WO2019157945A1 - 一种用于上行授权的方法及装置 - Google Patents

一种用于上行授权的方法及装置 Download PDF

Info

Publication number
WO2019157945A1
WO2019157945A1 PCT/CN2019/073490 CN2019073490W WO2019157945A1 WO 2019157945 A1 WO2019157945 A1 WO 2019157945A1 CN 2019073490 W CN2019073490 W CN 2019073490W WO 2019157945 A1 WO2019157945 A1 WO 2019157945A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
bsr
control information
uplink
terminal
Prior art date
Application number
PCT/CN2019/073490
Other languages
English (en)
French (fr)
Inventor
胡星星
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019157945A1 publication Critical patent/WO2019157945A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and apparatus for uplink authorization.
  • Wireless transmission in the high frequency band has its limitations, such as fast attenuation, so the transmission range is relatively small.
  • the quality of the transmitted signal in the high frequency band is more susceptible to external influences, such as when the signal transmission direction is blocked by the object, the signal quality is more severely degraded. Therefore, a high-low frequency joint networking mode is introduced. In the networking mode, the existing uplink resource allocation process, or the uplink authorization process, may have an unreasonable resource allocation.
  • the embodiment of the present application provides a method and apparatus for uplink authorization, so as to improve the rationality of uplink resource allocation.
  • the present application provides a method for uplink authorization, which may be applied to a terminal, or may also be applied to a chip inside the terminal.
  • a BSR for indicating the size of the L2 uplink control information is generated, and the first information for requesting the uplink grant occurs under the trigger of the BSR.
  • the present application provides a method for uplink authorization, which may be applied to a network device, or may also be applied to a chip inside a network device.
  • first information for requesting an uplink grant is received, and an uplink grant is allocated according to the first information.
  • the first information is sent by the peer end (for example, the terminal or the chip inside the terminal) under the trigger of the BSR, and the BSR is used to indicate the size of the L2 uplink control information.
  • the application provides an apparatus for uplink authorization, comprising: means or means for performing the steps of the above first aspect or the second aspect.
  • the application provides an apparatus for uplink authorization, comprising at least one processor and a memory, the at least one processor for performing the method provided by the first aspect or the second aspect above.
  • the application provides an apparatus for uplink granting, comprising at least one processor and interface circuitry, the at least one processor for performing the method provided by the first aspect or the second aspect above.
  • the present application provides a program for uplink authorization, the program, when executed by a processor, for performing the method of the first aspect or the second aspect above.
  • a program product such as a computer readable storage medium, comprising the program of the sixth aspect is provided.
  • the BSR can be generated for the L2 uplink control information. If the network device transmits the L2 control information and the L2 data content on different wireless transmission links by using a message notification (for example, transmitting L2 uplink control information through low-frequency wireless resources and transmitting L2 data content through high-frequency wireless resources), then the terminal When it is identified that the L2 uplink control information needs to be uplinked, the BSR indicating the size of the L2 uplink control information may be triggered to be reported.
  • a message notification for example, transmitting L2 uplink control information through low-frequency wireless resources and transmitting L2 data content through high-frequency wireless resources
  • the network device can determine the size of the L2 uplink control information, so that the uplink grant corresponding to the size of the L2 uplink control information is allocated on the transmission link dedicated to transmitting the L2 uplink control information, thereby avoiding excessive uplink authorization. Waste of resources and improve service transmission performance.
  • the L2 uplink control information may be at least one of the following control information: control information generated by the SDAP layer, control information generated by the PDCP layer, control information generated by the RLC layer, control information generated by the MAC layer, and the like.
  • the first information may be a data unit including a BSR indicating the size of the L2 uplink control information
  • the data unit including the BSR indicating the size of the L2 uplink control information may be a MAC data unit, such as a BSR MAC CE.
  • the requested uplink grant may be an uplink grant for transmitting the L2 uplink control information of the size indicated by the BSR.
  • the first information involved in the present application may be an SR, and the SR may be used to request to obtain an uplink grant for transmitting a BSR indicating the size of the L2 uplink control information.
  • the SR may be a PUCCH or a PRACH.
  • the uplink authorization resource indicating the L2 uplink control information size BSR may be scheduled to be transmitted, or the uplink authorization resource of the transmission terminal MAC CE may be scheduled first, and then the transmission indication L2 uplink control information size is scheduled. Upstream authorization resources of the BSR.
  • the L2 uplink control information triggering terminal may generate a BSR indicating the size of the L2 uplink control information. For example, when the terminal recognizes that the L2 uplink control information needs to be uplink, the terminal may be triggered to generate a BSR indicating the size of the L2 uplink control information, and then the L2 control information and the L2 data content may be distinguished, and the BSR is generated for the L2 uplink control information.
  • the terminal may determine the L2 uplink control information by identifying the identifier of the control PDU in the data unit header of the upper layer protocol layer and identifying the type of the various data units. Alternatively, the terminal may determine the L2 uplink control information by using the indication information sent by the upper layer protocol layer to indicate the L2 uplink control information.
  • the BSR can be generated for the L2 uplink control information by using the indication information in the present application.
  • the generating the BSR for the L2 uplink control information may also be understood as transmitting the L2 uplink control information through a transmission link dedicated to transmitting the control information, or generating a BSR indicating the size of the L2 uplink control information, or transmitting the indication L2 uplink under the trigger of the BSR.
  • the BSR or SR (such as PUCCH or PRACH) that controls the information size, or the terminal distinguishing control PDU and the data PDU, informs the network device that there is L2 uplink control information that needs to be transmitted on the transmission link dedicated to transmitting the control information.
  • the indication information may be an indication cell.
  • the indication cell may be RRC signaling, Layer 2 (MAC CE), physical layer signaling, or the like.
  • the indication information may also be configuration information, where the configuration information is used to configure a resource for transmitting the first information.
  • the resource for transmitting the first information may be at least one of a cell resource, a carrier resource, a TRP resource, a beam resource, and a channel resource (for example, a logical channel or a physical channel).
  • the network device in the present application may indicate that the PDCP Control PDU generated by the terminal to the PDCP layer is transmitted on the transmission link of the dedicated transmission control information by using RRC signaling or the like indication information, for example, the PDCP Control PDU may be specified. In which CG or carrier is transmitted.
  • the terminal receives the indication message of the network device, if the PDCP entity of the terminal is associated with multiple RLC entities, the PDCP Control PDU may be delivered to the RLC entity corresponding to the specified CG or carrier according to the specific indication in the indication information.
  • the identification information of the BSR for indicating the size of the L2 uplink control information may be set in the application to distinguish the BSR indicating the size of the L2 uplink control information.
  • the identifier information may be sent by the network device to the terminal, and the terminal receives the identifier information, and may determine a BSR indicating the size of the L2 uplink control information.
  • the identifier information involved in the foregoing may be a logical channel group identifier.
  • a logical channel and a logical channel group to which the logical channel belongs may be specifically defined in the application for transmitting L2 uplink control information, and the logical channel number of the specifically defined logical channel may be used as identification information.
  • the logical channel group corresponding to the logical channel may also be used in the MAC CE of the BSR to indicate the L2 uplink control channel size.
  • the L2 indicated by the BSR can be directly determined according to the data size in the LCG. Upstream control information size.
  • FIG. 1 is a structural diagram of a communication system according to the present application.
  • FIG. 2 is a schematic diagram of a network architecture
  • FIG. 3 is a schematic diagram of another network architecture
  • FIG. 4 is a flowchart of a method for uplink authorization according to an embodiment of the present application.
  • FIG. 5 is a flowchart of another method for uplink authorization according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a BSR format involved in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another BSR format involved in the embodiment of the present application.
  • FIG. 8A is a schematic diagram of a scenario in which a terminal performs communication by using multiple carriers according to an embodiment of the present disclosure
  • FIG. 8B is a schematic diagram of a scenario in which a terminal performs communication by using a single carrier according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of an apparatus for uplink authorization according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another apparatus for uplink authorization according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a terminal according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a network device according to an embodiment of the present application.
  • the terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Devices for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • augmented reality, AR augmented reality, AR
  • wireless terminals in industrial control wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • a network device which is a device in a wireless network, for example, may be a radio access network (RAN) node that accesses a terminal to a wireless network, and the RAN node may also be referred to as a base station.
  • RAN nodes are: a continuation of evolved Node B (gNB), a transmission reception point (TRP), an evolved Node B (eNB), and a radio network controller (radio network controller, RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB) , a base band unit (BBU), or a wireless fidelity (Wifi) access point (AP).
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the terminal 130 accesses a wireless network to acquire a service of an external network (e.g., the Internet) through a wireless network, or communicates with other terminals through a wireless network.
  • the wireless network includes a RAN 110 and a core network (CN) 120, wherein the RAN 110 is used to connect the terminal 130 to a wireless network, and the CN 120 is used to manage the terminal and provide a gateway to communicate with the external network.
  • CN core network
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture includes a CN device and a RAN device.
  • the RAN device includes a baseband device and a radio frequency device, wherein the baseband device may be implemented by one node or multiple nodes, and the radio frequency device may be independently implemented from the baseband device, or may be integrated into the baseband device, or partially extended. Integrated in the baseband unit.
  • a RAN device in a Long Term Evolution (LTE) communication system, includes a baseband device and a radio frequency device, wherein the radio frequency device can be remotely arranged with respect to the baseband device, such as a remote radio unit (remote radio unit, RRU) is arranged farther than the BBU.
  • a remote radio unit remote radio unit, RRU
  • the communication between the RAN device and the terminal follows a certain protocol layer structure, which includes, for example, a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, and a wireless chain.
  • the functions of the protocol layer such as the radio link control (RLC) layer, the media access control (MAC) layer, and the physical layer; in one implementation, the PDCP layer may also include service data adaptation ( Service data adaptation protocol, SDAP) layer.
  • RLC radio link control
  • MAC media access control
  • SDAP service data adaptation
  • the functions of these protocol layers may be implemented by one node or may be implemented by multiple nodes; for example, in an evolved structure, the RAN device may include a centralized unit (CU) and a distributed unit (DU), Multiple DUs can be centrally controlled by one CU. As shown in FIG.
  • the CU and the DU may be divided according to a protocol layer of the wireless network.
  • the functions of the PDCP layer and the foregoing protocol layer are set in the CU, and the protocol layers below the PDCP, for example, the functions of the RLC layer and the MAC layer are set in the DU.
  • the division of the protocol layer is only an example, and can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and the above protocol layer are set in the CU, and the functions of the protocol layer below the RLC layer are set in the DU; Alternatively, in a certain protocol layer, for example, a part of the function of the RLC layer and a function of a protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it may be divided in other manners, for example, according to the delay division, the function that needs to meet the delay requirement in the processing time is set in the DU, and the function that does not need to satisfy the delay requirement is set in the CU.
  • the radio frequency device can be extended, not placed in the DU, or integrated in the DU, or partially extended in the DU, without any limitation.
  • control plane (CP) and the user plane (UP) of the CU may be separated and divided into different entities, which are respectively the control plane CU entity (CU-CP entity). ) and user plane CU entity (CU-UP entity).
  • the signaling generated by the CU may be sent to the terminal through the DU, or the signaling generated by the terminal may be sent to the CU through the DU.
  • the DU may transparently transmit the signaling to the terminal or the CU through protocol layer encapsulation without parsing the signaling.
  • the transmission or reception of the signaling by the DU includes such a scenario.
  • the signaling of the RRC or PDCP layer will eventually process the signaling to the PHY layer to the terminal, or be converted by the signaling of the received PHY layer.
  • the signaling of the RRC or PDCP layer may also be considered to be sent by the DU or sent by the DU and the radio.
  • the CU is divided into network devices on the RAN side.
  • the CU may be divided into network devices on the CN side, which is not limited herein.
  • the device in the following embodiments of the present application may be located in a terminal or a network device according to the functions implemented thereby.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • the terminal 130 when the terminal has uplink data to be sent, the terminal 130 generates a buffer status report (BSR), and sends a scheduling request (scheduling request) to the RAN node 110 under the trigger of the BSR.
  • BSR buffer status report
  • the RAN node 110 allocates an uplink resource to the terminal according to the SR, and the terminal transmits the BSR on the allocated uplink resource to inform the RAN node 110 of the amount of data in the terminal buffer, so that the RAN node can allocate an uplink resource of a suitable size to the terminal.
  • the uplink data in the terminal cache includes control information and service data, and the amount of data is the size of the uplink data.
  • New Radio (NR) also known as 5G
  • NR New Radio
  • a frequency band higher than 3 GHz is referred to as a higher frequency band
  • a frequency band lower than 3 GHz is referred to as a lower frequency band.
  • the higher the frequency band of operation the greater the path loss of the wireless signal. It can be seen that the radio resources in the lower frequency band are insufficient, the radio resources in the higher frequency band are rich, and the radio channel quality in the lower frequency band is better than the radio channel quality in the higher frequency band, so the high and low frequency joint networking can be used to complement each other.
  • Important data that has a large impact on transmission performance is transmitted through the carrier of the lower frequency band, and other data is transmitted through the carrier of the higher frequency band.
  • the control information is transmitted through the carrier of the lower frequency band
  • the service data is transmitted through the spectrum resource of the higher frequency band.
  • the terminal does not distinguish between the control information and the service data, but uses the uplink data in the cache as a whole to count the amount of data in the cache. Therefore, when the RAN node receives the BSR, it cannot distinguish between the data size of the control information and the data volume of the service data indicated by the BSR, and therefore cannot allocate appropriate lower frequency band resources and higher frequency band resources to the terminal. In order to ensure the uplink transmission of the terminal, resources are often wasted.
  • the embodiment of the present application provides a method for uplink grant, in which a terminal generates a BSR indicating the size of the L2 uplink control information, and sends the BSR under the trigger of the BSR indicating the size of the L2 uplink control information.
  • the information for requesting the uplink grant is such that the terminal notifies the network device that the L2 uplink control information needs to be transmitted.
  • the BSR generated by the terminal indicates the size of the L2 uplink control information, and the scheduling resource for transmitting the L2 uplink control information can be determined according to the size of the L2 uplink control information, which can reduce the waste of scheduling resources and make the uplink resource allocation more reasonable.
  • FIG. 4 is a flowchart of a method for performing uplink authorization according to an embodiment of the present application. Referring to FIG. 4, the method includes:
  • S101 The terminal generates a BSR for indicating the size of the L2 uplink control information.
  • L2 may be referred to as layer 2 (L2).
  • the protocol layer of the terminal and the network device may include a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • a service data adaptation protocol may also be included on the PDCP layer. SDAP).
  • the protocol layers of the terminal and the network device are the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer from top to bottom.
  • the PDCP layer, the RLC layer, and the MAC layer may be collectively referred to as layer 2.
  • the SD2 layer is also included in L2.
  • the PDCP layer can perform services such as security, header compression, or encryption.
  • the PDCP layer may have multiple PDCP entities, each of which carries data of a radio bearer (RB).
  • the protocol data unit (PDU) generated by the PDCP layer is divided into a data PDU and a control PDU.
  • the content of the data PDU generated by the PDCP layer includes the upper layer (such as the radio resource control (RRC) layer or the CN layer) and adds some PDCP header content.
  • the contents of the control PDU generated by the PDCP layer include messages generated by the PDCP layer and then some header contents of the PDCP are added.
  • the RLC layer performs services such as segmentation, retransmission, and the like.
  • the RLC layer may have multiple RLC entities, and each RLC entity provides services for each PDCP entity.
  • the PDUs generated by the RLC layer are divided into data PDUs and control PDUs.
  • the content in the data PDU generated by the RLC layer includes the upper layer (such as the PDCP layer) content, and may further add some RLC header content.
  • the content of the control PDU generated by the RLC layer includes the message generated by the RLC layer and then adds some header content of the RLC.
  • the MAC layer provides data transmission services for services on the logical channel, and performs acknowledgments such as scheduling, hybrid automatic repeat request (HARQ), and negative services.
  • HARQ hybrid automatic repeat request
  • the PDUs generated by the MAC layer are divided into data PDUs and control PDUs.
  • the content in the data PDU generated by the MAC layer includes the content of the upper layer (such as the RLC layer) and the content of the header of some MACs.
  • the content in the control PDU generated by the MAC layer includes messages generated by the MAC layer and then adds some header contents of the MAC.
  • the SDCP layer may also include an SDAP layer.
  • the main function of the SDAP layer is to map data of different service quality data streams (Qos flow) of the core network to data of different radio bearers (RBs). Will generate its own control PDU.
  • the terminal receives/transmits service data through a protocol data unit (PDU) session. Each PDU session will correspond to one SDAP entity.
  • PDU protocol data unit
  • the L2 uplink control information may include at least one of a control PDU generated by the SDAP layer, a control PDU generated by the PDCP layer, a control PDU generated by the RLC, and a control PDU generated by the MAC layer.
  • the control PDU generated by the PDCP layer may include, for example, a PDCP status report for feedback to the opposite end, so that the opposite end determines which PDCP data units have been correctly received, which PDCP data units are not correctly received, or includes sparse robustness.
  • the interspersed ROHC feedback packet is used to feed back some states of the header compression algorithm in the PDCP.
  • the control PDU generated by the RLC layer may include, for example, a status PDU for feedback to the opposite end, so that the opposite end determines which RLC data units have been correctly received and which RLC data units are not correctly received.
  • the control PDU generated by the MAC layer may include, for example, a MAC control element (CE) generated by the network device, or a MAC CE generated by the terminal.
  • the MAC CE generated by the network device may include, for example, a UE contention resolution identity (MAC CE), a timing advance command (MAC CE), and a discontinuous reception command control element (DRX command MAC CE).
  • the MAC CE generated by the terminal may include, for example, a buffer status report (BSR) MAC CE, a cell radio network temporary identity control element (C-RNTI MAC CE), and a single entity power headroom control element (single entry PHR MAC CE). At least one of a multiple entry PHR MAC CE.
  • BSR MAC CE is used to indicate the amount of data that needs to be transmitted on the uplink, so that the network device determines how much data the terminal needs to be scheduled.
  • the C-RNTI MAC CE carries the identity of the terminal C-RNTI to enable the network device to determine which terminal the terminal is.
  • Single entry PHR MAC CE/multiple entry The PHR MAC CE carries the power headroom of the terminal, that is, how much remaining power the terminal has in a certain transmitted data, so that the subsequent network device can select the corresponding scheduling format when scheduling the terminal (such as selecting modulation). Modulation and coding scheme (MCS), or Rank, etc.).
  • MCS Modulation and coding scheme
  • the manner in which the triggering terminal generates the BSR indicating the size of the L2 uplink control information may be multiple, and the application is not limited. For example, when a new data arrives in an LCH of an LCG, and the priority of the LCH is higher than the priority of the LCH of the existing data in any other LCG, or the other LCHs in the LCG have no data to be transmitted, the terminal is triggered. A BSR indicating the size of the L2 uplink control information is generated, and the new data includes L2 uplink control information.
  • the triggering terminal when an LCH of an LCG has new L2 uplink control information to be transmitted, and the priority of the LCH is higher than the LCH of the L2 uplink control information in any other LCG, or other LCHs in the LCG are If no L2 uplink control information needs to be transmitted, the triggering terminal generates a BSR indicating the size of the L2 uplink control information.
  • the terminal when the MAC layer of the terminal triggers the MAC CE (for example, the terminal detects that the signal quality of the available service beam (beam) drops to a certain extent, the terminal triggers the MAC CE to notify the network device of the latest available beam set, and may also When carrying the signal quality of these beams, the terminal can trigger the generation of the BSR in order to transmit these MAC CEs.
  • the network device may also be configured with a periodic triggering BSR corresponding period value, and the terminal periodically triggers the generation of the BSR.
  • the network device may configure a BSR retransmission timer. If the timer expires and at least L2 uplink control information needs to be transmitted, the terminal triggers generation of a BSR.
  • the beam in the embodiment of the present application may refer to a radio wave having a certain direction and shape when the wireless signal is transmitted or received by the at least one antenna port, and the beam has a certain coverage.
  • the method of constructing the beam may include weighting the amplitude or/or phase of the data transmitted or received by the at least one antenna port to form the beam, or may form the beam by other methods, such as adjusting the relevant parameters of the antenna unit.
  • the beam may also be indicated by some identifiers sent by the network side, such as an identifier indicated by a synchronization channel and a broadcast channel, which is not specifically limited in this embodiment of the present invention.
  • the L2 uplink control information cannot be received correctly, it will affect the data transmission performance. For example, if the status report in the PDCP Control PDU is not received correctly, the network device will retransmit some already transmitted data PDUs.
  • the interspersed ROHC feedback packet is important for the network side header decompression algorithm. If it is not received correctly, it will affect the performance of the header decompression algorithm.
  • the correct response (ACK)/negative acknowledgement (NACK) information carried by the RLC control PDU if not received by the network device in time, the sending window cannot be updated in time, which will affect the service performance.
  • the BSR MAC CE carries the data size that needs to be transmitted on the uplink.
  • the PHR MAC CE carries the power headroom of the terminal. If the network device cannot know this accurately, it will affect the service transmission performance.
  • the BSR is reported to the network device, so that the network device schedules the transmission resource.
  • the BSR reported by the terminal to the network device includes the size of all data including control information and data. If the terminal transmits the L2 uplink control information on the transmission link of the transmission control information, the resource of the transmission link of the transmission control information is scheduled by the network device according to the total amount of uplink data indicated by the BSR reported by the terminal, and the scheduled transmission resource is more than The resource of the L2 uplink control information is transmitted, so there is a problem that the scheduled transmission resource is wasted.
  • the L2 uplink control information triggering terminal may generate a BSR indicating the size of the L2 uplink control information. For example, when the terminal recognizes that the L2 uplink control information needs to be uplink, the terminal may be triggered to generate a BSR indicating the size of the L2 uplink control information. Compared with the prior art uplink authorization mode, the control information and the data can be distinguished, and the BSR is generated for the L2 uplink control information.
  • the network device may notify the terminal to transmit L2 control information (such as L2 control PDU) and L2 service data (such as L2 data PDU) on different wireless transmission links by using a message. In this scenario, the terminal recognizes L2 uplink control in the scenario.
  • L2 control information such as L2 control PDU
  • L2 service data such as L2 data PDU
  • the BSR that reports the size of the L2 uplink control information is triggered, so that the network device determines the size of the L2 uplink control information, so that the uplink authorization corresponding to the size of the L2 uplink control information is allocated on the transmission link of the transmission control information.
  • the terminal may determine the L2 uplink control information by identifying the type of the various data units in the data unit header of the higher layer protocol layer for indicating the identity of the control PDU. For example, when the MAC entity of the terminal receives the PDU transmitted by the RLC layer, the control PDU generated by the PDCP layer may be identified according to the header content of the RLC or the header content of the PDCP. Alternatively, when the MAC entity of the terminal receives the data unit transmitted by the RLC layer, the control PDU generated by the RLC layer may be identified according to the header content of the RLC.
  • the PDU is indicated as a data PDU or a control PDU by Control/Data (D/C).
  • the MAC entity identifies, according to the D/C in the header of the PDU transmitted by the RLC layer, whether the PDU is a control PDU generated by the RLC layer. If the value of D/C is 0, it can be determined that the PDU is a control PDU generated by the RLC layer. If the value of D/C is 1, it can be determined that the PDU is a data PDU generated by the RLC layer.
  • the D/C value in the header of the PDU generated by the PDCP layer may be used to identify whether the PDU is a control PDU generated by the PDCP layer. If the value of D/C is 0, the PDU is determined to be a control PDU generated by the PDCP layer. It can be understood that the content of the header of each layer may be combined to identify whether it is a control PDU. For example, the MAC layer may first determine whether the header content of the RLC in the PDU transmitted according to the RLC layer is an RLC data PDU, and according to the RLC data PDU. The header of the carried PDCP layer looks to see if it is a PDCP layer control PDU.
  • the L2 uplink control information may be determined by the indication information for indicating the L2 uplink control information sent by the upper layer protocol layer.
  • the indication information used to indicate the L2 uplink control information may be additional information added by the upper layer protocol layer when transmitting the PDU to the lower layer protocol layer, for example, a newly added cell, where the newly added cell is used to indicate whether the PDU is used.
  • the lower layer protocol layer may determine whether the received PDU is a control PDU, but the lower layer protocol layer does not transmit to the opposite end whether the PDU is used to indicate whether the PDU is a control PDU. Instructions.
  • the MAC entity may send indication information indicating that the PDU is a control PDU, and after receiving the indication information that the indication PDU is the control PDU, the MAC entity may identify the PDCP. Control PDU generated by the entity or RLC entity.
  • the indication information used to indicate the L2 uplink control information in the embodiment of the present application may be separate indication information, or may be carried in a PDU transmitted by a higher layer protocol layer to a lower layer protocol layer.
  • the triggering BSR generation in the embodiment of the present application may be performed by using the prior art, or may be triggered by the L2 uplink control information, and may also be triggered by the LSR uplink control information triggering method triggered by the prior art and the present application. .
  • the L2 uplink control information involved in the embodiment of the present application may be at least one of the following: control information generated by the SDAP layer, control information generated by the PDCP layer, control information generated by the RLC layer, and generated by the MAC layer. Control information, etc.
  • the terminal sends the first information to trigger the uplink authorization by using a BSR triggering for indicating the size of the L2 uplink control information.
  • a transmission rule may be introduced for each logical channel, that is, a set of subcarrier intervals that each logical channel can correspond to, a maximum duration of data transmission, and which cells can be transmitted are limited.
  • the terminal configures the corresponding uplink grant.
  • the transmission rule of the logical channel matches the uplink grant, the terminal uses the uplink grant to send the data on the logical channel.
  • the uplink grant includes one or more of corresponding subcarrier spacing, data transmission duration, and transmission cell information.
  • the terminal may request to obtain the uplink authorization by:
  • the terminal may determine whether there is a transmission resource that can be used to transmit a BSR indicating the size of the L2 uplink control information, where the transmission resource may be an uplink authorization resource configured to transmit L2 uplink control information, or may be other data transmission.
  • the uplink authorization resource requested at the time or may be an unlicensed resource (grant free), a semi-static scheduling resource, or the like.
  • the BSR indicating the size of the L2 uplink control information may be set to a higher transmission priority than the other data.
  • the determined A BSR indicating the size of the L2 uplink control information is transmitted on the transmission resource to request to obtain an uplink grant for transmitting the L2 uplink control information of the size indicated by the BSR.
  • the first information sent by the BSR trigger may be a data unit including a BSR indicating the size of the L2 uplink control information, where the data unit including the BSR indicating the size of the L2 uplink control information may be a MAC data unit, such as a BSR. MAC CE.
  • the BSR MAC CE may include multiple BSRs, for example, may include a BSR corresponding to the data, or may include a BSR indicating the size of the L2 uplink control information.
  • the requested uplink grant may be an uplink grant for transmitting the L2 uplink control information of the size indicated by the BSR.
  • the configured resource for transmitting the L2 uplink control information may be a cell, a carrier, a logical channel, a physical channel, a transmission receiving point or a beam.
  • the terminal may send, on the configured transmission resource, a data unit that includes a BSR indicating the size of the L2 uplink control information, for example, the configured transmission resource.
  • a BSR MAC CE is sent, and the BSR MAC CE carries a BSR indicating the size of the L2 uplink control information.
  • the first information sent by the terminal under the trigger of the BSR may be a data unit including a BSR indicating the size of the L2 uplink control information.
  • the data unit including the BSR indicating the size of the L2 uplink control information may be a MAC data unit, such as a BSR MAC CE.
  • the BSR MAC CE may include multiple BSRs, for example, may include a BSR corresponding to the data, or may include a BSR indicating the size of the L2 uplink control information.
  • the terminal may send a scheduling request (scheduling request) , SR), to request to obtain an uplink grant for transmitting a BSR indicating the size of the L2 uplink control information.
  • SR scheduling request
  • the first information that is sent by the terminal in the triggering of the BSR indicating the size of the L2 uplink control information in the embodiment of the present application may be an SR, and the SR is used to request to obtain an uplink grant for transmitting the BSR indicating the size of the L2 uplink control information.
  • the network device may notify the terminal SR resource by using an RRC message, for example, in the RRC connection establishment or reconfiguration process, notifying the terminal SR resource.
  • the available SR resource may be the configured SR resource for transmitting the L2 uplink control information, and the available The SR is sent on the SR resource.
  • the network device may schedule resources for transmitting the BSR for the terminal.
  • the terminal is in the The scheduled BSR for transmitting the BSR sends a BSR indicating the size of the L2 uplink control information to request to obtain an uplink grant for transmitting the L2 uplink control information of the size indicated by the BSR.
  • the network device is a terminal
  • the resource for transmitting the BSR satisfies the L2 uplink control information for transmitting the BSR indication size, but does not satisfy the BSR for additionally transmitting the L2 uplink control information size.
  • the terminal may not send the BSR indicating the size of the L2 uplink control information, and directly send the L2 uplink control information of the size indicated by the BSR on the scheduled resource for transmitting the BSR.
  • the SR may be sent by using a PUCCH or a physical random access channel (PRACH), and may send a specific cell, or may send a certain resource on the PUCCH or the PRACH.
  • PRACH physical random access channel
  • the energy or sequence to indicate that the terminal requires an upstream grant. If the terminal determines that the transmission resource of the configured transmission L2 uplink control information has a PUCCH resource that can be used to transmit the SR, the terminal transmits the PUCCH resource, and may send a specific cell, or may only be information of a certain energy. If the terminal determines that the transmission resource of the configured transmission L2 uplink control information does not have a PUCCH resource that can be used to send the SR, the terminal initiates a random access procedure (RAP).
  • RAP random access procedure
  • the first information sent by the terminal under the BSR trigger may be a transmission on a random access channel (PRACH) to obtain an uplink grant, and the L2 uplink control information is transmitted in the uplink grant.
  • the network device may configure the terminal-specific PRACH resource for the terminal.
  • the PRACH resource here refers to the time domain resource, the frequency domain resource and the code domain resource, and the code domain refers to the random access preamble corresponding to the PRACH. ), it may not be configured with dedicated PRACH resources for the terminal. It can be seen that when the first information is an SR, the first information is sent, which may include a PUCCH transmission or a PRACH transmission.
  • the PUCCH transmission can transmit information with a certain energy at a specified resource location without restricting the specific form or content of the information.
  • the PRACH transmission may be a sequence. If the network device detects the sequence, it considers that the terminal initiates a random access procedure, and then assigns an uplink grant to the terminal. In an example, after the terminal sends the PRACH, the network device sends a response to the terminal, where the response carries the uplink grant and the corresponding preamble allocated by the network device to the terminal.
  • the terminal first checks whether the preamble is sent by itself, and if so, uses the uplink grant to send the uplink data.
  • the terminal may use the uplink grant to send uplink control information and/or BSR (if only the BSR is sent, the network device receives this again) After the BSR, the terminal is reassigned the uplink grant, and the terminal uses the uplink grant to send the uplink control information.
  • the terminal After receiving the uplink authorization, the terminal sends a conflict resolution message (the message carries the specific identifier of the terminal, such as The message may be a C-RNTI MAC CE, which carries a cell radio network temporary identifier (C-RNTI) to identify the terminal, etc., to the network device.
  • a conflict resolution message the message carries the specific identifier of the terminal, such as The message may be a C-RNTI MAC CE, which carries a cell radio network temporary identifier (C-RNTI) to identify the terminal, etc., to the network device.
  • the terminal may send the BSR and the uplink control information and the message to the network device at the same time, or the network device may allocate an uplink grant to the terminal after receiving the conflict resolution message, and the terminal uses the uplink grant to send the uplink control information and/or Or the BSR (if only the BSR is sent, the network device receives the BSR again, and then allocates the uplink grant to the terminal, and the terminal uses the uplink grant to send the uplink control information).
  • the network device sends a response to the terminal, where the response carries the uplink grant allocated by the network device to the terminal.
  • the terminal monitors the physical downlink control channel (PDCCH) in a window, and the PDCCH is scrambled by the C-RNTI of the terminal, where the PDCCH carries the uplink grant allocated to the UE.
  • the terminal uses the uplink grant to send uplink control information and/or the BSR.
  • PDCCH physical downlink control channel
  • the terminal may initiate an SR/random access procedure at a low frequency.
  • the network device receives the first information sent by the terminal, and schedules an uplink authorization resource for the terminal.
  • the first information received by the network device in the embodiment of the present application may be a data unit (for example, a BSR MAC CE) indicating an L2 uplink control information size BSR, or may be an SR.
  • the uplink authorization resource of the L2 uplink control information indicating the size of the BSR indication may be scheduled to be transmitted.
  • the uplink authorization resource indicating the L2 uplink control information size BSR may be scheduled to be transmitted, or the uplink authorization resource of the C-RNTI MAC CE may be scheduled to be transmitted, and then the transmission indication L2 uplink control information size is scheduled.
  • Upstream authorization resources of the BSR may be indicating an L2 uplink control information size BSR.
  • the terminal receives the uplink grant resource scheduled by the network device, and sends a BSR indicating the size of the L2 uplink control information on the uplink grant resource, or sends the L2 uplink control information of the BSR indication size, or sends the L2 uplink control information size BSR and The BSR indicates the size of the L2 uplink control information.
  • the terminal specifically sends the L2 uplink control information size BSR or the L2 uplink control information of the BSR indication size, or both of them are sent.
  • the control information may be referred to as a control message or control signaling, and is not limited herein.
  • the terminal In the foregoing method for transmitting the L2 uplink control information, the terminal generates a BSR indicating the size of the L2 uplink control information, and sends the first information for requesting the uplink authorization under the trigger of the BSR indicating the size of the L2 uplink control information.
  • the network device schedules the uplink grant for the L2 uplink control information to perform the L2 uplink control information transmission.
  • the BSR generated by the terminal indicates the size of the L2 uplink control information, and the scheduling resource for transmitting the L2 uplink control information can be determined according to the L2 uplink control information size, which reduces the waste of scheduling resources.
  • the terminal can send L2 uplink control information, there are various implementation manners, for example, in a conventional manner: the transmission is performed on the same transmission link as the data, or through the transmission link dedicated to the transmission of the control information.
  • the manner of reporting the uplink data total BSR by the traditional reporting may be selected.
  • the terminal may also perform the transmission by using the BSR that reports the size of the L2 uplink control information involved in the embodiment of the present application.
  • the network device may send the indication to the terminal to send the L2 uplink control information transmission method according to the embodiment of the present application.
  • the specific information of the indication information of the uplink control information is as shown in FIG. 5, and the method includes:
  • the terminal receives the indication information, where the indication information is used to indicate that the terminal generates, by using the L2 uplink control information, the BSR indicating the size of the L2 uplink control information, and the implementation of sending the first information by using the BSR, in the foregoing embodiment. the way.
  • the indication information may be sent by the network device to the terminal.
  • the indication information sent by the network device to the terminal may be an indication cell, where the indication information is used to indicate whether the terminal transmits the L2 uplink control information in a conventional manner or the L2 uplink control information is transmitted by using the method involved in the embodiment of the present application.
  • the indication cell may be RRC signaling, Layer 2 (MAC CE) signaling, or physical layer signaling, etc., and is not specifically limited.
  • the network device may not send the indication information, and the terminal uses the BSR for indicating the size of the L2 uplink control information for the L2 uplink control information in the foregoing embodiment, and sends the first BSR trigger.
  • the way information is implemented.
  • the method for transmitting the L2 uplink control information in the embodiment of the present application may have at least one of the following types of understanding: the terminal transmits the L2 uplink control information by using a transmission link dedicated to transmitting control information, and the terminal is directed to the L2.
  • the uplink control information generates a BSR, and the terminal generates a BSR indicating the size of the L2 uplink control information.
  • the terminal sends a BSR or SR indicating the size of the L2 uplink control information under the trigger of the BSR, and the terminal distinguishes the control PDU and the data PDU to notify the network device that it is dedicated to the transmission control.
  • a transmission link dedicated to transmitting control information refers to a link configured by a network device for transmitting uplink control information, but does not limit the link from being used for transmitting other information.
  • the network device can configure the resource for sending the L2 uplink control information.
  • the terminal generates a BSR indicating the size of the L2 uplink control information for the L2 uplink control information, and when the first information is sent by the BSR, the indication information received by the terminal may be a resource dedicated to transmitting the L2 uplink control information.
  • the configuration information may be configuration information of a resource for configuring the terminal to transmit the first information.
  • the resource involved in the configuration information may be at least one of a cell resource, a carrier resource, a TRP resource, a beam resource, and a channel resource (for example, a logical channel or a physical channel), where the network device specifies the terminal to send the L2 uplink control information.
  • the beam can be represented as an SS/PBCH block, and each SS/PBCH block corresponds to a label.
  • the network device specifies that the terminal transmits L2 uplink control information in the low frequency carrier.
  • the configuration information may include an SR configuration (such as a PUCCH or a RACH configuration) specifically for notifying the L2 control information, and the terminal uses the SR configuration to notify the network device terminal that the L2 uplink control information needs to be transmitted.
  • the SR configuration may be a configuration on a different carrier/TRP/beam than the data transmission.
  • the SR configuration here refers to a physical upwn link control channel (PUCCH) resource or resource set or a PRACH resource or resource set that transmits an SR in a different bandwidth part (BWP) or a cell.
  • PUCCH physical upwn link control channel
  • BWP bandwidth part
  • the terminal receives the transmission link configuration information dedicated to the transmission control information, it may be determined that the L2 uplink control information needs to be transmitted by using the method involved in the embodiment of the present application.
  • S202, S203, S204, and S205 in FIG. Execution steps.
  • the execution process of S202, S203, S204, and S205 is similar to the execution steps of S101, S102, S103, and S104.
  • S101, S102, S103, and S104 For details, refer to the description of the foregoing embodiment, and details are not described herein again.
  • the L2 uplink control information includes a PDCP control PDU generated by the PDCP layer, and the network device instructs the terminal to transmit the PDCP control PDU generated by the PDCP layer in the specified CG or carrier as an example.
  • the network device may indicate, by using an indication information such as an RRC message, that the terminal transmits the PDCP control PDU generated by the PDCP layer on the transmission link of the dedicated transmission control information, for example, in which cell group the PDCP control PDU is specified ( CG) or carrier transmission.
  • the terminal After the terminal receives the indication information of the network device, if the PDCP entity of the terminal is associated with multiple RLC entities, the PDCP control PDU may be delivered to the RLC entity corresponding to the specified CG or carrier according to the specific indication in the indication information.
  • the size of the PDCP control PDU may be calculated only in the BSR of the MAC layer corresponding to the RRC specified RLC entity.
  • the network device specifies that the PDCP control PDU is transmitted in the CG to which the low-frequency carrier belongs. It is assumed that in the DC scenario, the low frequency carrier belongs to the master cell group (MCG), and the high frequency carrier belongs to the secondary cell group (SCG).
  • MCG master cell group
  • SCG secondary cell group
  • the PDCP control PDU in the PDCP layer needs to be calculated in the BSR.
  • the PDCP control PDU in the PDCP layer does not need to be calculated in the BSR.
  • the data size indicated by the BSR can be carried by the MAC CE, but for a logical channel group (LCG), there are multiple logical channels corresponding to multiple services, and different logical channels can belong to In the corresponding LCG, the MAC layer also generates corresponding control PDUs, that is, both MAC PDUs and MAC CEs. Therefore, the logical channel can be distinguished by the value of the logical channel identity (LCID) in the MAC sub-header.
  • LCID logical channel identity
  • the LCID in the MAC sub-header can be represented by 6 bits. The value corresponding to the LCID is 000001-100000, which can be used to identify the logical channel. Different BSRs can be identified by 111011, 111100, 111110, and 111101.
  • the BSR carries the data size to be transmitted corresponding to the different logical channel groups.
  • the size of the data to be transmitted corresponding to the logical channel group thereof may be identified by defining different logical channel groups (for example, logical channel group 0 to logical channel group 7).
  • the format of the BSR indicating the BSR size by the logical channel group identifier may be as shown in FIG. 6 or FIG. 7.
  • the bits corresponding to LCG0 to LCG7 respectively represent whether the MAC CE carries the buffered data size of the corresponding LCG. 0 represents the size of the data to be transmitted that does not carry the LCG in the MAC CE, and 1 represents the size of the data to be transmitted that carries the LCG in the MAC CE.
  • the LCG ID represents the identifier corresponding to the LCG.
  • the BSR that is used to distinguish the size of the L2 uplink control information may be used to set the identifier information for the BSR that only calculates the size of the L2 uplink control information.
  • the network device sends the identifier information to the terminal, where the identifier information is used to identify the BSR.
  • the identification information is an LCH identifier or an LCG identifier.
  • the network device may also not configure the identifier information to the terminal, but preset an LCH identifier or an LCG identifier for identifying a BSR for indicating the size of the L2 uplink control information.
  • the foregoing indication information may be the LCH identifier or the LCG identifier.
  • a logical channel identifier may be set for a logical channel corresponding to a MAC CE that indicates an L2 uplink control information size BSR, for example, a logical channel number different from other logical channel numbers may be set, so as to carry an indication
  • the logical channel corresponding to the MAC CE of the BSR of the L2 uplink control information size is identified.
  • the identifier information of the BSR for indicating the size of the L2 uplink control information may be sent by the network device to the terminal. After receiving the identifier information sent by the network device, the terminal may determine the BSR indicating the size of the L2 uplink control information.
  • the logical channel group identifier may be set to indicate that the MAC CE indicating the L2 uplink control information size BSR is carried, for example, a logical channel group identifier that is different from the special value of the other logical channel group may be set, so as to indicate that the MAC CE carries the indication L2 uplink.
  • an LCH and an LCG to which the LCH belongs may be defined in the embodiment of the present application for transmitting L2 uplink control information to reduce the modification to the original protocol.
  • LCH uplink control information LCH the logical channel number of the LCH can be used as identification information for identifying a BSR that only calculates the size of the L2 uplink control information.
  • the LCG identifier to which the LCH belongs may be used as a BSR for identifying the size of the L2 uplink control information.
  • the BSR may be used to indicate the L2 uplink control by using the identifier of the LCG corresponding to the LCH in the MAC CE of the BSR. The size of the message.
  • the size of the data to be transmitted corresponding to the LCG carrying the other non-control information does not need to be carried. Therefore, the L2 indicated by the BSR can be directly determined according to the data size in the LCG. Upstream control information size.
  • a corresponding transmission rule may be set for the defined LCH, where the transmission rule may include at least one of a transmitted subcarrier spacing set, a data transmission maximum duration, and which cells may be transmitted.
  • the SR configuration corresponding to the LCH may also be configured. It can be understood that the SR configuration refers to a PUCCH resource or resource set or a PRACH resource or resource set that sends an SR in a different bandwidth part BWP or a cell.
  • FIG. 8A is a schematic diagram of a multi-carrier scenario according to an embodiment of the present application.
  • the terminal 810 can communicate with the network side by using multiple devices configured by the network device 820 and the network device 830 for the terminal.
  • the multiple carriers share the same PDCP entity, the same RLC entity, and The same MAC entity.
  • a DC scenario a PDCP entity, an RLC entity, or a MAC entity between multiple carriers may be different.
  • the foregoing method for uplink authorization provided by the embodiment of the present application may also be used in a single carrier scenario.
  • control information of the carrier and service data may also be transmitted separately.
  • FIG. 8B is a schematic diagram of a single carrier scenario provided by an embodiment of the present application.
  • the control information and service data of the cell 1 (Cell 1) can be transmitted through different TRPs, TRP1 and TRP2, respectively. If the application is not restricted, the service data and the control information may be separately transmitted in other manners.
  • the above method may be used to improve the rationality of resource allocation in a single carrier scenario.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspective of the interaction between the terminal and the network device.
  • the terminal and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present invention.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the embodiment of the present application further provides an apparatus for implementing any of the above methods, for example, providing a unit (or means) for implementing various steps performed by a terminal in any of the above methods. ).
  • another apparatus is provided, including means (or means) for implementing the various steps performed by the network device in any of the above methods.
  • the embodiment of the present application provides an apparatus 100 for uplink authorization.
  • the device 100 for uplink authorization can be applied to a terminal.
  • FIG. 9 is a schematic structural diagram of an apparatus 100 for uplink authorization according to an embodiment of the present application.
  • the apparatus 100 for uplink authorization includes a processing unit 101 and a sending unit 102.
  • the processing unit 101 is configured to generate a BSR indicating the size of the L2 uplink control information.
  • the sending unit 102 is configured to send first information, where the first information is used to request an uplink grant, triggered by the BSR generated by the processing unit 101.
  • the embodiment of the present application further provides an apparatus 200 for uplink authorization, where the apparatus 200 for uplink authorization can be applied to a network device.
  • FIG. 10 is a schematic structural diagram of an apparatus 200 for uplink authorization according to an embodiment of the present application.
  • the apparatus 200 for uplink authorization includes a receiving unit 201 and a processing unit 202.
  • the receiving unit 201 is configured to receive the first information.
  • the processing unit 202 is configured to allocate an uplink grant according to the first information.
  • the first information involved in the foregoing may be a data unit that includes a BSR indicating the size of the L2 uplink control information.
  • the first information may be an SR, and the SR or the first information is a random access request message.
  • the data unit including the BSR includes a MAC CE.
  • the L2 uplink control information involved in the foregoing is at least one of packet data aggregation PDCP layer control information, radio link control RLC layer control information, and medium access control MAC layer control information.
  • the L2 uplink control information triggers the generation of the BSR.
  • the apparatus 200 for uplink authorization further includes a sending unit 203, and the sending unit 203 is configured to send indication information, where the indication information is used to generate a BSR for the L2 uplink control information.
  • the apparatus 100 for uplink authorization further includes a receiving unit 103, wherein the receiving unit 103 is configured to receive indication information, where the indication information is used to indicate that a BSR is generated for the L2 uplink control information.
  • the indication information is an indication cell.
  • the indication information is configuration information, where the configuration information is used to configure a resource for transmitting the first information.
  • the resources include a cell, a carrier, a logical channel, a physical channel, and a transmission receiving point or a beam.
  • the apparatus 200 for uplink authorization includes a sending unit 203, and the sending unit 203 is configured to send identifier information, where the identifier information is used to identify a BSR indicating the size of the L2 uplink control information.
  • the apparatus 100 for uplink authorization includes a receiving unit 103, wherein the receiving unit 103 is configured to receive identification information, where the identification information is used to identify a BSR indicating the size of the L2 uplink control information.
  • the identifier information is a logical channel group identifier.
  • each unit in the device may all be implemented by software in the form of processing component calls; or may be implemented entirely in hardware; some units may be implemented in software in the form of processing component calls, and some units may be implemented in hardware.
  • each unit may be a separately set processing element, or may be integrated in one chip of the device, or may be stored in a memory in the form of a program, which is called by a processing element of the device and executes the unit.
  • all or part of these units can be integrated or implemented independently.
  • the processing elements described herein can in turn be a processor and can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or by software in the form of a processing component call.
  • the units in any of the above devices may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASICs), or one or A plurality of digital singnal processors (DSPs), or one or more field programmable gate arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs field programmable gate arrays
  • a unit in the apparatus can be implemented in the form of a processing component scheduler
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above unit for receiving is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit for the chip to receive signals from other chips or devices.
  • the above unit for transmitting is an interface circuit of the device for transmitting signals to other devices.
  • the transmitting unit is an interface circuit for transmitting signals to other chips or devices.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present application. It can be the terminal in the above embodiment, and is used to implement the operation of the terminal in the above embodiment.
  • the terminal includes an antenna 110, a radio frequency device 120, and a baseband device 130.
  • the antenna 110 is connected to the radio frequency device 120.
  • the radio frequency device 120 receives the information transmitted by the network device through the antenna 110, and transmits the information sent by the network device to the baseband device 130 for processing.
  • the baseband device 130 processes the information of the terminal and sends the information to the radio frequency device 120.
  • the radio frequency device 120 processes the information of the terminal and sends the information to the network device via the antenna 110.
  • the baseband device 130 may include a modem subsystem for implementing processing of each communication protocol layer of data; and may further include a central processing subsystem for implementing processing on the terminal operating system and the application layer; in addition, other bases may be included Subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to implement control of the terminal camera, screen display, etc., and the peripheral subsystem is used to implement connection with other devices.
  • the modem subsystem can be a separately set chip.
  • the above device for the terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 131, including, for example, a master CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 132 and an interface circuit 133.
  • the storage element 132 is for storing data and programs, but the program for executing the method executed by the terminal in the above method may not be stored in the storage element 132, but stored in a memory other than the modem subsystem, using The modem demodulation subsystem is loaded for use.
  • Interface circuit 133 is used to communicate with other subsystems.
  • the above device for the terminal may be located in a modem subsystem, which may be implemented by a chip, the chip comprising at least one processing element and interface circuit, wherein the processing element is used to perform any of the above methods of terminal execution In various steps, the interface circuit is used to communicate with other devices.
  • the means for the terminal to implement the various steps in the above method may be implemented in the form of a processing component scheduler, for example, the device for the terminal includes a processing component and a storage component, and the processing component invokes a program stored by the storage component to perform the above Method performed by a terminal in a method embodiment.
  • the storage element can be a storage element on which the processing element is on the same chip, ie an on-chip storage element.
  • the program for performing the method performed by the terminal in the above method may be on a different storage element than the processing element, ie, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element on the on-chip storage element to invoke and execute the method performed by the terminal in the above method embodiment.
  • the unit that implements the various steps in the above method may be configured as one or more processing elements disposed on a modem subsystem, where the processing elements may be integrated circuits, such as : One or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated to form a chip.
  • the units that implement the steps in the above methods may be integrated and implemented in the form of a system-on-a-chip (SOC) for implementing the above method.
  • SOC system-on-a-chip
  • At least one processing element and a storage element may be integrated in the chip, and the method executed by the terminal is implemented by the processing element calling the stored program of the storage element; or at least one integrated circuit may be integrated in the chip for implementing the above terminal
  • the functions of some units are implemented by processing the component calling program, and the functions of some units are implemented by the form of an integrated circuit.
  • the above device for the terminal can include at least one processing element and interface circuit, wherein at least one processing element is used to execute the method performed by any of the terminals provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the terminal in a manner of calling the program stored by the storage element; or in a second manner: by combining the logic of the hardware in the processor element with the instruction
  • the method performs some or all of the steps performed by the terminal; of course, some or all of the steps performed by the terminal may also be performed in combination with the first mode and the second mode.
  • the processing elements herein, as described above, may be general purpose processors, such as a CPU, or may be one or more integrated circuits configured to implement the above methods, such as one or more ASICs, or one or more microprocessors.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present application. Used to implement the operation of the network device in the above embodiment.
  • the network device includes an antenna 211, a radio frequency device 212, and a baseband device 213.
  • the antenna 211 is connected to the radio frequency device 212.
  • the radio frequency device 212 receives the information transmitted by the terminal through the antenna 211, and transmits the information transmitted by the terminal to the baseband device 213 for processing.
  • the baseband device 213 processes the information of the terminal and sends it to the radio frequency device 212.
  • the radio frequency device 212 processes the information of the terminal and sends it to the terminal via the antenna 211.
  • Baseband device 213 may include one or more processing elements 2131, including, for example, a master CPU and other integrated circuits.
  • the baseband device 213 may further include a storage element 2132 for storing programs and data, and an interface circuit 2133 for interacting with the radio frequency device 212, such as a common public wireless interface (common public) Radio interface, CPRI).
  • the above device for the network device may be located in the baseband device 213.
  • the above device for the network device may be a chip on the baseband device 213, the chip including at least one processing element and interface circuit, wherein the processing element is used to execute the above network
  • the unit of the network device implementing the various steps in the above method may be implemented in the form of a processing component scheduler, for example, the apparatus for the network device includes a processing component and a storage component, and the processing component invokes a program stored by the storage component to The method performed by the network device in the above method embodiment is performed.
  • the storage element may be a storage element on which the processing element is on the same chip, that is, an on-chip storage element, or a storage element on a different chip than the processing element, that is, an off-chip storage element.
  • the unit of the network device implementing the various steps in the above method may be configured as one or more processing elements, and the processing elements are disposed on the baseband device, where the processing element may be an integrated circuit, for example: Or a plurality of ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated to form a chip.
  • the units of the network device implementing the various steps in the above method may be integrated and implemented in the form of a system-on-a-chip (SOC), for example, the baseband device includes the SOC chip for implementing the above method.
  • SOC system-on-a-chip
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing component and a storage component may be integrated in the chip, and the method executed by the above network device may be implemented in the form of a stored procedure in which the processing component invokes the storage component; or, at least one integrated circuit may be integrated in the chip to implement the above network.
  • the method performed by the device; or, in combination with the above implementation manner, the functions of some units are implemented by the processing component calling program, and the functions of some units are implemented by the form of an integrated circuit.
  • the above device for the network device can include at least one processing element and interface circuit, wherein at least one processing element is used to perform the method performed by any of the network devices provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the network device in a first manner: by calling a program stored by the storage element; or in a second manner: by combining the instructions through hardware integrated logic in the processor element
  • the method performs some or all of the steps performed by the network device; of course, some or all of the steps performed by the above network device may also be performed in combination with the first mode and the second mode.
  • the processing elements herein, as described above, may be general purpose processors, such as a CPU, or may be one or more integrated circuits configured to implement the above methods, such as one or more ASICs, or one or more microprocessors.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • the embodiment of the present invention further provides a communication system, including the foregoing network device and one or more terminals.
  • the embodiment of the present application further provides an apparatus for uplink authorization, which is applied to a network device or a terminal, and includes at least one processing element (or chip) for performing the foregoing method embodiments.
  • the present application provides a program for uplink authorization that, when executed by a processor, is used to perform the methods of the above embodiments.
  • the application also provides a program product, such as a computer readable storage medium, including the program for the method of uplink authorization described above.
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用于上行授权的方法及装置,在应用该方法时,终端生成用于指示L2上行控制信息大小的缓存状态报告BSR,并在所述BSR的触发下发送第一信息,该第一信息用于请求上行授权,以使终端通知网络设备有L2上行控制信息需要传输。并且终端生成的BSR指示L2上行控制信息大小,网络设备接收终端发送的第一信息,分配上行授权时,可以使传输L2上行控制信息的调度资源依据L2上行控制信息大小确定。故采用本申请提供的用于上行授权的方法,可提高上行资源分配的合理性。

Description

一种用于上行授权的方法及装置
本申请要求在2018年02月13日提交中国专利局、申请号为201810150992.4、发明名称为“一种用于上行授权的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种用于上行授权的方法及装置。
背景技术
随着通信技术的发展,越来越多的终端需要接入到无线网络,且越来越多的业务需要高速率的保证。这些对网络提出了更高吞吐量的需求。为了满足这种需求,一种简单的方法是增加无线网络带宽。低频段的无线资源有限,而高频段的无线资源丰富,所以业界考虑利用高频段的无线资源传输业务。
高频段的无线传播有其局限性,例如衰减快,所以传输范围比较小。另外,高频段的传输信号的质量更容易受到外界影响,比如当信号传输方向被物体遮挡时,则信号质量下降更严重。因此,引入了高低频联合组网的方式,在该组网方式下,现有的上行资源分配过程,或称为上行授权过程,可能会存在资源分配不合理的问题。
发明内容
本申请实施例提供一种用于上行授权的方法及装置,以期提高上行资源分配的合理性。
第一方面,本申请提供一种用于上行授权的方法,该方法可以应用于终端,或者也可以应用于终端内部的芯片。在该方法中,生成用于指示L2上行控制信息大小的BSR,在该BSR的触发下发生用于请求上行授权的第一信息。
第二方面,本申请提供一种用于上行授权的方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。在该方法中,接收用于请求上行授权的第一信息,根据所述第一信息,分配上行授权。其中,第一信息由对端(例如终端或终端内部的芯片)在BSR触发下所发送,所述BSR用于指示L2上行控制信息的大小。
第三方面,本申请提供一种用于上行授权的装置,包括:包括用于执行以上第一方面或第二方面各个步骤的单元或手段(means)。
第四方面,本申请提供一种用于上行授权的装置,包括至少一个处理器和存储器,所述至少一个处理器用于执行以上第一方面或第二方面提供的方法。
第五方面,本申请提供一种用于上行授权的装置,包括至少一个处理器和接口电路,所述至少一个处理器用于执行以上第一方面或第二方面提供的方法。
第六方面,本申请提供一种用于上行授权的程序,该程序在被处理器执行时用于执行以上第一方面或第二方面的方法。
第七方面,提供一种程序产品,例如计算机可读存储介质,包括第六方面的程序。
可见,在以上各个方面,可针对L2上行控制信息生成BSR。若网络设备通过消息通知在不同的无线传输链路上传输L2控制信息和L2数据内容场景下(例如通过低频无线资源传输L2上行控制信息,通过高频无线资源传输L2数据内容),则当终端识别出L2上行控制信息需要进行上行传输时,可触发上报指示L2上行控制信息大小的BSR。此种方式,可以使得网络设备确定L2上行控制信息的大小,从而在专用于传输L2上行控制信息的传输链路分配对应L2上行控制信息的大小的上行授权,可避免分配过多的上行授权造成资源浪费,提高业务传输性能。
在以上各个方面中,L2上行控制信息可以是以下控制信息中的至少一项:SDAP层产生的控制信息、PDCP层产生的控制信息、RLC层产生的控制信息、MAC层产生的控制信息等。
一种可能的设计中,第一信息可以是包括指示L2上行控制信息大小的BSR的数据单元,该包括指示L2上行控制信息大小的BSR的数据单元可以是MAC数据单元,例如BSR MAC CE。第一信息为包括指示L2上行控制信息大小的BSR的数据单元时,请求的上行授权可以是用于传输BSR所指示大小的L2上行控制信息的上行授权。
另一种可能的设计中,本申请中涉及的第一信息可以是SR,该SR可用于请求获取传输指示L2上行控制信息大小的BSR的上行授权。其中,SR可以是PUCCH或者PRACH。第一信息为SR(比如PUCCH或者PRACH)时,可调度传输指示L2上行控制信息大小BSR的上行授权资源,或者先调度传输终端MAC CE的上行授权资源,之后再调度传输指示L2上行控制信息大小BSR的上行授权资源。
又一种可能的设计中,本申请中可由L2上行控制信息触发终端生成指示L2上行控制信息大小的BSR。例如,当终端识别出有L2上行控制信息需要进行上行传输时,可触发终端生成指示L2上行控制信息大小的BSR,进而可区分L2控制信息和L2数据内容,并针对L2上行控制信息生成BSR。
其中,终端可通过识别高层协议层的数据单元包头中用于指示控制PDU的标识,识别各种数据单元的类型来确定L2上行控制信息。或者终端也可通过高层协议层发送的用于指示L2上行控制信息的指示信息确定L2上行控制信息。
又一种可能的设计中,本申请中可通过指示信息指示针对L2上行控制信息生成BSR。
其中,针对L2上行控制信息生成BSR也可以理解为通过专用于传输控制信息的传输链路传输L2上行控制信息,或者生成指示L2上行控制信息大小的BSR,或者在BSR的触发下发送指示L2上行控制信息大小的BSR或SR(比如PUCCH或者PRACH),或者终端区分控制PDU和数据PDU通知网络设备在专用于传输控制信息的传输链路上存在需要传输的L2上行控制信息。
其中,该指示信息可以是指示信元。该指示信元可以是RRC信令、层2(MAC CE)、物理层信令等。或者该指示信息也可以是配置信息,该配置信息用于配置传输第一信息的资源。其中,传输第一信息的资源可以是小区资源,载波资源,TRP资源,波束(beam)资源,和信道资源(例如,逻辑信道或物理信道)中的至少一项。
一种可能的示例中,本申请中网络设备可以通过RRC信令等指示信息指示终端对PDCP层产生的PDCP Control PDU在专用的传输控制信息的传输链路上进行传输,例如可以指定PDCP Control PDU在哪个CG或者载波中传输。终端收到网络设备的指示消息之后,若终端的PDCP实体关联到多个RLC实体时,则可按照指示信息中的具体指示将PDCP  Control PDU传递到指定的CG或载波对应的RLC实体中。
又一种可能的设计中,本申请中可设置用于标识指示L2上行控制信息大小的BSR的标识信息,以区分指示L2上行控制信息大小的BSR。该标识信息可以由网络设备发送给终端,终端接收该标识信息,可以确定指示L2上行控制信息大小的BSR。
其中,上述涉及的标识信息可以是逻辑信道组标识。
一种可能的实施方式中,本申请中可专门定义一个逻辑信道和该逻辑信道所属的逻辑信道组用于传输L2上行控制信息,并可以将该专门定义的逻辑信道的逻辑信道号作为标识信息,以降低对原有协议的更改。在BSR的MAC CE中也可以用该逻辑信道对应的逻辑信道组来指示L2上行控制信道大小。在该专用于传输携带指示L2上行控制信息大小的BSR的MAC CE的LCG中无需携带其它非控制信息的LCG对应的待传输数据大小,故可直接根据该LCG中的数据大小确定BSR指示的L2上行控制信息大小。
附图说明
图1为本申请涉及的通信系统架构图;
图2为一种网络架构示意图;
图3为另一种网络架构示意图;
图4为本申请实施例提供的一种用于上行授权的方法流程图;
图5为本申请实施例提供的另一种用于上行授权的方法流程图;
图6为本申请实施例中涉及的一种BSR格式示意图;
图7为本申请实施例中涉及的另一种BSR格式示意图;
图8A为本申请实施例涉及的一种终端通过多载波进行通信的场景示意图;
图8B为本申请实施例涉及的一种终端通过单载波进行通信的场景示意图;
图9为本申请实施例提供的一种用于上行授权的装置示意图;
图10为本申请实施例提供的另一种用于上行授权的装置示意图;
图11为本申请实施例提供的一种终端示意图;
图12为本申请实施例提供的一种网络设备示意图。
具体实施方式
以下,将对本申请实施例中的技术方案进行描述。
首先,对本申请中的部分用语进行说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、网络设备,是无线网络中的设备,例如可以是将终端接入到无线网络的无线接入网(radio access network,RAN)节点,RAN节点也可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
3)、“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
4)、“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。“的(of)”,“相关的(relevant)”和“对应的(corresponding)”有时可以彼此替换,在不强调其区别时,其所要表达的含义是一致的。
请参考图1,其为本申请实施例提供的一种通信系统的示意图。如图1所示,终端130接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。该无线网络包括RAN110和核心网(CN)120,其中RAN110用于将终端130接入到无线网络,CN120用于对终端进行管理并提供与外网通信的网关。
请参考图2,其为本申请实施例提供的一种网络架构的示意图。如图2所示,该网络架构包括CN设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,在长期演进(Long Term Evolution,LTE)通信系统中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN设备和终端之间的通信遵循一定的协议层结构,该协议层结构例如包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。这些协议层的功能可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方 式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
请继续参考图3,相对于图2所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端,或者终端产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端或CU。以下实施例中如果涉及这种信令在DU和终端之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频发送的。
在以上实施例中CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
目前,在上行传输过程中,当终端有上行数据待发送时,终端130生成缓存状态报告(buffer status report,BSR),并在该BSR的触发下,向RAN节点110发送调度请求(scheduling request,SR)。RAN节点110根据该SR,向终端分配上行资源,终端在分配的上行资源上传输BSR,以告知RAN节点110终端缓存中的数据量大小,如此RAN节点便可以为终端分配合适大小的上行资源。此时终端缓存中的上行数据包括控制信息和业务数据,且数据量大小为这些上行数据的大小。
随着接入无线网络的终端日益增多,终端的业务类型也日益增多,有限的频谱资源已无法满足这种需求。因此新无线(New Radio,NR)(又称为5G)接入技术支持在3GHz以上的频谱工作。将高于3GHz的频段称为较高频段,将低于3GHz(包括3GHz)的频段称为较低频段。工作的频段越高,无线信号的路损越大。可见,较低频段的无线资源不足,较高频段的无线资源丰富,且较低频段的无线信道质量相对于较高频段的无线信道质量更好,因此可以利用高低频联合组网来互补,将对传输性能影响比较大的重要数据通过较低频段的载波传输,其它数据通过较高频段的载波传输。例如将控制信息通过较低频段的载波传输,将业务数据通过较高频段的频谱资源传输。
然而在现有上行资源分配(或称为上行授权)的过程中,终端并不区分控制信息和业务数据,而是将缓存中的这些上行数据作为一个整体来统计缓存中数据量的大小。因此,当RAN节点接收到BSR时,并不能区分BSR所指示的数据量中控制信息的数据量大小和业务数据的数据量大小,因此无法分配合适的较低频段资源和较高频段资源给终端,为了保证终端的上行传输,往往造成资源浪费。
有鉴于此,本申请实施例提供一种用于上行授权的方法,在该方法中,终端生成指示L2上行控制信息大小的BSR,并在该指示L2上行控制信息大小的BSR的触发下发送用于请求上行授权的信息,以使终端通知网络设备有L2上行控制信息需要传输。并且终端 生成的BSR指示L2上行控制信息大小,可以使传输L2上行控制信息的调度资源依据L2上行控制信息大小确定,可以减少调度资源的浪费,使上行资源分配较为合理。
本申请实施例以下结合附图对本申请涉及的用于上行授权的方法进行说明。
图4所示为本申请实施例提供的一种用于上行授权的方法实施流程图,参阅图4所示,该方法包括:
S101:终端生成用于指示L2上行控制信息大小的BSR。
本申请实施例中,L2,可称为层2(layer 2,L2)。在数据无线传输的过程中,终端和网络设备一般遵循数据传输协议层的分层模型。对于用户面而言,终端和网络设备的协议层可包括PDCP层、RLC层、MAC层和PHY层,在5G中,在PDCP层之上还可包括业务数据适配层(service data adaptation protocol,SDAP)。对于控制面而言,终端和网络设备的协议层由上至下分别为RRC层、PDCP层、RLC层、MAC层和PHY层。通常,PDCP层、RLC层和MAC层可统称为层2。若PDCP层之上还包括SDAP层,则L2中还包括SDAP层。其中,PDCP层可执行诸如安全性、头压缩、或加密之类的服务。PDCP层可以存在多个PDCP实体,每个实体承载一个无线承载(radio bearer,RB)的数据。PDCP层产生的协议数据单元(protocol data unit,PDU)分为数据PDU和控制PDU。PDCP层产生的数据PDU里的内容包括上层(比如无线资源控制(radio resource control,RRC)层或CN层)内容再增加一些PDCP的包头内容。PDCP层产生的控制PDU里的内容包括PDCP层产生的消息再增加一些PDCP的包头内容。RLC层执行诸如分段、重传等服务。RLC层可以存在多个RLC实体,每个RLC实体为每个PDCP实体提供服务。RLC层产生的PDU分为数据PDU和控制PDU。RLC层产生的数据PDU里的内容包括上层(比如PDCP层)内容,并且可能再增加一些RLC的包头内容。RLC层产生的控制PDU里的内容包括RLC层产生的消息再增加一些RLC的包头内容。MAC层对逻辑信道上的业务提供数据传输服务,执行诸如调度、混合自动重传请求(hybrid automatic repeat request,HARQ)的确认和否定服务。MAC层产生的PDU分为数据PDU和控制PDU。MAC层产生的数据PDU里的内容包括上层(比如RLC层)内容再增加一些MAC的包头内容。MAC层产生的控制PDU里的内容包括MAC层产生的消息再增加一些MAC的包头内容。另外PDCP层之上还可能包括SDAP层,该SDAP层主要功能是为核心网的不同业务质量数据流(Qos flow)的数据映射到不同无线承载(radio bearer,RB)的数据,该层也可能会产生自己的控制PDU。终端通过协议数据单元(protocol data unit,PDU)会话来接收/发送业务数据。每个PDU会话都会对应一个SDAP实体。
本申请实施例中,L2上行控制信息,可包括SDAP层产生的控制PDU、PDCP层产生的控制PDU、RLC产生的控制PDU和MAC层产生的控制PDU中的至少一项。PDCP层产生的控制PDU比如可包括PDCP状态报告(PDCP status report)用于反馈给对端,让对端确定哪些PDCP数据单元已经正确接收,哪些PDCP数据单元没有正确接收;或者包括稀疏的健壮性报头压缩协议反馈包(interspersed ROHC feedback packet)用于反馈PDCP中头压缩算法的一些状态。RLC层产生的控制PDU比如可包括状态(status)PDU用于反馈给对端,让对端确定哪些RLC数据单元已经正确接收,哪些RLC数据单元没有正确接收。MAC层产生的控制PDU比如可包括由网络设备产生的MAC控制元素(control element,CE),或由终端产生的MAC CE。网络设备产生的MAC CE例如可包括终端冲突解决标识控制元素(UE contention resolution identity MAC CE),定时调整命令控制元素 (timing advance command MAC CE),不连续接收命令控制元素(DRX command MAC CE),长不连续接收控制命令元素(long DRX command MAC CE),辅小区激活/去激活控制元素(scell activation/deactivation MAC CE),复制激活去激活控制元素(duplication activation/deactivation MAC CE)中的至少一种。由终端产生的MAC CE例如可包括缓存状态报告(buffer status report,BSR)MAC CE,小区无线网络临时标识控制元素(C-RNTI MAC CE),单实体功率余量控制元素(single entry PHR MAC CE),多实体功率余量控制元素(multiple entry PHR MAC CE)中的至少一种。其中,BSR MAC CE用于指示上行需要传输的数据量,以使网络设备确定终端有多少数据需要调度。C-RNTI MAC CE携带终端的标识C-RNTI,以使网络设备确定终端是哪个终端。single entry PHR MAC CE/multiple entry PHR MAC CE携带终端的功率余量,即终端在某次发送数据中还有多少剩余的功率,便于后续网络设备调度该终端时选择对应的调度格式(比如选择调制编码策略(modulation and coding scheme,MCS),或秩(Rank)等)。
本申请实施例中,触发终端生成指示L2上行控制信息大小的BSR的方式可以有多种,不申请不做限制,仅举例描述如下。比如:当某个LCG的一个LCH有新数据到达,且该LCH的优先级比其他任何LCG中已有数据的LCH的优先级高或者该LCG中的其他LCH都没有数据需要传输,则触发终端生成指示L2上行控制信息大小的BSR,该新数据包括L2上行控制信息。又比如:当某个LCG的一个LCH有新L2上行控制信息需要传输,且该LCH的优先级比其他任何LCG中已有L2上行控制信息的LCH的优先级高或者该LCG中的其他LCH都没有L2上行控制信息需要传输,则触发终端生成指示L2上行控制信息大小的BSR。又比如,当终端的MAC层触发了MAC CE(比如终端检测到可用的服务波束(beam)的信号质量都下降到一定程度,终端触发MAC CE通知网络设备最新的可用的beam集合,同时可能还携带这些beam的信号质量)时,为了发送这些MAC CE,终端可以触发生成BSR。再如,网络设备也可能配置一个周期性触发BSR对应的周期取值,终端周期性触发生成BSR。或者,网络设备可以配置一个BSR重传定时器,如果该定时器超时且至少有L2上行控制信息需要传输,则终端触发生成BSR。或者当终端的当前上行授权中有剩余的需要填充的比特大小大于或等于BSR MAC CE和其包头的大小之和,则也可以触发生成BSR。本申请实施例中的波束是可指由至少一个天线端口发射或者接收无线信号时,形成的空间具有一定方向和形状的无线电波,可见,波束具有一定的覆盖范围。构成波束的方法可以包括对至少一个天线端口所发射或者接收数据进行幅度和/或相位的加权来构成波束,也可以通过其他方法,例如调整天线单元的相关参数,来构成波束。波束还可以是通过网络侧发送的一些标识来指示的,比如通过同步信道、广播信道来指示的一种标识,本发明实施例对此不做特别限定。
若L2上行控制信息无法正确被接收,则会影响数据的传输性能。例如,PDCP控制PDU中status report如果没正确接收到,则会导致网络设备对一些已经发送的数据PDU进行重传。interspersed ROHC feedback packet对网络侧的头解压算法比较重要,如果没有正确接收,会影响头解压算法性能。RLC控制PDU携带的正确应答(ACK)/否定应答(NACK)信息,如果没有被网络设备及时收到,则发送窗口无法及时更新,会影响业务性能。BSR MAC CE携带的是上行需要传输的数据大小,PHR MAC CE携带的是终端的功率余量,如果网络设备无法准确知道这些,则会影响业务传输性能。
进一步的,终端有L2上行控制信息待传输时,向网络设备上报BSR,以使网络设备 调度传输资源。目前,终端向网络设备上报的BSR包括控制信息和数据在内的全部数据的大小。终端若在传输控制信息的传输链路传输L2上行控制信息,该传输控制信息的传输链路的资源由网络设备根据终端上报的BSR所指示上行数据总量进行调度,该调度的传输资源多于传输L2上行控制信息的资源,故存在调度的传输资源浪费的问题。
本申请实施例中一种可能的示例中,可由L2上行控制信息触发终端生成指示L2上行控制信息大小的BSR。例如,当终端识别出有L2上行控制信息需要进行上行传输时,可触发终端生成指示L2上行控制信息大小的BSR。相对现有技术的上行授权方式,可区分控制信息和数据,并针对L2上行控制信息生成BSR。网络设备可能通过消息通知终端在不同的无线传输链路上传输L2控制信息(比如L2控制PDU)和L2业务数据(比如L2数据PDU),终端在这种场景下,当终端识别出L2上行控制信息需要进行上行传输时,触发上报指示L2上行控制信息大小的BSR,可以使得网络设备确定L2上行控制信息的大小,从而在传输控制信息的传输链路分配对应L2上行控制信息的大小的上行授权,减少分配过多的上行授权造成资源浪费。
一种可能的示例中,终端可以通过识别高层协议层的数据单元包头中用于指示控制PDU的标识,识别各种数据单元的类型来确定L2上行控制信息。例如,终端的MAC实体接收到RLC层传送来的PDU时,可以根据RLC的包头内容或PDCP的包头内容,识别出PDCP层产生的控制PDU。或者,终端的MAC实体接收到RLC层传送来的数据单元时,可以根据RLC的包头内容识别出RLC层产生的控制PDU。例如RLC层或PDCP层产生的PDU的包头中通过控制/数据(D/C)指示PDU为数据PDU还是控制PDU。MAC实体根据RLC层传送来的PDU的包头中的D/C,识别出该PDU否为RLC层产生的控制PDU。若D/C的取值为0则可确定该PDU为RLC层产生的控制PDU。若D/C的取值为1则可确定该PDU为RLC层产生的数据PDU。或者,可以根据PDCP层产生的PDU的包头中的D/C取值,识别出该PDU否为PDCP层产生的控制PDU。若D/C的取值为0则可确定该PDU为PDCP层产生的控制PDU。可以理解的是,也可以结合各层的包头内容来识别是否为控制PDU,比如,MAC层可以先根据RLC层传送的PDU中RLC的包头内容是否为RLC数据PDU,再根据该RLC数据PDU中携带的PDCP层的包头看是否为PDCP层控制PDU。
另一种可能的示例中,可以通过高层协议层发送的用于指示L2上行控制信息的指示信息确定L2上行控制信息。该用于指示L2上行控制信息的指示信息可以是高层协议层在给低层协议层传输PDU时额外新增的指示信息,例如新增的信元,该新增的信元用于指示该PDU是否为控制PDU。低层协议层收到该用于指示PDU是否为控制PDU的指示信息后,可确定接收到的PDU是否为控制PDU,但低层协议层并不向对端传输该用于指示PDU是否为控制PDU的指示信息。例如,PDCP实体或RLC实体产生的PDU为控制PDU时,可向MAC实体发送用于指示PDU为控制PDU的指示信息,MAC实体接收到该指示PDU为控制PDU的指示信息后,可识别出PDCP实体或RLC实体产生的控制PDU。
可以理解的是,本申请实施例中用于指示L2上行控制信息的指示信息可以是单独的指示信息,也可以是携带在高层协议层向低层协议层传输的PDU中。
进一步可以理解的是,本申请实施例中触发BSR生成可以采用现有技术,也可以由L2上行控制信息触发,当然也可以结合现有技术和本申请涉及的L2上行控制信息触发方式触发BSR生成。
进一步的,本申请实施例中涉及的L2上行控制信息可以是以下控制信息中的至少一项:SDAP层产生的控制信息、PDCP层产生的控制信息、RLC层产生的控制信息、MAC层产生的控制信息等。
S102:终端在用于指示L2上行控制信息大小的BSR触发下发送第一信息,以请求上行授权。
在MAC层的逻辑信道优先级处理中可以为每个逻辑信道引入传输规则,即可以限制每个逻辑信道可以对应传输的子载波间隔集合、数据传输最大持续时间、以及可以在哪些小区进行传输。网络设备调度上行数据时,会给终端配置对应的上行授权,当逻辑信道的传输规则和上行授权匹配时,终端采用该上行授权发送该逻辑信道上的数据。上行授权中会包含对应的子载波间隔、数据传输持续时间、传输小区信息等中的一个或多个。本申请实施例中终端生成指示L2上行控制信息大小的BSR之后,可通过如下方式请求获取上行授权:
一种方式中,终端可确定是否存在有可用于传输指示L2上行控制信息大小的BSR的传输资源,该传输资源可以是已配置的传输L2上行控制信息的上行授权资源,也可以是其它数据传输时请求的上行授权资源,或者也可以是免授权资源(grant free)、半静态调度资源等。本申请实施例中可为指示L2上行控制信息大小的BSR设置相对其他数据较高的传输优先级,若存在有可用于传输指示L2上行控制信息大小的BSR的传输资源,则可在该确定的传输资源上传输指示L2上行控制信息大小的BSR,以请求获取用于传输BSR所指示大小的L2上行控制信息的上行授权。此种方式下,在BSR触发下发送的第一信息可以是包括指示L2上行控制信息大小的BSR的数据单元,该包括指示L2上行控制信息大小的BSR的数据单元可以是MAC数据单元,例如BSR MAC CE。可以理解的是BSR MAC CE中可以包括多个BSR,例如可以包括数据对应的BSR,也可以包括指示L2上行控制信息大小的BSR。第一信息为包括指示L2上行控制信息大小的BSR的数据单元时,请求的上行授权可以是用于传输BSR所指示大小的L2上行控制信息的上行授权。
可能的示例中,若确定的传输资源中存在已配置的传输L2上行控制信息的资源,已配置的传输L2上行控制信息的资源可以是小区,载波,逻辑信道,物理信道,传输接收点或波束。若该已配置的传输L2上行控制信息的资源存在上行授权,则终端可在该已配置的传输资源上发送包括指示L2上行控制信息大小的BSR的数据单元,例如可在该已配置的传输资源上发送BSR MAC CE,该BSR MAC CE中携带指示L2上行控制信息大小的BSR。换言之,若存在已配置的传输L2上行控制信息的资源,且该已配置的传输资源存在上行授权,终端在BSR触发下发送的第一信息可以是包括指示L2上行控制信息大小的BSR的数据单元,该包括指示L2上行控制信息大小的BSR的数据单元可以是MAC数据单元,例如BSR MAC CE。可以理解的是BSR MAC CE中可以包括多个BSR,例如可以包括数据对应的BSR,也可以包括指示L2上行控制信息大小的BSR。
另一种示例中,若确定的传输资源中存在已配置的传输L2上行控制信息的资源,但该已配置的传输L2上行控制信息的资源并没有上行授权,则终端可发送调度请求(scheduling request,SR),以请求获取用于传输指示L2上行控制信息大小的BSR的上行授权。换言之,本申请实施例中终端在指示L2上行控制信息大小的BSR的触发下发送的第一信息可以是SR,该SR用于请求获取传输指示L2上行控制信息大小的BSR的上行授权。
具体的,本申请实施例中终端发送SR之前,网络设备可通过RRC消息通知终端SR资源,例如在RRC连接建立或重配过程中,通知终端SR资源。本申请实施例中若终端确定已配置的传输L2上行控制信息的传输资源存在可用的SR资源,该可用的SR资源可以是已配置的传输L2上行控制信息的SR资源,则可在该可用的SR资源上发送SR。网络设备接收到终端发送的SR后,可为终端调度用于传输BSR的资源。一种可能的示例中,若网络设备为终端调度的用于传输BSR的资源满足传输指示L2上行控制信息大小的BSR,但不能满足传输所述BSR指示大小的L2上行控制信息,则终端在该调度的用于传输BSR的资源上发送指示L2上行控制信息大小的BSR,以请求获取用于传输BSR所指示大小的L2上行控制信息的上行授权。另一种可能的示例中,若网络设备为终端调度的用于传输BSR的资源满足传输所述BSR指示大小的L2上行控制信息,但不满足再额外传输指示L2上行控制信息大小的BSR(包括其对应的包头大小),则终端可不发送指示L2上行控制信息大小的BSR,而在该调度的用于传输BSR的资源上直接发送BSR所指示大小的L2上行控制信息。
本申请的又一种实施方式中,SR可以通过PUCCH或者随机接入信道(physical random access channel,PRACH)发送,且可以发送一个具体的信元,或者可以通过在PUCCH或PRACH的资源上发送一定的能量或序列,来指示终端需要上行授权。若终端确定已配置的传输L2上行控制信息的传输资源存在可用发送SR的PUCCH资源,则终端在该PUCCH资源上进行发送,可以发送一个具体的信元,也可以仅仅是一定能量的信息。若终端确定已配置的传输L2上行控制信息的传输资源不存在可用发送SR的PUCCH资源,则终端发起随机接入过程(random access procedure,RAP)。此种情况下,终端在BSR触发下发送的第一信息可以是随机接入信道(physical random access channel,PRACH)上的传输,以获取上行授权,在该上行授权中传输L2上行控制信息。网络设备可以为终端配置该终端专用的PRACH资源(这里的PRACH资源是指发送PRACH的时域资源,频域资源和码域资源,其中码域即指PRACH对应的随机接入前导码random access preamble),也可能不为终端配置专用的PRACH资源。可见,当第一信息为SR时,发送第一信息,可以包括PUCCH传输或PRACH传输。PUCCH传输可以在一个指定的资源位置以一定能量发送信息,不限制信息的具体形式或内容,网络设备检测到这个位置有能量,就认为是SR。PRACH传输的可以是一个序列,网络设备检测到序列的话,就认为终端发起了随机接入过程,而后会给终端分配上行授权。一种示例中,终端发送PRACH之后,网络设备会给终端发送一个响应,该响应中携带网络设备给终端分配的上行授权和对应的preamble。终端接收到该消息时,首先看其中的preamble是否是自己上次发送的,如果是就使用其中的上行授权发送上行数据。如果前面终端发送的preamble是这个终端专用的(即不会和其他终端冲突),则终端可以利用这个上行授权来发送上行控制信息和/或BSR(如果是只发送BSR,网络设备再收到这个BSR之后,给终端再分配上行授权,终端再利用上行授权发送上行控制信息)。如果前面终端发送的preamble不是这个终端专用的(即可能会和其他终端冲突),则终端收到这个上行授权之后,终端会发送一个冲突解决消息(该消息会携带该终端的具体标识,比如该消息可以为C-RNTI MAC CE,其中携带小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)来标识该终端等)给网络设备。终端可能把BSR和上行控制信息和这个消息同时发送给网络设备,也可能是网络设备在收到这个冲突解决消息之后,给终端再分配一个上行授权,终端利用这个上行授权发送上行控制信息和/或BSR (如果是只发送BSR,网络设备再收到这个BSR之后,给终端再分配上行授权,终端再利用上行授权发送上行控制信息)。
另一种示例中,终端发送PRACH之后,网络设备会给终端发送一个响应,该响应中携带了网络设备给终端分配的上行授权。比如终端发送PRACH之后,终端会在一个窗口内监听物理下行控制信道(Physical downlink control channel,PDCCH),该PDCCH采用终端的C-RNTI加扰,该PDCCH中携带了给UE分配的上行授权。当终端检测到对应的PDCCH时,终端利用这个上行授权发送上行控制信息和/或BSR。
在高低频CA或DC组网场景中,当终端有L2上行控制信息需要传输时,终端可在低频发起SR/随机接入过程。
S103:网络设备接收终端发送的第一信息,并为终端调度上行授权资源。
本申请实施例中网络设备接收的第一信息可以是包括指示L2上行控制信息大小BSR的数据单元(例如BSR MAC CE),或者也可以是SR。网络设备接收的第一信息为包括指示L2上行控制信息大小BSR的数据单元时,可调度传输BSR指示大小的L2上行控制信息的上行授权资源。网络设备接收的第一信息为SR时,可调度传输指示L2上行控制信息大小BSR的上行授权资源,或者先调度传输C-RNTI MAC CE的上行授权资源,之后再调度传输指示L2上行控制信息大小BSR的上行授权资源。
S104:终端接收网络设备调度的上行授权资源,并在该上行授权资源上发送指示L2上行控制信息大小的BSR,或者发送BSR指示大小的L2上行控制信息,或者发送指示L2上行控制信息大小BSR以及BSR指示大小的L2上行控制信息。
本申请实施例中,终端具体发送指示L2上行控制信息大小BSR,还是发送BSR指示大小的L2上行控制信息,或者两者都发送,可参阅上述实施例的描述,在此不再赘述。此外,控制信息又可以称为控制消息,或控制信令,在此不做限制。
本申请实施例提供的上述发送L2上行控制信息的方法,终端生成指示L2上行控制信息大小的BSR,并在该指示L2上行控制信息大小的BSR的触发下发送用于请求上行授权的第一信息,以使终端通知网络设备有L2上行控制信息需要传输,网络设备为L2上行控制信息调度上行授权进行L2上行控制信息的传输。并且终端生成的BSR指示L2上行控制信息大小,可以使传输L2上行控制信息的调度资源依据L2上行控制信息大小确定,减少了调度资源的浪费。
由于终端在发送L2上行控制信息时,可以有多种实现方式,例如采用传统的方式:采用和数据在相同的传输链路上发送,也可以通过专用于传输控制信息的传输链路,通过专用于传输控制信息的传输链路传输L2上行控制信息时,可选择采用传统上报指示上行数据总量BSR的方式。终端在发送L2上行控制信息时,也可选择采用本申请实施例中涉及的上报指示L2上行控制信息大小的BSR的方式进行传输。本申请实施例中,为使终端选择采用本申请实施例涉及的L2上行控制信息传输方式发送上行控制信息,可由网络设备向终端发送指示终端采用本申请实施例涉及的L2上行控制信息传输方式发送上行控制信息的指示信息,具体实现可如图5所示,该方法包括:
S201:终端接收指示信息,该指示信息用于指示终端采用本申请上述实施例中涉及的针对L2上行控制信息生成指示L2上行控制信息大小的BSR,并在该BSR触发下发送第一信息的实施方式。
本申请实施例中,可由网络设备向终端发送指示信息。网络设备向终端发送的该指示 信息可以是指示信元,该指示信元用于指示终端采用传统方式发送L2上行控制信息还是采用本申请实施例涉及的方法传输L2上行控制信息。该指示信元可以是RRC信令、层2(MAC CE)信令、或物理层信令等,具体不限定。
可选的,网络设备也可以不发送该指示信息,由终端默认采用本申请上述实施例中涉及的针对L2上行控制信息生成指示L2上行控制信息大小的BSR,并在该BSR触发下发送第一信息的实施方式。
可以理解的是,本申请实施例涉及的传输L2上行控制信息的方法可以有以下几种理解中的至少一种:终端通过专用于传输控制信息的传输链路传输L2上行控制信息,终端针对L2上行控制信息生成BSR,终端生成指示L2上行控制信息大小的BSR,终端在BSR的触发下发送指示L2上行控制信息大小的BSR或SR,终端区分控制PDU和数据PDU通知网络设备在专用于传输控制信息的传输链路上存在需要传输的L2上行控制信息。专用于传输控制信息的传输链路是指网络设备为终端配置的用于传输上行控制信息的链路,但并不限制该链路不可以用于传输其它信息。
本申请实施例中网络设备可通过配置发送L2上行控制信息的资源。
本申请实施例中,终端针对L2上行控制信息生成指示L2上行控制信息大小的BSR,并在该BSR触发下发送第一信息时,终端接收的指示信息可以是专用于传输L2上行控制信息的资源的配置信息,或者可以是用于配置终端传输第一信息的资源的配置信息。其中,配置信息中涉及的资源可以是网络设备指定终端发送L2上行控制信息的小区资源,载波资源,TRP资源,波束(beam)资源,和信道资源(例如,逻辑信道或物理信道)中的至少一项。其中,beam可以表现为SS/PBCH block,每个SS/PBCH block都对应一个标号。
比如在高低频CA或DC组网场景中,网络设备指定终端在低频载波中传输L2上行控制信息。其中,配置信息中可包括专门用于通知L2控制信息的SR配置(比如PUCCH或者RACH配置),终端利用该SR配置来通知网络设备终端有L2上行控制信息需要传输。该SR配置可能是在和数据传输不同的载波/TRP/beam上的配置。这里的SR配置是指在不同带宽部分(bandwidth part,BWP)或小区发送SR的上行物理控制信道(physical upwnlink control channel,PUCCH)资源或资源集合或者PRACH资源或资源集合。
终端若接收到该专用于传输控制信息的传输链路配置信息,则可确定需要采用本申请实施例涉及的方法传输L2上行控制信息,具体执行过程可参阅图5中S202、S203、S204和S205的执行步骤。其中,S202、S203、S204和S205的执行过程与S101、S102、S103和S104的执行步骤类似,具体可参阅上述实施例的描述,在此不再赘述。
本申请实施例以下结合实际应用,对上述实施例中涉及的L2上行控制信息的具体实现进行举例说明。
首先,本申请实施例中以L2上行控制信息包括PDCP层产生的PDCP控制PDU,网络设备指示终端对PDCP层产生的PDCP控制PDU在指定的CG或者载波中传输为例进行说明。
本申请实施例中,网络设备可以通过RRC消息等指示信息指示终端对PDCP层产生的PDCP控制PDU在专用的传输控制信息的传输链路上进行传输,例如可以指定PDCP控制PDU在哪个小区组(CG)或者载波中传输。终端收到网络设备的指示信息之后,若终端的PDCP实体关联到多个RLC实体时,则可按照指示信息中的具体指示将PDCP控制PDU传递到指定的CG或载波对应的RLC实体中。
进一步的,本申请实施例中,在计算BSR大小时,对于PDCP控制PDU的大小可以只计算到RRC指定的RLC实体对应的MAC层的BSR中。比如高低频CA或DC组网场景中,网络设备指定PDCP控制PDU在低频载波所属的CG中传输。这里假设在DC场景下,低频载波属于主小区组(master cell group,MCG),高频载波属于辅小区组(secondary cell group,SCG)。终端的PDCP层在传递PDCP控制PDU时,把PDCP控制PDU传递到MCG中,无需传递到SCG中。在MCG中的MAC层触发BSR时,需要把PDCP层中的PDCP控制PDU计算在BSR中;在SCG中的MAC层触发BSR时,无需把PDCP层中的PDCP控制PDU计算在BSR中。
控制信息通常,BSR所指示的数据大小,可通过MAC CE携带,但是针对某个逻辑信道组(Logical Channel Group,LCG),具有多个业务对应的多个逻辑信道,不同的逻辑信道可以归属到对应的LCG中,同时MAC层也会产生对应的控制PDU,即,既有MAC PDU,又有MAC CE。故,可通过MAC子头中的逻辑信道标识(logical channel identity,LCID)的取值区分逻辑信道。同时有不同类型的BSR(比如由于传输大小的限制,终端只能发送比较小的BSR),所以还区分不同类型的BSR。MAC子头中的LCID可通过6个比特位表示,其中,LCID对应的取值为000001-100000可用于标识逻辑信道,可以通过111011、111100、111110以及111101标识不同的BSR。
另外为了反映不同的逻辑信道组对应的待传输数据大小,在BSR中携带不同逻辑信道组分别对应的待传输数据大小。可通过定义不同的逻辑信道组(例如逻辑信道组0~逻辑信道组7)标识指示其逻辑信道组对应的待传输数据的大小。其中,通过逻辑信道组标识指示BSR大小的BSR的格式可参阅图6所示或图7所示。LCG0~LCG7对应的比特分别代表该MAC CE中是否携带了对应LCG的缓冲数据大小。0代表MAC CE中不携带该LCG的待传输数据大小,1代表MAC CE中携带该LCG的待传输数据大小。LCG ID代表该LCG对应的标识。
本申请实施例中为区分指示L2上行控制信息大小的BSR,可以为只计算L2上行控制信息大小的BSR设置标识信息,此外,网络设备向终端发送该标识信息,该标识信息用于标识BSR为用于指示L2上行控制信息的大小的BSR。该标识信息为LCH标识或LCG标识。网络设备也可以不向终端配置该标识信息,而是预设好用于标识用于指示L2上行控制信息的大小的BSR的LCH标识或LCG标识。当网络设备向终端发送给标识信息时,以上指示信息可以为该LCH标识或LCG标识。
在一种实现中,可以对携带指示L2上行控制信息大小BSR的MAC CE对应的逻辑信道设置逻辑信道标识,例如可设置区别于其它逻辑信道号的特殊取值的逻辑信道号,以便对携带指示L2上行控制信息大小的BSR的MAC CE对应的逻辑信道进行标识。其中,用于标识指示L2上行控制信息大小的BSR的标识信息可由网络设备发送给终端,终端接收来自网络设备发送的标识信息后,可确定指示L2上行控制信息大小的BSR。或者,可以设置逻辑信道组标识来指示携带指示L2上行控制信息大小BSR的MAC CE,例如可设置区别于其它逻辑信道组的特殊取值的逻辑信道组标识,以便指示该MAC CE携带指示L2上行控制信息大小的BSR。
又一种可能的实施方式中,本申请实施例中可定义一个LCH和该LCH所属的LCG用于传输L2上行控制信息,以降低对原有协议的更改。本申请实施例中当定义一个用于传输L2上行控制信息LCH时,该LCH的逻辑信道号可以作为用于标识只计算L2上行控 制信息大小的BSR的标识信息。或者该LCH所属的LCG标识可以作为用于标识只计算L2上行控制信息大小的BSR,此时,可以在BSR的MAC CE中用该LCH对应的LCG的标识来指示该BSR用于指示L2上行控制信息的大小。在该用于传输携带指示L2上行控制信息大小的BSR的MAC CE的LCG中无需携带其它非控制信息的LCG对应的待传输数据大小,故可直接根据该LCG中的数据大小确定BSR指示的L2上行控制信息大小。
本申请实施例中可以为该定义的LCH设定对应的传输规则,该传输规则可包括传输的子载波间隔集合、数据传输最大持续时间、以及可以在哪些小区进行传输中的至少一个。进一步的,还可以配置该LCH对应的SR配置。可以理解的是,该SR配置是指在不同带宽部分BWP或小区发送SR的PUCCH资源或资源集合或者PRACH资源或资源集合。
可以理解的是,本申请实施例提供的上述用于上行授权的方法,可应用于多载波场景中,例如应用于载波聚合(carrier aggregation,CA)或双连接(dual connectivity,DC)场景,终端可以利用多个载波与RAN节点之间进行通信。这些载波包括较低频段的载波和较高频段的载波。请参考图8A,其为本申请实施例提供的一种多载波场景的示意图。如图8A所示,终端810可以通过网络设备820和网络设备830为终端配置的多个载波与网络侧通信,在CA场景中,该多个载波公用相同的PDCP实体,相同的RLC实体,和相同的MAC实体。在DC场景中,多个载波间的PDCP实体,RLC实体,或MAC实体可以不同。
此外,本申请实施例提供的上述用于上行授权的方法,也可以用于单载波场景。在单载波场景中,也可以将该载波的控制信息和业务数据分开传输。例如,请参考图8B,其为本申请实施例提供的一种单载波场景的示意图。如图8B所示,小区1(Cell1)的控制信息和业务数据可以分别通过不同的TRP,TRP1和TRP2进行传输。不申请不做限制,可以通过其他方式实现业务数据和控制信息的分开传输,在分开传输时,采用以上方法可以在单载波场景下提高资源分配的合理性。
上述主要从终端和网络设备交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本发明中所公开的实施例描述的各示例的单元及算法步骤,本发明实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的技术方案的范围。
本发明实施例可以根据上述方法示例对终端和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
基于相同的发明构思,本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中终端所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中网络设备所执行的各个步骤的单元(或手段)。
一种可能的实施方式中,本申请实施例提供一种用于上行授权的装置100。该用于上行授权的装置100可以应用于终端。图9所示为本申请实施例提供的一种用于上行授权的装置100的结构示意图,参阅图9所示,该用于上行授权的装置100包括处理单元101和发送单元102。其中,处理单元101用于生成指示L2上行控制信息大小的BSR。发送单 元102用于在所述处理单元101生成的BSR的触发下,发送第一信息,所述第一信息用于请求上行授权。
另一种可能的实施方式中,本申请实施例还提供一种用于上行授权的装置200,该用于上行授权的装置200可以应用于网络设备。图10所示为本申请实施例提供的一种用于上行授权的装置200的结构示意图,参阅图10所示,该用于上行授权的装置200包括接收单元201和处理单元202。其中,接收单元201用于接收第一信息。处理单元202用于根据所述第一信息,分配上行授权。
其中,上述涉及的第一信息可以为包括指示L2上行控制信息大小的BSR的数据单元。或者第一信息可以为SR,该SR或者所述第一信息为随机接入请求消息。
具体的,包括所述BSR的数据单元包括MAC CE。
其中,上述涉及的L2上行控制信息为分组数据聚合PDCP层控制信息,无线链路控制RLC层控制信息,媒体接入控制MAC层控制信息中的至少一种。
进一步的,本申请实施例中L2上行控制信息触发所述BSR的生成。
更进一步的,用于上行授权的装置200还包括发送单元203,发送单元203用于发送指示信息,该指示信息用于指示针对L2上行控制信息生成BSR。用于上行授权的装置100还包括接收单元103,其中,所述接收单元103用于接收指示信息,所述指示信息用于指示针对L2上行控制信息生成BSR。
其中,所述指示信息为指示信元。或者所述指示信息为配置信息,所述配置信息用于配置传输所述第一信息的资源。
其中,所述资源包括小区,载波,逻辑信道,物理信道,传输接收点或波束。
又一种可能的实施方式中,用于上行授权的装置200包括发送单元203,发送单元203用于发送标识信息,该标识信息用于标识指示L2上行控制信息大小的BSR。用于上行授权的装置100包括接收单元103,其中,所述接收单元103用于接收标识信息,所述标识信息用于标识指示L2上行控制信息大小的BSR。
其中,所述标识信息为逻辑信道组标识。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现 时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图11,其为本申请实施例提供的一种终端的结构示意图。其可以为以上实施例中的终端,用于实现以上实施例中终端的操作。如图11所示,该终端包括:天线110、射频装置120、基带装置130。天线110与射频装置120连接。在下行方向上,射频装置120通过天线110接收网络设备发送的信息,将网络设备发送的信息发送给基带装置130进行处理。在上行方向上,基带装置130对终端的信息进行处理,并发送给射频装置120,射频装置120对终端的信息进行处理后经过天线110发送给网络设备。
基带装置130可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选的,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件131,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件132和接口电路133。存储元件132用于存储数据和程序,但用于执行以上方法中终端所执行的方法的程序可能不存储于该存储元件132中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路133用于与其它子系统通信。以上用于终端的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,终端实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端实现以上方法中各个步骤的单元可以集成在一起,以片上系统 (system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图12,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图12所示,该网络设备包括:天线211、射频装置212、基带装置213。天线211与射频装置212连接。在上行方向上,射频装置212通过天线211接收终端发送的信息,将终端发送的信息发送给基带装置213进行处理。在下行方向上,基带装置213对终端的信息进行处理,并发送给射频装置212,射频装置212对终端的信息进行处理后经过天线211发送给终端。
基带装置213可以包括一个或多个处理元件2131,例如,包括一个主控CPU和其它集成电路。此外,该基带装置213还可以包括存储元件2132和接口电路2133,存储元件2132用于存储程序和数据;接口电路2133用于与射频装置212交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置213,例如,以上用于网络设备的装置可以为基带装置213上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元 件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
根据本申请实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端。
本申请实施例还提供一种用于上行授权的装置,应用于网络设备或终端,包括用于执行以上方法实施例的至少一个处理元件(或芯片)。
本申请提供一种用于上行授权的程序,该程序在被处理器执行时用于执行以上实施例的方法。
本申请还提供一种程序产品,例如计算机可读存储介质,包括上述涉及的用于上行授权的方法的程序。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种用于上行授权的方法,其特征在于,包括:
    生成缓存状态报告BSR,所述BSR用于指示L2上行控制信息的大小;
    在所述BSR的触发下发送第一信息,所述第一信息用于请求上行授权。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息为包括所述BSR的数据单元,或者所述第一信息为调度请求。
  3. 根据权利要求2所述的方法,其特征在于,包括所述BSR的数据单元包括媒体接入控制控制元素MAC CE。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    接收指示信息,所述指示信息用于指示所述终端针对L2上行控制信息生成所述BSR。
  5. 根据权利要求4所述的方法,其特征在于,所述指示信息为指示信元。
  6. 根据权利要求4所述的方法,其特征在于,所述指示信息为配置信息,所述配置信息用于配置传输所述第一信息的资源。
  7. 根据权利要求6所述的方法,其特征在于,所述资源包括小区、载波、逻辑信道、物理信道、传输接收点和波束中的至少一种。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    接收标识信息,所述标识信息用于标识所述BSR用于指示L2上行控制信息的大小。
  9. 根据权利要求8所述的方法,其特征在于,所述标识信息为逻辑信道标识或逻辑信道组标识。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述L2上行控制信息包括PDCP层控制信息,无线链路控制RLC层控制信息,媒体接入控制MAC层控制信息,业务数据适配SDAP层控制信息中的至少一种。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述L2上行控制信息触发所述BSR的生成。
  12. 一种用于上行授权的方法,其特征在于,包括:
    接收第一信息,所述第一信息用于请求上行授权,并由对端在缓存状态报告BSR触发下所发送,所述BSR用于指示L2上行控制信息的大小;
    根据所述第一信息,分配上行授权。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信息为包括所述BSR的数据单元,或者所述第一信息为调度请求。
  14. 根据权利要求13所述的方法,其特征在于,包括所述BSR的数据单元包括媒体接入控制控制元素MAC CE。
  15. 根据权利要求13或14所述的方法,其特征在于,当所述第一信息为包括所述BSR的数据单元时,根据所述第一信息,分配上行授权,包括:根据所述BSR,为所述L2上行控制信息分配上行授权;或者,
    当所述第一信息为调度请求时,根据所述第一信息,分配上行授权,包括:为所述BSR分配上行授权,且所述方法还包括:接收所述对端利用为所述BSR分配的上 行授权发送的BSR,且根据所述BSR,为所述L2上行控制信息分配上行授权。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,所述方法还包括:
    发送指示信息,所述指示信息用于指示针对L2上行控制信息生成所述BSR。
  17. 根据权利要求16所述的方法,其特征在于,所述指示信息为指示信元;或者,
    所述指示信息为配置信息,所述配置信息用于配置传输所述第一信息的资源。
  18. 根据权利要求17所述的方法,其特征在于,所述资源包括小区、载波、逻辑信道、物理信道、传输接收点和波束中的至少一种。
  19. 根据权利要求12至18任一项所述的方法,其特征在于,所述方法还包括:
    发送标识信息,所述标识信息用于标识所述BSR用于指示L2上行控制信息的大小。
  20. 根据权利要求19所述的方法,其特征在于,所述标识信息为逻辑信道标识或逻辑信道组标识。
  21. 根据权利要求12至20任一项所述的方法,其特征在于,所述L2上行控制信息为分组数据聚合PDCP层控制信息,无线链路控制RLC层控制信息,媒体接入控制MAC层控制信息,业务数据适配SDAP层控制信息中的至少一种。
  22. 根据权利要求12至21任一项所述的方法,其特征在于,所述L2上行控制信息触发所述BSR的生成。
  23. 一种用于上行授权的装置,其特征在于,包括用于执行如权利要求1至11任一项所述方法的各个步骤的单元。
  24. 一种用于上行授权的装置,其特征在于,包括至少一个处理器和接口电路,其中,所述至少一个处理器用于执行如权利要求1至11任一项所述的方法。
  25. 一种终端,其特征在于,包括权利要求23或24所述的用于上行授权的装置。
  26. 一种存储介质,其特征在于,包括程序,该程序被处理器执行时用于执行如权利要求1至11任一项所述的方法。
  27. 一种用于上行授权的装置,其特征在于,包括用于执行权利要求12至22任一项所述方法的各个步骤的单元。
  28. 一种用于上行授权的装置,其特征在于,包括至少一个处理器和接口电路,其中,所述至少一个处理器用于执行如权利要求12至22任一项所述的方法。
  29. 一种网络设备,其特征在于,包括权利要求27或28所述的用于上行授权的装置。
  30. 一种存储介质,其特征在于,包括程序,该程序被处理器执行时用于执行如权利要求12至22任一项所述的方法。
PCT/CN2019/073490 2018-02-13 2019-01-28 一种用于上行授权的方法及装置 WO2019157945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150992.4 2018-02-13
CN201810150992.4A CN110149712B (zh) 2018-02-13 2018-02-13 一种用于上行授权的方法及装置

Publications (1)

Publication Number Publication Date
WO2019157945A1 true WO2019157945A1 (zh) 2019-08-22

Family

ID=67589093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073490 WO2019157945A1 (zh) 2018-02-13 2019-01-28 一种用于上行授权的方法及装置

Country Status (2)

Country Link
CN (2) CN113973383A (zh)
WO (1) WO2019157945A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062704A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 获取侧行链路资源的方法和装置
CN113015247A (zh) * 2019-12-20 2021-06-22 大唐移动通信设备有限公司 媒体接入控制协议数据单元处理方法、终端及介质
WO2022027412A1 (en) * 2020-08-06 2022-02-10 Apple Inc. Base station (bs) rach procedures for reduced latency in high-propagation-delay networks
WO2022027453A1 (en) * 2020-08-06 2022-02-10 Apple Inc. User equipment (ue) supplemental bsr for reduced latency in high-propagation-delay networks
CN116368762A (zh) * 2020-10-12 2023-06-30 高通股份有限公司 具有或不具有重传定时器的多个经配置准许上行链路的协调

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114503765A (zh) * 2019-09-17 2022-05-13 上海诺基亚贝尔股份有限公司 单载波上的分组复制
CN113727426B (zh) * 2020-05-20 2023-05-26 维沃移动通信有限公司 信息发送方法、信息接收方法、终端及网络侧设备
WO2022233033A1 (zh) * 2021-05-07 2022-11-10 Oppo广东移动通信有限公司 无线通信的方法及设备
US20230189048A1 (en) * 2021-05-10 2023-06-15 Apple Inc. Handling High Data Rates in Protocol Stack when Using High Frequency Spectrum
CN113543173A (zh) * 2021-06-29 2021-10-22 中国电子科技集团公司电子科学研究院 卫星5g融合网络的网元部署架构和网元部署方法
WO2024065456A1 (zh) * 2022-09-29 2024-04-04 Oppo广东移动通信有限公司 信息传输方法、定时器配置方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101341783A (zh) * 2005-12-22 2009-01-07 高通股份有限公司 实施和/或使用专用控制信道的方法和设备
WO2009045026A2 (en) * 2007-10-02 2009-04-09 Lg Electronics Inc. Method of allocating uplink radio resource
WO2009126078A1 (en) * 2008-04-10 2009-10-15 Telefonaktiebolaget L M Ericsson (Publ) Improved uplink scheduling in a cellular system
WO2011137576A1 (zh) * 2010-05-03 2011-11-10 上海贝尔股份有限公司 无线网络中用于发送缓冲状态报告的方法和装置
CN103716112A (zh) * 2012-09-28 2014-04-09 中兴通讯股份有限公司 通过控制面信令传输数据的方法、设备及系统
CN103889066A (zh) * 2014-03-12 2014-06-25 中国科学技术大学 一种智能电网通信中精细上行资源调度方法
US8971276B1 (en) * 2012-01-06 2015-03-03 Marvell International Ltd. Techniques for increasing uplink throughput for multiple flow control mechanisms

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2445279B1 (en) * 2010-10-21 2018-12-05 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
KR20170065602A (ko) * 2014-09-30 2017-06-13 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101341783A (zh) * 2005-12-22 2009-01-07 高通股份有限公司 实施和/或使用专用控制信道的方法和设备
WO2009045026A2 (en) * 2007-10-02 2009-04-09 Lg Electronics Inc. Method of allocating uplink radio resource
WO2009126078A1 (en) * 2008-04-10 2009-10-15 Telefonaktiebolaget L M Ericsson (Publ) Improved uplink scheduling in a cellular system
WO2011137576A1 (zh) * 2010-05-03 2011-11-10 上海贝尔股份有限公司 无线网络中用于发送缓冲状态报告的方法和装置
US8971276B1 (en) * 2012-01-06 2015-03-03 Marvell International Ltd. Techniques for increasing uplink throughput for multiple flow control mechanisms
CN103716112A (zh) * 2012-09-28 2014-04-09 中兴通讯股份有限公司 通过控制面信令传输数据的方法、设备及系统
CN103889066A (zh) * 2014-03-12 2014-06-25 中国科学技术大学 一种智能电网通信中精细上行资源调度方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062704A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 获取侧行链路资源的方法和装置
CN113015247A (zh) * 2019-12-20 2021-06-22 大唐移动通信设备有限公司 媒体接入控制协议数据单元处理方法、终端及介质
CN113015247B (zh) * 2019-12-20 2023-08-08 大唐移动通信设备有限公司 媒体接入控制协议数据单元处理方法、终端及介质
WO2022027412A1 (en) * 2020-08-06 2022-02-10 Apple Inc. Base station (bs) rach procedures for reduced latency in high-propagation-delay networks
WO2022027453A1 (en) * 2020-08-06 2022-02-10 Apple Inc. User equipment (ue) supplemental bsr for reduced latency in high-propagation-delay networks
CN116368762A (zh) * 2020-10-12 2023-06-30 高通股份有限公司 具有或不具有重传定时器的多个经配置准许上行链路的协调

Also Published As

Publication number Publication date
CN113973383A (zh) 2022-01-25
CN110149712B (zh) 2021-09-03
CN110149712A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
US10616917B2 (en) Grouping uplink grants and listen before talk classes
US10045376B2 (en) Channel access procedure and QoS provisioning for uplink LAA
CN108781465B (zh) 信道接入优先级类别选择
CN107637121B (zh) 用于在移动通信系统中发送或接收调度请求的方法和装置
WO2019137342A1 (zh) 上行资源的使用方法及装置
WO2018028269A1 (zh) 一种资源调度方法和装置
JP6705004B2 (ja) データ送信方法、ユーザ機器、および基地局
WO2019062837A1 (zh) 通信方法、装置和设备
WO2015096719A1 (zh) 一种d2d资源分配方法、数据传输方法及装置
JP2016067020A (ja) ライセンス免除スペクトルにおいて補助的セルを機能させるための方法および装置
WO2014187174A1 (zh) 一种d2d通信中的资源配置及资源使用方法和装置
WO2017000755A1 (zh) 一种数据传输方法以及相关设备
WO2018210254A1 (zh) 频域资源的处理方法、装置及系统
WO2013060300A1 (zh) 数据分流传输方法、用户设备和基站
US20220022211A1 (en) Communication method and apparatus
WO2019062746A1 (zh) 通信方法、装置和系统
CN114041314A (zh) 用户设备和调度节点
WO2019028792A1 (zh) 一种配置资源的方法及设备
CN109891970A (zh) 无线网络中的数据传输方法、装置和系统
US20210258823A1 (en) Continuity for buffer status reports
WO2021128350A1 (zh) 一种ue自动传输处理方法及其装置
WO2021088006A1 (zh) 通信方法和通信装置
WO2023030088A1 (zh) 旁链路通信方法及设备
WO2021016776A1 (zh) 基于复制数据传输的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755019

Country of ref document: EP

Kind code of ref document: A1