WO2023030088A1 - 旁链路通信方法及设备 - Google Patents

旁链路通信方法及设备 Download PDF

Info

Publication number
WO2023030088A1
WO2023030088A1 PCT/CN2022/114176 CN2022114176W WO2023030088A1 WO 2023030088 A1 WO2023030088 A1 WO 2023030088A1 CN 2022114176 W CN2022114176 W CN 2022114176W WO 2023030088 A1 WO2023030088 A1 WO 2023030088A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
resource pool
resource
carrier
communication
Prior art date
Application number
PCT/CN2022/114176
Other languages
English (en)
French (fr)
Other versions
WO2023030088A9 (zh
Inventor
彭文杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020247010436A priority Critical patent/KR20240049375A/ko
Publication of WO2023030088A1 publication Critical patent/WO2023030088A1/zh
Publication of WO2023030088A9 publication Critical patent/WO2023030088A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the technical field of wireless communication, in particular to a side link communication method and equipment.
  • terminals can communicate directly with each other through a side link (sidelink).
  • sidelink A typical application scenario of sidelink communication is vehicle to X (V2X).
  • V2X vehicle to X
  • each vehicle can be understood as a terminal, and the terminals can communicate through sidelinks, such as direct connection for information transmission, thereby effectively reducing communication delays.
  • the basis of wireless communication is spectrum resources, which can be divided into two types according to types, licensed spectrum (unshared spectrum) and unlicensed spectrum (shared spectrum).
  • licensed spectrum unshared spectrum
  • shared spectrum shared spectrum
  • LTE Long Term Evolution
  • NR new radio
  • Unlicensed spectrum is a spectrum that can be shared by many different air interface technologies, such as wireless local area networks that meet the Institute of Electrical and Electronics Engineers (IEEE) 802.11 protocol, LTE licensed spectrum assisted access (License Assisted Access, LAA), etc. .
  • the unlicensed spectrum is a shared spectrum resource
  • a mechanism is needed to prevent different communication devices from interfering with each other.
  • This mechanism is listen before talk (LBT) ), which may also be referred to as a channel access process.
  • LBT listen before talk
  • the communication device may compete for a channel in the unlicensed spectrum through a channel access process. If the channel access is successful, service transmission can be performed through the unlicensed spectrum, and if the channel access fails, service transmission cannot be performed.
  • the above solution only considers the wireless communication process between the terminal and the base station when configuring the LBT, and does not consider the side link communication process between the terminals. Therefore, it is necessary to provide a technique for introducing LBT design based on sidelink communication requirements.
  • This application describes a sidelink communication method and device, so as to realize information transfer between terminals.
  • a sidelink communication method includes: a first communication device receives configuration information from a network device, which is used for the first communication device to detect failure of continuous LBT of the first resource pool , the configuration information is associated with the first carrier or the first resource pool, and the first resource pool belongs to the first carrier.
  • the first communication device sends first indication information to the network device, which is used to indicate the first resource pool in which the continuous LBT fails.
  • the foregoing configuration information is associated with the first carrier or the first resource pool, and it can be understood that the foregoing configuration may be based on carrier or partial bandwidth (bandwidth part, BWP) granularity, or may be based on resource pool granularity.
  • the carrier granularity can be understood as separate configuration of LBT detection with the carrier as the granularity; the BWP granularity can be understood as the separate configuration of LBT detection with the BWP as the granularity; the resource pool granularity can be understood as the separate configuration of LBT detection with the resource pool as the granularity.
  • one carrier includes one or more BWPs, and one BWP includes one or more resource pools.
  • the BWP granularity may be carrier granularity.
  • the first communication device for example, the first terminal may obtain the resource pool configuration through different methods.
  • the first approach is that a network device, such as a base station, configures a resource pool for the first terminal through dedicated signaling or system broadcast.
  • the second way is that the first terminal acquires the resource pool based on the pre-configuration by itself.
  • the ways of acquiring sidelink resources can be divided into base station scheduling mode (mode 1, mode1) and UE selection mode (mode 2, mode2).
  • the base station scheduling mode (mode1) the base station can indicate which resource pool the currently scheduled resource belongs to.
  • the mode selected by the UE Mode2
  • the behavior of the UE after determining the Sidelink resource is similar to that of the base station scheduling mode, but before that, the UE needs to independently select the resource pool.
  • the above selection may be randomly selected, or selected based on a result of sensing or partial sensing.
  • the channel access process is completed (also referred to as LBT success) and the channel access process is not completed (also referred to as LBT failure).
  • LBT success the channel access process is completed
  • LBT failure the channel access process is not completed
  • the first terminal may send a medium access control (medium access control, MAC) control element (control element, CE) indicating the LBT failure to the network device.
  • MAC medium access control
  • CE control element
  • the MAC CE may include multiple resource pool identification fields, and may further include carrier information such as the carrier identification field to which the resource pool belongs.
  • the configuration information includes a maximum number of LBT failures and a timer length.
  • the physical (physical, PHY) entity of the first communication device indicates to the medium access control MAC entity of the first communication device that the LBT of the first resource pool fails.
  • the MAC entity starts a timer corresponding to the first resource pool, and increases the number of counters corresponding to the first resource pool based on the LBT failure of the first resource pool. When the count of the counter reaches the maximum count, the MAC entity confirms that continuous LBT failures occur in the first resource pool.
  • the above LBT detection can ensure that the first communication device understands the possible failure status of the LBT in real time, so as to process it in time and ensure the effectiveness of the side link communication.
  • the first communication device stops resource selection of the first resource pool within a predetermined time. Or, when consecutive LBT failures occur in resource pools of the first carrier, the first communication device reselects to the second carrier of the side link.
  • the first communication device receives second indication information from the second communication device, which is used to indicate a second resource pool or a second carrier in which continuous LBT fails in the side link.
  • the first communication device can determine by itself whether to perform sidelink communication with the second communication device based on the second resource pool or the second carrier, for example, not using the above resources within a predetermined time, or using other resources so that reliable communication can take place.
  • the first communications device sends third indication information to the network device, which is used to indicate the second resource pool or the second carrier.
  • the base station in the sidelink communication system can provide the same resource pool configuration to the terminals served by it, so as to ensure the consistency of resource configuration.
  • the resource pool configuration provided by the serving base station of the first communication device is the same as the resource pool configuration provided by the serving base station of the second communication device.
  • the first communication device communicates with the second When the device indicates a resource pool where continuous LBT failures occur, the second communication device can correctly understand it.
  • the third indication information is also used to indicate a unicast connection between the first communication device and the second communication device.
  • This indication can enable the network device to perceive the specific connection with continuous LBT failure, and can perform differentiated processing in a targeted manner to ensure the communication reliability of the unicast connection without affecting other unicast/broadcast/multicast side chains road communication.
  • the network device may not schedule the resource to the first communication device, or schedule resources to the first communication device based on other resource pools or carriers, so as to ensure real-time and effective communication between the first communication device and the second communication device, Improve scheduling reliability.
  • the first communication device selects a resource of a third resource pool or a resource of a third carrier in the side link, and performs the unit with the second communication device based on the resource.
  • broadcast connection communication
  • the third resource pool is different from the second resource pool, or the third carrier is different from the second carrier.
  • the above method can avoid selecting resources for the unicast connection for which continuous LBT failures have been identified during resource selection, thereby ensuring reliable communication of the unicast connection between the first communication device and the second communication device.
  • the first communication device selects resources of other resource pools or resources of other carriers in the side link, and performs unicast connection communication with the second communication device based on the resources.
  • the other resource pool is different from the aforementioned resource pool where continuous LBT failure occurs, or the other carrier is different from the aforementioned carrier where continuous LBT failure occurs.
  • the first communication device obtains sidelink authorization resources, and the authorization resources are located in the resource pool where continuous LBT failures occur or the carrier where continuous LBT failures occur, so the first communication device does not use the sidelink authorization resources to communicate with UE1. Communication over a unicast connection.
  • the first communication device acquires a sidelink authorization resource, and the authorization resource is located in the second resource pool or the second carrier;
  • the first communication device does not use the authorized resource to communicate with the second communication device through the unicast connection.
  • the first communication device confirms whether each authorized resource is applicable, so as to ensure reliable communication of the unicast connection between the first communication device and the second communication device.
  • the MAC entity of the first communication device may perform a logical channel prioritization (logical channel prioritization, LCP) process.
  • LCP logical channel prioritization
  • the MAC layer of the first communication device performs the LCP process
  • the unicast connection with the second communication device is excluded.
  • the first communication device may determine whether to use the resource to send the unicast connection according to the priority. Data for unicast connections.
  • the first communication device sends fourth indication information to the second communication device, which is used to indicate the first resource pool or the first carrier in which the continuous LBT fails. Therefore, it is possible to prevent the second communication device from sending data to the first communication device by using resources where continuous LBT failures occur, thereby improving reliability.
  • the first indication information is further used to indicate the carrier to which the first resource pool belongs, so as to ensure accurate indication of the resource pool.
  • the first communication device receives the sidelink authorization resource from the network device.
  • the first communication device skips or suspends the LBT detection of the authorized resource. Therefore, unnecessary execution of LBT can be avoided, and the effect of power saving can be achieved.
  • the first communication device receives sidelink authorized resources from the network device, and the first communication device performs LBT detection on the authorized resources.
  • the first communication device feeds back a negative acknowledgment (negative acknowledgment, NACK) to the network device.
  • the first communications device feeds back an acknowledgment (acknowledgment, ACK) to the network device. Therefore, the first communication device can be enabled to indicate NACK to the base station in a reasonable scenario, so as to ensure timely retransmission scheduling and reliable communication.
  • the communication device is a terminal, and the network device is a base station; or, the network device is a centralized unit (centralized unit, CU).
  • a sidelink communication method including: a first communication device receives first indication information from a second communication device, which is used to indicate a first resource pool or a first carrier in which LBT fails in the sidelink. And the first communication device sends second indication information to the network device, which is used to indicate the first resource pool or the first carrier.
  • the second indication information is further used to indicate a unicast connection between the first communication device and the second communication device.
  • the first communication device selects a resource of the second resource pool or a resource of the second carrier in the side link, and performs the unit operation with the second communication device based on the resource.
  • broadcast connection communication
  • the second resource pool is different from the second resource pool, or the second carrier is different from the second carrier.
  • the first communications device acquires sidelink authorization resources, where the authorization resources are located in the first resource pool or the first carrier. Wherein, the first communication device does not use the authorized resource to communicate with the second communication device through the unicast connection.
  • the first indication information is further used to indicate the carrier to which the first resource pool belongs.
  • the first communication device receives the sidelink authorization resource from the network device.
  • the first communication device skips or suspends the LBT detection of the authorized resource.
  • the first communication device receives the sidelink authorization resource from the network device. And, the first communication device performs LBT detection on the authorized resources. When the process corresponding to the authorized resource has data to be transmitted, the first communication device sends a NACK to the network device. Or, when the process corresponding to the authorized resource has no data to be transmitted, the first communication device feeds back an ACK to the network device.
  • the communication device is a terminal, and the network device is a base station; or, the network device device is a CU.
  • a sidelink communication method including: a network device sends configuration information to a first communication device, the configuration information is associated with the first carrier or the first resource pool, and the first resource pool belongs to the Describe the first carrier.
  • the network device receives first indication information from the first communication device, which is used to indicate the first resource pool in which the continuous LBT fails.
  • the configuration information includes a maximum number of LBT failures and a timer length.
  • the first indication information is further used to indicate a unicast connection between the first communication device and the second communication device.
  • the first indication information is further used to indicate the carrier to which the first resource pool belongs.
  • an apparatus for sidelink communication is provided, and the apparatus can be used to perform operations of the communication device in the first aspect, the second aspect, and any possible implementation manners thereof.
  • the apparatus may include a module unit configured to perform various operations of the communication device in any possible implementation manner of the above first or second aspect.
  • an apparatus for sidelink communication is provided, and the apparatus can be used to perform operations of the network device in the third aspect and any possible implementation manners thereof.
  • the apparatus may include a module unit configured to execute various operations of the network device in any possible implementation manner of the third aspect above.
  • a terminal device includes: a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is used to store instructions
  • the processor is used to execute the instructions stored in the memory.
  • the execution causes the terminal device to perform any method in any possible implementation manner of the first aspect or the second aspect, or the execution causes the terminal device to implement The device provided by the fourth aspect.
  • a network device includes: a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is used to store instructions
  • the processor is used to execute the instructions stored in the memory.
  • the execution causes the network device to perform any method in any possible implementation manner of the third aspect, or the execution causes the network device to implement the fifth aspect device provided.
  • a chip system including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the system installed with the chip system A device (for example, a network device or a terminal device) executes any method in the foregoing first, second, or third aspect and possible implementation manners thereof.
  • the chip system A device for example, a network device or a terminal device
  • a ninth aspect provides a computer program product, the computer program product including: computer program code, when the computer program code is used by a communication unit, a processing unit or a transceiver of a device (for example, a network device or a terminal device), When the processor is running, the communication device is made to execute any method in the above first, second or third aspect and possible implementation manners thereof.
  • a computer-readable storage medium stores a program, and the program causes a device (for example, a network device or a communication device) to execute the above-mentioned first, second or third aspect and any of its possible implementations.
  • a computer program is provided.
  • the computer program When the computer program is executed on a certain computer, the computer will realize any of the above-mentioned first, second or third aspects and possible implementation manners thereof.
  • FIG. 1a is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1b is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Fig. 1c is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2a is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2b is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2c is a schematic diagram of a protocol stack provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of various communication methods provided by the embodiment of the present application.
  • Figure 3a is a schematic diagram of a BWP provided in the embodiment of the present application.
  • Figure 3b is a schematic diagram of a MAC CE provided by the embodiment of the present application.
  • Figure 3c is a schematic diagram of another MAC CE provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the embodiment of the present invention proposes a technical solution based on the communication system described in Figure 1a, which is used to improve the effectiveness of transmission in the system .
  • FIG. 1a is a schematic diagram of a possible system architecture applicable to the embodiment of the present application.
  • the system architecture shown in FIG. 1 a includes a second device 101 and a first device 102 .
  • the second device in the embodiment of the present application may be connected to the first device in a wireless manner, that is, the second device may communicate with the first device through a wireless network.
  • FIG. 1a is only a schematic structural diagram of a communication system, and the number of first devices and the number of second devices in the communication system are not limited in this embodiment of the present application.
  • the wireless manner can be understood as sidelink communication and/or wireless link communication.
  • the first device and the second device in the above system architecture may perform side-link communication.
  • FIG. 1b it is a schematic diagram of a sidelink communication scenario.
  • the communication scenario may include a network device 105 and one or more terminal devices (eg, terminal device 1061, terminal device 1062).
  • the network device 105, the terminal device 1061, and the terminal device 1062 may perform data transmission through air interface resources, and the terminal device 1061 and the terminal device 1062 may perform data transmission through sidelink resources.
  • the first device may be the terminal device 1061
  • the second device may be the terminal device 1062, or vice versa.
  • the data channel for uplink data transmission between the network device 105 and the terminal device may be carried in the first uplink (uplink, UL) carrier, or carried in the auxiliary In the uplink (supplimentary UL, SUL) carrier.
  • the data channel for data transmission performed by the terminal device 1061 and the terminal device 1062 may be carried in an SL carrier.
  • the SL carrier may be the second UL carrier, and the first UL carrier and the second UL carrier may be the same carrier.
  • Sidelink (sidelink, SL) communication refers to a technology that allows terminal devices to communicate with each other, and resources used to carry communication between terminal devices may be called sidelink resources. Since side-link communication can realize direct communication between different terminal devices, it can realize higher data rate, lower delay and lower power consumption. Sidelink communications may include, for example, vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-to-pedestrians, device-to-device ). It can be understood that the sidelink communication technology can be used in both industrial Internet communication scenarios and wireless mesh network communication scenarios.
  • the communication system at least includes a centralized unit (centralized unit, CU) 10c and a distributed unit (distributed, DU) 11c.
  • the above-mentioned DU11c communicates with the terminal 12c.
  • the number of DUs can be one or more, and multiple DUs can share one CU to save costs and facilitate network expansion.
  • the segmentation of CU and DU can be divided according to the protocol stack.
  • Radio Resource Control Radio Resource Control
  • SDAP service data adaptation protocol
  • Packet Data Convergence Protocol Packet Data Convergence Protocol
  • PDCP Packet Data Convergence Protocol
  • At least one of the remaining protocol layers is deployed on the DU: a radio link control (Radio Link Control, RLC) layer, a media access control (Media Access Control, MAC) layer, or a physical layer.
  • RLC Radio Link Control
  • MAC Media Access Control
  • the CU and DU can be connected through the F1 interface.
  • CU represents the connection between the NR base station and the NR core network.
  • the above CU and DU may be located in different physical entities or independent of the NR base station. In other words, the combination of CU and DU can realize the function of NR base station or replace NR base station.
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU can directly encapsulate the signaling through the protocol layer and transparently transmit it to the terminal device or CU without parsing the signaling.
  • the sending or receiving of the signaling by the DU includes this scenario.
  • signaling at the RRC or PDCP layer will eventually be processed as signaling at the PHY layer and sent to the terminal device, or converted from received signaling at the PHY layer.
  • the signaling at the RRC or PDCP layer can also be considered to be sent by the DU, or sent by the DU and the radio frequency device.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: global system of mobile communication (global system of mobile communication, GSM) system, code division multiple access (code division multiple access, CDMA) system, broadband code division multiple access (wideband code division multiple access, WCDMA) system, general packet radio service (general packet radio service, GPRS), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE Time division duplex (time division duplex, TDD), universal mobile telecommunications system (universal mobile telecommunications system, UMTS), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, the future fifth generation (5th generation, 5G) system or new radio (new radio, NR), etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • long term evolution long term
  • V2X vehicle to vehicle
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the network device in the above communication system can be any device with wireless transceiver function or a chip that can be set on the device, and the device includes but is not limited to: evolved Node B (evolved Node B, eNB), wireless Network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB , or home Node B, HNB), donor base station (donor eNB, DeNB), base band unit (base band Unit, BBU), wireless fidelity (wireless fidelity, WIFI) access point (access point, AP) in the system, Wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one
  • a gNB may include CUs and DUs.
  • the gNB may also include a radio unit (radio unit, RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • high-level signaling such as RRC layer signaling or PHCP layer signaling, can also be It is considered to be sent by DU, or sent by DU+RU.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network RAN, and the CU can also be divided into network devices in the core network CN, which is not limited here.
  • terminal equipment in the above communication system may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user Terminal, terminal, wireless communication device, user agent or user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user Terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • the aforementioned terminal equipment and the chips that can be installed in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • the Sidelink communication system is similar to the wireless communication system, and can also support broadcast, unicast, and multicast transmission methods. Broadcasting is similar to the base station broadcasting system information to terminals. For example, the base station sends broadcast service data to the UE without encryption. Any other UE within the effective receiving range can receive the broadcast service data if it is interested in the broadcast service.
  • the unicast is similar to the data communication performed after the RRC connection is established between the UE and the base station, and a unicast connection needs to be established between two UEs first. After the unicast connection is established, the two UEs can communicate data based on the negotiated identity, and the data can be encrypted or not.
  • Multicast communication refers to communication between all UEs in a communication group, and any UE in the group can send and receive data of the multicast service.
  • broadcast transmission may be called broadcast sidelink signal communication, or sidelink communication of broadcast service, or sidelink communication whose transmission type is broadcast;
  • multicast transmission may be called multicast sidelink signal communication, or called , sidelink communication of multicast service, or communication of sidelink whose transmission type is multicast;
  • unicast communication can be called unicast sidelink signal communication, or sidelink communication of unicast service, or communication of unicast transmission type sidelink communication.
  • the source ID (source ID) and the destination ID (destination ID) need to be carried.
  • the above identifier is for layer 2 (layer 2, L2) of the UE.
  • the upper layer of the UE is the PC5-S layer, which is used for communication between UEs.
  • the upper layer may be called a non-access (Non-access stratum, NAS) layer, V2X layer or PC5-S layer.
  • the layer 2 of the UE may be the AS layer, which is used for communication between the terminal and the base station.
  • the target ID corresponds to a broadcast service, and the source ID can be understood as the ID of the UE at the sending end; for unicast, the target ID is an L2 ID allocated by the receiving UE for the unicast connection, and the source ID is the UE at the sending end.
  • SL side link
  • SL refers to D2D and SL links as shown in Fig. 2a and Fig. 2b.
  • data transmission between terminal devices can be transferred without going through network devices, that is, SL can be a transmission link between terminal devices.
  • vehicles can obtain road condition information or receive information services in a timely manner through V2V, V2I, V2P or V2N. These communication methods can be collectively referred to as V2X communication.
  • Figure (1), Figure (2), and Figure (3) in Figure 2b are schematic diagrams of V2V, V2I, and V2P, respectively.
  • 110 is a network device.
  • 120 may represent vehicles
  • 130 may represent roadside infrastructure
  • 140 may represent pedestrians.
  • V2V communication and V2I communication as an example, as shown in Figure 2b (1), through V2V communication between vehicles, information such as their own vehicle speed, driving direction, specific location, and whether they have stepped on the emergency brake can be obtained.
  • the roadside infrastructure for example, the roadside unit (road side unit, RSU) can provide various service information and Data network access, non-parking tolls, in-car entertainment and other functions have greatly improved traffic intelligence.
  • RSU road side unit
  • Sidelink resources are resources used for terminal-to-terminal communication.
  • the sidelink resources may include sidelink resources in the frequency domain and sidelink resources in the time domain.
  • the side link in this application may also be referred to as a side link or a side link, and the side link will be described uniformly below.
  • sidelink resources may include sidelink sending resources and sidelink receiving resources.
  • the sidelink sending resource is used for sending information, such as sending control information and/or data.
  • Sidelink receive resources are used to receive information, such as receive control information and/or data.
  • the foregoing sending resources and receiving resources may be located in the same time domain and/or frequency domain range. For example, based on a time division system, transmission and reception may share the same frequency domain resource; based on a frequency division system, transmission and reception may share the same time domain resource.
  • the sidelink signal may include control information and/or data and/or feedback information carried on the sidelink channel.
  • control information may be information for scheduling data, such as downlink control information (DCI) and sidelink control information (sidelink control information, SCI) in the prior art.
  • the feedback information may refer to feedback information, such as uplink control information (uplink control information, UCI) and sidelink feedback information (SFI) in the prior art.
  • Control information can be carried by a control channel, such as PSCCH, a physical sidelink control channel.
  • Feedback information can be carried by a feedback channel, such as PSFCH, a physical sidelink feedback channel.
  • data may refer to a signal in a broad sense, or may refer to a data packet, or may also be a transmission block or a codeword.
  • the data can be carried by a data channel, such as a physical sidelink shared channel (physical sidelink shared channel, PSSCH).
  • PSSCH physical sidelink shared channel
  • Communications in the NR sideline network can be distinguished based on service flows, for example, IP flows or Ethernet flows can be understood as corresponding to different services.
  • the above business flows are divided into different QoS flows based on different quality of service (quality of service, QoS) parameters or characteristics.
  • the base station may map the above QoS flow to a sidelink data radio bearer (data radio bearer, DRB), or define a mapping relationship between the above QoS flow and the sidelink DRB.
  • DRB data radio bearer
  • the base station maps different QoS flows to different sidelink DRBs or maps QoS flows with similar parameters to the same sidelink DRB.
  • the terminal can establish a sidelink DRB based on the above mapping relationship, and send the corresponding QoS flow to other terminals through the sidelink DRB.
  • the sidelink DRB is a DRB used to transmit data between terminals.
  • the terminal can also determine the mapping relationship based on the pre-configuration, and establish a sidelink DRB.
  • the logical channel information may be a logical channel (logic channel, LCH) identifier and/or a logical channel group (logic channel group, LCG) identifier.
  • LCH logic channel
  • LCG logic channel group
  • resource types corresponding to different LCHs may be the same or different, resource types corresponding to different LCHs in one LCG may be the same or different, and one LCH may correspond to at least one resource type.
  • the priority order of different LCHs/LCGs may be determined by the characteristics of the data carried by them.
  • the priority order of the LCH/LCG can be understood as the order in which the terminal sends data to the base station.
  • the priority order of the LCH/LCG can be determined according to any one or more of the following situations:
  • the data size of the data is the data size of the data
  • the priority of the LCG may be associated with the LCHs in the LCG.
  • the LCG includes LCH1 and LCH2, wherein the priority of LCG1 is higher than that of LCG2.
  • the priority of the LCG may refer to the priority of the LCG1 or be the same as the priority of the LCG1.
  • “at least one” may mean “one or more”.
  • it can be realized by at least one of method A, method B, and method C, which means: it can be realized by method A, or it can be realized by method B, or it can be realized by method C; it can also be expressed as: it can be realized by method A and method B Realize, or realize through mode B and mode C, or realize through mode A and mode C;
  • “at least two” may mean “two or more”.
  • the terminals within the coverage of the sidelink need to communicate normally, they generally need to go through the LBT process first, so as to find available or idle non- Available or idle sidelink resources on the licensed spectrum, followed by information transmission.
  • the foregoing sidelink resource acquisition methods can be divided into a base station scheduling mode (mode 1, mode1) and a UE selection mode (mode 2, mode2).
  • the base station can indicate which resource pool the currently scheduled resource belongs to. Specifically, the base station can schedule resources for the UE through the DCI, or allocate a sidelink configuration grant (configured grant) for the UE through the RRC message.
  • the behavior of the UE after determining the Sidelink resource is similar to that of the base station scheduling mode, but before that, the UE needs to independently select the resource pool.
  • the UE chooses by itself ie independently determines which resource pool to choose. For example, the UE receives the resource pool configuration from the base station, or obtains the resource pool configuration from the pre-configuration, and then selects resources in the resource pool for sidelink communication.
  • the above selection may be randomly selected, or selected based on a result of sensing or partial sensing.
  • Sensing can also be understood as full sensing (full sensing), which requires the terminal to continuously monitor the sidelink channel, such as the physical sidelink control channel (PSCCH) on the sidelink, or SCI to determine which resources are available .
  • Partial sensing as the name suggests, compared with full sensing, the terminal only needs to monitor part of the time domain resources to determine available resources, which saves more power than full sensing. Random selection For some resource pools, it is not necessary to perform sensing or partial sensing, but to randomly select available resources.
  • the above time domain resource may be a time unit on the side link, such as frame, subframe, time slot, symbol, etc., which is not limited in the present invention.
  • LBT is performed at a channel (eg, 20 MHz) granularity.
  • the communication device Before sending a signal (for example, a data signal) on a certain channel (for example, a first channel), the communication device may first detect whether the first channel is idle. For example, whether it is detected that a nearby communication device is occupying the first channel to send a signal, this detection process may be called a clear channel assessment (clear channel assessment, CCA) or a channel access process.
  • CCA clear channel assessment
  • first-type channel access procedure there are two types of channel access procedures, which are denoted as a first-type channel access procedure and a second-type channel access procedure.
  • the first type of channel access process (also referred to as a channel access process based on a fixed duration):
  • the signal energy received by a communication device (the communication device can be a terminal or a network device) within a fixed duration is less than or equal to the first preset If the threshold is set, the channel is considered to be idle, so that the communication device can use the idle channel to transmit data. Otherwise, the channel is considered busy and the communication device does not use the busy channel to transmit data.
  • the communication device detects a fixed duration, and if within the fixed duration, the energy of the signal detected in the channel is lower than the preset threshold, the channel is considered to be in an idle state, and the channel can be occupied , otherwise the channel needs to be re-competed.
  • the second type of channel access procedure also called back-off-based channel access procedure:
  • Energy detection based on the fallback mechanism defines a window for a certain bandwidth, which defines the range of the number of time slots to be detected, and the communication device randomly selects a value A from the window (or value range), and the communication device detects After at least A idle energy detection time slots are obtained, the channel is considered to be idle, so that the communication device can use the idle channel to transmit data. Otherwise, the channel is considered busy, so the communication device does not use the busy channel to transmit data.
  • idle energy detection refers to that the received signal energy within a fixed duration is less than or equal to a second preset threshold.
  • the first preset threshold and the second preset threshold may be predefined, such as protocol predefined, which is not limited. In addition, there is no restrictive relationship between the first preset threshold and the second preset threshold, which may be the same, or Can be different.
  • the communication device randomly selects a value A in a contention window, and only after detecting at least A idle time slots can it determine that the channel is in an idle state, so that the channel can be occupied; otherwise, it needs to re-compete for the channel.
  • an idle time slot means that within a time slot, the energy of a signal detected in a channel is lower than a preset threshold.
  • four channel access priority classes (CAPC) are introduced. Different CAPCs correspond to different channel access parameters.
  • the channel access parameters include the size of the contention window, Corresponding business conditions and channel occupancy time (channel occupancy time, COT) information, etc. COT refers to the length of time the channel can be used after the channel access process is successful.
  • the channel access process is completed (also referred to as LBT success) and the channel access process is not completed (also referred to as LBT failure).
  • LBT success the channel access process is completed
  • LBT failure the channel access process is not completed.
  • UE can directly use the resources for service transmission after obtaining scheduling resources; while in a scenario based on unlicensed spectrum, after UE obtains scheduling resources, it needs to The resource is used for LBT, and the resource needs to be used for service transmission after the LBT is successful.
  • an effective LBT process in the sidelink is performed to realize the reliability of Sidelink communication and improve the communication efficiency between terminals, which will be described in detail below .
  • Fig. 3 is a schematic flowchart of a communication method provided by the present application.
  • a communication device is used as a terminal, and a network device is used as a base station for description.
  • the foregoing communication devices and network devices may be chips or may be implemented by chips, which is not limited in this embodiment of the present application.
  • the communication devices described below may also be referred to as terminals or UEs.
  • the method includes:
  • the first communication device acquires configuration information, which is used by the first communication device to detect the failure of continuous listen-before-talk LBT of the first resource pool, the configuration information is associated with the first carrier or the first resource pool, and the first The resource pool belongs to the first carrier.
  • the first communications device sends first indication information to the network device, which is used to indicate the first resource pool that has failed consecutive LBTs.
  • the bandwidth of a carrier in NR is wider than that of LTE.
  • the carrier bandwidth of NR can be 100MHz, and different terminals have different radio frequency capabilities, and the maximum bandwidth they can support is different. Therefore, the bandwidth part ( bandwidth part, BWP) concept.
  • Figure 3a shows a schematic diagram of the BWP.
  • BWP is a group of continuous RB resources on the carrier. Different BWPs may occupy partially overlapping frequency domain resources with different bandwidths, or bandwidth resources with different numerology, and may not overlap each other in the frequency domain.
  • a terminal device that can be configured with up to 4 BWPs as an example, for example, 4 BWPs under frequency division duplexing (FDD), and 4 BWPs under time division duplexing (TDD).
  • FDD frequency division duplexing
  • TDD time division duplexing
  • One BWP can be activated on each carrier at the same time, and terminals can transmit and receive data on the activated BWP based on the side link.
  • the network device can configure a BWP for the terminal on the unlicensed spectrum and activate a BWP in the configured BWP, and sidelink communication can be performed between terminals through the unlicensed spectrum.
  • the foregoing configuration information is associated with the first carrier or the first resource pool, and it may also be understood that the foregoing configuration may be based on carrier or BWP granularity, or may be based on resource pool granularity.
  • the carrier granularity can be understood as separate configuration of LBT detection with the carrier as the granularity; the BWP granularity can be understood as the separate configuration of LBT detection with the BWP as the granularity; the resource pool granularity can be understood as the separate configuration of LBT detection with the resource pool as the granularity.
  • one carrier includes one or more BWPs, and one BWP includes one or more resource pools.
  • the BWP granularity may be carrier granularity. Therefore, resource pool granularity can enable flexible network configuration; carrier or BWP granularity can save signaling overhead.
  • the first terminal may acquire resource pool configuration through different means.
  • the first approach is that a network device, such as a base station, configures a resource pool for the first terminal through dedicated signaling or system broadcast.
  • the second way is that the first terminal acquires the resource pool based on the pre-configuration by itself.
  • the above pre-configuration may be pre-stored inside the terminal or in a Subscriber Identity Module (SIM) card, or the terminal device may receive the configuration from the core network.
  • SIM Subscriber Identity Module
  • a SIM card can also be called a phone card, or a smart card mainly used to store user identification data, SMS data, phone numbers and other information.
  • the network device configures the resource pool, corresponding to mode 1; in the second approach, the first terminal configures it by itself, corresponding to mode 2.
  • the resource pool configuration is provided by the network device to the first terminal to ensure that the network-connected terminal can obtain an effective resource pool configuration, and perform sidelink communication based on the resource pool configuration.
  • the resource pool configuration is preset inside the first terminal or in the SIM card to ensure that the first terminal can perform sidelink communication based on the preconfigured resource pool even when there is no network coverage.
  • the first terminal receives the configuration information sent by the base station, which may be broadcast by the base station or sent to the UE by RRC dedicated signaling. For example, when the UE is in an idle state or an inactive state, the base station sends a broadcast message to the UE. When the UE is in the connected state, the base station sends the RRC dedicated signaling to the UE.
  • the access network device or the base station sends system information or RRC public information to the terminal.
  • System information or common RRC information may be cell-level parameters. Through system information configuration or RRC public information configuration, it can be configured for the terminal.
  • the access network device can send system information or RRC public information to the terminal.
  • the system information or RRC public information is used for each Terminal configuration. Since system information or RRC public information is sent to terminals, the configuration information sent by system information or RRC public information can be used for multicast transmission between terminals.
  • the sending UE can use system information configuration or RRC public information configuration.
  • the sidelink resource multicasts the data and/or control information, and then other terminals, such as the receiving end UE, can receive the data or control information on the corresponding sidelink resource pool.
  • the access network device or the base station sends RRC-specific information to the terminal.
  • the RRC specific information may be a parameter at the terminal level (or called a parameter at the UE level), and parameter configuration is performed for the terminal.
  • the configuration mode of the RRC-specific information can be configured for a single terminal.
  • the access network device can send the RRC-specific information to a single terminal, and the RRC-specific information is used for terminal configuration. Since RRC-specific information is sent to a single terminal, the configuration information sent by RRC-specific information can be used for unicast transmission between terminals. For example, terminal 1 can use the configuration information sent by RRC-specific information to unicast data to terminal 2 or control information.
  • the operator pre-configures the sidelink resource pool for the terminal or pre-configures the terminal in a predefined manner in a standard protocol.
  • the configuration mode of pre-configuration it can be configured for one or more terminals.
  • the core network equipment such as Policy Control Function network element, PCF network element
  • PCF network element Policy Control Function network element
  • the pre-configuration information is used for separate configuration for each terminal. Since the pre-configuration information is sent to multiple terminals, the pre-configuration information can be used for broadcast transmission between terminals.
  • terminal 1 can use the pre-configuration information to broadcast data and/or control information, and other terminals, such as terminal 2, can Data and/or control information is received based on the preconfigured information.
  • the above-mentioned system information, RRC public information, RRC specific information, or preconfigured information can all be used for broadcast, multicast, and/or unicast information transmission, which is not limited in this application.
  • the protocol stack of a terminal based on sidelink communication includes at least one of the following protocol layers (or entities): sidelink service data adaptation (Service Data Adaptation Protocol, SDAP) layer, sidelink packet data aggregation Protocol (PDCP, Packet Data Convergence Protocol) layer, sidelink radio link control (RLC, Radio Link Control) layer, sidelink media access control (MAC, Media Access Control) layer and sidelink physical (PHY, Physical) layer.
  • sidelink service data adaptation Service Data Adaptation Protocol, SDAP
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • PHY Physical
  • the above-mentioned SL PDCP layer is mainly used to compress and decompress/encrypt and decrypt information;
  • the SL RLC layer is mainly used to realize the related functions of Automatic Repeat Request (ARQ, Automatic Repeat Request), segment and concatenate information or The segmented and concatenated information is reassembled;
  • the SL MAC layer is mainly used to select the combination of transmission formats, and realize the related functions of scheduling and Hybrid Automatic Repeat Request (HARQ, Hybrid Automatic Repeat Request);
  • the SL PHY layer is mainly used for The MAC layer and the upper layer provide information transmission services, and perform coding and modulation processing or demodulation and decoding processing according to the selected transmission format combination.
  • the terminal protocol stack can be aggregated on any protocol layer among the above-mentioned PDCP layer, RLC layer or MAC layer.
  • aggregation at the PDCP layer can improve the reliability of information transmission through encryption and decryption.
  • the above-mentioned adaptation layer is used to convert data between the base station and the terminal protocol stack. By setting the adaptation layer, the conversion of data between the protocol stacks can be ensured, making the configuration of the protocol stack in the base station more flexible.
  • the configuration information in 301 may include the maximum number of LBT failures and the length of the timer.
  • the configuration information of the sidelink carrier it may refer to that one carrier corresponds to or has one configuration. Therefore, all resource pools in the carrier can perform continuous LBT failure recovery based on the same configuration. Or, based on the configuration information of the sidelink resource pool, it may refer to a resource pool corresponding to or having one configuration. If an LBT failure occurs, the physical PHY entity of the first communication device indicates to the medium access control MAC entity of the first communication device that the LBT of the first resource pool fails. The MAC entity starts or restarts a timer corresponding to the first resource pool, and increases the number of counters corresponding to the first resource pool based on the LBT failure of the first resource pool.
  • the MAC entity confirms that continuous LBT failures occur in the first resource pool.
  • the physical layer of the first communication device performs LBT detection.
  • the BWP granularity when the first terminal performs LBT detection in the BWP, when the first terminal determines that every time an LBT failure occurs in the BWP, You can do the following:
  • the timer may be called lbtFailureDetectionTimer
  • the timing duration of the timer may be the duration configured by the first terminal or the base station.
  • the first terminal may determine that a continuous uplink LBT failure (consistent LBT failure) occurs on the BWP.
  • the terminal may reset the count value of the counter to 0.
  • the aforementioned counters and timers are counters and timers corresponding to the BWP or the carrier.
  • the granularity is the resource pool has a similar design, the difference is that the first terminal respectively executes counter and timer operations for each resource pool, and determines whether continuous LBT failures occur in the resource pool.
  • the first terminal can maintain timers and counters at the granularity of the resource pool to detect continuous LBT failures, that is, the first terminal maintains timers and counters for different resource pools respectively Timers and counters.
  • the configuration information is associated with the carrier, and the first terminal may maintain timers and counters at carrier granularity for detecting continuous LBT failures, that is, the first terminal maintains timers and counters for different carriers respectively.
  • the RRC state of the first terminal is in a connected state (connected).
  • the first terminal when the first terminal is in the connected state, it can indicate to the base station the resource pool of continuous LBT failures; when the first terminal is in the idle state (idle) or inactive state (inactive), it can skip the above instructions to the base station or 303 is not executed.
  • the first terminal in the connected state reports the MAC CE to the base station for the purpose of making the base station aware, so that the base station can update the configuration of the resource pool, or the LBT-related configuration of the resource pool.
  • this step can be omitted.
  • the first terminal When the first terminal determines that continuous LBT failures occur in the carrier or resource pool of the side link, it can send a medium access control (medium access control, MAC) control element (control element, CE) of the LBT failure to the network device, so as to achieve fast.
  • MAC medium access control
  • CE control element
  • the MAC CE shown in FIG. 3b includes multiple resource pool identification fields, including 8 resource pool identification fields: RP 0 to RP 7 .
  • the value of the bit corresponding to a resource pool identification field is the first value, it means that the terminal has successive LBT failures in the resource pool corresponding to the resource pool identification field; the value of the bit corresponding to a resource pool identification field is the first value
  • the value is binary, it means that the terminal does not have continuous LBT failures in the resource pool corresponding to the resource pool identifier field.
  • Specific values of the first value and the second value are not limited, for example, the first value is 1, and the second value is 0.
  • the first terminal may also carry information about the carrier to which the resource pool belongs in the MAC CE.
  • the MAC CE may include a carrier identification field, for example, 8 carriers are denoted as C 0 -C 7 respectively, and each C i field in the figure corresponds to a carrier.
  • the C i field corresponding to the first carrier is the first value, it means that the MAC CE can further identify 8 resource pool identification fields corresponding to the first carrier.
  • the C i field corresponding to the first carrier is the second value, it means that the eight resource pool identification fields corresponding to the first carrier may not be identified in the MAC CE.
  • the carrier identification field is used to indicate whether the terminal has successive LBT failures in the carrier.
  • the value of the bit corresponding to the carrier identification field is the first value, it means that the terminal has successive LBT failures in the carrier; No consecutive LBT failures occurred in the carrier.
  • Specific values of the first value and the second value are not limited, for example, the first value is 1, and the second value is 0.
  • the first terminal When the first terminal is in the connected state and continuous LBT failures occur in the resource pool, the first terminal generates a MAC CE for indicating to the base station the information of the resource pool where continuous LBT failures occur.
  • the MAC CE includes indication information of a resource pool where continuous LBT failures occur, and the indication information may be a resource pool index or a resource pool identifier.
  • the MAC CE may correspond to a logical channel identifier (LCH ID), for example, the MAC CE is identified by the LCH ID, and the LCH ID has a one-to-one correspondence with the MAC CE.
  • the base station may configure a scheduling request (scheduling request, SR) resource for the MAC CE, for requesting an air interface (Uu interface) resource from the base station for the MAC CE.
  • SR scheduling request
  • the first terminal may stop resource selection in the above resource pool within a predetermined time
  • the first terminal may reselect to other carriers of the side link.
  • the following describes the behavior of the first terminal or the base station after consecutive LBT failures in different modes.
  • the first terminal is in mode1:
  • the base station After the terminal reports the MAC CE to indicate to the base station the resource pool information that continuous LBT failures occur, the base station does not schedule resources in the resource pool for the terminal within the first predetermined time.
  • the base station may reschedule resources in the resource pool for the terminal. If LBT failure occurs again, the base station does not schedule resources in the resource pool for the terminal within the second predetermined time. Wherein, the second predetermined time is not shorter than the first predetermined time.
  • the foregoing mechanism may also be applied to other resource pools whose resources in the time domain and/or frequency domain overlap with the resource pool. That is, if time-domain or frequency-domain resources overlap among different resource pools, and continuous LBT failure occurs in at least one of such resource pools, the base station may not schedule any of such resource pools within a predetermined time.
  • the above behavior can prevent the base station from frequently attempting to cause unreliable communication.
  • adopting the same process for resource pools with overlapping frequency domain positions can improve reliability.
  • the first terminal is in mode2:
  • the first terminal in the connected state will report the MAC CE to the base station.
  • the first terminal may continue to try to select a resource in the resource pool where continuous LBT failures occur, and perform LBT to determine whether the resource is available.
  • the first terminal may operate in at least one of the following manners, so as to avoid selecting certain resources:
  • Method 1 No longer select resources from the resource pool where continuous LBT failures occur.
  • Mode 2 No more resources are selected from the resource pool within a predetermined period of time.
  • the duration of the predetermined time period may be configured by the base station, or may be determined by the terminal itself.
  • Mode 3 before the base station reconfigures the resource pool, no longer select resources from the resource pool.
  • the reconfiguration of the resource pool may be LBT reconfiguration of the resource pool.
  • the reliability of the sidelink communication between the first communication device and other communication devices can be guaranteed through the above manner.
  • the above method 1 or method 2 may be applicable to a terminal in a non-connected state
  • method 3 may be applicable to a terminal in a connected state.
  • the above MAC CE may also carry carrier information corresponding to the resource pool.
  • the first terminal may also send the above indication information to the base station providing service for it through RRC.
  • the first terminal can perform carrier reselection, so as to select other carriers for service transmission; if continuous LBT failures occur on all carriers Failure (for example, all resource pools on all carriers have continuous LBT failures), the first terminal may send indication information to its upper layer (for example, PC5-S layer, V2X layer or application layer), indicating that the PC5 interface is unavailable.
  • the application layer can turn to use the air interface (Uu interface) for service transmission.
  • This embodiment can enable the terminal to process the LBT failure based on the resource pool, and ensure the reliability of the side link communication by instructing the base station or restricting the behavior of the terminal.
  • the serving base station of UE1 is BS1, and the communication between UE2 and UE1 is exemplified by a unicast connection.
  • UE2 is in idle state, inactive state or connected state. If UE2 is in the connected state, its corresponding serving base station is BS2.
  • the BS2 and the BS1 may be the same base station.
  • this embodiment may further include:
  • UE1 indicates to UE2 the first resource pool or the first carrier where continuous LBT failure occurs.
  • UE2 indicates to BS2 the first resource pool or the first carrier where continuous LBT failure occurs.
  • the foregoing signaling interaction between terminals connected through unicast can improve reliability and effectiveness of communication between terminals.
  • UE1 may skip performing 303, that is, UE1 does not need to indicate to BS1 the resource pool where continuous LBT failures occur. For example, after performing 301, UE1 skips 303 and directly performs 305.
  • UE1 and UE2 in 305 or 307 may be interchanged.
  • UE1 may receive the resource pools or carriers with consecutive LBT failures indicated by UE2, and then transmit the indication information to BS1. This method is aimed at the same UE1, which can detect the resource pool or carrier with continuous LBT failure by itself, or obtain other resource pools or carriers with continuous LBT failure from the peer UE2, so as to ensure the side chain between UE1 and UE2 reliability of communication.
  • UE1 uses the resource pool in which continuous LBT failures occur to transmit services to UE2, UE2 may fail to receive the services or fail to receive them. Therefore, UE1 indicates the configuration of the resource pool to UE2, and UE2 can determine the resource pool in which continuous LBT failure occurs based on the resource pool information indicated by UE1, and then map to the resource pool obtained by UE2 from the base station or from pre-configuration. For example, the mapping may mean that UE2 obtains the indication information (resource pool identifier or index) of the resource pool from UE1, and UE2 determines the time-frequency domain resources of the resource pool based on the indication information. The time-frequency domain resources may be configured by the base station to UE2. or UE2 obtains it by itself based on the pre-configuration.
  • the indication information resource pool identifier or index
  • each base station in the sidelink communication system may provide the UE served by it with the same resource pool configuration, so as to ensure consistency of resource configuration.
  • the resource pool configuration provided by UE1's serving base station BS1 to UE1 is the same as the resource pool configuration provided by UE2's serving base station BS2 to UE2.
  • UE2 can understand correctly.
  • the same base station provides services to UE1 and UE2. In this scenario, the base station can provide the same resource pool configuration to different UEs.
  • UE2 in the connected state When UE2 in the connected state receives the indication information sent by UE1 indicating the resource pool or carrier where continuous LBT failure occurs, it can further send the indication information to the serving base station BS2 of UE2, so that when BS2 subsequently schedules resources for the UE2, The resource pool or carrier where continuous LBT failures occur may be avoided.
  • UE2 may send the above indication information to BS2 through the MAC CE.
  • the MAC CE may be the same as or different from the MAC CE used when UE2 detects the resource pool in which continuous LBT failure occurs. If they are the same, the MAC CE may also include indication information, indicating whether the continuous LBT failure is detected by UE2 itself or detected by the peer UE. Optionally, the MAC CE may also include or indicate a unicast connection between UE1 and UE2. Therefore, the base station can be enabled to perform corresponding processing for different scenarios.
  • the above MAC CE may also carry carrier information corresponding to the resource pool.
  • UE2 may also send the above indication information to BS2 through RRC.
  • UE2 in idle state or inactive state may skip 307 or not execute 307 .
  • the operation plan for UE2 to determine to avoid certain resources can also refer to the relevant descriptions for the first terminal above. Open resources in the resource pool where continuous LBT failures occur, or do not select resources in the resource pool for a period of time.
  • UE1 may send indication information to UE2 to indicate that the resource pool is available.
  • UE2 receives service transmission or data from UE1 on the resource pool, when selecting sidelink resources for the unicast connection, UE2 reselects resources in the resource pool.
  • the resource pool in which continuous LBT failure occurs is used as an example to describe the interaction between UEs and the behavior of UE2 after receiving the instruction from UE1.
  • the above process may exchange sidelink carrier information instead of sidelink resource pool information.
  • UE1 indicates to UE2 the carrier information on which continuous LBT failure occurs
  • UE2 indicates to the serving base station BS2 the carrier information on which continuous LBT failure occurs.
  • the foregoing interaction between terminals may include corresponding sidelink unicast connection information.
  • carrier granularity interaction can be used to ensure communication reliability, thereby further achieving the goal of saving signaling overhead.
  • the conditions for the terminal or base station to judge that the continuous LBT failure occurs on the carrier can refer to the above description, for example, all resource pools on the side link carrier have experienced continuous LBT failure and have not recovered. But the embodiment of the present invention is not limited to this
  • the following describes the behavior of UE2 after acquiring the indication information of UE1, such as performing resource pool selection or reselection, to ensure communication reliability in two implementations.
  • UE2 selects resources of other resource pools or resources of other carriers in the side link, and performs unicast connection communication with UE1 based on the resources.
  • the other resource pool is different from the aforementioned resource pool where continuous LBT failure occurs, or the other carrier is different from the aforementioned carrier where continuous LBT failure occurs.
  • UE2 obtains sidelink authorized resources, and the authorized resources are located in the resource pool where continuous LBT failures occur or the carrier where continuous LBT failures occur. At this time, UE2 does not use the sidelink grant resource to communicate with UE1 through a unicast connection.
  • UE2 selects resources of other resource pools or resources of other carriers in the side link, and performs the communication of the unicast connection with UE2 based on the resources.
  • the aforementioned other resource pools are different from resource pools or carriers where continuous LBT failures occur.
  • UE2 obtains sidelink authorized resources, where the authorized resources are located in the above resource pool or carrier where continuous LBT failures occur. The UE2 does not use the sidelink grant resource to communicate with the UE1 through the unicast connection.
  • UE2 will exclude the unicast connection with UE1 when selecting data to be transmitted for the resource.
  • the physical layer of UE2 instructs the MAC entity of UE2 that the currently scheduled resource belongs to the resource pool or carrier where continuous LBT failures occur.
  • the MAC entity of UE2 may perform a logical channel prioritization (logical channel prioritization, LCP) process. For example, when the MAC layer of UE2 performs the LCP process, the unicast connection with UE1 is excluded.
  • LCP logical channel prioritization
  • the physical layer indicates that the current scheduling resource of the MAC entity belongs to another resource pool or carrier, and the other resource pool or carrier can be used for communication of the unicast connection, then it can be judged according to the priority whether to use the resource to send the unicast connection data.
  • UE2 can select other resource pools or carrier resources that have not experienced continuous LBT failures, and the MAC layer of UE2 further converts the data on the unicast connection corresponding to the resource pool or carrier into a MAC packet data unit (packet data unit, PDU), And use the corresponding resources to send information on the PC5 interface.
  • PDU packet data unit
  • UE2 may affect LCP or resource selection/reselection.
  • the above information is applicable to the unicast connection between UE1 and UE2, so during communication, BS2 may schedule the resource pool or carrier resources for UE2, or UE2 may select the resource pool or carrier based on Mode2.
  • UE2 may obtain the resource pool or the resource of the carrier due to other unicast/broadcast/multicast communication requirements. In this case, UE2 needs to exclude the resource pool or the unicast connection corresponding to the carrier when performing LCP.
  • UE1 indicates to UE2, the opposite end of the unicast connection, the resource pool or carrier information detected by UE1 where continuous LBT failures occur, which can assist UE2 in resource selection and avoid using the resource pool or carrier resources to perform sidelinks with UE1. communication.
  • the following describes the scenario where a single LBT failure occurs.
  • This method can improve the reliability of sidelink communication. It can be understood that, as far as a single LBT failure is concerned, the following method can be performed before the continuous LBT failure described above and the interaction of the above failure information between terminals or between the terminal and the base station (such as 303 to 307), or independently of the above interaction .
  • the first terminal may judge by itself whether to perform LBT detection based on the obtained sidelink authorization resources. If it is determined not to perform LBT detection, subsequent continuous LBT may not need to be detected; if it is determined to perform LBT detection, it may be further determined to feed back ACK or NACK to the base station according to whether there is data to be transmitted in the process.
  • multiple LBT detections may be further performed, and detection conclusions such as continuous LBT failures may be interacted with the peer terminal or the base station. The methods related to the multiple LBT detections mentioned above are described above and will not be repeated here.
  • the embodiment of the present invention may also include:
  • the first terminal receives sidelink grant resources from the base station
  • the first terminal When the process corresponding to the sidelink authorization resource has no data to be transmitted, the first terminal skips or suspends the LBT detection of the sidelink authorization resource.
  • the embodiment of the present invention may also include:
  • the first terminal receives sidelink grant resources from the base station
  • the first terminal performs LBT detection on the sidelink authorization resource
  • the first terminal feeds back a negative acknowledgment NACK to the base station;
  • the first terminal feeds back an acknowledgment ACK to the base station.
  • the first terminal may request the base station to perform a sidelink configured grant (sidelink CG) by sending terminal assistance information (UEAssistanceInformation) to the base station.
  • the auxiliary information may carry one or more of the service period, message size, time offset, or QoS flow identifier, and is used by the base station to determine the QoS parameters corresponding to the QoS flow received earlier to configure the first terminal.
  • sidelink CG terminal assistance information
  • the time offset indicates the time offset of the arrival time of the first discovery information compared to the reference time point.
  • the reference time point may be system frame number (system frame number, SFN) 0 ) of subframe 0.
  • the base station configures the sidelink CG for the first terminal based on the request of the first terminal.
  • the sidelink CG configuration carries resource pool indication information, indicating that the sidelink CG is a resource of the resource pool.
  • the first terminal after receiving the sidelink grant scheduled by the base station, the first terminal will perform LBT detection on the grant, and if it is confirmed that the LBT fails, it will use the grant to feed back a NACK to the base station.
  • the first terminal will indicate the authorization to the MAC layer, and the MAC layer will then obtain a transmission block (transmssion block, TB) according to the authorization, and then send the TB to the PHY layer and wait for the PHY layer to send. Based on the unlicensed spectrum, the PHY layer performs LBT detection before the grant arrives.
  • transmission block transmission block
  • the resources or grants received by the first terminal may not have corresponding services or data to be transmitted.
  • the MAC layer of the first terminal may instruct the PHY layer to skip the execution of the LBT detection, or to suspend the ongoing LBT detection, so as to achieve the power saving effect.
  • the first terminal may feed back a NACK to the base station. If there is no service data to be transmitted in the grant, the first terminal may feed back an ACK to the base station to prevent the base station from continuing to schedule retransmission resources.
  • FIG. 4 it is a schematic diagram of a hardware structure of a communication device 40 provided in the embodiment of the present application.
  • the communication device 40 includes at least one processor 401 , a communication bus 402 , a memory 403 and at least one communication interface 404 .
  • the processor 401 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the implementation of the application program program integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 402 may include a path for communicating information between the components described above.
  • Communication interface 404 using any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), etc. .
  • a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), etc. .
  • Memory 403 may be read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be programmed by a computer Any other medium accessed, but not limited to.
  • the memory can exist independently and be connected to the processor through the bus. Memory can also be integrated with the processor.
  • the memory 403 is used to store the application program code for executing the solution of the present application, and the execution is controlled by the processor 401 .
  • the processor 401 is configured to execute the application program code stored in the memory 403, so as to realize the communication method provided by the above-mentioned embodiments of the present application.
  • the processor 401 may also perform processing-related functions in the communication method provided in the above-mentioned embodiments of the present application, and the communication interface 404 is responsible for communicating with other devices or networks. This is not specifically limited.
  • the processor 401 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 4 .
  • the communication device 40 may include multiple processors, for example, the processor 401 and the processor 408 in FIG. 4 .
  • Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions). It can be understood that FIG. 4 only shows a simplified design of the communication device 40 .
  • the communication device may include any number of input devices, output devices, processors, memories, and communication interfaces, and any number of communication units may provide the above functions individually or in combination.
  • the communication apparatus 40 may further include an output device 405 and an input device 406 .
  • Output device 405 is in communication with processor 401 and may display information in a variety of ways.
  • the output device 405 can be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector) wait.
  • the input device 406 communicates with the processor 401 and can accept user input in various ways.
  • the input device 406 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the communication device 40 provided in the embodiment of the present application may be a chip, a terminal, a base station, a communication device, a network device, a CU or a DU, or a device having a structure similar to that shown in FIG. 4 .
  • the embodiment of the present application does not limit the type of the communication device 40 .
  • FIG. 5 is a schematic structural diagram of a communication device 500 of a communication method provided by an embodiment of the present application.
  • the communication device may be a terminal, a base station, a communication device, a network device, a device having a terminal or a base station function, or a chip in each embodiment. wait.
  • the meanings or functions of the terms or nouns appearing below can be understood in conjunction with the above description; the specific details or implementation manners of the steps or actions appearing below can also be understood in conjunction with the above description.
  • the communications device 500 may include: a processing unit 510 and a transceiver unit 530 .
  • the transceiver unit in the above communication device may include a receiving module and a sending module, which may be connected based on an antenna.
  • the transceiver unit 530 can be used to support sending and receiving information between the communication device and the network device. Alternatively, the above-mentioned transceiver unit 530 may be used to execute the processing performed by the communication device or the network device in the communication method described in the above-mentioned embodiment.
  • the communication apparatus may be a terminal device or a chip configured in the terminal device, and the following description will be made with the first communication device or the second communication device as the execution subject.
  • the first communication device receives configuration information from the network device through the transceiver unit 530, which is used for the first communication device to detect the LBT failure of the first resource pool, and the configuration information is associated with the first A carrier or the first resource pool, where the first resource pool belongs to the first carrier.
  • the first communication device sends first indication information to the network device through the transceiver unit 530, which is used to indicate the first resource pool in which the continuous LBT fails.
  • the configuration information includes a maximum number of LBT failures and a timer length.
  • the PHY entity of the first communication device indicates to the MAC entity of the first communication device that the LBT of the first resource pool fails.
  • the MAC entity starts a timer corresponding to the first resource pool, and increases the number of counters corresponding to the first resource pool based on the LBT failure of the first resource pool. When the number of times of the counter reaches the maximum number of times, the MAC entity confirms that the continuous LBT fails.
  • the above LBT detection can ensure that the first communication device understands the possible failure status of the LBT in real time, so as to recover in time and ensure the effectiveness of the side link communication.
  • the first communication device stops resource selection of the first resource pool within a predetermined time. Or, when consecutive LBT failures occur in resource pools of the first carrier, the first communication device reselects to the second carrier of the side link.
  • the first communication device receives second indication information from the second communication device through the transceiving unit 530, which is used to indicate the second resource pool or the second carrier in the side link where continuous LBT fails.
  • the first communication device can determine by itself whether to perform sidelink communication with the second communication device based on the second resource pool or the second carrier, for example, not using the above resources within a predetermined time, or using other resources, thereby enabling real-time communication.
  • the first communication device sends third indication information to the network device through the transceiver unit 530, which is used to indicate the second resource pool or the second carrier.
  • the third indication information is also used to indicate a unicast connection between the first communication device and the second communication device.
  • the network device may not schedule the resource to the first communication device, or schedule resources to the first communication device based on other resource pools or carriers, so as to ensure real-time and effective communication between the first communication device and the second communication device, Improve scheduling reliability.
  • the first communication device selects a resource of a third resource pool or a resource of a third carrier in the side link through the processing unit 510, and performs the single communication with the second communication device based on the resource.
  • broadcast connection communication
  • the third resource pool is different from the second resource pool, or the third carrier is different from the second carrier.
  • the first communication device obtains sidelink authorization resources through the processing unit 510 or the transceiver unit 530, and the authorization resources are located in the second resource pool or the second carrier;
  • the first communication device does not use the authorized resource to communicate with the second communication device through the unicast connection.
  • the first communication device sends fourth indication information to the second communication device through the transceiver unit 530, which is used to indicate the first resource pool or the first carrier in which the continuous LBT fails.
  • the first indication information is further used to indicate the carrier to which the first resource pool belongs.
  • the first communications device receives the sidelink authorization resource from the network device through the transceiver unit 530 .
  • the first communication device skips or suspends the LBT detection of the authorized resource.
  • the first communication device receives the sidelink authorized resource from the network device through the transceiver unit 530, and the first communication device performs LBT detection on the authorized resource.
  • the first communication device sends a NACK to the network device through the transceiving unit 530 .
  • the first communication device sends an ACK to the network device through the transceiving unit 530 .
  • the first communication device receives the first indication information from the second communication device through the transceiver unit 530, which is used to indicate the first resource pool or first carrier. And the first communication device sends second indication information to the network device through the transceiver unit 530, which is used to indicate the first resource pool or the first carrier.
  • the second indication information is further used to indicate that the connection between the first communication device and the second communication device is a unicast connection.
  • the first communication device selects resources of the second resource pool or resources of the second carrier in the side link through the processing unit 510, and performs the single operation with the second communication device based on the resources.
  • broadcast connection communication
  • the second resource pool is different from the second resource pool, or the second carrier is different from the second carrier.
  • the first communication device acquires sidelink authorization resources through the transceiver unit 530 or the processing unit 510, and the authorization resources are located in the first resource pool or the first carrier. Wherein, the first communication device does not use the authorized resource to communicate with the second communication device through the unicast connection.
  • the first indication information is further used to indicate the carrier to which the first resource pool belongs.
  • the first communications device receives the sidelink authorization resource from the network device through the transceiver unit 530 .
  • the first communication device skips or suspends the LBT detection of the authorized resource.
  • the first communications device receives the sidelink authorization resource from the network device through the transceiver unit 530 . And, the first communication device performs LBT detection on the authorized resources. When the process corresponding to the authorized resource has data to be transmitted, the first communication device feeds back a NACK to the network device through the transceiving unit 530 . Or, when the process corresponding to the authorized resource has no data to be transmitted, the first communication device feeds back an ACK to the network device through the transceiving unit 530 .
  • the communication device may be a network device or a chip configured in the network device, and the network device is used as an execution subject for description below.
  • the network device sends configuration information to the first communication device through the transceiver unit 530, the configuration information is associated with the first carrier or the first resource pool, and the first resource pool belongs to the first carrier.
  • the network device receives first indication information from the first communication device, which is used to indicate the first resource pool of consecutive LBT failures.
  • the configuration information includes a maximum number of times and a timer length for the LBT detection.
  • the first indication information is also used to indicate a unicast connection between the first communication device and the second communication device.
  • the first indication information is further used to indicate the carrier to which the first resource pool belongs.
  • the foregoing communication device or network device is presented in a form of dividing various functional modules or units in an integrated manner.
  • a “module” or “unit” here may refer to an Application-Specific Integrated Circuit (ASIC), a circuit, a processor and memory that execute one or more software or firmware programs, an integrated logic circuit, and/or other A device that can provide the above functions.
  • ASIC Application-Specific Integrated Circuit
  • the apparatus 500 can respectively adopt the forms shown in FIG. 4 .
  • the function/implementation process of the transceiver unit 530 in FIG. 5 may be implemented by the processor 401 and the memory 403 in FIG. 4 .
  • the application program code stored in the memory 403 may be invoked by the processor 401 to execute, which is not limited in this embodiment of the present application.
  • the function/implementation process of the transceiver unit 530 in FIG. 5 may be implemented by the processor 401 in FIG. 4 , or by the communication interface 404 in FIG. 4 , which is not limited in this embodiment of the present application.
  • the application program code stored in the memory 403 may be invoked by the processor 401 to execute, which is not limited in this embodiment of the present application.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, configured to support a communication device to implement the foregoing communication method.
  • the chip system further includes a memory.
  • the memory is used to save necessary program instructions and data of the communication device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the controller/processor that is used to carry out above-mentioned base station of the present invention, terminal, base station or terminal can be central processing unit (CPU), general purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC), field programmable Gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the steps of the methods or algorithms described in conjunction with the disclosure of the present invention may be implemented in the form of hardware, or may be implemented in the form of a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, mobile hard disk, CD-ROM or any other form of storage known in the art medium.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the terminal or the base station.
  • the processor and the storage medium may also exist in the terminal or the base station as discrete components.
  • the functions described in the present invention may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • each network element such as a terminal, a communication device, etc.
  • each network element includes a corresponding hardware structure and/or software module for performing each function.
  • the present invention can be realized in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种旁链路通信方法及设备。该方法包括:用于第一通信设备检测第一资源池的连续先听后说LBT失败,所述配置信息关联第一载波或者所述第一资源池,所述第一资源池属于第一载波。以及,所述第一通信设备向所述网络设备发送第一指示信息,用于指示所述连续LBT失败的第一资源池。该方法可以保证旁链路资源池或载波的传输资源有效性,从而提升网络通信的可靠程度。

Description

旁链路通信方法及设备 技术领域
本发明涉及无线通信技术领域,尤其涉及一种旁链路通信方法及设备。
背景技术
随着无线通信技术的发展,衍生出面向未来的通信系统,如第五代移动通信(the 5th Generation mobile communication,5G)系统或新无线(new radio,NR)系统。在上述通信系统中,终端与终端之间可以通过旁链路(sidelink)直接通信。sidelink通信的一个典型应用场景即车联网(vehicle to X,V2X)。在车联网中,每辆车可以理解为一个终端,终端与终端之间可以通过sidelink通信,例如通过直连方式进行信息传输,从而有效减少通信时延。
无线通信的基础是频谱资源,频谱资源按照类型可以分两类,授权频谱(非共享频谱)和非授权频谱(共享频谱)。随着移动数据业务量的不断增长,频谱资源越来越紧张,仅使用授权频谱资源进行业务传输已经不能满足业务量需求,因此长期演进(Long Term Evolution,LTE)系统以及新无线(new radio,NR)系统等考虑在非授权频谱上进行业务传输。非授权频谱是很多不同空口技术可以共享的频谱,比如满足电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11协议的无线局域网,LTE许可频谱辅助接入(License Assisted Access,LAA)等。
由于非授权频谱是共享的频谱资源,为了保证不同空口技术中的不同通信设备在非授权频谱上共存,需要一个机制避免不同通信设备互相干扰,这个机制就是先听后说(listen before talk,LBT),也可以称为信道接入过程。通信设备在非授权频谱上进行通信过程中,可以通过信道接入过程在非授权频谱中竞争信道。如果信道接入成功,那么可以通过非授权频谱进行业务传输,如果信道接入失败,那么就不能进行业务传输。
但是,上述方案在配置LBT时仅考虑了终端与基站之间的无线通信过程,未考虑终端之间的旁链路通信过程。因此,需要提供一种技术,基于旁链路通信需求引入LBT设计。
发明内容
本申请描述了一种旁链路通信方法及设备,以实现终端与终端之间的信息传递。
第一方面,提供一种旁链路通信方法,该方法包括:第一通信设备接收来自网络设备的配置信息,用于所述第一通信设备检测第一资源池的连续先听后说LBT失败,所述配置信息关联第一载波或者所述第一资源池,所述第一资源池属于所述第一载波。并且,所述第一通信设备向所述网络设备发送第一指示信息,用于指示所述连续LBT失败的第一资源池。
上述配置信息关联第一载波或者所述第一资源池,可以理解为上述配置可以基于载波或部分带宽(bandwidth part,BWP)粒度,也可以基于资源池粒度。该载波粒度可以理解为以载波为粒度单独配置LBT检测;该BWP粒度可以理解为以BWP为粒度单独配置LBT检测;该资源池粒度可以理解为以资源池为粒度单独配置LBT检测。可选的,一个载波包括一个或多个BWP,一个BWP包括一个或者多个资源池。当一个载波包括一个BWP时, BWP粒度可以为载波粒度。
第一通信设备,例如第一终端可以通过不同途径获取资源池配置。第一种途径为,网络设备,例如基站通过专用信令或者系统广播为第一终端配置资源池。第二种途径为,第一终端自行基于预配置获取资源池。
基于该通信方式,可以实现终端与终端之间旁链路通信的灵活配置,提升系统适配可靠性。
可以理解,旁链路资源的获取方式可以分为基站调度模式(模式1,mode1)和UE选择模式(模式2,mode2)。在基站调度模式(mode1)下,基站可以指示当前调度的资源属于哪个资源池。在UE选择的模式(Mode2)下,UE确定了Sidelink资源之后的行为与基站调度模式类似,但在此之前UE需要自主选择资源池。具体的,针对Mode2,上述选择可以是随机选择的,或者基于监听(sensing)或者部分监听(partial sensing)的结果进行选择。
一般而言,在执行信道接入过程时可以得到两种结果:信道接入过程完成(也称为LBT成功)和信道接入过程未完成(也称为LBT失败)。其中,在用于数据传输的时频资源中有多个时域起始位置,在任意时域起始位置之前确定信道空闲,则可以认为信道接入过程完成;在所有时域起始位置之前都确定信道忙碌,则可以认为信道接入过程未完成。
当第一终端确定旁链路的载波或资源池发生连续LBT失败时,可以向网络设备发送LBT失败的媒体接入控制(medium access control,MAC)控制元素(control element,CE)。MAC CE可以包括多个资源池标识域,还可以进一步包括该资源池所属的载波信息如载波标识域。
在一个可能的实现方式中,所述配置信息包括用于所述LBT失败的最大次数和定时器长度。其中,所述第一通信设备的物理(physical,PHY)实体向所述第一通信设备的媒体接入控制MAC实体指示所述第一资源池的LBT失败。所述MAC实体启动所述第一资源池对应的定时器,且基于第一资源池的LBT失败增加所述第一资源池对应的计数器次数。当所述计数器次数达到所述最大次数时,所述MAC实体确认所述所述第一资源池发生连续LBT失败。
上述LBT检测可以确保第一通信设备实时了解LBT可能的失败状况,从而及时进行处理,保证旁链路通信的有效性。
在一个可能的实现方式中,所述第一通信设备在预定时间内停止所述第一资源池的资源选择。或者,当所述第一载波的资源池均发生连续LBT失败时,所述第一通信设备重选到所述旁链路的第二载波。
可选的,所述第一通信设备接收来自第二通信设备的第二指示信息,用于指示所述旁链路中连续LBT失败的第二资源池或第二载波。
基于该第二指示信息,第一通信设备可以自行确定是否基于该第二资源池或第二载波与第二通信设备进行旁链路通信,例如在预定时间内不使用上述资源,或者改为使用其他资源,从而保证能够进行可靠通信。
在一个可能的实现方式中,所述第一通信设备向所述网络设备发送第三指示信息,用于指示所述第二资源池或所述第二载波。
可以理解,旁链路通信系统中基站向其服务的终端可以提供相同的资源池配置,从而保证资源配置一致性。示例性的,第一通信设备的服务基站向其提供的资源池配置和第二 通信设备的服务基站向其提供的资源池配置是一样的,在该前提下,第一通信设备向第二通信设备指示发生连续LBT失败的资源池时,第二通信设备能够正确理解。
在一个可能的实现方式中,所述第三指示信息还用于指示所述第一通信设备和第二通信设备之间的单播连接。该指示可以使能网络设备感知具体出现连续LBT失败的连接,能够针对性地做差异化的处理,保证该单播连接通信可靠性的同时,不影响其他单播/广播/组播的旁链路通信。
基于该第三信息,网络设备可以不向第一通信设备调度上述资源,或基于其他资源池或载波向第一通信设备调度资源,从而确保第一通信设备和第二通信设备的实时有效通信,提升调度可靠性。
在一个可能的实现方式中,所述第一通信设备选择所述旁链路中第三资源池的资源或第三载波的资源,并基于所述资源与所述第二通信设备进行所述单播连接的通信;
其中,所述第三资源池不同于所述第二资源池,或所述第三载波不同于所述第二载波。
上述方式可以在资源选择的时候就避免为该单播连接选择已经识别了连续LBT失败的资源,从而保证第一通信设备与第二通信设备之间的单播连接的可靠通信。
示例性的,第一通信设备选择旁链路中其他资源池的资源或其他载波的资源,并基于该资源与第二通信设备进行单播连接的通信。其中,该其他资源池不同于上述发生连续LBT失败的资源池,或该其他载波不同于上述发生连续LBT失败的载波。或者,第一通信设备获取旁链路授权资源,该授权资源位于上述发生连续LBT失败的资源池或上述发生连续LBT失败的载波,因此第一通信设备不使用该旁链路授权资源与UE1进行单播连接的通信。
在一个可能的实现方式中,所述第一通信设备获取旁链路授权资源,所述授权资源位于所述第二资源池或所述第二载波;
所述第一通信设备不使用所述授权资源与所述第二通信设备进行所述单播连接的通信。
在考虑更普适性的场景中,第一通信设备针对每个授权资源进行确认是否适用,从而保证第一通信设备与第二通信设备之间的单播连接的可靠通信。
示例性的,第一通信设备的MAC实体可以进行逻辑信道优先级(logical channel prioritization,LCP)过程。例如,由第一通信设备的MAC层执行LCP过程时,排除与第二通信设备之间的单播连接。如果物理层指示MAC实体当前调度资源属于其他资源池或者载波,并且该其他资源池或者载波是可以用于该单播连接通信的,则第一通信设备可以按照优先级判断是否用该资源发送该单播连接的数据。
在一个可能的实现方式中,所述第一通信设备向第二通信设备发送第四指示信息,用于指示所述连续LBT失败的第一资源池或第一载波。因此,可以避免第二通信设备使用发生连续LBT失败的资源向第一通信设备发送数据,提升可靠性。
在一个可能的实现方式中,当所述旁链路包含多个载波时,所述第一指示信息还用于指示所述第一资源池所属的载波,从而确保资源池的精确指示。
在一个可能的实现方式中,所述第一通信设备接收来自所述网络设备的旁链路授权资源。当所述授权资源对应的进程没有数据待传时,所述第一通信设备跳过或中止所述授权资源的LBT检测。故而可以避免执行不必要的LBT,达到省电的效果。
在一个可能的实现方式中,所述第一通信设备接收来自所述网络设备的旁链路授权资源,且所述第一通信设备进行所述授权资源的LBT检测。当所述授权资源对应的进程有数 据待传时,所述第一通信设备向所述网络设备反馈否定确认(negative acknowledgement,NACK)。或者,当所述授权资源对应的进程没有数据待传时,所述第一通信设备向所述网络设备反馈肯定确认(acknowledgement,ACK)。因此,可以使能第一通信设备在合理的场景中向基站指示NACK,保证能够及时的重传调度,保证可靠通信。
基于通信设备的上述行为,可以避免网络设备进行无效或无用的资源调度,从而实现资源调度的有效性。
在一个可能的实现方式中,所述通信设备为终端,所述网络设备为基站;或,所述网络设备装置为集中式单元(centralized unit,CU)。
第二方面,提供一种旁链路通信方法,包括:第一通信设备接收来自第二通信设备的第一指示信息,用于指示旁链路中LBT失败的第一资源池或第一载波。并且所述第一通信设备向网络设备发送第二指示信息,用于指示所述第一资源池或所述第一载波。
在一个可能的实现方式中,所述第二指示信息还用于指示所述第一通信设备和所述第二通信设备之间的单播连接。
在一个可能的实现方式中,所述第一通信设备选择所述旁链路中第二资源池的资源或第二载波的资源,并基于所述资源与所述第二通信设备进行所述单播连接的通信;
其中,所述第二资源池不同于所述第二资源池,或所述第二载波不同于所述第二载波。
在一个可能的实现方式中,所述第一通信设备获取旁链路授权资源,所述授权资源位于所述第一资源池或所述第一载波。其中,所述第一通信设备不使用所述授权资源与所述第二通信设备进行所述单播连接的通信。
在一个可能的实现方式中,当所述旁链路包含多个载波时,所述第一指示信息还用于指示所述第一资源池所属的载波。
在一个可能的实现方式中,所述第一通信设备接收来自所述网络设备的旁链路授权资源。当所述授权资源对应的进程没有数据待传时,所述第一通信设备跳过或中止所述授权资源的LBT检测。
在一个可能的实现方式中,所述第一通信设备接收来自所述网络设备的旁链路授权资源。以及,所述第一通信设备进行所述授权资源的LBT检测。当所述授权资源对应的进程有数据待传时,所述第一通信设备向所述网络设备NACK。或者,当所述授权资源对应的进程没有数据待传时,所述第一通信设备向所述网络设备反馈ACK。
在一个可能的实现方式中,所述通信设备为终端,所述网络设备为基站;或,所述网络设备装置为CU。
第三方面,提供一种旁链路通信方法,包括:网络设备向第一通信设备发送配置信息,所述配置信息关联第一载波或者所述第一资源池,所述第一资源池属于所述第一载波。并且,所述网络设备接收来自所述第一通信设备的第一指示信息,用于指示所述连续LBT失败的第一资源池。
在一个可能的实现方式中,所述配置信息包括用于所述LBT失败的最大次数和定时器长度。
在一个可能的实现方式中,所述第一指示信息还用于指示所述第一通信设备和第二通信设备之间的单播连接。
在一个可能的实现方式中,当所述旁链路包含多个载波时,所述第一指示信息还用于指示所述第一资源池所属的载波。
第四方面,提供了一种用于旁链路通信的装置,所述装置可以用来执行第一、第二方面及其任意可能的实现方式中的通信设备的操作。具体地,所述装置可以包括用于执行上述第一或第二方面的任意可能的实现方式中的通信设备的各个操作的模块单元。
第五方面,提供了一种用于旁链路通信的装置,所述装置可以用来执行第三方面及其任意可能的实现方式中的网络设备的操作。具体地,所述装置可以包括用于执行上述第三方面的任意可能的实现方式中的网络设备的各个操作的模块单元。
第六方面,提供了一种终端设备,所述终端设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述终端设备执行第一或第二方面任意可能的实现方式中的任一方法,或者所述执行使得所述终端设备实现第四方面提供的装置。
第七方面,提供了一种网络设备,所述网络设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述网络设备执行第三方面的任意可能的实现方式中的任一方法,或者所述执行使得所述网络设备实现第五方面提供的装置。
第八方面,提供了一种芯片系统,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从存储器中调用并运行所述计算机程序,使得安装有所述芯片系统的设备(例如,网络设备或终端设备)执行上述第一、第二或第三方面及其可能的实施方式中的任一方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被设备(例如,网络设备或终端设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一、第二或第三方面及其可能的实施方式中的任一方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得设备(例如,网络设备或通信设备)执行上述第一、第二或第三方面及其可能的实施方式中的任一方法。
第十一方面,提供了一种计算机程序,所述计算机程序在某一计算机上执行时,将会使所述计算机实现上述第一、第二或第三方面及其可能的实施方式中的任一方法。
附图说明
图1a为本申请实施例提供的一种通信系统示意图;
图1b为本申请实施例提供的一种通信系统示意图;
图1c为本申请实施例提供的一种通信系统示意图;
图2a为本申请实施例提供的一种通信系统示意图;
图2b为本申请实施例提供的一种通信系统示意图;
图2c为本申请实施例提供的一种协议栈示意图;
图3为本申请实施例提供的多种通信方法的流程示意图;
图3a为本申请实施例提供的一种BWP的示意图;
图3b为本申请实施例提供的一种MAC CE的示意图;
图3c为本申请实施例提供的另一种MAC CE的示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
为了解决现有技术中无法针对不同通信场景进行终端与终端之间的传输问题,本发明实施例基于图1a所述的通信系统提出了一种技术方案,用于提高系统系统中传输的有效性。
图1a为本申请实施例适用的一种可能的系统架构示意图。如图1a所示的系统架构包括第二设备101和第一设备102。本申请实施例中的第二设备可以通过无线方式与第一设备连接,即第二设备可以通过无线网络与第一设备进行通信。应理解,图1a仅为通信系统的一个架构示意图,本申请实施例中对通信系统中第一设备的数量、第二设备的数量不作限定。在本实施例中,无线方式可以理解为旁链路通信和/或无线链路通信。
在一个示例中,上述系统架构中的第一设备和第二设备可以进行旁链路通信。参见图1b,为旁链路通信场景示意图,如图1b所示,该通信场景中可以包括网络设备105以及一个或多个终端设备(比如终端设备1061、终端设备1062)。网络设备105与终端设备1061、终端设备1062可以通过空口资源进行数据传输,终端设备1061和终端设备1062之间可以通过旁链路资源进行数据传输。其中,第一设备可以为终端设备1061,第二设备可以为终端设备1062,或者反之。图1b中,以上行传输为例,网络设备105与终端设备(终端设备1061或终端设备1062)进行上行数据传输的数据信道可以承载在第一上行(uplink,UL)载波中,或者承载在辅助上行(supplimentary UL,SUL)载波中。终端设备1061和终端设备1062进行数据传输的数据信道可以承载在SL载波中。在一个示例中,SL载波可以为第二UL载波,第一UL载波和第二UL载波可以为同一载波。
旁链路(sidelink,SL)通信是指允许终端设备之间进行相互通信的技术,用于承载终端设备通信的资源可以称为旁链路资源。由于旁链路通信能够实现不同终端设备之间的直接通信,从而能够实现较高的数据速率、较低的时延和较低的功耗。旁链路通信可以包括比如车对车(vehicle-to-vehicle)、车对基础设施(vehicle-to-infrastructure)、车对用户(vehicle-to-pedestrians)、设备对设备(device-to-device)。可以理解,工业互联网通信场景和无线网格网络通信场景中,均可以使用旁链路通信技术。
如图1c所示,该通信系统至少包括集中式单元(centralized unit,CU)10c和分布式单元(distributed,DU)11c。上述DU11c与终端12c通信。例如,将NR基站的部分功能部署在CU,将剩余功能部署在DU。此时,DU数量可以为一个或多个,多个DU可以共用一个CU,以节省成本,易于网络扩展。具体而言,CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将以下协议层中的至少一个部署在CU:无线资源控制(Radio Resource Control,RRC)层、服务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层。其余协议层中的至少一个部署在DU:无线链路控制(Radio Link Control,RLC)层、介质访问控制(Media Access  Control,MAC)层或、物理层。CU和DU之间可以通过F1接口连接。CU代表NR基站和NR核心网连接。本领域的技术人员可以理解,上述CU和DU可以位于不同物理实体或独立于NR基站。换言之,CU和DU结合,可以得以实现NR基站的功能或取代NR基站。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装后透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端设备,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装置发送的。
本发明实施例描述的系统架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆网系统中的通信。其中,车辆网系统中的通信方式统称为V2X(X代表任何事物),例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
应理解,上述通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、宿主基站(donor eNB,DeNB)、基带单元(base band Unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括CU和DU。gNB还可以包括射频单元(radio unit,RU)。 CU实现gNB的部分功能,DU实现gNB的部分功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
还应理解,上述通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。为了便于理解本申请,在介绍本申请提供的通信方法前,首先对本申请涉及的概念做简要介绍。
为了便于理解,首先对本申请实施例涉及的相关术语和相关技术做一简单介绍。
旁链路通信的传播类型
Sidelink的通信系统与无线通信系统类似,同样可以支持广播、单播、组播的传输方式。广播类似于基站向终端广播系统信息,例如基站向UE不做加密,发送广播业务数据,任何在有效接收范围内的其他UE,如果对该广播业务感兴趣都可以接收该广播业务数据。单播类似于UE与基站之间建立RRC连接之后进行的数据通信,需要两个UE之间首先建立单播连接。在建立单播连接之后,两个UE可以基于协商的标识进行数据通信,该数据可以是加密或不加密。相比于广播通信,在单播通信中,只能是建立了单播连接的两个UE之间才能进行该单播通信。组播通信是指一个通信组内所有UE之间的通信,组内任一UE都可以收发该组播业务的数据。
具体的,广播传输可以称为广播sidelink信号通信,也可以称为,广播业务的sidelink通信,或者传输类型为广播的sidelink的通信;组播传输可以称为组播sidelink信号通信,也可以称为,组播业务的sidelink通信,或者传输类型为组播的sidelink的通信;单播通信可以称为单播sidelink信号通信,也可以称为,单播业务的sidelink通信,或者传输类型为单播的sidelink的通信。
基于上述任意一种的传播类型,在sidelink上进行数据传输时,需要携带源标识(source ID)和目标标识(destination ID)。在本实施例中,上述标识针对UE的层2(layer 2,L2)而言。具体而言,UE的上层为PC5-S层,用于UE之间的通信。该上层可以称为非接入(Non-access stratum,NAS)层、V2X层或PC5-S层。UE的层2可以为AS层,用于终端与基站之间的通信。针对广播,目标标识对应一个广播业务,源标识可以理解为是发送端UE的标识;针对单播,目标标识为接收端UE为该单播连接分配的一个L2标识,源标识 为发送端UE为该单播连接分配的一个L2标识;针对组播,目标标识对应一个组,源标识可以理解为是发送端UE的标识。
一种可能的方式,如图2a和图2b所示,通过D2D或V2X的旁链路(side link,SL)进行数据收发。其中SL指的是如图2a和图2b中所示的D2D和SL链路。在SL中,终端设备之间的数据传输可以不经过网络设备进行中转,即SL可以为终端设备之间的传输链路。
如图2b所示,车辆可以通过V2V、V2I、V2P或者V2N来及时获取路况信息或接收信息服务,这些通信方式可以统称为V2X通信。图2b中的图(1)、图(2)、图(3)分别是V2V、V2I、V2P的示意图。其中,110为网络设备。120可以表示车辆,130可以表示路边基础设施,140可以表示行人。以最常见的V2V通信和V2I通信为例,如图2b中的图(1)所示,车辆之间通过V2V通信,可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆,周围车辆的驾驶员通过获取该类信息,可以更好的感知视距外的交通状况,从而对危险状况作出提前预判进而作出避让。而对于图2b中的图(2)所示的V2I通信,除了上述安全信息的交互外,路边基础设施,例如,路侧单元(road side unit,RSU)可以为车辆提供各类服务信息和数据网络的接入,不停车收费、车内娱乐等功能都极大的提高了交通智能化。
旁链路资源
旁链路资源是用于终端和终端之间的通信的资源。旁链路资源可以包括频域的旁链路资源和时域的旁链路资源。此外,本申请中的旁链路又可以称为侧行或侧行链路,以下就旁链路进行统一描述。
从传输类型角度,旁链路资源可以包括旁链路发送资源和旁链路接收资源。其中,旁链路发送资源用于发送信息,如发送控制信息和/或数据。旁链路接收资源用于接收信息,如接收控制信息和/或数据。本领域技术人员可以理解,上述发送资源和接收资源可以位于相同时域和/或频域范围。例如,基于时分系统,发送和接收可以共用相同的频域资源;基于频分系统,发送和接收可以共同相同的时域资源。
可选的,旁链路信号可以包括承载于旁链路信道上的控制信息和/或数据和/或反馈信息。
可选的,控制信息可以是用于调度数据的信息,比如现有技术中的下行控制信息(downlink control information,DCI),旁链路控制信息(sidelink control information,SCI)。反馈信息可以是指反馈的信息,比如现有技术中的上行控制信息(uplink control information,UCI),旁链路反馈信息(SFI)等。控制信息可以通过控制信道承载,比如PSCCH,物理旁链路控制信道。反馈信息可以通过反馈信道承载,比如PSFCH,物理旁链路反馈信道。
可选的,数据可以是指广义的信号,也可以是指数据包,还可以是传输块或码字。数据可以通过数据信道承载,比如物理旁链路共享信道(physical sidelink shared channel,PSSCH)等。
旁链路数据无线承载
NR侧行网络中的通信可以基于业务流的方式进行区分,如IP流或以太网流可以理解为对应不同的业务。上述业务流基于不同的服务质量(quality of service,QoS)参数或特性,会区分为不同QoS流。具体而言,可以由基站将上述QoS流映射为sidelink数据无线承载 (data radio bearer,DRB),或定义上述QoS流与sidelink DRB的映射关系。例如,基站将不同QoS流映射为不同sidelink DRB或将具有类似相近参数的QoS流映射为相同sidelink DRB。终端可以基于上述映射关系,建立sidelink DRB,并将对应的QoS流通过该sidelink DRB发送给其他终端。其中,sidelink DRB是用于终端与终端之间传输数据的DRB。可选的,终端也可以基于预配置确定映射关系,建立sidelink DRB。
旁链路逻辑信道
可以按照终端传输业务的不同类型,将数据进行分类,并对应不同的逻辑信道。相应的,逻辑信道信息可以为逻辑信道(logic channel,LCH)标识和/或逻辑信道组(logic channel group,LCG)标识。本领域的技术人员可以理解,但凡用于识别上述逻辑信道或逻辑信道组的标识,均在本发明保护范围之内。LCG可以由至少一个LCH组成,例如4个LCH或8个LCH均可分别构成一个LCG,区别在于不同数量的LCH所组成的LCG数据量大小各有不同。一般而言,不同LCH所对应的资源类型可以相同或不同,一个LCG中的不同LCH所对应的资源类型可以相同或不同,一个LCH可以对应至少一个资源类型。又如,不同LCH/LCG的优先级顺序可以由其所携带的数据本身的特性所决定。该LCH/LCG的优先级顺序可以理解为为终端向基站发送数据的先后顺序。例如,根据以下任意一种或多种情况,可以确定该LCH/LCG的优先级顺序:
数据对于时延要求的严格程度;
数据的数据量大小;
数据在缓存区的等待时间;或
数据类型。
又或者,LCG的优先级可以关联该LCG内的LCH。例如,LCG包括LCH1和LCH2,其中,LCG1的优先级高于LCG2的优先级。此时,该LCG的优先级可以参考LCG1优先级或与LCG1的优先级相同。
需要说明的是,本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。名词“成员载波”、“载波单元”和“载波”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,在本申请实施例中,“标识(identifier,ID)”和“索引(index)”经常交替使用,但本领域的技术人员可以理解其含义。应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,在本申请实施例中,“至少一个”可表示“一个或多个”。例如,通方式A、方式B、方式C中的至少一个方式实现,表示:可以通过方式A实现、或通过方式B实现、或通过方式C实现;也可以表示为:可以通过方式A和方式B实现、或通过方式B和方式C实现、或通过方式A和方式C实现;也可以表示为:可以通过方式A和方式B和方式C实现。与此类似地,“至少两个”可表示“两个或更多个”。
还需要说明的是,在下文示出的实施例中,第一、第二、第三等是为便于区分不同对象,而不应对本申请构成任何限定。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。下面将结合附图详细说明本申请提供的技术方案。
本申请实施例中,以V2X系统为例,不论是广播、单播还是组播,sidelink覆盖范围内的终端之间若需要正常通信,一般需要先行通过LBT过程,从而寻找到可用或空闲的非授权频谱上可用或空闲的旁链路资源,随后进行信息传输。
上述旁链路资源获取方式可以分为基站调度模式(模式1,mode1)和UE选择模式(模式2,mode2)。
在基站调度模式(mode1)下,基站可以指示当前调度的资源属于哪个资源池。具体的,基站可以通过DCI为UE调度资源,或者通过RRC消息为UE分配旁链路配置授权(configured grant)。
在UE选择的模式(Mode2)下,UE确定了Sidelink资源之后的行为与基站调度模式类似,但在此之前UE需要自主选择资源池。一种可能性是,UE自行选择,即自主确定选择哪个资源池。例如,UE从基站接收资源池配置,或者从预配置中获取资源池配置,然后在资源池中选择资源进行旁链路通信。
具体的,上述选择可以是随机选择的,或者基于监听(sensing)或者部分监听(partial sensing)的结果进行选择。Sensing也可以理解为全监听(full sensing),要求终端持续监听旁链路的信道,例如旁链路上的物理旁链路控制信道(physical sidelink control channel,PSCCH),或者SCI来确定哪些资源可用。Partial sensing顾名思义,相比于full sensing而言,终端只需要监听部分时域资源用于确定可用资源,相比于full sensing更为省电。随机选择针对部分资源池,可以不做sensing或partial sensing,而是随机地选择可用资源。可以理解,上述时域资源可以为旁链路上的时间单元,如帧、子帧、时隙,符号等,本发明对此不做限定。
一般而言,以信道(例如20MHz)为粒度进行LBT。通信设备在某个信道(例如记作第一信道)上发送信号(例如,数据信号)之前,可以先检测该第一信道是否空闲。例如,是否检测到附近的通信设备正在占用该第一信道发送信号,这一检测过程可以称为空闲信道评估(clear channel assessment,CCA)或者称为信道接入过程。
具体的,信道接入过程有两种,记作第一类型的信道接入过程和第二类型的信道接入过程。
第一类型的信道接入过程(也可以称为基于固定时长的信道接入过程):
基于固定时长的能量检测,针对一定带宽(例如20兆赫兹或20MHz),通信设备(该通信设备可以是终端,也可以是网络设备)在固定时长内接收到的信号能量小于或等于第一预设门限,则认为信道空闲,从而通信设备可以使用该空闲的信道传输数据。否则,认 为信道忙碌,从而通信设备不使用该忙碌的信道传输数据。
或者,基于固定时长的信道接入过程,通信设备检测固定时长,如果在该固定时长内,在信道内检测到的信号的能量低于预设门限,则认为信道处于空闲状态,从而可以占用信道,否则需要重新竞争信道。
第二类型的信道接入过程(也可以称为基于回退的信道接入过程):
基于回退机制的能量检测,针对一定带宽,定义一个窗口,该窗口定义了检测的时隙数量的范围,通信设备从该窗口(或取值范围)内,随机选择一个数值A,通信设备检测了至少A个空闲的能量检测的时隙之后,则认为信道空闲,从而通信设备可以使用该空闲的信道传输数据。否则,认为信道忙碌,从而通信设备不使用该忙碌的信道传输数据。其中,空闲的能量检测是指在固定时长内接收到的信号能量小于或等于第二预设门限。第一预设门限和第二预设门限可以是预定义的,例如协议预定义的,对此不作限定,此外第一预设门限和第二预设门限之间没有限制关系,可以相同,也可以不相同。
具体的,通信设备在一个竞争窗口中,随机选择一个数值A,当检测到至少A个空闲的时隙之后,才可以确定信道处于空闲状态,从而可以占用信道,否则需要重新竞争信道。其中,空闲的时隙是指在一个时隙内,在信道内检测到的信号的能量低于预设门限。在这种类型的信道接入过程中,引入了四种信道接入优先等级(channel access priority class,CAPC),不同的CAPC对应不同的信道接入参数,信道接入参数包括竞争窗口的大小、对应的业务情况以及信道占用时间(channel occupancy time,COT)信息等。COT是指信道接入过程成功之后,能使用这个信道的时长。
在执行信道接入过程时可以得到两种结果:信道接入过程完成(也称为LBT成功)和信道接入过程未完成(也称为LBT失败)。其中,在用于数据传输的时频资源中有多个时域起始位置,在任意时域起始位置之前确定信道空闲,则可以认为信道接入过程完成;在所有时域起始位置之前都确定信道忙碌,则可以认为信道接入过程未完成。
不同之处在于,在基于授权频谱工作的场景中,UE获取调度资源后,可以直接使用该资源进行业务传输;而在基于非授权频谱工作的场景中,UE获取调度资源后,还需要对该资源进行LBT,并且需要在LBT成功后使用该资源进行业务传输。
本发明实施例中,针对非授权频谱在旁链路通信中的应用,进行旁链路中有效的LBT过程,实现Sidelink通信可靠性,并提升终端与终端之间的通信效率,以下做详细描述。
图3是本申请提供的一种通信方法的示意性流程图。其中,在sidelink场景中,以通信设备为终端,网络设备为基站进行描述。上述通信设备、网络设备均可为芯片,或由芯片实现,本申请实施例对此不做限定。为便于描述,以下描述的通信设备也可以称为终端或UE。
该方法包括:
301、第一通信设备获取配置信息,用于第一通信设备检测第一资源池的连续先听后说LBT失败,所述配置信息关联第一载波或者所述第一资源池,所述第一资源池属于所述第一载波。
303、第一通信设备向网络设备发送第一指示信息,用于指示连续LBT失败的第一资源池。
一般而言,NR中一个载波的带宽相较于LTE载波带宽更宽,例如,NR的载波带宽可以为100MHz,而不同终端的射频能力不同,所能支持的最大带宽不同,因此引入带宽部分(bandwidth part,BWP)的概念。图3a示出了BWP的示意图。BWP是载波上一组连续的RB资源。不同的BWP可以占用部分重叠但带宽不同的频域资源,也可以是具有不同numerology的带宽资源,频域上可以互不重叠。以一个终端设备最多可以配置4个BWP举例说明,如,频分双工(frequency division duplexing,FDD)下4个BWP,时分双工(time division duplexing,TDD)下4个BWP。每个载波上同时能激活一个BWP,终端之间基于旁链路可以在激活的BWP上进行数据的收发。
本申请实施例中,网络设备可以在非授权频谱上为终端配置BWP并在所配置的BWP中激活一个BWP,终端之间可以通过非授权频谱进行旁链路通信。上述配置信息关联第一载波或者所述第一资源池,也可以理解为上述配置可以基于载波或BWP粒度,也可以基于资源池粒度。该载波粒度可以理解为以载波为粒度单独配置LBT检测;该BWP粒度可以理解为以BWP为粒度单独配置LBT检测;该资源池粒度可以理解为以资源池为粒度单独配置LBT检测。可选的,一个载波包括一个或多个BWP,一个BWP包括一个或者多个资源池。当一个载波包括一个BWP时,BWP粒度可以为载波粒度。因此,资源池粒度可以使能网络的灵活配置;载波或者BWP粒度,则可以节约信令开销。
在301中,第一终端可以通过不同途径获取资源池配置。第一种途径为,网络设备,例如基站通过专用信令或者系统广播为第一终端配置资源池。第二种途径为,第一终端自行基于预配置获取资源池。上述预配置可以预先存储在终端内部或者用户身份模块(Subscriber Identity Module,SIM)卡中,或者终端设备从核心网接收配置。SIM卡也可以称为电话卡,或主要用于存储用户身份识别数据、短信数据、电话号码等信息的智能卡。
在第一种途径中,由网络设备配置资源池,对应模式1;在第二种途径中,则由第一终端自行配置,对应模式2。换言之,在第一种途径中,资源池配置由网络设备基于向第一终端提供,保证入网终端能够获得有效的资源池配置,并基于该资源池配置进行旁链路通信。第二种途径中,资源池配置预置在第一终端内部或者SIM卡中,保证第一终端在没有网络覆盖的情况下,也能够基于预配置的资源池进行旁链路通信。
就第一种途径而言,第一终端接收基站发送的配置信息,可以是基站通过广播,或通过RRC专用信令发给UE。例如,当UE处于空闲态或非激活态时,基站通过广播消息向UE发送。当UE处于连接态时,基站通过RRC专用信令向UE发送。
比如由接入网设备或基站向终端发送系统信息或RRC公共信息。系统信息或公共RRC信息可以是小区级的参数。通过系统信息配置或RRC公共信息的配置的方式,可以为终端配置,在具体实现中,可以由接入网设备向终端发送系统信息或RRC公共信息,该系统信息或RRC公共信息用于为各个终端配置。由于系统信息或RRC公共信息是发给终端的,因此系统信息或RRC公共信息发送的配置信息可以用于终端之间的组播传输,比如发送端UE可以使用系统信息配置或RRC公共信息配置的旁链路资源组播数据和/或控制信息,则其它终端,如接收端UE可以在对应的旁链路资源池上接收数据或控制信息。
又如由接入网设备或基站向终端发送RRC专用信息。RRC专用信息可以是终端级的参数(或称为UE级的参数),针对该终端进行参数配置。针对RRC专用信息的配置方式,可以为单个终端配置,在具体实现中,可以由接入网设备向单个终端发送RRC专用信息,该RRC 专用信息用于为终端配置。由于RRC专用信息是发给单个终端的,因此RRC专用信息发送的配置信息可以用于终端之间的单播传输,比如终端1可以使用RRC专用信息发送的配置信息向终端2单播发送数据或控制信息。
又或者,由运营商为终端预先配置旁链路资源池或者在标准协议中通过预定义的方式为终端预配置。通过预配置的配置方式,可以为一个或多个终端配置,在具体实现中,可以由核心网设备(如策略控制功能Policy Control Function网元,PCF网元)向各个终端分别发送预配置信息,该预配置信息用于为各个终端分别配置。由于预配置信息是发给多个终端的,因此预配置信息可以用于终端之间的广播传输,比如终端1可以使用预配置信息广播数据和/或控制信息,则其它终端,如终端2可以基于该预配置信息接收数据和/或控制信息。
实际应用中,上述系统信息、RRC公共信息、RRC专用信息、或预配置信息均可以用于广播、组播和/或单播的信息传递,本申请不做限定。
如图2c所示,基于旁链路通信的终端的协议栈包括以下至少一个协议层(或实体):旁链路业务数据适配(Service Data Adaptation Protocol,SDAP)层,旁链路分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)层、旁链路无线链路控制(RLC,Radio Link Control)层、旁链路媒体接入控制(MAC,Media Access Control)层和旁链路物理(PHY,Physical)层。
上述SL PDCP层主要用于对信息进行压缩和解压缩/加密和解密;SL RLC层主要用于实现自动重传请求(ARQ,Automatic Repeat Request)的相关功能,对信息进行分段和级联或对分段和级联的信息进行重组;SL MAC层主要用于对传输格式组合的选择,实现调度和混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)的相关功能;SL PHY层主要用于为MAC层和高层提供信息传输的服务,根据选择的传输格式组合进行编码调制处理或解调解码处理。因此,在本发明实施例中,可以使终端协议栈聚合在上述PDCP层、RLC层或MAC层中的任一协议层上。例如,聚合在PDCP层可以通过加解密方式提升信息传输的可靠度。上述适配层用于对数据进行在基站与终端协议栈之间的转换处理,通过设置适配层,能够确保数据在协议栈之间的转换,使协议栈在基站中的配置更加灵活。
一般而言,301中的配置信息可以包括用于所述LBT失败的最大次数和定时器长度。
具体的,基于旁链路载波的配置信息,可以指一个载波对应或具有一个的配置。因此,该载波内的所有资源池可以基于该同一个配置进行连续LBT失败的恢复。或者,基于旁链路资源池的配置信息,可以指一个资源池对应或具有一个的配置。如果发生LBT失败,第一通信设备的物理PHY实体向第一通信设备的媒体接入控制MAC实体指示第一资源池的LBT失败。该MAC实体启动或者重启第一资源池对应的定时器,且基于第一资源池的LBT失败增加该第一资源池对应的计数器次数。当计数器次数达到最大次数时,该MAC实体确认所述第一资源池发生连续LBT失败。可选的,针对第一资源池中的每个旁链路授权资源,第一通信设备的物理层都进行LBT检测。
以粒度为BWP举例而言(一个载波具有一个BWP时,BWP粒度可以理解为载波粒度),第一终端在BWP中执行LBT检测时,当第一终端确定在该BWP中每发生一次LBT失败,可以执行以下操作:
1、将该BWP的计数器(该计数器可以称为LBT_FAIL_COUNTER)的计数值加1,其 中计数器的初始值为0。
2、启动或重启该BWP的定时器(该定时器可以称为lbtFailureDetectionTimer),所述定时器的定时时长可以为第一终端或基站配置的时长。
在定时器超时之前,如果计数器的计数值达到阈值,第一终端可以确定该BWP发生连续上行LBT失败(consistent LBT failure)。在定时器超时的情况下,终端可以重置计数器的计数值为0。上述计数器和定时器是该BWP或者载波对应的计数器和定时器。
粒度为资源池具有类似设计,不同之处在于第一终端针对每个资源池分别执行计数器和定时器的操作,并确定该资源池是否发生连续LBT失败。
可以理解,不管配置信息是与载波/BWP关联还是与资源池关联,第一终端都可以以资源池粒度维护定时器和计数器用于检测连续LBT失败,即第一终端为不同的资源池分别维护定时器和计数器。或者,配置信息与载波关联,第一终端可以以载波粒度维护定时器和计数器用于检测连续LBT失败,即第一终端为不同的载波分别维护定时器和计数器。
本发明实施例中的303主要针对第一终端的RRC状态处于连接态(connected)。换言之,当第一终端处于连接态时,可以向基站指示连续LBT失败的资源池;当第一终端处于空闲态(idle)或非激活态(inactive)时,可以跳过向基站进行上述指示或者不执行303。可以理解,连接态的第一终端向基站上报MAC CE,目的是为了让基站感知,从而基站可以去更新资源池的配置,或者资源池的LBT相关配置。反正,Idle或者inactive态的第一终端与基站之间没有通信,故该步骤可以省略。
当第一终端确定旁链路的载波或资源池发生连续LBT失败时,可以向网络设备发送LBT失败的媒体接入控制(medium access control,MAC)控制元素(control element,CE),从而达到快速向网络设备指示的目的,下面将详细描述。
举例来说,图3b所示的MAC CE包括多个资源池标识域,其中包括8个资源池标识域:RP 0至RP 7。一个资源池标识域对应的比特位的取值为第一值时,表示终端在这个资源池标识域对应的资源池中发生连续LBT失败;一个资源池标识域对应的比特位的取值为第二值时,表示终端在这个资源池标识域对应的资源池中没有发生连续LBT失败。第一值和第二值的具体取值并不限定,例如第一值为1,第二值为0。
考虑支持多个旁链路载波的场景,第一终端还可以在该MAC CE中携带该资源池所属的载波信息。如图3c所示,MAC CE可以包括载波标识域,例如8个载波分别表示为C 0-C 7,图中每个C i域对应一个载波。当第一载波对应的C i域为第一值时,则表示该MAC CE中可以进一步标识该第一载波对应的8个资源池标识域。当第一载波对应的C i域为第二值时,则表示该MAC CE中可以不标识该第一载波对应的8个资源池标识域。在实际应用中,还可以采用其他方式表示载波域,本申请实施例对此并不限定,载波标识域用于指示终端在该载波中是否发生连续LBT失败。类似地,载波标识域对应的比特位的取值为第一值时,表示终端在该载波中发生连续LBT失败;载波标识域对应的比特位的取值为第二值时,表示终端在该载波中没有发生连续LBT失败。第一值和第二值的具体取值并不限定,例如第一值为1,第二值为0。
当第一终端处于连接态且资源池发生连续LBT失败,第一终端生成MAC CE,用于向基站指示发生连续LBT失败的资源池信息。例如,该MAC CE中包括发生连续LBT失败的资源池的指示信息,该指示信息可以是资源池索引或者资源池标识。
一般而言,该MAC CE可以对应一个逻辑信道标识(LCH ID),例如使用该LCH ID标识该MAC CE,该LCH ID与该MAC CE具有一一对应关系。可选的,基站可以为该MAC CE配置调度请求(scheduling request,SR)资源,用于为该MAC CE向基站请求空口(Uu口)资源。
可以理解,第一终端在预定时间内可以停止上述资源池中的资源选择;或
当所述载波的资源池均发生连续LBT失败时,第一终端可以重选到旁链路的其他载波。
以下就不同模式,区分描述发生连续LBT失败后的第一终端或基站行为。
1、第一终端处于mode1:
终端上报MAC CE向基站指示发生连续LBT失败的资源池信息后,基站在第一预定时间内不为该终端调度该资源池中的资源。
进一步的,在该预定时间后,基站可以重新为该终端调度该资源池中的资源。如果再次发生LBT失败,基站在第二预定时间内不为该终端调度该资源池中的资源。其中,第二预定时间不短于第一预定时间。
可选的,上述机制还可以应用于在时域和/或频域资源与该资源池存在重叠的其他资源池。即,如果不同资源池之间有时域或频域资源重叠,此类资源池中的至少一个发生连续LBT失败,则基站在预定时间内可以不调度该类资源池中的任何一个。
上述行为可以避免基站频繁尝试造成通信不可靠。另外,针对频域位置有重叠的资源池采纳相同处理,能够提升可靠性。
2、第一终端处于mode2:
处于连接态的第一终端会向基站上报该MAC CE。
不论是否上报MAC CE,第一终端均可以继续在发生连续LBT失败的资源池中尝试选择资源,并进行LBT以确定是否可用该资源。或者,第一终端可以进行以下至少一种方式的操作,从而避免选择某些资源:
方式一:不再从发生连续LBT失败的资源池中选择资源。
方式二:在预定时间段内不再从该资源池中选择资源。其中,该预定时间段的时长可以通过基站配置,也可以终端自行确定。
方式三:在基站重配该资源池之前,不再从该资源池中选择资源。该资源池的重配可以是该资源池的LBT重配。
因此,通过上述方式可以保证第一通信设备与其他通信设备(如第二通信设备)之间的旁链路通信可靠性。
本发明实施例中,上述方式一或方式二可以适用于非连接态的终端,方式三适用于连接态的终端。
进一步的,考虑多载波的场景,上述MAC CE中还可以携带该资源池对应的载波信息。
可选的,第一终端也可以通过RRC向为其提供服务的基站发送上述指示信息。
进一步的,当某个载波上所有资源池都发生了连续LBT失败时,如果还有其他载波,第一终端可以进行载波重选,从而选择到其他载波进行业务传输;如果所有载波都发生连续LBT失败(例如所有载波上的所有资源池都发生连续LBT失败),第一终端可以向其上层(例如PC5-S层、V2X层或者应用层)发送指示信息,指示PC5接口不可用。对应的,该应用层可以转而由空口(Uu口)进行业务传输。
本实施例可以使能终端基于资源池进行LBT失败处理,并通过指示基站或者限制终端行为来保证旁链路通信的可靠性。
就第二种途径,即第一终端自行基于预配置获取配置信息而言,以下就终端之间的交互进行详细阐述。如图3所示,UE1的服务基站为BS1,UE2与UE1之间的通信以单播连接举例而言。UE2处于idle态、inactive态或连接态。如果UE2处于连接态,其对应的服务基站为BS2。本实施例中该BS2与BS1可以是同一个基站。
在UE1确定第一资源池发生连续LBT失败后,本实施例还可以包括:
305、UE1向UE2指示发生连续LBT失败的第一资源池或第一载波。
307、UE2向BS2指示发生连续LBT失败的第一资源池或第一载波。
上述通过单播连接的终端之间的信令交互,可以提升终端之间通信的可靠性和有效性。
可以理解,针对该单播连接的通信场景,UE1可以跳过执行303,即UE1无需向BS1指示发生连续LBT失败的资源池。例如,UE1在执行301后,跳过303,直接执行305。或者,在305或307中的UE1和UE2可以互换。例如,UE1可以接收UE2指示的发生连续LBT失败的资源池或载波,再将该指示信息向BS1传送。该方式针对同一个UE1,其既可以自行检测发生连续LBT失败的资源池或载波,也可以从对端UE2获取发生连续LBT失败的其他资源池或载波,从而确保UE1与UE2之间的旁链路通信的可靠性。
UE1如果使用该发生连续LBT失败的资源池向UE2进行业务传输,可能会导致UE2无法成功接收该业务或接收失败。故而,UE1向UE2指示该资源池的配置,UE2得以基于UE1指示的资源池信息确定发生连续LBT失败的资源池,进而映射到UE2从基站或者从预配置中获取的资源池。例如,该映射可以指UE2从UE1获取该资源池的指示信息(资源池标识或索引),UE2基于该指示信息确定该资源池的时频域资源,该时频域资源可以是基站向UE2配置的或UE2基于预配置自行获取。
可选的,旁链路通信系统中各个基站向其服务的UE可以提供相同的资源池配置,从而保证资源配置一致性。示例性的,UE1的服务基站BS1给UE1提供的资源池配置和UE2的服务基站BS2给UE2提供的资源池配置是一样的,在该前提下,UE1向UE2指示发生连续LBT失败的资源池时,UE2能够正确理解。或者,由同一个基站向UE1和UE2提供服务,该场景下基站向不同UE可以提供相同的资源池配置。
当处于连接态的UE2接收到UE1发送的指示信息指示发生连续LBT失败的资源池或载波后,可以进一步将该指示信息发送给UE2的服务基站BS2,从而BS2在后续为该UE2调度资源时,可以避开该发生连续LBT失败的资源池或载波。
具体的,UE2可以通过MAC CE向BS2发送上述指示信息。该MAC CE与UE2自行检测出来发生连续LBT失败的资源池时所使用的MAC CE可以相同,也可以不同。如果相同,该MAC CE还可以包含指示信息,指示该连续LBT失败是UE2自行检测得出还是对端UE检测得出。可选的,该MAC CE还可以包括或指示UE1和UE2之间的单播连接。因此,可以使能基站能够针对不同场景做出相应的处理。
进一步的,考虑多载波的场景,上述MAC CE中还可以携带该资源池对应的载波信息。
可选的,UE2也可以通过RRC向BS2发送上述指示信息。
一般而言,处于idle态或者inactive态的UE2可以跳过307或者不执行307。UE2确定避开某些资源的操作方案也可以参考上文针对第一终端的相关描述,例如UE2收到UE1的 指示信息后,在为该单播连接选择旁链路资源时,不选择或避开该发生连续LBT失败的资源池的资源,或者在一段时间内不选择该资源池的资源。
一种可能性是,如果UE1被BS1重新配置,或者UE1重新开始使用该资源池中的资源进行通信时,如果未识别到发生连续LBT失败,或者在一段时间内未识别到发生连续LBT失败,UE1可以向UE2发送指示信息,用于指示该资源池可用。另一种可能性是,如果UE2在该资源池上收到来自UE1的业务传输或数据,在为该单播连接选择旁链路资源时,UE2重新选择该资源池的资源。
需要注意的是,上述均以发生连续LBT失败的资源池为例,描述UE之间的交互以及UE2收到UE1的指示之后的行为。可选的,上述流程可以交互旁链路载波信息,而不交互旁链路资源池信息。例如,UE1向UE2指示发生连续LBT失败的载波信息,UE2向服务基站BS2指示是发生连续LBT失败的载波信息。可选的,上述终端间的交互可以包括相应的旁链路单播连接信息。针对资源池配置可能不一致的场景,可以载波粒度的交互,保证通信可靠性,从而进一步达到节省信令开销的目的。
如果是只提供发生连续LBT失败的载波信息,终端或基站判断该载波发生连续LBT失败的条件可以参考上文描述,例如旁链路载波上的所有资源池均发生连续LBT失败,且尚未恢复,但本发明实施例不限于此
以下描述UE2获取UE1指示信息后的行为,例如进行资源池选择或重选,以确保通信可靠性的两种实现方式。
方式1:
UE2选择旁链路中其他资源池的资源或其他载波的资源,并基于该资源与UE1进行单播连接的通信。其中,该其他资源池不同于上述发生连续LBT失败的资源池,或该其他载波不同于上述发生连续LBT失败的载波。
方式2:
UE2获取旁链路授权资源,该授权资源位于上述发生连续LBT失败的资源池或上述发生连续LBT失败的载波。此时,UE2不使用该旁链路授权资源与UE1进行单播连接的通信。
示例性的,UE2选择所述旁链路中其他资源池的资源或其他载波的资源,并基于该资源与UE2进行所述单播连接的通信。其中,上述其他资源池不同于发生连续LBT失败的资源池或载波。或者,UE2获取旁链路授权资源,该授权资源位于上述发生连续LBT失败的资源池或载波。该UE2不使用上述旁链路授权资源与UE1进行单播连接的通信。
具体而言,若确定当前调度资源为被UE1指示了发生连续LBT失败的资源池或载波的资源,UE2在为该资源选择待传数据时,会排除与UE1之间的所述单播连接。例如,UE2的物理层指示UE2的MAC实体当前调度资源属于发生连续LBT失败的资源池或载波。本发明实施例中,UE2的MAC实体可以进行逻辑信道优先级(logical channel prioritization,LCP)过程。例如,由UE2的MAC层执行LCP过程时,排除与UE1之间的单播连接。如果物理层指示MAC实体当前调度资源属于其他资源池或者载波,并且该其他资源池或者载波是可以用于该单播连接通信的,则可以按照优先级判断是否用该资源发送该单播连接的数据。
UE2可以选择其他未发生连续LBT失败的资源池或载波的资源,UE2的MAC层进而将该资源池或载波对应的单播连接上的数据转换成MAC分组数据单元(packet data unit, PDU),并使用对应的资源在PC5接口上进行信息发送。
综上所述,UE2从UE1收到连续LBT失败的资源池或者载波信息后,可以对LCP或者资源选择/重选有影响。上述信息适用于UE1与UE2之间的单播连接,因此在通信过程中,BS2可能给UE2调度该资源池或者该载波的资源,或者UE2可能基于Mode2选择该资源池或者载波。换言之,UE2由于其他单播/广播/组播的通信需求,有可能会获得该资源池或者该载波的资源。在这种情况中,UE2在做LCP时需要排除该资源池或该载波所对应的单播连接。
上述方案通过UE1向单播连接的对端UE2指示UE1检测到的发生连续LBT失败的资源池或者载波信息,可以协助UE2进行资源选择,避免使用该资源池或者载波的资源与UE1进行旁链路通信。
以下针对发生LBT单次失败的场景进行描述,该方式可以提升旁链路通信的可靠性。可以理解,就LBT单次失败而言,以下方法可以在前文描述的连续LBT失败以及上述失败信息在终端之间或终端与基站之间的交互(如303至307)之前进行,或者独立于上述交互。例如,第一终端可以就获取的旁链路授权资源,自行判断是否进行LBT检测。若确定不进行LBT检测,则后续连续LBT可以无需进行检测;若确定进行LBT检测,则可以进一步根据进程上是否有数据待传确定向基站反馈ACK或NACK。或者,也可以进一步进行多次LBT检测,并将检测结论如连续LBT失败与对端终端或基站进行交互。上述多次LBT检测相关方法见前文描述,不再赘述。
一种情况下,本发明实施例还可以包括:
第一终端接收来自基站的旁链路授权资源;
当所述旁链路授权资源对应的进程没有数据待传时,该第一终端跳过或中止该旁链路授权资源的LBT检测。
另一种情况下,本发明实施例还可以包括:
第一终端接收来自基站的旁链路授权资源;
第一终端进行该旁链路授权资源的LBT检测;
当该旁链路授权资源对应的进程有数据待传且LBT失败时,该第一终端向基站反馈否定确认NACK;
当该旁链路授权资源对应的进程没有数据待传且LBT失败时,该第一终端向该基站反馈肯定确认ACK。
通常而言,第一终端可以通过向基站发送终端辅助信息(UEAssistanceInformation)请求基站进行旁链路配置授权(sidelink configured grant,sidelink CG)。例如,该辅助信息可以携带业务周期,消息大小、时间偏置、或QoS流标识中的一个或多个,用于基站结合在先收到的QoS流对应的QoS参数,确定为第一终端配置sidelink CG。示例性的,该时间偏置指示的是第一个发现信息达到时间相比于参考时间点的时间偏置,示例性的,该参考时间点可以是0号系统帧号(system frame number,SFN)的0号子帧。
基站基于第一终端的请求,为其配置sidelink CG。可选的,该sidelink CG配置中携带资源池的指示信息,指示该sidelink CG为该资源池的资源。
示例性的,第一终端在收到基站调度的旁链路授权后,会对该授权进行LBT检测,如果确认LBT失败,会使用该授权向基站反馈NACK。
通常情况下,第一终端收到基站经由DCI指示的旁链路授权后,会将该授权指示给MAC层,MAC层随后按照该授权获取传输块(transmssion block,TB),然后将TB发送给PHY层并等待PHY层发送。基于非授权频谱,PHY层在该授权到达前执行LBT检测。
在旁链路通信场景中,第一终端收到的资源或授权可能没有对应的业务或数据需要传输。此时,第一终端的MAC层可以指示PHY层跳过执行LBT检测,或者中止正在进行的LBT检测,从而达到省电效果。可选的,如果第一终端没有跳过执行LBT检测,如果发生LBT单次失败,第一终端可以向基站反馈NACK。如果该授权没有业务数据需要传输,第一终端可以向基站反馈ACK,避免基站继续调度重传资源。
如图4所示,为本申请实施例提供的一种通信装置40的硬件结构示意图。该通信装置40包括至少一个处理器401,通信总线402,存储器403以及至少一个通信接口404。
处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线402可包括一通路,在上述组件之间传送信息。
通信接口404,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的应用程序代码,并由处理器401来控制执行。处理器401用于执行存储器403中存储的应用程序代码,从而实现本申请上述实施例提供的通信方法。
或者,可选的,本申请实施例中,也可以是处理器401执行本申请上述实施例提供的通信方法中的处理相关的功能,通信接口404负责与其他设备或网络通信,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置40可以包括多个处理器,例如图4中的处理器401和处理器408。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。可以理解的是,图4仅仅示出了通信装置40的简化设计。在实际应用中,该通信装置可以包含任意数量的输入设备,输出设备,处理器,存储器,通信接口,该任意数量的通信单元可以单独提供或以组合方式提供上述 功能。
在具体实现中,作为一种实施例,通信装置40还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
此外,如上所述,本申请实施例提供的通信装置40可以为芯片、终端、基站、通信设备、网络设备、CU或DU,或者有图4中类似结构的设备。本申请实施例不限定通信装置40的类型。
图5为本申请实施例提供的通信方法的通信装置500的结构示意图,该通信装置可以为各实施例中的终端、基站、通信设备、网络设备、具有终端或基站功能的装置、或芯片,等。以下出现的术语或名词,可以结合上文的描述理解其含义或功能;以下出现的步骤或动作,同样可以结合上文的描述理解其具体细节或实现方式。如图5所示,该通信装置500可以包括:处理单元510和收发单元530。或者,上述通信设备中的收发单元可以包括接收模块和发送模块,其可以基于天线连接。
收发单元530可以用于支持通信设备与网络设备之间收发信息。或者,上述收发单元530可以用于执行上述实施例描述的通信方法中由通信设备或网络设备进行的处理。
在一种可能的设计中,该通信装置可以为终端设备或配置于终端设备中的芯片,以下以第一通信设备或第二通信设备为执行主体进行描述。
在第一种可能的实现方式中,第一通信设备通过收发单元530接收来自网络设备的配置信息,用于所述第一通信设备检测第一资源池的LBT失败,所述配置信息关联第一载波或者所述第一资源池,所述第一资源池属于所述第一载波。并且,所述第一通信设备通过收发单元530向所述网络设备发送第一指示信息,用于指示所述连续LBT失败的第一资源池。
基于该通信方式,可以实现终端与终端之间旁链路通信的灵活配置,提升系统适配可靠性。
可选的,所述配置信息包括用于所述LBT失败的最大次数和定时器长度。其中,所述第一通信设备的PHY实体向所述第一通信设备的MAC实体指示所述第一资源池的LBT失败。所述MAC实体启动所述第一资源池对应的定时器,且基于所述第一资源池的LBT失败增加所述第一资源池对应的计数器次数。当所述计数器次数达到所述最大次数时,所述MAC实体确认所述连续LBT失败。
上述LBT检测可以确保第一通信设备实时了解LBT可能的失败状况,从而及时进行恢复,保证旁链路通信的有效性。
可选的,所述第一通信设备在预定时间内停止所述第一资源池的资源选择。或者,当所述第一载波的资源池均发生连续LBT失败时,所述第一通信设备重选到所述旁链路的第二载波。
可选的,所述第一通信设备通过收发单元530接收来自第二通信设备的第二指示信息,用于指示所述旁链路中连续LBT失败的第二资源池或第二载波。
基于该第二指示信息,第一通信设备可以自行确定是否基于该第二资源池或第二载波与第二通信设备进行旁链路通信,例如在预定时间内不使用上述资源,或者改为使用其他资源,从而保证能够进行实时通信。
可选的,所述第一通信设备通过收发单元530向所述网络设备发送第三指示信息,用于指示所述第二资源池或所述第二载波。
可选的,所述第三指示信息还用于指示所述第一通信设备和第二通信设备之间的单播连接。
基于该第三信息,网络设备可以不向第一通信设备调度上述资源,或基于其他资源池或载波向第一通信设备调度资源,从而确保第一通信设备和第二通信设备的实时有效通信,提升调度可靠性。
可选的,所述第一通信设备通过处理单元510选择所述旁链路中第三资源池的资源或第三载波的资源,并基于所述资源与所述第二通信设备进行所述单播连接的通信;
其中,所述第三资源池不同于所述第二资源池,或所述第三载波不同于所述第二载波。
可选的,所述第一通信设备通过处理单元510或收发单元530获取旁链路授权资源,所述授权资源位于所述第二资源池或所述第二载波;
所述第一通信设备不使用所述授权资源与所述第二通信设备进行所述单播连接的通信。
可选的,所述第一通信设备通过收发单元530向第二通信设备发送第四指示信息,用于指示所述连续LBT失败的第一资源池或第一载波。
可选的,当所述旁链路包含多个载波时,所述第一指示信息还用于指示所述第一资源池所属的载波。
可选的,所述第一通信设备通过收发单元530接收来自所述网络设备的旁链路授权资源。当所述授权资源对应的进程没有数据待传时,所述第一通信设备跳过或中止所述授权资源的LBT检测。
可选的,所述第一通信设备通过收发单元530接收来自所述网络设备的旁链路授权资源,且所述第一通信设备进行所述授权资源的LBT检测。当所述授权资源对应的进程有数据待传时,所述第一通信设备通过收发单元530向所述网络设备NACK。或者,当所述授权资源对应的进程没有数据待传时,所述第一通信设备通过收发单元530向所述网络设备ACK。
基于通信设备的上述行为,可以避免网络设备进行无效或无用的资源调度,从而实现资源调度的有效性。
在第二种可能的实现方式中,第一通信设备通过收发单元530接收来自第二通信设备的第一指示信息,用于指示旁链路中先听后说连续LBT失败的第一资源池或第一载波。并且所述第一通信设备通过收发单元530向网络设备发送第二指示信息,用于指示所述第一资源池或所述第一载波。
可选的,所述第二指示信息还用于指示所述第一通信设备和所述第二通信设备之间为单播连接。
可选的,所述第一通信设备通过处理单元510选择所述旁链路中第二资源池的资源或第二载波的资源,并基于所述资源与所述第二通信设备进行所述单播连接的通信;
其中,所述第二资源池不同于所述第二资源池,或所述第二载波不同于所述第二载波。
可选的,所述第一通信设备通过收发单元530或处理单元510获取旁链路授权资源,所述授权资源位于所述第一资源池或所述第一载波。其中,所述第一通信设备不使用所述授权资源与所述第二通信设备进行所述单播连接的通信。
可选的,当所述旁链路包含多个载波时,所述第一指示信息还用于指示所述第一资源池所属的载波。
可选的,所述第一通信设备通过收发单元530接收来自所述网络设备的旁链路授权资源。当所述授权资源对应的进程没有数据待传时,所述第一通信设备跳过或中止所述授权资源的LBT检测。
可选的,所述第一通信设备通过收发单元530接收来自所述网络设备的旁链路授权资源。以及,所述第一通信设备进行所述授权资源的LBT检测。当所述授权资源对应的进程有数据待传时,所述第一通信设备通过收发单元530向所述网络设备反馈NACK。或者,当所述授权资源对应的进程没有数据待传时,所述第一通信设备通过收发单元530向所述网络设备反馈ACK。
在另一种可能的设计中,该通信装置可以为网络设备或配置于网络设备中的芯片,以下以网络设备为执行主体进行描述。
在一种可能的实现方式中,网络设备通过收发单元530向第一通信设备发送配置信息,所述配置信息关联第一载波或者所述第一资源池,,所述第一资源池属于所述第一载波。并且,所述网络设备接收来自所述第一通信设备的第一指示信息,用于指示连续LBT失败的第一资源池。
可选的,所述配置信息包括用于所述LBT检测的最大次数和定时器长度。
可选的,所述第一指示信息还用于指示所述第一通信设备和第二通信设备之间的单播连接。
可选的,当所述旁链路包含多个载波时,所述第一指示信息还用于指示所述第一资源池所属的载波。
在本实施例中,上述通信设备或网络设备以采用集成的方式划分各个功能模块或单元的形式来呈现。这里的“模块”或“单元”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到装置500可以分别采用图4所示的形式。比如,图5中的收发单元530的功能/实现过程可以通过图4的处理器401和存储器403来实现。具体的,可以通过由处理器401来调用存储器403中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,可选的,图5中的收发单元530的功能/实现过程可以通过图4的处理器401来实现,或通过图4的通信接口404来实现,本申请实施例对此不作任何限制。具体的,可以通过由处理器401来调用存储器403中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
可选的,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信设备实现上述的通信方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
用于执行本发明上述基站、终端、基站或终端的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端或基站中。当然,处理器和存储介质也可以作为分立组件存在于终端或基站中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
上述本发明提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本发明实施例提供的通信方法进行了介绍。可以理解的是,各个网元,例如终端、通信装置等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (31)

  1. 一种旁链路通信方法,其特征在于,包括:
    第一通信设备接收来自网络设备的配置信息,用于所述第一通信设备检测第一资源池的连续先听后说LBT失败,所述配置信息关联第一载波或者所述第一资源池,所述第一资源池属于第一载波;和
    所述第一通信设备向所述网络设备发送第一指示信息,用于指示所述连续LBT失败的第一资源池。
  2. 如权利要求1所述的方法,其特征在于:
    所述配置信息包括用于检测所述连续LBT失败的最大次数和定时器长度;
    所述第一通信设备的物理PHY实体向所述第一通信设备的媒体接入控制MAC实体指示所述第一资源池的LBT失败;
    所述MAC实体启动所述第一资源池对应的定时器,且基于所述第一资源池的LBT失败增加所述第一资源池对应的计数器次数;
    当所述计数器次数达到所述最大次数时,所述MAC实体确认所述第一资源池发生连续LBT失败。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    所述第一通信设备在预定时间内停止所述第一资源池的资源选择;或
    当所述第一载波的资源池均发生连续LBT失败时,所述第一通信设备重选到所述旁链路的第二载波。
  4. 如权利要求1或2所述的方法,其特征在于,还包括:
    所述第一通信设备接收来自第二通信设备的第二指示信息,用于指示所述旁链路中连续LBT失败的第二资源池或第二载波。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    所述第一通信设备向所述网络设备发送第三指示信息,用于指示所述第二资源池或所述第二载波。
  6. 如权利要求5所述的方法,其特征在于:
    所述第三指示信息还用于指示所述第一通信设备和第二通信设备之间的单播连接。
  7. 如权利要求6所述的方法,其特征在于,还包括:
    所述第一通信设备选择所述旁链路中第三资源池的资源或第三载波的资源,并基于所述资源与所述第二通信设备进行所述单播连接的通信;
    其中,所述第三资源池不同于所述第二资源池,或所述第三载波不同于所述第二载波。
  8. 如权利要求6或7所述的方法,其特征在于,还包括:
    所述第一通信设备获取旁链路授权资源,所述授权资源位于所述第二资源池或所述第二载波;
    所述第一通信设备不使用所述授权资源与所述第二通信设备进行所述单播连接的通信。
  9. 如权利要求1至3任一项所述的方法,其特征在于,还包括:
    所述第一通信设备向第二通信设备发送第四指示信息,用于指示所述连续LBT失败的第一资源池或第一载波。
  10. 如权利要求1至9任一项所述的方法,其特征在于:
    当所述旁链路包含多个载波时,所述第一指示信息还用于指示所述第一资源池所属的载波。
  11. 如权利要求1至7任一项所述的方法,其特征在于,还包括:
    所述第一通信设备接收来自所述网络设备的旁链路授权资源;
    当所述授权资源对应的进程没有数据待传时,所述第一通信设备跳过或中止所述授权资源的LBT检测。
  12. 如权利要求1至7任一项所述的方法,其特征在于,还包括:
    所述第一通信设备接收来自所述网络设备的旁链路授权资源;
    所述第一通信设备进行所述授权资源的LBT检测;
    当所述授权资源对应的进程有数据待传时,所述第一通信设备向所述网络设备反馈否定确认NACK;
    当所述授权资源对应的进程没有数据待传时,所述第一通信设备向所述网络设备反馈肯定确认ACK。
  13. 一种旁链路通信方法,其特征在于,包括:
    网络设备向第一通信设备发送配置信息,所述配置信息关联第一载波或所述第一资源池,所述第一资源池属于所述第一载波;和
    所述网络设备接收来自所述第一通信设备的第一指示信息,用于指示连续LBT失败的第一资源池。
  14. 如权利要求13所述的方法,其特征在于:
    所述配置信息包括用于所述LBT失败的最大次数和定时器长度。
  15. 如权利要求13或14所述的方法,其特征在于:
    所述第一指示信息还用于指示所述第一通信设备和第二通信设备之间的单播连接。
  16. 如权利要求13至15任一项所述的方法,其特征在于:
    当所述旁链路包含多个载波时,所述第一指示信息还用于指示所述第一资源池所属的载波。
  17. 一种旁链路通信方法,其特征在于,包括:
    第一通信设备接收来自第二通信设备的第一指示信息,用于指示旁链路中连续先听后说LBT失败的第一资源池或第一载波;和
    所述第一通信设备向网络设备发送第二指示信息,用于指示所述第一资源池或所述第一载波。
  18. 如权利要求17所述的方法,其特征在于:
    所述第二指示信息还用于指示所述第一通信设备和所述第二通信设备之间的单播连接。
  19. 如权利要求18所述的方法,其特征在于,还包括:
    所述第一通信设备选择所述旁链路中第二资源池的资源或第二载波的资源,并基于所述资源与所述第二通信设备进行所述单播连接的通信;
    其中,所述第二资源池不同于所述第二资源池,或所述第二载波不同于所述第二载波。
  20. 如权利要求17至19任一项所述的方法,其特征在于,还包括:
    所述第一通信设备获取旁链路授权资源,所述授权资源位于所述第一资源池或所述第一载波;
    所述第一通信设备不使用所述授权资源与所述第二通信设备进行所述单播连接的通信。
  21. 如权利要求17至20任一项所述的方法,其特征在于:
    当所述旁链路包含多个载波时,所述第一指示信息还用于指示所述第一资源池所属的载波。
  22. 如权利要求17至19任一项所述的方法,其特征在于,还包括:
    所述第一通信设备接收来自所述网络设备的旁链路授权资源;
    当所述授权资源对应的进程没有数据待传时,所述第一通信设备跳过或中止所述授权资源的LBT检测。
  23. 如权利要求17至19任一项所述的方法,其特征在于,还包括:
    所述第一通信设备接收来自所述网络设备的旁链路授权资源;
    所述第一通信设备进行所述授权资源的LBT检测;
    当所述授权资源对应的进程有数据待传时,所述第一通信设备向所述网络设备反馈否定确认NACK;
    当所述授权资源对应的进程没有数据待传时,所述第一通信设备向所述网络设备反馈肯定确认ACK。
  24. 一种装置,用于执行如权利要求1至23项任一项所述的方法。
  25. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在存储器上并可在处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求1至12、17至23任一项所述的方法。
  26. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在存储器上并可在处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求13至16任一项所述的方法。
  27. 一种终端,其特征在于,包括如权利要求25所述的装置。
  28. 一种基站,其特征在于,包括如权利要求26所述的装置。
  29. 一种通信系统,其特征在于包括如权利要求27所述的终端以及如权利要求28所述的基站。
  30. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至23任一项所述的方法。
  31. 一种计算机程序产品,当其在计算机上运行时,使得计算机执行权利要求1至23任一项所述的方法。
PCT/CN2022/114176 2021-08-31 2022-08-23 旁链路通信方法及设备 WO2023030088A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247010436A KR20240049375A (ko) 2021-08-31 2022-08-23 사이드링크 통신 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111011966.1A CN115734202A (zh) 2021-08-31 2021-08-31 旁链路通信方法及设备
CN202111011966.1 2021-08-31

Publications (2)

Publication Number Publication Date
WO2023030088A1 true WO2023030088A1 (zh) 2023-03-09
WO2023030088A9 WO2023030088A9 (zh) 2023-04-06

Family

ID=85291285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114176 WO2023030088A1 (zh) 2021-08-31 2022-08-23 旁链路通信方法及设备

Country Status (3)

Country Link
KR (1) KR20240049375A (zh)
CN (1) CN115734202A (zh)
WO (1) WO2023030088A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087123A1 (zh) * 2022-10-27 2024-05-02 北京小米移动软件有限公司 一种侧行链路连续先听后说失败的上报方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792778A (zh) * 2016-09-23 2019-05-21 高通股份有限公司 在3GPP多载波eLAA许可辅助接入中处理对传输的恢复和LBT执行
CN111699747A (zh) * 2018-02-14 2020-09-22 华为技术有限公司 一种随机接入方法及其装置
CN111757542A (zh) * 2018-01-12 2020-10-09 Oppo广东移动通信有限公司 信号传输的方法和设备
CN111867116A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792778A (zh) * 2016-09-23 2019-05-21 高通股份有限公司 在3GPP多载波eLAA许可辅助接入中处理对传输的恢复和LBT执行
CN111757542A (zh) * 2018-01-12 2020-10-09 Oppo广东移动通信有限公司 信号传输的方法和设备
CN111699747A (zh) * 2018-02-14 2020-09-22 华为技术有限公司 一种随机接入方法及其装置
CN111867116A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Correction to MDT features", 3GPP DRAFT; R2-2008285, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online ;20200817 - 20200828, 1 September 2020 (2020-09-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051926277 *

Also Published As

Publication number Publication date
CN115734202A (zh) 2023-03-03
WO2023030088A9 (zh) 2023-04-06
KR20240049375A (ko) 2024-04-16

Similar Documents

Publication Publication Date Title
TWI826711B (zh) 上鏈及側鏈同步操作的裝置及方法
CN108781465B (zh) 信道接入优先级类别选择
WO2020030165A1 (zh) 数据传输方法及装置,业务切换方法及装置
WO2020030177A1 (zh) 车联网中直通链路的资源配置方法及装置
US20220369346A1 (en) Method, Apparatus, and System for Sending Sidelink Channel State Information Report
US20200221538A1 (en) Data transmission method, terminal device, and network device
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
WO2020168946A1 (zh) 传输数据的方法和通信装置
WO2020200135A1 (zh) 一种资源配置方法及通信装置
WO2019153234A1 (zh) 一种数据传输方法和装置
JP2018525938A (ja) 無線通信システムにおける端末のV2X(vehicle−to−everything)信号の送受信方法及び前記方法を利用する端末
WO2020143690A1 (zh) 一种无线承载的配置方法、终端及通信装置
US11470630B2 (en) Method and system for upgrading CPE firmware
US20220312326A1 (en) Sidelink (sl) discontinuous reception (drx) for unicast, connection-specific drx
WO2023001307A1 (zh) 旁链路通信方法及设备
CN116528340A (zh) 一种设备、方法和系统
WO2024026978A1 (zh) 通信方法及终端设备
WO2022082647A1 (en) Sidelink drx optimizations for rrc_connected user equipment (ue)
WO2021062797A1 (zh) 配置方法和装置
US20230095067A1 (en) Communication method and communication device
WO2024066145A1 (zh) 侧行通信的方法及装置
WO2021062833A1 (zh) 侧行链路的配置方法、装置、设备以及存储介质
WO2023030088A1 (zh) 旁链路通信方法及设备
WO2019113774A1 (zh) 一种数据传输的方法和装置
WO2023088038A1 (zh) 侧行链路通信方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022863227

Country of ref document: EP

Effective date: 20240314

ENP Entry into the national phase

Ref document number: 20247010436

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE