WO2020168946A1 - 传输数据的方法和通信装置 - Google Patents

传输数据的方法和通信装置 Download PDF

Info

Publication number
WO2020168946A1
WO2020168946A1 PCT/CN2020/074781 CN2020074781W WO2020168946A1 WO 2020168946 A1 WO2020168946 A1 WO 2020168946A1 CN 2020074781 W CN2020074781 W CN 2020074781W WO 2020168946 A1 WO2020168946 A1 WO 2020168946A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource pool
terminal device
resource
subframe
unit group
Prior art date
Application number
PCT/CN2020/074781
Other languages
English (en)
French (fr)
Inventor
王俊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020168946A1 publication Critical patent/WO2020168946A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • This application relates to the field of communications, and more specifically, to a method and communication device for transmitting data.
  • a wireless communication system for example, in a fifth-generation (5th-generation, 5G) mobile communication system, communication between vehicles and everything (V2X) is supported.
  • 5th-generation, 5G fifth-generation
  • V2X communication multiple types of services are supported. For example, there are security-related services, which require relatively strict delay requirements; there are also non-secure types of services, which require relatively low delay requirements. For another example, there are periodic services, which are generated predictably and sent periodically; there are also non-periodical services, which are less predictable and are not sent periodically.
  • This application provides a data transmission method and communication device, in order to reduce the channel detection time and improve the data transmission performance.
  • a method of transmitting data is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: a first terminal device acquires information about a first resource pool and information about a second resource pool, the resource network device in the first resource pool allocates resources for the terminal device, and the resource in the second resource pool
  • the resource is the resource obtained by the terminal device through the evaluation of the idle channel, the first resource pool and the second resource pool do not overlap; the first terminal device uses the first resource in the first resource pool to send to the second terminal The device sends first data, and the first resource is a resource allocated by the network device; and/or, the first terminal device uses the second resource in the second resource pool to send the second data to the third terminal device.
  • Data the second resource is a resource obtained through idle channel assessment.
  • the terminal device by acquiring the information of the first resource pool and the information of the second resource pool, when the terminal device needs to perform idle channel assessment, the idle channel assessment can be performed on the second resource pool, thereby shortening the channel detection time , Improve data transmission performance.
  • the terminal device when the terminal device needs to use the allocated resources to send data, it can use the resources in the first resource pool to send data, thereby improving data transmission performance. Therefore, for different ways of obtaining resources, the terminal device can obtain the corresponding resources, which not only reduces the amount of calculation of the terminal device, but also improves data transmission performance and improves user experience.
  • idle channel assessment includes at least two methods: channel-based detection (also known as sensing) and energy-based detection (or LBT). Specifically, the following examples introduce.
  • the second terminal device and the third terminal device may be the same terminal device, or may be different terminal devices.
  • the first terminal device can use the resources in the first resource pool to transmit data, and can also use the resources in the second resource pool to transmit data.
  • the second resource pool includes a first time unit group and a second time unit group
  • the first resource pool includes a third time unit group
  • the The third time unit group is located between the first time unit group and the second time unit group, the third time unit group is adjacent to the first time unit group, and the third time unit group Adjacent to the second time unit group
  • the method further includes: the first terminal device performs idle channel evaluation in the first time unit group based on idle channel evaluation parameters; the first terminal device is in the In a case where the first time unit group does not acquire the second resource, based on the idle channel assessment parameter or the newly determined idle channel assessment parameter, the idle channel assessment is performed again in the second time unit group.
  • the terminal device can perform the idle channel assessment again based on the same idle channel assessment parameter or the newly determined idle channel assessment parameter when the time unit group of the second resource pool starts, which can solve the problem of monitoring based on the idle channel assessment.
  • the problem of boundary resources can be performed by the terminal device.
  • the time unit may be: subframe, slot, symbol, and so on.
  • the first terminal device does not acquire the second resource in the first time unit group, and the first time unit group
  • the first time unit group When the interval between the end position of the second time unit group and the start position of the second time unit group is greater than or equal to the preset first threshold, based on the idle channel assessment parameter or the newly determined idle channel assessment parameter, the second The time unit group performs idle channel assessment again.
  • the second resource pool includes a first frequency domain resource group and a second frequency domain resource group
  • the method further includes: in the first frequency domain Perform idle channel assessment on the frequency domain corresponding to the group.
  • the frequency domain group may include: subchannels, subcarriers, subcarrier groups, and so on.
  • the second resource pool includes a first time unit group and a second time unit group
  • the first resource pool includes a third time unit group
  • the The third time unit group is located between the first time unit group and the second time unit group, the third time unit group is adjacent to the first time unit group, and the third time unit group Adjacent to the second time unit group
  • the method further includes: the first terminal device performs idle channel evaluation in the first time unit group based on idle channel evaluation parameters; the first terminal device is in the If the first time unit group does not acquire the second resource, suspend idle channel evaluation; and, based on the idle channel evaluation parameter, the first terminal device continues to perform the second time unit group The free channel assessment.
  • the terminal device can first suspend the idle channel assessment, and then when the time unit group of the second resource pool starts, continue the idle channel assessment based on the same idle channel assessment parameters, which can solve the problem of monitoring based on the idle channel assessment.
  • the problem of boundary resources can be first suspend the idle channel assessment, and then when the time unit group of the second resource pool starts, continue the idle channel assessment based on the same idle channel assessment parameters, which can solve the problem of monitoring based on the idle channel assessment.
  • the problem of boundary resources can be used to first suspend the idle channel assessment, and then when the time unit group of the second resource pool starts, continue the idle channel assessment based on the same idle channel assessment parameters, which can solve the problem of monitoring based on the idle channel assessment.
  • the problem of boundary resources can be first suspend the idle channel assessment, and then when the time unit group of the second resource pool starts, continue the idle channel assessment based on the same idle channel assessment parameters, which can solve the problem of monitoring based on the idle channel assessment.
  • the problem of boundary resources can be used to solve the problem of monitoring
  • the first terminal device does not acquire the second resource in the first time unit group, and the first time unit group When the interval between the end position of the second time unit group and the start position of the second time unit group is less than the preset second threshold, the idle channel evaluation is suspended.
  • the terminal device can suspend idle channel evaluation when certain conditions are met.
  • the method further includes: the first terminal device receives indication information, the indication information is used to indicate information of the first resource pool, and/ Or, the indication information is used to indicate the information of the second resource pool; the first terminal device acquiring the information of the first resource pool and the information of the second resource pool includes: the first terminal device according to The instruction information obtains the information of the first resource pool and the information of the second resource pool.
  • the network device can only indicate the information of the first resource pool to the terminal device, and the terminal device can determine the information of the first resource pool and the second resource pool according to the indication information.
  • the network device may only indicate the information of the second resource pool to the terminal device, and the terminal device may determine the information of the first resource pool and the second resource pool according to the indication information.
  • the network device may indicate the information of the first resource pool and the second resource pool to the terminal device, and the terminal device may determine the information of the first resource pool and the second resource pool according to the indication information.
  • the method further includes: the first terminal device is at a first time domain position and/or a first frequency domain position, receiving side link control information SCI, the SCI is used to indicate the resources in the second resource pool; the interval between the first time domain position and the time domain start position in the second resource pool is less than or equal to the preset first Three thresholds, and/or, the interval between the first time domain position and the time domain start position in the second resource pool is greater than or equal to a preset fourth threshold; or, the first frequency domain The interval between the position and the frequency domain starting position in the second resource pool is less than or equal to the preset fifth threshold, and/or, the first moment is from the frequency domain in the second resource pool The interval between the starting positions is greater than or equal to the preset sixth threshold.
  • the terminal device can preempt the resources of the second resource pool. For example, it can send an SCI to the terminal device to indicate information such as scheduling time so as to Shorten the detection time of terminal equipment.
  • a method of data transmission is provided.
  • the method may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method includes: a network device divides a first resource pool and a second resource pool, the resources in the first resource pool are resources allocated by the network device for terminal devices, and the resources in the second resource pool are terminal devices For resources obtained through idle channel assessment, the first resource pool and the second resource pool do not overlap; the network device sends information about the first resource pool and/or information about the second resource pool.
  • the network device can divide the information of the first resource pool and the second resource pool, so that when the terminal device needs to perform idle channel assessment, it can perform idle channel assessment on the second resource pool, thereby shortening the channel detection time , Improve data transmission performance.
  • the terminal device when the terminal device needs to use the allocated resources to send data, it can use the resources in the first resource pool to send data, thereby improving data transmission performance. Therefore, for different ways of obtaining resources, the terminal device can obtain the corresponding resources, which not only reduces the amount of calculation of the terminal device, but also improves data transmission performance and improves user experience.
  • the method further includes: the network device is at a first time domain position and/or a first frequency domain position, using resources in the first resource pool to send Side link control information SCI, where the SCI is used to indicate resources in the second resource pool; the interval between the first time domain position and the time domain start position in the second resource pool is less than Or equal to a preset third threshold, and/or, the interval between the first time domain position and the time domain start position in the second resource pool is greater than or equal to a preset fourth threshold; The interval between the first frequency domain position and the frequency domain start position in the second resource pool is less than or equal to a preset fifth threshold, and/or, the first time and the second resource pool The interval between the start positions of the frequency domain is greater than or equal to the preset sixth threshold.
  • the first resource pool and the second resource pool overlap in the time domain and do not overlap in the frequency domain; or, the first resource pool Overlap with the second resource pool in the frequency domain, but not in the time domain.
  • the first resource pool and the second resource pool may be divided based on the time domain, or may be divided based on the frequency domain.
  • the communication device may be a terminal device, or may also be a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the device may include a communication unit and a processing unit.
  • the processing unit is configured to obtain information about a first resource pool and information about a second resource pool.
  • the resource network device in the first resource pool allocates resources for the terminal device.
  • the resources in the second resource pool are the resources obtained by the terminal equipment through idle channel evaluation, and the first resource pool and the second resource pool do not overlap;
  • the communication unit is configured to use the first resource in the first resource pool.
  • the resource sends first data to the second terminal device, where the first resource is a resource allocated by the network device; and/or the communication unit is configured to use the second resource in the second resource pool to send the first data to the third terminal
  • the device sends second data, and the second resource is a resource obtained through idle channel assessment.
  • the second resource pool includes a first time unit group and a second time unit group
  • the first resource pool includes a third time unit group
  • the The third time unit group is located between the first time unit group and the second time unit group, the third time unit group is adjacent to the first time unit group, and the third time unit group Adjacent to the second time unit group
  • the processing unit is further configured to: perform idle channel evaluation in the first time unit group based on idle channel evaluation parameters; and the first time unit group is not acquired in the first time unit group In the case of the second resource, based on the idle channel assessment parameter or the newly determined idle channel assessment parameter, perform idle channel assessment again in the second time unit group.
  • the end position of the first time unit group is When the interval between the start positions of the second time unit group is greater than or equal to the preset first threshold, based on the idle channel assessment parameter or the newly determined idle channel assessment parameter, idle again in the second time unit group Channel assessment.
  • the second resource pool includes a first frequency domain resource group and a second frequency domain resource group
  • the processing unit is further configured to: Perform idle channel assessment on the frequency domain corresponding to the group.
  • the second resource pool includes a first time unit group and a second time unit group
  • the first resource pool includes a third time unit group
  • the The third time unit group is located between the first time unit group and the second time unit group, the third time unit group is adjacent to the first time unit group, and the third time unit group Adjacent to the second time unit group
  • the processing unit is further configured to: perform idle channel evaluation in the first time unit group based on idle channel evaluation parameters; and the first time unit group is not acquired in the first time unit group In the case of the second resource, suspend idle channel assessment; and, based on the idle channel assessment parameter, continue to perform the idle channel assessment in the second time unit group.
  • the processing unit in the case that the first time unit group has not acquired the second resource, and the end position of the first time unit group is When the interval between the start positions of the second time unit group is less than the preset second threshold, the processing unit is further configured to: suspend idle channel assessment.
  • the communication unit is further configured to: receive indication information, where the indication information is used to indicate information of the first resource pool, and/or the indication information Used to indicate the information of the second resource pool; the processing unit is specifically configured to: obtain the information of the first resource pool and the information of the second resource pool according to the instruction information.
  • the communication unit is further configured to: receive the side uplink control information SCI at the first time domain position and/or the first frequency domain position, and the SCI uses To indicate resources in the second resource pool; the interval between the first time domain position and the time domain start position in the second resource pool is less than or equal to a preset third threshold, and/or , The interval between the first time domain position and the time domain start position in the second resource pool is greater than or equal to a preset fourth threshold; the first frequency domain position and the second resource pool The interval between the start positions of the frequency domain in is less than or equal to the preset fifth threshold, and/or the interval between the first moment and the start position of the frequency domain in the second resource pool is greater than or Equal to the preset sixth threshold.
  • a communication device may be a network device, or may also be a chip or a circuit configured in the network device, which is not limited in this application.
  • the apparatus may include a communication unit and a processing unit.
  • the processing unit is configured to divide a first resource pool and a second resource pool, and the resources in the first resource pool are the resources allocated by the network device to the terminal device. 2.
  • the resources in the resource pool are the resources obtained by the terminal equipment through the idle channel evaluation.
  • the first resource pool and the second resource pool do not overlap; the communication unit is used to send the information of the first resource pool and/or the second resource pool. Information about the resource pool.
  • the communication unit is further configured to, at the first moment and/or the first frequency domain position, use the resources in the first resource pool to send the side uplink Control information SCI, where the SCI is used to indicate resources in the second resource pool; the interval between the first time domain position and the time domain start position in the second resource pool is less than or equal to a preset And/or the interval between the first time domain position and the time domain start position in the second resource pool is greater than or equal to a preset fourth threshold; and/or the first frequency domain The interval between the position and the frequency domain start position in the second resource pool is less than or equal to the preset fifth threshold, and/or, the first time domain position and the frequency domain in the second resource pool The interval between the start positions of the domains is greater than or equal to the preset sixth threshold.
  • the first resource pool and the second resource pool overlap in the time domain and do not overlap in the frequency domain; or, the first resource pool It overlaps with the second resource pool in the frequency domain and does not overlap in the time domain.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the foregoing first aspect and the method in any one of the possible implementation manners of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the foregoing second aspect and the method in any one of the possible implementation manners of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect Method in.
  • the foregoing processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter to execute the first aspect or the second aspect and any one of the possible implementation manners of the first or second aspect Methods.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the above eighth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect or The method in the second aspect and any one of the possible implementation manners of the first aspect or the second aspect.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first aspect or the first aspect.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned network equipment and terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system suitable for an embodiment of the present application
  • Fig. 2 is another schematic diagram of a communication system applicable to an embodiment of the present application
  • Figure 3 shows a schematic diagram of V2X detecting idle channels
  • Figure 4 shows a schematic diagram of peripheral services and aperiodic services acquiring resources
  • FIG. 5 is a schematic interaction diagram of a method for transmitting data provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of indicating resources applicable to the method for transmitting data according to an embodiment of the present application.
  • FIG. 7 is another schematic diagram of indicating resources applicable to the method for transmitting data according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of performing LBT of the method for transmitting data applicable to the embodiment of the present application.
  • FIG. 9 is another schematic diagram of performing LBT in the method for transmitting data applicable to an embodiment of the present application.
  • FIG. 10 is another schematic diagram of performing LBT in the method for transmitting data applicable to an embodiment of the present application.
  • FIG. 11 is a schematic interaction diagram of a method for transmitting data according to another embodiment of the present application.
  • FIG. 12 is a schematic interaction diagram of a method for transmitting data according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • driver assistance driver assistance
  • ADAS advanced driver assistance systems
  • intelligent driving intelligent networked driving
  • NR new radio
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • V2X vehicle-to-everything
  • V2X vehicle-to-everything
  • V2X vehicle-to-everything
  • V2X vehicle-to-everything
  • V2X vehicle-to-everything
  • V2X vehicle-to-everything
  • V2X includes: vehicle-to-vehicle (V2V) communication, vehicle-to-roadside infrastructure (V2I) communication, vehicle-to-pedestrian communication (V2P) or vehicle Communication with the network (vehicle to network, V2N), etc.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-roadside infrastructure
  • V2P vehicle-to-pedestrian communication
  • V2N vehicle Communication with the network (vehicle to network, V2N), etc.
  • FIGS. 1 and 2 In order to facilitate the understanding of the embodiments of the present application, a communication system applicable to the embodiments of the present application is first described in detail with reference to FIGS. 1 and 2.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 111 shown in FIG. 1, and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 121 shown in FIG. To terminal equipment 123. Both network equipment and terminal equipment can be configured with multiple antennas, and the network equipment and terminal equipment can communicate using multiple antenna technology.
  • a network device can manage one or more cells, and a cell can have an integer number of terminal devices.
  • the network device 111 and the terminal device 121 to the terminal device 123 form a single-cell communication system. Without loss of generality, this cell is marked as cell #1.
  • the network device 111 may serve the terminal device (for example, the terminal device 121) in the cell #1.
  • the cell can be understood as the serving cell of the network device, that is, the area within the coverage of the wireless network of the network device.
  • FIG. 1 is only for ease of understanding, and schematically shows the network device 111 and the terminal device 121 to the terminal device 123, but this should not constitute any limitation to this application, and the wireless communication system may also include more numbers.
  • the network equipment may also include more or less terminal equipment. The same network equipment can communicate with different terminal equipment, or different network equipment can communicate with different terminal equipment, which is not limited in this application. .
  • FIG. 2 is another schematic diagram of a wireless communication system 200 applicable to an embodiment of the present application. As shown in Figure 2, the technical solutions of the embodiments of the present application can also be applied to D2D communication.
  • D2D technology can reduce the burden on cellular networks, reduce battery power consumption of terminal devices, increase data rates, and meet the needs of proximity services.
  • D2D technology can allow multiple terminal devices that support D2D functions to send and receive signals with or without network infrastructure.
  • an application scenario for the Internet of Vehicles based on D2D technology is proposed. For example, under the LTE technology network proposed by the 3rd generation partnership project (3GPP), the V2X car networking technology is proposed.
  • 3GPP 3rd generation partnership project
  • V2X communication refers to any communication between the vehicle and the outside world, including V2V communication, V2P communication, V2I communication, and V2N communication.
  • V2N is currently the most widely used form of Internet of Vehicles. Its main function is to connect vehicles to a cloud server through a mobile network, and use the navigation, entertainment, and anti-theft functions provided by the cloud server.
  • V2V can be used for information exchange and reminding between vehicles, and the most typical application is for the anti-collision safety system between vehicles.
  • V2I can be used as vehicles to communicate with roads and even other infrastructures, such as traffic lights, roadblocks, etc., to obtain road management information such as traffic light signal timing.
  • V2P can be used as a safety warning for pedestrians or non-motorized vehicles on the road.
  • the wireless communication system 200 includes a plurality of terminal devices, such as the terminal device 124 to the terminal device 126 in FIG. 2.
  • the terminal device 124 to the terminal device 126 can directly communicate with each other.
  • the terminal device 124 and the terminal device 125 may send data to the terminal device 126 separately or at the same time.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the network equipment includes but is not limited to: base station (BS), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), base station Controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home NodeB, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) system access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc.
  • BS base station
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station Controller
  • base transceiver station base transceiver station
  • BTS home base station
  • It can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panel of the base station in the 5G system, or it can also be The network nodes that constitute the gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (DU), etc.
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panel of the base station in the 5G system, or it can also be The network nodes that constitute the gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (DU), etc.
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link Channel control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile equipment User terminal
  • terminal wireless communication equipment
  • user agent or user device etc.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and in-vehicle communication equipment, etc.
  • the embodiment of this application does not limit the application scenario.
  • FIG. 2 is only for ease of understanding, and the terminal device 124 to the terminal device 126 are schematically shown, but this should not constitute any limitation to the present application.
  • the wireless communication system may also include more or less
  • the terminal device may also include a larger number of network devices, which is not limited in this application.
  • V2X communication is aimed at high-speed devices represented by vehicles. It is the basic technology and key technology applied in scenarios with very high communication delay requirements in the future, such as smart cars, autonomous driving, and intelligent transportation systems.
  • the transmission mode of V2X communication includes broadcast mode, multicast mode, and unicast mode.
  • the sender uses a broadcast mode for data transmission, and all receivers can parse sidelink control information (SCI) and sidelink shared channel (SSCH) information.
  • SCI sidelink control information
  • SSCH sidelink shared channel
  • the way to ensure that all terminal devices can parse the control information may be: the control information data is not scrambled or the known scrambling code of all terminal devices is used.
  • the multicast mode is similar to the broadcast mode. Its transmission adopts the broadcast mode for data transmission. All receivers can analyze the control channel information and the side link shared channel. The control information data is not scrambled or uses the known scrambling code of all terminal equipment, and the multicast identification (ID) is added to the control information, and the terminal equipment of the control information is parsed to confirm whether it needs to receive data by identifying the multicast ID .
  • ID multicast identification
  • Unicast mode Supports hybrid automatic repeat reQuest (HARQ) process.
  • the sender determines whether to retransmit according to the feedback from the receiver, and makes coding adjustments based on the channel fed back by the receiver.
  • HARQ hybrid automatic repeat reQuest
  • V2X communication there are many services sent by terminal devices, including but not limited to: road safety services and non-road safety services.
  • Road safety business related to traffic safety, business requirements are high in real time, and the system needs to be transmitted as soon as possible, such as the emergency brake signal sent by the vehicle in front, vehicle lane change information, and emergency traffic accident prevention notice ahead.
  • Non-road safety business It is not directly related to road safety, such as: vehicle sensor information sharing, fleet information sharing, etc.
  • security type services ie, security-related services
  • non-secure types of services which have relatively low delay requirements.
  • V2X communication it also includes periodic services (predictable service generation and periodic transmission) and aperiodic services (service generation is less predictable, not periodic transmission).
  • the communication mode of the terminal device can include communication based on the PC5 interface and communication based on the Uu interface.
  • the communication mode based on the Uu interface can also be referred to as the Uu communication mode or the Uu interface communication mode, which means that communication is carried out through Uu interface technology, that is, network communication. V2X communication data needs to be transmitted through the mobile operator network.
  • Communication based on the PC5 interface means communicating through the PC5 interface technology, that is, direct communication.
  • V2X communication data is directly transmitted between terminal devices (V2X terminal devices), in other words, terminal devices can communicate directly.
  • the PC5 interface can be used under non-coverage (out of coverage, OOC) and coverage (in coverage, IC), and authorized terminal devices use the PC5 interface for transmission.
  • the transmission link between the terminal device and the terminal device may also be called a side link or a side link.
  • the channel frequency band used for V2X includes the following two types:
  • One is to share a frequency band with the Uu interface, that is, the direct link between the terminal device and the terminal device, and the Uu interface between the terminal device and the network device shares a frequency band by time division or frequency division;
  • V2X such as the frequency point near 6G allocated by China, 20M spectrum
  • the direct link between the terminal equipment and the terminal equipment is a separate frequency band, not shared with the Uu interface.
  • Different systems can be shared, such as LTE-V2X and NR-V2X, which is not limited in the embodiment of this application.
  • a side link or a side link refers to a transmission link between terminal devices.
  • SL sidelink
  • data transmission between terminal devices does not transit through network devices.
  • the system 200 is shown in FIG. 2.
  • SC-FDMA Single-carrier frequency-division multiple access
  • DFT-OFDM discrete Fourier transform orthogonal frequency division multiplexing
  • Orthogonal frequency division multiple access Divide the transmission bandwidth into a series of orthogonal non-overlapping sub-carrier sets, and assign different sub-carrier sets to different users. It is called cyclic prefix orthogonal frequency division multiplexing (CP-OFDM).
  • CP-OFDM cyclic prefix orthogonal frequency division multiplexing
  • the downlink uses OFDMA and the uplink uses SC-FDMA; in some systems, such as the NR system, the downlink uses OFDMA, and the uplink uses SC-FDMA or OFDMA, which is configured by the network. In some systems, such as in the LTE-V2X system, SC-FDMA is used.
  • data or data information can be understood as the bits generated after the information block is encoded, or “data” or “data information” can also be understood as the modulation generated after the information block is encoded and modulated. symbol.
  • Data or data information may be carried by time-frequency resources, where the time-frequency resources may include resources in the time domain and resources in the frequency domain.
  • the time-frequency resource may include one or more time domain units (or, may also be referred to as a time unit), and in the frequency domain, the time-frequency resource may include a frequency domain unit or a resource unit.
  • a time domain unit (also called a time unit) can be a symbol, or a mini-slot, or a slot, or a subframe, where one subframe
  • the duration of a frame in the time domain can be 1 millisecond (ms)
  • a slot consists of 7 or 14 symbols
  • a mini slot can include at least one symbol (for example, 2 symbols or 7 symbols or 14 symbols). Symbol, or any number of symbols less than or equal to 14 symbols).
  • frequency domain unit or resource unit can be used as a measurement unit of the resource occupied by the resource in the time-frequency domain.
  • the resource unit may include, for example, sub-channel bandwidth (sub-channel bandwidth), subband (subband), RB, resource block group (RBG) composed of one or more RBs, and one or more RB pair, half RB, 1/4 RB, RE group composed of one or more REs, etc.
  • one RB is composed of 12 consecutive subcarriers in the frequency domain and 14 consecutive symbols in the time domain.
  • the time slot is the smallest scheduling unit of time.
  • a time slot format includes 14 OFDM symbols, and the cyclic prefix (CP) of each OFDM symbol is a normal CP (normal cyclic prefix).
  • a slot format includes 12 OFDM symbols, and the CP of each OFDM symbol is an extended CP (extended cyclic prefix).
  • the format of a time slot contains 7 OFDM symbols, and the CP of each OFDM symbol is a regular CP.
  • the OFDM symbols in a time slot can be all used for uplink transmission; all can be used for downlink transmission; or some of them can be used for downlink transmission, some for uplink transmission, and some are reserved for no transmission. It should be understood that the above examples are merely illustrative and should not constitute any limitation to the application. For the sake of system forward compatibility, the slot format is not limited to the above example.
  • V2X pass-through link transmission supports the following two modes:
  • Mode 1 Network device scheduling mode.
  • the terminal device needs to be in the radio resource control (Radio Resource Control, RRC) connected state.
  • RRC Radio Resource Control
  • the terminal device first makes a resource request to the network device, and then the network device allocates control resources and data resources on the V2X direct link.
  • Mode 1 is based on the resource allocation and scheduling of the direct link based on the network equipment.
  • Mode 2 Resource allocation is not based on (Mode 1) scheduling or pre-configuration.
  • the terminal equipment chooses the transmission resource of the through link by itself;
  • the terminal equipment assists other terminal equipment to select the transmission resources of the through link
  • the terminal device is configured with some resources for transmission
  • the terminal device (for example, it can be used as a main terminal device) to schedule the direct link of other terminal devices.
  • the terminal device can use any of the following methods of idle channel evaluation:
  • Method 1 Based on channel detection (or called sensing);
  • Method 2 Based on energy detection (or called listen before talk (LBT)).
  • LBT listen before talk
  • Method 1 Based on channel detection.
  • the current standard is called the sensing process.
  • the main features include: parsing the SCI on the control channel, and its purpose is to obtain the occupancy status of the current channel (data channel and control channel) and Future occupancy situation; Calculate the energy on the channel, calculate the distance of the terminal equipment that these channels are used, in the case that there is no channel available for use, give priority to the use of the same channel for the terminal equipment that is far away. .
  • the analysis of the SCI on the control channel is based on the periodicity of the V2X service, that is, the terminal device monitors a detection time window of a certain length (for example, 1 second). Analyze the SCI on the control channel, where the scheduling signaling includes: the service cycle and the channel occupied by the service. From the monitoring time window, infer which channels are occupied and which channels are free in the next period of time.
  • the terminal equipment After the detection time window has elapsed, the terminal equipment infers which channels can be occupied.
  • the channel occupancy and data transmission time are not sent immediately, but within a channel selection time window, a random time is selected for transmission, which can reduce the number of terminals Data interference between devices.
  • Figure 3 shows a schematic diagram of V2X detecting idle channels.
  • the hypothesis includes: channel 1, channel 2, channel 3, channel 4, channel 5, and channel 6.
  • the terminal equipment detects the SCI of each channel to determine: channel 1, channel 2, and channel 3 are already occupied and continue to be occupied at time 3 and time 4; channel 4, channel 5, and channel 6 are monitoring Not occupied within the time window. Therefore, the terminal device can infer that channel 4, channel 5, and channel 6 are available at times 3 and 4.
  • the method based on energy detection is also called the LBT listening mechanism, that is, within a certain window length, if the detection capability is below a certain threshold, the channel is considered to be free and available, otherwise it needs to randomly back off for a period of time and continue listening.
  • the 3rd generation partnership project (3GPP) has evaluated four channel access mechanisms:
  • the first is the non-LBT interception mechanism: some regions and countries do not mandate the implementation of the LBT mechanism on unlicensed frequency bands.
  • the second type is LBT without random backoff: a fixed-duration frame is used, including channel occupancy time and idle time, and clear channel assessment (CCA) is performed before data transmission. If the channel is idle, data transmission is performed during the subsequent channel occupation time; otherwise, data cannot be transmitted during the entire frame period. The length of time for the sender to determine whether the signal is idle before sending data is determined.
  • CCA clear channel assessment
  • the third type is the random backoff LBT with a fixed-length contention window: a frame structure with an unfixed frame period and a mode based on load changes.
  • the length of the contention window is fixed, and extended CCA (extended CCA, ECCA) is used.
  • extended CCA extended CCA, ECCA
  • the fourth is the random backoff LBT with a non-fixed length contention window: after detecting that the channel is occupied or the maximum transmission time is reached, the sender enters the contention window. Different from using a fixed-length contention window, the sender can change the length of the contention window.
  • the terminal device first generates a random number M (M is greater than or equal to 0) from 0 to N (N is the configured value, N is greater than 0) before doing the LBT listening mechanism. , And M is less than or equal to N). Whenever a slot is detected as the channel is idle, M is reduced by one until M is reduced to 0.
  • LBT CAT4 fourth LBT listening mechanism
  • LAA licensed-assisted access
  • PDSCH physical downlink shared channel
  • LBT CAT2 demodulation reference signal (demodulation reference signal, DRS) channel before transmission.
  • DRS demodulation reference signal
  • the idle channel assessment includes at least the aforementioned method 1 and method 2.
  • the above method 1 and method 2 both need to check the channel usage within a certain window time.
  • the sensing mechanism is based on detecting the control information of the control channel, and the time length can be 1 second; the LBT mechanism is based on energy detection, and the time length can be determined randomly.
  • the detection time window in the above method 1 or method 2 Collectively referred to as the detection time window. Regardless of method 1 or method 2, after the detection time window ends, it is determined whether there is a channel available, and if there is a channel available, the channel can be used to transmit data.
  • the resource acquisition method includes both a network device-based distribution method and a terminal device self-acquisition method.
  • the services in V2X communication include periodic services and non-periodic services, so peripheral services and non-periodic services can obtain resources based on long-period detection (or network equipment allocation) plus short-period detection (or LBT). The way of combining.
  • Figure 4 shows a schematic diagram of peripheral services and aperiodic services acquiring resources.
  • terminal equipment A, terminal equipment B, terminal equipment C, and terminal equipment E are taken as examples for illustration. For distinction, they are marked as UE A, UE B, UE C, and UE E.
  • UE A, UE B, and UE C send services periodically.
  • UE A, UE B, and UE C send data for periodic services
  • UE E sends services aperiodically, in other words, UE E is sending data of aperiodic services.
  • the carrier resource is divided into two dimensions: frequency domain and time domain.
  • the frequency domain includes: subband 1, subband 2, and subband 3, and the time domain includes: T1, T2, T3, T4 , T5, T6, T7, T8.
  • UE A, UE B, and UE C send periodic services (such as periodic broadcast signals), and these terminal devices obtain corresponding parts of service resources through long-term detection.
  • periodic services such as periodic broadcast signals
  • the frequency domain resources acquired by UE A include subband 2, and the time domain includes: T1, T4, and T7.
  • the sender broadcasts the resource reservation message to other terminal devices.
  • frequency domain resources include subband 3 and time domain resources T3 and T6.
  • UE E needs to first send resource reservation information (frequency domain resource subband 3, time domain resource T6) on frequency domain resource subband 3 and time domain resource T3, and on frequency domain resource subband 3, time domain resource T6 send data.
  • the present application provides a method for transmitting data, which can shorten the time of channel detection, thereby improving data transmission performance.
  • used to indicate may include used for direct indication and used for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the first, the second, and the third are only convenient for distinguishing different objects, and should not constitute any limitation to the application. For example, distinguish between different resource pools.
  • pre-obtaining may include being indicated by network device signaling or pre-defined, for example, protocol definition.
  • pre-defined can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the equipment (for example, including terminal equipment and network equipment). This application does not make any specific implementation methods. limited.
  • the "saving” involved in the embodiments shown below may mean saving in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in the decoder, processor, or communication device.
  • the type of the memory may be any form of storage medium, which is not limited in this application.
  • protocol may refer to standard protocols in the communication field, for example, may include LTE protocol, 5G or NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • the data transmission method provided in this application is applicable to a wireless communication system.
  • the data transmission method provided in this application may be applicable to communication between at least one network device and at least one terminal device, for example, the system 100 shown in FIG. 1 or the system 200 in FIG. 2.
  • the data transmission method provided in this application may be suitable for communication between at least two terminal devices.
  • FIG. 5 is a schematic block diagram of a method 200 for transmitting data according to an embodiment of the present application. As shown in the figure, the method 200 can be applied to V2X or D2D scenes, etc.
  • the method 200 can include step 210 and step 220, and each step is described in detail below.
  • the terminal device obtains information about the resource pool 1 and the resource pool 2.
  • the resource can be configured into two parts according to the way the resource is obtained. For distinction, they are recorded as resource pool 1 and resource pool 2.
  • the network device can divide the carrier into two parts according to the frequency domain or the time domain. That is, the network device can divide the resource pool 1 in the unit (or unit) of the time domain or the frequency domain (for example, it can be recorded as the first resource pool) And resource pool 2 (for example, it can be recorded as the second resource pool).
  • the resources in the resource pool 1 belong to the resources allocated by the network equipment, and may be pre-allocated resources or resources allocated based on the request of the terminal equipment. In other words, if a terminal device wants to use the resources of resource pool 1 to transmit data, it can obtain resources based on Mode 1. For example, the terminal device can request resources from the network device, and the network device allocates the resources in resource pool 1 to the terminal device for the terminal The device transmits data.
  • the resources on resource pool 2 do not belong to the resources allocated by the network equipment, or the resources on resource pool 2 can also be called unreserved resources.
  • the terminal device can Obtain resources based on Mode2.
  • the terminal device can perform idle channel assessment so that the terminal device can transmit data.
  • the idle channel assessment includes channel-based detection (or called sensing) or energy-based detection (also called LBT).
  • the terminal device uses the resources in the resource pool 1 to send the first data; and/or, the terminal device uses the resources in the second resource pool to send the second data.
  • the transmission quality required by the first data is higher, and the transmission quality required by the second data is lower.
  • a service with higher transmission quality requirements can be recorded as the first service and configured on resource pool 1, that is, the resources in resource pool 1 are used to transmit the data of the first service; Services with lower transmission quality requirements are recorded as the second service and configured on the resource pool 2, that is, the resources in the resource pool 2 are used to transmit the data of the second service.
  • the transmission quality requirement can be determined according to the transmission quality requirement threshold, for example, the ProSe Per-Packet Priority (PPPP) value of Proximity Services (ProSe) which reflects the service quality requirements, or the quality of service (quality of service). service, QoS) flow identification (QoS flow ID, QFI) value, etc.
  • the first service may be a road safety service, or the first service may be a periodic service.
  • the second business may be a non-road safety business, or the second business may also be a non-cyclical business.
  • Network equipment can be divided into resource pool 1 and resource pool 2 in time domain or frequency domain as a unit (or as a unit).
  • the following uses time domain as a unit to introduce the method of dividing network equipment. It should be understood that the division in frequency domain is similar. No longer.
  • the network device can divide resources into resource pool 1 and resource pool 2 by any of the following methods.
  • the carrier resource is configured into two parts with subframes as the unit, resource pool 1 and resource pool 2.
  • Resource pool 1 includes reserved resources or reserved subframe groups, and resource pool 2 includes unreserved resources or Unreserved subframe group.
  • a specific radio frame consists of two parts, one part is a radio frame containing resource pool 2, namely radio frame 0 and radio frame 4; the other part is a radio frame not containing resource pool 2, namely The radio frames belonging to resource pool 1, namely radio frame 1, radio frame 2, and radio frame 3.
  • radio frame is only a name for distinction, and its name does not limit the protection scope of the embodiment of the present application (for example, it may be a subframe, a time slot, or a symbol).
  • a radio frame that includes resource pool 2 means that the radio frame includes resources in resource pool 2, that is, the radio frame includes unreserved subframes; that does not include resource pool 2
  • a radio frame means that the radio frame does not include resources in the resource pool 2, that is, the radio frame does not include unreserved subframes. I won't repeat it below.
  • the carrier resource is configured in two parts with a subframe as a unit. As shown in radio frame 0 and radio frame 4 in Fig. 6, radio frame 0 and radio frame 4 both contain subframes of resource pool 2. Taking radio frame 0 as an example, subframe 4, subframe 5, subframe 6, and subframe 7 are configured as non-reserved subframes or subframes of resource pool 2, subframe 4, subframe 5, and subframe 6. And subframe 7 form an unreserved subframe group, that is, subframe 4, subframe 5, subframe 6, and subframe 7 belong to resource pool 2.
  • Subframe 0, subframe 1, subframe 2, Subframe 3, subframe 8, and subframe 9 are configured as reserved subframes or subframes of resource pool 1, subframe 0, subframe 1, subframe 2, subframe 3, subframe 8, and subframe 9
  • a reserved subframe group is formed, that is, subframe 0, subframe 1, subframe 2, subframe 3, subframe 8, and subframe 9 belong to resource pool 1.
  • the network equipment divides radio frame 0 into two parts, one part is the unreserved subframe group consisting of subframe 4, subframe 5, subframe 6, and subframe 7, namely resource pool 2, and the other part is The reserved subframe group consisting of subframe 0, subframe 1, subframe 2, subframe 3, subframe 8, and subframe 9, namely resource pool 1.
  • subframe 4 subframe 5, subframe 6, and subframe 7 constitute resource pool 2, and subframe 0, subframe 1, subframe 2, subframe 3, subframe 8, and subframe 9.
  • the composition of the resource pool 1 is described as an example, and the application is not limited to this.
  • the resource pool 1 may include more subframes, and the resource pool 2 may also include more subframes.
  • the carrier resource is configured into two parts with slots as the unit, resource pool 1 and resource pool 2.
  • Resource pool 1 includes reserved resources or reserved time slot groups
  • resource pool 2 includes unreserved resources or Unreserved time slot group.
  • a specific subframe includes two parts. One part is the subframe that contains resource pool 2, namely subframe 0 and subframe 4. The other part is the subframe that does not contain resource pool 2, that is, belongs to resource pool 1. Subframes, namely subframe 1, subframe 2, and subframe 3.
  • a subframe containing resource pool 2 means that the subframe contains resources in resource pool 2, that is, the subframe contains unreserved time slots; subframes of resource pool 2 are not included.
  • Frame means that the subframe does not include resources in the resource pool 2, that is, the subframe does not include unreserved time slots.
  • the carrier resource is configured in two parts with the time slot as the unit. As shown in subframe 0 and subframe 4 in FIG. 7, both subframe 0 and subframe 4 contain the time slots of resource pool 2. Take subframe 0 as an example, configure time slot 0, time slot 1, time slot 2, and time slot 3 as time slots or unreserved time slots of resource pool 2, time slot 0, time slot 1, time slot 2. Time slot 3 forms an unreserved time slot group, that is, time slot 0, time slot 1, time slot 2, and time slot 3 belong to resource pool 2. Combine time slot 4, time slot 5, time slot 6, and And time slot 7 is configured as the time slot or reserved time slot of resource pool 1.
  • Time slot 4, time slot 5, time slot 6, and time slot 7 form a reserved time slot group, namely time slot 4, time slot 5, time slot Slot 6 and slot 7 belong to resource pool 1.
  • the network equipment divides subframe 0 into two parts, one part is the unreserved time slot group consisting of time slot 0, time slot 1, time slot 2, and time slot 3, namely resource pool 2, and the other part is The reserved time slot group consisting of time slot 4, time slot 5, time slot 6, and time slot 7, namely resource pool 1.
  • the terminal device can obtain the information of resource pool 1 and resource pool 2 in any of the following ways.
  • the network device can send indication information used to indicate a part of the resources (ie resource pool 1 or resource pool 2), and the terminal device can infer another part of the resource (ie resource pool 2 or resource pool 1) based on the indication information. information.
  • the network device may send indication information for indicating the resource pool 1, and the terminal device may determine the information of the resource pool 1 according to the indication information, and infer the information of the resource pool 2.
  • the network device may send instruction information for indicating the resource pool 2, and the terminal device may determine the information of the resource pool 2 according to the instruction information, and infer the information of the resource pool 1.
  • Manner 2 The network device sends instruction information for indicating resource pool 1 and resource pool 2, and the terminal device can determine the information of resource pool 1 and resource pool 2 according to the instruction information.
  • the network device sends instruction information to the terminal device, indicating the position of the subframe in the resource pool 1 and the position of the subframe in the resource pool 2, or indicating the position of the time slot in the resource pool 2 and the position of the time slot in the resource pool 2. .
  • the instruction information may be sent to the terminal device through separate signaling; or, the instruction information may also be sent to the terminal device together with the configuration information.
  • the network device can broadcast the configuration information of the resource pool 1 and the resource pool 2 to all terminal devices in the cell.
  • the indication information may be sent on a subframe of the resource pool 1 or on a time slot of the resource pool 1, and may be sent in a certain period.
  • the information of resource pool 1 and resource pool 2 can be indicated by means of bitmaps. The following describes the above two different situations.
  • Case 1 The carrier resource is configured in two parts with a subframe as a unit.
  • a bitmap of M bits is used to represent a specific wireless frame, the specific wireless frame represents a wireless frame including the resource pool 2, and M bits represent M wireless frames, where M is an integer greater than 0.
  • 1 can be used to indicate a wireless frame that contains resource pool 2
  • 0 can be used to indicate a wireless frame that does not contain resource pool 2; alternatively, 0 can also be used to indicate a wireless frame containing resource pool 2 and 1 to indicate no Contains the radio frame of resource pool 2.
  • a bitmap of N bits is used to represent the subframes in the resource pool 2 in the radio frame, and the N bits represent N subframes, where N is an integer greater than zero.
  • 1 can be used to indicate that the subframe is a subframe in resource pool 2
  • 0 can be used to indicate that the subframe is not a subframe in resource pool 2; alternatively, 0 can also be used to indicate that the subframe is a resource pool.
  • a 5-bit bitmap can be used to represent the specific radio frame.
  • 1 represents a wireless frame containing resource pool 2
  • 0 represents a wireless frame without resource pool 2
  • the specific wireless frame may be represented as 10001.
  • the terminal device determines that the wireless frame 0 and the wireless frame 4 are wireless frames including the resource pool 2 according to the representation 10001 of the specific wireless frame.
  • the terminal device can infer that the remaining wireless frames, that is, the wireless frame 1, the wireless frame 2, and the wireless frame 3, are wireless frames that do not include the resource pool 2.
  • 0 represents a wireless frame containing resource pool 2
  • 1 represents a wireless frame containing no resource pool 2
  • the specific wireless frame may be represented as 01110.
  • the terminal device determines that the wireless frame 0 and the wireless frame 4 are wireless frames including the resource pool 2 according to the representation 01110 of the specific wireless frame.
  • the terminal device can infer that the remaining wireless frames, that is, the wireless frame 1, the wireless frame 2, and the wireless frame 3, are wireless frames that do not include the resource pool 2.
  • subframes belonging to resource pool 2 in radio frame 0 or radio frame 4 include subframe 4, subframe 5, subframe 6, and subframe 7, a 10-bit bitmap can be used to represent radio frame 0 or radio frame The subframe of resource pool 2 belonging to 4.
  • 1 indicates that the subframe belongs to resource pool 2
  • 0 indicates that the subframe does not belong to resource pool 2.
  • the subframe may be expressed as 0000111100.
  • the terminal device determines that subframe 4, subframe 5, subframe 6, and subframe 7 belong to resource pool 2, namely subframe 4, subframe 5, and subframe according to the representation 0000111100 of radio frame 0 or radio frame 4.
  • Frame 6 and subframe 7 are non-reserved subframes.
  • the terminal device can infer that subframe 0, subframe 1, subframe 2, subframe 3, subframe 8, and subframe 9 in radio frame 0 or radio frame 4 do not belong to resource pool 2, that is, subframe 0, subframe 1, subframe 2, subframe 3, subframe 8, and subframe 9 belong to resource pool 1.
  • 0 indicates the resource pool 2 to which the subframe belongs
  • 1 indicates the resource pool 2 to which the subframe does not belong.
  • the subframe can be expressed as 1111000011 .
  • the terminal device determines that subframe 4, subframe 5, subframe 6, and subframe 7 belong to resource pool 2, namely subframe 4, subframe 5, and subframe according to the representation 1111000011 of radio frame 0 or radio frame 4.
  • Frame 6 and subframe 7 are non-reserved subframes.
  • the terminal device can infer that subframe 0, subframe 1, subframe 2, subframe 3, subframe 8, and subframe 9 in radio frame 0 or radio frame 4 do not belong to resource pool 2, that is, subframe 0, subframe 1, subframe 2, subframe 3, subframe 8, and subframe 9 belong to resource pool 1.
  • the above-mentioned terminal device determines the information of the resource pool 2 according to the received information for indicating the resource pool 2 and infers the information of the resource pool 1.
  • This application is not limited to this.
  • the terminal device may first determine the information of the resource pool 1 based on the received information, and then infer the information of the resource pool 2.
  • the network device can send information indicating the resource pool 1, and the terminal device determines the information of the resource pool 1 based on the information, and infers the information of the resource pool 2.
  • Case 2 The carrier resource is configured in two parts with a time slot as a unit.
  • a bitmap of M bits is used to represent a specific subframe, the specific subframe represents a subframe including the resource pool 2, and M bits represent M subframes, where M is an integer greater than 0.
  • 1 can be used to indicate a subframe that contains resource pool 2
  • 0 can be used to indicate a subframe that does not contain resource pool 2; alternatively, 0 can also be used to indicate a subframe containing resource pool 2 and 1 to indicate no subframe.
  • a bitmap of N bits is used to represent the time slots belonging to the resource pool 2 in the subframe, and N bits represent N time slots, where N is an integer greater than 0.
  • 1 can be used to indicate that the time slot is a time slot of resource pool 2
  • 0 can be used to indicate that the time slot is not a time slot of resource pool 2; or 0 can also be used to indicate that the time slot is a time slot of resource pool 2.
  • Time slot use 1 to indicate that the time slot is not a time slot of resource pool 2.
  • 1 represents a subframe that contains resource pool 2
  • 0 represents a subframe that does not contain resource pool 2
  • the specific subframe may be represented as 10001.
  • the terminal device determines that subframe 0 and subframe 4 are subframes including resource pool 2 according to the representation 10001 of the specific subframe.
  • the terminal device can infer that the remaining subframes, that is, subframe 1, subframe 2, and subframe 3, are subframes that do not include the resource pool 2.
  • 0 represents a subframe containing the time slot of the resource pool 2
  • 1 represents a subframe not containing the resource pool 2
  • the specific subframe may be represented as 01110.
  • the terminal device determines that subframe 0 and subframe 4 are subframes including resource pool 2 according to the representation 01110 of the specific subframe.
  • the terminal device can infer that the remaining subframes, that is, subframe 1, subframe 2, and subframe 3, are subframes that do not include the resource pool 2.
  • time slots belonging to resource pool 2 in subframe 0 or subframe 4 include time slot 0, time slot 1, time slot 2, and time slot 3.
  • An 8-bit bitmap can be used to represent subframe 0 or subframe 4.
  • 1 indicates that the time slot is a time slot of resource pool 2
  • 0 indicates that the time slot is not a time slot of resource pool 2
  • the time slot can represent Is 11110000.
  • the terminal device determines that time slot 0, time slot 1, time slot 2, and time slot 3 belong to resource pool 2, namely, time slot 0, time slot 1, and time slot according to the representation 11110000 of this subframe 0 or subframe 4. 2.
  • time slot 3 is an unreserved time slot.
  • the terminal device can infer that time slot 4, time slot 5, time slot 6, and time slot 7 in subframe 0 or subframe 4 belong to resource pool 1, namely, time slot 4, time slot 5, time slot 6, and And time slot 7 is a reserved time slot.
  • 0 means that the time slot is a time slot of resource pool 2
  • 1 means that the time slot is not a time slot of resource pool 2
  • the time slot can be It is expressed as 00001111.
  • the terminal equipment determines that time slot 0, time slot 1, time slot 2, and time slot 3 belong to resource pool 2, namely, time slot 0, time slot 1, and time slot according to the representation 00001111 of this subframe 0 or subframe 4. 2.
  • time slot 3 is an unreserved time slot.
  • the terminal device can infer that time slot 4, time slot 5, time slot 6, and time slot 7 in subframe 0 or subframe 4 belong to resource pool 1, namely, time slot 4, time slot 5, time slot 6, and And time slot 7 is a reserved time slot.
  • the above-mentioned terminal device determines the information of the resource pool 2 according to the received information for indicating the resource pool 2 and infers the information of the resource pool 1.
  • This application is not limited to this.
  • the terminal device may first determine the information of the resource pool 1 based on the received information, and then infer the information of the resource pool 2.
  • the network device can send information indicating the resource pool 1, and the terminal device determines the information of the resource pool 1 based on the information, and infers the information of the resource pool 2.
  • LBT energy-based detection
  • sensing channel-based detection
  • the terminal device executes LBT on resource pool 1.
  • resource pool 2 includes: subframe 1, subframe 2, subframe 3, subframe 4, subframe 5, subframe 6, subframe 7, and subframe 8
  • resource pool 1 includes: subframe 0 and subframe 9.
  • terminal device A starts LBT listening in subframe 1. Since subframe 9 does not belong to resource pool 2, there are at most 8 subframes, namely subframe 1 to subframe 8, which can send data. In other words, terminal device A starts LBT from the position of subframe 1, and the longest transmission duration of terminal device A is 8 subframes, that is, subframe 1 to subframe 8. Assuming that one subframe is 1ms, the longest transmission duration of terminal device A is 7ms.
  • terminal device B starts LBT listening in subframe 7. Since subframe 9 does not belong to resource pool 2, there are at most two subframes, namely subframe 7 to subframe 8, which can send data. In other words, terminal device B starts LBT from the position of subframe 7, then the longest transmission duration of terminal device B is 2 subframes, that is, subframe 7 to subframe 8. Assuming that one subframe is 1ms, the longest transmission duration of terminal device B is 2ms.
  • the terminal equipment performs idle channel assessment in subframe i, which may mean that the terminal equipment starts to perform idle channel assessment at the beginning of subframe i, or it may mean that the terminal equipment performs idle channel assessment in subframe i.
  • the idle channel assessment starts at the middle position of i, or it may also mean that the terminal device starts to perform idle channel assessment at any position of the subframe i, which is not limited in the embodiment of the present application.
  • i 0,1,2,3, «,9,. « For example, taking the idle channel assessment to perform LBT as an example, the terminal device performs LBT in subframe i.
  • the terminal device starts LBT at the beginning of subframe i, or it can mean that the terminal device is in the middle of subframe i. Starting LBT, or, it may also mean that the terminal device starts LBT at any position of the subframe i, which is not limited in this embodiment of the application.
  • the terminal device Before the terminal device does LBT, according to the contention window parameter T configured by the network device (or called the detection time window T, for the detection time window, refer to the above description, and I will not repeat it here), and randomly generate a random value from 0 to T If the number is X, the terminal device detects at least X free time slots (with a specific time length, and specific data has a system setting, for example, 16us) before it can obtain the right to send data.
  • the random number X is a parameter related to LBT, which is concise. In this application, the random number X is referred to as an LBT parameter.
  • the LBT parameter can be associated with the maximum transmission duration, that is, the LBT parameter can be associated with the number of remaining subframes in the resource pool 2 (or the number of remaining subframes in the resource pool 2). For example, the smaller the number of remaining subframes in the resource pool 2, that is, the shorter the remaining time or the shortest maximum transmission duration, the smaller the parameter T.
  • the terminal device only generates the LBT parameters according to the contention window parameter T, that is, a random number X is randomly generated from 0 to T, the LBT time may be too long, resulting in a relatively short data transmission time.
  • the terminal device when the subframe boundary of the resource pool 2 is reached, it determines whether to stop the LBT or whether to suspend the LBT according to the remaining number of subframes of the resource pool 2 or the maximum transmission duration.
  • resource pool 1 and resource pool 2 are adjacent, that is, the subframes of resource pool 2 have boundaries.
  • the terminal device can take any of the following One method.
  • Method 1 Stop LBT directly, regenerate random number X, and restart LBT.
  • the LBT process of the terminal device when the boundary of the subframe of the resource pool 2 is reached, if X is still greater than 0, that is, no idle channel is currently obtained, the LBT can be directly stopped. When the next subframe of resource pool 2 starts, the random number X is regenerated and LBT is performed.
  • Method 2 Stop LBT directly, and use the random number X generated before, and perform LBT again.
  • the LBT process of the terminal device when the boundary of the subframe of the resource pool 2 is reached, if X is still greater than 0, that is, no idle channel is currently obtained, the LBT can be directly stopped. When the next resource pool 2 subframe starts, the M previously generated is used to perform LBT again.
  • Method 3 Pause (or suspend) LBT, and continue to do LBT when the next subframe of resource pool 2 starts.
  • the LBT can be suspended or suspended.
  • the next sub-frame of resource pool 2 starts, the previously suspended or suspended LBT is continued.
  • Method 4 Determine whether to suspend LBT according to the interval (GAP).
  • the interval which can also be called the time interval or the suspension interval, is the interval from the beginning of the subframe boundary of the resource pool 2 to the beginning of the subframe of the next resource pool 2 during the LBT process of the terminal device . It can also be understood as the interval from the suspension of the LBT to the beginning of the next subframe of the resource pool 2 if the LBT is to be suspended.
  • the terminal device When the terminal device performs the LBT process, when the boundary of the subframe of the resource pool 2 is reached, if X is still greater than 0, that is, no idle channel is currently acquired, the time (ie interval) during which the LBT will be suspended is calculated. If the interval is less than the preset threshold, the above method 3, that is, the LBT can be suspended; if the interval is greater than or equal to the preset threshold, the above method 1 or method 2 can be used.
  • the preset threshold may be pre-set or pre-defined by the protocol, which is not limited in the embodiment of the present application. The benefits of this can solve for example the following scenarios: When the GAP time is too long and the vehicle travels far, the previous LBT results can no longer be used as a reference.
  • the length of the GAP can be associated with the vehicle. For example, the higher the vehicle speed, the lower the GAP, and the vehicle speed The lower the GAP, the greater the GAP.
  • the terminal device performs sensing on resource pool 1.
  • the terminal device when the subframe boundary of the resource pool 2 is reached, it determines whether to stop sensing or whether to suspend according to the remaining number of subframes in the resource pool 2 or the maximum transmission duration.
  • resource pool 1 and resource pool 2 are adjacent, that is, the subframes of resource pool 2 have boundaries.
  • the terminal device can take any of the following methods.
  • Method 1 Stop the sensing process directly, and then restart the sensing process.
  • the channel detection process can be directly stopped. Wait until the start of the next resource pool 2 subframe, and restart the sensing process.
  • Method 2 Pause (or suspend) the sensing process, and continue the sensing process when the next subframe of resource pool 2 starts.
  • the sensing process of the terminal device when the boundary of the subframe of the resource pool 2 is reached, if X is still greater than 0, that is, no free channel is currently obtained (or channel availability judgment cannot be performed), it can be suspended or suspended sensing process. When the next subframe of resource pool 2 starts, the sensing process that was previously paused or suspended is continued.
  • Method 3 Determine whether to suspend the sensing process according to the interval (GAP).
  • the interval which can also be called the time interval or the suspension interval, is the interval from the beginning of the subframe boundary of the resource pool 2 to the beginning of the subframe of the next resource pool 2 during the sensing process of the terminal device . It can also be understood as the interval from the suspension of the sensing process to the start of the next subframe of the resource pool 2 if the sensing process is to be suspended.
  • the time (ie interval) during which sensing will be suspended is calculated. If the interval is less than the preset threshold, the above method 2 can be used, that is, sensing suspension; if the interval is greater than or equal to the preset threshold, the above method 1 can be used.
  • the preset threshold may be preset or predefined by the protocol. In this regard, the embodiment of the present application does not limit it. The advantage of this can solve for example the following scenarios: When the GAP time is too long and the vehicle travels far away, the previous sensing results can no longer be used for reference.
  • the length of the GAP can be associated with the vehicle. For example, the higher the vehicle speed, the lower the GAP, and the vehicle speed The lower the GAP, the greater the GAP.
  • LBT is performed with a terminal device, which is illustrated with reference to FIG. 9 as an example.
  • the carrier resource is configured into two parts in units of subframes.
  • Figure 9 shows two cases: Case A and Case B.
  • Case A is the case where the interval is less than the preset threshold.
  • subframe 1 subframe 1
  • subframe 2 subframe 3
  • subframe 7 subframe 8
  • subframe 9 subframe 9
  • subframe 5 subframe 6 belongs to the subframe of resource pool 1.
  • the terminal device calculates the interval (that is, the LBT suspension interval), and determines that the interval is 3 subframes, that is, subframe 4 to subframe 6.
  • the above method 3 can be used, that is, suspend LBT and wait until the start of the next resource pool 2 subframe , That is, when subframe 7 is reached, the terminal device continues the LBT process. Assuming that the terminal device succeeds in LBT at subframe 8, that is, obtains an idle channel, data transmission starts from subframe 8.
  • the subframes that can be occupied by data transmission are 3 subframes, namely, subframe 8, subframe 9, and subframe 0.
  • Case B is the case where the interval is greater than or equal to the preset threshold.
  • subframe 0LBT calculates the interval (that is, the LBT suspension interval), and determines that the interval is 6 subframes, that is, subframe 1 to subframe 6.
  • the above method 1 or method 2 can be used to wait until the next resource pool 2 subframe At the beginning, that is, when the subframe 7 is reached, the terminal device re-LBT.
  • the terminal device performs LBT again in subframe 7, assuming that the terminal device succeeds in LBT in subframe 8, that is, obtains an idle channel, and then starts data transmission from subframe 8.
  • the subframes that can be occupied by data transmission are 3 subframes, namely, subframe 8, subframe 9, and subframe 0.
  • the terminal device may also use resources in the resource pool 2 to send data of the first service.
  • the terminal device obtains resources for sending data on the resource pool 1.
  • the resources obtained by the terminal device may be based on base station scheduling, pre-configuration, or based on the existing sensing mechanism (data transmission can be performed by reserving resources), etc. ,
  • the embodiment of this application is not limited.
  • the terminal device can occupy or use the resources of resource pool 2. To transmit.
  • the terminal device or the network device may first send an SCI to indicate the length of the scheduling resource.
  • the SCI may indicate information such as the scheduling duration
  • the detection time of the terminal equipment can be shortened.
  • the relevant scheduling information can be indicated by the network equipment to the sending end UE, and the sending end UE can be sent to the receiving end UE.
  • subframe 2 and subframe 3 belong to the subframes of resource pool 1
  • subframe 4 belong to The subframe of resource pool 2.
  • the network device sends the SCI in subframe 3, and the symbol length indication value (SLIV) may be used to indicate the length of the scheduling.
  • the network device sends the SCI in the subframe 3.
  • the network device may send the SCI at the beginning of the subframe 3, or the network device sends the SCI at any position of the subframe 3. This is not limited in the embodiment of the application.
  • the terminal equipment that performs channel sensing on the subframes of the resource pool 2 receives the corresponding SCI, demodulates and decodes, so as to start the LBT time and make the LBT time-frequency domain bandwidth.
  • the process of a communication device receiving a signal on a certain channel in order to detect whether the channel is idle can be called channel sensing. Specifically, if a communication device determines whether a channel is free through signal detection, if a specific signal is not detected, the channel is considered to be free, or in other words, signals from other communication devices cannot be heard; when a specific signal is detected In this case, the channel is considered busy, or in other words, signals from other communication devices can be heard.
  • the communication device determines whether the channel is idle through energy detection, if the received or detected energy is lower than a certain preset threshold, the channel is considered to be idle, or in other words, no signal transmission from other communication devices can be heard ; When the received or detected energy is higher than a certain preset threshold, the channel is considered busy, or in other words, signals sent by other communication devices can be heard.
  • channel listening is performed on the subframes of the resource pool 2, which can be understood as the listening of the terminal equipment in the unreserved subframes.
  • the interval between the time when the network device sends the SCI and the start of the subframe of the resource pool 2 is less than or equal to a preset third threshold.
  • the preset third threshold may be preset, such as pre-specified by the protocol or pre-configured by the network device, which is not limited in the embodiment of the present application.
  • the time for the network device to send the SCI may be to monitor the SCI at the position before the start of the subframe of the resource pool 2, for example, within a few time slots before the start (for example, within 1 time slot).
  • the time for the network device to send the SCI can be the position before the start of the subframe of the resource pool 2 (ie subframe 4), such as the position of the subframe 3, so that the terminal device only needs to be in the subframe 3 Start monitoring SCI.
  • the interval between the time when the network device sends the SCI and the start of the subframe of the resource pool 2 is less than or equal to the preset third threshold, which can reduce the power caused by the blind detection of the SCI by the terminal device. Consumption.
  • the interval between the time when the network device sends the SCI and the start of the subframe of the resource pool 2 is greater than or equal to a preset fourth threshold.
  • the scheduling interval is greater than or equal to the preset fourth threshold.
  • the preset fourth threshold may be preset, such as pre-specified by the protocol or pre-configured by the network device, which is not limited in the embodiment of the present application.
  • the scheduling interval is greater than or equal to N2; for another example, assuming that the current subcarrier spacing (SCS) is 15KHz, the scheduling interval is not less than 3 symbols.
  • the interval between the time when the network device sends the SCI and the start of the subframe of the resource pool 2 is greater than or equal to the preset fourth threshold, so that the terminal device can have a long enough time to set the LBT parameter.
  • the interval between the frequency domain position where the SCI is sent by the network device and the frequency domain start position of the resource pool 2 is less than or equal to a preset fifth threshold.
  • the preset fifth threshold may be preset, such as pre-defined by the protocol or pre-configured by the network device, which is not limited in the embodiment of the present application.
  • the frequency domain position at which the network device sends the SCI may be monitoring the SCI at a position before the start of the frequency domain of the resource pool 2, for example, within a few frequency domain units before the start (for example, within 1 subcarrier, etc.). In this way, that is, the interval between the frequency domain position where the network device sends the SCI and the start position of the frequency domain of the resource pool 2 is less than or equal to the preset fifth threshold, which can reduce the blindness of the terminal device to the SCI. Power consumption caused by inspection.
  • the interval between the frequency domain position at which the SCI is sent by the network device and the frequency domain start position of the resource pool 2 is greater than or equal to a preset sixth threshold.
  • the interval between the frequency domain position at which the network device sends the SCI and the start position of the resource pool 2 in the frequency domain is recorded as the scheduling interval. In this way, that is, the interval between the frequency domain position at which the network device sends the SCI and the frequency domain start position of the resource pool 2 is greater than or equal to the preset sixth threshold, which enables the terminal device to set the LBT parameter.
  • FIG. 11 is a schematic interaction diagram of a method 300 for transmitting data provided by an embodiment of the present application from the perspective of device interaction. As shown in the figure, the method 300 may include step 310 to step 350, and each step is described in detail below.
  • the network device sends resource configuration information.
  • the terminal device and the target device receive resource configuration information.
  • the target device is one or more terminal devices corresponding to the data to be transmitted by the terminal device, that is, one or more terminal devices that receive the data to be transmitted by the terminal device.
  • the target device may also be one or more terminal device groups or one or more groups receiving target data, that is, the terminal device group or the terminal devices in the group all receive the data to be transmitted by the terminal device.
  • the network device may divide the resource into two parts by using the time domain or frequency domain as a unit (or as a unit), the resource pool 1 and the resource pool 2, as described in the method 200, which is concise here and will not be repeated.
  • the resource configuration information includes radio frame and subframe information.
  • the information about the radio frame and the subframe is as described in the method 200, which is concise here and will not be repeated.
  • the resource configuration information includes the multiple access mode of the sidelink control channel.
  • resource pool 1 is SC-FDMA
  • resource pool 2 is OFDMA
  • SCI sidelink control channel information
  • the element is added to indicate the multiple access mode used for the side link shared data channel (PSSCH).
  • the resource configuration information includes resource allocation mode information.
  • the resource acquisition method of resource pool 1 is configured to be acquired based on Mode 1, that is, through network device allocation; the resource acquisition method of resource pool 2 is configured to be acquired based on Mode 2, that is, through channel idle detection or LBT mechanism.
  • the terminal device may receive resource configuration information on the resource pool 1.
  • the terminal device connects the service to the resource pool 1.
  • the terminal device can connect the service to resource pool 1 according to the service connection rule configured by the network device.
  • the terminal device applies for resources from the network device.
  • the terminal device applies to the network device for resources in the resource pool 1.
  • the terminal device sends request information to the network device.
  • the request information includes at least one of the following information: the expected coverage distance of the data buffered to be sent or the path loss value from the sender to the receiver, and the path loss from the terminal to the network device (referred to as cell The difference between road loss), business road loss (such as side link road loss) and cell road loss.
  • the estimated value of the path loss can also be called the service path loss.
  • the service path loss When a terminal device sends data in broadcast mode, its service path loss is calculated based on the distance range that the service is expected to cover; when a terminal device sends data in unicast mode, its service path loss is calculated based on the distance between the terminal device and the target device. Loss: When a terminal device sends data in a multicast mode, its service path loss can be calculated based on the largest terminal device path loss in the terminal device group.
  • the network device allocates resources to the terminal device.
  • the terminal device obtains the resource allocated by the network device, and the resource is the resource in the resource pool 1.
  • the network device allocates scheduling resource information to the terminal device according to the request information of the terminal device.
  • the allocated scheduling resource information includes at least one of the following information: frequency domain information (for example, the number of PRBs or the number of subchannels, etc.), time domain information (symbol The number or number of time slots), and the number of time slot aggregation (the number of times the service data is repeated on consecutive time slots), the control channel or/and the multiple access mode of the service data (for example, OFDMA or SC-FDMA).
  • the multiple access mode indicated by the network device can cover the multiple access mode when the resource pool is allocated.
  • the terminal device sends data to the target device on the allocated resources.
  • the data may include control data and business data.
  • the terminal device can send relevant control data and service data according to the information allocated by the network device.
  • the terminal equipment determines the multiple access mode of the data channel according to the coverage and transmission power, and indicates in the control channel, Examples are shown in Table 1 below.
  • the target device detects the control channel on resource pool 1 according to the configured subframe information and multiple access information, and receives and processes the service data.
  • the resources used to send periodic services can be separated separately, and are not affected by the sending of aperiodic services, thereby improving data transmission performance.
  • FIG. 12 is a schematic interaction diagram of a method 400 for transmitting data provided by an embodiment of the present application, shown from the perspective of device interaction. As shown in the figure, the method 400 may include steps 410 to 440, and each step is described in detail below.
  • the network device sends resource configuration information.
  • the terminal device and the target device receive resource configuration information.
  • the target device is one or more terminal devices corresponding to the data to be transmitted by the terminal device, that is, one or more terminal devices that receive the data to be transmitted by the terminal device.
  • the target device may also be one or more terminal device groups or one or more groups receiving target data, that is, the terminal device group or the terminal devices in the group all receive the data to be transmitted by the terminal device.
  • the network device may divide the resource into two parts by using the time domain or frequency domain as a unit (or as a unit), the resource pool 1 and the resource pool 2, as described in the method 200, which is concise here and will not be repeated.
  • the resource configuration information includes subframe and time slot information.
  • the information about subframes and time slots is as described in method 200, which is concise here and will not be repeated.
  • the resource configuration information includes information about subframes and time slots, but does not include information about radio frames.
  • the subcarrier spacing is 15KHz
  • one sub-frame is equivalent to one slot.
  • the carrier spacing increases, the number of slots included in the sub-frame will change, as shown in Table 2.
  • Subcarrier spacing Slot length (ms) The number of slots in the subframe 15KHz 1ms 1 30KHz 0.5ms 2 60KHz 0.25ms 4 120KHz 0.125ms 8
  • the subframes containing the resource pool 2 time slots are expressed in a periodic manner.
  • the subframes containing the resource pool 2 time slots can be called a specific subframe.
  • T can be used to represent the period and O to represent the subframe offset;
  • the SLIV method is the representation method of the time domain length in the existing standard. Assuming that there are 8 slots in each subframe, the calculation method is as follows:
  • SLIV can indicate the starting time slot S of the time domain resource relative to the beginning of the subframe
  • S represents the start time slot of the time domain resource relative to the beginning of the subframe, S ⁇ 0;
  • L represents the number of consecutive time slots allocated starting from time slot S, L is greater than 0, and L is less than (8-S).
  • the resource configuration information includes the multiple access mode of the sidelink control channel.
  • resource pool 1 is SC-FDMA
  • resource pool 2 is OFDMA
  • SCI sidelink control channel information
  • the element is added to indicate the multiple access mode used for the side link shared data channel (PSSCH).
  • the resource configuration information includes resource allocation mode information.
  • the resource acquisition method of resource pool 1 is configured to be acquired based on Mode 1, that is, through network device allocation; the resource acquisition method of resource pool 2 is configured to be acquired based on Mode 2, that is, through channel idle detection or LBT mechanism.
  • the terminal device may receive resource configuration information on the resource pool 1.
  • the terminal device connects the service to the resource pool 2.
  • the terminal device obtains resources through LBT.
  • the terminal equipment can be configured in accordance with the protocol to calculate the detection duration or the number of detection time slots. It should be understood that the meaning of the time slot here is different from the time slot of data scheduling transmission, and the time slot here is a certain time unit, such as 16 us.
  • the current protocol determines the number of detection time slot parameters based on the priority category and the length of service data transmission time. Assume that the calculated output parameter is CW_L (the length of the competition window).
  • the rules for parameter setting of the competition window are as follows:
  • the channel access priority corresponds to transmission transmission
  • the parameter setting of the contention window is determined by the transmission time
  • the threshold can take the value: transmission time + maximum number of competition windows* Channel listening time slot length. If it is less than a certain threshold, reduce the detection time parameter settings until the conditions are met.
  • Idle channel detection If the sending resource is acquired before the end of the "subframe of resource pool 2", the reading gang will send data on the acquired resource. Otherwise: Determine the interval duration of the next resource pool 2 subframe. If it is greater than a threshold, such as greater than 100ms, the relevant detection window length can be reset when resources are detected on the next resource pool 2 subframe, otherwise the detection continues.
  • a threshold such as greater than 100ms
  • the terminal device sends data to the target device on the acquired resource.
  • the data includes business data.
  • the target device detects the control channel information on the resource pool 2 based on the received configuration information and the subframe information and multiple access information based on the configuration, and receives and processes the service data.
  • a resource pool based on LBT or channel detection can be separately set, so that the time for channel detection is shortened, and the problem of monitoring boundary resources based on LBT can also be solved, thereby improving data transmission performance.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a communication unit 1100 and a processing unit 1200.
  • the communication device 1000 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device or a chip configured in the terminal device.
  • the communication unit 1100 is configured to perform the transceiving-related operations on the terminal device side in the above method embodiment
  • the processing unit 1200 is configured to perform the processing related operations on the terminal device in the above method embodiment.
  • the communication device 1000 may correspond to the terminal device in the method 200, the method 300, and the method 400 according to the embodiments of the present application, and the communication device 1000 may include the terminal device used to execute the method 200, the method 300, and the method 400.
  • the unit of the method of execution In addition, each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding processes of the method 200, the method 300, and the method 400, respectively.
  • the communication unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 14, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 14.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • the communication device 1000 may correspond to the network device in the above method embodiment, for example, it may be a network device or a chip configured in the network device.
  • the communication unit 1100 is configured to perform the transceiving-related operations on the network device side in the above method embodiment
  • the processing unit 1200 is configured to perform the processing related operations on the network device in the above method embodiment.
  • the communication device 1000 may correspond to the network device in the method 200, the method 300, and the method 400 according to the embodiments of the present application, and the communication device 1000 may include a method for executing the method 200, the method 300, and the method 300 in the method 400.
  • the unit of the method performed by the network device.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding processes of the method 200, the method 300, and the method 400, respectively.
  • the communication unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 15, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 3100 in the network device 3000 shown in FIG. 15.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • FIG. 14 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 or FIG. 2 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002, and the memory 2030 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the aforementioned processor 2010 and the memory 2030 can be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to implement the aforementioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 13.
  • the above transceiver 2020 may correspond to the communication unit in FIG. 13, and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • terminal device 2000 shown in FIG. 14 can implement each process involving the terminal device in the foregoing method embodiments.
  • the operations and/or functions of each module in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 can be used to execute the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send or receive from the network device action.
  • the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send or receive from the network device action.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit A speaker 2082, a microphone 2084, etc. may also be included.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 3000 may be applied to the system shown in FIG. 1 or FIG. 2 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also known as distributed unit (DU) )) 3200.
  • RRU 3100 may be called a transceiver unit, and corresponds to the communication unit 1200 in FIG. 13.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 3100 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 3200 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1100 in FIG. 13, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 3200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 3000 shown in FIG. 15 can implement various processes involving network devices in the foregoing method embodiments.
  • the operations and/or functions of the various modules in the base station 3000 are used to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the communication method in any of the foregoing method embodiments.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It can be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the method 200, method 300, and The method of any one of the embodiments shown in the method 400.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the method 200, method 300, and The method of any one of the embodiments shown in the method 400.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in the above-mentioned device embodiments completely corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or In the sending step, other steps except sending and receiving can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • a component can be based on, for example, a signal having one or more data packets (for example, data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (for example, data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输数据的方法和通信装置,以期缩短终端设备进行空闲信道评估的时长,例如,在辅助驾驶或高级驾驶辅助系统、智能驾驶、智能网联驾驶等场景中,且还可以提高数据传输性能。该方法包括:第一终端设备获取第一资源池的信息和第二资源池的信息,第一资源池中的资源网络设备为终端设备分配的资源,第二资源池中的资源为终端设备通过空闲信道评估得到的资源,第一资源池和第二资源池不重叠;第一终端设备使用第一资源池中的第一资源向第二终端设备发送第一数据,第一资源是网络设备分配的资源;和/或,第一终端设备使用第二资源池中的第二资源向第三终端设备发送第二数据,第二资源是通过空闲信道评估获取到的资源。

Description

传输数据的方法和通信装置
本申请要求于2019年02月22日提交中国专利局、申请号为201910133600.8、申请名称为“传输数据的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输数据的方法和通信装置。
背景技术
在无线通信系统中,例如在第五代(5th-generation,5G)移动通信系统中,支持车辆与万物(vehicle to everything,V2X)通信。
在V2X通信中,支持多种类型的业务。例如,有与安全相关的业务,该业务需要时延要求比较严格;也有非安全类型的业务,该业务要求的时延要求比较低。又如,有周期性业务,该业务的产生可预测、周期性发送;也有非周期性业务,该业务产生预测性较弱、不是周期性发送。
那么,针对不同类型业务的数据,终端设备如何传输呢?
发明内容
本申请提供一种传输数据的方法和通信装置,以期降低信道检测时间,提高数据传输性能。
第一方面,提供了一种传输数据的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:第一终端设备获取第一资源池的信息和第二资源池的信息,所述第一资源池中的资源网络设备为终端设备分配的资源,所述第二资源池中的资源为终端设备通过空闲信道评估得到的资源,所述第一资源池和所述第二资源池不重叠;所述第一终端设备使用所述第一资源池中的第一资源向第二终端设备发送第一数据,所述第一资源是所述网络设备分配的资源;和/或,所述第一终端设备使用所述第二资源池中的第二资源向第三终端设备发送第二数据,所述第二资源是通过空闲信道评估获取到的资源。
基于上述技术方案,通过获取第一资源池的信息和第二资源池的信息,从而当终端设备需要进行空闲信道评估时,可以在第二资源池上进行空闲信道评估,进而缩短了信道检测的时间,提高了数据传输性能。此外,当终端设备需要使用分配的资源发送数据时,可以使用第一资源池中的资源发送数据,从而提高了数据传输性能。因此,针对不同的获取资源的方式,终端设备可以在其对应的资源上进行获取,不仅减少了终端设备的运算量,而且可以提高数据传输性能,提高用户体验。
例如,空闲信道评估至少包括两种方式:基于信道检测(又可以称为sensing)和基 于能量检测(或者称为LBT)。具体地下文实施例介绍。
可选地,第二终端设备和第三终端设备可以为相同的终端设备,也可以为不同的终端设备。第一终端设备可以使用第一资源池中的资源传输数据,也可以使用第二资源池中的资源传输数据。
结合第一方面,在第一方面的某些实现方式中,所述第二资源池包括第一时间单元组和第二时间单元组,所述第一资源池包括第三时间单元组,所述第三时间单元组位于所述第一时间单元组和所述第二时间单元组之间,所述第三时间单元组与所述第一时间单元组相邻,且所述第三时间单元组与所述第二时间单元组相邻;所述方法还包括:所述第一终端设备基于空闲信道评估参数,在所述第一时间单元组进行空闲信道评估;所述第一终端设备在所述第一时间单元组未获取到所述第二资源的情况下,基于所述空闲信道评估参数或者重新确定的空闲信道评估参数,在所述第二时间单元组重新进行空闲信道评估。
基于上述技术方案,终端设备可以基于同样的空闲信道评估参数或者重新确定的空闲信道评估参数,在第二资源池的时间单元组开始时,重新进行空闲信道评估,能够解决基于空闲信道评估监听有边界资源的问题。
例如,时间单元可以为:子帧、时隙、符号等等。
结合第一方面,在第一方面的某些实现方式中,所述第一终端设备在所述第一时间单元组未获取到所述第二资源的情况下,且所述第一时间单元组的结束位置与所述第二时间单元组的开始位置之间的间隔大于或等于预设的第一阈值时,基于所述空闲信道评估参数或者重新确定的空闲信道评估参数,在所述第二时间单元组重新进行空闲信道评估。
结合第一方面,在第一方面的某些实现方式中,所述第二资源池包括第一频域资源组和第二频域资源组,所述方法还包括:在所述第一频域组对应的频域上进行空闲信道评估。
例如,频域组可以包括:子信道、子载波、子载波组等。
结合第一方面,在第一方面的某些实现方式中,所述第二资源池包括第一时间单元组和第二时间单元组,所述第一资源池包括第三时间单元组,所述第三时间单元组位于所述第一时间单元组和所述第二时间单元组之间,所述第三时间单元组与所述第一时间单元组相邻,且所述第三时间单元组与所述第二时间单元组相邻;所述方法还包括:所述第一终端设备基于空闲信道评估参数,在所述第一时间单元组进行空闲信道评估;所述第一终端设备在所述第一时间单元组未获取到所述第二资源的情况下,挂起空闲信道评估;以及,所述第一终端设备基于所述空闲信道评估参数,在所述第二时间单元组继续进行所述空闲信道评估。
基于上述技术方案,终端设备可以先挂起空闲信道评估,再在第二资源池的时间单元组开始时,基于同样的空闲信道评估参数,继续进行空闲信道评估,能够解决基于空闲信道评估监听有边界资源的问题。
结合第一方面,在第一方面的某些实现方式中,所述第一终端设备在所述第一时间单元组未获取到所述第二资源的情况下,且所述第一时间单元组的结束位置与所述第二时间单元组的开始位置之间的间隔小于预设的第二阈值时,挂起空闲信道评估。
基于上述技术方案,终端设备可以在满足一定条件时挂起空闲信道评估。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一终端设备接收指示信息,所述指示信息用于指示所述第一资源池的信息,和/或,所述指示信息用 于指示所述第二资源池的信息;所述所述第一终端设备获取第一资源池的信息和第二资源池的信息,包括:所述第一终端设备根据所述指示信息,获取所述第一资源池的信息和所述第二资源池的信息。
基于上述技术方案,网络设备可以仅向终端设备指示第一资源池的信息,终端设备根据该指示信息可以确定第一资源池和第二资源池的信息。或者,网络设备可以仅向终端设备指示第二资源池的信息,终端设备根据该指示信息可以确定第一资源池和第二资源池的信息。或者,网络设备可以向终端设备指示第一资源池和第二资源池的信息,终端设备根据该指示信息可以确定第一资源池和第二资源池的信息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一终端设备在第一时域位置和/或第一频域位置,接收侧行链路控制信息SCI,所述SCI用于指示所述第二资源池中的资源;所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔小于或等于预设的第三阈值,和/或,所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔大于或等于预设的第四阈值;或,所述第一频域位置与所述第二资源池中的频域起始位置之间的间隔小于或等于预设的第五阈值,和/或,所述第一时刻与所述第二资源池中的频域起始位置之间的间隔大于或等于预设的第六阈值。
基于上述技术方案,当配置于第一资源池的业务紧急或者优先级较高时,终端设备可以抢占第二资源池的资源,例如,可以向终端设备发送SCI,以指示调度时长等信息,以便缩短终端设备的检测时间。
第二方面,提供了一种传输数据的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法包括:网络设备划分第一资源池和第二资源池,所述第一资源池中的资源为所述网络设备为终端设备分配的资源,所述第二资源池中的资源为终端设备通过空闲信道评估得到的资源,所述第一资源池和所述第二资源池不重叠;所述网络设备发送所述第一资源池的信息和/或所述第二资源池的信息。
基于上述技术方案,网络设备可以划分第一资源池的信息和第二资源池,从而当终端设备需要进行空闲信道评估时,可以在第二资源池上进行空闲信道评估,进而缩短了信道检测的时间,提高了数据传输性能。此外,当终端设备需要使用分配的资源发送数据时,可以使用第一资源池中的资源发送数据,从而提高了数据传输性能。因此,针对不同的获取资源的方式,终端设备可以在其对应的资源上进行获取,不仅减少了终端设备的运算量,而且可以提高数据传输性能,提高用户体验。
结合第二方面,在第二方面的某些实现方式中,方法还包括:所述网络设备在第一时域位置和/或第一频域位置,使用所述第一资源池中的资源发送侧行链路控制信息SCI,所述SCI用于指示所述第二资源池中的资源;所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔小于或等于预设的第三阈值,和/或,所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔大于或等于预设的第四阈值;所述第一频域位置与所述第二资源池中的频域起始位置之间的间隔小于或等于预设的第五阈值,和/或,所述第一时刻与所述第二资源池中的频域起始位置之间的间隔大于或等于预设的第六阈值。
结合第一方面或第二方面,在某些实现方式中,所述第一资源池和所述第二资源池在时域上重叠,在频域上不重叠;或者,所述第一资源池和所述第二资源池在频域上重叠, 在时域上不重叠。
也就是说,第一资源池和第二资源池可以是基于时域划分的,也可以是基于频域划分的。
第三方面,提供了一种通信装置。该通信装置可以为终端设备,或者,也可以为配置于终端设备中的芯片或电路,本申请对此不作限定。
该装置可以包括通信单元和处理单元,处理单元用于,获取第一资源池的信息和第二资源池的信息,所述第一资源池中的资源网络设备为终端设备分配的资源,所述第二资源池中的资源为终端设备通过空闲信道评估得到的资源,所述第一资源池和所述第二资源池不重叠;通信单元用于,使用所述第一资源池中的第一资源向第二终端设备发送第一数据,所述第一资源是所述网络设备分配的资源;和/或,通信单元用于,使用所述第二资源池中的第二资源向第三终端设备发送第二数据,所述第二资源是通过空闲信道评估获取到的资源。
结合第三方面,在第三方面的某些实现方式中,所述第二资源池包括第一时间单元组和第二时间单元组,所述第一资源池包括第三时间单元组,所述第三时间单元组位于所述第一时间单元组和所述第二时间单元组之间,所述第三时间单元组与所述第一时间单元组相邻,且所述第三时间单元组与所述第二时间单元组相邻;处理单元还用于:基于空闲信道评估参数,在所述第一时间单元组进行空闲信道评估;在所述第一时间单元组未获取到所述第二资源的情况下,基于所述空闲信道评估参数或者重新确定的空闲信道评估参数,在所述第二时间单元组重新进行空闲信道评估。
结合第三方面,在第三方面的某些实现方式中,在所述第一时间单元组未获取到所述第二资源的情况下,且所述第一时间单元组的结束位置与所述第二时间单元组的开始位置之间的间隔大于或等于预设的第一阈值时,基于所述空闲信道评估参数或者重新确定的空闲信道评估参数,在所述第二时间单元组重新进行空闲信道评估。
结合第三方面,在第三方面的某些实现方式中,所述第二资源池包括第一频域资源组和第二频域资源组,处理单元还用于:在所述第一频域组对应的频域上进行空闲信道评估。
结合第三方面,在第三方面的某些实现方式中,所述第二资源池包括第一时间单元组和第二时间单元组,所述第一资源池包括第三时间单元组,所述第三时间单元组位于所述第一时间单元组和所述第二时间单元组之间,所述第三时间单元组与所述第一时间单元组相邻,且所述第三时间单元组与所述第二时间单元组相邻;处理单元还用于:基于空闲信道评估参数,在所述第一时间单元组进行空闲信道评估;在所述第一时间单元组未获取到所述第二资源的情况下,挂起空闲信道评估;以及,基于所述空闲信道评估参数,在所述第二时间单元组继续进行所述空闲信道评估。
结合第三方面,在第三方面的某些实现方式中,在所述第一时间单元组未获取到所述第二资源的情况下,且所述第一时间单元组的结束位置与所述第二时间单元组的开始位置之间的间隔小于预设的第二阈值时,处理单元还用于:挂起空闲信道评估。
结合第三方面,在第三方面的某些实现方式中,通信单元还用于:接收指示信息,所述指示信息用于指示所述第一资源池的信息,和/或,所述指示信息用于指示所述第二资源池的信息;处理单元具体用于:根据所述指示信息,获取所述第一资源池的信息和所述第二资源池的信息。
结合第三方面,在第三方面的某些实现方式中,通信单元还用于:在第一时域位置和/或第一频域位置,接收侧行链路控制信息SCI,所述SCI用于指示所述第二资源池中的资源;所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔小于或等于预设的第三阈值,和/或,所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔大于或等于预设的第四阈值;所述第一频域位置与所述第二资源池中的频域起始位置之间的间隔小于或等于预设的第五阈值,和/或,所述第一时刻与所述第二资源池中的频域起始位置之间的间隔大于或等于预设的第六阈值。
第四方面,提供了一种通信装置。该装置可以为网络设备,或者,也可以为配置于网络设备中的芯片或电路,本申请对此不作限定。
该装置可以包括通信单元和处理单元,处理单元用于,划分第一资源池和第二资源池,所述第一资源池中的资源为所述网络设备为终端设备分配的资源,所述第二资源池中的资源为终端设备通过空闲信道评估得到的资源,所述第一资源池和所述第二资源池不重叠;通信单元用于,发送第一资源池的信息和/或第二资源池的信息。
结合第四方面,在第四方面的某些实现方式中,通信单元还用于,在第一时刻和/或第一频域位置,使用所述第一资源池中的资源发送侧行链路控制信息SCI,所述SCI用于指示所述第二资源池中的资源;所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔小于或等于预设的第三阈值,和/或,所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔大于或等于预设的第四阈值;所述第一频域位置与所述第二资源池中的频域起始位置之间的间隔小于或等于预设的第五阈值,和/或,所述第一时域位置与所述第二资源池中的频域起始位置之间的间隔大于或等于预设的第六阈值。
结合第三方面或第四方面,在某些实现方式中,所述第一资源池和所述第二资源池在时域上重叠,在频域上不重叠;或者,所述第一资源池和所述第二资源池在频域上重叠,在时域上不重叠。
第五方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的通信系统的一示意图;
图2是适用于本申请实施例的通信系统的另一示意图;
图3示出了V2X检测空闲信道的一示意图;
图4示出了周围性业务和非周期性业务获取资源的一示意图;
图5是本申请一实施例提供的传输数据的方法的示意性交互图;
图6是适用于本申请实施例的传输数据的方法的指示资源的一示意图;
图7是适用于本申请实施例的传输数据的方法的指示资源的又一示意图;
图8是适用于本申请实施例的传输数据的方法的执行LBT的一示意图;
图9是适用于本申请实施例的传输数据的方法的执行LBT的又一示意图;
图10是适用于本申请实施例的传输数据的方法的执行LBT的另一示意图;
图11是本申请又一实施例提供的传输数据的方法的示意性交互图;
图12是本申请另又一实施例提供的传输数据的方法的示意性交互图;
图13是本申请实施例提供的通信装置的示意性框图;
图14是本申请实施例提供的终端设备的结构示意图;
图15是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:辅助驾驶(driver assistance)或高级驾驶辅助系统(advanced driver assistance systems,ADAS)、智能驾驶(intelligent driving)、智能网联驾驶(intelligent network driving)、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)、全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统等。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆网系统中的通信。其中,车辆网系统中的通信方式统称为车联万物(vehicle-to-everything,V2X),X代表任何事物。例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。
如1图所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121至终端设备123。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
一个网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选的,网络设备111和终端设备121至终端设备123组成一个单小区通信系统,不失一般性,将该小区记为小区#1。网络设备111可以为小区#1中的终端设备(例如终端设备121)服务。
需要说明的是,小区可以理解为网络设备的服务小区,也就是网络设备的无线网络的覆盖范围内的区域。
应理解,图1中仅为便于理解,示意性地示出了网络设备111和终端设备121至终端设备123,但这不应对本申请构成任何限定,该无线通信系统中还可以包括更多数量的网络设备,也可以包括更多或更少数量的终端设备,同一个网络设备可以与不同的终端设备通信,也可以是不同的网络设备与不同的终端设备通信,本申请对此不做限定。
图2是适用于本申请实施例的无线通信系统200的另一示意图。如2图所示,本申请实施例的技术方案还可以应用于D2D通信。
随着无线通信技术的发展,人们对高数据速率和用户体验的需求日益增长,同时人们对了解周边人或事物并与之通信的邻近服务的需求逐渐增加,因此D2D技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担、减少终端设备的电池功耗、提高数据速率,并能很好地满足邻近服务的需求。D2D技术能够允许多个支持D2D功能的终端设备之间在有网络基础设施或无网络基础设施的情况下都能发送信号和接收信号。鉴于D2D技术的特点和优势,基于D2D技术的车联网应用场景被提出。例如,在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的LTE技术的网络下,V2X的车联网技术被提出。其中,V2X通信是指车辆与外界的任何事物的通信,包括V2V的通信、V2P的通信、V2I的通信、V2N的通信。其中,V2N是目前应用最广泛的车联网形式,其主要功能是使车辆通过移动网络,连接到云服务器,使用云服务器提供的导航、娱乐、防盗等应用功能。V2V可以用做车辆间信息交互和提醒,最典型的应用是用于车辆间防碰撞安全系统。V2I可以用做车辆可以与道路甚至其他基础设施,例如交通灯、路障等通信,获取交通灯信号时序等道路管理信息。V2P可以用做给道路上行人或非机动车安全警告等。
如图2所示,该无线通信系统200包括多个终端设备,例如图2中的终端设备124至终端设备126。终端设备124至终端设备126之间可以直接进行通信。例如,终端设备124和终端设备125可以单独或同时发送数据给终端设备126。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:基站(base station,BS)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP), 5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载的通信设备等等。本申请的实施例对应用场景不做限定。
应理解,图2中仅为便于理解,示意性地示出了终端设备124至终端设备126,但这不应对本申请构成任何限定,该无线通信系统中还可以包括更多或更少数量的终端设备,也可以包括更多数量的网络设备,本申请对此不做限定。
应理解,上述图1和图2仅是示例性说明,本申请并未限定于此,例如,本申请实施例还可应用于:辅助驾驶或高级驾驶辅助系统、智能驾驶、智能网联驾驶等场景中。
以V2X通信为例。V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。
为便于理解本申请实施例,下面先对本申请涉及到的几个名词或术语进行简单介绍。
1、V2X通信的传输方式
V2X通信的传输方式包括广播方式、组播方式、单播方式。
广播方式:发送端采用广播的模式进行数据发送,所有接收端均能解析侧行链路控制信息(sidelink control information,SCI)和侧行链路共享信道(sidelink shared channel,SSCH)信息。侧行链路(sidelink)中,保证所有终端设备能够解析控制信息的方式可以是:控制信息数据不加扰或者使用所有终端设备已知的扰码。
组播方式:组播模式和广播模式相似,其发送采用广播的模式进行数据发送,所有接收端均能解析控制信道信息和侧行链路共享信道。控制信息数据不加扰或者使用所有终端 设备已知的扰码,并在控制信息中增加组播标识(identity,ID),解析到控制信息的终端设备,通过识别组播ID确认是否需要接收数据。
单播(unicast)方式:支持混合自动重传请求(hybrid automatic repeat reQuest,HARQ)过程,发送端根据接收端的反馈来确定是否重传,根据接收端反馈的信道做编码调整。
2、V2X通信的业务类型
V2X通信中,终端设备发送的业务有很多,包括但不限于:道路安全类业务和非道路安全类业务。
道路安全类业务:与交通安全相关,业务要求实时性较高,需要系统尽快传输出去,比如前方车辆发送的紧急刹车制动信号,车辆变道信息,前方紧急交通事故避险通知等。
非道路安全类业务:与道路安全非直接相关,比如:车辆传感器信息分享,车队信息分享等。
由上可知,在V2X通信中,包括安全类型的业务(即与安全相关的业务),该类业务对时延要求比较严格,也包括非安全类型的业务,该类业务对时延要求比较低。在V2X通信中,还包括周期性业务(业务产生可预测,周期性发送),也包括非周期性业务(业务产生预测性较弱,不是周期性发送)。
3、V2X通信的通信模式
V2X通信中,终端设备的通信模式可以包括基于PC5接口通信和基于Uu接口通信。
基于Uu接口的通信模式,也可以称为Uu通信模式或者Uu接口通信模式,表示通过Uu接口技术进行通信,即网络通信,V2X通信数据需要经过移动运营商网络的传输。
基于PC5接口通信,表示通过PC5接口技术进行通信,即直接通信,V2X通信数据直接在终端设备(V2X终端设备)间传输,换句话说,终端设备之间可以直接进行通信。PC5接口可以在非覆盖(out of coverage,OOC)和覆盖(in coverage,IC)下使用,授权的终端设备使用PC5接口进行传输。终端设备和终端设备之间的传输链路也可以称为边链路(side link)或直通链路(side link)。
4、V2X通信的信道频段
用于V2X的信道频段,包括以下两种:
一种是,和Uu接口共用一个频段,即终端设备和终端设备之间的直通链路,终端设备和网络设备之间的Uu接口,采用时分或者频分方式共享一个频段;
又一种是,V2X的单独专用频段(如中国分配的6G附近的频点,20M频谱),即终端设备和终端设备之间的直通链路是个单独的频段,不和Uu接口共享。不同系统之间可以共享,如LTE-V2X和NR-V2X,对此,本申请实施例不作限定。
5、侧行链路控制信SCI
也可以称为边链路控制信息。其中,边链路或侧行链路(sidelink,SL)指终端设备之间的传输链路。在SL中,终端设备之间的数据传输不经过网络设备进行中转。如图2所示的系统200。
6、多址方式
在通信系统,例如LTE或NR系统中,包括两种多址方式:
(1)单载波频分多址(single-carrier frequency-division multiple access,SC-FDMA):实现SC-FDMA的过程为离散傅里叶变换扩频的正交频分复用多址接入技术方案(discrete  fourier transform orthogonal frequency division multiplexing,DFT-OFDM),是频域产生信号的单载波频分多址方案,最大的优势是峰均比比较好,对上行发射机的要求降低。在NR中也可以称变换预编码(transform precoding)。
(2)正交频分多址(orthogonal frequency division multiplexing access,OFDMA):将传输带宽划分成正交的互不重叠的一系列子载波集,将不同的子载波集分配给不同用户,也可以称为循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)。
在一些系统中,如在LTE系统中,下行使用OFDMA,上行使用SC-FDMA;在一些系统中,如在NR系统中,下行使用OFDMA,上行使用SC-FDMA或者OFDMA,由网络配置。在一些系统中,如在LTE-V2X系统中,使用SC-FDMA。
应理解,上述仅是示例性说明,本申请并未限定于此。
7、数据或数据信息
在本申请实施例中,“数据”或“数据信息”可以理解为信息块经过编码后生成的比特,或者,“数据”或“数据信息”还可以理解为信息块经过编码调制后生成的调制符号。数据或数据信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单位(或者,也可以称为时间单位),在频域上,时频资源可以包括频域单位或资源单元。
其中,一个时域单位(也可称为时间单元)可以是一个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。
其中,频域单位或资源单元:可用于作为资源在时频域占用的资源的计量单位。在本申请实施例中,资源单元例如可以包括子信道带宽(sub-channel bandwidth)子带(subband)、RB、一个或多个RB构成的资源块组(RB group,RBG)、一个或多个RB对(RB pair)、半个RB、1/4个RB、一个或多个RE构成的RE组等。在NR协议中,一个RB是由频域上的12个连续的子载波和时域上的14个连续的符号组成。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。
8、时隙
在NR中,时隙为时间的最小调度单元。一种时隙的格式为包含14个OFDM符号,每个OFDM符号的循环前缀(cyclic prefix,CP)为常规CP(normal cyclic prefix)。一种时隙的格式为包含12个OFDM符号,每个OFDM符号的CP为扩展CP(extended cyclic prefix)。一种时隙的格式为包含7个OFDM符号,每个OFDM符号的CP为常规CP。一个时隙中的OFDM符号可以全用于上行传输;可以全用于下行传输;也可以一部分用于下行传输,一部分用于上行传输,一部分预留不进行传输。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。出于系统前向兼容性考虑,时隙格式不限于以上示例。
9、V2X通信的资源调度
在基于PC5接口通信中,相关通信信道资源的确定,可以基于网络设备(如基站)配 置的资源池(或者默认配置的资源池)中选择。一般地,V2X直通链路传输支持如下两种模式:
模式1(Mode 1):网络设备调度模式。终端设备需要在无线资源控制(radio resource control,RRC)连接态。终端设备首先向网络设备进行资源请求,然后网络设备会分配V2X直通链路上的控制资源和数据资源。简单来说,模式1是基于网络设备对直通链路进行资源分配和调度的。
模式2(Mode 2):资源的分配不是基于(Mode 1)调度或者预配置。主要包括如下几类:
(1)终端设备自己选择直通链路的传输资源;
(2)终端设备辅助其它终端设备选择直通链路的传输资源;
(3)终端设备被配置一些资源进行传输;
(4)终端设备(例如可以作为一个主终端设备,)为其它终端设备的直通链路进行调度。
对于模式2,终端设备为了获取发送信道,可以通过以下任意一种空闲信道评估的方法:
方法1:基于信道检测(或者叫做sensing);
方法2:基于能量检测(或者叫做先听后说(listen before talk,LBT))。
下面简述上述两种方法。
方法1:基于信道检测。
基于信道检测过程(或者称为基于控制信道检测过程),当前标准叫在做sensing过程,主要特点包括:解析控制信道上SCI,其目的是获取当前信道(数据信道和控制信道)的占用情况及未来的占用情况;计算信道上的能量,计算这些信道被使用的终端设备距离,在没有信道可用使用的情况下,优先和距离远的终端设备使用相同的信道。.
解析控制信道上SCI是基于V2X业务具有周期性为基础,即终端设备监听一定长度(例如1秒)的检测时间窗。解析控制信道上的SCI,其中调度信令中包括:业务周期,业务占用的信道,从该监测时间窗中,推断出下一段时间哪些信道是被占用,哪些信道是空闲的。
在检测时间窗过后,终端设备推断出哪些时间的信道可以占用,其信道占用和数据发送时间不是立即发送的,而是在一个信道选择时间窗内,随机选择一个时间进行发送,这样可以减少终端设备之间的数据干扰。
图3示出了V2X检测空闲信道的一示意图。如图3所示,假设包括:信道1、信道2、信道3、信道4、信道5、信道6。终端设备在监测时间窗内,通过检测各个信道的SCI,确定:信道1、信道2、信道3已经被占用,且在时刻3和时刻4继续被占用;信道4、信道5、信道6在监测时间窗内没有被占用。因此终端设备能够推断出来信道4、信道5、信道6在时刻3和4是可用的。
方法2:基于能量检测
基于能量检测的方法也叫LBT侦听机制,即在一定窗口长度内,如果检测到能力都低于一定的门限,则认为该信道空闲可用,否则需要随机向后退避一段时间,继续侦听。
第三代合作伙伴计划(the 3rd generation partnership project,3GPP)对四种信道接入 机制进行了评估:
第一种是无LBT侦听机制:有的地区和国家并不强制要求在非授权频段上实施LBT机制。
第二种是无随机退避LBT:采用固定时长的帧,包括信道占用时间和空闲时间,在要进行数据传输之前进行空闲信道评估(clear channel assessment,CCA)。如果信道空闲,则在随后的信道占用时间进行数据传输,否则在整个帧周期内都无法传输数据。发送方发送数据前确定信号是否空闲的时间长度是确定的。
第三种是采用固定长度竞争窗口的随机退避LBT:采用不固定帧周期的帧结构,以负载变化为依据的模式。竞争窗口长度固定,采用扩展CCA(extended CCA,ECCA),在检测到信道空闲时,数据传输可以立即开始,否则就要进入竞争窗口,即固定数目的ECCA窗口。
第四种是采用非固定长度竞争窗口的随机退避LBT:在检测到信道被占用或者到达最大传输时间之后,发送端进入竞争窗口。与采用固定长度竞争窗口不同的是,发送端可以改变竞争窗口的长度。其中,关于竞争窗口的产生和使用,即终端设备在做LBT侦听机制之前,先从0—N(N为配置的数值,N大于0)之间产生一个随机数M(M大于或等于0,且M小于或等于N),每当侦听出1个时隙为信道空闲,则M减一,直到M减少到0为止。
3GPP采用了上述第四种LBT侦听机制(LBT CAT4),即非固定长度竞争窗口的随机退避LBT,作为非授权频谱(licensed-assisted access,LAA)下行包含物理下行共享信道(physical downlink shared channel,PDSCH)的接入机制的基础。采用上述第二种(LBT CAT2)做解调参考信号(demodulation reference signal,DRS)的信道传输前的侦听。LBT侦听机制能够确保LTE网络和其他网络共存和公平竞争。
在本申请实施例中,空闲信道评估至少包括上述方法1和方法2。上述方法1和方法2都需要在一定的窗口时间内,进行信道使用情况检查。例如,sensing机制是基于检测控制信道的控制信息,时间长度可以是1秒;LBT机制是基于能量的检测,时间长度可以是随机确定,为简洁,将上述方法1或方法2中检测的时间窗口统称为检测时间窗。不管是上述方法1还是方法2,在检测时间窗口结束后,判断是否有信道可使用,如果有信道可以使用,则可以使用该信道传输数据。
下文统一用空闲信道评估表示。
由上可知,关于资源获取方式,既有基于网络设备的分配方式,也有基于终端设备自获取的方式。由前可知,V2X通信中的业务包括周期性业务和非周期性业务,那么周围性业务和非周期性业务获取资源可以基于长周期检测(或者网络设备分配)加短周期检测(或者LBT)相结合的方式。
图4示出了周围性业务和非周期性业务获取资源的一示意图。图4中以终端设备A、终端设备B、终端设备C、以及终端设备E为例进行了说明,为区分,分别记为UE A、UE B、UE C、UE E。其中,假设UE A、UE B、UE C周期性发送业务,换句话说,UE A、UE B、UE C发送的是周期性业务的数据;UE E非周期性发送业务,换句话说,UE E发送的是非周期性业务的数据。如图4所示,将载波资源分为频率域和时间域两个维度,频率域包括:子带(subband)1、子带2、子带3,时间域包括:T1、T2、T3、T4、T5、T6、 T7、T8。
UE A、UE B、UE C发送的是周期性业务(如周期性广播信号),这些终端设备通过长期检测,分别获取对应部分的业务资源。例如,UE A获取的频域资源包括子带2,时域包括:T1、T4、T7。发送端在发送SCI时,将资源预留消息广播给其它终端设备。
UE E发送非周期性业务,在检测到UE A、UE B、UE C的预留资源后,寻找到空余资源,例如,频域资源包括子带3,时域资源T3和T6。UE E需要先在频域资源子带3、时域资源T3上发送资源预留信息(频域资源子带3、时域资源T6),并在频域资源子带3、时域资源T6上发送数据。
由上可知,对于发送非周期性业务的UE E来说,需要检测较长时间的信道检测,增加终端设备的功耗,一方面增加了终端设备的运算量,另一方面使得非周期类业务时延变大,不利于数据传输性能。
有鉴于此,本申请提供一种传输数据的方法,能够缩短信道检测的时间,进而提高数据传输性能。
此外,为了便于理解本申请实施例,作出以下几点说明。
在下文示出的实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
在下文示出的实施例中,第一、第二、第三仅为便于区分不同的对象,而不应对本申请构成任何限定。例如,区分不同的资源池等。
在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
在下文示出的实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
在下文示出的实施例中,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、5G或NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
在下文示出的实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“多个”是指两个或两个以上,其它量词与之类似。此外,对于单数形式“a”,“an”和“the”出现的元素(element), 除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。
下面将结合附图详细说明本申请实施例。
应理解,本申请提供的传输数据的方法可适用于无线通信系统。本申请提供的传输数据的方法可适用于至少一个网络设备和至少一个终端设备之间的通信,例如,图1中所示的系统100或图2中的系统200。或者,本申请提供的传输数据的方法可适用于至少两个终端设备之间的通信。例如,图2中所示的系统200。
图5是本申请实施例提供的传输数据的方法200的示意性框图。如图所示,方法200可以应用于V2X或D2D场景等,方法200可以包括步骤210、步骤220,下面具体描述各个步骤。
210,终端设备获取资源池1和资源池2的信息。
在特定的载波上,可以根据资源的获取方式,将资源配置成两部分,为区分,记为资源池1和资源池2。网络设备可以将载波按照频域或时域分为两部分,也就是说,网络设备可以以时域或频域为单元(或者为单位)划分资源池1(例如可以记作第一资源池)和资源池2(例如可以记作第二资源池)。
资源池1上的资源属于网络设备分配的资源,可以是预先分配的资源,也可以是基于终端设备的请求分配的资源。换句话说,如果终端设备要使用资源池1的资源传输数据时,可以基于Mode1获取资源,如,终端设备可以向网络设备请求资源,网络设备向终端设备分配资源池1中的资源,以便终端设备传输数据。
资源池2上的资源不属于网络设备分配的资源,或者,资源池2上的资源也可以称为非预留资源,换句话说,如果终端设备要使用资源池2的资源传输数据时,可以基于Mode2获取资源。例如,终端设备可以进行空闲信道评估,以便终端设备传输数据。其中,如上文所述,空闲信道评估包括基于信道检测(或者称为sensing)或者基于能量检测(或者称为LBT)。
下文将详细描述划分资源池1和资源池2的方式、以及终端设备获取资源池1和资源池2的信息的方式。
220,终端设备使用资源池1中的资源发送第一数据;和/或,终端设备使用第二资源池中的资源发送第二数据。
可选地,第一数据要求的传输质量较高,第二数据要求的传输质量要求较低。
应理解,第一数据和第二数据仅是为区分进行的命名,并不对本申请实施例的保护范围造成限定。
在本申请实施例中,可以将传输质量要求较高的业务,记为第一业务,配置到资源池1上,也就是说,使用资源池1中的资源传输第一业务的数据;可以将传输质量要求较低的业务,记为第二业务,配置到资源池2上,也就是说,使用资源池2中的资源传输第二业务的数据。传输质量要求的高低可以根据传输质量要求门限确定,例如,体现业务质量要求的近距离服务(proximity services,ProSe)报文优先级(ProSe Per-Packet Priority,PPPP)数值,或者服务质量(quality of service,QoS)流标识(QoS flow ID,QFI)数值等。
例如,第一业务可以为道路安全类业务,或者,第一业务可以为道周期性类业务。又如,第二业务可以为非道路安全类业务,或者,第二业务也可以为非周期类业务。
应理解,第一业务和第二业务仅是为区分进行的命名,并不对本申请实施例的保护范围造成限定。
下文将详细描述资源池1和资源池2的划分方式。
网络设备可以以时域或频域为单元(或者为单位)划分资源池1和资源池2,下文以时域为单元,介绍网络设备划分的方式,应理解,以频域划分类似,此处不再赘述。
以时间单元为子帧、和时间单元为时隙为例,介绍两种网络设备以时域为单元划分资源池1和资源池2的方法。
网络设备可以通过以下任一方法将资源划分成资源池1和资源池2。
方法1
将载波资源以子帧(subframe)为单元,配置成两部分,资源池1和资源池2,资源池1中包括预留资源或预留子帧组,资源池2中包括非预留资源或非预留子帧组。
结合图6示例性说明。如图6所示,特定无线帧(radio frame)包括两部分,一部分是包含有资源池2的无线帧,即无线帧0和无线帧4;另一部分是不包含资源池2的无线帧,即属于资源池1的无线帧,即无线帧1、无线帧2、以及无线帧3。
应理解,特定无线帧仅是为区分做的命名,其名称并不对本申请实施例的保护范围造成限定(如:可以是子帧,时隙,或者符号)。
还应理解,包含有资源池2的无线帧,表示该无线帧中包含有资源池2中的资源,也就是说,该无线帧中包含有非预留子帧;不包含有资源池2的无线帧,表示该无线帧中不包含资源池2中的资源,也就是说,该无线帧中不包含非预留子帧。下文不再赘述。
载波资源以子帧为单元,配置成两部分。如图6中的无线帧0和无线帧4,无线帧0和无线帧4中均包含有资源池2的子帧。以无线帧0中为例,将子帧4、子帧5、子帧6、以及子帧7配置为非预留子帧或资源池2的子帧,子帧4、子帧5、子帧6、以及子帧7组成了非预留子帧组,即子帧4、子帧5、子帧6、以及子帧7属于资源池2;将子帧0、子帧1、子帧2、子帧3、子帧8、以及子帧9配置为预留子帧或资源池1的子帧,子帧0、子帧1、子帧2、子帧3、子帧8、以及子帧9组成了预留子帧组,即子帧0、子帧1、子帧2、子帧3、子帧8、以及子帧9属于资源池1。换句话说,网络设备将无线帧0划分为两部分,一部分是子帧4、子帧5、子帧6、以及子帧7组成的非预留子帧组,即资源池2,另一部分是子帧0、子帧1、子帧2、子帧3、子帧8、以及子帧9组成的预留子帧组,即资源池1。
应理解,上述以子帧4、子帧5、子帧6、以及子帧7组成资源池2,子帧0、子帧1、子帧2、子帧3、子帧8、以及子帧9组成资源池1为例进行了说明,本申请并未限定于此,资源池1可以包括更多的子帧,资源池2也可以包括更多的子帧。
方法2
将载波资源以时隙(slot)为单元,配置成两部分,资源池1和资源池2,资源池1中包括预留资源或预留时隙组,资源池2中包括非预留资源或非预留时隙组。
结合图7示例性说明。如图7所示,特定子帧包括两部分,一部分是包含有资源池2的子帧,即子帧0和子帧4;另一部分是不包含资源池2的子帧,即属于资源池1的子帧, 即子帧1、子帧2、以及子帧3。
应理解,特定子帧仅是为区分做的命名,其名称并不对本申请实施例的保护范围造成限定(如:可以是时隙,或者符号)。
还应理解,包含有资源池2的子帧,表示该子帧中包含有资源池2中的资源,也就是说,该子帧中包含有非预留时隙;不包含资源池2的子帧,表示该子帧中不包含资源池2中的资源,也就是说,该子帧中不包含非预留时隙。
载波资源以时隙为单元,配置成两部分。如图7中的子帧0和子帧4,子帧0和子帧4中均包含有资源池2的时隙。以子帧0中为例,将时隙0、时隙1、时隙2、以及时隙3配置为资源池2的时隙或非预留时隙,时隙0、时隙1、时隙2、以及时隙3组成了非预留时隙组,即时隙0、时隙1、时隙2、以及时隙3属于资源池2;将时隙4、时隙5、时隙6、以及时隙7配置为资源池1的时隙或预留时隙,时隙4、时隙5、时隙6、以及时隙7组成了预留时隙组,即时隙4、时隙5、时隙6、以及时隙7属于资源池1。换句话说,网络设备将子帧0划分为两部分,一部分是时隙0、时隙1、时隙2、以及时隙3组成的非预留时隙组,即资源池2,另一部分是时隙4、时隙5、时隙6、以及时隙7组成的预留时隙组,即资源池1。
应理解,上述以时隙0、时隙1、时隙2、以及时隙3组成资源池2,时隙4、时隙5、时隙6、以及时隙7组成资源池1为例进行了说明,本申请并未限定于此,资源池1可以包括更多的时隙,资源池2也可以包括更多的时隙。
下文将描述步骤210中,终端设备获取资源池1和资源池2的信息的方式。
终端设备可以通过以下任一方式获取资源池1和资源池2的信息。
方式1,网络设备可以发送用于指示其中一部分资源(即资源池1或资源池2)的指示信息,终端设备根据该指示信息可以推断出另一部分资源(即资源池2或资源池1)的信息。
例如,网络设备可以发送用于指示资源池1的指示信息,终端设备根据该指示信息,可以确定出资源池1的信息,并推断出资源池2的信息。又如,网络设备可以发送用于指示资源池2的指示信息,终端设备根据该指示信息,可以确定出资源池2的信息,并推断出资源池1的信息。
方式2,网络设备发送用于指示资源池1和资源池2的指示信息,终端设备根据该指示信息,可以确定出资源池1和资源池2的信息。
例如,网络设备向终端设备发送指示信息,指示资源池1中子帧的位置和资源池2中子帧的位置,或者,指示资源池2中时隙的位置和资源池2中时隙的位置。
可选地,在上述两种方式中,该指示信息可以通过单独的信令发送给终端设备;或者,该指示信息也可以与配置信息一起发送给终端设备。一种可能的实现方式,网络设备可以将资源池1和资源池2的配置信息,在小区内广播给所有终端设备。
可选地,该指示信息可以在资源池1的子帧上或者在资源池1的时隙上进行发送,且可以以一定周期进行发送。
下面主要介绍上述方式1。
资源池1和资源池2的信息,可以通过比特位图(bitmap)的方式指示。下面结合上述两种不同的情况进行说明。
情况1:载波资源以子帧为单元,配置成两部分。
用M比特的位图表示特定无线帧,特定无线帧表示包含资源池2的无线帧,M比特表示M个无线帧,其中,M为大于0的整数。在该特定无线帧中,可以用1表示含有资源池2的无线帧,用0表示不含有资源池2的无线帧;或者,也可以用0表示含有资源池2的无线帧,用1表示不含有资源池2的无线帧。
用N比特的位图表示无线帧内属于资源池2中的子帧,N比特表示N个子帧,其中,N为大于0的整数。在该无线帧中,可以用1表示该子帧是资源池2中的子帧,用0表示该子帧不是资源池2中的子帧;或者,也可以用0表示该子帧是资源池2中的子帧,用1表示该子帧不是资源池2中的子帧。
结合图6示例性说明。如图6所示,M=5,N=10,用5比特表示长度为50ms的无线帧分配情况。假设特定无线帧中的无线帧0和无线帧4中含有非预留子帧(即资源池2中的子帧),可以用5比特的位图表示该特定无线帧。
一种可能的实现方式,1表示含有资源池2的无线帧,0表示不含有资源池2的无线帧,则该特定无线帧可以表示为10001。相应地,终端设备根据该特定无线帧的表示10001,确定无线帧0和无线帧4为包含有资源池2的无线帧。并且,终端设备可以推断出剩余无线帧,即无线帧1、无线帧2、以及无线帧3为不包含有资源池2的无线帧。
又一种可能的实现方式,0表示含有资源池2的无线帧,1表示不含有资源池2的无线帧,则该特定无线帧可以表示为01110。相应地,终端设备根据该特定无线帧的表示01110,确定无线帧0和无线帧4为包含有资源池2的无线帧。并且,终端设备可以推断出剩余无线帧,即无线帧1、无线帧2、以及无线帧3为不包含有资源池2的无线帧。
假设无线帧0或无线帧4中属于资源池2的子帧包括子帧4、子帧5、子帧6、以及子帧7,可以用10比特的位图的方式表示无线帧0或无线帧4中属于的资源池2的子帧。
一种可能的实现方式,1表示该子帧属于资源池2,0表示该子帧不属于资源池2,则对于无线帧0或无线帧4来说,该子帧可以表示为0000111100。相应地,终端设备根据该无线帧0或无线帧4的表示0000111100,确定子帧4、子帧5、子帧6、以及子帧7属于资源池2,即子帧4、子帧5、子帧6、以及子帧7为非预留子帧。并且,终端设备可以推断出该无线帧0或无线帧4中的子帧0、子帧1、子帧2、子帧3、子帧8、以及子帧9不属于资源池2,即子帧0、子帧1、子帧2、子帧3、子帧8、以及子帧9属于资源池1。
又一种可能的实现方式,0表示该子帧属于的资源池2,1表示该子帧不属于的资源池2,则对于无线帧0或无线帧4来说,该子帧可以表示为1111000011。相应地,终端设备根据该无线帧0或无线帧4的表示1111000011,确定子帧4、子帧5、子帧6、以及子帧7属于资源池2,即子帧4、子帧5、子帧6、以及子帧7为非预留子帧。并且,终端设备可以推断出该无线帧0或无线帧4中的子帧0、子帧1、子帧2、子帧3、子帧8、以及子帧9不属于资源池2,即子帧0、子帧1、子帧2、子帧3、子帧8、以及子帧9属于资源池1。
应理解,上述终端设备根据接收到的用于指示资源池2的信息确定出资源池2的信息,并推断出资源池1的信息。本申请并未限定于此。例如,终端设备也可以先根据接收到的信息确定资源池1的信息,再推断出资源池2的信息。换句话说,网络设备可以发送用于指示资源池1的信息,终端设备根据该信息确定出资源池1的信息,并推断出资源池2的 信息。
情况2:载波资源以时隙为单元,配置成两部分。
用M比特的位图表示特定子帧,特定子帧表示包含资源池2的子帧,M比特表示M个子帧,其中,M为大于0的整数。在该特定子帧中,可以用1表示含有资源池2的子帧,用0表示不含有资源池2的子帧;或者,也可以用0表示含有资源池2的子帧,用1表示不含有资源池2的子帧。
用N比特的位图表示子帧内属于资源池2的时隙,N比特表示N个时隙,其中,N为大于0的整数。在该子帧中,可以用1表示该时隙是资源池2的时隙,用0表示该时隙不是资源池2的时隙;或者,也可以用0表示该时隙是资源池2的时隙,用1表示该时隙不是资源池2的时隙。
结合图7示例性说明。如图7所示,M=5,N=8,用5比特表示长度为5ms的特定子帧分配情况。假设特定子帧中的子帧0和子帧4中含有资源池2的时隙,可以用5比特的位图表示该特定子帧。
一种可能的实现方式,1表示含有资源池2的子帧,0表示不含有资源池2的子帧,则该特定子帧可以表示为10001。相应地,终端设备根据该特定子帧的表示10001,确定子帧0和子帧4为包含有资源池2的子帧。并且,终端设备可以推断出剩余子帧,即子帧1、子帧2、以及子帧3为不包含资源池2的子帧。
又一种可能的实现方式,0表示含有资源池2时隙的子帧,1表示不含有资源池2的子帧,则该特定子帧可以表示为01110。相应地,终端设备根据该特定子帧的表示01110,确定子帧0和子帧4为包含有资源池2的子帧。并且,终端设备可以推断出剩余子帧,即子帧1、子帧2、以及子帧3为不包含资源池2的子帧。
假设子帧0或子帧4中属于资源池2的时隙包括时隙0、时隙1、时隙2、以及时隙3,可以用8比特的位图的方式表示子帧0或子帧4。
一种可能的实现方式,1表示该时隙是资源池2的时隙,0表示该时隙不是资源池2的时隙,则对于子帧0或子帧4来说,该时隙可以表示为11110000。相应地,终端设备根据该子帧0或子帧4的表示11110000,确定时隙0、时隙1、时隙2、以及时隙3属于资源池2,即时隙0、时隙1、时隙2、以及时隙3为非预留时隙。并且,终端设备可以推断出该子帧0或子帧4中的时隙4、时隙5、时隙6、以及时隙7属于资源池1,即时隙4、时隙5、时隙6、以及时隙7属于预留时隙。
又一种可能的实现方式,0表示该时隙是资源池2的时隙,1表示该时隙不是资源池2的时隙,则对于子帧0或子帧4来说,该时隙可以表示为00001111。相应地,终端设备根据该子帧0或子帧4的表示00001111,确定时隙0、时隙1、时隙2、以及时隙3属于资源池2,即时隙0、时隙1、时隙2、以及时隙3为非预留时隙。并且,终端设备可以推断出该子帧0或子帧4中的时隙4、时隙5、时隙6、以及时隙7属于资源池1,即时隙4、时隙5、时隙6、以及时隙7为预留时隙。
应理解,上述终端设备根据接收到的用于指示资源池2的信息确定出资源池2的信息,并推断出资源池1的信息。本申请并未限定于此。例如,终端设备也可以先根据接收到的信息确定资源池1的信息,再推断出资源池2的信息。换句话说,网络设备可以发送用于指示资源池1的信息,终端设备根据该信息确定出资源池1的信息,并推断出资源池2的 信息。
还应理解,上述两种情况中提及的具体子帧仅是示例性说明,本申请并未限定于此。
下文详细描述终端设备在资源池1上执行空闲信道评估的过程。为便于理解,分别以终端设备在资源池1上执行LBT(或者称为基于能量检测,下文统一用LBT表示)和sensing(或者称为基于信道检测,下文统一用sensing表示)为例进行示例性说明。
1、终端设备在资源池1上执行LBT。
结合图8示例性说明。假设资源池2包括:子帧1、子帧2、子帧3、子帧4、子帧5、子帧6、子帧7、以及子帧8,资源池1包括:子帧0和子帧9。以终端设备A为例,终端设备A在子帧1开始做LBT侦听,由于子帧9不属于资源池2,因而最多有8个子帧,即子帧1至子帧8,可以发送数据。换句话说,终端设备A从子帧1的位置开始做LBT,终端设备A的最长传输时长为8个子帧,即子帧1至子帧8。假设一个子帧为1ms,则终端设备A的最长传输时长为7ms。以终端设备B为例,终端设备B在子帧7开始做LBT侦听,由于子帧9不属于资源池2,因而最多有2个子帧,即子帧7至子帧8,可以发送数据。换句话说,终端设备B从子帧7的位置开始做LBT,则终端设备B的最长传输时长为2个子帧,即子帧7至子帧8。假设一个子帧为1ms,则终端设备B的最长传输时长为2ms。
需要说明的是,在本申请实施例中,终端设备在子帧i做空闲信道评估,可以是指终端设备在子帧i的开始位置开始做空闲信道评估,也可以是指终端设备在子帧i的中间位置开始做空闲信道评估,或者,也可以是指终端设备在子帧i的任一位置开始做空闲信道评估,对此,本申请实施例不作限定。其中,i=0,1,2,3,……,9,……。例如,以空闲信道评估为进行LBT为例,终端设备在子帧i做LBT,可以是指终端设备在子帧i的开始位置开始做LBT,也可以是指终端设备在子帧i的中间位置开始做LBT,或者,也可以是指终端设备在子帧i的任一位置开始做LBT,对此,本申请实施例不作限定。
在终端设备做LBT之前,先依据网络设备配置的竞争窗口参数T(或者叫检测时间窗T,关于检测时间窗,参考上文描述,此处不再赘述),从0到T随机产生一个随机数X,终端设备至少检测出X个空闲时隙(具有特定的时间长度,具体数据有系统设置,例如可以为16us)才能够获取发送数据的权限。其中,该随机数X为与LBT相关的参数,为简洁,在本申请中,将该随机数X称为LBT参数。
可选地,可以将LBT参数和最大传输时长关联,即将LBT参数和资源池2的剩余子帧数(或者说剩余的资源池2的子帧数)相关联。例如,资源池2的剩余子帧数越小,即剩余时间越短或者最大传输时长最短,参数T越小。
如果终端设备仅按照竞争窗口参数T生成LBT的参数,即从0到T随机产生一个随机数X,则可能会由于LBT时间过长,导致数据的发送时间比较短。例如图8中的终端设备B。因此,通过将LBT参数和最大传输时长关联,可以避免上述问题。
可选地,终端设备进行LBT的过程中,当达到资源池2的子帧边界时,根据资源池2的剩余子帧数或者最大传输时长,确定是否停止LBT或者是否挂起LBT。
具体地,由上可知,资源池1和资源池2相邻,即资源池2的子帧有边界。终端设备进行LBT的过程中,当达到资源池2的子帧的边界时,如果LBT的参数X仍然大于0(即没有获取到信道),即当前没有获取到空闲信道,终端设备可以采取以下任一方法。
方法1:直接停止LBT,并重新产生随机数X,重新进行LBT。
终端设备进行LBT的过程中,当达到资源池2的子帧的边界时,如果X仍然大于0,即当前没有获取到空闲信道,则可以直接停止LBT。等到下一个资源池2的子帧开始时,重新产生随机数X并进行LBT。
方法2:直接停止LBT,并沿用之前产生的随机数X,重新进行LBT。
终端设备进行LBT的过程中,当达到资源池2的子帧的边界时,如果X仍然大于0,即当前没有获取到空闲信道,则可以直接停止LBT。等到下一个资源池2的子帧开始时,使用之前产生的M,重新进行LBT。
方法3:将LBT暂停(或者挂起),等到下一个资源池2的子帧开始时,继续做LBT。
终端设备进行LBT的过程中,当达到资源池2的子帧的边界时,如果X仍然大于0,即当前没有获取到空闲信道,则可以暂停或挂起LBT。等到下一个资源池2的子帧开始时,继续进行之前暂停或挂起的LBT。
方法4:根据间隔(GAP)确定是否挂起LBT。
其中,间隔,也可以称为时间间隔或者称为挂起间隔,是终端设备进行LBT的过程中,当达到资源池2的子帧的边界开始到下一个资源池2的子帧开始时的间隔。也可以理解为,如果要挂起LBT,从挂起LBT到下一个资源池2的子帧开始之间的间隔。
终端设备进行LBT的过程中,当达到资源池2的子帧的边界时,如果X仍然大于0,即当前没有获取到空闲信道,计算LBT将被挂起的时间(即间隔)。如果间隔小于预设门限,则可以采用上述方法3,即将LBT挂起;如果间隔大于或等于预设门限,则可以采用上述方法1或者方法2。其中,预设门限可以是预先设置的,或者协议预先定义的,对此,本申请实施例不作限定。这样做的好处可以解决例如以下的场景:当GAP时间过长,车辆运行的距离较远,之前的LBT结果已经不能再做参考。可选地,在一些场景中,例如,辅助驾驶或高级驾驶辅助系统、智能驾驶、智能网联驾驶等场景中,可以将GAP的长度与车辆相关联,例如,车速越高GAP越小,车速越低GAP越大。
2、终端设备在资源池1上执行sensing。
终端设备在资源池1上执行sensing时,检测时间窗可以为确定的数值(如X=1s)或信道选择时间窗(如Y=5ms),或者,也可以将检测时间窗的时间与最大传输时长关联,即可以将X或Y,和资源池2的剩余子帧数(或者说剩余的资源池2的子帧数)相关联。例如,资源池2的剩余子帧数越小,即剩余时间越短或者最大传输时长最短,参数X和/或Y越小。
可选地,终端设备进行sensing的过程中,当达到资源池2的子帧边界时,根据资源池2的剩余子帧数或者最大传输时长,确定是否停止sensing或者是否挂起。
具体地,由上可知,资源池1和资源池2相邻,即资源池2的子帧有边界。终端设备进行sensing过程中,当达到资源池2的子帧的边界时,如果参数Y仍然大于0(即没有获取到信道),即当前没有获取到空闲信道,终端设备可以采取以下任一方法。
方法1:直接停止sensing过程,后续重新进行sensing过程。
终端设备进行sensing的过程中,当达到资源池2的子帧的边界时,如果X仍然大于0,即当前没有获取到空闲信道,则可以直接停止信道检测过程。等到下一个资源池2的子帧开始时,重新开始sensing过程。
方法2:将sensing过程暂停(或者挂起),等到下一个资源池2的子帧开始时,继续做sensing过程。
终端设备进行sensing的过程中,当达到资源池2的子帧的边界时,如果X仍然大于0,即当前没有获取到空闲信道(或者不能进行信道可获得性判断),则可以暂停或挂起sensing过程。等到下一个资源池2的子帧开始时,继续进行之前暂停或挂起的sensing过程。
方法3:根据间隔(GAP)确定是否挂起sensing过程。
其中,间隔,也可以称为时间间隔或者称为挂起间隔,是终端设备进行sensing的过程中,当达到资源池2的子帧的边界开始到下一个资源池2的子帧开始时的间隔。也可以理解为,如果要挂起sensing过程,从挂起sensing过程到下一个资源池2的子帧开始之间的间隔。
终端设备进行sensing的过程中,当达到资源池2的子帧的边界时,如果X仍然大于0,即当前没有获取到空闲信道,计算sensing将被挂起的时间(即间隔)。如果间隔小于预设门限,则可以采用上述方法2,即将sensing挂起;如果间隔大于或等于预设门限,则可以采用上述方法1。其中,预设门限可以是预先设置的,或者协议预先定义的。对此,本申请实施例不作限定。这样做的好处可以解决例如以下的场景:当GAP时间过长,车辆运行的距离较远,之前的sensing结果已经不能再做参考。可选地,在一些场景中,例如,辅助驾驶或高级驾驶辅助系统、智能驾驶、智能网联驾驶等场景中,可以将GAP的长度与车辆相关联,例如,车速越高GAP越小,车速越低GAP越大。
以终端设备进行LBT,结合图9示例性说明。图9中,假设载波资源以子帧为单元配置成两部分。图9示出了两种情况:情况A和情况B。
情况A是间隔小于预设门限的情况。
在情况A中,假设子帧0、子帧1、子帧2、子帧3、子帧7、子帧8、以及子帧9属于资源池2的子帧,子帧4、子帧5、以及子帧6属于资源池1的子帧。当终端设备在子帧3LBT后,计算间隔(即LBT挂起间隔),确定间隔为3个子帧,即子帧4至子帧6。如图9中情况A所示,假设间隔小于预设门限,即3个子帧的时长小于预设门限,则可以采用上述方法3,即挂起LBT,等到下一个资源池2的子帧开始时,即待到达子帧7时,终端设备继续LBT过程。假设终端设备在子帧8处LBT成功,即获得空闲信道,则从子帧8开始数据传输。数据传输可占用的子帧为3个子帧,即子帧8、子帧9、以及子帧0。
情况B是间隔大于或等于预设门限的情况。
在情况B中,假设子帧0、子帧7、子帧8、以及子帧9属于资源池2的子帧,子帧1、子帧2、子帧3、子帧4、子帧5、以及子帧6属于资源池1的子帧。当终端设备在子帧0LBT后,计算间隔(即LBT挂起间隔),确定间隔为6个子帧,即子帧1至子帧6。如图9中情况B所示,假设间隔大于或等于预设门限,即6个子帧的时长大于或等于预设门限,则可以采用上述方法1或方法2,等到下一个资源池2的子帧开始时,即待到达子帧7时,终端设备重新LBT。终端设备在子帧7重新进行LBT,假设终端设备在子帧8处LBT成功,即获得空闲信道,则从子帧8开始数据传输。数据传输可占用的子帧为3个子帧,即子帧8、子帧9、以及子帧0。
可选地,在本申请实施例中,终端设备还可以使用资源池2上的资源,发送第一业务 的数据。
终端设备在资源池1上获取用于发送数据的资源,终端设备获取的资源可以是基于基站调度、预配置,或者基于现有sensing机制(能够预留资源的方式进行数据发送)等,对此,本申请实施例不作限定。
可选地,对于配置在资源池1上的业务,或者,对于一些业务,如对时延要求较高、优先级较高、或较紧急的业务,终端设备可以占用或者使用资源池2的资源来传输。
具体地,终端设备需要占用资源池2的资源传输业务数据时,终端设备或者网络设备可以先发送SCI指示调度资源的长度。通过向终端设备发送SCI,以指示调度时长等信息,可以缩短终端设备的检测时间,相关调度信息可以由网络设备指示给发送端UE,发送端UE再发给接收端UE。
结合图10示例性说明。如图10所示,假设载波资源以子帧为单元配置成两部分,子帧2和子帧3属于资源池1的子帧,子帧4、子帧5、子帧6、以及子帧7属于资源池2的子帧。
如图10所示,网络设备在子帧3发送SCI,可以使用符号长度指示值(symbol length indication value,SLIV)指示调度的长度。其中,网络设备在子帧3发送SCI,可以是网络设备在子帧3的开始位置发送SCI,也可以是网络设备在子帧3的任意位置发送SCI,对此,本申请实施例不作限定。
在资源池2的子帧上进行信道侦听的终端设备,接收相应的SCI并进行解调和译码,以便启动LBT的时间以及做LBT时频域带宽。
其中,通信设备在某个信道上接收信号以便检测信道是否空闲(或者称,空闲信道评估)的过程可以称为信道侦听。具体地,如果通信设备通过信号检测来确定信道是否空闲,在未检测到特定的信号的情况下,认为信道空闲,或者说,听不到其他通信设备的信号发送;在检测到特定的信号的情况下,认为信道忙碌,或者说,听得到其他通信设备的信号发送。如果通信设备通过能量检测来确定信道是否空闲,在接收到或检测到的能量低于某个预设的门限值的情况下,认为信道空闲,或者说,听不到其他通信设备的信号发送;在接收到或检测到的能量高于某个预设的门限值的情况下,认为信道忙碌,或者说,听得到其他通信设备的信号发送。
其中,在资源池2的子帧上进行信道侦听,可以理解为终端设备在非预留子帧的侦听。
可选地,网络设备发送SCI的时间与资源池2的子帧开始之间的间隔小于或等于预设的第三阈值。该预设的第三阈值可以是预先设置的,如协议预先规定好的或者网络设备预先配置好的,对此,本申请实施例不作限定。
网络设备发送SCI的时间可以是在资源池2的子帧开始前的位置监测SCI即可,例如开始前的几个时隙内(例如1个时隙内)。例如,以图10为例,网络设备发送SCI的时间可以是在资源池2的子帧上开始(即子帧4)前的位置,比如子帧3的位置,这样终端设备只需要在子帧3开始监测SCI即可。通过这种方式,也就是说,网络设备发送SCI的时间与资源池2的子帧开始之间的间隔小于或等于预设的第三阈值,可以减少终端设备对SCI的盲检带来的功耗。
可选地,网络设备发送SCI的时间与资源池2的子帧开始之间的间隔大于或等于预设的第四阈值。
为简洁,将网络设备发送SCI的时间与资源池2的子帧开始之间的间隔记为调度间隔,如图10所示。该调度间隔大于或等于预设的第四阈值,该预设的第四阈值可以是预先设置的,如协议预先规定好的或者网络设备预先配置好的,对此,本申请实施例不作限定。例如,该调度间隔大于或等于N2;又如,假设当前子载波间隔(subcarrier spacing,SCS)为15KHz,调度间隔不小于3个符号。通过这种方式,也就是说,网络设备发送SCI的时间与资源池2的子帧开始之间的间隔大于或等于预设的第四阈值,能够让终端设备有足够长的时间设置LBT参数。
可选地,网络设备发送SCI的频域位置与资源池2的频域起始位置开始之间的间隔小于或等于预设的第五阈值。该预设的第五阈值可以是预先设置的,如协议预先规定好的或者网络设备预先配置好的,对此,本申请实施例不作限定。
网络设备发送SCI的频域位置可以是在资源池2的频域起始位置开始前的位置监测SCI即可,例如开始前的几个频域单位内(例如1个子载波内等)。通过这种方式,也就是说,网络设备发送SCI的频域位置与资源池2的频域起始位置开始之间的间隔小于或等于预设的第五阈值,可以减少终端设备对SCI的盲检带来的功耗。
可选地,网络设备发送SCI的频域位置与资源池2的频域起始位置开始之间的间隔大于或等于预设的第六阈值。
为简洁,将网络设备发送SCI的频域位置与资源池2的频域起始位置开始之间的间隔记为调度间隔。通过这种方式,也就是说,网络设备发送SCI的频域位置与资源池2的频域起始位置开始之间的间隔大于或等于预设的第六阈值,能够让终端设备设置LBT参数。
下面结合图11和图12介绍两个具体的示例。
图11是从设备交互的角度示出的本申请实施例提供的传输数据的方法300的示意性交互图。如图所示,方法300可以包括步骤310至步骤350,下面具体描述各个步骤。
310,网络设备发送资源配置信息。
相应地,终端设备和目标设备接收资源配置信息。其中,目标设备为该终端设备待传输数据对应的一个或多个终端设备,即接收该终端设备待传输数据的一个或多个终端设备。或者,该目标设备也可以为一个或多个终端设备组或者接收目标数据的一个或多个群组,即该终端设备组或群组中的终端设备均接收该终端设备的待传输数据。
网络设备可以以时域或频域为单元(或者为单位)将资源分为两部分,资源池1和资源池2,如方法200中的描述,此处为简洁,不再赘述。
以网络设备以子帧为单元配置为两部分为例进行说明。
可选地,该资源配置信息包括无线帧和子帧的信息。关于无线帧和子帧的信息如方法200中的描述,此处为简洁,不再赘述。
可选地,该资源配置信息包括sidelink控制信道的多址方式。一种可能的实现方式,资源池1为SC-FDMA,资源池2为OFDMA,即终端设备发送sidelink的控制信道信息(SCI)和数据信道,采用配置的多址方式;或者,可以在SCI信元中增加指示用于边链路共享数据信道(PSSCH)的多址方式。
可选地,该资源配置信息包括资源分配模式信息。例如,将资源池1的资源获取方式配置为基于Mode1获取,即通过网络设备分配的方式;将资源池2的资源获取方式配置为基于Mode2获取,即通过信道空闲检测或LBT机制等等。
可选地,终端设备可以在资源池1上接收资源配置信息。
320,终端设备将业务连接到资源池1。
终端设备可以按照网络设备配置的业务连接规则,将业务连接资源池1上。
330,终端设备向网络设备申请资源。
换句话说,终端设备向网络设备申请资源池1中的资源。
终端设备向网络设备发送请求信息,该请求信息中包括以下至少一项信息:数据缓存量待发送数据期望覆盖距离或者发送端到接收端的路损值、终端设备到网络设备的路损(简称小区路损)、业务路损(如side link路损)和小区路损的差。
其中,路损预估值也可以称为业务路损。当终端设备以广播方式发送数据时,其业务路损依据业务预期覆盖的距离范围计算;当终端设备以单播方式发送数据时,其业务路损按照终端设备和目标设备之间的距离计算路损;当终端设备以组播方式发送数据时,其业务路损可以按照终端设备组中最大的终端设备路损计算。
340,网络设备为终端设备分配资源。
相应地,终端设备获取网络设备分配的资源,该资源为资源池1中的资源。
网络设备依据终端设备的请求信息,分配调度资源信息给终端设备,分配的调度资源信息包括以下至少一项信息:频域信息(例如,PRB数目或者子信道个数等),时域信息(符号数或者时隙数),以及时隙聚合数(业务数据在连续时隙上重复的次数)、控制信道或/和业务数据的多址方式(例如OFDMA或者SC-FDMA)。
当多址方式和配置资源池时的多址方式不同时,网络设备指示的多址方式可以覆盖资源池分配时的多址方式。
350,终端设备在分配的资源上向目标设备发送数据。
其中,该数据可以包括控制数据和业务数据。也就是说,终端设备可以按照网络设备分配的信息,发送相关的控制数据和业务数据。
需要说明的是,当网络设备只配置了边链路物理控制信道(PSCCH)的多址方式时,终端设备根据覆盖范围、发射功率情况决定数据信道的多址方式,并在控制信道中指示,示例如下表1所示。
表1
Figure PCTCN2020074781-appb-000001
目标设备依据配置的子帧信息和多址接入信息,检测资源池1上的控制信道,并对业 务据接收处理。
基于上述技术方案,可以将用于发送周期性业务的资源单独分开,不受非周期性业务的发送影响,进而提高数据的传输性能。
图12是从设备交互的角度示出的本申请实施例提供的传输数据的方法400的示意性交互图。如图所示,方法400可以包括步骤410至步骤440,下面具体描述各个步骤。
410,网络设备发送资源配置信息。
相应地,终端设备和目标设备接收资源配置信息。其中,目标设备为该终端设备待传输数据对应的一个或多个终端设备,即接收该终端设备待传输数据的一个或多个终端设备。或者,该目标设备也可以为一个或多个终端设备组或者接收目标数据的一个或多个群组,即该终端设备组或群组中的终端设备均接收该终端设备的待传输数据。
网络设备可以以时域或频域为单元(或者为单位)将资源分为两部分,资源池1和资源池2,如方法200中的描述,此处为简洁,不再赘述。
以网络设备以时隙为单元配置为两部分为例进行说明。
可选地,该资源配置信息包括子帧和时隙的信息。关于子帧和时隙的信息如方法200中的描述,此处为简洁,不再赘述。
该资源配置信息包括子帧和时隙的信息,不包含无线帧的信息。在子载波间隔是15KHz时,1个sub-frame相当于1个slot,当在载波间隔增加时,其sub-frame包括的slot个数会发送变化,如表2所示。
表2
子载波间隔 slot长度(毫秒) 子帧包含slot的个数
15KHz 1ms 1
30KHz 0.5ms 2
60KHz 0.25ms 4
120KHz 0.125ms 8
由表2可看出,子载波增加时,时间单元更细分的资源划分,可以减少业务的传输时延。假设网络设备只发送预留时隙组(即资源池1)的信息给终端设备,可以以如下方式设计:
1、用周期的方式表示包含资源池2时隙的子帧,包含资源池2时隙的子帧可以叫做特定子帧,可以用T表示周期,用O表示子帧偏移量;
2、用SLIV的方式表示在特定子帧内的资源池2时隙。SLIV的方法是现有标准中表示时域长度的表示方法,假设每个子帧中有8个slot,其计算方式如下:
如果(L-1)≤4,则:
SLIV=8*(L-1)+S;
否则:
SLIV=8*(8-L+1)+(8-1-S)。
其中,SLIV可以指示时域资源相对于子帧开始的起始时隙S,
S表示时域资源相对于子帧开始的起始时隙,S≥0;
L表示从时隙S开始的分配的连续时隙个数,L大于0,且L小于(8-S)。
如图7所示,以发送周期为5ms(5个子帧),子帧偏移量为0,时隙中S=4,L=4为例,SLIV=8*(L-1)+S=8*3+4=28。
可选地,该资源配置信息包括sidelink控制信道的多址方式。一种可能的实现方式,资源池1为SC-FDMA,资源池2为OFDMA,即终端设备发送sidelink的控制信道信息(SCI)和数据信道,采用配置的多址方式;或者,可以在SCI信元中增加指示用于边链路共享数据信道(PSSCH)的多址方式。
可选地,该资源配置信息包括资源分配模式信息。例如,将资源池1的资源获取方式配置为基于Mode1获取,即通过网络设备分配的方式;将资源池2的资源获取方式配置为基于Mode2获取,即通过信道空闲检测或LBT机制等等。
可选地,终端设备可以在资源池1上接收资源配置信息。
420,终端设备将业务连接到资源池2。
430,终端设备通过LBT获取资源。
检测窗长时间计算(竞争窗口参数设置):从参数初始设置和参数修正两个角度介绍。
A、参数初始设置
终端设备可以按照协议配置,计算检测时长,或者检测时隙个数。应理解,这里的时隙和数据调度传输的时隙含义不一样,这里的时隙是一定的时间单元,如16us。如当前协议依据优先级类别和业务数据发送时间长度进行检测时隙个数参数确定。假设计算输出参数为CW_L(竞争窗口长度)。假设竞争窗口参数设置的规则如下表3:
表3
信道接入优先级 CW min,p CW max,p 传输时间
1 3 7 2ms
2 7 15 3ms
3 15 63 8ms
4 15 1023 10ms
上表中,信道接入优先级对应传输传输,由传输时间确定竞争窗口的参数设置。
B、参数修正
计算当前剩余“资源池2时隙”个数,当剩余时间大于一定的阀值时,不进行参数修正,如对于上表中:阀值可以取值为:传输时间+最大竞争窗个数*信道侦听时隙长度。如果小于一定的阀值,则减少检测时间参数设置,直到满足条件为止。
空闲信道检测:如果在“资源池2的子帧”结束前获取到发送资源,则读书帮在获取到的资源上进行数据发送。否则:判断下一个资源池2子帧的间隔时长,如果大于一个门限,如大于100ms,则可以在下一步资源池2子帧上检测资源时,相关检测窗长重新设置,否则检测继续进行。
440,终端设备在获取的资源上向目标设备发送数据。
其中,该数据包括业务数据。相应地,目标设备基于接收到的配置信息,依据依据配置的子帧信息和多址接入信息等,检测资源池2上的控制信道信息,并对业务据接收处理。
基于上述技术方案,可以单独设置基于LBT或信道检测的资源池,使得检测信道的时间缩短,此外也可以解决基于LBT监听有边界资源的问题,进而提高数据的传输性能。
以上,结合图5至图12详细说明了本申请实施例提供的传输数据的方法。以下,结合图13至图15详细说明本申请实施例提供的通信装置。
图13是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。通信单元1100用于执行上文方法实施例中终端设备侧的收发相关操作,处理单元1200用于执行上文方法实施例中终端设备的处理相关操作。
具体地,该通信装置1000可对应于根据本申请实施例的方法200、方法300以及方法400中的终端设备,该通信装置1000可以包括用于执行方法200、方法300以及方法400中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现方法200、方法300以及方法400的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的通信单元1100可对应于图14中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图14中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。通信单元1100用于执行上文方法实施例中网络设备侧的收发相关操作,处理单元1200用于执行上文方法实施例中网络设备的处理相关操作。
具体地,该通信装置1000可对应于根据本申请实施例的方法200、方法300以及方法400中的网络设备,该通信装置1000可以包括用于执行方法200、方法300以及方法400中的方法300中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现方法200、方法300以及方法400的相应流程。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应于图15中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图15中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
图14是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1或图2所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通 过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图13中的处理单元对应。
上述收发器2020可以与图13中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图14所示的终端设备2000能够实现上述各个方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图15是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1或图2所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元,与图13中的通信单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图13中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所 述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图15所示的基站3000能够实现上述各个方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只 读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行方法200、方法300以及方法400所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行方法200、方法300以及方法400所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。 此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种传输数据的方法,其特征在于,包括:
    第一终端设备获取第一资源池的信息和第二资源池的信息,所述第一资源池中的资源网络设备为终端设备分配的资源,所述第二资源池中的资源为终端设备通过空闲信道评估得到的资源,所述第一资源池和所述第二资源池不重叠;
    所述第一终端设备使用所述第一资源池中的第一资源向第二终端设备发送第一数据,所述第一资源是所述网络设备分配的资源;和/或
    所述第一终端设备使用所述第二资源池中的第二资源向第三终端设备发送第二数据,所述第二资源是通过空闲信道评估获取到的资源。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第二资源池包括第一时间单元组和第二时间单元组,所述第一资源池包括第三时间单元组,所述第三时间单元组位于所述第一时间单元组和所述第二时间单元组之间,所述第三时间单元组与所述第一时间单元组相邻,且所述第三时间单元组与所述第二时间单元组相邻;
    所述方法还包括:
    所述第一终端设备基于空闲信道评估参数,在所述第一时间单元组进行空闲信道评估;
    所述第一终端设备在所述第一时间单元组未获取到所述第二资源的情况下,基于所述空闲信道评估参数或者重新确定的空闲信道评估参数,在所述第二时间单元组重新进行空闲信道评估。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一终端设备在所述第一时间单元组未获取到所述第二资源的情况下,且所述第一时间单元组的结束位置与所述第二时间单元组的开始位置之间的间隔大于或等于预设的第一阈值时,基于所述空闲信道评估参数或者重新确定的空闲信道评估参数,在所述第二时间单元组重新进行空闲信道评估。
  4. 根据权利要求1所述的方法,其特征在于,
    所述第二资源池包括第一时间单元组和第二时间单元组,所述第一资源池包括第三时间单元组,所述第三时间单元组位于所述第一时间单元组和所述第二时间单元组之间,所述第三时间单元组与所述第一时间单元组相邻,且所述第三时间单元组与所述第二时间单元组相邻;
    所述方法还包括:
    所述第一终端设备基于空闲信道评估参数,在所述第一时间单元组进行空闲信道评估;
    所述第一终端设备在所述第一时间单元组未获取到所述第二资源的情况下,挂起空闲信道评估;以及
    所述第一终端设备基于所述空闲信道评估参数,在所述第二时间单元组继续进行所述空闲信道评估。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一终端设备在所述第一时间单元组未获取到所述第二资源的情况下,且所述第一时间单元组的结束位置与所述第二时间单元组的开始位置之间的间隔小于预设的第二阈值时,挂起空闲信道评估。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收指示信息,所述指示信息用于指示所述第一资源池的信息,和/或,所述指示信息用于指示所述第二资源池的信息;
    所述所述第一终端设备获取第一资源池的信息和第二资源池的信息,包括:
    所述第一终端设备根据所述指示信息,获取所述第一资源池的信息和所述第二资源池的信息。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在第一时域位置和/或第一频域位置,接收侧行链路控制信息SCI,所述SCI用于指示所述第二资源池中的资源;
    所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔小于或等于预设的第三阈值,和/或,所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔大于或等于预设的第四阈值;或
    所述第一频域位置与所述第二资源池中的频域起始位置之间的间隔小于或等于预设的第五阈值,和/或,所述第一时刻与所述第二资源池中的频域起始位置之间的间隔大于或等于预设的第六阈值。
  8. 一种传输数据的方法,其特征在于,包括:
    网络设备划分第一资源池和第二资源池,所述第一资源池中的资源为所述网络设备为终端设备分配的资源,所述第二资源池中的资源为终端设备通过空闲信道评估得到的资源,所述第一资源池和所述第二资源池不重叠;
    所述网络设备发送所述第一资源池的信息和/或所述第二资源池的信息。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述网络设备在第一时域位置和/或第一频域位置,使用所述第一资源池中的资源发送侧行链路控制信息SCI,所述SCI用于指示所述第二资源池中的资源;
    所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔小于或等于预设的第三阈值,和/或,所述第一时域位置与所述第二资源池中的时域起始位置之间的间隔大于或等于预设的第四阈值;
    所述第一频域位置与所述第二资源池中的频域起始位置之间的间隔小于或等于预设的第五阈值,和/或,所述第一时刻与所述第二资源池中的频域起始位置之间的间隔大于或等于预设的第六阈值。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,
    所述第一资源池和所述第二资源池在时域上重叠,在频域上不重叠;或者,
    所述第一资源池和所述第二资源池在频域上重叠,在时域上不重叠。
  11. 一种通信装置,其特征在于,用于实现如权利要求1至7中任一项所述的方法。
  12. 一种通信装置,其特征在于,用于实现如权利要求8至10中任一项所述的方法。
PCT/CN2020/074781 2019-02-22 2020-02-12 传输数据的方法和通信装置 WO2020168946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910133600.8 2019-02-22
CN201910133600.8A CN111615192B (zh) 2019-02-22 2019-02-22 传输数据的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2020168946A1 true WO2020168946A1 (zh) 2020-08-27

Family

ID=72144552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074781 WO2020168946A1 (zh) 2019-02-22 2020-02-12 传输数据的方法和通信装置

Country Status (2)

Country Link
CN (1) CN111615192B (zh)
WO (1) WO2020168946A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112770271A (zh) * 2020-12-23 2021-05-07 广州技象科技有限公司 基于信息广播的数据传输方法、装置、系统和存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061752A1 (zh) * 2020-09-25 2022-03-31 Oppo广东移动通信有限公司 通信方法、装置及设备
CN113727300A (zh) * 2021-07-23 2021-11-30 华为技术有限公司 旁链路通信方法及设备
CN115767466A (zh) * 2021-09-01 2023-03-07 华为技术有限公司 一种资源确定的方法和装置
CN115915474A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 数据传输的方法、终端装置及系统
WO2023133873A1 (en) * 2022-01-17 2023-07-20 Nokia Shanghai Bell Co., Ltd. Configuration for in-x subnetworks
CN117042140A (zh) * 2022-04-29 2023-11-10 华为技术有限公司 时间单元确定的方法和通信装置
WO2024026652A1 (zh) * 2022-08-02 2024-02-08 深圳传音控股股份有限公司 处理方法、通信设备及存储介质
CN117750397A (zh) * 2022-09-21 2024-03-22 华为技术有限公司 一种通信方法、装置、存储介质和芯片系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031519A1 (en) * 2016-08-08 2018-02-15 Sharp Kabushiki Kaisha Power efficient resource utilization for v2x communications
WO2018055813A1 (en) * 2016-09-26 2018-03-29 Nec Corporation Methods and system for device-to-device communication technical field
WO2018202559A1 (en) * 2017-05-05 2018-11-08 Nokia Technologies Oy Reserving resources in device to device communication
CN108781436A (zh) * 2016-03-31 2018-11-09 株式会社Ntt都科摩 用户装置及感测控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8666319B2 (en) * 2011-07-15 2014-03-04 Cisco Technology, Inc. Mitigating effects of identified interference with adaptive CCA threshold
CN106688295B (zh) * 2014-08-07 2020-12-01 Lg 电子株式会社 无线通信系统中发送和接收信号的方法及其装置
CN112637967B (zh) * 2014-12-02 2024-03-22 韦勒斯标准与技术协会公司 用于空闲信道分配的无线通信终端和无线通信方法
CN104717686B (zh) * 2015-03-31 2018-11-30 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
CN104703224B (zh) * 2015-04-09 2018-05-15 宇龙计算机通信科技(深圳)有限公司 用于d2d通信的资源配置方法、装置和终端
CN106559835B (zh) * 2015-09-24 2021-02-05 大唐移动通信设备有限公司 一种车联网通信方法及装置
US11638276B2 (en) * 2015-12-24 2023-04-25 Lg Electronics Inc. Method and apparatus for V2X terminal transmitting data in wireless communication system
CN108605230B (zh) * 2016-02-05 2020-07-10 诸暨市元畅信息技术咨询服务部 一种空闲信道评估方法及终端
CN109479302B (zh) * 2016-07-07 2020-09-29 松下电器(美国)知识产权公司 用于v2x发送的改进的半持续资源分配行为
CN107734551B (zh) * 2016-08-10 2023-10-13 北京三星通信技术研究有限公司 一种v2x通信中的资源选择方法和设备
CN106376088B (zh) * 2016-11-29 2019-05-31 重庆邮电大学 车车通信中基于信道竞争的资源池资源分配方法
CN108737040B (zh) * 2017-04-14 2020-12-25 华为技术有限公司 传输方法、终端和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781436A (zh) * 2016-03-31 2018-11-09 株式会社Ntt都科摩 用户装置及感测控制方法
WO2018031519A1 (en) * 2016-08-08 2018-02-15 Sharp Kabushiki Kaisha Power efficient resource utilization for v2x communications
WO2018055813A1 (en) * 2016-09-26 2018-03-29 Nec Corporation Methods and system for device-to-device communication technical field
WO2018202559A1 (en) * 2017-05-05 2018-11-08 Nokia Technologies Oy Reserving resources in device to device communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Summary of Contributions and Initial Outcome of Offline Discussion for NR-V2X AI - 7.2.4.1.4 Resource Allocation Mechanism", R1-1901375,3GPP TSG RAN WG1 AD HOC MEETING #1901, 22 January 2019 (2019-01-22), XP051601303, DOI: 20200322142709A *
SPREADTRUM COMMUNICATIONS: "Discussion on resource allocation for mode 2", R1-1811007,3GPP TSG RAN WG1 MEETING #94BIS, 29 September 2018 (2018-09-29), XP051518411, DOI: 20200322142534Y *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112770271A (zh) * 2020-12-23 2021-05-07 广州技象科技有限公司 基于信息广播的数据传输方法、装置、系统和存储介质

Also Published As

Publication number Publication date
CN111615192A (zh) 2020-09-01
CN111615192B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2020168946A1 (zh) 传输数据的方法和通信装置
US11950280B2 (en) Channelization and BWP
CN108781465B (zh) 信道接入优先级类别选择
US11589384B2 (en) Data transmission method, terminal device, and network device
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2021062602A1 (en) Method and apparatus for sharing channel occupancy time on unlicensed spectrum
CN113453196A (zh) 信息传输方法和终端设备
JP2018530961A (ja) 物理ダウンリンク制御チャネルの伝送方法及び装置
WO2016086366A1 (zh) 使用频谱资源进行通信的方法和通信设备
EP3772231A1 (en) User equipment and base station performing transmission and reception operations
WO2022141465A1 (zh) 一种资源选择的方法和装置
WO2019213953A1 (zh) 一种通信方法和通信装置
CN116368919A (zh) 用于改进nr v2x中的资源分配的方法和装置
WO2020221057A1 (zh) 通信方法和通信装置
WO2020147814A1 (zh) 资源分配的方法和设备
WO2017206056A1 (zh) 一种基于非授权频带的通信方法、相关设备及系统
CN109587818B (zh) 信息的传输方法和装置
CN116235537A (zh) 一种数据传输的方法、装置以及系统
WO2023207774A1 (zh) 一种通信方法及装置
WO2023168697A1 (zh) 侧行传输方法、装置、设备、介质及程序产品
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2023207723A1 (zh) 通信方法和通信装置
WO2023207506A1 (zh) 共享资源分配方法及装置
WO2024032565A1 (zh) 资源排除方法和相关产品
WO2024066975A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758528

Country of ref document: EP

Kind code of ref document: A1