给SCG的可用上行传输时段的部分或全部时段分配给MCG,或者将原先空置的可用时段(即除MCG和SCG的可用上行传输时段之外的其他可用上行传输时段)分配给MCG。这种方法相当于扩展了MCG的可用上行传输时段,使得MCG能在更多的时段进行上行数据的传输。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:当上述配置参数包括最大发射功率时,通过变更增大MCG的最大发射功率。
可选地,当MCG的最大发射功率与SCG的最大发射功率之和小于或等于终端设备的最大发射功率时,将该二者之和确定为MCG的最大发射功率;当该二者之和大于终端设备的最大发射功率时,将终端设备的最大发射功率确定为MCG的最大发射功率。
通过改变功率的分配,使得终端设备在SCG挂起时,可以充分利用更多的上行功率发送上行数据,从而提高终端设备发送数据的吞吐率。
可选地,还可以将SCG的最大发射功率按比例或平均分配到主站的各个载波的最大发射功率中。这种方式可以实现更精细的变更,从载波层级上控制每个载波的最大发射功率。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:当上述配置参数包括控制信道的盲检参数时,根据网络设备配置的预设盲检参数变更MCG的盲检参数。
物理下行控制信道(physical downlink control channel,PDCCH)盲检参数例如可以是终端设备在每个CG(MCG或SCG)中分别对应的PDCCH盲检的小区参考数目。
假设在SCG未挂起时,网络设备预先给终端设备配置了分别对应于SCG挂起时和SCG未挂起时的两组PDCCH盲检参数。则终端设备可以根据SCG是否挂起,选择预先配置的PDCCH盲检参数。
可选地,网络设备配置的预设盲检参数可以包括第一预设盲检参数和第二预设盲检参数,其中,第一预设盲检参数是MCG在SCG挂起时使用的盲检参数,第二预设盲检参数是MCG在SCG未挂起时使用的盲检参数。则终端设备可以根据现在的实际状态,选择相应的盲检参数。例如在SCG挂起时选择第一预设盲检参数,在SCG未挂起时选择第二预设盲检参数。
假设在SCG未挂起时,网络设备预先给终端设备配置了分别对应于终端设备在单连接状态和双连接状态时的两组PDCCH盲检参数。则终端设备可以根据SCG是否挂起,选择PDCCH盲检参数。例如,网络设备配置的预设盲检参数还可以包括第三预设盲检参数和第四预设盲检参数,其中,第三预设盲检参数是终端设备在单连接状态时使用的盲检参数,第四预设盲检参数是终端设备在双连接状态时使用的盲检参数。则终端设备可以根据现在的实际状态,选择相应的盲检参数。例如在SCG挂起时选择第三预设盲检参数, 在SCG未挂起时选择第四预设盲检参数。换而言之,在SCG挂起时,终端设备可以采用单连接时的盲检参数,相当于使MN的盲检能力回退到单连接时。例如,可以设置终端设备在MN的PDCCH盲检能力只受MN中配置的服务小区数目的限制或只受当前MN和SN配置的服务小区数目之和的限制。
对于MN和SN之间的盲检分配,终端设备在SCG挂起时可以根据预设值变更终端设备在MCG的盲检参数,使得终端设备在MCG可以检测更多的PDCCH,从而使网络设备可以更灵活地采用各种PDCCH调度终端设备,提高终端设备的吞吐率。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:当上述配置参数包括频段组合(band combination)时,可以根据是否需要进行SCG未挂起时的测量或发送上行数据,确定是否变更频段组合。
可选地,如果终端设备在SCG挂起时可以进行SCG之前的测量配置或发送上行信息,则MN和SN之间可以重新进行频段组合协商,即在挂起SCG前后,MN和SN之间可以采用不同的频段组合。
可选地,如果终端设备在SCG挂起状态时可以不进行SCG之前的测量配置或不进行发送上行数据,则可以使终端设备保留SCG挂起之前的SCG配置,但可以使频段组合不受之前的限制,例如配置更多的MCG的频点或采用更高的MIMO能力。
上述对频段组合的配置参数的变更,使得在SCG挂起时,网络设备可以更灵活地配置MCG,例如配置更多的MCG的频点或采用更高的MIMO能力,从而提高终端设备的吞吐率。
第二方面,提供了一种通信方法,该方法包括:接收来自于网络设备的第二信息,该第二信息用于指示终端设备停止挂起SCG,并根据第二信息停止挂起该SCG。
需要说明的是,发送第二信息的网络设备可以与第一方面的相同,也可以与第一方面的不同。第二方面所述方法的执行过程可以在第一方面执行过程的之前、期间和完成后的任何时间。即二者不存在顺序限定,只要组合的方式能在逻辑上成立即可。
可选地,第二信息还可以包括用于指示第一预设值的信息,该第一预设值用于表示终端设备进行SCG挂起的时长。终端设备测量实际的SCG挂起状态的时长。因此,当终端设备测得的实际SCG挂起的时长大于或等于该第一预设值时,自动进入SCG非挂起状态。可选地,终端设备设置一个定时器(timer),当该定时器过期后,进入SCG非挂起状态。
可选地,该第一预设值还可以是储存在终端设备中的值,当进入SCG挂起状态后,终端设备可以根据实际测量的时长和该第一预设值自行判断是否进入SCG非挂起状态,而不需要等待网络设备的指示信息。
可选地,该第一预设值可以根据业务类型配置。例如,对于业务时延要求比较高的业务,就可以定义对应较短时长的第一预设值;对于业务时延要求比较低的业务,则可以定义对应较长时长的第一预设值。也可以根据历史挂起时长的统计数据确定第一预设值。
可选地,终端设备可以在接收到第二信息后,停止挂起SCG。例如,如果接收到第二信息时,终端设备正在挂起SCG或已经挂起SCG,则可以根据第二信息使该SCG恢复到SCG非挂起时的状态;如果接收到第二信息时,终端设备并未挂起SCG,即SCG处于非挂起状态,则相当于保持该SCG的非挂起状态。
例如,第二信息包括用于指示终端设备停止挂起SCG的信息,当终端设备接收到该 第二信息后,就可以根据该第二信息直接停止挂起SCG。
又例如,第二信息还可以包括用于指示第一预设值的信息,该第一预设值用于表示终端设备进行SCG挂起的时长。终端设备测量实际的SCG挂起状态的时长,当终端设备测得的实际SCG挂起的时长大于或等于该第一预设值时,停止挂起SCG。
可选地,该第一预设值还可以是储存在终端设备中的值,终端设备可以根据实际测量的SCG挂起时长和该第一预设值自行判断是否停止挂起SCG,而不需要等待网络设备的指示信息。
当终端设备停止挂起SCG后,可以重新使用之前的MN和SN在未挂起时的配置参数。
应理解,发送第二信息的步骤可以不执行,例如,当终端设备可以自行根据预存的第一预设值判断是否停止挂起SCG时,就不需要发送第二信息的步骤。
第三方面,提供了一种通信方法,该方法包括:向终端设备发送用于指示终端设备挂起SCG的指示信息,或向终端设备发送用于指示终端设备停止挂起SCG的指示信息。
需要说明的是,第三方面是从网络设备的角度,对第一方面和第二方面所涉及的第一信息和第二信息的来源的阐述和说明。
第四方面,提供了一种通信方法,该方法包括:网络设备发送用于指示终端设备发起随机接入的第三信息,终端设备接收该第三信息,并根据目前SCG是否挂起,对该第三信息进行不同处理,并将SCG对应的重配置完成信息发送给MN,以及将对第三信息的响应发送给网络设备,网络设备接收该终端设备对第三信息的响应。
需要说明的是,该网络设备同样可以是MN也可以是SN。
可选地,当终端设备在SCG未挂起时,终端设备在目标SN进行随机接入过程,并把SCG对应的RRC重配置完成信息发送给MN。
当SCG挂起时,即终端设备开始挂起或正在进行挂起或进入挂起状态时,进行如下处理:
终端设备不进行随机接入过程,并把SCG对应的RRC重配置完成消息发送给MN;或者
终端设备先在目标SN进行随机接入过程,并把SCG对应的RRC重配置完成消息发送给MN,当终端设备在目标SN随机接入停止后,终端设备自行恢复挂起SCG。
需要说明的是,随机接入停止包括多种情况,例如随机接入失败、随机接入暂停、随机接入完成等,都可以称之为随机接入停止,在此不再赘述。
在上述技术方案中,终端设备在收到网络设备发送的指示发起随机接入的第三信息后,根据当前SCG是否挂起,对此时的随机接入依情况进行不同的处理。尤其当SCG挂起,且必须进行随机接入时,终端设备可以在SN进行随机接入之后自行恢复挂起SCG,而不需要网络设备重新通知终端设备进行SCG挂起,减少了终端设备和网络设备之间的信息交互。
第五方面,提供了几种终端设备在SCG挂起时需要发送上行数据时的不同处理方法,能够将需要从被挂起的SCG发送的上行数据发送出去。
在本申请技术方案中,能够使得原本需要通过SCG发送的数据,在该SCG被挂起后仍可以发送出去。
结合第五方面,在第五方面的某些实现方式中,如果预先规定在挂起SCG后终端设备仍可以在SCG发送物理随机接入信道(physical random access channel,PRACH),则当终端设备在挂起SCG后有上行数据需要从SCG发送时,可以发送PRACH。
可选地,可以引入定时器,在该定时器所规定的时间长度内,不发送PRACH,以避免一些小包频繁引发PRACH。例如,由网络设备配置和发送预设时长给终端设备,终端设备接收该预设时长,并在该预设时长内不发送PRACH。
可选地,该定时器可以在当网络设备通知终端设备挂起SCG时启动。
可选地,还可以引入缓存数据的门限,只有当缓存的数据超过该门限时才发送PRACH,以避免一些小包频繁引发PRACH。
例如,网络设备向终端设备发送第四信息,该第四信息用于指示终端设备不发送PRACH的预设时段,当终端设备接收到该第四信息后,根据该第四信息确定该预设时段,并在该预设时段内禁止发送PRACH。
又例如,网络设备向终端设备发送第五信息,该第五信息用于指示终端设备发送PRACH的缓存数据阈值,当终端设备接收到该第五信息后,根据该第五信息确定该缓存数据阈值,并在缓存数据的数据量小于该缓存数据阈值时禁止发送PRACH。
结合第五方面,在第五方面的一些实现方式中,如果预先规定在挂起SCG后终端设备不能发送PRACH,则当终端设备在挂起SCG后有上行数据需要从SCG发送时,可以通过终端设备、主站和辅站之间的信息交互,使得停止挂起SCG,并从该恢复地SCG将上行数据发送出去。
可选地,终端设备向主站发送第六信息,该第六信息用于指示终端设备需要从被挂起的SCG发送上行数据;主站接收该第六信息,并向终端设备发送用于指示终端设备停止挂起SCG的第二信息,以及向辅站发送终端设备需要从SCG发送数据的通知信息或者终端设备要停止挂起SCG的信息。
可选地,终端设备发送的第六信息是MAC层的指示信息,该指示信息用于指示SN的缓存数据报告(buffer status report,BSR),MN通知终端设备停止挂起SCG,并将该BSR的指示信息发送给SN,以指示SN在进入非挂起状态后能够根据该指示信息发送上行数据。这种方法能够使得在SCG挂起时需要发送的上行数据被缓存下来,并在停止挂起SCG后发送出去。
可选地,终端设备发送的第六信息是物理层的指示信息,则MN通知SN终端设备需要从被挂起的SCG发送上行数据,从而由SN通过PDCCH调度终端设备。
可选地,终端设备发送的第六信息是RRC层的指示信息,则MN通知终端设备停止挂起SCG,并通知SN终端设备即将停止挂起SCG。这种方法能够使得SN更早获知终端设备停止挂起的信息。
在上述方法中,通过终端设备、主站和辅站之间的信息交互,使得终端设备停止挂起SCG,并从该SCG将上行数据发送出去,避免了在挂起状态时丢失这些上行数据。
结合第五方面,在第五方面的一些实现方式中,如果预先规定SCG承载(bearer)对应的数据都可以在MCG承载中发送,则当终端设备在挂起SCG后有上行数据需要从该被挂起的SCG发送时,可以通过将SCG承载变为MCG承载或改变SCG分裂承载所对应的主路径的方式,将需要发送的上行数据从MCG发送出去。
可选地,网络设备可以预先为SCG承载配置备选的MCG承载,使得当SCG挂起时,终端设备可以把SCG承载变为MCG承载。例如,可以预先指示某个MCG承载对应某个或某些SCG承载,或某些MCG承载分别对应于某些SCG承载等,即建立多个MCG承载与多个SCG承载之间的映射关系,还可以确定需要为哪些数据无线承载(data radio bearer,DRB)配置SCG承载的备选MCG承载。则当终端设备需要从被挂起的SCG传输上行数据时,就可以根据该映射关系确定该被挂起的SCG的SCG承载对应的MCG承载,从而利用该对应的MCG承载将上行数据发送出去。
可选地,终端设备可以把SCG分离承载对应的主路径设置为MCG。也就是说,在SCG未挂起时,主路径可能是SCG,也可能是MCG。例如,当某个SCG挂起前主路径是该SCG时,在该SCG被挂起后,可以将其主路径改为对应的MCG。则终端设备可以利用新的主路径发送上行数据。
在本申请技术方案所提供的几种对需要从被挂起的SCG发送的上行数据的处理方法中,此时如果可以发送PRACH,则对发送PRACH进行一些时间间隔或缓存数据的限制,即只有当满足预设的条件时,终端设备才可以发起RACH过程。或者,终端设备通知MN需要在从挂起的SCG进行上行数据发送,从而由网络设备采用一些措施让终端设备停止挂起SCG并在SCG发送该上行数据,或者,通过一些措施使得终端设备可以把原来需要在SCG中发送的数据改为在MCG中发送。
第六方面,提供一种增加或修改辅站的方法,该方法包括:源MN向源SN发送增加或修改SN的请求信息,该信息中携带了源MN给源SN分配的SCG可以使用的服务小区索引范围;在一段时间之后,源MN给目标MN发送切换终端设备对应的MN的切换请求信息;目标MN为终端设备增加目标SN,给目标SN发送SN增加请求信息,向源MN发送切换请求确认信息,以及通知终端设备进行PCell切换。
在本申请技术方案中,在增加或修改SN时,通过在交互过程的请求信息中携带服务小区索引范围或服务小区索引等信息,使得目标MN不需要重新给SN配置新的服务小区索引范围,以及SN不需要重新给终端设备配置新的服务小区索引,即节省了增加或修改后的重新配置的信息交互,从而缩减信令开销。
第七方面,提供了一种通信装置,包括用于执行第一方面至第六方面任一种可能实现方式中的方法的各个模块或单元。
第八方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令或者数据,以实现上述第一方面至第六方面任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第九方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电 路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第六方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第六方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第六方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是部署场景EN-DC的示意图;
图2是部署场景NE-DC的示意图;
图3是部署场景NG EN-DC的示意图;
图4是适用于本申请实施例提供的通信方法的通信系统的示意图;
图5是SN的增加过程的示意性流程图;
图6是SN的释放过程的示意性流程图;
图7是本申请实施例提供的通信方法的示意性流程图;
图8是本申请实施例提供的通信方法的示意性流程图;
图9是本申请实施例提供的通信方法的示意性流程图;
图10是本申请实施例提供的通信方法的示意性流程图;
图11是本申请实施例提供的通信方法的示意性流程图;
图12是本申请实施例提供的一种增加或修改辅站的方法的示意流程图;
图13是本申请实施例提供的通信装置的示意性框图;
图14是本申请实施例提供的通信装置的示意性框图;
图15是本申请实施例提供的终端设备的结构示意图;
图16是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、新无线(new radio,NR)系统等第五代(5th generation,5G)系统,卫星通信系统,以及其他未来演进的通信系统等。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如NR)系统中的gNB或传输点(TRP或TP),或者,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。
需要说明的是,CU可以被划分为接入网设备,也可以被划分为核心网(core network,CN)设备,本申请对此不做限定。在本申请实施例中,为便于理解和说明,将CU划分为接入网设备。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信。该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站。这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等。这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备、非公共网络中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请对于终端设备的具体形式不作限定。
为便于理解本申请实施例,首先对本申请中涉及到的术语作简单说明。
1、小区(cell):小区是高层从资源管理或移动性管理或服务单元的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个小区,且每个小区可以对应一个或多个频点,或者说,每个小区可以看成是一个或多个频点的覆盖范围所形成的区域。小区可以是网络设备的无线网络的覆盖范围内的区域。
2、载波聚合(carrier aggregation,CA)技术,具体指为单个终端设备配置多个载波(小区)共同进行数据传输。
3、主小区(primary cell,PCell):主小区是工作在主载波上的小区。终端设备在该小 区进行初始连接建立过程,或开始连接重建立过程。在切换过程中该小区被指示为主小区。
4、主辅小区(primary secondary cell,PSCell):主辅小区是属于SCG的小区中,终端设备被指示进行随机接入或者初始物理上行控制信道(physical uplink control channel,PUSCH)传输(例如,进行SCG改变流程时省略了随机接入过程时)的小区。
5、辅小区(secondary cell,SCell):辅小区是工作在辅载波上的小区。一旦RRC连接建立,辅小区就可能被配置以提供额外的无线资源。另外需要说明的一点是,在DC架构中,有些协议中把MCG中除PCell外的小区,均可称为SCell,SCG中除PSCell外的小区,均可称为SCell。有些协议中把PSCell也称为一种SCell。
6、服务小区(serving cell):处于RRC_CONNECTED态的终端设备,如果没有配置CA/DC,如果仅有一个serving cell,即PCell;如果配置了CA/DC,则serving cell集合是由PCell和PSCell和SCell组成。每个载波(component carrier,CC)对应一个独立的Cell。配置了CA/DC的终端设备与1个PCell和至多31个SCell相连。某终端设备的PCell和所有SCell组成了该终端设备的serving cell集合。serving cell可指代PCell也可以指代PSCell,也可指代SCell。
7、切换(handover,HO):在无线通信系统中,当终端设备从一个小区向另一个小区移动/靠近时,为了保持终端设备的通信不中断,需要进行切换。
8、随机接入:随机接入是终端设备开始向尝试接入的网络设备发送随机接入前导码(preamble),至终端设备与网络设备间建立起连接的这段过程。随机接入流程例如可能在切换、RRC重建立等流程中发生。
本申请实施例主要针对双连接的场景进行的阐述,为便于理解,下面介绍先双连接的几种部署场景。以4G无线通信系统和5G无线通信系统为例。
在5G无线通信系统中,其总体架构由5GC(也称为5G Core,5GCN,5G核心网)和NG-RAN(也称为5G-RAN等)组成,其中5GC为5G无线通信系统的核心网,NG-RAN为5G无线通信系统的无线接入网(radio access network,RAN)。NG-RAN中包含两类RAN节点,即gNB和ng-eNB。gNB为终端设备提供新空口(new radio,NR)的用户面和控制面协议栈的终结点(trminations)。ng-eNB为终端设备提供演进的全球陆地无线接入(evolved universal terrestrial radio access,E-UTRA)用户面和控制面协议栈的终结点。多空口双连接(multi-Radio dual connectivity,MR-DC)是5G无线通信系统一个重要的场景。
图1是部署场景EN-DC的示意图,EN-DC(E-UTRA NR DC)也称为Option3系列(Option3series),即LTE基站(例如eNB)作为主站,NR基站(例如gNB)作为辅站进行双连接(dual connectivity,DC),其中,主站也可以称为锚点(anchor)基站或主节点(master node,MN),辅站也可以称为辅节点(secodary node,SN)。LTE基站与演进的分组核心网络(evloved packet core,EPC)之间存在控制面连接,也可以存在数据面连接,NR基站与EPC之间可以存在数据面连接,LTE基站和NR基站均可以为终端设备与EPC之间的数据传输提供空口传输资源。
图2是部署场景NE-DC的示意图,NE-DC(NR E-UTRA DC)也称为Option 4系列(Option4series),即NR基站(例如gNB)作为主站,LTE基站(例如ng-eNB)作为辅站进行DC,且主站和辅站都连接5GC,具体地,NR基站与5GC之间存在控制面连接, 也可以存在数据面连接,LTE基站与5G之间可以存在数据面连接,LTE基站和NR基站均可以为终端设备与5GC之间的数据传输提供空口传输资源。
图3是部署场景NG EN-DC的示意图,NG EN-DC(next generation E-UTRA NR DC)也成为Option 7系列(Option7series),即LTE基站(例如ng-eNB)作为主站,NR基站(例如gNB)作为辅站进行DC。与EN-DC不同的是,主站和辅站都连接5GC,具体地,LTE基站与5GC之间存在控制面连接,也可以存在数据面连接,NR基站与5G之间可以存在数据面连接,LTE基站和NR基站均可以为终端设备与5GC之间的数据传输提供空口传输资源。
另外,NR-DC(或称之为NR-NR DC)的部署场景中,主站与辅站均为NR基站(例如gNB),二者均连接5GC,具体地,作为主站的NR基站与5GC之间存在控制面连接,也可以存在数据面连接,作为辅站的NR基站与5G之间可以存在数据面连接,主站和辅站均可以为终端设备与5GC之间的数据传输提供空口传输资源。
此外,还可以支持LTE/5GC的DC,即主站与辅站均为LTE基站(例如ng-eNB),二者均连接5GC,具体地,作为主站的LTE基站与5GC之间存在控制面连接,也可以存在数据面连接,作为辅站的LTE基站与5G之间可以存在数据面连接,主站和辅站均可以为终端设备与5GC之间的数据传输提供空口传输资源。
本申请对具体的DC架构不做限制。既适用于传统LTE的DC,也适用于MR-DC以及未来的其他DC架构等。在下文中,将EN-DC、NE-DC、NG EN-DC和NR-DC统称为MR-DC。
由于终端设备在一个基站下可以同时接收多个小区的服务,因此MN为终端设备提供的服务小区组也可以称为主小区组(master cell group,MCG),类似的SN为UE提供的服务小区组称为辅小区组(secondary cell group,SCG)。MCG和SCG其中分别包含至少一个Cell。当MCG中仅有一个Cell时,该Cell为终端设备的主小区,即PCell。当SCG中仅有一个Cell时,该Cell为UE的主辅小区,即PSCell。当MCG或SCG有多个小区时,PCell和PSCell的定义前文解释。NR中为了归一化各种名词,将PCell和PSCell统称为特别小区(Special Cell,SpCell)。当MCG或SCG中有多个小区时,将除了SpCell以外的小区称为辅小区,即SCell。此时各个小区组中的SCell与SpCell进行载波聚合,共同为终端设备提供传输资源。当为终端设备配置了DC操作,终端设备就需要同时进行MCG和SCG两个空口链路的监听和数据传输。
图4是适用于本申请实施例的通信方法和通信装置的通信系统的示意图。如图4所示,该通信系统400可以包括至少一个网络设备,例如图4所示的网络设备410和网络设备420;该通信系统400还可以包括至少一个终端设备,例如图4所示的终端设备430。其中,该终端设备430可以是移动的或固定的。网络设备410和网络设备420均为可以通过无线链路与终端设备430通信的设备,如基站或基站控制器等。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端设备进行通信。该无线通信系统400还可以包括至少一个核心网,例如图4所示的核心网440,该核心网440可以是4G核心网或5G核心网等。
核心网440和终端设备430之间可以构成上文所述部署场景的双连接架构。例如,网络设备410是作为主站的LTE基站,网络设备420是作为辅站的NR基站,核心网440 是4G核心网EPC,网络设备410与核心网440之间存在控制面连接和数据面连接,网络设备420与核心网440之间存在数据面连接,网络设备410和网络设备420均为终端设备430与核心网440之间的数据传输提供空口传输资源。即构成了图1所示双连接的部署场景。此时,网络设备410对应于图1所示LTE eNB,网络设备420对应于图1所示gNB,核心网对应于图1所示EPC。与之相似,图4所示通信系统还可以构成上文所述其他部署场景的双连接架构。
图4示例性地示出了两个网络设备和一个终端设备,但这不应对本申请构成任何限定。可选地,该通信系统400可以包括更多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备。可选地,该通信系统400还可以包括多个核心网设备。本申请实施例对此不做限定。
上述各个通信设备,如图4中的网络设备410、网络设备420或终端设备430,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
可选地,该无线通信系统400还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
下面结合附图详细说明本申请实施例提供的方法。
为了便于理解本申请实施例,首先结合图5和图6介绍网络设备为终端设备配置DC的过程,即SN的增加和SN的释放过程。
图5为EN-DC中SN的增加过程的示意性流程图。如图5所示,SN的增加包括步骤501至步骤508。
501、MN向SN发送SN增加请求信息,用于请求SN为UE的承载分配资源。例如,在EN-DC下,该承载可以指演进的无线接入承载(evolved radio access bearer,E-RAB);在连接5GC的DC架构下,该承载可以指协议数据单元(protocol data unit,PDU)session或业务质量流(quality of service flow,QOS flow)。
502、SN向MN发送SN增加请求确认信息。SN为UE提供配置信息。对于需要分配SCG空口资源的承载,SN提供SCG RLC承载(bearer)的配置,以及SCG小区配置(即PSCell和SCell)。对于数据直接从核心网到达SN的承载,UE的PDCP实体终结在SN上,SN提供PDCP配置,并将核心网的数据通过PDCP处理后,通过SCG RLC承载和/或MCG承载发送给UE。此外,如果有需要SCG传输资源的承载,则SN触发UE进行RACH,从而获得SN空口资源的同步。SN将上述为UE提供的配置信息发送给MN。
503、MN向UE发送重配置消息,该消息包含了SN给UE的配置。
504、UE向MN发送重配置完成消息。即UE成功应用了重配置消息中的配置,UE向MN发送重配置完成消息。
505、MN告知SN UE完成了重配置。
506、UE向SN发起随机接入,从而后续开始数据传输。
需要说明的是,步骤504,506之前并没有严格的先后关系(但505是在504之后)。
在图5所示增加SN的过程中,由主站向辅站发送增加请求,辅站响应该增加请求后,主站对终端设备进行重配置,使得终端设备可以和辅站之间能够进行数据传输。
图6为SN的释放过程的示意性流程图。
601、MN向SN发送SN释放请求信息。
602、SN向MN发送确认SN释放的信息。即SN确认了进行SN释放,并将确认信息发送给MN。
603、MN向UE发送重配置信息,令UE释放整个SCG配置。
604、UE向MN发送重配置完成消息。即UE成功应用了重配置消息中的配置,UE向MN发送重配置完成消息。
在图6所示释放SN的过程中,在主站向辅站发送释放请求,辅站确认后把确认信息发送给主站,再由主站对终端设备进行重配置,使终端设备释放对SN的配置。
由图5和图6可以看出,SN的增加和释放都需要UE和MN以及MN和SN之间进行多次信息交互,并且需要在空口上为UE进行重配置。此外,UE需要完全释放SCG的配置,后面SN增加时再重新添加一套完整的SCG配置。
图7是本申请实施例提供的通信方法的示意性流程图。图7是从终端设备的角度,对挂起SCG的过程进行阐述。
701、终端设备接收第一信息,该第一信息用于指示终端设备将SCG挂起。
需要说明的是,该第一信息是由网络设备发送的,该网络设备可以是MN也可以是SN,也就是说,该第一信息可以是MN发送的,也可以是SN发送的,MN或SN可以通过多种方式发送第一信息给终端设备,例如通过MAC控制单元(control element,CE)或RRC消息或L1的指示信息等。
702、终端设备根据第一信息挂起SCG。
需要说明的是,本申请所述的挂起(suspend/suspension)也可以称为去激活(deactive/deactivation),还可以称为非活跃(inactive/inactivation),或者还可以称为休眠或睡眠(dormancy)等。本申请所述的挂起状态(suspend state)也可以称为去激活状态(deactive state),还可以称为非活跃状态(inactive state),或者还可以称为休眠状态或睡眠状态(dormant state)等。
在本申请中,所述的挂起可以是指终端设备暂时停止通过SCG的通信链路进行数据传输,但终端设备保留或存储SN的部分或全部配置,以用于快速恢复所述SCG的通信链路。类似地,PScell为挂起状态表示PScell的配置可以被保留但通过该PScell的数据传输暂停。
703、终端设备变更MCG的配置参数。
在正常状态时(在本申请实施例中是指SCG未挂起时或SCG停止挂起后),终端设备对于MN和SN具有不同的限制,例如功率分配、PDCCH盲检分配等的不同限制,又例如限制终端设备发送上行数据的时段等。这些限制均可以理解为控制终端设备不同操作的配置参数,也可以理解为建立或维持终端设备与MN之间和终端设备与SN之间的连接的配置参数,终端设备只能在相应的配置参数所限制的范围内进行相应的操作,以建立和维持与MN和SN之间的连接。例如,通过配置终端设备可用的上行传输时段,控制终端设备可以在哪些时段或哪些时刻发送上行数据。
本申请实施例在SCG挂起时,通过改变MCG原有的配置参数,即变更MCG的配置参数,使得终端设备的吞吐率得到提高。
可选的,变更MCG的配置参数,可以理解为改变配置参数对应的终端设备的行为。
需要说明的是,变更MCG的配置参数可以发生在开始SCG挂起、进行SCG挂起期间和SCG挂起以后(也可以称之为SCG挂起状态)的任何时间,由不需要具体区分处于哪个时间段,因此为了方便描述,统一使用“挂起SCG”或“SCG挂起时”等能反映对“挂起SCG”这一过程的描述。
当根据类别进行描述,上述配置参数例如可以包括可用上行传输时段、最大发射功率、控制信道的盲检参数、频段组合(band combination)等各类参数中的一种或多种参数。
当根据配置的对象进行描述,上述配置参数又可以包括终端设备的配置参数、MCG的配置参数、SCG的配置参数等参数中的一种或多种。
进一步,终端设备的配置参数又可以包括终端设备的可用上行传输时段、终端设备的最大发射功率、终端设备的下行控制信道的盲检参数、终端设备的频段组合等各类参数中的一种或多种。同理还有MCG的各类配置参数和SCG的各类配置参数,在此不再赘述。
当根据终端设备在SCG是否挂起进行描述,又可以分为SCG挂起时的配置参数和SCG未挂起时的配置参数。
需要说明的是,SCG挂起时的配置参数又可以理解为SCG挂起状态的配置参数、SCG挂起后的配置参数,或者对应于SCG挂起状态的配置参数等。SCG未挂起时的配置参数又可以理解为SCG非挂起时的配置参数、SCG挂起前的配置参数、SCG结束/停止挂起后的配置参数、SCG非挂起状态的配置参数、正常状态时的配置参数、原有配置参数等。
可选地,终端设备可以根据网络设备发送的预设配置参数,变更MCG的配置参数。该预设配置参数包括MCG的配置参数和SCG的配置参数。
需要说明的是,上述预设配置参数包括分别对应于SCG挂起时和SCG未挂起时各自的MCG的配置参数和SCG的配置参数。
当终端设备接收到该预设配置参数后,根据其中对应于SCG挂起时的预设配置参数,变更MCG的配置参数。
也就是说,对于SCG挂起时和SCG未挂起时预设了不同的配置参数,终端设备可以根据现在的SCG的实际状态进行配置参数的选择。例如,在预设配置参数中分别配置了SCG挂起时和SCG未挂起时的可用上行传输时段,则终端设备可以根据实际状态是否挂起SCG,选择预先分配的可用上行传输时段。又例如,在预设配置参数中分别配置了SCG挂起时和SCG未挂起时的盲检参数,则终端设备可以根据实际SCG是否挂起,选择预先分配的盲检参数。
应理解,上述预设配置参数可以是网络设备发送给终端设备的,也可以是预存在终端设备中的。
还应理解,上述预设配置参数、MCG的配置参数等各配置参数均可以包括可用上行传输时段、最大发射功率、控制信道的盲检参数等参数中的一种或多种。
在变更MCG的配置参数时,可以根据MCG在SCG未挂起时的配置参数进行变更,也可以根据终端设备在SCG未挂起时的配置参数进行变更,还可以根据SCG在SCG未挂起时的配置参数进行变更。
可选地,在变更MCG的配置参数时,还可以变更配置参数在MCG与所述SCG之间的分配。也就是说对SCG的配置参数和MCG的配置参数在SCG未挂起时的分配比例或规则进行调整,从而改变MCG的配置参数。例如,终端设备的可用上行传输时段为T,SCG和MCG在SCG挂起前分别为T/2和T/3,则在SCG挂起后可以增大MCG的配比,例如可以将原先SCG的上行传输时段T/3的部分和全部转为分配给MCG,或者直接将MCG的可用上行传输时段变更为T等。在SCG挂起后,通过对配置参数的重新分配,能够实现对各配置参数所对应的资源的重新分配,使得MCG的配置得到优化,以适应SCG挂起时的特殊需求。又例如,在MR-DC(比如EN-DC)中,网络设备会配置MCG中的可用子帧分配(subframeAssignment)。如果网络设备为终端设备配置了MCG中的subframeAssignment,则在SCG未挂起时,终端设备在除偏移上行子帧之外的任何子帧上都不能发送上行物理信道或信号。这里的偏移上行子帧为终端设备通过对网络设备配置的在MCG的subframeAssignment引用一个偏移之后得到的上行子帧。该偏移也是网络设备配置给终端设备的。可选的,SCG未挂起时,该subframeAssignment的限制可以在服务小区的帧类型为帧类型1(为全双工或半双工FDD通信系统)或帧类型2(为TDD通信系统)时才生效。在SCG挂起时,则终端设备可用的发送上行物理信道或信号的上行子帧不受SCG未挂起时MCG中subframeAssignment的约束,即终端设备可以在MCG的所有的上行子帧上发送上行物理信道或信号。
可选地,终端设备可以根据网络设备发送的配置参数,变更MCG的配置参数。该网络设备发送的配置参数可以包括MCG的配置参数、SCG的配置参数、终端设备的配置参数中的一种或多种。
例如,终端设备只接收了终端设备的配置参数,就可以直接将终端设备的配置参数赋值给MCG的配置参数,从而变更MCG的配置参数。
又例如,终端设备接收了MCG的配置参数和SCG的配置参数,就可以把SCG的配置参数转为分配给MCG,从而变更MCG的配置参数。
可选地,终端设备还可以根据SCG原有的配置参数(即SCG在非挂起状态时的配置参数),变更MCG的配置参数。
当配置参数包括可用上行传输时段时,可以通过下面的方法,变更挂起状态时的MCG的配置参数。
可用上行传输时段是指终端设备可以发送上行物理信道或信号的时段,即用于表示终端设备可以在哪些时段或哪些时刻发送上行物理信道或信号。如果在SCG未挂起时,网络设备给终端设备配置了MCG和SCG各自可用的上行传输时段,即限制了MCG和SCG分别在哪些时段可以发送上行物理信道或信号。因此在SCG挂起时,可以将MCG的可用上行传输时段进行扩展变更,使得MCG能够在更多的时段上进行数据传输。也就是说,通过上述对MCG的可用上行传输时段的扩展,MCG可以不遵守原有的分配规则,能够在更多的可传输数据的时段进行上行数据的传输,即不受之前主站下发的终端设备在MCG所能用的上行时段的配置参数的限制。
例如,将SCG未挂起时MCG的可用上行传输时段进行扩展,使其还包括在SCG未挂起时,SCG的可用上行传输时段、除MCG和SCG之外的其它可用上行传输时段中的部分或全部。相当于将原先分配给SCG的部分或全部可用上行传输时段附加给MCG,还 可以包括将原先除分配给MCG和SCG的可用上行传输时段以外的其他可用时段附加给MCG。又例如,还可以将终端设备的可用上行传输时段确定为挂起后MCG的可用上行传输时段。
举例说明,假设网络设备给终端设备分配的可用上行传输时段为T1-T10,且分配了MCG可在时段T1-T5进行上行传输,SCG可在时段T9-T10进行上行传输。则当挂起SCG后,可以将MCG的可用上行传输时段进行如下变更:
(1)将MCG的可用上行传输时段变更为T1-T5和T9-T10,即相当于将原先分配给SCG的时段全部转为分配给MCG;
(2)将MCG的可用上行传输时段变更为T1-T5和T9,即相当于将原先分配给SCG的时段的部分转为分配给MCG;
(3)将MCG的可用上行传输时段变更为T1-T9,即相当于将原先分配给SCG的时段的部分转为分配给MCG,并且将原先未分配给MCG和SCG的其他全部可用时段分配给MCG;
(4)将MCG的可用上行传输时段变更为T1-T7,即相当于将原先未分配给MCG和SCG的其他部分可用时段分配给MCG;
(5)将MCG的可用上行传输时段变更为T1-T10,即相当于MCG可以在终端设备所对应的所有可用上行传输时段进行上行数据的传输。
应理解,上述例子只是示例说明,不存在数值和先后顺序的限制,即T1-T10的排序并没有先后,在此不再赘述。
在上述对MCG的可用上行传输时段变更的过程中,当终端设备挂起SCG后,将原先分配给SCG的可用上行传输时段的部分或全部时段分配给MCG,或者将原先空置的可用时段(即除MCG和SCG的可用上行传输时段之外的其他可用上行传输时段)分配给MCG。这种方法相当于扩展了MCG的可用上行传输时段,使得MCG能在更多的时段进行上行数据的传输。
可选地,该可用上行传输时段可以是MN发送给终端设备的,也可以是SN发送给终端设备的,也可以是MN和SN都发送给终端设备的,例如在现有标准中是MN发送给终端设备的。
需要说明的是,网络设备发送的可用上行传输时段可以包括终端设备的可用上行传输时段、MCG的可用上行传输时段、SCG的可用上行传输时段中的一种或多种。
例如,网络设备可以只发送终端设备的可用上行传输时段,则终端设备可以将MCG的可用上行传输时段变更为终端设备的可用上行传输时段,即终端设备可以在所有终端设备的可用上行传输时段中进行上行传输。
又例如,网络设备可以发送MCG的可用上行传输时段和SCG可用上行传输时段,则终端设备可以将原先分配给SCG的部分或全部可用上行传输时段分配给MCG。
又例如,网络设备可以发送终端设备的可用上行传输时段和SCG可用上行传输时段,则终端设备可以将原先分配给SCG的部分或全部可用上行传输时段分配给MCG,还可以将原先终端设备的可用上行传输时段中除MCG和SCG的可用上行传输时段之外的其它部分或全部可用时段分配给MCG。
当配置参数包括最大发射功率时,可以通过下面的方法,变更SCG挂起时的MCG的 配置参数。
如果在非挂起状态时,网络设备通过RRC消息配置了终端设备在MCG的最大发射功率为Pmax_mcg,配置了终端设备在SCG的最大发射功率为Pmax_scg,且Pmax_mcg与Pmax_scg之和小于或等于终端设备的最大发射功率Pmax。则终端设备在SCG挂起时,可以将MCG的最大发射功率变更为Pmax_mcg+Pmax_scg,或者将MCG的最大发射功率变更为终端设备的最大发射功率(例如预先约定的终端设备的最大发射功率)或变更为预先约定的终端设备在MCG的最大发射功率(比如3GPP中RAN4规定的终端设备在MCG的最大发射功率)。进一步,还可以把Pmax_scg按比例或平均分配到MN的各个载波的最大发射功率中,从而限制终端设备在每个载波的最大发射功率。
可选地,Pmax_mcg可以是MN配置给终端设备的,也可以是SN配置给终端设备的。
如果在SCG未挂起时,网络设备通过RRC消息配置了终端设备在MCG的最大发射功率为Pmax_mcg,配置了终端设备在SCG的最大发射功率Pmax_scg,且Pmax_mcg与Pmax_scg之和大于终端设备的最大发射功率Pmax。则终端设备在SCG挂起时,可以将MCG的最大发射功率变更为终端设备的最大发射功率(例如预先约定的终端设备的最大发射功率)。进一步,还可以把Pmax_scg按比例或平均分配到MN的各个载波的最大发射功率中,从而限制终端设备在每个载波的最大发射功率。
也就是说,当终端设备在MCG的最大发射功率Pmax_mcg与在SCG的最大发射功率Pmax_scg之和小于或等于终端设备的最大发射功率时,将该二者之和确定为MCG的最大发射功率;当该二者之和大于终端设备的最大发射功率时,将终端设备的最大发射功率确定为MCG的最大发射功率。通过改变功率的分配,使得终端设备在SCG挂起时,增大了MCG的最大发射功率。而将SCG的最大发射功率按比例或平均分配到主站的各个载波的最大发射功率中,还可以实现更精细的变更,从载波层级上控制每个载波的最大发射功率。
可选地,还可以根据不同情况对终端设备在MCG的最大发射功率进行配置,例如,当终端设备在MCG和SCG的上行发送有重叠时(比如终端设备在MCG和SCG的上行发送时隙有重叠),MCG沿用SCG未挂起时的最大发射功率,否则MCG采用预先约定的终端设备的最大发射功率(比如3GPP中RAN4规定的终端设备的最大发射功率)。
可选地,终端设备可以在MCG有上行物理信道或信号发送时才进行判断MCG和SCG的上行发送是否有重叠,也可以是根据一定的规则实现判断。
在上述方法中,通过改变功率的分配,使得终端设备在SCG挂起时,可以充分利用更多的上行功率发送上行数据,从而提高终端设备发送数据的吞吐率。
当配置参数包括控制信道的盲检参数时,可以通过下面的方法,变更SCG挂起时的MCG的配置参数。
物理下行控制信道(physical downlink control channel,PDCCH)盲检参数例如可以是终端设备在每个CG(MCG或SCG)中分别对应的PDCCH盲检对应的小区参考数目(the reference number of cells for PDCCH blind detection for the CG)。
假设在SCG未挂起时,网络设备预先给终端设备配置了分别对应于SCG挂起时和SCG未挂起时的两组PDCCH盲检参数。则终端设备可以根据SCG是否挂起,选择预先配置的PDCCH盲检参数。
可选地,网络设备配置的预设盲检参数可以包括第一预设盲检参数和第二预设盲检参数,其中,第一预设盲检参数是MCG在SCG挂起时使用的盲检参数,第二预设盲检参数是MCG在SCG未挂起时使用的盲检参数。则终端设备可以根据现在的实际状态,选择相应的盲检参数。例如在SCG挂起时选择第一预设盲检参数,在SCG未挂起时选择第二预设盲检参数。
可选地,终端设备可以根据SCG是否挂起,选择PDCCH盲检参数。例如,在SCG挂起时选择,终端设备在MCG的盲检能力只受终端设备的能力的限制。换而言之,在SCG挂起时,终端设备可以采用单连接时的盲检参数,相当于使MN的盲检能力回退到单连接时。例如,如果终端设备上报了载波聚合PDCCH盲检能力PDCCH-BlindDetectionCA(比如终端设备在配置了超过了4个载波之后的PDCCH盲检能力),则可以设置MN的PDCCH盲检能力只受PDCCH-BlindDetectionCA限制,相当于只考虑PDCCH-BlindDetectionCA这一项盲检参数;否则,终端设备在MN的PDCCH盲检能力只受MN中配置的服务小区数目的限制或当前MN和SN配置的服务小区数目之和的限制。
对于MN和SN之间的盲检分配,终端设备在SCG挂起时可以根据预设值变更终端设备在MCG的盲检参数,使得终端设备在MCG可以检测更多的PDCCH,从而使网络设备可以更灵活地采用各种PDCCH调度终端设备,提高终端设备的吞吐率。
当配置参数包括频段组合(band combination)时,可以通过下面的方法,变更SCG挂起时的MCG的配置参数。
频段组合可以包括两部分,一部分是Band参数,主要是频点对应的Band号、已经在该Band号中进行CA对应的带宽等级;另外一部分是特性集合(feature set),包括上行和下行可以使用的一些能力,例如是否支持在一个载波的某个子载波间隔进行跨载波调度其他载波的不同子载波间隔的传输,是否支持两个物理上行控制信道(physical downlink control channel,PUCCH)组,下行支持的多输入多输出(multi-input multi-output,MIMO)层数,下行支持的调制阶数等。
可选地,如果终端设备在SCG挂起时可以进行SCG未挂起时的测量配置或发送上行信息,则MN和SN之间可以重新进行频段组合协商,即在挂起SCG前后,MN和SN之间可以采用不同的频段组合。
可选地,如果终端设备在SCG挂起状态时可以不进行SCG未挂起时的测量配置或不进行发送上行数据,则可以使终端设备保留SCG挂起之前的SCG配置,但可以使频段组合不受之前的限制,例如配置更多的MCG的频点或采用更高的MIMO能力。
上述对频段组合的配置参数的变更,使得在SCG挂起时,网络设备可以更灵活地配置MCG,例如配置更多的MCG的频点或采用更高的MIMO能力,从而提高终端设备的吞吐率。
在图7所示实施例中,在SCG挂起时终端设备只能通过MCG进行数据传输,而通过对MCG的配置参数进行变更,使得MCG的配置参数更适合挂起后的情况。与沿用SCG未挂起时的配置参数相比,配置参数的设置更加合理。此外,在SCG挂起时,将原先分配给SCG的资源或未加以利用的资源附加到MCG中去,使得MCG可以利用的资源增加,从而提高终端设备吞吐率。
在本申请实施例中,还可以通过图8所示方法,使终端设备停止挂起SCG,即从挂起 状态恢复到非挂起状态。图8为本申请实施例提供的通信方法的示意性流程图。
801、终端设备接收第二信息,该第二信息用于指示终端设备进入SCG非挂起状态。
需要说明的是,该第二信息可以是由网络设备发送的,该网络设备可以是MN也可以是SN。还需理解发送该第二信息的网络设备可以是与图7所述发送第一信息的网络设备相同,也可以是与图7所述发送第一信息的网络设备不同。
可选地,第二信息包括用于指示终端设备停止挂起SCG的信息。因此,当终端设备接收到该第二信息后,就可以根据该第二信息直接停止挂起SCG。
可选地,第二信息还可以包括用于指示第一预设值的信息,该第一预设值用于表示终端设备进行SCG挂起的时长。终端设备测量实际的SCG挂起状态的时长。因此,当终端设备测得的实际SCG挂起的时长大于或等于该第一预设值时,自动进入SCG非挂起状态。可选地,终端设备设置一个定时器(timer),当该定时器过期后,进入SCG非挂起状态。
可选地,该第一预设值还可以是储存在终端设备中的值,当进入SCG挂起状态后,终端设备可以根据实际测量的时长和该第一预设值自行判断是否进入SCG非挂起状态,而不需要等待网络设备的指示信息。
可选地,该第一预设值可以根据业务类型配置。例如,对于业务时延要求比较高的业务,就可以定义对应较短时长的第一预设值;对于业务时延要求比较低的业务,则可以定义对应较长时长的第一预设值。也可以根据历史挂起时长的统计数据确定第一预设值。
802、终端设备根据第二信息停止挂起SCG。
可选地,终端设备可以在接收到第二信息后,停止挂起SCG。例如,当接收到第二信息时,终端设备正处于SCG挂起状态,则可以根据第二信息从SCG挂起状态恢复到SCG非挂起状态;当接收到第二信息时,终端设备并不在SCG挂起的过程或过期后的状态,即处于SCG非挂起状态,则相当于保持该SCG的非挂起状态。
例如,第二信息包括用于指示终端设备停止挂起SCG的信息,当终端设备接收到该第二信息后,就可以根据该第二信息直接进入SCG非挂起状态。
又例如,第二信息还可以包括用于指示第一预设值的信息,该第一预设值用于表示终端设备进行SCG挂起的时长。终端设备测量实际的SCG挂起状态的时长,当终端设备测得的实际SCG挂起的时长大于或等于该第一预设值时,停止挂起SCG。
可选地,该第一预设值还可以是储存在终端设备中的值,终端设备可以根据实际测量的SCG挂起时长和该第一预设值自行判断是否进入SCG非挂起状态,而不需要等待网络设备的指示信息。
当终端设备停止挂起SCG后,可以重新使用之前的MN和SN在非挂起状态时的配置参数。
应理解,步骤801可以不执行,例如,当终端设备可以自行根据预存的第一预设值判断是否停止挂起SCG时,就不需要发送第二信息的步骤801。
还应理解,在实际通信过程中,图7和图8所示通信过程可以单独实现或者组合实现,当组合实现时,两个通信过程发生的先后顺不存在限定,例如,可以是先接收到了第一信息,并根据第一信息挂起SCG;也可以是先接收到了第二信息,并根据第二信息停止SCG挂起等,在此不再赘述。
图9是本申请实施例提供的通信方法的示意性流程图。如图9所示,网络设备可以向 终端设备发送第一信息,使得终端设备能够根据第一信息将SCG的配置挂起,网络设备还可以向终端设备发送第二信息,使得终端设备能够根据第二信息从SCG挂起状态恢复到正常状态。图9是从网络设备的角度对本申请实施例进行阐述。
901、网络设备向终端设备发送第一信息,该第一信息用于指示终端设备将SCG挂起。
应理解,此处发送第一信息的网络设备可以是MN,也可以是SN,通过SN发送第一信息的方式在图9中未示出。
902、网络设备向终端设备发送第二信息,该第二信息用于指示终端设备根据第二信息进入SCG非挂起状态。
可选地,第二信息可以直接指示终端设备进入SCG非挂起状态。
可选地,第二信息还可以包括用于指示第一预设值的信息,该第一预设值用于表示终端设备进行SCG挂起的时长。
在通信过程中,随机接入可能出现在切换、RRC重建立等流程中。而当终端设备已经接收到挂起的指令,而又需要在SN进行随机接入,就需要对随机接入进行一定的处理。图10是本申请实施例提供的通信方法的示意性流程图。如图10所示,终端设备可以在接收到指示挂起的第一信息、或接收到指示停止挂起SCG的第二信息时,对随机接入过程根据不同情况进行不同的处理。图10从终端设备的角度,对在SCG挂起时对随机接入的处理方法进行阐述。
1001、终端设备接收网络设备第三信息,第三信息用于指示终端设备发起增加PSCell、修改PSCell或改变PSCell。
需要说明的是,第三信息可以是MN发送给终端设备的,也可以是SN发送给终端设备的。对于增加PSCell或修改PSCell或改变PSCell而言,SN会产生RRC消息给终端设备,SN先发送给MN,MN把SN发送的RRC消息嵌入到MN自己的RRC消息中发送给终端设备,即在MN给终端设备发送的RRC消息中包含一个容器(contanier),该contanier中包含上述SN发送的RRC消息。其中,第三信息可以是具有同步的重配消息(ReconfigurationWithSync)。
1002、终端设备响应第三信息。
当终端设备在SCG未挂起时,终端设备针对目标SN进行随机接入过程,并把SCG对应的RRC重配置完成消息发送给MN。
当SCG挂起时,即终端设备开始挂起SCG或正在进行SCG挂起或进入SCG挂起状态时,进行如下处理:
终端设备不进行随机接入过程,并把SCG对应的RRC重配置完成消息发送给MN;或者,
终端设备先针对目标SN进行随机接入过程,并把SCG对应的RRC重配置完成消息发送给MN,当终端设备针对目标SN的随机接入停止后,终端设备自行恢复挂起SCG。
需要说明的是,随机接入停止包括多种情况,例如随机接入失败、随机接入暂停、或者随机接入完成等,都可以称之为随机接入停止,在此不再赘述。
1003、终端设备发送对第三信息的响应给网络设备。
终端设备发送对第三信息的响应给MN。如果第三信息中携带了SN发送的RRC消息,则终端设备也需要给SN发送响应。终端设备把给SN的响应信息包含在MN的RRC消息 中,MN再把对应给SN的响应消息发送给SN。
需要说明的是,步骤1002和步骤1003的执行顺序不存在限定。
在图10所示通信方法中,终端设备在收到网络设备发送的指示发起随机接入的第三信息后,根据当前SCG是否挂起,对此时的随机接入依情况进行不同的处理。尤其当SCG挂起,且必须进行随机接入时,终端设备可以针对目标SN的随机接入停止之后自行恢复挂起SCG,而不需要网络设备重新通知终端设备进行SCG挂起,减少了终端设备和网络设备之间的信息交互。
应理解,图10所述挂起SCG时,相当于已经接收第一信息,进行挂起的期间或已经执行完图7所示过程,进入SCG挂起状态。图10所述在SCG未挂起时,相当于未执行图7所示过程,或者已经执行完图8所示过程,停止挂起SCG之后。此外,图10所示实施例中,本申请不限定终端如何实现SCG挂起状态/非挂起状态的具体方式,因此,图10所示实施例与图7或图8所示实施例可以组合实施,图10所示实施例也可以单独实施,不做限定。
在终端设备挂起SCG时,还可能会出现需要终端设备进行上行数据传输的情况,本申请实施例提供几种终端设备在SCG挂起时需要在SCG发送上行数据时的不同处理方法,下面对这些方法进行介绍。
如果预先规定在挂起SCG后终端设备仍可以在SCG发送物理随机接入信道(physical random access channel,PRACH),则当终端设备在挂起SCG后有上行数据需要从SCG发送时,可以发送PRACH。
可选地,为了避免一些小包频繁引发PRACH,可以引入定时器,在该定时器所规定的时间长度内,不发送PRACH。例如,由网络设备配置和发送预设时长给终端设备,终端设备接收该预设时长,并在该预设时长内不发送PRACH。
可选地,该定时器可以在当网络设备通知终端设备挂起SCG时启动。
可选地,为了避免一些小包频繁引发PRACH,还可以引入缓存数据的门限,只有当需要通过SCG发送的缓存数据超过该门限时才发送PRACH。例如,网络设备配置和发送预设缓存数据的门限给终端设备,当终端设备实际缓存的数据超过该预设缓存数据的门限之后才发送PRACH。
例如,网络设备向终端设备发送第四信息,该第四信息用于指示终端设备不发送PRACH的预设时段,当终端设备接收到该第四信息后,根据该第四信息确定该预设时段,并在该预设时段内不发送PRACH。
又例如,网络设备向终端设备发送第五信息,该第五信息用于指示终端设备发送PRACH的缓存数据阈值,当终端设备接收到该第五信息后,根据该第五信息确定该缓存数据阈值,并在缓存数据的数据量小于该缓存数据阈值时不发送PRACH。
如果预先规定在挂起SCG后终端设备不能发送PRACH,则当终端设备在挂起SCG后有上行数据需要从SCG发送时,可以采用图11所示的方法发送该上行数据。图11是本申请实施例提供的通信方法的示意性流程图。如图11所示,可以通过终端设备、主站和辅站之间的信息交互,使得该上行数据能够发送出去。
1101、终端设备给MN发送从被挂起的SCG发送上行数据的指示信息。
终端设备向MN发送第六信息,该第六信息用于指示终端设备从被挂起的SCG发送 上行数据。
可选地,该第六信息可以是MAC层的指示信息,也可以是物理层的指示信息,还可以是RRC层的指示信息。
1102、MN给UE发送指示UE停止挂起SCG的信息。
MN向终端设备发送第二信息,该第二信息用于指示终端设备停止挂起SCG,即进入SCG非挂起状态。需要说明的是,该第二信息可以是图9所述第二信息。
也就是说MN接收到该第六信息后,根据该第六信息获知终端设备需要从SCG发数据,就可以发送第二信息通知终端设备将被挂起的SCG恢复到非挂起状态。
1103、MN通知SN终端设备需要从被挂起的SCG发送上行数据,或者通知SN终端设备要停止挂起SCG。
MN根据第六信息确定向SN发送的第七信息,并将该第七信息发送给SN。
可选地,第六信息可以是缓存状态报告(buffer status report,BSR),终端设备在给MN发送的BSR中携带SN的BSR信息。当MN接收到第六信息时,MN将该SN的BSR信息即第七信息发送给SN,以指示SN在SCG进入非挂起状态后能够根据第七信息调度上行数据。这种方法能够使得在SCG挂起时需要发送的上行数据被缓存下来之后,通知网络设备,从而网络设备通知终端设备停止SCG挂起,从而在SCG调度上行数据。
可选地,当MN接收到的第六信息是物理层的指示信息时,则该第七信息可以用于通知SN通过PDCCH调度终端设备。
可选地,当MN接收到的第六信息是RRC层的指示信息时,则该第七信息可以用于通知SN终端设备即将停止挂起SCG。在这个例子中,MN在接收到第六信息后,分别给终端设备发送第二信息,给SN发送第七信息,而不需要等终端设备停止挂起SCG之后再发送第七信息。
在上述方法中,通过终端设备、主站和辅站之间的信息交互,使得终端设备停止挂起SCG,并从该SCG将上行数据发送出去,避免了在挂起状态时丢失这些上行数据。
如果预先规定SCG承载(bearer)对应的数据都可以在MCG承载中发送,则当终端设备在挂起SCG后有上行数据需要从该被挂起的SCG发送时,可以通过下面的方法发送该上行数据。
可选地,对于SCG承载而言,网络设备可以预先为SCG承载配置备选的MCG承载,使得当SCG挂起时,终端设备可以把SCG承载变为MCG承载。
可选地,可以预先指示某个MCG承载对应某个或某些SCG承载,或某些MCG分别对应于某些SCG等,即建立多个MCG承载与多个SCG承载之间的映射关系,还可以确定需要为哪些数据无线承载(data radio bearer,DRB)配置SCG承载的备选MCG承载。则当终端设备需要从被挂起的SCG传输上行数据时,就可以根据该映射关系确定该被挂起的SCG的SCG承载对应的MCG承载,从而利用该对应的MCG承载将上行传输数据发送出去。
可选地,对于SCG分离承载而言,终端设备可以把SCG分离承载对应的主路径(primayPath)设置为MCG。也就是说,在SCG未挂起时,主路径可能是SCG,也可能是MCG。例如,当某个SCG挂起前主路径是该SCG时,在该SCG被挂起后,可以将其主路径改为对应的MCG。则终端设备可以利用新的主路径发送上行数据。下面列举了两 种主路径可能会被设置为SCG的情况。
情况一、DRB配置了PDCP层进行复制但没有激活复制时,则终端设备的PDCP会把PDCP DATA PDU放在主路径对应的RLC实体(即SCG对应的RLC实体或MCG对应的RLC实体)中。如果之前网络设备设置SCG为主路径,则在SCG被挂起后,当有上行数据需要在SCG传输时,终端设备将该DRB的主路径设置为MCG。
情况二、DRB没有配置PDCP层复制功能,且PDCP需要传输的数据总量和RLC层需要进行初传的数据量之和少于数据传输的门限(可以理解为数据传输的数据量阈值,只有当数据量达到阈值时才会把数据分流到两个RLC实体中)时,则终端设备会把PDCP DATA PDU放在主路径对应的RLC实体中。如果之前网络设备设置SCG为主路径,则在SCG被挂起后,当有上行数据需要在SCG传输时,终端设备将该DRB的主路径设置为MCG。
在上述几种方法中,终端设备需要从被挂起的SCG发送上行数据,此时如果可以发送PRACH,则对发送PRACH进行一些时间间隔或缓存数据的限制,即只有当满足预设的条件时,终端设备才可以发起RACH过程。或者,终端设备通知MN需要在从挂起的SCG进行上行数据发送,从而由网络设备采用一些措施让终端设备停止挂起SCG并在SCG发送该上行数据,或者,通过一些措施使得终端设备可以把原来需要在SCG中发送的数据改为在MCG中发送。
应理解,上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在MR-DC中,在增加辅站时,MN会给SN发送SN可用的SCG下的服务小区索引范围,比如在MN给SN的小区配置信息CG-ConfigInfo中携带SCG能用的服务小区索引下限和上行。SN只能在该范围内使用服务小区索引。SN在给终端设备的配置信息中需要携带每个服务小区对应的服务小区索引。但目前在MN切换时,源MN并不会把之前给SN的该服务小区索引范围发送给目标MN,这样目标MN就可能会重新给SN(源SN或目标SN)一个新的服务小区索引范围,SN可能就需要重新为终端设备分配新的服务小区索引范围,从而导致SN给终端设备的配置信息中携带这些新的服务小区索引,导致SN给终端设备的配置信息开销大。图12是本申请实施例提供的一种增加或修改辅站的方法的示意性流程图。
1201、源MN向源SN发送增加或修改SN的请求信息。
该信息中携带了源MN给源SN分配的SCG可以使用的服务小区索引范围。
1202、源MN向目标MN发送切换请求信息。
在步骤1201的一段时间之后,源MN决定切换终端设备对应的MN。源MN给目标MN发送切换终端设备对应的MN的切换请求信息。
该切换请求信息中携带了终端设备给MN发送从被挂起的SCG发送上行数据的指示信息。比如在源MN给目标SN的切换请求信息中的切换准备信息中携带之前源MN给源SN分配的SCG下的服务小区索引范围。
1203、目标MN为终端设备增加目标SN。
该目标SN可能和源SN是同一个SN,也可能不是同一个SN。
1203a)目标MN给目标SN发送SN增加请求信息,在该请求信息中可以携带之前源 MN给源SN分配的SCG下的服务小区索引范围。
1203b)目标SN为终端设备配置相关信息。目标SN可以按照目标MN发送的SCG下的服务小区索引范围分配服务小区索引。例如,目标SN可以保持之前源SN给终端设备分配的各个服务小区的索引。
1203c)目标SN给目标MN发送SN增加请求的响应信息。即目标SN向目标MN确认增加SN的响应信息。
1204、目标MN向源MN发送切换请求确认信息。
当目标MN确认将终端设备对应的MN从源MN变更为自己后,向源MN发送确认切换的信息。
1205、目标MN通知终端设备进行PCell切换。
在图12所示方法中,在增加或修改SN时,通过在交互过程的请求信息中携带服务小区索引范围或服务小区索引,能够缩减信令开销。
上文结合附图描述了本申请实施例的方法实施例,下面描述本申请实施例的装置实施例。应理解,方法实施例的描述与装置实施例的描述可以相互对应,因此,未描述的部分可以参见前面方法实施例。
图13是本申请实施例提供的通信装置的示意性框图。如图13所示,该通信装置1300可以包括处理单元1310和收发单元1320。
在一种可能的设计中,该通信装置1300可实现上文方法实施例中的对应于终端设备的操作,例如,该通信装置可以为终端设备,或者配置于终端设备中的部件,如芯片或电路。
该通信装置1300可实现图7至图12所示方法实施例中终端设备的相应操作,和/或实现上文中SCG被挂起后上行数据的传输方法。该通信装置1300可以包括用于执行图7至图12所示方法实施例中终端设备执行的方法的单元,和/或用于执行SCG被挂起后上行数据的传输方法中终端设备执行的方法的单元。并且,该通信装置1300中的各单元和上述其他操作和/或功能分别为了实现上述方法实施例中的相应流程。
可选地,通信装置1300还包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。例如,该存储单元还可以用于存储上文所述MCG承载和SCG承载的映射关系。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1300中的收发单元1320可以通过收发器或者通信接口实现,例如可对应于图15中示出的终端设备2000中的收发器2020。该通信装置1300中的处理单元1310可以通过至少一个处理器实现,例如可对应于图15中示出的终端设备2000中的处理器2010。
图14是本申请实施例提供的通信装置的示意性框图。如图14所示,该通信装置1400可以包括处理单元1410和收发单元1420。
在一种可能的设计中,该通信装置1400可实现上文方法实施例中的对应于终端设备的操作,例如,该通信装置可以为终端设备,或者配置于终端设备中的部件,如芯片或电路。
该通信装置1400可实现图7至图12所示方法实施例中网络设备的相应操作。该通信装置1400可以包括用于执行图7至图12所示方法实施例中网络设备执行的方法的单元。并且,该通信装置1400中的各单元和上述其他操作和/或功能分别为了实现上述方法实施例中的相应流程。
进一步可选地,通信装置1400还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1400中的收发单元1420例如可以对应于图16中示出的收发单元3100。
图15是本申请实施例提供的终端设备的结构示意图。该终端设备2000可应用于如图4所示的系统中,执行上述方法实施例中终端设备的功能。如图15所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2020和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图13中的处理单元1310对应。
上述收发器2020可以与图13中的收发单元1320对应。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图15所示的终端设备2000能够实现图7至图12所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图16是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图4所示的系统中,执行上述方法实施例中网络设备的功能。如 图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3300。所述RRU 3100可以称为收发单元,与图14中的收发单元1420对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3300部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3300可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3300为基站的控制中心,也可以称为处理单元,可以与图14中的处理单元1410对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 3300可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3300还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图15所示的基站3000能够实现图7至图12所示方法实施例中涉及目标网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3300可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图16所示出的基站3000仅为网络设备的一种可能的架构,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他架构的网络设备。例如,包含CU、DU和有源天线单元(active antenna unit,AAU)的网络设备等。本申请对于网络设备的具体架构不作限定。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还 可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上文所述实施例中任一实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上文所述实施例中任一实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终 端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据 中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示,也可以包括显式指示和隐式指示。将某一信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)是否存在某个信元来实现对待指示信息的指示,从而在一定程度上降低指示开销。
本申请实施例所述第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息、不同的时间间隔等。
本申请实施例所述“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例所述“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在 某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
本申请结合多个流程图详细描述了多个实施例,但应理解,这些流程图及其相应的实施例的相关描述仅为便于理解而示例,不应对本申请构成任何限定。各流程图中的每一个步骤并不一定是必须要执行的,例如有些步骤是可以跳过的。并且,各个步骤的执行顺序也不是固定不变的,也不限于图中所示,各个步骤的执行顺序应以其功能和内在逻辑确定。
本申请描述的多个实施例之间可以任意组合或步骤之间相互交叉执行。例如在执行图7所示挂起SCG的过程中,也可以接收图8所示第二信息,从而改为执行图8所示停止挂起的过程。又例如在执行图7所示挂起SCG的过程中,也可以接收图10所示第三信息,从而改为根据图10所示的其中一种方法先处理随机接入再执行图7所示根据第一信息挂起SCG的步骤。因此,各个实施例的执行顺序和各个实施例的步骤之间的执行顺序均不是固定不变的,也不限于图中所示,各个实施例的执行顺序和各个实施例的各个步骤的交叉执行顺序应以其功能和内在逻辑确定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种通信方法,其特征在于,包括:
    接收来自于网络设备的第一信息,所述第一信息用于指示终端设备将辅小区组SCG挂起;
    根据所述第一信息挂起所述SCG;
    变更主小区组MCG的配置参数,所述配置参数包括以下至少一种参数:
    可用上行传输时段、最大发射功率或控制信道的盲检参数。
  2. 如权利要求1所述的方法,其特征在于,所述变更主小区组MCG的配置参数,包括:
    变更所述配置参数在所述MCG与所述SCG之间的分配。
  3. 如权利要求1或2所述的方法,其特征在于,当所述配置参数包括可用上行传输时段时,所述变更主小区组MCG的配置参数,包括:
    根据所述SCG的可用上行传输时段,变更所述MCG的可用上行传输时段,所述变更后的所述MCG的可用上行传输时段包括所述SCG的可用上行传输时段的部分或全部。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,当所述配置参数包括最大发射功率时,所述变更主小区组MCG的配置参数,包括:
    当所述MCG的最大发射功率与所述SCG的最大发射功率之和小于或等于所述终端设备的最大发射功率时,将所述MCG的最大发射功率与所述SCG的最大发射功率之和确定为所述MCG的最大发射功率;或者
    当所述MCG的最大发射功率与所述SCG的最大发射功率之和大于所述终端设备的最大发射功率时,将所述终端设备的最大发射功率确定为所述MCG的最大发射功率。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    将所述SCG的最大发射功率按比例或平均分配到主站的各个载波的最大发射功率中。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,当所述配置参数包括控制信道的盲检参数时,所述变更主小区组MCG的配置参数,包括:
    接收来自于网络设备的预设盲检参数,所述预设盲检参数包括第一预设盲检参数和第二预设盲检参数,所述第一预设盲检参数是所述MCG在所述SCG挂起时使用的控制信道的盲检参数,所述第二预设盲检参数是所述MCG在所述SCG未挂起时使用的控制信道的盲检参数;
    以及,所述变更主小区组MCG的配置参数包括:
    将所述MCG的控制信道的盲检参数变更为所述第一预设盲检参数。
  7. 如权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自于网络设备的预设盲检参数,所述预设盲检参数包括第三预设盲检参数和第四预设盲检参数,所述第三预设盲检参数是在单连接状态下使用的控制信道的盲检参数,所述第四预设盲检参数是在双连接状态下使用的控制信道的盲检参数;
    以及,所述变更主小区组MCG的配置参数包括:
    将所述MCG的控制信道的盲检参数变更为所述第三预设盲检参数。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自于网络设备的第二信息,所述第二信息用于指示所述终端设备停止挂起所述SCG;
    根据所述第二信息,停止挂起所述SCG。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    当接收到来自于网络设备的第三信息,停止挂起所述SCG,其中,所述第三信息用于指示终端设备发起随机接入;
    在所述随机接入停止后,恢复挂起所述SCG。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,在所述SCG挂起时终端设备能够通过所述SCG发送物理随机接入信道PRACH,以及
    所述方法还包括:
    接收来自于网络设备的第四信息,所述第四信息用于指示预设时段;
    当所述SCG挂起时,禁止在所述预设时段内发送PRACH。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,在所述SCG挂起时终端设备能够通过所述SCG发送PRACH,以及
    所述方法还包括:
    接收来自于网络设备的第五信息,所述第五信息用于指示缓存数据阈值;
    当所述SCG挂起时,如果终端设备缓存的数据小于或等于所述缓存数据阈值,则禁止通过所述SCG发送PRACH。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,当所述终端设备通过被挂起的所述SCG发送上行数据时,所述方法还包括:
    向主站MN发送第六信息,所述第六信息用于指示所述终端设备从被挂起的所述SCG发送所述上行数据。
  13. 如权利要求1至12中任一项所述的方法,其特征在于,当所述终端设备通过被挂起的所述SCG发送上行数据时,所述方法还包括:
    根据映射关系,确定与被挂起的SCG的SCG承载对应的第一MCG承载,所述映射关系是多个MCG承载与多个SCG承载之间的映射关系;
    通过所述第一MCG承载发送所述上行数据。
  14. 如权利要求1至13中任一项所述的方法,其特征在于,当所述终端设备通过被挂起的所述SCG发送上行数据时,所述方法还包括:
    将与所述被挂起的SCG的SCG分离承载对应的主路径变更为MCG分离承载;
    通过变更后的所述主路径发送所述上行数据。
  15. 一种通信方法,其特征在于,包括:
    向终端设备发送指示信息,其中,所述指示信息用于指示以下至少一项:
    预设时段、缓存数据阈值;
    其中,所述终端设备能够在辅小区组SCG被挂起时发送物理随机接入信道PRACH,以及
    当终端设备的辅小区组SCG被挂起时,PRACH在所述预设时段内被禁止发送,或者
    当终端设备的辅小区组SCG被挂起时,如果终端设备缓存的数据小于或等于所述缓 存数据阈值则PRACH被禁止发送。
  16. 一种通信方法,其特征在于,包括:
    向终端设备发送多个主小区组MCG承载与多个辅小区组SCG承载之间的映射关系;
    根据所述映射关系,确定与被挂起的SCG的SCG承载对应的第一MCG承载;
    通过所述第一MCG承载接收上行数据,所述上行数据是所述终端设备需要通过所述被挂起的SCG发送的上行数据。
  17. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自于网络设备的第一信息,所述第一信息用于指示终端设备将辅小区组SCG挂起;
    处理单元,用于根据所述第一信息挂起所述SCG;
    变更主小区组MCG的配置参数,所述配置参数包括以下至少一种参数:
    可用上行传输时段、最大发射功率或控制信道的盲检参数。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元还用于,
    变更所述配置参数在所述MCG与所述SCG之间的分配。
  19. 根据权利要求17或18所述的装置,其特征在于,当所述配置参数包括可用上行传输时段时,所述处理单元还用于,
    根据所述SCG的可用上行传输时段,变更所述MCG的可用上行传输时段,所述变更后的所述MCG的可用上行传输时段包括所述SCG的可用上行传输时段的部分或全部。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,当所述配置参数包括最大发射功率时,所述处理单元还用于,
    当所述MCG的最大发射功率与所述SCG的最大发射功率之和小于或等于所述终端设备的最大发射功率时,将所述MCG的最大发射功率与所述SCG的最大发射功率之和确定为所述MCG的最大发射功率;或者
    当所述MCG的最大发射功率与所述SCG的最大发射功率之和大于所述终端设备的最大发射功率时,将所述终端设备的最大发射功率确定为所述MCG的最大发射功率。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元还用于,
    将所述SCG的最大发射功率按比例或平均分配到主站的各个载波的最大发射功率中。
  22. 根据权利要求17至21中任一项所述的装置,其特征在于,当所述配置参数包括控制信道的盲检参数时,所述收发单元还用于,接收来自于网络设备的预设盲检参数,所述预设盲检参数包括第一预设盲检参数和第二预设盲检参数,所述第一预设盲检参数是所述MCG在所述SCG挂起时使用的控制信道的盲检参数,所述第二预设盲检参数是所述MCG在所述SCG未挂起时使用的控制信道的盲检参数;
    所述处理单元还用于,将所述MCG的控制信道的盲检参数变更为所述第一预设盲检参数。
  23. 根据权利要求17至21中任一项所述的装置,其特征在于,所述接收单元还用于,接收来自于网络设备的预设盲检参数,所述预设盲检参数包括第三预设盲检参数和第四预设盲检参数,所述第三预设盲检参数是在单连接状态下使用的控制信道的盲检参数,所述第四预设盲检参数是在双连接状态下使用的控制信道的盲检参数;
    所述处理单元还用于,将所述MCG的控制信道的盲检参数变更为所述第三预设盲检 参数。
  24. 根据权利要求17至23中任一项所述的装置,其特征在于,所述收发单元还用于,接收来自于网络设备的第二信息,所述第二信息用于指示所述终端设备停止挂起所述SCG;
    所述处理单元还用于,根据所述第二信息,停止挂起所述SCG。
  25. 根据权利要求17至24中任一项所述的装置,其特征在于,所述收发单元还用于,接收来自于网络设备的第三信息,所述第三信息用于指示终端设备发起随机接入;
    所述处理单元还用于,当接收到所述第三信息后,停止挂起所述SCG;以及当所述随机接入停止后,恢复挂起所述SCG。
  26. 根据权利要求17至25中任一项所述的装置,其特征在于,在所述SCG挂起时终端设备能够通过所述SCG发送物理随机接入信道PRACH,以及
    所述收发单元还用于,接收来自于网络设备的第四信息,所述第四信息用于指示预设时段;
    所述处理单元还用于,当所述SCG挂起时,禁止在所述预设时段内发送PRACH。
  27. 根据权利要求17至26中任一项所述的装置,其特征在于,在所述SCG挂起时终端设备能够通过所述SCG发送PRACH,以及
    所述收发单元还用于,接收来自于网络设备的第五信息,所述第五信息用于指示缓存数据阈值;
    所述处理单元还用于,当所述SCG挂起时,如果终端设备缓存的数据小于或等于所述缓存数据阈值,则禁止通过所述SCG发送PRACH。
  28. 根据权利要求17至27中任一项所述的装置,其特征在于,当所述终端设备通过被挂起的所述SCG发送上行数据时,所述收发单元还用于,
    向主站MN发送第六信息,所述第六信息用于指示所述终端设备从被挂起的所述SCG发送所述上行数据。
  29. 根据权利要求17至28中任一项所述的装置,其特征在于,当所述终端设备通过被挂起的所述SCG发送上行数据时,所述处理单元还用于,根据映射关系,确定与被挂起的SCG的SCG承载对应的第一MCG承载,所述映射关系是多个MCG承载与多个SCG承载之间的映射关系;
    所述收发单元还用于,通过所述第一MCG承载发送所述上行数据。
  30. 根据权利要求17至29中任一项所述的装置,其特征在于,当所述终端设备通过被挂起的所述SCG发送上行数据时,所述处理单元还用于,将与所述被挂起的SCG的SCG分离承载对应的主路径变更为MCG分离承载;
    所述收发单元还用于,通过变更后的所述主路径发送所述上行数据。
  31. 一种通信装置,其特征在于,包括:
    收发单元,用于向终端设备发送指示信息,其中,所述指示信息用于指示以下至少一项:
    预设时段、缓存数据阈值;
    其中,所述终端设备能够在辅小区组SCG被挂起时发送物理随机接入信道PRACH,以及
    当终端设备的辅小区组SCG被挂起时,PRACH在所述预设时段内被禁止发送,或者
    当终端设备的辅小区组SCG被挂起时,如果终端设备缓存的PRACH数据小于或等于所述缓存数据阈值则PRACH被禁止发送。
  32. 一种通信装置,其特征在于,包括:
    收发单元,用于向终端设备发送多个主小区组MCG承载与多个辅小区组SCG承载之间的映射关系;
    处理单元,用于根据所述映射关系,确定与被挂起的SCG的SCG承载对应的第一MCG承载;
    所述收发单元还用于,通过所述第一MCG承载接收上行数据,所述上行数据是所述终端设备需要通过所述被挂起的SCG发送的上行数据。
  33. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机指令,以使得所述装置执行:如权利要求1至14中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机指令,以使得所述装置执行:如权利要求15或16所述的方法。
  35. 一种计算机存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现如权利要求1至14中任一项所述的方法。
  36. 一种计算机存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现如权利要求15或16所述的方法。
PCT/CN2019/116786 2019-11-08 2019-11-08 通信方法和通信装置 WO2021088006A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980101986.2A CN114631395A (zh) 2019-11-08 2019-11-08 通信方法和通信装置
PCT/CN2019/116786 WO2021088006A1 (zh) 2019-11-08 2019-11-08 通信方法和通信装置
EP19951888.7A EP4037421A4 (en) 2019-11-08 2019-11-08 COMMUNICATION METHOD AND COMMUNICATION DEVICE
US17/738,171 US20220264486A1 (en) 2019-11-08 2022-05-06 Communication Method and Communication Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116786 WO2021088006A1 (zh) 2019-11-08 2019-11-08 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/738,171 Continuation US20220264486A1 (en) 2019-11-08 2022-05-06 Communication Method and Communication Apparatus

Publications (1)

Publication Number Publication Date
WO2021088006A1 true WO2021088006A1 (zh) 2021-05-14

Family

ID=75849262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116786 WO2021088006A1 (zh) 2019-11-08 2019-11-08 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20220264486A1 (zh)
EP (1) EP4037421A4 (zh)
CN (1) CN114631395A (zh)
WO (1) WO2021088006A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11800518B2 (en) * 2020-01-22 2023-10-24 Qualcomm Incorporated Techniques for physical downlink control channel (PDCCH) limits for multiple cells scheduling one cell in a wireless communication system
US11856531B2 (en) * 2020-10-14 2023-12-26 Qualcomm Incorporated Techniques for uplink communication rerouting in a user equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451364A (zh) * 2014-08-07 2016-03-30 上海贝尔股份有限公司 用于双连接系统的特殊辅小区开启/关闭的方法和基站
US20170006599A1 (en) * 2015-07-05 2017-01-05 Ofinno Technologies, Llc Uplink Signal Transmission in a Wireless Device
CN109756994A (zh) * 2017-08-25 2019-05-14 电信科学技术研究院 一种终端状态的恢复方法、装置、基站及终端
WO2019206089A1 (zh) * 2018-04-27 2019-10-31 华为技术有限公司 通信方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528913B (en) * 2014-08-04 2017-03-01 Samsung Electronics Co Ltd Signalling in dual connectivity mobile communication networks
DK3793323T3 (da) * 2014-10-20 2022-06-20 Ericsson Telefon Ab L M Forhindring af fejlindikationer for fejl i en sekundær celle-gruppe
WO2019032002A1 (en) * 2017-08-10 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) METHODS OF RESPONSE TO SCG FAILURE IN WIRELESS DC AND TERMINAL COMMUNICATIONS AND ASSOCIATED TERMINALS AND NETWORK NODES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451364A (zh) * 2014-08-07 2016-03-30 上海贝尔股份有限公司 用于双连接系统的特殊辅小区开启/关闭的方法和基站
US20170006599A1 (en) * 2015-07-05 2017-01-05 Ofinno Technologies, Llc Uplink Signal Transmission in a Wireless Device
CN109756994A (zh) * 2017-08-25 2019-05-14 电信科学技术研究院 一种终端状态的恢复方法、装置、基站及终端
WO2019206089A1 (zh) * 2018-04-27 2019-10-31 华为技术有限公司 通信方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "Utilization of MCG Failure Recovery via SCG link", 3GPP TSG-RAN WG2 #106 R2-1907213, 17 May 2019 (2019-05-17), XP051711502 *
See also references of EP4037421A4 *
ZTE CORPORATION ET AL.: "Further consideration on SCG reconfiguration for RRC_INACTIVE", 3GPP TSG-RAN WG2 MEETING#103-BIS R2-1813945, 12 October 2018 (2018-10-12), XP051523414 *

Also Published As

Publication number Publication date
EP4037421A4 (en) 2022-10-19
US20220264486A1 (en) 2022-08-18
CN114631395A (zh) 2022-06-14
EP4037421A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2018171759A1 (zh) 一种信息传输方法和装置
RU2673468C2 (ru) Способ отчета о запасе мощности для пользовательского оборудования с возможностью двойного соединения в системе мобильной связи
KR102391770B1 (ko) 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
US20180160411A1 (en) Method, base station, and user equipment for implementing carrier aggregation
WO2018028269A1 (zh) 一种资源调度方法和装置
WO2019158011A1 (zh) 一种功率控制方法及装置
WO2019062837A1 (zh) 通信方法、装置和设备
US10743225B2 (en) Scheduling method and base station
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
US10856260B2 (en) Data transmission method and related device
EP3044895B1 (en) Uplink inter-site carrier aggregation based on amount of data to transmit
US20200120732A1 (en) Protocols and Architectures for NR-NR Dual Connectivity (NR-DC)
US10674500B2 (en) Communication method, device, and system
WO2020216132A1 (zh) 传输信息的方法和装置
EP2861005B1 (en) Shared access of uplink carrier
US20220264486A1 (en) Communication Method and Communication Apparatus
US20220338298A1 (en) Context management method and apparatus
EP4266746A1 (en) Data transmission method and apparatus
CN103702422A (zh) 一种本地承载管理方法及设备
WO2021031035A1 (zh) 一种通信方法及装置
CN105491680A (zh) 网络节点
WO2020156185A1 (zh) 一种调度请求处理方法及装置
WO2020215848A1 (zh) 一种资源共享的方法和装置
JP2024511608A (ja) サイドリンク不連続受信命令のトリガー方法、装置及びシステム
WO2023019437A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019951888

Country of ref document: EP

Effective date: 20220428

NENP Non-entry into the national phase

Ref country code: DE