WO2019062837A1 - 通信方法、装置和设备 - Google Patents

通信方法、装置和设备 Download PDF

Info

Publication number
WO2019062837A1
WO2019062837A1 PCT/CN2018/108269 CN2018108269W WO2019062837A1 WO 2019062837 A1 WO2019062837 A1 WO 2019062837A1 CN 2018108269 W CN2018108269 W CN 2018108269W WO 2019062837 A1 WO2019062837 A1 WO 2019062837A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
terminal
message
indication message
resource
Prior art date
Application number
PCT/CN2018/108269
Other languages
English (en)
French (fr)
Inventor
娄崇
刘星
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710900586.0A external-priority patent/CN109586866B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020518022A priority Critical patent/JP7248661B2/ja
Priority to RU2020114800A priority patent/RU2767182C2/ru
Priority to KR1020207012042A priority patent/KR102430393B1/ko
Priority to EP22176979.7A priority patent/EP4117215A1/en
Priority to EP18863133.7A priority patent/EP3687093B1/en
Publication of WO2019062837A1 publication Critical patent/WO2019062837A1/zh
Priority to US16/833,133 priority patent/US20200228287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a communication method, apparatus, and device.
  • the frequency band of one cell may be divided into multiple sub-bands, each sub-band may overlap, each sub-band has a corresponding air interface format, and each sub-band may also have an uplink and downlink control channel and a data channel, such a sub-band
  • BWP Bandwidth Part
  • the initial activation BWP is performed by the user equipment (User Equipment, UE) by using the broadcast information and the system information, and the UE can be configured to be different after the initial access to the cell is completed by initial activation of the BWP.
  • the cell has BWP1 and BWP2, all UEs can access the cell through BWP1, but after the access is successful, the base station configures some UEs to send and receive data to BWP2.
  • the base station may configure multiple BWPs for the UE. For example, after the UE accesses the cells in which the BWP1 and the BWP2 exist through the BWP1, the base station may configure both the BWP1 and the BWP2 to the UE. Although multiple BWPs may be configured for each UE at the same time, the base station may selectively activate some or all of the BWPs. For example, when the UE accesses the cells in which BWP1 and BWP2 exist through BWP1, the base station will both BWP1 and BWP2. Configured for the UE, but the base station only activates the BWP2 and does not activate the BWP1.
  • the UE can only send and receive data on the BWP2.
  • the base station can further activate the BWP1 and reserve the BWP2.
  • the UE can simultaneously send and receive BWP1 and BWP2. Data, or the base station activates BWP1, but deactivates BWP2.
  • the UE can only send and receive data on BWP1, that is, the UE can only send and receive data on the activated BWP. For other inactive BWPs, the UE only saves the inactive. BWP configuration information.
  • the embodiments of the present application provide a communication method, apparatus, and device, in order to solve the problem that the communication quality is not high during BWP activation or deactivation or handover in the prior art.
  • the embodiment of the present application provides a communication method, including: receiving, by a terminal, a BWP indication message, which is sent by a network device, is used to indicate that a terminal activates a BWP and/or deactivates a BWP, and sends a message to the base station to indicate that the terminal successfully receives the BWP indication message.
  • the BWP indicates a BWP feedback message for the message.
  • the BWP indication message may be a control instruction sent by the network device through the control channel, for example, a DCI instruction, or other instructions sent by the network device through other types of channels.
  • the BWP indication message may include an identifier of the BWP, which is used to indicate that the BWP corresponding to the identifier is activated or deactivated.
  • the BWP feedback message may be a MAC message or other types of messages.
  • the network device sends a BWP and/or deactivates the BWPBWP indication message to the UE.
  • the UE After the UE successfully receives the BWP indication message, the UE sends a BWP feedback message to the base station to notify the base station to successfully receive the BWP feedback message.
  • the BWP indication message can avoid the problem that the UE and the base station use different BWP communication to cause data transmission failure when the UE cannot receive or cannot correctly parse the BWP indication message, thereby improving data transmission quality.
  • the BWP feedback message is a media access control MAC layer message.
  • the MAC layer message includes a MAC sub-header, or includes a MAC sub-header and a MAC load
  • the MAC sub-header includes a logical channel identifier LCID, where the LCID is used to indicate that the terminal successfully receives the BWP indication message.
  • the BWP feedback message is a MAC layer message
  • the MAC subheader includes an LCID for indicating that the terminal successfully receives the BWP indication message.
  • the BWP indication message is a control instruction sent by the base station through the control channel
  • the UE may generate a MAC.
  • the BWP feedback message of the layer notifies the base station to successfully receive the BWP indication message to ensure that the BWP indicates the reliability of the message transmission.
  • the MAC load includes the identifier of the activated BWP or the identifier of the deactivated BWP, which can ensure that the network device and the base station perform data transmission on the same BWP to ensure the reliability of data transmission.
  • the MAC load further includes a carrier component identifier, where the carrier component identifier is used to indicate a carrier where the activated BWP is located or a carrier where the deactivated BWP is located.
  • the MAC load includes a carrier component identifier, which can ensure that the base station and the UE perform data transmission on the same carrier to ensure the reliability of data transmission.
  • the terminal sends a BWP feedback message to the base station, including:
  • the terminal sends a BWP feedback message on the activated BWP; or,
  • the terminal sends a BWP feedback message on the deactivated BWP; or,
  • the terminal transmits a BWP feedback message on the second carrier component, and the activated BWP or the deactivated BWP is a frequency resource on the first carrier component.
  • the BWP feedback message can be sent on different frequency resources in a variety of flexible manners to ensure the reliability of the BWP feedback message transmission.
  • the method further includes: the activation network device indicates the transmission resource on the activated BWP.
  • the transmission resource may include a Semi-Persistent Scheduling (SPS) resource, a Channel State Information (CSI) resource, and a Scheduling Request (SR) resource.
  • SPS Semi-Persistent Scheduling
  • CSI Channel State Information
  • SR Scheduling Request
  • the UE when the BWP indication message is used to indicate that the terminal activates the BWP, the UE automatically activates the SPS resource on the BWP that needs to be activated, and does not need the base station to utilize signaling on the Physical Downlink Control Channel (PDCCH). Indicating activation of SPS resources can save signaling.
  • PDCH Physical Downlink Control Channel
  • the method further includes: releasing, by the network device, the transmission resource on the deactivated BWP.
  • the UE when the BWP indication message is used to indicate that the terminal end activates the BWP, the UE automatically releases the SPS resource on the BWP that needs to be deactivated, and the base station does not need to use the signaling on the PDCCH to indicate that the SPS resource is released, which can save the letter. make.
  • the method further includes: initializing a Hybrid Automatic Repeat Request (HARQ) process for the activated BWP.
  • HARQ Hybrid Automatic Repeat Request
  • the UE when the BWP indication message is used to indicate that the terminal activates the BWP, the UE automatically initializes the HARQ process for the activated BWP, and does not need the base station to configure the HARQ process by using signaling on the PDCCH, which can save signaling.
  • the embodiment provides a communication method, including: receiving, by a terminal, a BWP configuration message, which is used by the network device, to configure an SPS resource of the BWP, and receiving, by the network device, a first, The BWP indicates that the terminal activates the SPS resource on the first BWP.
  • the BWP configuration message may be an RRC layer message, and the RRC message may be a system information, not limited to a minimum system message (minimum SI) and/or a remaining system message, etc., and the RRC message may also be UE-specific. RRC message.
  • RRC message may be an RRC layer message, and the RRC message may be a system information, not limited to a minimum system message (minimum SI) and/or a remaining system message, etc., and the RRC message may also be UE-specific. RRC message.
  • the SPS resource may include an uplink/downlink SPS transmission resource time interval or period, a frequency domain location where the SPS transmission resource is located, a modulation and decoding manner, and the like.
  • the network device sends a BWP configuration message for configuring the SPS resource of the BWP to the terminal.
  • the terminal After receiving the first BWP indication message sent by the network device, the terminal automatically activates the SPS resource on the first BWP, without the base station.
  • the instructions for activating SPS resources are sent separately, saving signaling overhead.
  • the method further includes: after the terminal receives the SPS resource sent by the network device to instruct the terminal to deactivate the first BWP second BWP indication message, releasing the SPS resource on the first BWP.
  • the network device sends a second BWP indication message for instructing the terminal to deactivate the first BW to the terminal, and after receiving the second BWP indication message, the terminal automatically releases the SPS resource on the first BWP, without using the base station. Instructions for releasing SPS resources are sent separately, saving signaling overhead.
  • the second BWP indication message is further used to indicate that the terminal activates the second BWP
  • the method further includes: determining, by the terminal, the SPS resource on the second BWP according to the information of the second BWP and the SPS resource on the first BWP, The base station is required to use separate signaling to indicate the information of the SPS resources on the second BWP, thereby saving signaling overhead.
  • the offset of the SPS resource on the second BWP relative to the physical resource block PRB number of the starting resource location of the second BWP and the initial resource location of the SPS resource on the first BWP relative to the first BWP is the same; the absolute time of the period of the SPS resource on the second BWP is the same as the absolute time of the period of the SPS resource on the first BWP.
  • different methods may be used to determine the SPS resources on the second BWP, and the base station is not required to use the separate signaling to indicate the information of the SPS resources on the second BWP, thereby saving signaling overhead and being flexible. Variety, can be applied to different scenarios.
  • the embodiment of the present application provides a communication method, including: receiving, by a terminal, a BWP configuration message, which is used by a network device to indicate a duration of a timer, when the terminal receives a BWP for instructing a terminal to activate a BWP or deactivate a BWP.
  • a BWP configuration message which is used by a network device to indicate a duration of a timer
  • the timer is started.
  • the terminal reports the power headroom report.
  • the BWP configuration message may include configuration information of one or more BWPs, and the BWP configuration message may include at least one of a BWP identifier, a BWP time domain resource, and a BWP frequency domain resource.
  • the timer is a BWP blocking timer (BWP Prohibit-Timer) configured by the base station, and the duration of the BWP blocking timer may be carried in the RRC message sent by the base station to the UE.
  • BWP Prohibit-Timer BWP Prohibit-Timer
  • the network device sends a configuration message for indicating the duration of the timer to the terminal.
  • the terminal receives the BWP indication message sent by the base station, the timer is started, and when the timer expires and the power is satisfied
  • the terminal reports the power headroom report, which reduces the number of times the PHR is reported and saves transmission resources.
  • the power headroom reporting condition includes the terminal receiving another BWP indication message.
  • the embodiment of the present application provides a communication method, including: receiving, by a terminal, a BWP indication message sent by a network device to instruct a terminal to activate a BWP and/or deactivating a BWP, and on an activated BWP or a deactivated BWP.
  • the HARQ process is processed.
  • the terminal when the network device instructs the terminal to activate or deactivate the BWP, the terminal automatically processes the HARQ process on the activated BWP or the deactivated BWP, and does not need the base station to configure the HARQ process by using a separate control instruction. It saves signaling, and can ensure the continuity of data retransmission and improve the communication quality.
  • the terminal initializes the HARQ process for the activated first BWP.
  • the UE when the BWP1 and the BWP2 of the UE work simultaneously, the UE initiates a set of HARQ processes for the BWP2, and the HARQ process of the BWP1 does not move, so that the HARQ buffer of the HARQ process where the BWP1 is located does not need to be cleared ( Buffer) to ensure the continuity of data transmission.
  • the HARQ process of the first BWP is associated with the second BWP.
  • the base station instructs the UE to deactivate the originally activated BWP1 and activates the BWP2
  • the UE and the base station directly use the HARQ ID of the original BWP1 on the BWP2.
  • the transmission does not require the base station to configure the HARQ process for the BWP2 by using the new command, which saves the overhead, and does not need to clear the HARQ buffer of the HARQ process on the BWP1 to ensure the continuity of the data transmission.
  • the HARQ process is initialized for the second BWP, and the HARQ process of the first BWP is associated with the initialization of the second BWP according to the indication signaling. Get the HARQ process.
  • the indication signaling is used to indicate an association relationship between the HARQ process of the first BWP and the HARQ obtained by the initialization of the second BWP.
  • the indication signaling may be a single DCI instruction or may be carried in the BWP indication message.
  • a set of HARQ processes is separately transmitted for the BWP2, and the data buffered in each HARQ process of the BWP1 is copied into the HARQ cache of the BWP2, and the variables of each HARQ process are also copied, and the BWP1 does not need to be emptied.
  • the HARQ buffer of the HARQ process ensures the continuity of data transmission.
  • the terminal determines whether the HARQ process that is performing data retransmission is stored in the first BWP; if yes, the first BWP is monitored, and is activated after the data retransmission ends. Second BWP.
  • the base station instructs the UE to migrate from the BWP1 to the BWP2
  • the base station does not schedule a new transmission until the data retransmission in the BWP1 ends, and the BWP2 is in the BWP2.
  • the MAC layer needs to notify the physical layer (PHY) about the BWP2 effective time. This method can ensure the continuity of retransmission data, and does not require the base station to reschedule the retransmission, saving signaling and transmission resources.
  • the embodiment of the present application provides a communication method, including: receiving, by a terminal, a BWP configuration message that is used by a network device to configure a CSI resource and/or an SRS resource of a BWP, and receiving, by the network device, a terminal, The first BWP indication message of the first BWP activates CSI resources and/or SRS resources on the first BWP.
  • the BWP configuration message may be an RRC message or a physical layer signaling.
  • a BWP configuration message for configuring a BWP and a BWP configuration message for configuring a BWP may be the same message, or may be a different message, configured to configure a BWP CSI resource and a BWP SRS resource.
  • the network device sends a BWP configuration message for configuring the CSI resource and/or the SRS resource of the BWP to the terminal, and the terminal automatically activates the first BWP indication message after receiving the first BWP indication message sent by the network device.
  • the CSI resource and/or the SRS resource does not require the base station to separately send an instruction for activating the CSI resource and/or the SRS resource, thereby saving signaling overhead.
  • the terminal receives a second BWP indication message sent by the network device to instruct the terminal to deactivate the first BWP, and releases the CSI resource and/or the SRS resource on the first BWP.
  • the terminal after the terminal receives the second BWP indication message sent by the base station to instruct the terminal to deactivate the first BWP, and considers that the CSI resource and/or the SRS resource on the first BWP is invalid, the terminal automatically releases the A CSI resource and/or an SRS resource on a BWP does not require the base station to separately send signaling and/or SRS resources for instructing to release the CSI resource, thereby saving signaling.
  • the terminal receives a second BWP indication message that is sent by the network device to instruct the terminal to deactivate the first BWP and activate the second BWP, releases the CSI resource and/or the SRS resource on the first BWP, and enables the second BWP.
  • CSI resources and/or SRS resources are examples of CSI resources and/or SRS resources.
  • the terminal after receiving the second BWP indication message sent by the base station, the terminal considers that the CSI resource and/or the SRS resource on the first BWP is invalid, the terminal automatically releases the CSI resource and/or the SRS on the first BWP.
  • the resource and the CSI resource and/or the SRS resource on the second BWP are enabled, and the base station is not required to separately send signaling for instructing to release and start the CSI resource and/or the SRS resource, saving signaling.
  • the embodiment of the present application provides a communication method, including: receiving, by a terminal, a BWP indication message sent by a network device to instruct a terminal to activate a BWP and/or deactivate a BWP, on an activated BWP or a deactivated BWP.
  • SR_COUNTER is processed.
  • the physical layer after receiving the BWP indication message, notifies the MAC layer to initialize, or disables the SR_COUNTER of the current SR configuration, and enables the SR_COUNTER of the new SR configuration, without the network device adopting separate signaling to indicate the SR configuration.
  • SR_COUNTER saving signaling.
  • the embodiment of the present application provides a communication method, including: a network device sends a BWP indication message to a terminal, and the network device receives a BWP feedback message sent by the terminal, where the BWP indication message is used to indicate that the terminal activates the BWP and/or deactivates the BWP.
  • the BWP feedback message is used to indicate that the terminal successfully receives the BWP indication message.
  • the BWP feedback message is a media access control MAC layer message.
  • the MAC layer message includes a MAC sub-header, or includes a MAC sub-header and a MAC load
  • the MAC sub-header includes a logical channel identifier LCID, where the LCID is used to indicate that the terminal successfully receives the BWP indication message.
  • the MAC load includes an identification of the activated BWP or an identification of the deactivated BWP.
  • the MAC load further includes a carrier component identifier, where the carrier component identifier is used to indicate a carrier where the activated BWP is located or a carrier where the deactivated BWP is located.
  • the network device receives the BWP feedback message sent by the terminal, including:
  • the network device receives the BWP feedback message on the activated BWP, or
  • the network device receives the BWP feedback message on the deactivated BWP; or,
  • the network device receives the BWP feedback message on the second carrier component, the activated BWP or the deactivated BWP being the frequency resource on the first carrier component.
  • the embodiment of the present application provides a communication method, including: a network device sends a BWP configuration message to a terminal, and sends a first BWP indication message to the terminal, where the configuration message is used to configure a semi-persistent scheduling SPS resource of the BWP;
  • the BWP indication message is used to instruct the terminal to activate the first BWP.
  • the method further includes: the network device sends a second BWP indication message to the terminal, where the second BWP indication message is used to instruct the terminal to deactivate the first BWP.
  • the second BWP indication message is further used to instruct the terminal to activate the second BWP.
  • the offset of the SPS resource on the second BWP relative to the physical resource block PRB number of the starting resource location of the second BWP and the initial resource location of the SPS resource on the first BWP relative to the first BWP is the same; the absolute time of the period of the SPS resource on the second BWP is the same as the absolute time of the period of the SPS resource on the first BWP.
  • the embodiment of the present application provides a communication method, including: the network device sends a BWP configuration message indicating a duration of the timer to the terminal, and sends a BWP indication to the terminal to instruct the terminal to activate the BWP or deactivate the BWP.
  • the message is such that the terminal starts the timer and receives the power headroom report reported by the terminal, and the power headroom report is a report sent by the terminal when the timer expires and the power headroom reporting condition is met.
  • the power headroom reporting condition includes the terminal receiving another BWP indication message.
  • the embodiment of the present application provides a communication method, including: the network device sends a BWP indication message for instructing the terminal to activate the BWP and/or deactivate the BWP, so that after receiving the BWP indication message, the terminal The HARQ process on the activated BWP or deactivated BWP is processed.
  • the terminal initializes the HARQ process for the activated first BWP.
  • the terminal associates the HARQ process of the first BWP with the second BWP.
  • the terminal initializes the HARQ process for the second BWP, and associates the HARQ process of the first BWP to the indication signaling to The initialization of the second BWP is obtained on the HARQ process.
  • the terminal determines whether the HARQ process that is performing data retransmission is stored in the first BWP; if yes, the terminal monitors the first BWP, and the data is in the data.
  • the second BWP is activated after the retransmission ends.
  • the embodiment of the present application provides a communication method, including: a network device sends a BWP configuration message for configuring a BSI CSI resource and/or an SRS resource to a terminal, and sends a The first BWP indication message of the BWP causes the terminal to activate CSI resources and/or SRS resources on the first BWP.
  • the second BWP indication message sent by the network device is used to instruct the terminal to deactivate the first BWP, so that the terminal releases the CSI resource and/or the SRS resource on the first BWP after receiving the second BWP indication message.
  • the network device sends a second BWP indication message for instructing the terminal to deactivate the first BWP and activate the second BWP, so that the terminal releases the CSI resources on the first BWP after receiving the BWP indication message, and/or SRS resources and enable CSI resources and/or SRS resources on the second BWP.
  • the embodiment of the present application provides a communication method, including: the network device sends a BWP indication message for instructing the terminal to activate the BWP and/or deactivate the BWP, so that the terminal activates after receiving the BWP indication message.
  • the BWP or the deactivated BWP on the SR_COUNTER is processed.
  • the embodiment of the present application provides a communication apparatus, including a unit or means for performing the steps described in any one of the first to twelfth aspects.
  • the embodiment of the present application provides a communication apparatus, including a processor and a memory, where the memory is used to store a program, and when the program is called by the processor, used to perform any of the first to twelfth aspects. The method described in one embodiment.
  • a computer storage medium storing a program, when the program is invoked by a processor, is used to implement any one of the first to twelfth aspects. method.
  • the embodiment of the present application provides a computer program, when executed by a processor, for performing the method described in any one of the above first to twelfth aspects.
  • the embodiment of the present application provides a program product, such as a computer readable storage medium, comprising the program corresponding to the method in any one of the first aspect to the twelfth aspect.
  • the network device sends a BWP and/or deactivates the BWPBWP indication message to the UE, and after the UE successfully receives the BWP indication message, the UE sends a BWP feedback message to the base station to notify The base station successfully receives the BWP indication message, which can avoid the problem that the UE and the base station use different BWP communication to cause data transmission failure when the UE cannot receive the BWP indication message, and the data transmission quality is improved.
  • the network device sends a BWP configuration message for configuring the SPS resource of the BWP to the terminal, and the terminal automatically activates the SPS resource on the first BWP after receiving the first BWP indication message sent by the network device.
  • the base station does not need to separately send an instruction for activating the SPS resource, which saves signaling overhead.
  • the network device sends a configuration message indicating the duration of the timer to the terminal, and when the terminal receives the BWP indication message sent by the base station, the timer is started, and when the timer expires and is satisfied, When the power headroom reports the condition, the terminal reports the power headroom report, which can reduce the number of times the PHR is reported and save transmission resources.
  • the terminal when the network device instructs the terminal to activate or deactivate the BWP, the terminal automatically processes the HARQ process on the activated BWP or the deactivated BWP, and does not need the base station to adopt a separate control instruction.
  • the HARQ process is configured to save signaling, and the continuity of data retransmission can be ensured, and the communication quality is improved.
  • the network device sends a BWP configuration message for configuring the CSI resource and/or the SRS resource of the BWP to the terminal, and the terminal automatically activates the first BWP indication message sent by the network device after receiving the first BWP indication message sent by the network device.
  • the CSI resource and/or the SRS resource on a BWP does not require the base station to separately send an instruction for activating the CSI resource and/or the SRS resource, thereby saving signaling overhead.
  • the physical layer after receiving the BWP indication message, notifies the MAC layer to initialize, or deactivates the SR_COUNTER of the current SR configuration, and enables the SR_COUNTER of the new SR configuration, without requiring the network device to adopt a separate Signaling to indicate the SR_COUNTER of the SR configuration, saving signaling.
  • FIG. 1 is a schematic diagram of an application scenario of a communication method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a format of a BWP feedback message according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another BWP feedback message according to an embodiment of the present disclosure.
  • FIG. 5 is a bit map of a MAC load according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a BWP identifier according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a format of a MAC load according to an embodiment of the present application.
  • FIG. 8 is an interaction flowchart of a communication method according to another embodiment of the present application.
  • FIG. 9 is an interaction flowchart of a communication method according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of an SPS resource on a BWP according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another SPS resource on a BWP according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of still another SPS resource on a BWP according to an embodiment of the present application.
  • FIG. 13 is an interaction flowchart of a communication method according to another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a format of a PHR according to an embodiment of the present disclosure.
  • FIG. 15 is a flowchart of interaction of a communication method according to still another embodiment of the present application.
  • FIG. 17 is a flowchart of interaction of a communication method according to another embodiment of the present disclosure.
  • FIG. 18 is a flowchart of interaction of a communication method according to another embodiment of the present disclosure.
  • FIG. 19 is a flowchart of interaction of a communication method according to another embodiment of the present disclosure.
  • FIG. 20 is a block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 21 is a block diagram of a communication apparatus according to another embodiment of the present application.
  • FIG. 22 is a block diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 23 is a block diagram of a communication apparatus according to another embodiment of the present disclosure.
  • 24 is a block diagram of a communication device according to another embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 26 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • a terminal also called a user equipment (UE), a mobile station (MS), or a mobile terminal (MT), is a voice/data connectivity provided to a user.
  • Devices for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • augmented reality, AR augmented reality, AR
  • wireless terminals in industrial control wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the network device is a device that provides wireless services for the terminal, such as a radio access network (RAN) node.
  • a RAN node is a node in a network that connects a terminal to a wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit , BBU), or Wifi access point (AP), etc.
  • the RAN includes a centralized unit (CU) node or a distributed unit (DU) node, in which the functional division on the RAN side is implemented in the CU and the DU, and A plurality of DUs are centrally controlled by one CU.
  • the RAN node may be a CU node/DU node.
  • the functions of the CU and the DU may be divided according to the protocol layer of the wireless network. For example, the function of the packet data convergence protocol (PDCP) layer is set in the CU, the protocol layer below the PDCP, for example, radio link control. , RLC) and media access control (MAC) functions are set in the DU.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • the division of the protocol layer is only an example, and can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and the above protocol layer are set in the CU, and the functions of the protocol layer below the RLC layer are set in the DU; Alternatively, in a certain protocol layer, for example, a part of the function of the RLC layer and a function of a protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it may be divided in other manners, for example, according to the delay division, the function that needs to meet the delay requirement is set in the DU, and the function lower than the delay requirement is set in the CU.
  • Multiple means two or more, and other quantifiers are similar.
  • “/” describes the association relationship of the associated object, indicating that there can be three kinds of relationships. For example, A/B can indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • FIG. 1 is a schematic diagram of an application scenario of a communication method according to an embodiment of the present disclosure.
  • the scenario includes a macro base station 1, a small base station 2, a small base station 3, and a UE 4.
  • the UE 4 is located within the coverage of one or more cells (carriers) provided by the macro base station 1, the small base station 2, and the small base station 3, that is, the number of cells serving the UE 4 may be one or more.
  • the UE may work according to Carrier Aggregation (CA) or Dual Connectivity (DC) or coordinated multiple point transmission (CoMP), where At least one cell provides more than one air interface format while providing radio resources to the UE.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • CoMP coordinated multiple point transmission
  • the frequency band of one cell can be divided into multiple sub-bands, each sub-band is a BWP, and the UE can send and receive data on the activated BWP.
  • the present application can be applied to a Long Term Evolution (LTE) communication system, a Universal Mobile Telecommunications System (UMTS) system, a Code Division Multiple Access (CDMA) system, and a wireless local area network (wireless local Area network, WLAN) or the fifth (5G) wireless communication system.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • WLAN wireless local Area network
  • 5G fifth
  • the base station may configure multiple BWPs for the UE, but the base station may selectively activate some or all of the BWPs, and the UE can only send and receive data on the activated BWP. For other inactive BWPs, the UE Just saved the configuration information.
  • the 3rd Generation Partnership Project (3GPP) standardization organization provides for the use of Downlink Control Information (DCI) of the physical layer to indicate activation or deactivation of the BWP.
  • DCI Downlink Control Information
  • the base station cannot know whether the UE successfully receives the DCI, which may cause the UE and the base station to have inconsistent understanding of the current BWP.
  • the communication method provided by the embodiment of the present application after the UE successfully receives the instruction sent by the base station to indicate activation or deactivation of the BWP, feeds back the acknowledgement information to the base station to ensure that the UE and the base station understand the current BWP, thereby improving the communication quality. .
  • FIG. 2 is an interaction flowchart of a communication method according to an embodiment of the present application.
  • the method is based on the architecture shown in FIG. 1.
  • the terminal is equivalent to the UE in FIG. 1
  • the network device is equivalent to the macro base station or the small base station in FIG. 1.
  • the method includes the following steps:
  • Step 101 The network device sends a BWP indication message to the UE.
  • the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • the BWP indication message is sent to the terminal.
  • the BWP indication message may be a control instruction sent by the network device through the control channel, for example, a DCI instruction, or other instructions sent by the network device through other types of channels.
  • the BWP indication message may include an identifier of the BWP, which is used to indicate that the BWP corresponding to the identifier is activated or deactivated.
  • Step 102 The UE sends a BWP feedback message to the base station.
  • the BWP feedback message is used to indicate that the terminal successfully receives the BWP indication message.
  • the UE after the UE receives the BWP indication message and successfully parses the BWP indication message, the UE sends a BWP feedback message to the base station to notify the base station terminal that the BWP indication message is successfully received.
  • the network device sends a BWP and/or deactivates the BWPBWP indication message to the UE.
  • the UE After the UE successfully receives the BWP indication message, the UE sends a BWP feedback message to the base station to notify the base station to successfully receive the BWP feedback message.
  • the BWP indication message can avoid the problem that the UE and the base station use different BWP communication to cause data transmission failure when the UE cannot receive or cannot correctly parse the BWP indication message, thereby improving data transmission quality.
  • the BWP feedback message is a Media Access Control (MAC) layer message.
  • MAC Media Access Control
  • the UE may generate a BWP feedback message of the MAC layer, and notify the base station to successfully receive the BWP indication message, so as to ensure the reliability of the BWP indication message transmission.
  • the BWP feedback message may be a MAC Control Element (CE) message.
  • the MAC layer message includes a MAC sub-header, or includes a MAC sub-header and a MAC bearer.
  • the MAC sub-header includes a logical channel identifier (LCID), and the LCID is used to indicate that the terminal successfully receives the BWP indication message.
  • LCID logical channel identifier
  • the MAC layer message may include only the MAC sub-header, that is, the length of the MAC layer message is fixed to 0, and does not contain any information.
  • the base station After receiving the MAC layer message fed back by the UE, the base station considers that the UE has successfully received the message.
  • a BWP indication message indicating that the BWP is activated or deactivated.
  • the MAC sub-header includes an LCID, and is used to indicate that the terminal successfully receives the BWP indication message.
  • the following takes the BWP feedback message as the MAC CE message as an example to describe the format of the BWP feedback message in detail.
  • the MAC CE message may be included in a sub-header of a Packet Data Unit (PDU), where the LCID may occupy one field (MAC) of the MAC sub-header, the MAC PDU. Also included is a MAC Service Data Unit (SDU).
  • PDU Packet Data Unit
  • SDU MAC Service Data Unit
  • the location of a specific MAC CE in a MAC PDU can be in the following two ways:
  • the first mode all the sub-headers of the MAC CE message are set in the MAC sub-header, and the MAC Control Element (Control Element) and all the MAC SDUs of all the MAC CE messages are set in the MAC load.
  • a plurality of subheaders including an LCID constitute a MAC subheader, and a plurality of MAC control elements and a plurality of MAC SDUs constitute a MAC load.
  • the second mode before the sub-header of each MAC CE message is set and the corresponding MAC load, as shown in FIG. 4, the sub-header containing the LCID is followed by the MAC SDU, or the sub-header containing the LCID is followed by the MAC control element. .
  • the MAC load includes an identification of the activated BWP or an identification of the deactivated BWP.
  • the MAC load may include information of one or more of the BWPs.
  • the MAC load may be in the form of a bit map, one possible way is as shown in FIG.
  • FIG. 5 illustrates an example of seven BWPs, where each BWP is associated with an identifier, and the BWP k is set to 1 to indicate that the UE successfully receives an indication message for activating or deactivating the BWP k, and may also be set to 0 for The UE is instructed to receive an indication message for activating or deactivating the BWP k, where R is a reserved bit.
  • the load may also contain only one BWP or any integer number of BWPs, which is not limited in this application.
  • the MAC payload may only contain information of the activated or deactivated BWP indicated in the BWP indication message.
  • the information of the BWP may be in the form of a bit map as shown in Fig. 5 or indicated by means of BWP identification.
  • the information of the activated or deactivated BWP is indicated by means of the BWP identification, as shown in FIG. 6 , where a number of bits can be used to indicate the BWP identifier. In this embodiment, 8 bits are used as an example, but It is not limited to any number of integer bits.
  • the BWP identifier carried by the MAC bearer is the information of the activated or deactivated BWP indicated in the BWP indication information received by the UE, that is, the UE activates or deactivates according to the BWP indication message.
  • BWP, the ID of the BWP can be carried in the MAC load.
  • the MAC load further includes a carrier component identifier, where the carrier component identifier is used to indicate a carrier where the activated BWP is located or a carrier where the deactivated BWP is located.
  • the reserved field in the MAC load is set as a carrier part table identifier for indicating that the UE receives an indication message for activating or deactivating the BWP k on the carrier 1.
  • setting the carrier component identifier can ensure that the base station and the UE perform data transmission on the same carrier, thereby ensuring the reliability of data transmission.
  • step 102 “the terminal sends a BWP feedback message to the base station” includes:
  • the terminal sends a BWP feedback message on the activated BWP; or,
  • the terminal sends a BWP feedback message on the deactivated BWP; or,
  • the terminal transmits a BWP feedback message on the second carrier component, and the activated BWP or the deactivated BWP is a frequency resource on the first carrier component.
  • the UE sends a BWP feedback message on the activated BWP. For example, if the BWP indication message needs to activate the BWP2, after the UE activates the BWP2, A feedback message is sent on BWP2.
  • the UE if the UE has activated the available BWP, the previous BWP is deactivated by default (by default, only one BWP is activated at the same time), and the BWP feedback message may be sent on the previously activated BWP, or may be activated after the BWP.
  • the UE uses the BWP1 to send and receive data, the BWP indication message needs to activate the BWP2, and the UE deactivates the BWP1 by default.
  • the UE may first send a BWP feedback message on the BWP1, and then deactivate the BWP1, or the UE sends the activated BWP2. BWP feedback message.
  • the UE sends a BWP feedback message on the BWP1.
  • the BWP feedback message may be sent on the deactivated BWP or may be sent on the activated BWP, for example, the BWP indication message indication To deactivate BWP1 and activate BWP2, the UE may send a BWP feedback message on BWP1 before BWP1 is deactivated, or may feed back a message on BPW2 after BWP2 activation.
  • the UE may also send a BWP feedback message across carriers.
  • the BWP indication message indicates that the activated or deactivated BWP is a frequency resource on the carrier C1, and the UE sends a BWP feedback message on the carrier C2, where the carrier C1 and the carrier C2 are Two different carriers.
  • the method in this embodiment can send BWP feedback messages in multiple flexible manners to ensure the reliability of BWP feedback message transmission.
  • the method further includes: activating the transmission resource on the activated BWP.
  • the transmission resource may include an SPS resource, a CSI resource, an SR resource, and the like.
  • the UE when the BWP indication message is used to indicate that the terminal activates the BWP, the UE automatically activates the SPS resource on the BWP that needs to be activated, and does not need the base station to use the signaling on the PDCCH to indicate that the SPS resource is activated, which can save signaling.
  • the method further includes: releasing the SPS resource on the deactivated BWP.
  • the UE when the BWP indication message is used to indicate that the terminal end activates the BWP, the UE automatically releases the SPS resource on the BWP that needs to be deactivated, and the base station does not need to use the signaling on the PDCCH to indicate that the SPS resource is released, which can save the letter. make.
  • the method further includes: initializing the HARQ process for the activated BWP.
  • the UE when the BWP indication message is used to indicate that the terminal activates the BWP, the UE automatically initializes the HARQ process for the activated BWP, and does not need the base station to configure the HARQ process by using signaling on the PDCCH, which can save signaling.
  • some MAC layer functions also need to be processed.
  • SPS-RNTI SPS-Radio Network Temporary Identifier
  • the UE can periodically use the configured SPS resource to receive and send data.
  • GF Grant-free
  • the PDCCH is not required to be activated.
  • RRC Radio Resource Control
  • the UE can configure the GF resource to perform GF transmission.
  • the SPS and the GF are in the GF. Other aspects are similar. For the sake of simplicity, SPS and GF are used in the following.
  • the base station uses the SPS-RNTI scrambled PDCCH signaling to specify the SPS resource used by the UE, the base station does not need to re-issue the SPS-RNTI scrambled PDCCH in the time domain corresponding to the SPS resource to specify the allocated resource.
  • the UE uses the SPS resource to receive or send data every one cycle.
  • the following embodiment mainly describes how to process SPS resources configured on the BWP after the base station activates and deactivates the BWP.
  • FIG. 8 is a flowchart of an interaction method of a communication method according to another embodiment of the present disclosure.
  • the method mainly relates to a scheme for a terminal to automatically activate an SPS resource after the base station instructs the terminal to activate the BWP, as shown in FIG. 8 .
  • Step 201 The network device sends a BWP configuration message to the terminal.
  • the configuration message is used to configure the SPS resource of the BWP.
  • the BWP configuration message may be an RRC layer message.
  • the RRC message may be a system information, not limited to a minimum system message (minimum SI) and/or a remaining system message, etc., and the RRC message may also be a UE-specific RRC message.
  • minimum SI minimum system message
  • remaining system message etc.
  • the RRC message may also be a UE-specific RRC message.
  • the BWP configuration message may include configuration information of one or more BWPs.
  • the BWP configuration message may include at least one of the following configurations:
  • the time domain location may be in a subframe, a transmission time interval, a slot, and a physical layer downlink control channel timing. (Physical Downlink Control Channel occasion) or the like indicates that, for example, the subframe K indicates that the BWP resource is available in the subframe K.
  • the BWP frequency domain resource is used to indicate the frequency domain location where the BWP resource is located.
  • the frequency domain location may be represented by a physical location, a termination location, or a PRB number of a physical radio block (PRB).
  • PRB physical radio block
  • the BWP configuration message may include SPS resource information of the at least one BWP.
  • the SPS resource message may include at least one of the following configurations of the SPS:
  • the frequency domain location where the SPS transmission resource is located for example, the starting position, ending position, or number of PRBs of the PRB, etc.
  • a modulation decoding method for indicating the modulation and coding mode used for SPS resource transmission is a modulation decoding method for indicating the modulation and coding mode used for SPS resource transmission.
  • the base station may configure a corresponding SPS resource for each BWP of the terminal.
  • the terminal When the base station instructs the terminal to activate a certain BWP, the terminal activates the SPS resource corresponding to the BWP.
  • the base station may also configure only one SPS resource for the terminal, and each BWP has a mapping relationship with the SPS resource.
  • the terminal When the base station instructs the terminal to activate a certain BWP, the terminal activates the activation according to the mapping relationship between the BWP and the SPS resource.
  • the SPS resource corresponding to the BWP is configured.
  • Step 202 The terminal receives a first BWP indication message sent by the network device.
  • the first BWP indication message is used to instruct the terminal to activate the first BWP.
  • the type and format of the first BWP indication message may refer to the implementation manner of the BWP indication message in the embodiment shown in FIG. 2 to FIG. 7 , and details are not described herein again.
  • Step 203 The terminal activates the SPS resource on the first BWP.
  • the terminal after receiving the first BWP indication message, the terminal automatically activates the SPS resource on the first BWP.
  • the base station instructs the terminal to activate the first BWP
  • it is also required to use the control signaling on the PDCCH to instruct the terminal to activate the SPS resource on the first BWP.
  • the communication method provided by this embodiment is provided.
  • the network device sends a BWP configuration message for configuring the SPS resource of the BWP to the terminal.
  • the terminal After receiving the first BWP indication message sent by the network device, the terminal automatically activates the SPS resource on the first BWP, and does not need to be separately sent by the base station to activate the SPS resource.
  • the instructions save signaling overhead.
  • FIG. 9 is a flowchart of an interaction method of a communication method according to another embodiment of the present disclosure.
  • the method is mainly related to a scheme in which a terminal automatically releases an SPS resource after the base station instructs the terminal to deactivate the BWP, and the embodiment shown in FIG.
  • the method further comprises the following steps:
  • Step 301 The network device sends a second BWP indication message to the terminal.
  • the second BWP indication message is used to instruct the terminal to deactivate the first BWP.
  • the type and the format of the second BWP indication message refer to the implementation manner of the BWP indication message in the embodiment shown in FIG. 2 to FIG. 7 , and details are not described herein again.
  • Step 302 The terminal releases the SPS resource on the first BWP.
  • the terminal after the terminal receives the second BWP indication message sent by the base station to instruct the terminal to deactivate the first BWP, and considers that the SPS resource on the first BWP is invalid, the terminal automatically releases the SPS on the first BWP. Resources. As shown in FIG. 10, after the base station instructs the terminal to deactivate BWP1, after the terminal migrates from BWP1 to BWP2, the SPS resource on BWP1 is no longer valid.
  • the terminal may also consider that at least one or all BWPs on the carrier component are no longer valid.
  • the terminal may also consider that at least one or all SPS resources on the carrier component are no longer valid.
  • the terminal may consider that the carrier component is deactivated, that is, the carrier component is no longer valid.
  • the control signaling on the PDCCH is also used to instruct the terminal to release the SPS resource on the first BWP.
  • the communication provided in this embodiment is used.
  • the network device sends a second BWP indication message for instructing the terminal to deactivate the first BWP to the terminal, and after receiving the second BWP indication message, the terminal automatically releases the SPS resource on the first BWP, without the base station separately transmitting The instruction to release the SPS resource saves signaling overhead.
  • the second BWP indication message is further used to indicate that the terminal activates the second BWP, and the method further includes: determining, by the terminal, the SPS resource on the second BWP according to the information of the second BWP and the SPS resource on the first BWP.
  • the terminal may determine the SPS resource on the second BWP according to the information of the second BWP and the SPS resource on the first BWP. For example, the terminal may be based on the starting position of the PRB of the SPS resource on the first BWP.
  • the SPS resource on the second BWP is determined by the termination location and the interval of the PRB and the start location, the termination location, and the PRB interval of the PRB of the second BWP.
  • the terminal may determine the SPS resource on the second BWP according to the information of the second BWP and the SPS resource on the first BWP, and the base station does not need to use separate signaling to indicate the SPS resource on the second BWP. Information, saving signaling overhead.
  • the offset of the SPS resource on the second BWP relative to the PRB number of the starting resource location of the second BWP and the SPB resource on the first BWP relative to the PRB number of the starting resource location of the first BWP is the same.
  • the UE moves the SPS on the BWP1 to the BWP2, and the SPS occupies the relative position of the PRB resource.
  • the PRB number of the starting resource location of the first BWP is PRB0
  • the PRB number of the starting location of the SPS resource on the first BWP is PRB3
  • the SPS resource on the first BWP is relative to the first BWP.
  • the offset of the PRB number of the starting resource location is 3 PRBs. If the PRB number of the starting resource location of the second BWP is PRB2, the PRB number of the starting location of the SPS resource on the second BWP is PRB5. That is, the offset of the SPS resource on the second BWP with respect to the PRB number of the starting resource location of the second BWP is also 3 PRBs.
  • the PRB number of the SPS frequency domain resource in the BWP2 is unchanged, and the time position of the SPS is unchanged. If the PRB number exceeds the range of the BWP2, some or all of the SPS frequency domain resources are unavailable. Moreover, after the BWP bandwidth changes, the SPS resource bandwidth can also vary proportionally.
  • the absolute time of the period of the SPS resource on the second BWP and the absolute time of the period of the SPS resource on the first BWP are the same.
  • the UE moves the SPS resource on the BWP1 to the BWP2, and the absolute position occupied by the SPS does not change.
  • the UE migrates from BWP1 to BWP2, However, BWP1 is completely included in BWP2.
  • the frequency domain location of the SPS resource on BWP2 is the same as the frequency domain location of the SPS resource on BWP1, but the PRB numbers of the two SPS resources in the two BWPs may be different.
  • the time domain location of the SPS resource on BWP2 and the time domain location of the SPS resource on BWP1 are also the same, and the absolute location of the SPS resource on BWP2 is the same as the absolute location of the SPS resource on BWP1. Equivalently, after the UE migrates from BWP1 to BWP2, the SPS resources in BWP1 can be directly used for data transmission in BWP2.
  • the method for determining the time domain location of the SPS resource may have the following two implementation modes:
  • the interval of the SPS resource of the BWP1 is configured as an uplink N time unit, and the time unit can use a subframe, a transmission time interval (TTI), a slot, and a physical layer downlink control channel timing (Physical). Downlink Control Channel occasion, PDCCH occasion, symbol, etc., for example, the SPS transmission resource interval is 6 symbols, indicating that the consecutive SPS resource intervals are 6 symbols.
  • the start time position and the end time of the SPS transmission opportunity corresponding to the SPS resource are unknown, and may be derived by using a calculation formula, or the protocol is configured by default, and the embodiment does not limit the specific configuration manner.
  • the length of the time unit is related to the air interface format in which the BWP1 is located.
  • the transmission time interval of the SPS is still N time units, but the length of the time unit is based on the length of the time unit corresponding to BWP2, for example, the SPS transmission time interval on the BWP2. It is still 6 symbols, but the length of the symbol is related to the air interface format of BWP2, which may be the same as or different from the symbol length of BWP1.
  • the interval between SPS resources of BWP1 is configured as uplink N time units, and the time unit can be an absolute time unit, such as milliseconds, microseconds, seconds, etc., for example, the interval of SPS resources is 6 milliseconds, indicating continuous SPS.
  • the resource interval is 6 milliseconds.
  • the transmission interval of the SPS resource is still N time units.
  • the time interval of the SPS resource on the BWP2 is still 6 milliseconds, and the absolute time of the SPS resource is not change.
  • the method for determining the frequency domain location of the SPS resource may have the following two implementation modes:
  • the second BWP indication message for activating the BWP2 is sent in the BWP1, and the SPS frequency domain position of the BWP2 is derived from the frequency domain position of the BWP2 at the MAC layer, for example, according to the PBR start position and the end position of the BWP2.
  • separate physical layer signaling is designed, for example, activation signaling of BWP2, or activation signaling of SPS, which includes the SPS frequency domain location of BWP2, so that the MAC can directly be based on the activation signaling.
  • the indication determines the PRB position of the SPS in BWP2.
  • the scheme assumes that the BWP1 and BWP2 frequency domains overlap, and at least a part of the SPS frequency resources are located in the overlapping area. Otherwise, the UE considers that the SPS configuration is invalid, and the base station can activate the new command by using a new instruction. SPS on the frequency domain resource.
  • the terminal In the communication system, in order to ensure the quality of data transmission, the terminal needs to report Power headroom reporting (PHR) to the base station.
  • PHR Power headroom reporting
  • the PHR reports the difference between the maximum transmit power of the UE and the currently estimated uplink transmit power.
  • the base station After receiving the PHR, the base station knows how much remaining uplink power is available to the UE.
  • the activation and deactivation of the BWP can trigger the reporting of the PHR, but the activation and deactivation of the BWP may be very frequent. Such frequent reporting of the PHR may occupy more transmission resources.
  • FIG. 13 is an interaction flowchart of a communication method according to another embodiment of the present application.
  • the method mainly relates to how to suppress the implementation process of frequently reporting PHR during the activation and deactivation of the BWP. As shown in FIG. 13, the method includes the following steps:
  • Step 401 The network device sends a BWP configuration message to the terminal.
  • the configuration message is used to indicate the duration of the timer.
  • the BWP configuration message may include configuration information of one or more BWPs.
  • the BWP configuration message may include at least one of the following configurations:
  • the time domain location may be in a subframe, a transmission time interval, a slot, and a physical layer downlink control channel timing. (Physical Downlink Control Channel occasion) or the like indicates that, for example, the subframe K indicates that the BWP resource is available in the subframe K.
  • the BWP frequency domain resource is used to indicate the frequency domain location where the BWP resource is located.
  • the frequency domain location may be represented by a physical location, a termination location, or a PRB number of a physical radio block (PRB).
  • PRB physical radio block
  • the timer is a BWP Blocking Timer (BWP Prohibit-Timer) configured by the base station.
  • BWP Prohibit-Timer BWP Blocking Timer
  • the duration of the BWP blocking timer may be carried in an RRC message sent by the base station to the UE.
  • the base station may further configure a PHR blocking timer (prohibitPHR-Timer) for the UE, including the duration of the timer.
  • PHR blocking timer inhibitPHR-Timer
  • the BWP blocking timer and the PHR blocking timer may be the same timer, or may be two independent timers.
  • Step 402 The network device sends a BWP indication message to the terminal.
  • the BWP indication message is used to indicate that the terminal activates the BWP or deactivates the BWP.
  • the type and format of the BWP indication message may refer to the implementation manner of the BWP indication message in the embodiment shown in FIG. 2 to FIG. 7 , and details are not described herein again.
  • Step 403 When the terminal receives the BWP indication message, the timer is started.
  • the timer is triggered by the replacement of the BWP. For example, when the UE receives the indication message for instructing activation or deactivation of the BWP, the timer is started until the timer expires or has timed out. Receive the BWP indication message again and restart the timer.
  • Step 404 When the timer expires and the power headroom reporting condition is met, the terminal reports the power headroom report.
  • the MAC layer triggers the PHR report, and starts or restarts the BWP Prohibit-Timer, Otherwise, the PHR report is not triggered.
  • the PHR report will not be triggered.
  • the power headroom reporting condition includes the terminal receiving another BWP indication message.
  • the BWP Prohibit-Timer when the terminal receives a BWP indication message, the BWP Prohibit-Timer is enabled, and when the terminal receives another BWP indication message sent by the base station, the power headroom reporting condition is met, but if the BWP Prohibit-Timer does not time out. , will not trigger the PHR report.
  • the power headroom reporting condition may also include other conditions, for example, when the periodic PHR timer expires, the network device reconfigures the BWP configuration information, and the like.
  • the format of a PHR is as shown in FIG. 14.
  • the PHR includes a power headroo (PH) value corresponding to the BWPi and BWPi of the BWP, and the PH value is used to indicate the power headroom of the UE.
  • the BWPi is used to indicate whether the PH value of the BWPi exists for the ith BWP of the serving cell.
  • the PHR includes the PH value of the BWPi, and other fields may refer to the definition of the LTE, for example, P.
  • V indicates whether the PH value is calculated based on actual transmission or according to the reference format.
  • Type x indicates the type of power headroom, and PCMAX, c represents the corresponding nominal UE transmission power level.
  • the network device sends a configuration message for indicating the duration of the timer to the terminal.
  • the terminal receives the BWP indication message sent by the base station, the timer is started, and when the timer expires and the power is satisfied
  • the terminal reports the power headroom report, which reduces the number of times the PHR is reported and saves transmission resources.
  • each data packet is associated with a Hybrid automatic repeat request (HARQ) process.
  • HARQ Hybrid automatic repeat request
  • Each HARQ process has a HARQ process ID for identifying the HARQ process.
  • Multiple HARQ processes are managed by the HARQ entity. After the BWP is activated and deactivated, how to handle the HARQ process on these BWPs needs to be solved. The problem.
  • FIG. 15 is an interaction flowchart of a communication method according to another embodiment of the present application.
  • the method mainly relates to an implementation process of processing a HARQ process on a BWP after the BWP is activated and deactivated. As shown in FIG. 15, the method includes the following steps:
  • Step 501 The network device sends a BWP indication message to the terminal.
  • the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • the type and format of the BWP indication message may be implemented by referring to the BWP indication message in the embodiment shown in FIG. 2 to FIG. 7 , and details are not described herein again.
  • Step 502 The terminal processes the HARQ process on the activated BWP or the deactivated BWP.
  • step 502 Terminal processing of the activated BWP or the HARQ process on the deactivated BWP is described in detail below in various cases.
  • the first implementation manner if the BWP indication message is used to indicate that the first BWP is activated, the terminal initializes the HARQ process for the activated first BWP.
  • the UE when the BWP1 and the BWP2 of the UE work simultaneously, the UE initiates a set of HARQ processes for the BWP2, and the HARQ process of the BWP1 does not move, so that the HARQ buffer of the HARQ process where the BWP1 is located does not need to be cleared ( Buffer) to ensure the continuity of data transmission.
  • the second implementation manner is: if the BWP indication message is used to indicate that the first BWP is deactivated and the second BWP is activated, the HARQ process of the first BWP is associated with the second BWP.
  • the base station when the base station instructs the UE to deactivate the originally activated BWP1 and activate the BWP2, directly associate a set of HARQ processes of the BWP1 with the BWP2. For example, the HARQ ID remains unchanged, and the HARQ buffer of the BWP1 is directly On the BWP2, the UE and the base station directly use the original BWP1 HARQ ID to continue transmission on the BWP2.
  • the base station does not need to use the new command to configure the HARQ process for the BWP2, which saves the overhead, and does not need to clear the HARQ of the HARQ process on the BWP1. Buffer to ensure the continuity of data transmission.
  • the HARQ process is initialized for the second BWP, and the HARQ process of the first BWP is associated to the second BWP according to the indication signaling. The initialization is done on the HARQ process.
  • the indication signaling is used to indicate an association relationship between the HARQ process of the first BWP and the HARQ obtained by the initialization of the second BWP.
  • the indication signaling may be a single DCI instruction or may be carried in the BWP indication message.
  • the base station instructs the UE to deactivate the originally activated BWP1 and activates the BWP2
  • the UE directly performs a set of HARQ processes of the BWP1 to the BWP2, and performs at least one of two operations:
  • the HARQ buffer is emptied, and optionally, the variable related to the downlink HARQ process is set to an initial value, such as NDI.
  • the HARQ buffer is not cleared, and optionally, the relevant variable NDI of the HARQ process is set to the initial value.
  • NDI is set to zero.
  • the number of HARQ transmissions may be set to 0, or the number of HARQ transmissions may remain unchanged.
  • the UE when the UE receives the uplink resource allocated by the base station, and indicates that the UE uses the HARQ process N to transmit on the BWP2, if the base station indicates that the NDI is 0, the UE retransmits the data stored in the buffer corresponding to the HARQ process N. If the base station indicates that the NDI is 1, the UE transmits new data using the HARQ process N. If the HARQ process N maintains the number of HARQ transmissions, the number of HARQ transmissions is incremented by one.
  • a set of HARQ processes is separately transmitted for BWP2, and data buffered in each HARQ process of BWP1 is copied into the HARQ cache of BWP2, and variables of each HARQ process are also copied.
  • the HARQ process of the BWP1 includes the HARQ process 1-HARQ process 4, and the HARQ process that is initially transmitted by the BWP2 includes the HARQ process 1-HARQ process 7, and the HARQ process of the BWP1 is 1 according to the association relationship in the indication signaling sent by the base station.
  • the associated BWP2HARQ process 3 the BWP2 HARQ process 2 that associates the HARQ process 2 of BWP1, and so on.
  • the method does not need to clear the HARQ buffer of the HARQ process where BWP1 is located, and ensures the continuity of data transmission.
  • the fourth implementation manner is: if the BWP indication message is used to indicate that the second BWP is activated, the terminal determines whether the HARQ process that is performing data retransmission is stored in the first BWP; if yes, the first BWP is monitored, and the data retransmission ends. The second BWP is activated afterwards.
  • the base station instructs the UE to migrate from the BWP1 to the BWP2
  • the base station does not schedule a new transmission until the data retransmission in the BWP1 ends, and the BWP2 is in the BWP2.
  • the MAC layer needs to notify the Physical Layer (PHY) about the BWP2 effective time.
  • the method can ensure the continuity of the retransmitted data, and does not require the base station to reschedule the retransmission, saving signaling and transmission resources.
  • the UE when the UE is configured with the function of the discontinuous reception (DRX), if the data packet corresponding to one HARQ process is not successfully decoded by the UE, the UE needs to start the retransmission timer and start to listen to the physical layer control channel.
  • the BWP used by the UE to listen to the physical layer control channel during the retransmission timer operation is the same as the BWP used in the last data packet transmission, for example, The retransmission timer corresponding to the HARQ ID #1 is enabled, and the data packet is transmitted on the BWP1.
  • the UE needs to monitor in the physical layer control area corresponding to the BWP1, where the area includes but is not limited to the time domain and frequency of the physical layer control information. Domain location.
  • the HARQ transmission may be a transmission block (TB) transmission, for example, the TB is transmitted on the BWP1, or may be a Coding Block (CB) transmission or a coding block group composed of at least one coding block ( Transmission of CB Group, CBG).
  • TB transmission block
  • CB Coding Block
  • CBG Transmission of CB Group
  • the TB of the UE is transmitted in BWP1, and the retransmission of the TB may be transmitted in BWP2.
  • one TB CBG of the UE is transmitted in BWP1, and the CBG retransmission can be transmitted in BWP2.
  • the BWP indication message takes effect after a number of time units or a length of time, that is, an effective time of the BWP indication message.
  • the time unit may be a subframe, a transmission time interval, a time slot, a physical layer downlink control channel transmission timing, etc.
  • the time length may be several milliseconds, or seconds, or microseconds.
  • the UE For example, if the UE receives the downlink resource allocation or the uplink scheduling grant information in the BWP1 before the BWP1 is effective, the UE indicates the transmission location and modulation of the uplink resource for the downlink or data transmission received by the at least one TB. If the transmission timing of the downlink or uplink resource is after the effective time, the UE will use the downlink resource allocation or the transmission location of the downlink or uplink resource indicated by the uplink scheduling grant information on the BWP2, and receive or transmit the modulation and coding mode. TB.
  • the UE For example, if the UE receives the downlink resource allocation or the uplink scheduling grant information in the BWP1 before the BWP1 is effective, the UE indicates the transmission location and modulation of the uplink resource for the downlink or data transmission received by the at least one TB. If the transmission mode of the downlink or uplink resource is before the effective time, the UE will receive or transmit the downlink or uplink resource transmission location, modulation and coding mode, etc. indicated by the downlink resource allocation or the uplink scheduling grant information on the BWP1. TB.
  • the UE For example, if the UE receives the downlink resource allocation or the uplink scheduling grant information in the BWP1 before the BWP1 is effective, the UE indicates the transmission location and modulation of the uplink resource for the downlink or data transmission received by the at least one TB. If the transmission timing of at least one TB in the TB is before the effective time, the UE will use the downlink resource allocation or the transmission location of the downlink or uplink resource indicated by the uplink scheduling grant information on the BWP1, the modulation and coding mode, etc.
  • the TB is sent, and the transmission opportunity of the at least one TB in the TB is after the effective time, and the UE will use the downlink resource allocation or the transmission location of the downlink or uplink resource indicated by the uplink scheduling grant information, the modulation and coding mode, etc. on the BWP1 or Send the TB.
  • channel state information is used to notify the base station of the downlink channel quality to help the base station perform downlink scheduling, and the base station can also use the Sounding Reference Signal (SRS) to estimate the uplink of different frequency bands.
  • SRS Sounding Reference Signal
  • the scheduler on the base station side can allocate the air interface resources with good instantaneous channel quality to the UE for transmission according to the uplink channel state estimation.
  • the UE can simultaneously send SRS in different serving cells, and the SRS can be periodic or aperiodic.
  • the SRS is configured to the UE through the RRC message. After the BWP is activated and deactivated, how to handle the CSI resources and/or the SRS resources on the BWP is a problem to be solved.
  • FIG. 16 is an interaction flowchart of a communication method according to another embodiment of the present application.
  • the method mainly relates to an implementation process of processing a CSI and/or an SRS process on a BWP after the BWP is activated and deactivated. .
  • the method includes the following steps:
  • Step 601 The network device sends a BWP configuration message to the terminal.
  • the BWP configuration message is used to configure the CSI resource and/or the SRS resource of the BWP.
  • the BWP configuration message may be an RRC message or physical layer signaling.
  • the BSI configuration message used to configure the BWP and the BWP configuration message used to configure the BWP may be the same message, or may be a different message, configured to configure the BSI CSI resource and configure the BWP SRS resource. .
  • the CSI resource may be a semi-static CSI or a dynamic CSI.
  • the SRS resource may be a periodic SRS or an aperiodic SRS.
  • the CSI resource and the SRS resource may be transmitted through a Physical Uplink Control Channel (PUCCH) or may be transmitted through a Physical Uplink Shared Channel (PUCCH).
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Shared Channel
  • Step 602 The first BWP indication message sent by the network device to the terminal.
  • the first BWP indication message is used to instruct the terminal to activate the first BWP.
  • the type and format of the first BWP indication message may refer to the implementation manner of the BWP indication message in the embodiment shown in FIG. 2 to FIG. 7 , and details are not described herein again.
  • Step 603 The terminal activates a CSI resource and/or an SRS resource on the first BWP.
  • the terminal after receiving the first BWP indication message, the terminal automatically activates the CSI resource and/or the SRS resource on the first BWP.
  • the control signaling on the PDCCH is also required to instruct the terminal to activate the CSI resource and/or the SRS resource on the first BWP.
  • the implementation is implemented.
  • the network device sends a BWP configuration message for configuring the CSI resource and/or the SRS resource of the BWP to the terminal, and the terminal automatically activates the CSI resource on the first BWP after receiving the first BWP indication message sent by the network device.
  • the base station is not required to separately send instructions for activating CSI resources and/or SRS resources, saving signaling overhead.
  • FIG. 17 is a flowchart of an interaction method of a communication method according to another embodiment of the present disclosure.
  • the method mainly relates to a scheme for a terminal to automatically release a CSI resource and/or an SRS resource after the base station instructs the terminal to deactivate the BWP. Based on the embodiment shown in Figure 16, as shown in Figure 17, the method further includes the following steps:
  • Step 701 The network device sends a second BWP indication message to the terminal.
  • the second BWP indication message is used to instruct the terminal to deactivate the first BWP.
  • the type and the format of the second BWP indication message refer to the implementation manner of the BWP indication message in the embodiment shown in FIG. 2 to FIG. 7 , and details are not described herein again.
  • Step 702 The terminal releases the CSI resource and/or the SRS resource on the first BWP.
  • the terminal after the terminal receives the second BWP indication message sent by the base station to instruct the terminal to deactivate the first BWP, and considers that the CSI resource and/or the SRS resource on the first BWP is invalid, the terminal automatically releases the A CSI resource and/or an SRS resource on a BWP does not require the base station to separately send signaling and/or SRS resources for instructing to release the CSI resource, thereby saving signaling.
  • FIG. 18 is an interaction flowchart of a communication method according to another embodiment of the present disclosure.
  • the method mainly relates to a solution for processing a CSI resource by a terminal after the base station instructs the terminal to deactivate the BWP1 and activate the BWP2, as shown in FIG. 18.
  • the method further includes the following steps:
  • Step 801 The network device sends a second BWP indication message to the terminal.
  • the second BWP indication message is used to instruct the terminal to deactivate the first BWP and activate the second BWP.
  • the type and format of the second BWP indication message refer to the implementation manner of the BWP indication message in the embodiment shown in FIG. 2 to FIG. 7 , and details are not described herein again.
  • Step 802 The terminal releases the CSI resource and/or the SRS resource on the first BWP, and enables the CSI resource and/or the SRS resource on the second BWP.
  • the terminal after receiving the second BWP indication message sent by the base station, the terminal considers that the CSI resource and/or the SRS resource on the first BWP is invalid, the terminal automatically releases the CSI resource and/or the SRS on the first BWP.
  • the resource and the CSI resource and/or the SRS resource on the second BWP are enabled, and the base station is not required to separately send signaling for instructing to release and start the CSI resource and/or the SRS resource, saving signaling.
  • a scheduling request is used to notify the base station that the terminal has uplink data to be transmitted, so that the base station determines whether to allocate uplink resources to the terminal.
  • the terminal sends an SR and does not receive the scheduling of the base station, it needs to resend the SR and increment one of the maintained variables: SR_COUNTER.
  • SR_COUNTER can be understood as characterizing how many times an SR has been sent. After the BWP is activated and deactivated, how the SR_COUNTER maintained by the terminal on the BWP should be handled is a problem that needs to be solved.
  • FIG. 19 is an interaction flowchart of a communication method according to another embodiment of the present application.
  • the method mainly relates to an implementation process of processing SR_COUNTER on a BWP after the BWP is activated and deactivated. As shown in FIG. 19, the method includes the following steps:
  • Step 901 The network device sends a BWP indication message to the terminal.
  • the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • the type and format of the BWP indication message may be implemented by referring to the BWP indication message in the embodiment shown in FIG. 2 to FIG. 7 , and details are not described herein again.
  • Step 902 The terminal processes the activated BWP or the SR_COUNTER on the deactivated BWP.
  • one implementation is that the physical layer notifies the MAC layer to initialize SR_COUNTER.
  • the physical layer after receiving the BWP indication information, notifies the MAC layer to initialize, or disables the SR_COUNTER of the current SR configuration, and enables the SR_COUNTER of the new SR configuration.
  • the terminal maintains a separate SR_COUNTER for each SR configuration.
  • the terminal When the SR configuration on the deactivated BWP is disabled, the terminal enables the SR configuration on the activated BWP, so the terminal disables the SR_COUNTER corresponding to the SR configuration on the activated BWP, and enables the SR_COUNTER corresponding to the SR configuration on the activated BWP. Since the SR configuration on the activated BWP is used, the SR_COUNTER of the SR configuration on the activated BWP can be set to the initial value, so it can also be characterized that the physical layer notifies the MAC layer to initialize SR_COUNTER. Before the physical layer notifies the MAC layer, the physical layer can determine whether it is necessary to notify the MAC layer of the SR configuration change.
  • the physical layer can determine if the SR configuration has changed due to BWP activation deactivation. If the SR configuration changes, the physical layer notifies the MAC layer SR_COUNTER of deactivation, enablement or initialization. If there is no change, the physical layer may not notify the MAC layer or notify the MAC layer that SR_COUNTER remains unchanged. For example, the base station pre-configures the association relationship of the SR configuration on the BWP. If the physical layer finds that the SR configuration has changed, but the changed SR configuration has an association relationship, the physical layer does not notify the MAC layer, or notifies the MAC layer to maintain the SR_COUNTER.
  • the MAC may also make a decision whether to disable, enable, or initialize the SR_COUNTER. For example, the base station pre-configures the association relationship of the SR configuration on the BWP, and if the MAC layer finds an association between the SR configurations, even if The physical layer notifies the MAC layer to disable, enable or initialize the SR_COUNTER, and the MAC layer may not perform the deactivation, enabling or initialization of the SR_COUNTER.
  • FIG. 20 is a block diagram of a communication apparatus according to an embodiment of the present disclosure. As shown in FIG. 20, the apparatus includes a receiving module 11 and a sending module 12.
  • the receiving module 11 is configured to receive a BWP indication message sent by the network device, where the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • the sending module 12 is configured to send a BWP feedback message to the base station, where the BWP feedback message is used to indicate that the terminal successfully receives the BWP indication message.
  • FIG. 21 is a block diagram of a communication apparatus according to another embodiment of the present application. As shown in FIG. 21, the apparatus includes a receiving module 21 and an activation module 22.
  • the receiving module 21 is configured to receive a BWP configuration message sent by the network device, where the configuration message is used to configure a semi-persistent scheduling SPS resource of the BWP.
  • the receiving module 21 is further configured to receive a first BWP indication message sent by the network device, where the first BWP indication message is used to instruct the terminal to activate the first BWP.
  • the activation module 22 is configured to activate SPS resources on the first BWP.
  • FIG. 22 is a block diagram of a communication apparatus according to another embodiment of the present application. As shown in FIG. 22, the apparatus includes a receiving module 31, an opening module 32, and a sending module 33.
  • the receiving module 31 is configured to receive a configuration message sent by the network device, where the configuration message is used to indicate the duration of the timer.
  • the opening module 32 is configured to enable a timer when the receiving module 31 receives the BWP indication message, where the BWP indication message is used to instruct the terminal to activate the BWP or deactivate the BWP.
  • the sending module 33 is configured to report the power headroom report when the timer expires and the power headroom reporting condition is met.
  • Another embodiment of the present application further provides a communication device having the same structure as that of the device shown in FIG. 20, the device including a receiving module 11 and a transmitting module 12.
  • the sending module 12 is configured to send a BWP indication message to the terminal, where the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • the receiving module 11 is configured to receive a BWP feedback message sent by the terminal, where the BWP feedback message is used to indicate that the terminal successfully receives the BWP indication message.
  • FIG. 23 is a block diagram of a communication apparatus according to another embodiment of the present application. As shown in FIG. 23, the apparatus includes a first sending module 41 and a second sending module 42.
  • the first sending module 41 is configured to send a BWP configuration message to the terminal, where the configuration message is used to configure a semi-persistent scheduling SPS resource of the BWP.
  • the second sending module 42 is configured to send a first BWP indication message to the terminal, where the first BWP indication message is used to instruct the terminal to activate the first BWP.
  • the embodiment of the present application further provides a communication device.
  • the structure of the device is the same as that of the device shown in FIG. 20, and the device includes a receiving module 11 and a transmitting module 12.
  • the sending module 12 is configured to send a configuration message to the terminal, where the configuration message is used to indicate the duration of the timer.
  • the sending module 12 is further configured to send a BWP indication message to the terminal, so that the terminal starts the timer, where the BWP indication message is used to indicate that the terminal activates the BWP or deactivates the BWP.
  • the receiving module 11 is configured to receive a power headroom report reported by the terminal, where the power headroom report is a report sent by the terminal when the timer expires and the power headroom reporting condition is met.
  • FIG. 24 is a block diagram of a communication apparatus according to another embodiment of the present application. As shown in FIG. 24, the apparatus includes a receiving module 51 and a processing module 52.
  • the receiving module 51 is configured to receive a BWP indication message sent by the network device, where the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • the processing module 52 is configured to process the HARQ process on the activated BWP or the deactivated BWP.
  • the embodiment of the present application further provides a communication device whose structure is the same as that of the device shown in FIG. 21, and the device includes the device including a receiving module 21 and an activation module 22.
  • the receiving module 21 is configured to receive a BWP configuration message sent by the network device, where the BWP configuration message is used to configure a CSI resource and/or an SRS resource of the BWP.
  • the receiving module 21 is further configured to receive a first BWP indication message sent by the network device, where the first BWP indication message is used to instruct the terminal to activate the first BWP.
  • the activation module 22 is configured to activate CSI resources and/or SRS resources on the first BWP.
  • the embodiment of the present application further provides a communication device having the same structure as that shown in FIG. 24, and the device includes a receiving module 51 and a processing module 52.
  • the receiving module 51 is configured to receive a BWP indication message sent by the network device, where the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • the processing module 52 is configured to process the SR_COUNTER on the activated BWP or the deactivated BWP.
  • the embodiment of the present application further provides a communication device, including a sending module, configured to send a BWP indication message to a terminal, so that after the terminal receives the BWP message, the terminal performs the HARQ process on the activated BWP or the deactivated BWP. Processing, the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • a communication device including a sending module, configured to send a BWP indication message to a terminal, so that after the terminal receives the BWP message, the terminal performs the HARQ process on the activated BWP or the deactivated BWP. Processing, the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • the embodiment of the present application further provides a communication device.
  • the structure of the device is the same as that shown in FIG. 23, and the device includes a first sending module 41 and a second sending module 42.
  • the first sending module 41 is configured to send a BWP configuration message to the terminal, where the BWP configuration message is used to configure the CSI resource and/or the SRS resource of the BWP.
  • the second sending module 42 is configured to send a first BWP indication message to the terminal, where the first BWP indication message is used to instruct the terminal to activate the first BWP.
  • the embodiment of the present application further provides an apparatus, where the apparatus includes a sending module, configured to send a BWP indication message to the terminal, so that the terminal performs the activated BWP or the SR_COUNTER on the deactivated BWP after receiving the BWP indication message. Processing, the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • a sending module configured to send a BWP indication message to the terminal, so that the terminal performs the activated BWP or the SR_COUNTER on the deactivated BWP after receiving the BWP indication message. Processing, the BWP indication message is used to instruct the terminal to activate the BWP and/or deactivate the BWP.
  • the embodiment of the present application further provides a communication device, including a unit and a means for performing the steps described in any of the embodiments of FIG. 2 to FIG. 19.
  • the embodiment of the present application further provides a communication device, including a processor and a memory, wherein the memory is used to store a program, and when the program is called by the processor, is used to execute the method described in any of the embodiments of FIG.
  • the embodiment of the present application further provides a computer storage medium, on which a program is stored, which is used by the processor to implement the method as described in any of the embodiments of FIG.
  • each module or unit of the above communication device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules or units may all be implemented by software in the form of processing component calls; or may be implemented entirely in hardware; some modules or units may be implemented by software in the form of processing component calls, and some modules or units may be in the form of hardware.
  • the processing module may be a separately set processing component, or may be implemented in a chip of an integrated network device or a terminal, or may be stored in a memory of a network device or a terminal in the form of a program, by a network device or a terminal.
  • a processing component calls and executes the functions of each of the above units.
  • the implementation of other modules or units is similar.
  • all or part of these modules or units can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit that has signal processing capabilities.
  • each step of the above method or each of the above modules or units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules or units may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors. (digital singnal processor, DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • microprocessors digital singnal processor, DSP
  • FPGA Field Programmable Gate Array
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • these modules or units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 25 is a schematic structural diagram of a radio access network (RAN) node according to an embodiment of the present disclosure.
  • the RAN node may be a network device in the foregoing embodiment, and is used to implement the network device in the foregoing embodiment. operating.
  • the RAN node includes an antenna 110, a radio frequency device 120, and a baseband device 130.
  • the antenna 110 is connected to the radio frequency device 120.
  • the radio frequency device 120 receives the information transmitted by the terminal through the antenna 110, and transmits the information sent by the terminal to the baseband device 130 for processing.
  • the baseband device 130 processes the information of the terminal and sends it to the radio frequency device 120.
  • the radio frequency device 120 processes the information of the terminal and sends the information to the terminal through the antenna 110.
  • the baseband device 130 may be one device physically, or may include at least two devices physically separated, for example, including a control unit (CU) and at least one DU.
  • the DU can be integrated with the radio frequency device 120 in one device or physically separated.
  • the baseband device 130 is configured to perform protocol layer processing such as RRC, PDCP, RLC, MAC, and physical layer, and may The division between any two protocol layers is such that the baseband device comprises two physically separate devices for performing the processing of the respective responsible protocol layers. For example, it is divided between RRC and PDCP, and, for example, it can be divided between PDCP and RLC.
  • protocol layer may also be divided within the protocol layer, for example, a protocol layer part and a protocol layer above the protocol layer are divided into one device, and the remaining part of the protocol layer and the protocol layer below the protocol layer are divided into another device.
  • the above communication device may be located on one of the physically separate at least two devices of the baseband device 130.
  • the RAN node can include a plurality of baseband boards, and multiple processing elements can be integrated on the baseband board to achieve the desired functionality.
  • the baseband device 130 can include at least one baseband board, and the above communication device can be located in the baseband device 130.
  • the various modules or units shown in any of the embodiments of Figures 20-24 are implemented in the form of a processing component scheduler.
  • baseband device 130 includes processing element 131 and storage element 132, and processing element 131 invokes a program stored by storage element 132 to perform the method performed by the RAN node in the above method embodiments.
  • the baseband device 130 may further include an interface 133 for interacting with the radio frequency device 120, such as a common public radio interface (CPRI), when the baseband device 130 and the radio frequency device 120 are physically disposed.
  • the interface can be an in-board interface, or an inter-board interface, where the board refers to the board.
  • each of the modules or units illustrated in any of Figures 20-24 may be one or more processing elements configured to implement the methods performed by the RAN node above, the processing elements being disposed in the baseband device
  • the processing elements herein may be integrated circuits, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, and the like. These integrated circuits can be integrated to form a chip.
  • the various modules or units shown in any of the embodiments of Figures 20-24 can be integrated and implemented in the form of a system-on-a-chip (SOC), for example, the baseband device 130 includes a SOC chip.
  • SOC system-on-a-chip
  • the processing element 111 and the storage element 132 may be integrated within the chip, and the method performed by the above RAN node or the various modules or units shown in any of the embodiments of FIGS. 20-24 may be implemented by the processing element 131 in the form of a stored program that calls the storage element 132.
  • the function Alternatively, at least one integrated circuit may be integrated into the chip for implementing the functions of the above-described RAN node or the functions of the various modules or units shown in any of the embodiments of FIGS. 20-24.
  • the functions of some modules or units are implemented in the form of processing component calling programs, and the functions of some units are implemented in the form of integrated circuits.
  • the above communication device for the RAN node comprises at least one processing element and a storage element, wherein at least one of the processing elements is used to perform the method performed by the RAN node provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the RAN node in the above method embodiment in a manner of executing the program stored in the storage element in the first manner; or in a second manner: by hardware in the processor element
  • the integrated logic circuit performs some or all of the steps performed by the RAN node in the foregoing method embodiment in combination with the instructions; of course, some or all of the steps performed by the RAN node in the foregoing method embodiment may be performed in combination with the first mode and the second mode. .
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • FIG. 26 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure, which may be used in the foregoing embodiment to implement the operation of the terminal in the foregoing embodiment.
  • the terminal includes an antenna 210, a radio frequency device 220, and a baseband device 230.
  • the antenna 210 is connected to the radio frequency device 220.
  • the radio frequency device 220 receives the information transmitted by the RAN node through the antenna 210, and transmits the information sent by the RAN node to the baseband device 230 for processing.
  • the baseband device 230 processes the information of the terminal and sends it to the radio frequency device 220.
  • the radio frequency device 220 processes the information of the terminal and sends it to the RAN node via the antenna 210.
  • the baseband device can include a modem subsystem for effecting processing of the various communication protocol layers of the data.
  • a central processing subsystem may also be included for implementing processing of the terminal operating system and the application layer.
  • other subsystems such as a multimedia subsystem, a peripheral subsystem, etc., may be included, wherein the multimedia subsystem is used to implement control of the terminal camera, screen display, etc., and the peripheral subsystem is used to implement connection with other devices.
  • the modem subsystem can be a separately provided chip.
  • the above communication device can be implemented on the modem subsystem.
  • the various units shown in FIG. 26 are implemented in the form of a processing element scheduler, such as a subsystem of baseband apparatus 230, such as a modem subsystem, including processing element 231 and storage element 232, processing element 231
  • the program stored by the storage element 232 is called to perform the method performed by the terminal in the above method embodiment.
  • the baseband device 230 can also include an interface 233 for interacting with the radio frequency device 220.
  • the various units shown in FIG. 26 may be one or more processing elements configured to implement the methods performed by the above terminal, the processing elements being disposed on a subsystem of the baseband device 230, such as a modulation solution.
  • the processing elements herein may be integrated circuits, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, and the like. These integrated circuits can be integrated to form a chip.
  • the various units shown in FIG. 26 may be integrated together in the form of a system-on-a-chip (SOC), for example, the baseband device 230 includes a SOC chip for implementing the above method.
  • the processing element 231 and the storage element 232 may be integrated into the chip, and the method executed by the above terminal or the modules or units shown in any of the embodiments of FIGS. 20 to 24 may be implemented by the processing element 231 invoking a stored program of the storage element 232.
  • Function; or, the chip may be integrated with at least one integrated circuit for implementing the above-mentioned terminal execution method or the functions of each module or unit shown in any embodiment of FIG. 20 to FIG. 24; or, may be combined with the above implementation manner, part
  • the function of the unit is realized by the processing component calling program, and the functions of some units are realized by the form of an integrated circuit.
  • the above communication device for the terminal comprises at least one processing element and a storage element, wherein at least one of the processing elements is used to perform the method of terminal execution provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the terminal in the above method embodiment in a manner of executing the program stored in the storage element in a first manner; or in a second manner: through integration of hardware in the processor element
  • the logic circuit performs some or all of the steps performed by the terminal in the foregoing method embodiment in combination with the instruction; of course, some or all of the steps performed by the terminal in the foregoing method embodiment may be performed in combination with the first mode and the second mode.
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置和设备,该方法包括:终端接收网络设备发送的BWP指示消息,所述BWP指示消息用于指示所述终端激活BWP和/或去激活BWP;所述终端向所述基站发送BWP反馈消息,所述BWP反馈消息用于指示所述终端成功接收到所述BWP指示消息,可以避免UE无法收到或者无法正确解析该BWP指示消息时,UE与基站采用不同的BWP通信而导致数据传输失败的问题,提高了通信质量。

Description

通信方法、装置和设备
本申请要求于2017年09月28日提交中国专利局、申请号为201710900586.0、申请名称为“通信方法、装置和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信方法、装置和设备。
背景技术
在新一代无线通信系统(New Radio,NR)中,引入了带宽部分(Bandwidth Part,BWP)的概念。一个小区的频带可以被分割成多个子频带,每个子频带之间可以重叠,每个子频带均有对用的空口格式,每个子频带还可以有上、下行的控制信道和数据信道,这样的子频带在NR中被称为BWP。
其中,每个小区存在初始激活BWP,基站可以通过广播信息、系统信息等通知用户设备(User Equipment,UE)进行初始激活BWP,UE通过初始激活BWP完成初始接入小区后,可以被配置到不同的BWP上,例如,小区存在BWP1和BWP2,所有UE可以通过BWP1接入小区,但在接入成功后,基站会配置部分UE到BWP2发送和接收数据。
对每个UE而言,基站可以为UE配置多个BWP,例如,当UE通过BWP1接入存在BWP1和BWP2的小区后,基站可以将BWP1和BWP2都配置给UE。虽然,对每个UE可能同时配置多个BWP,但基站会选择性的激活其中的部分或全部的BWP,例如,当UE通过BWP1接入存在BWP1和BWP2的小区后,基站将BWP1和BWP2都配置给UE,但基站只激活BWP2,不激活BWP1,UE只能在BWP2上收发数据,当基站发现UE的业务发生改变时,基站可以进一步激活BWP1并保留BWP2,UE可以同时在BWP1和BWP2收发数据,或者,基站激活BWP1,但去激活BWP2,UE只能在BWP1上收发数据,也即,UE只能在被激活的BWP上收发数据,对于其它未激活的BWP,UE只是保存了未激活的BWP的配置信息。
但是,在BWP激活或去激活或切换期间,如何提高通信质量成为了一个亟待解决的问题。
发明内容
有鉴于此,本申请实施例提供了一种通信方法、装置和设备,以期解决现有技术中在BWP激活或去激活或切换期间,通信质量不高的问题。
第一方面,本申请实施例提供一种通信方法,包括:终端接收网络设备发送的用于指示终端激活BWP和/或去激活BWP的BWP指示消息,并向基站发送用于指示终 端成功接收到BWP指示消息的BWP反馈消息。
其中,BWP指示消息可以网络设备通过控制信道发送的控制指令,例如,DCI指令,也可以是网络设备通过其它类型的信道发送的其它指令。BWP指示消息中可以包括BWP的标识,用于指示激活或者去激活该标识对应的BWP。
其中,BWP反馈消息可以为MAC消息,也可以为其它类型的消息。
本实施例提供的通信方法,网络设备向UE发送用于指示终端激活BWP和/或去激活BWPBWP指示消息,UE成功接收该BWP指示消息之后,UE向基站发送BWP反馈消息,以通知基站成功接收到BWP指示消息,可以避免UE无法收到或者无法正确解析该BWP指示消息时,UE与基站采用不同的BWP通信而导致数据传输失败的问题,提高了数据传输质量。
可选地,BWP反馈消息为媒体访问控制MAC层消息。
可选地,MAC层消息包括MAC子头,或者包括MAC子头和MAC负荷,MAC子头包括逻辑信道标识LCID,LCID用于指示终端成功收到BWP指示消息。
在本实施例中,BWP反馈消息为MAC层消息,MAC子头包括用于指示终端成功收到BWP指示消息的LCID,当BWP指示消息为基站通过控制信道发送的控制指令时,UE可以生成MAC层的BWP反馈消息,通知基站成功接收该BWP指示消息,以保证BWP指示消息传输的可靠性。
可选地,MAC负荷包括激活的BWP的标识或去激活的BWP的标识,可以保证网络设备和基站在同一BWP上进行数据传输,保证数据传输的可靠性。
可选地,MAC负荷还包括载波分量标识,载波分量标识用于指示激活的BWP所在的载波或去激活的BWP所在的载波。
在本实施例中,MAC负荷包括载波分量标识,可以保证基站和UE在同一载波上进行数据传输,保证数据传输的可靠性。
可选地,终端向基站发送BWP反馈消息,包括:
终端在激活的BWP上发送BWP反馈消息;或者,
终端在去激活的BWP上发送BWP反馈消息;或者,
终端在第二载波分量上发送BWP反馈消息,激活的BWP或去激活的BWP为第一载波分量上的频率资源。
在本实施例中,可以采用多种灵活多变的方式在不同的频率资源上发送BWP反馈消息,保证BWP反馈消息传输的可靠性。
可选地,当BWP指示消息用于指示终端激活BWP时,该方法还包括:激活网络设备指示激活的BWP上的传输资源。
其中,传输资源可以包括半静态调度(Semi-Persistent Scheduling,SPS)资源、信道状态信息(Channel state information,CSI)资源、调度请求(Scheduling Request,SR)资源等。
在本实施例中,当BWP指示消息用于指示终端激活BWP时,UE自动激活需要激活的BWP上的SPS资源,不需要基站利用物理下行控制信道(Physical Downlink Control Channel,PDCCH)上的信令指示激活SPS资源,可以节省信令。
可选地,当BWP指示消息用于指示终端去激活BWP时,该方法还包括:释放网 络设备指示去激活的BWP上的传输资源。
在本实施例中,当BWP指示消息用于指示终去端激活BWP时,UE自动释放需要去激活的BWP上的SPS资源,不需要基站利用PDCCH上的信令指示释放SPS资源,可以节省信令。
可选地,当BWP指示消息用于指示终端激活BWP时,该方法还包括:为激活的BWP初始化混合自动重传请求(Hybrid automatic repeat request,HARQ)进程。
在本实施例中,当BWP指示消息用于指示终端激活BWP时,UE自动为激活的BWP初始化HARQ进程,不需要基站利用PDCCH上的信令配置HARQ进程,可以节省信令。
第二方面,本实施例提供一种通信方法,包括:终端接收网络设备发送的用于配置BWP的SPS资源的BWP配置消息,并接收网络设备发送的用于指示终端激活第一BWP的第一BWP指示消息,终端激活第一BWP上的SPS资源。
其中,该BWP配置消息可以是RRC层消息,该RRC消息可以是系统消息(System Information),不限于最小系统消息(minimum SI)和/或剩余系统消息等,该RRC消息还可以是UE专属的RRC消息。
其中,SPS资源可以包括上下行SPS传输资源时间间隔或者周期、SPS传输资源所在的频域位置、调制解码方式等。
本实施例提供的通信方法,网络设备向终端发送用于配置BWP的SPS资源的BWP配置消息,终端接收网络设备发送的第一BWP指示消息后,自动激活第一BWP上的SPS资源,无需基站单独发送用于激活SPS资源的指令,节省信令开销。
可选地,该方法还包括:终端接收网络设备发送的用于指示终端去激活第一BWP第二BWP指示消息后,释放第一BWP上的SPS资源。
在本实施例中,网络设备向终端发送用于指示终端去激活第一BW的第二BWP指示消息,终端收到该第二BWP指示消息之后,自动释放第一BWP上的SPS资源,无需基站单独发送用于释放SPS资源的指令,节省信令开销。
可选地,第二BWP指示消息还用于指示终端激活第二BWP,该方法还包括:终端根据第二BWP的信息和第一BWP上的SPS资源,确定第二BWP上的SPS资源,不需要基站采用单独的信令来指示第二BWP上的SPS资源的信息,节省信令开销。
可选地,第二BWP上的SPS资源相对于第二BWP的起始资源位置的物理资源块PRB编号的偏移量与第一BWP上的SPS资源相对于第一BWP的起始资源位置的PRB编号的偏移量相同;第二BWP上的SPS资源的周期的绝对时间和第一BWP上的SPS资源的周期的绝对时间是相同的。
在本实施例中,可以采用不同的方法来确定第二BWP上的SPS资源,不需要基站采用单独的信令来指示第二BWP上的SPS资源的信息,节省信令开销,而且,方式灵活多变,可以适用于不同的场景。
第三方面,本申请实施例提供一种通信方法,包括:终端接收网络设备发送的用于指示定时器的时长的BWP配置消息,当终端接收到用于指示终端激活BWP或者去激活BWP的BWP指示消息时,开启定时器,当定时器到期且满足功率余量上报条件时,终端上报功率余量报告。
其中,BWP配置消息可以包含一个或者多个BWP的配置信息,BWP配置消息可以包括BWP标识、BWP时域资源、BWP频域资源中的至少一种。
其中,定时器为基站配置的BWP阻止定时器(BWP Prohibit-Timer),BWP阻止定时器的时长可以携带于基站发送给UE的RRC消息中。
本申请实施例提供的通信方法,网络设备向终端发送用于指示定时器的时长的配置消息,当终端接收到基站发送的BWP指示消息时,开启定时器,当定时器到期且满足功率余量上报条件时,终端上报功率余量报告,可以减少上报PHR的次数,节省传输资源。
可选地,功率余量上报条件包括终端收到另一BWP指示消息。
第四方面,本申请实施例提供一种通信方法,包括:终端接收网络设备发送的用于指示终端激活BWP和/或去激活BWP的BWP指示消息,并对激活的BWP或去激活的BWP上的HARQ进程进行处理。
本实施例提供的通信方法,当网络设备指示终端激活或者去激活BWP时,终端自动对激活的BWP或去激活的BWP上的HARQ进程进行处理,不需要基站采用单独的控制指令来配置HARQ进程,节省信令,而且,可以保证数据重传的连续性,提高了通信质量。
可选地,若BWP指示消息用于指示激活第一BWP,则终端为激活的第一BWP初始化HARQ进程。
在本实施例中,当UE的BWP1和BWP2同时工作时,UE为BWP2另行初传化一套HARQ进程,BWP1的HARQ进程不动,从而不需要清空BWP1上所在的HARQ进程的HARQ缓冲区(buffer),保证数据传输的连续性。
可选地,若BWP指示消息用于指示去激活第一BWP且激活第二BWP,则将所述第一BWP的HARQ进程关联至所述第二BWP上。
在本实施例中,当基站指示UE将原来已激活的BWP1去激活,并激活BWP2时,直接将BWP1的一套HARQ进程关联到BWP2,UE以及基站直接在BWP2上使用原先BWP1的HARQ ID继续传输,不需要基站采用新的指令为BWP2配置HARQ进程,节省开销,而且,不需要清空BWP1上所在的HARQ进程的HARQ缓冲区(buffer),保证数据传输的连续性。
可选地,若BWP指示消息用于指示去激活第一BWP且激活第二BWP,则为第二BWP初始化HARQ进程,并根据指示信令将第一BWP的HARQ进程关联至第二BWP的初始化得到的HARQ进程上。
其中,指示信令用于指示第一BWP的HARQ进程与第二BWP的初始化得到的HARQ之间的关联关系。指示信令可以是一个单独的DCI指令,也可以是携带在BWP指示消息中。
在本实施例中,为BWP2另行初传化一套HARQ进程,将BWP1的各个HARQ进程内缓存的数据拷贝到BWP2的HARQ缓存内,各个HARQ进程的变量也复制过去,不需要清空BWP1上所在的HARQ进程的HARQ缓冲区(buffer),保证数据传输的连续性。
可选地,若BWP指示消息用于指示激活第二BWP,则终端判断第一BWP中是 否存正在进行数据重传的HARQ进程;若是,则监听第一BWP,并在数据重传结束后激活第二BWP。
在本实施例中,若基站指示UE从BWP1上迁移到BWP2上,若BWP1中已经在重传的HARQ process还在继续,基站不再调度新传,直到BWP1中数据重传结束后,BWP2在生效,MAC层需要通知物理层(Physical Layer,PHY)关于BWP2生效时刻,该方法可以保证重传数据的连续性,而且不需要基站重新调度重传,节省信令和传输资源。
第五方面,本申请实施例提供一种通信方法,包括:终端接收网络设备发送的用于配置BWP的CSI资源和/或SRS资源的BWP配置消息,并接收网络设备发送的用于指示终端激活第一BWP的第一BWP指示消息,激活第一BWP上的CSI资源和/或SRS资源。
其中,BWP配置消息可以是RRC消息,也可以是物理层信令。用于配置BWP的CSI资源和用于配置BWP的SRS资源的BWP配置消息可以是同一条消息,也可以是不同的消息,分别用于配置BWP的CSI资源以及配置BWP的SRS资源。
本实施例提供的通信方法,网络设备向终端发送用于配置BWP的CSI资源和/或SRS资源的BWP配置消息,终端接收网络设备发送的第一BWP指示消息后,自动激活第一BWP上的CSI资源和/或SRS资源,无需基站单独发送用于激活CSI资源和/或SRS资源的指令,节省信令开销。
可选地,终端接收网络设备发送的用于指示终端去激活第一BWP的第二BWP指示消息,释放第一BWP上的CSI资源和/或SRS资源。
在本实施例中,当终端收到基站发送的用于指示终端去激活第一BWP的第二BWP指示消息之后,认为第一BWP上的CSI资源和/或SRS资源无效,则终端自动释放第一BWP上的CSI资源和/或SRS资源,不需要基站单独发送用于指示释放CSI资源的信令和/或SRS资源,节省信令。
可选地,终端接收网络设备发送的用于指示终端去激活第一BWP并激活第二BWP的第二BWP指示消息,释放第一BWP上的CSI资源和/或SRS资源,并启用第二BWP上的CSI资源和/或SRS资源。
在本实施例中,当终端收到基站发送的第二BWP指示消息之后,认为第一BWP上的CSI资源和/或SRS资源无效,则终端自动释放第一BWP上的CSI资源和/或SRS资源,并启用第二BWP上的CSI资源和/或SRS资源,不需要基站单独发送用于指示释放和启动CSI资源和/或SRS资源的信令,节省信令。
第六方面,本申请实施例提供一种通信方法,包括:终端接收网络设备发送的用于指示终端激活BWP和/或去激活BWP的BWP指示消息,对激活的BWP或去激活的BWP上的SR_COUNTER进行处理。
在本实施例中,物理层在收到BWP指示消息后,通知MAC层初始化,或者停用当前SR配置的SR_COUNTER,启用新的SR配置的SR_COUNTER,无需网络设备采用单独的信令来指示SR配置的SR_COUNTER,节省信令。
第七方面,本申请实施例提供一种通信方法,包括:网络设备向终端发送BWP指示消息,网络设备接收终端发送的BWP反馈消息,BWP指示消息用于指示终端激 活BWP和/或去激活BWP;BWP反馈消息用于指示终端成功接收到BWP指示消息。
可选地,BWP反馈消息为媒体访问控制MAC层消息。
可选地,MAC层消息包括MAC子头,或者包括MAC子头和MAC负荷,MAC子头包括逻辑信道标识LCID,LCID用于指示终端成功收到BWP指示消息。
可选地,MAC负荷包括激活的BWP的标识或去激活的BWP的标识。
可选地,MAC负荷还包括载波分量标识,载波分量标识用于指示激活的BWP所在的载波或去激活的BWP所在的载波。
可选地,网络设备接收终端发送的BWP反馈消息,包括:
网络设备在激活的BWP上接收BWP反馈消息,或者,
网络设备在去激活的BWP上接收BWP反馈消息;或者,
网络设备在第二载波分量上接收BWP反馈消息,激活的BWP或去激活的BWP为第一载波分量上的频率资源。
本实施例提供的通信方法,其实现原理和有益效果可以参照第一方面的描述,此处不再赘述。
第八方面,本申请实施例提供一种通信方法,包括;网络设备向终端发送BWP配置消息,并向终端发送第一BWP指示消息,配置消息用于配置BWP的半静态调度SPS资源;第一BWP指示消息用于指示终端激活第一BWP。
可选地,该方法还包括:网络设备向终端发送第二BWP指示消息,第二BWP指示消息用于指示终端去激活第一BWP。
可选地,第二BWP指示消息还用于指示终端激活第二BWP。
可选地,第二BWP上的SPS资源相对于第二BWP的起始资源位置的物理资源块PRB编号的偏移量与第一BWP上的SPS资源相对于第一BWP的起始资源位置的PRB编号的偏移量相同;第二BWP上的SPS资源的周期的绝对时间和第一BWP上的SPS资源的周期的绝对时间是相同的。
本实施例提供的通信方法,其实现原理和有益效果可以参照第二方面的描述,此处不再赘述。
第九方面,本申请实施例提供一种通信方法,包括:网络设备向终端发送用于指示定时器的时长的BWP配置消息,并向终端发送用于指示终端激活BWP或者去激活BWP的BWP指示消息,以使终端开启定时器,并接收终端上报的功率余量报告,功率余量报告为定时器到期且满足功率余量上报条件时终端发送的报告。
可选地,功率余量上报条件包括终端收到另一BWP指示消息。
本实施例提供的通信方法,其实现原理和有益效果可以参照第三方面的描述,此处不再赘述。
第十方面,本申请实施例提供一种通信方法,包括:网络设备向终端发送用于指示终端激活BWP和/或去激活BWP的BWP指示消息,以使终端在接收到BWP指示消息后,对激活的BWP或去激活的BWP上的HARQ进程进行处理。
可选地,若网络设备发送的BWP指示消息用于指示激活第一BWP,使得终端为激活的第一BWP初始化HARQ进程。
可选地,若网络设备发送的BWP指示消息用于指示去激活第一BWP且激活第二 BWP,使得终端将所述第一BWP的HARQ进程关联至所述第二BWP上。
可选地,若网络设备发送的BWP指示消息用于指示去激活第一BWP且激活第二BWP,使得终端为第二BWP初始化HARQ进程,并根据指示信令将第一BWP的HARQ进程关联至第二BWP的初始化得到的HARQ进程上。
可选地,若网络设备发送的BWP指示消息用于指示激活第二BWP,使得终端判断第一BWP中是否存正在进行数据重传的HARQ进程;若是,则终端监听第一BWP,并在数据重传结束后激活第二BWP。
本实施例提供的通信方法,其实现原理和有益效果可参照第四方面的描述,此处不再赘述。
第十一方面,本申请实施例提供一种通信方法,包括:网络设备向终端发送用于配置BWP的CSI资源和/或SRS资源的BWP配置消息,并向终端发送用于指示终端激活第一BWP的第一BWP指示消息,使得终端激活第一BWP上的CSI资源和/或SRS资源。
可选地,网络设备发送的第二BWP指示消息用于指示终端去激活第一BWP,使得终端在接收到该第二BWP指示消息后释放第一BWP上的CSI资源和/或SRS资源。
可选地,网络设备向终端发送用于指示终端去激活第一BWP并激活第二BWP的第二BWP指示消息,使得终端接收到该BWP指示消息后释放第一BWP上的CSI资源和/或SRS资源,并启用第二BWP上的CSI资源和/或SRS资源。
本实施例提供的通信方法,其实现原理和有益效果可参照第五方面的描述,此处不再赘述。
第十二方面,本申请实施例提供一种通信方法,包括:网络设备向终端发送用于指示终端激活BWP和/或去激活BWP的BWP指示消息,使得终端接收到该BWP指示消息后对激活的BWP或去激活的BWP上的SR_COUNTER进行处理。
本实施例提供的通信方法,其实现原理和有益效果可参照第六方面的描述,此处不再赘述。
第十三方面,本申请实施例提供一种通信装置,包括用于执行第一方面至第十二方面中的任一实施例所述的各个步骤的单元或手段。
第十四方面,本申请实施例提供一种通信装置,包括处理器和存储器,其中存储器用于存储程序,当程序被处理器调用时,用于执行第一方面至第十二方面中的任一实施例所述的方法。
第十五方面,本申请实施例一种计算机存储介质,其上存储有程序,该程序被处理器调用时,用于实现如第一方面至第十二方面中的任一实施例所述的方法。
第十六方面,本申请实施例提供一种计算机程序,该程序在被处理器执行时用于执行以上第一方面至第十二方面中的任一实施例所述的方法。
第十七方面,本申请实施例提供一种程序产品,例如计算机可读存储介质,包括第一方面至第十二方面中的任一实施例所述方法对应的程序。
在以上第一方面或第七方面中,网络设备向UE发送用于指示终端激活BWP和/或去激活BWPBWP指示消息,UE成功接收该BWP指示消息之后,UE向基站发送BWP反馈消息,以通知基站成功接收到BWP指示消息,可以避免UE无法收到或者 无法正确解析该BWP指示消息时,UE与基站采用不同的BWP通信而导致数据传输失败的问题,提高了数据传输质量。
在以上第二方面或第八方面中,网络设备向终端发送用于配置BWP的SPS资源的BWP配置消息,终端接收网络设备发送的第一BWP指示消息后,自动激活第一BWP上的SPS资源,无需基站单独发送用于激活SPS资源的指令,节省信令开销。
在以上第三方面或第九方面中,网络设备向终端发送用于指示定时器的时长的配置消息,当终端接收到基站发送的BWP指示消息时,开启定时器,当定时器到期且满足功率余量上报条件时,终端上报功率余量报告,可以减少上报PHR的次数,节省传输资源。
在以上第四方面或第十方面中,当网络设备指示终端激活或者去激活BWP时,终端自动对激活的BWP或去激活的BWP上的HARQ进程进行处理,不需要基站采用单独的控制指令来配置HARQ进程,节省信令,而且,可以保证数据重传的连续性,提高了通信质量。
在以上第五方面或第十一方面中,网络设备向终端发送用于配置BWP的CSI资源和/或SRS资源的BWP配置消息,终端接收网络设备发送的第一BWP指示消息后,自动激活第一BWP上的CSI资源和/或SRS资源,无需基站单独发送用于激活CSI资源和/或SRS资源的指令,节省信令开销。
在以上第六方面或第十二方面中,物理层在收到BWP指示消息后,通知MAC层初始化,或者停用当前SR配置的SR_COUNTER,启用新的SR配置的SR_COUNTER,无需网络设备采用单独的信令来指示SR配置的SR_COUNTER,节省信令。
附图说明
图1为本申请实施例提供的一种通信方法的应用场景示意图;
图2为本申请一实施例提供的一种通信方法的交互流程图;
图3为本申请实施例提供的一种BWP反馈消息的格式示意图;
图4为本申请实施例提供的另一种BWP反馈消息的格式示意图;
图5为本申请实施例提供的一种MAC负荷的比特地图;
图6为本申请实施例提供的一种BWP标识的示意图;
图7为本申请实施例提供的一种MAC负荷的格式示意图;
图8为本申请另一实施例提供的一种通信方法的交互流程图;
图9为本申请另一实施例提供的一种通信方法的交互流程图;
图10为本申请实施例提供的一种BWP上的SPS资源的示意图;
图11为本申请实施例提供的另一种BWP上的SPS资源的示意图;
图12为本申请实施例提供的又一种BWP上的SPS资源的示意图;
图13为本申请另一实施例提供的一种通信方法的交互流程图;
图14为本申请实施例提供的一种PHR的格式示意图;
图15为本申请再一实施例提供的一种通信方法的交互流程图;
图16为本申请再一实施例提供的一种通信方法的交互流程图;
图17为本申请又一实施例提供的一种通信方法的交互流程图;
图18为本申请又一实施例提供的一种通信方法的交互流程图;
图19为本申请又一实施例提供的一种通信方法的交互流程图;
图20为本申请一实施例提供的一种通信装置的框图;
图21为本申请另一实施例提供的一种通信装置的框图;
图22为本申请另一实施例提供的一种通信装置的框图;
图23为本申请另一实施例提供的一种通信装置的框图;
图24为本申请另一实施例提供的一种通信装置的框图;
图25为本申请实施例提供的一种网络设备的结构示意图;
图26为本申请实施例提供的一种终端的结构示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行说明,以便于理解。
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、或移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、网络设备是为终端提供无线服务的设备,例如无线接入网(radio access network,RAN)节点。RAN节点是网络中将终端接入到无线网络的节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或Wifi接入点(access point,AP)等。另外,在一种网络结构中,RAN包括集中单元(centralized unit,CU)节点或分布单元(distributed unit,DU)节点,在这种结构中,RAN侧的功能划分在CU和DU中实现,且多个DU由一个CU集中控制,此时,RAN节点可以为CU节点/DU节点。CU和DU的功能可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)和媒体接入控制(Media Access Control,MAC)等的功能设置在DU。这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将需要满足时延要求的功能设置在 DU,低于该时延要求的功能设置在CU。
3)、“多个”是指两个或两个以上,其它量词与之类似。“/”描述关联对象的关联关系,表示可以存在三种关系,例如,A/B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
图1为本申请实施例提供的一种通信方法的应用场景示意图,如图1所示,该场景中包括宏基站1、小基站2、小基站3和UE4。UE4位于宏基站1、小基站2、小基站3提供的一个或多个小区(载波)的覆盖范围内,也即,为UE4提供服务的小区可以为一个或多个。当为UE提供服务的小区有多个时,UE可以按照载波聚合(Carrier Aggregation,CA)或双连接(Dual Connectivity,DC)或协作多点传输(coordinated multiple point transmission,CoMP)的方式工作,其中,至少一个小区提供多于一种空口格式同时为UE提供无线资源。并且,一个小区的频带可以被分割成多个子频带,每个子频带为一个BWP,UE可以在激活的BWP上收发数据。本申请可以适用于长期演进(Long Term Evolution,LTE)通信系统、通用移动通信系统(Universal Mobile Telecommunications System,UMTS)系统、码分多址(Code Division Multiple Access,CDMA)系统、无线局域网(wireless local area network,WLAN)或未来(the fifth generation,5G)无线通信系统等。
对每个UE而言,基站可以为UE配置多个BWP,但基站会选择性的激活其中的部分或全部的BWP,UE只能在激活的BWP上收发数据,对于其它未激活的BWP,UE只是保存了配置信息。
目前,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准化组织规定采用物理层的下行控制信令(Downlink control information,DCI)来指示BWP的激活或去激活。但DCI这种信令没有反馈机制,基站无法知道UE是否成功接收到了DCI,容易造成UE与基站对当前的BWP理解不一致的情况。本申请实施例提供的通信方法,当UE成功接收到基站发送的用于指示激活或去激活BWP的指令之后,向基站反馈确认信息,保证UE与基站对当前的BWP理解一致,从而提高通信质量。
图2为本申请一实施例提供的一种通信方法的交互流程图。该方法基于图1所示的架构,终端相当于图1中的UE,网络设备相当于图1中的宏基站或小基站,如图2所示,该方法包括以下步骤:
步骤101、网络设备向UE发送BWP指示消息。
其中,BWP指示消息用于指示终端激活BWP和/或去激活BWP。
在本实施例中,当基站需要激活或者去激活某个BWP时,向终端发送BWP指示消息。该BWP指示消息可以网络设备通过控制信道发送的控制指令,例如,DCI指令,也可以是网络设备通过其它类型的信道发送的其它指令。BWP指示消息中可以包括BWP的标识,用于指示激活或者去激活该标识对应的BWP。
步骤102、UE向基站发送BWP反馈消息。
其中,BWP反馈消息用于指示终端成功接收到BWP指示消息。
在本实施例中,当UE接收到该BWP指示消息,并成功解析该BWP指示消息之后,UE向基站发送BWP反馈消息,以通知基站终端成功接收到BWP指示消息。
本实施例提供的通信方法,网络设备向UE发送用于指示终端激活BWP和/或去 激活BWPBWP指示消息,UE成功接收该BWP指示消息之后,UE向基站发送BWP反馈消息,以通知基站成功接收到BWP指示消息,可以避免UE无法收到或者无法正确解析该BWP指示消息时,UE与基站采用不同的BWP通信而导致数据传输失败的问题,提高了数据传输质量。
可选地,BWP反馈消息为媒体访问控制(Media Access Control,MAC)层消息。
在本实施例中,当BWP指示消息为基站通过控制信道发送的控制指令时,UE可以生成MAC层的BWP反馈消息,通知基站成功接收该BWP指示消息,以保证BWP指示消息传输的可靠性。其中,该BWP反馈消息可以为MAC控制元素(Control Element,CE)消息。
进一步地,MAC层消息包括MAC子头,或者包括MAC子头和MAC负荷,MAC子头包括逻辑信道标识(Logical Channel identifier,,LCID),LCID用于指示终端成功收到BWP指示消息。
在本实施例中,MAC层消息可以只包括MAC子头,即该MAC层消息的长度固定为0,不包含任何信息,基站收到UE反馈的MAC层消息后,认为UE已经成功收到了用于指示BWP激活或者去激活的BWP指示消息。其中,MAC子头中包含LCID,用于指示终端成功收到BWP指示消息。
下面以BWP反馈消息为MAC CE消息为例,详细说明BWP反馈消息的格式。
在本实施例中,MAC CE消息可以包含在MAC协议数据单元(Packet Data Unit,PDU)的子头(sub-header)中,其中LCID可以占据MAC子头中的一个域(field),MAC PDU还包括MAC服务数据单元(Service Data Unit,SDU)。
如下图3和图4所示,具体的MAC CE在MAC PDU中的位置可以有以下两种方式:
第一种方式:所有的MAC CE消息的子头均设置于MAC子头中,所有的MAC CE消息的MAC控制元素(Control Element)和所有的MAC SDU均设置于MAC负荷中。如图3所示,多个包括LCID的子头构成了MAC子头,多个MAC控制元素和多个MAC SDU构成了MAC负荷。
第二种方式:每个MAC CE消息的子头均设置与对应的MAC负荷之前,如图4所示,包含LCID的子头后面为MAC SDU,或者,包含LCID的子头后面为MAC控制元素。
可选地,MAC负荷包括激活的BWP的标识或去激活的BWP的标识。
可选地,若BWP指示信息包含了多个激活或者去激活的BWP,则MAC负荷可以包含其中的一个或者多个BWP的信息。
示例性的,该MAC负荷可以是比特地图的形式,一种可能的方式如图5所示,
图5以7个BWP为例说明,其中,每个BWP关联一个标识,BWP k设置为1用于指示UE成功收到了用于激活或者去激活BWP k的指示消息,也可以设置为0用于指示UE收到了用于激活或者去激活BWP k的指示消息,其中R为保留比特位。负荷中也可以只包含一个BWP或者任意整数个BWP,本申请中不加以限制。
可选地,MAC负荷可以只包含BWP指示消息中指示的激活或者去激活的BWP的信息。该BWP的信息可以是如图5所示的比特地图的形式,或者通过BWP标识的 方式来指示。
示例性的,通过BWP标识的方式来指示激活或去激活的BWP的信息,如图6所示,其中,可以用若干个比特用于指示BWP标识,本实施例中使用8比特为例,但不限于任意整数比特数,该MAC负荷携带的BWP标识即为UE收到的BWP指示信息中指示的激活或者去激活的BWP的信息,也即,UE根据BWP指示消息激活或去激活了某个BWP,则在MAC负荷中携带该BWP的标识即可。
进一步地,MAC负荷还包括载波分量标识,载波分量标识用于指示激活的BWP所在的载波或去激活的BWP所在的载波。
示例性的,如图7所示,将MAC负荷中的预留字段设置为载波分表标识,用于指示UE收到了用于在载波1上激活或者去激活BWP k的指示消息。尤其是跨载波指示激活或者去激活BWP时,设置载波分量标识可以保证基站和UE在同一载波上进行数据传输,保证数据传输的可靠性。
可选在,在图2-图7所示实施例的基础上,步骤102“终端向基站发送BWP反馈消息”包括:
终端在激活的BWP上发送BWP反馈消息;或者,
终端在去激活的BWP上发送BWP反馈消息;或者,
终端在第二载波分量上发送BWP反馈消息,激活的BWP或去激活的BWP为第一载波分量上的频率资源。
示例性的,若BWP指示信息只用于激活至少一个BWP,前面没有被激活的BWP,UE在激活的BWP上发BWP反馈消息,例如,BWP指示消息需要激活BWP2,则UE激活BWP2之后,在BWP2上发送反馈消息。
示例性的,若UE已经有激活可用的BWP,默认去激活前面的BWP(默认在同一时间只激活一个BWP),BWP反馈消息可以在前面已激活的BWP上发,也可以在激活后的BWP上发,例如,UE使用BWP1收发数据,BWP指示消息需要激活BWP2,UE默认去激活BWP1,UE可以先在BWP1上发送BWP反馈消息,然后再去激活BWP1,或者,UE在激活的BWP2上发送BWP反馈消息。
示例性的,若BWP指示消息只用于去激活至少一个BWP,在去激活之前的BWP上发送BWP反馈消息,例如,BWP指示消息指示去激活BWP1,则UE在BWP1上发送BWP反馈消息。
示例性的,若BWP指示消息用于激活至少一个BWP又用于去激活至少一个BWP,BWP反馈消息可以在去激活的BWP上发,也可以在激活的BWP上面发,例如,BWP指示消息指示去激活BWP1,激活BWP2,则UE可以在BWP1去激活之前在BWP1上发送BWP反馈消息,也可以在BWP2激活之后在BPW2上BWP反馈消息。
示例性的,UE还可以跨载波发送BWP反馈消息,例如,BWP指示消息指示激活或去激活的BWP为载波C1上的频率资源,UE在载波C2上发送BWP反馈消息,载波C1和载波C2为两个不同的载波。
本实施例的方法可以采用多种灵活多变的方式发送BWP反馈消息,保证BWP反馈消息传输的可靠性。
可选地,当BWP指示消息用于指示终端激活BWP时,该方法还包括:激活激活 的BWP上的传输资源。
其中,传输资源可以包括SPS资源、CSI资源、SR资源等。
在本实施例中,当BWP指示消息用于指示终端激活BWP时,UE自动激活需要激活的BWP上的SPS资源,不需要基站利用PDCCH上的信令指示激活SPS资源,可以节省信令。
可选地,当BWP指示消息用于指示终端去激活BWP时,方法还包括:释放去激活的BWP上的SPS资源。
在本实施例中,当BWP指示消息用于指示终去端激活BWP时,UE自动释放需要去激活的BWP上的SPS资源,不需要基站利用PDCCH上的信令指示释放SPS资源,可以节省信令。
可选地,当BWP指示消息用于指示终端激活BWP时,方法还包括:为激活的BWP初始化HARQ进程。
在本实施例中,当BWP指示消息用于指示终端激活BWP时,UE自动为激活的BWP初始化HARQ进程,不需要基站利用PDCCH上的信令配置HARQ进程,可以节省信令。
当基站对BWP进行激活去激活的操作时,一些MAC层的功能也需要进行处理。例如,对于SPS资源而言,UE配置了SPS资源后,还不能使用,必须使用SPS专属的无线网络临时标识(SPS-Radio Network Temporary Identifier,SPS-RNTI)加扰的PDCCH进行激活。激活了SPS资源后,UE就可以周期性地使用配置的SPS资源来接收和发送数据。对于无授权传输(Grant-free,GF)传输而言,无须使用PDCCH进行激活,UE收到无线资源控制(Radio Resource Control,RRC)信令配置GF资源后便可以进行GF传输,SPS和GF在其他方面均类似,为了简化,以下均使用SPS表示SPS以及GF。
基站在某个时刻使用SPS-RNTI加扰的PDCCH信令指定UE所使用的SPS资源后,基站无需在该SPS资源对应的时域位置重新下发SPS-RNTI加扰的PDCCH来指定分配的资源,每过一个周期,UE就使用该SPS资源来收或发数据。下面实施例主要介绍当基站激活去激活BWP后,BWP上配置的SPS资源如何处理。
图8为本申请另一实施例提供的一种通信方法的交互流程图,该方法主要涉及的是当基站指示终端激活BWP后,终端自动激活SPS资源的方案,如图8所示,该方法包括以下步骤:
步骤201、网络设备向终端发送BWP配置消息。
其中,配置消息用于配置BWP的SPS资源。
在本实施例中,该BWP配置消息可以是RRC层消息。
可选的,该RRC消息可以是系统消息(System Information),不限于最小系统消息(minimum SI)和/或剩余系统消息等,该RRC消息还可以是UE专属的RRC消息。
可选地,BWP配置消息可以包含一个或者多个BWP的配置信息,例如,该BWP配置消息可以包含以下至少一种配置:
-BWP标识,用于指示网络设备为UE配置的BWP。
-BWP时域资源,用于指示BWP资源所在的时域位置,该时域位置可以以子帧 (subframe)、传输时间间隔(Transmission Time Interval)、时隙(slot)、物理层下行控制信道时机(Physical Downlink Control Channel occasion)等来表示,例如子帧K,表示BWP资源在子帧K可用。
-BWP频域资源,用于指示BWP资源所在的频域位置,该频域位置可以用物理层无线资源块(Physical Radio Block,PRB)的起始位置、终止位置或者PRB数量等来表示。
可选的,BWP配置消息可以包含至少一个BWP的SPS资源信息。
可选地,SPS资源消息可以包含所述SPS的至少以下一种配置:
-上行SPS传输资源时间间隔或者周期;
-下行SPS传输资源时间间隔或者周期;
-SPS传输资源所在的频域位置,例如,PRB的起始位置、终止位置或者PRB数量等
-调制解码方式,用于指示SPS资源传输使用的调制以及编码方式。
可选地,在本实施例中,基站可以为终端的每个BWP均配置一个对应的SPS资源,当基站指示终端激活某个BWP时,终端激活该BWP对应的SPS资源。或者,基站也可以为终端仅配置一个SPS资源,每个BWP与该SPS资源具有映射关系,当基站指示终端激活某个BWP时,终端根据BWP与SPS资源之间的映射关系,激活需要激活的BWP对应的SPS资源。
步骤202、终端接收网络设备发送的第一BWP指示消息。
其中,第一BWP指示消息用于指示终端激活第一BWP。
在本实施例中,第一BWP指示消息的类型及格式可参照图2-图7所示实施例中的BWP指示消息的实现方式,此处不再赘述。
步骤203、终端激活第一BWP上的SPS资源。
在本实施例中,终端接收到第一BWP指示消息之后,自动激活第一BWP上的SPS资源。
现有技术中,当基站指示终端激活第一BWP之后,还需要利用PDCCH上的控制信令来指示终端激活第一BWP上的SPS资源,相较于现有技术,本实施例提供的通信方法,网络设备向终端发送用于配置BWP的SPS资源的BWP配置消息,终端接收网络设备发送的第一BWP指示消息后,自动激活第一BWP上的SPS资源,无需基站单独发送用于激活SPS资源的指令,节省信令开销。
图9为本申请另一实施例提供的一种通信方法的交互流程图,该方法主要涉及的是当基站指示终端去激活BWP后,终端自动释放SPS资源的方案,在图8所示实施例的基础上,如图9所示,该方法还包括以下步骤:
步骤301、网络设备向终端发送第二BWP指示消息。
其中,第二BWP指示消息用于指示终端去激活第一BWP。
在本实施例中,第二BWP指示消息的类型及格式科参照图2-图7所示实施例中的BWP指示消息的实现方式,此处不再赘述。
步骤302、终端释放第一BWP上的SPS资源。
在本实施例中,当终端收到基站发送的用于指示终端去激活第一BWP的第二 BWP指示消息之后,认为第一BWP上的SPS资源无效,则终端自动释放第一BWP上的SPS资源。如图10所示,当基站指示终端去激活BWP1之后,终端从BWP1迁移到BWP2后,BWP1上的SPS资源不再有效。
可选的,若终端收到某一个载波分量的去激活指令,用于去激活所指示的载波分量,则终端也可以认为该载波分量上的至少一个或者全部BWP都不再有效。
可选的,若终端收到某一个载波分量的去激活指令,用于去激活所指示的载波分量,则终端也可以认为该载波分量上的至少一个或者全部SPS资源都不再有效。
可选的,若终端在某一个载波分量只配置一个BWP,当终端收到用于去激活该BWP的BWP指示消息时,终端可以认为该载波分量去激活,即该载波分量不再有效。
现有技术中,当基站指示终端去激活第一BWP之后,还需要利用PDCCH上的控制信令来指示终端释放第一BWP上的SPS资源,相较于现有技术,本实施例提供的通信方法,网络设备向终端发送用于指示终端去激活第一BWP的第二BWP指示消息,终端收到该第二BWP指示消息之后,自动释放第一BWP上的SPS资源,无需基站单独发送用于释放SPS资源的指令,节省信令开销。
进一步地,第二BWP指示消息还用于指示终端激活第二BWP,方法还包括:终端根据第二BWP的信息和第一BWP上的SPS资源,确定第二BWP上的SPS资源。
在本实施例中,终端可以根据第二BWP的信息和第一BWP上的SPS资源,确定第二BWP上的SPS资源,例如,终端可以根据第一BWP上的SPS资源的PRB的起始位置、终止位置以及PRB的间隔以及第二BWP的PRB的起始位置、终止位置以及PRB的间隔来确定第二BWP上的SPS资源。
在本实施例中,终端可以根据第二BWP的信息和第一BWP上的SPS资源,确定第二BWP上的SPS资源,不需要基站采用单独的信令来指示第二BWP上的SPS资源的信息,节省信令开销。
可选地,第二BWP上的SPS资源相对于第二BWP的起始资源位置的PRB编号的偏移量与第一BWP上的SPS资源相对于第一BWP的起始资源位置的PRB编号的偏移量相同。
在本实施例中,UE收到第二BWP指示消息后,UE将BWP1上的SPS搬到BWP2上,SPS占用PRB资源的相对位置不变。如图11所示,第一BWP的起始资源位置的PRB编号为PRB0,第一BWP上的SPS资源的起始位置的PRB编号为PRB3,则第一BWP上的SPS资源相对于第一BWP的起始资源位置的PRB编号的偏移量为3个PRB,若第二BWP的起始资源位置的PRB编号为PRB2,则第二BWP上的SPS资源的起始位置的PRB编号为PRB5,即第二BWP上的SPS资源相对于第二BWP的起始资源位置的PRB编号的偏移量也为3个PRB。
需要说明的是,相较于BWP1,BWP2内的SPS频域资源的PRB编号不变,SPS的时间位置不变,如果PRB编号超过BWP2的范围,部分或全部SPS频域资源不可用。而且,BWP带宽发生变化后,SPS资源带宽也可以跟着成比例变化。
可选地,第二BWP上的SPS资源的周期的绝对时间和第一BWP上的SPS资源的周期的绝对时间是相同的。
在本实施例中,UE收到第二BWP指示消息后,UE将BWP1上的SPS资源搬到 BWP2上,SPS占用的绝对位置不变,如图12所示,若UE从BWP1迁移到BWP2,但BWP1完全被BWP2包含,这种情况下,BWP2上的SPS资源的频域位置和BWP1上的SPS资源的频域位置相同,但两个SPS资源在两个BWP中的PRB编号可以是不同的,并且,BWP2上的SPS资源的时域位置和BWP1上的SPS资源的时域位置也相同,则BWP2上的SPS资源的绝对位置和BWP1上的SPS资源的绝对位置相同。相当于,当UE从BWP1迁移到BWP2后,可以在BWP2中直接使用BWP1中的SPS资源进行数据传输。
下面详细介绍SPS资源的时域位置和频域位置的实现方式。
其中,确定SPS资源的时域位置的方法可以有以下两种实施方式:
一种可能的实施方式
BWP1的SPS资源的间隔配置为上行N个时间单位,该时间单位可以用子帧(subframe)、传输时间间隔(Transmission Time Interval,TTI)、时隙(slot)、物理层下行控制信道时机(Physical Downlink Control Channel occasion,PDCCH occasion)、符号(symbol)等来表示,例如SPS传输资源间隔为6个符号,表示连续的SPS资源间隔为6个符号。
可选的,SPS资源对应的SPS传输时机的起始时间位置跟结束时间未知可以通过计算公式推导而知,或者协议默认配置,该实施例不限制具体的配置方式,
可选的,子帧长度、TTI长度、Slot长度、PDCCH occasion长度、Symbol长度等时间单位的长度与BWP1所在的空口格式有关。
示例性的,当UE从BWP1切换到BWP2时,SPS的传输时间间隔仍旧为N个时间单位,但时间单位的长度以BWP2对应的时间单位的长度为准,例如,BWP2上的SPS传输时间间隔仍旧为6个符号,但符号的长度与BWP2的空口格式有关,可能与BWP1的符号长度相同,也可以不同。
另一种可能的实施方式
示例性的,BWP1的SPS资源间的隔配置为上行N个时间单位,该时间单位可以绝对时间单位,例如毫秒,微秒,秒等,例如,SPS资源的间隔为6毫秒,表示连续的SPS资源间隔为6毫秒,当UE从BWP1切换到BWP2时,SPS资源的传输时间间隔仍旧为N个时间单位,例如BWP2上的SPS资源的时间间隔仍旧为6毫秒,则该SPS资源的绝对时间不变。
其中,确定SPS资源的频域位置的方法可以有以下两种实施方式:
一种可能的实施方式
示例性的,用于激活BWP2的第二BWP指示消息在BWP1发送,BWP2的SPS频域位置在MAC层通过BWP2的频域位置推算而来,例如根据BWP2的PBR起始位置和结束位置推算出SPS在BWP2中的PRB位置。
另一种可能的实施方式
示例性的,设计单独的物理层信令,例如可以是BWP2的激活信令,或者SPS的激活信令,所述信令中包含BWP2的SPS频域位置,这样MAC可以直接根据该激活信令的指示判断SPS在BWP2中的PRB位置。
需要说明的是,在本实施例中,该方案假设BWP1和BWP2频域有重叠,且SPS 频率资源至少有一部分位于重叠区域,否则,UE认为该SPS配置失效,基站可以通过新的指令激活新的频域资源上的SPS。
在通信系统中,为了保证数据传输质量,终端需要向基站上报功率余量报告(Power headroom reporting,PHR)。PHR上报的是UE的最大发送功率和当前评估得到的上行传输功率之间的差值,基站收到这个PHR后,就知道UE还有多少可用的剩余上行功率。目前,BWP的激活和去激活均可以触发PHR的上报,但BWP的激活和去激活可能是很频繁的,如此频繁的上报PHR会占用较多的传输资源。
图13为本申请另一实施例提供的一种通信方法的交互流程图,该方法主要涉及的是在BWP的激活和去激活的过程中,如何抑制频繁上报PHR的实现过程。如图13所示,该方法包括以下步骤:
步骤401、网络设备向终端发送BWP配置消息。
其中,配置消息用于指示定时器的时长。
可选地,BWP配置消息可以包含一个或者多个BWP的配置信息,例如,该BWP配置消息可以包含以下至少一种配置:
-BWP标识,用于指示网络设备为UE配置的BWP。
-BWP时域资源,用于指示BWP资源所在的时域位置,该时域位置可以以子帧(subframe)、传输时间间隔(Transmission Time Interval)、时隙(slot)、物理层下行控制信道时机(Physical Downlink Control Channel occasion)等来表示,例如子帧K,表示BWP资源在子帧K可用。
-BWP频域资源,用于指示BWP资源所在的频域位置,该频域位置可以用物理层无线资源块(Physical Radio Block,PRB)的起始位置、终止位置或者PRB数量等来表示。
在本实施例中,定时器为基站配置的BWP阻止定时器(BWP Prohibit-Timer)。
可选地,BWP阻止定时器的时长可以携带于基站发送给UE的RRC消息中。
进一步地,基站还可以为UE配置PHR阻止定时器(prohibitPHR-Timer),包含定时器的时长。
其中,BWP阻止定时器与PHR阻止定时器可以是同一个定时器,也可以是两个独立的定时器。
步骤402、网络设备向终端发送BWP指示消息。
其中,BWP指示消息用于指示终端激活BWP或者去激活BWP。
在本实施例中,BWP指示消息的类型及格式可参照图2-图7所示实施例中BWP指示消息的实现方式,此处不再赘述。
步骤403、当终端接收到BWP指示消息时,开启定时器。
在本实施中,定时器的是由BWP的更换触发启动,例如,当UE接收到用于指示激活或去激活BWP的指示消息时,开启定时器,直至该定时器超时或已经超时之后,若再次收到BWP指示消息,重启该定时器。
步骤404、当定时器到期且满足功率余量上报条件时,终端上报功率余量报告。
在本实施例中,如果UE收到用于指示激活或者去激活BWP的指令消息,并且,BWP Prohibit Timer超时或者已经超时了,MAC层会触发PHR上报,并且启动或者重 新启动BWP Prohibit-Timer,否则,不触发PHR上报。在BWP Prohibit-Timer运行期间,即使满足了功率余量上报条件,也不会触发PHR上报。
可选地,功率余量上报条件包括终端收到另一BWP指示消息。
在本实施例中,终端接收到一条BWP指示消息时,开启BWP Prohibit-Timer,当终端接收到基站发送的另一条BWP指示消息时,满足功率余量上报条件,但若BWP Prohibit-Timer未超时,不会触发PHR上报。
其中,功率余量上报条件还可以包括其它的条件,例如:当周期性的PHR定时器超时,网络设备重新配置BWP配置信息等
示例性的,一种PHR的格式如图14所示,PHR包括BWP的标识BWPi和BWPi对应的功率余量(Power Headroo,PH)值,PH值用于指示UE的功率余量。其中BWPi用于指示对于该服务小区的第i个BWP而言,是否存在该BWPi的PH值,例如,当BWi=1时表示PHR包含BWPi的PH值,其他字段可以参照LTE的定义,例如P表示是否需要功率管理的功率回退,V表示PH值是否是依据实际传输或者根据参考格式计算出来的,Type x表示功率余量的类型,PCMAX,c代表对应的标称UE传输功率水平。
本申请实施例提供的通信方法,网络设备向终端发送用于指示定时器的时长的配置消息,当终端接收到基站发送的BWP指示消息时,开启定时器,当定时器到期且满足功率余量上报条件时,终端上报功率余量报告,可以减少上报PHR的次数,节省传输资源。
在通信系统中,当接收端发现接收的数据包出错时,会反馈给发送端,发送端对数据包进行重传。由于可能好几个数据包在同时进行传输,为了识别哪些数据传输是针对同一个数据包的传输,每个数据包会关联到一个混合自动重传请求(Hybrid automatic repeat request,HARQ)进程(process),每个HARQ进程有一个HARQ进程ID,用于识别该HARQ进程,多个HARQ进程由HARQ实体来进行管理,当BWP被激活和去激活后,在这些BWP上的HARQ进程如何处理是需要解决的问题。
图15为本申请再一实施例提供的一种通信方法的交互流程图,该方法主要涉及的是当BWP被激活和去激活后,对BWP上的HARQ进程进行处理的实现过程。如图15所示,该方法包括以下步骤:
步骤501、网络设备向终端发送BWP指示消息。
其中,BWP指示消息用于指示终端激活BWP和/或去激活BWP。
在本实施例中,BWP指示消息的类型及格式可参照图2-图7所示实施例中的BWP指示消息实现方式,此处不再赘述。
步骤502、终端对激活的BWP或去激活的BWP上的HARQ进程进行处理。
下面分多种情况详细描述步骤502“终端对激活的BWP或去激活的BWP上的HARQ进程进行处理”的实现方式。
第一种实现方式:若BWP指示消息用于指示激活第一BWP,则终端为激活的第一BWP初始化HARQ进程。
在本实施例中,当UE的BWP1和BWP2同时工作时,UE为BWP2另行初传化一套HARQ进程,BWP1的HARQ进程不动,从而不需要清空BWP1上所在的HARQ 进程的HARQ缓冲区(buffer),保证数据传输的连续性。
第二种实现方式:若BWP指示消息用于指示去激活第一BWP且激活第二BWP,则将所述第一BWP的HARQ进程关联至所述第二BWP上。
在本实施例中,当基站指示UE将原来已激活的BWP1去激活,并激活BWP2时,直接将BWP1的一套HARQ进程关联到BWP2,例如,HARQ ID保持不变,将BWP1的HARQ buffer直接关联到BWP2上,UE以及基站直接在BWP2上使用原先BWP1的HARQ ID继续传输,不需要基站采用新的指令为BWP2配置HARQ进程,节省开销,而且,不需要清空BWP1上所在的HARQ进程的HARQ缓冲区(buffer),保证数据传输的连续性。
第三种实现方式,若BWP指示消息用于指示去激活第一BWP且激活第二BWP,则为第二BWP初始化HARQ进程,并根据指示信令将第一BWP的HARQ进程关联至第二BWP的初始化得到的HARQ进程上。
其中,指示信令用于指示第一BWP的HARQ进程与第二BWP的初始化得到的HARQ之间的关联关系。指示信令可以是一个单独的DCI指令,也可以是携带在BWP指示消息中。
可选地,当基站指示UE将原来已激活的BWP1去激活,并激活BWP2时,UE直接将BWP1的一套HARQ进程关联到BWP2后,还执行两个操作中至少之一:
-对下行传输的HARQ进程,将其HARQ缓冲区内清空,可选的,将下行HARQ进程相关的变量设置为初始值,如NDI。
-对上行HARQ传输的HARQ进程,不清空其HARQ缓冲区,可选的,将HARQ进程的相关变量NDI置为初始值。示例性地,将NDI设为0。可选地,如果HARQ进程维护有HARQ传输次数,可以将该HARQ传输次数置为0,也可以将该HARQ传输次数保持不变。
这样,UE收到基站分配的上行资源,指示UE使用HARQ进程N在BWP2上传输时,如果基站指示NDI为0,则UE重传HARQ进程N对应的缓冲区中存储的数据。如果基站指示NDI为1,则UE利用HARQ进程N传输新数据。如果HARQ进程N维护有HARQ传输次数,则将该HARQ传输次数加1。
在本实施例中,为BWP2另行初传化一套HARQ进程,将BWP1的各个HARQ进程内缓存的数据拷贝到BWP2的HARQ缓存内,各个HARQ进程的变量也复制过去。例如,BWP1的HARQ进程中包括HARQ进程1-HARQ进程4,为BWP2初传化的HARQ进程中包括HARQ进程1-HARQ进程7,根据基站发送的指示信令中关联关系将BWP1的HARQ进程1关联到的BWP2HARQ进程3,将BWP1的HARQ进程2关联到的BWP2HARQ进程4,等等。该方法不需要清空BWP1上所在的HARQ进程的HARQ缓冲区(buffer),保证数据传输的连续性。
第四种实现方式:若BWP指示消息用于指示激活第二BWP,则终端判断第一BWP中是否存正在进行数据重传的HARQ进程;若是,则监听第一BWP,并在数据重传结束后激活第二BWP。
在本实施例中,若基站指示UE从BWP1上迁移到BWP2上,若BWP1中已经在重传的HARQ process还在继续,基站不再调度新传,直到BWP1中数据重传结束后, BWP2在生效,MAC层需要通知物理层(Physical Layer,PHY)关于BWP2生效时刻。该方法可以保证重传数据的连续性,而且不需要基站重新调度重传,节省信令和传输资源。
示例性的,UE配置了非连续接收(Discontinuous Reception,DRX)的功能时,如果一个HARQ进程对应的数据包没有被UE成功解码时,UE需要开启重传定时器并且开始监听物理层控制信道,以使UE可以成功收到该数据包的重传,此时,UE在重传定时器运行过程中监听物理层控制信道时所使用的BWP与上次该数据包传输所使用的BWP相同,例如HARQ ID#1对应的重传定时器开启,数据包在BWP1上传输,此时UE需要在BWP1对应的物理层控制区域进行监听,该区域包含但不限于物理层控制信息所在的时域以及频域位置。
进一步地,HARQ传输可以是一个传输块(Transmission Block,TB)的传输,例如TB在BWP1上传输,也可以是编码块(Coding Block,CB)的传输或者至少一个编码块组成的编码块组(CB Group,CBG)的传输。
可选的,UE的TB在BWP1传输,该TB的重传可以在BWP2传输。
可选的,UE的一个TB的CBG在BWP1传输,该CBG的重传可以在BWP2传输。
可选的,若UE收到了BWP指示消息,其中,该BWP指示消息用于指示UE从BWP1切换到BWP2,该BWP指示消息在若干个时间单位或者时间长度后生效,即BWP指示消息的生效时间,例如,时间单位可以是子帧、传输时间间隔、时隙、物理层下行控制信道传输时机等,时间长度可以是若干个毫秒,或者秒,或者微秒等。
示例性的,若UE在BWP指示消息的生效时间到达之前在BWP1收到下行资源分配或者上行调度授权信息,用于指示用于至少一个TB接收的下行或者数据传输的上行资源的传输位置、调制编码方式等,而下行或者上行资源的传输时机位于生效时间之后,则UE将在BWP2上使用下行资源分配或者上行调度授权信息指示的下行或者上行资源的传输位置,调制编码方式等接收或者发送该TB。
示例性的,若UE在BWP指示消息的生效时间到达之前在BWP1收到下行资源分配或者上行调度授权信息,用于指示用于至少一个TB接收的下行或者数据传输的上行资源的传输位置、调制编码方式等,而下行或者上行资源的传输时机位于生效时间之前,则UE将在BWP1上使用下行资源分配或者上行调度授权信息指示的下行或者上行资源的传输位置、调制编码方式等接收或者发送该TB。
示例性的,若UE在BWP指示消息的生效时间到达之前在BWP1收到下行资源分配或者上行调度授权信息,用于指示用于至少一个TB接收的下行或者数据传输的上行资源的传输位置、调制编码方式等,而TB中的至少一个TB的传输时机位于生效时间之前,则UE将在BWP1上使用下行资源分配或者上行调度授权信息指示的下行或者上行资源的传输位置,调制编码方式等接收或者发送该TB,而TB中的至少一个TB的传输时机位于生效时间之后,则UE将在BWP1上使用下行资源分配或者上行调度授权信息指示的下行或者上行资源的传输位置、调制编码方式等接收或者发送该TB。
在通信系统中,信道状态信息(Channel state information,CSI)用于通知基站下行信道质量,以帮助基站进行下行调度,基站还可以使用探测参考信号(Sounding  reference signal,SRS)来估计不同频段的上行信道质量,基站侧的调度器可以根据上行信道状态估计将瞬时信道质量好的空口资源分配给UE进行传输,UE可以同时在不同的服务小区发送SRS,SRS可以是周期的,也可以是非周期的,SRS通过RRC消息配置给UE,在BWP激活和去激活后,BWP上的CSI资源和/或SRS资源应该如何处理是需要解决的问题。
图16为本申请再一实施例提供的一种通信方法的交互流程图,该方法主要涉及的是当BWP被激活和去激活后,对BWP上的CSI和/或SRS进程进行处理的实现过程。如图16所示,该方法包括以下步骤:
步骤601、网络设备向终端发送BWP配置消息。
其中,BWP配置消息用于配置BWP的CSI资源和/或SRS资源。
可选的,该BWP配置消息可以是RRC消息,也可以是物理层信令。
可选的,用于配置BWP的CSI资源和用于配置BWP的SRS资源的BWP配置消息可以是同一条消息,也可以是不同的消息,分别用于配置BWP的CSI资源以及配置BWP的SRS资源。
可选地,CSI资源可以是半静态CSI,也可以是动态CSI。
可选的,SRS资源可以是周期性SRS,也可以是非周期性SRS。
进一步地,CSI资源,SRS资源可以通过物理层上行控制信道(Physical Uplink Control Channel,PUCCH)发送,也可以通过物理层上行共享信道(Physical Uplink Shared Channel,PUCCH)发送。
步骤602、网络设备向终端发送的第一BWP指示消息。
其中,第一BWP指示消息用于指示终端激活第一BWP。
在本实施例中,第一BWP指示消息的类型及格式可参照图2-图7所示实施例中的BWP指示消息的实现方式,此处不再赘述。
步骤603、终端激活第一BWP上的CSI资源和/或SRS资源。
在本实施例中,终端接收到第一BWP指示消息之后,自动激活第一BWP上的CSI资源和/或SRS资源。
现有技术中,当基站指示终端激活第一BWP之后,还需要利用PDCCH上的控制信令来指示终端激活第一BWP上的CSI资源和/或SRS资源,相较于现有技术,本实施例提供的通信方法,网络设备向终端发送用于配置BWP的CSI资源和/或SRS资源的BWP配置消息,终端接收网络设备发送的第一BWP指示消息后,自动激活第一BWP上的CSI资源和/或SRS资源,无需基站单独发送用于激活CSI资源和/或SRS资源的指令,节省信令开销。
图17为本申请又一实施例提供的一种通信方法的交互流程图,该方法主要涉及的是当基站指示终端去激活BWP后,终端自动释放CSI资源和/或SRS资源的方案,在图16所示实施例的基础上,如图17所示,该方法还包括以下步骤:
步骤701、网络设备向终端发送第二BWP指示消息。
其中,第二BWP指示消息用于指示终端去激活第一BWP。
在本实施例中,第二BWP指示消息的类型及格式科参照图2-图7所示实施例中的BWP指示消息的实现方式,此处不再赘述。
步骤702、终端释放第一BWP上的CSI资源和/或SRS资源。
在本实施例中,当终端收到基站发送的用于指示终端去激活第一BWP的第二BWP指示消息之后,认为第一BWP上的CSI资源和/或SRS资源无效,则终端自动释放第一BWP上的CSI资源和/或SRS资源,不需要基站单独发送用于指示释放CSI资源的信令和/或SRS资源,节省信令。
图18为本申请又一实施例提供的一种通信方法的交互流程图,该方法主要涉及的是当基站指示终端去激活BWP1并激活BWP2后,终端对CSI资源的处理方案,如图18所示,该方法还包括以下步骤:
步骤801、网络设备向终端发送第二BWP指示消息。
其中,第二BWP指示消息用于指示终端去激活第一BWP并激活第二BWP。
在本实施例中,第二BWP指示消息的类型及格式参照图2-图7所示实施例中的BWP指示消息的实现方式,此处不再赘述。
步骤802、终端释放第一BWP上的CSI资源和/或SRS资源,并启用第二BWP上的CSI资源和/或SRS资源。
在本实施例中,当终端收到基站发送的第二BWP指示消息之后,认为第一BWP上的CSI资源和/或SRS资源无效,则终端自动释放第一BWP上的CSI资源和/或SRS资源,并启用第二BWP上的CSI资源和/或SRS资源,不需要基站单独发送用于指示释放和启动CSI资源和/或SRS资源的信令,节省信令。
在通信系统中,调度请求(Scheduling Request,SR)用于向基站告知终端有上行数据需要传输,以便基站决定是否给终端分配上行资源。当终端发送了一个SR之后,并没有收到基站的调度,那么需要重新发送SR,并将维护的一个变量:SR_COUNTER加一。SR_COUNTER可以理解为表征已经发送了多少次的SR。在BWP激活和去激活后,BWP上的终端维护的SR_COUNTER应该如何处理是需要解决的问题。
图19为本申请又一实施例提供的一种通信方法的交互流程图,该方法主要涉及的是当BWP被激活和去激活后,对BWP上的SR_COUNTER进行处理的实现过程。如图19所示,该方法包括以下步骤:
步骤901、网络设备向终端发送BWP指示消息。
其中,BWP指示消息用于指示终端激活BWP和/或去激活BWP。
在本实施例中,BWP指示消息的类型及格式可参照图2-图7所示实施例中的BWP指示消息实现方式,此处不再赘述。
步骤902、终端对激活的BWP或去激活的BWP上的SR_COUNTER进行处理。
对步骤902,一种实现方式为物理层通知MAC层初始化SR_COUNTER。
在本实施例中,物理层在收到BWP指示信息后,通知MAC层初始化,或者停用当前SR配置的SR_COUNTER,启用新的SR配置的SR_COUNTER。本实施例中终端为每一个SR配置维护单独SR_COUNTER,当SR配置因为BWP的改变而发生改变时,例如,基站在不同的BWP上配置了不同的SR配置,当BWP发生激活去激活或者说切换时,去激活的BWP上的SR配置停用,终端启用激活的BWP上的SR配置,因此终端停用去激活BWP上的SR配置对应的SR_COUNTER,启用激活的BWP上的SR配置对应的SR_COUNTER。由于激活的BWP上的SR配置开始使用,因此 激活的BWP上的SR配置的SR_COUNTER可以设置为初始值,所以也可以表征为物理层通知MAC层初始化SR_COUNTER。在物理层通知MAC层之前,物理层可以判断是否需要通知MAC层SR配置的改变。例如,物理层可以判断SR配置是否因为BWP激活去激活发生改变。如果SR配置发生了改变,物理层通知MAC层SR_COUNTER的停用、启用或者初始化。如果并没有发生改变,物理层也可以不通知MAC层,或者通知MAC层SR_COUNTER保持不变。再例如,基站预先配置BWP上SR配置的关联关系,如果物理层发现SR配置发生了改变,但改变的SR配置之间有关联关系,物理层不通知MAC层,或者通知MAC层保持SR_COUNTER。
在物理层通知MAC层之后,MAC也可以做出是否停用、启用或者初始化SR_COUNTER的决定,例如,基站预先配置BWP上SR配置的关联关系,如果MAC层发现SR配置之间有关联关系,即使物理层通知MAC层进行SR_COUNTER的停用、启用或者初始化,MAC层也可以不执行SR_COUNTER的停用、启用或者初始化。
图20为本申请一实施例提供的一种通信装置的框图,如图20所示,该装置包括接收模块11和发送模块12。
接收模块11用于接收网络设备发送的BWP指示消息,BWP指示消息用于指示终端激活BWP和/或去激活BWP。
发送模块12用于向基站发送BWP反馈消息,BWP反馈消息用于指示终端成功接收到BWP指示消息。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图2-图7所示方法实施例,此处不再赘述。
图21为本申请另一实施例提供的一种通信装置的框图,如图21所示,该装置包括接收模块21和激活模块22。
接收模块21用于接收网络设备发送的BWP配置消息,配置消息用于配置BWP的半静态调度SPS资源。
接收模块21还用于接收网络设备发送的第一BWP指示消息,第一BWP指示消息用于指示终端激活第一BWP。
激活模块22用于激活第一BWP上的SPS资源。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图8-图12所示方法实施例,此处不再赘述。
图22为本申请另一实施例提供的一种通信装置的框图,如图22所示,该装置包括接收模块31、开启模块32和发送模块33。
接收模块31用于接收网络设备发送的配置消息,配置消息用于指示定时器的时长。
开启模块32用于当接收模块31接收到BWP指示消息时开启定时器,其中,BWP指示消息用于指示终端激活BWP或者去激活BWP。
发送模块33用于当定时器到期且满足功率余量上报条件时,上报功率余量报告。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图13和图14所示方法实施例,此处不再赘述。
本申请另一实施例还提供一种通信装置,该装置的结构与图20所示的装置的结构相同,该装置包括接收模块11和发送模块12。
发送模块12用于向终端发送BWP指示消息,BWP指示消息用于指示终端激活BWP和/或去激活BWP。
接收模块11用于接收终端发送的BWP反馈消息,BWP反馈消息用于指示终端成功接收到BWP指示消息。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图2-图7所示方法实施例,此处不再赘述。
图23为本申请另一实施例提供的一种通信装置的框图,如图23所示,该装置包括第一发送模块41和第二发送模块42。
第一发送模块41用于向终端发送BWP配置消息,配置消息用于配置BWP的半静态调度SPS资源。
第二发送模块42用于向终端发送第一BWP指示消息,第一BWP指示消息用于指示终端激活第一BWP。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图8-图14所示方法实施例,此处不再赘述。
本申请实施例还提供一种通信装置,该装置的结构图20所示的装置的结构相同,该装置包括接收模块11和发送模块12。
发送模块12用于向终端发送配置消息,所述配置消息用于指示定时器的时长。
发送模块12还用于向所述终端发送BWP指示消息,以使所述终端开启所述定时器,所述BWP指示消息用于指示终端激活BWP或者去激活BWP。
接收模块11用于接收所述终端上报的功率余量报告,所述功率余量报告为所述定时器到期且满足功率余量上报条件时所述终端发送的报告。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图13-图14所示方法实施例,此处不再赘述。
图24为本申请另一实施例提供的一种通信装置的框图,如图24所示,该装置包括接收模块51和处理模块52。
接收模块51用于接收网络设备发送的BWP指示消息,BWP指示消息用于指示终端激活BWP和/或去激活BWP。
处理模块52用于对激活的BWP或去激活的BWP上的HARQ进程进行处理。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图15所示方法实施例,此处不再赘述。
本申请实施例还提供一种通信装置,其该装置的结构与图21所示的装置的结构相同,该装置包括该装置包括接收模块21和激活模块22。
接收模块21用于接收网络设备发送的BWP配置消息,BWP配置消息用于配置BWP的CSI资源和/或SRS资源。
接收模块21还用于接收网络设备发送的第一BWP指示消息,第一BWP指示消息用于指示终端激活第一BWP。
激活模块22用于激活第一BWP上的CSI资源和/或SRS资源。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图16-18所示方法实施例,此处不再赘述。
本申请实施例还提供一种通信装置,该装置的结构与图24所示的结构相同,该装置包括接收模块51和处理模块52。
接收模块51用于接收网络设备发送的BWP指示消息,BWP指示消息用于指示终端激活BWP和/或去激活BWP。
处理模块52用于对激活的BWP或去激活的BWP上的SR_COUNTER进行处理。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图19所示方法实施例,此处不再赘述。
本申请实施例还提供一种通信装置,包括发送模块,该发送模块用于向终端发送BWP指示消息,以使终端接收到BWP消息后终端对激活的BWP或去激活的BWP上的HARQ进程进行处理,BWP指示消息用于指示终端激活BWP和/或去激活BWP。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图15所示方法实施例,此处不再赘述。
本申请实施例还提供一种通信装置,该装置的结构与图23所示的结构相同,该装置包括第一发送模块41和第二发送模块42。
第一发送模块41用于向终端发送BWP配置消息,BWP配置消息用于配置BWP的CSI资源和/或SRS资源。
第二发送模块42用于向终端发送的第一BWP指示消息,第一BWP指示消息用于指示终端激活第一BWP。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图16-图18所示方法实施例,此处不再赘述。
本申请实施例还提供一种装置,该装置包括发送模块,用于向终端发送BWP指示消息,以使终端在收到所述BWP指示消息后对激活的BWP或去激活的BWP上的SR_COUNTER进行处理,BWP指示消息用于指示终端激活BWP和/或去激活BWP。
本实施例提供的装置,其实现原理、有益效果以及各种可能的实现方式可参照图19所示方法实施例,此处不再赘述。
本申请实施例还提供一种通信装置,包括用于执行图2-图19任一实施例所述的各个步骤的单元和手段。
本申请实施例还提供一种通信装置,包括处理器和存储器,其中存储器用于存储程序,当程序被处理器调用时,用于执行图2-图19任一实施例所述的方法。
本申请实施例还提供一种计算机存储介质,其上存储有程序,该程序被处理器调用时,用于实现如图2-图19任一实施例所述的方法。
应理解以上通信装置的各个模块或单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块或单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块或单元通过软件通过处理元件调用的形式实现,部分模块或单元通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成网络设备或终端的某一个芯片中实现,此外,也可以以程序的形式存储于网络设备或终端的存储器中,由网络设备或终端的某一个处理元件调用并执行以上各个单元的功能。其它模块或单元的实现与之类似。此外这些模块或单元全部或部分可以集成在一起,也可以 独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块或单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块或单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块或单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些模块或单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图25为本申请实施例提供的一种无线接入网(Radio Access Network,RAN)节点的结构示意图,该RAN节点可以为以上实施例中的网络设备,用于实现以上实施例中网络设备的操作。如图25所示,该RAN节点包括:天线110、射频装置120、基带装置130。天线110与射频装置120连接。在上行方向上,射频装置120通过天线110接收终端发送的信息,将终端发送的信息发送给基带装置130进行处理。在下行方向上,基带装置130对终端的信息进行处理,并发送给射频装置120,射频装置120对终端的信息进行处理后经过天线110发送给终端。
基带装置130可以为物理上的一个装置,也可以包括物理上分开的至少两个装置,例如包括控制单元(Control Unit,CU)和至少一个DU。其中DU可以和射频装置120集成在一个装置内,也可以物理上分开。对于基带装置130在物理上分开的至少两个装置之间在协议层上的划分不做限制,例如,基带装置130用于执行RRC,PDCP,RLC,MAC和物理层等协议层的处理,可以在任意两个协议层之间划分,使得基带装置包括物理上分开的两个装置,分别用于进行各自负责的协议层的处理。例如,在RRC和PDCP之间划分,再如,可以在PDCP和RLC之间划分等。此外,也可以在协议层内划分,例如将某个协议层部分和该协议层以上的协议层划分在一个装置中,该协议层剩余部分和该协议层以下的协议层划分在另一个装置中。以上通信装置可以位于基带装置130的物理上分开的至少两个装置中的一个装置上。
RAN节点可以包括多个基带板,基带板上可以集成多个处理元件,以实现所需要的功能。基带装置130可以包括至少一个基带板,以上通信装置可以位于基带装置130,在一种实现中,图20-图24任一实施例所示的各个模块或单元通过处理元件调度程序的形式实现,例如基带装置130包括处理元件131和存储元件132,处理元件131调用存储元件132存储的程序,以执行以上方法实施例中RAN节点执行的方法。此外,该基带装置130还可以包括接口133,用于与射频装置120交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI),当基带装置130与射频装置120物理上布置在一起时,该接口可以为板内接口,或板间接口,这里的板是指电路板。
在另一种实现中,图20-图24任一实施例所示的各个模块或单元可以是被配置成实施以上RAN节点执行的方法的一个或多个处理元件,这些处理元件设置于基带装置130上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个 DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,图20-图24任一实施例所示的各个模块或单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置130包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件111和存储元件132,由处理元件131调用存储元件132的存储的程序的形式实现以上RAN节点执行的方法或图20-图24任一实施例所示各个模块或单元的功能。或者,该芯片内可以集成至少一个集成电路,用于实现以上RAN节点执行的方法或图20-图24任一实施例所示各个模块或单元的功能。或者,可以结合以上实现方式,部分模块或单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上用于RAN节点的通信装置包括至少一个处理元件和存储元件,其中至少一个处理元件用于执行以上方法实施例所提供的RAN节点执行的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中RAN节点执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中RAN节点执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例中RAN节点执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
图26为本申请实施例提供的一种终端的结构示意图,其可以为以上实施例中的终端,用于实现以上实施例中终端的操作。如图26所示,该终端包括:天线210、射频装置220、基带装置230。天线210与射频装置220连接。在下行方向上,射频装置220通过天线210接收RAN节点发送的信息,将RAN节点发送的信息发送给基带装置230进行处理。在上行方向上,基带装置230对终端的信息进行处理,并发送给射频装置220,射频装置220对终端的信息进行处理后经过天线210发送给RAN节点。
基带装置可以包括调制解调子系统,用于实现对数据各通信协议层的处理。还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理。此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片,可选的,以上通信装置便可以在该调制解调子系统上实现。
在一种实现中,图26所示的各个单元通过处理元件调度程序的形式实现,例如基带装置230的某个子系统,例如调制解调子系统,包括处理元件231和存储元件232,处理元件231调用存储元件232存储的程序,以执行以上方法实施例中终端执行的方法。此外,该基带装置230还可以包括接口233,用于与射频装置220交互信息。
在另一种实现中,图26所示的各个单元可以是被配置成实施以上终端执行的方法 的一个或多个处理元件,这些处理元件设置于基带装置230的某个子系统上,例如调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,图26所示的各个单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置230包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件231和存储元件232,由处理元件231调用存储元件232的存储的程序的形式实现以上终端执行的方法或图20-图24任一实施例所示各个模块或单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端执行的方法或图20-图24任一实施例所示各个模块或单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上用于终端的通信装置包括至少一个处理元件和存储元件,其中至少一个处理元件用于执行以上方法实施例所提供的终端执行的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中终端执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例中终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。

Claims (39)

  1. 一种通信方法,其特征在于,包括:
    终端从网络设备接收BWP配置消息,所述BWP配置消息用于配置BWP的半静态调度SPS资源;
    所述终端从所述网络设备接收第一BWP指示消息,所述第一BWP指示消息用于指示所述终端激活第一BWP;
    所述终端激活所述第一BWP上的SPS资源。
  2. 一种通信方法,其特征在于,包括:
    终端从网络设备接收BWP配置消息,所述BWP配置消息用于配置BWP的半静态调度SPS资源;
    所述终端从所述网络设备接收第二BWP指示消息,所述第二BWP指示消息用于指示所述终端去激活第一BWP;
    所述终端释放所述第一BWP上的SPS资源。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述终端接收去激活指令,所述去激活指令用于去激活所指示的载波分量;
    所述终端确定所述载波分量上的至少一个或者全部BWP不再有效。
  4. 根据权利要求2所述的方法,其特征在于,所述第二BWP指示消息还用于指示所述终端激活第二BWP,所述方法还包括:
    所述终端根据所述第二BWP的信息和所述第一BWP上的SPS资源,确定所述第二BWP上的SPS资源。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第二BWP上的SPS资源相对于所述第二BWP的起始资源位置的物理资源块PRB编号的偏移量与所述第一BWP上的SPS资源相对于所述第一BWP的起始资源位置的PRB编号的偏移量相同;
    所述第二BWP上的SPS资源的周期的绝对时间和所述第一BWP上的SPS资源的周期的绝对时间是相同的。
  6. 一种通信方法,其特征在于,包括:
    终端从网络设备接收BWP指示消息,所述BWP指示消息用于指示所述终端激活BWP和/或去激活BWP;
    所述终端向所述基站发送BWP反馈消息,所述BWP反馈消息用于指示所述终端成功接收到所述BWP指示消息。
  7. 根据权利要求6所述的方法,其特征在于,所述BWP反馈消息为媒体访问控制MAC层消息。
  8. 根据权利要求7所述的方法,其特征在于,所述MAC层消息包括MAC子头,或者包括MAC子头和MAC负荷,所述MAC子头包括逻辑信道标识LCID,所述LCID用于指示所述终端成功收到所述BWP指示消息。
  9. 根据权利要求8所述的方法,其特征在于,所述MAC负荷包括所述激活的BWP的标识或所述去激活的BWP的标识。
  10. 根据权利要求9所述的方法,其特征在于,所述MAC负荷还包括载波分量标识,所述载波分量标识用于指示所述激活的BWP所在的载波或所述去激活的BWP所在的载波。
  11. 根据权利要求6至10任一项所述的方法,其特征在于,所述终端向所述基站发送BWP反馈消息,包括:
    所述终端在所述激活的BWP上发送所述BWP反馈消息;或者,
    所述终端在所述去激活的BWP上发送所述BWP反馈消息;或者,
    所述终端在第二载波分量上发送所述BWP反馈消息,所述激活的BWP或所述去激活的BWP为第一载波分量上的频率资源。
  12. 根据权利要求6至11任一项所述的方法,其特征在于,当所述BWP指示消息用于指示终端激活BWP时,所述方法还包括:
    激活所述激活的BWP上的传输资源。
  13. 根据权利要求6至12任一项所述的方法,其特征在于,当所述BWP指示消息用于指示终端去激活BWP时,所述方法还包括:
    释放所述去激活的BWP上的传输资源。
  14. 根据权利要求6至13任一项所述的方法,其特征在于,当所述BWP指示消息用于指示终端激活BWP时,所述方法还包括:
    为所述激活的BWP初始化混合自动重传请求HARQ进程。
  15. 一种通信方法,其特征在于,包括:
    终端从网络设备接收BWP配置消息,所述BWP配置消息用于指示定时器的时长;
    当所述终端接收到BWP指示消息时,开启所述定时器,其中,所述BWP指示消息用于指示终端激活BWP或者去激活BWP;
    当所述定时器到期且满足功率余量上报条件时,所述终端上报功率余量报告。
  16. 根据权利要求15所述的方法,其特征在于,所述功率余量上报条件包括所述终端收到另一BWP指示消息。
  17. 一种通信方法,其特征在于,包括:
    网络设备向终端发送BWP配置消息,所述配置消息用于配置所述BWP的半静态调度SPS资源;
    所述网络设备向所述终端发送第一BWP指示消息,所述第一BWP指示消息用于指示所述终端激活第一BWP。
  18. 一种通信方法,其特征在于,包括:
    网络设备向终端发送BWP配置消息,所述配置消息用于配置所述BWP的半静态调度SPS资源;
    所述网络设备向所述终端发送第二BWP指示消息,所述第二BWP指示消息用于指示所述终端去激活第一BWP。
  19. 根据权利要求17或18所述的方法,其特征在于,还包括:
    所述网络设备向所述终端发送去激活指令,所述去激活指令用于去激活所指示的载波分量。
  20. 根据权利要求18所述的方法,其特征在于,所述第二BWP指示消息还用于 指示所述终端激活第二BWP。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第二BWP上的SPS资源相对于所述第二BWP的起始资源位置的物理资源块PRB编号的偏移量与所述第一BWP上的SPS资源相对于所述第一BWP的起始资源位置的PRB编号的偏移量相同;
    所述第二BWP上的SPS资源的周期的绝对时间和所述第一BWP上的SPS资源的周期的绝对时间是相同的。
  22. 一种通信方法,其特征在于,包括:
    网络设备向终端发送BWP指示消息,所述BWP指示消息用于指示所述终端激活BWP和/或去激活BWP;
    所述网络设备接收所述终端发送的BWP反馈消息,所述BWP反馈消息用于指示所述终端成功接收到所述BWP指示消息。
  23. 根据权利要求22所述的方法,其特征在于,所述BWP反馈消息为媒体访问控制MAC层消息。
  24. 根据权利要求23所述的方法,其特征在于,所述MAC层消息包括MAC子头,或者包括MAC子头和MAC负荷,所述MAC子头包括逻辑信道标识LCID,所述LCID用于指示所述终端成功收到所述BWP指示消息。
  25. 根据权利要求24所述的方法,其特征在于,所述MAC负荷包括所述激活的BWP的标识或所述去激活的BWP的标识。
  26. 根据权利要求25所述的方法,其特征在于,所述MAC负荷还包括载波分量标识,所述载波分量标识用于指示所述激活的BWP所在的载波或所述去激活的BWP所在的载波。
  27. 根据权利要求22-26任一项所述的方法,其特征在于,所述网络设备接收所述终端发送的BWP反馈消息,包括:
    所述网络设备在所述激活的BWP上接收所述BWP反馈消息,或者,
    所述网络设备在所述去激活的BWP上接收所述BWP反馈消息;或者,
    所述网络设备在第二载波分量上接收所述BWP反馈消息,所述激活的BWP或所述去激活的BWP为第一载波分量上的频率资源。
  28. 一种通信方法,其特征在于,包括:
    网络设备向终端发送BWP配置消息,所述BWP配置消息用于指示定时器的时长;
    所述网络设备向所述终端发送BWP指示消息,以使所述终端开启所述定时器,所述BWP指示消息用于指示终端激活BWP或者去激活BWP;
    接收所述终端上报的功率余量报告,所述功率余量报告为所述定时器到期且满足功率余量上报条件时所述终端发送的报告。
  29. 根据权利要求28所述的方法,其特征在于,所述功率余量上报条件包括所述终端收到另一BWP指示消息。
  30. 一种通信装置,其特征在于,包括用于执行权利要求1至16任一项所述的各个步骤的单元或手段。
  31. 一种通信装置,其特征在于,包括处理器,用于与存储器连接,存储器用于 存储程序,当所述程序被处理器调用时,用于执行如权利要求1至16任一项所述的方法。
  32. 一种通信装置,其特征在于,用于执行如权利要求1至16任一项所述的方法。
  33. 一种终端,其特征在于,包括如权利要求30-32任一项所述的装置。
  34. 一种计算机存储介质,其上存储有程序,其特征在于,该程序被处理器调用时,用于实现如权利要求1至16任一项所述的方法。
  35. 一种通信装置,其特征在于,包括用于执行权利要求17至29任一项所述的各个步骤的单元或手段。
  36. 一种通信装置,其特征在于,包括处理器,用于与存储器连接,存储器用于存储程序,当所述程序被处理器调用时,用于执行如权利要求17至29任一项所述的方法。
  37. 一种通信装置,其特征在于,用于执行如权利要求17至29任一项所述的方法。
  38. 一种网络设备,其特征在于,包括如权利要求35-37任一项所述的装置。
  39. 一种计算机存储介质,其上存储有程序,其特征在于,该程序被处理器调用时,用于实现如权利要求17至29任一项所述的方法。
PCT/CN2018/108269 2017-09-28 2018-09-28 通信方法、装置和设备 WO2019062837A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020518022A JP7248661B2 (ja) 2017-09-28 2018-09-28 通信方法、通信装置、およびデバイス
RU2020114800A RU2767182C2 (ru) 2017-09-28 2018-09-28 Способ связи, оборудование связи и устройство
KR1020207012042A KR102430393B1 (ko) 2017-09-28 2018-09-28 통신 방법, 통신 장치 및 디바이스
EP22176979.7A EP4117215A1 (en) 2017-09-28 2018-09-28 Communication method, communications apparatus, and device
EP18863133.7A EP3687093B1 (en) 2017-09-28 2018-09-28 Communication method, apparatus and device
US16/833,133 US20200228287A1 (en) 2017-09-28 2020-03-27 Communication method, communications apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710900586.0A CN109586866B (zh) 2017-09-28 通信方法、装置和设备
CN201710900586.0 2017-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/833,133 Continuation US20200228287A1 (en) 2017-09-28 2020-03-27 Communication method, communications apparatus, and device

Publications (1)

Publication Number Publication Date
WO2019062837A1 true WO2019062837A1 (zh) 2019-04-04

Family

ID=65900811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108269 WO2019062837A1 (zh) 2017-09-28 2018-09-28 通信方法、装置和设备

Country Status (7)

Country Link
US (1) US20200228287A1 (zh)
EP (2) EP3687093B1 (zh)
JP (1) JP7248661B2 (zh)
KR (1) KR102430393B1 (zh)
CN (1) CN111147218B (zh)
RU (1) RU2767182C2 (zh)
WO (1) WO2019062837A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583560A (zh) * 2019-09-30 2021-03-30 深圳市中兴微电子技术有限公司 一种资源的激活方法及装置
JP2021521759A (ja) * 2018-05-11 2021-08-26 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Csi処理ユニット及びリソースの処理方法、装置並びにシステム
CN115398831A (zh) * 2020-05-01 2022-11-25 高通股份有限公司 在全双工模式下的调制和编码方案(mcs)适配
EP3982578A4 (en) * 2019-06-06 2023-05-24 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
US11800519B2 (en) 2020-05-01 2023-10-24 Qualcomm Incorporated Time-interleaving of code block groups in full-duplex mode
EP4151021A4 (en) * 2020-05-15 2024-01-03 Qualcomm Inc SECONDARY CELL DORMANCE INDICATION TO SCHEDULE MULTIPLE COMPONENT CARRIERS
JP7460821B2 (ja) 2017-10-26 2024-04-02 クアルコム,インコーポレイテッド New Radioにおける半永続的スケジューリング管理
EP4185036A4 (en) * 2020-07-14 2024-04-17 Beijing Xiaomi Mobile Software Co Ltd METHOD AND DEVICE FOR SWITCHING ACTIVATED RESOURCES, COMMUNICATIONS DEVICE AND STORAGE MEDIUM
CN115398831B (zh) * 2020-05-01 2024-06-21 高通股份有限公司 在全双工模式下的调制和编码方案(mcs)适配

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3685618B1 (en) * 2017-09-22 2022-11-02 LG Electronics Inc. Method and apparatus for activating bandwidth part
JP7094090B2 (ja) * 2017-10-20 2022-07-01 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN111345103B (zh) * 2017-11-22 2023-07-04 鸿颖创新有限公司 用于非连续接收操作的用户设备和方法
CN111512660A (zh) 2017-12-29 2020-08-07 Oppo广东移动通信有限公司 下行带宽部分激活及去激活的方法、终端设备及网络设备
KR102604940B1 (ko) 2018-01-12 2023-11-21 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 송신 방법, 장치 및 시스템
AU2018407179A1 (en) * 2018-02-08 2020-10-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource configuration method and device, and computer storage medium
KR102085658B1 (ko) * 2018-02-16 2020-05-15 텔레폰악티에볼라겟엘엠에릭슨(펍) 공통 검색 공간을 사용한 효율적인 제어 신호전송
WO2022151212A1 (en) * 2021-01-14 2022-07-21 Nokia Shanghai Bell Co., Ltd. Semi-static scheduling of multicast broadcast service traffic
WO2022207772A1 (en) * 2021-03-31 2022-10-06 Sony Group Corporation Bandwidth parts for retransmissions
EP4271086A1 (en) * 2022-04-25 2023-11-01 Panasonic Intellectual Property Corporation of America User equipment, scheduling node, method for user equipment, and method for scheduling node

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088433A (zh) * 2009-12-08 2011-06-08 中兴通讯股份有限公司 多载波系统中分量载波激活去激活的优化方法和系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854639A (zh) * 2009-03-31 2010-10-06 中兴通讯股份有限公司 资源调度方法及用户设备
US20140036859A1 (en) * 2010-01-11 2014-02-06 Texas Instruments Incorporated Methods to Increase Sounding Capacity for LTE-Advanced Systems
US8599708B2 (en) * 2010-01-14 2013-12-03 Qualcomm Incorporated Channel feedback based on reference signal
US8917677B2 (en) * 2010-04-14 2014-12-23 Samsung Electronics Co., Ltd. Systems and methods for bundling resource blocks in a wireless communication system
JP5357119B2 (ja) * 2010-08-16 2013-12-04 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置及び無線通信方法
WO2014062195A1 (en) * 2012-10-19 2014-04-24 Nokia Siemens Networks Oy Csi feedback with elevation beamforming
EP3352516B1 (en) * 2015-09-18 2021-12-01 Sharp Kabushiki Kaisha Terminal device and communication method
CN105451341B (zh) * 2015-11-06 2019-03-15 北京佰才邦技术有限公司 非授权频段中配置参考信号的方法和装置
CN108702770B (zh) * 2016-01-29 2022-05-10 松下电器(美国)知识产权公司 eNodeB、用户设备以及无线通信方法
WO2017173616A1 (en) * 2016-04-07 2017-10-12 Nokia Technologies Oy Semi-persistent resource allocation enhancement for v2x communication
US10856323B2 (en) * 2016-05-10 2020-12-01 Lg Electronics Inc. Method for receiving data in wireless communication system, and apparatus therefor
EP3451567B1 (en) * 2016-07-29 2021-08-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of feeding back ack/nack information, terminal equipment, and network equipment
US10382170B2 (en) * 2016-09-25 2019-08-13 Ofinno, Llc HARQ process in semi-persistent scheduling
CN110447175B (zh) * 2016-12-27 2023-01-24 5G Ip控股有限责任公司 用于发送bwp指示符和使用相同的无线电通信设备的方法
US11483810B2 (en) * 2017-04-03 2022-10-25 Huawei Technologies Co., Ltd. Methods and systems for resource configuration of wireless communication systems
ES2948850T3 (es) * 2017-07-27 2023-09-20 Ntt Docomo Inc Terminal de usuario y método de comunicación por radio
WO2019051806A1 (zh) * 2017-09-15 2019-03-21 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088433A (zh) * 2009-12-08 2011-06-08 中兴通讯股份有限公司 多载波系统中分量载波激活去激活的优化方法和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CORESET Monitoring Under Dynamic Change of BWP", 3GPP TSG RAN WGI NR AD-HOC #2 R1-1710872, 16 June 2017 (2017-06-16), pages 1 - 5, XP051304536 *
GUANGDONG OPPO MOBILE TELECOM: "Bandwidth Part Configuration and Frequency Resource Allocation", 3GPP TSG RAN WGI NR AD-HOC#2 R1-1710164, 16 June 2017 (2017-06-16), pages 1 - 6, XP051304243 *
See also references of EP3687093A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460821B2 (ja) 2017-10-26 2024-04-02 クアルコム,インコーポレイテッド New Radioにおける半永続的スケジューリング管理
JP2021521759A (ja) * 2018-05-11 2021-08-26 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Csi処理ユニット及びリソースの処理方法、装置並びにシステム
JP7073583B2 (ja) 2018-05-11 2022-05-23 維沃移動通信有限公司 Csi処理ユニット及びリソースの処理方法、装置並びにシステム
US11825363B2 (en) 2018-05-11 2023-11-21 Vivo Mobile Communication Co., Ltd. Resource processing method, apparatus, and system
US11445418B2 (en) 2018-05-11 2022-09-13 Vivo Mobile Communication Co., Ltd. Resource processing method, apparatus, and system
EP3982578A4 (en) * 2019-06-06 2023-05-24 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
EP3961958A4 (en) * 2019-09-30 2022-07-27 ZTE Corporation RESOURCE ACTIVATION METHOD AND DEVICE, STORAGE MEDIA AND ELECTRONIC DEVICE
JP2022535346A (ja) * 2019-09-30 2022-08-08 中興通訊股▲ふん▼有限公司 リソースのアクティブ方法、装置、記憶媒体及び電子装置
CN112583560A (zh) * 2019-09-30 2021-03-30 深圳市中兴微电子技术有限公司 一种资源的激活方法及装置
CN115398831A (zh) * 2020-05-01 2022-11-25 高通股份有限公司 在全双工模式下的调制和编码方案(mcs)适配
US11800519B2 (en) 2020-05-01 2023-10-24 Qualcomm Incorporated Time-interleaving of code block groups in full-duplex mode
CN115398831B (zh) * 2020-05-01 2024-06-21 高通股份有限公司 在全双工模式下的调制和编码方案(mcs)适配
EP4151021A4 (en) * 2020-05-15 2024-01-03 Qualcomm Inc SECONDARY CELL DORMANCE INDICATION TO SCHEDULE MULTIPLE COMPONENT CARRIERS
EP4185036A4 (en) * 2020-07-14 2024-04-17 Beijing Xiaomi Mobile Software Co Ltd METHOD AND DEVICE FOR SWITCHING ACTIVATED RESOURCES, COMMUNICATIONS DEVICE AND STORAGE MEDIUM

Also Published As

Publication number Publication date
US20200228287A1 (en) 2020-07-16
RU2767182C2 (ru) 2022-03-16
EP4117215A1 (en) 2023-01-11
JP7248661B2 (ja) 2023-03-29
CN109586866A (zh) 2019-04-05
KR102430393B1 (ko) 2022-08-05
EP3687093B1 (en) 2022-07-06
RU2020114800A3 (zh) 2022-01-10
CN111147218B (zh) 2021-01-05
RU2020114800A (ru) 2021-10-28
KR20200055107A (ko) 2020-05-20
EP3687093A1 (en) 2020-07-29
JP2020535761A (ja) 2020-12-03
EP3687093A4 (en) 2020-11-25
CN111147218A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
JP7248661B2 (ja) 通信方法、通信装置、およびデバイス
US11678244B2 (en) Method for offloading traffic by means of wireless LAN in mobile communications system and apparatus therefor
US11696198B2 (en) Method and device for performing handover in mobile communication system
JP6924460B2 (ja) スケジューリング要求ベースのビーム障害回復
US10791480B2 (en) Method and device for transmitting and receiving data in mobile communication system
KR102184046B1 (ko) 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
JP2022518117A (ja) 無認可帯域における2段階ランダムアクセス手順
KR102071393B1 (ko) 무선 통신에서의 자원 관리
KR20190042525A (ko) 이동통신 시스템에서 랜덤 액세스 절차를 수행하는 방법 및 장치
EP3843478A1 (en) Apparatus and method for supporting vehicle-to-everything in wireless communication system
US20090046641A1 (en) Long term evolution medium access control procedures
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
KR20220017735A (ko) 차세대 이동 통신 시스템이 지원하는 이중 접속 기술에서 복수 개의 scg 설정을 지원하는 방법 및 장치
JP2022521712A (ja) 送信方法および通信装置
KR20190113472A (ko) 무선 통신 시스템에서 측정을 위한 장치 및 방법
KR20230105934A (ko) 차세대 이동 통신 시스템에서 셀그룹 활성화 또는 비활성화를 지원하는 헤더 압축 또는 압축 해제 절차를 위한 방법 및 장치
KR102490729B1 (ko) 무선 통신 시스템에서 반송파 결합 통신 방법 및 장치
CN109586866B (zh) 通信方法、装置和设备
JP2024511608A (ja) サイドリンク不連続受信命令のトリガー方法、装置及びシステム
WO2023132273A1 (ja) 通信装置及び通信方法
WO2023132272A1 (ja) 通信装置及び通信方法
KR20220008697A (ko) 무선 통신 시스템에서 셀 그룹의 활성화를 제어하는 방법 및 장치
KR20230105431A (ko) 차세대 이동 통신 시스템에서 셀그룹 활성화 또는 비활성화를 지원하는 rrc 메시지의 설정 또는 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207012042

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018863133

Country of ref document: EP

Effective date: 20200424