WO2016086366A1 - 使用频谱资源进行通信的方法和通信设备 - Google Patents

使用频谱资源进行通信的方法和通信设备 Download PDF

Info

Publication number
WO2016086366A1
WO2016086366A1 PCT/CN2014/092897 CN2014092897W WO2016086366A1 WO 2016086366 A1 WO2016086366 A1 WO 2016086366A1 CN 2014092897 W CN2014092897 W CN 2014092897W WO 2016086366 A1 WO2016086366 A1 WO 2016086366A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
sub
spectrum resource
slot
duration
Prior art date
Application number
PCT/CN2014/092897
Other languages
English (en)
French (fr)
Inventor
曾昆
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/092897 priority Critical patent/WO2016086366A1/zh
Priority to CN201480083321.0A priority patent/CN107006015B/zh
Priority to EP14907460.1A priority patent/EP3211953B1/en
Publication of WO2016086366A1 publication Critical patent/WO2016086366A1/zh
Priority to US15/610,002 priority patent/US10506615B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • H04W16/08Load shedding arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present invention relates to communication systems, and more particularly to a method and communication device for communicating using spectrum resources.
  • Radio spectrum resources are a scarce strategic resource.
  • Spectrum resources can be divided into two categories: licensed bands and unlicensed bands.
  • spectrum resources used by technologies such as WIreless Fidelity (WiFi) and Bluetooth are generally freely available to the public without authorization, and are called unlicensed bands.
  • an unlicensed band can be utilized as a useful complement to the licensed band.
  • WiFi technology uses unlicensed bands, such as 802.11a/n/ac in the 5GHz band and 802.11ad in the 60GHz band.
  • a WiFi system is composed of an Access Point (AP) and a number of stations (Stations, STAs).
  • the spectrum resources are used by the base station (BS) and the continuous scheduling based on synchronous frames, which is commonly used by the 3GPP system.
  • the WiFi system adopts a carrier sense multiple access called collision avoidance (Carrier Sensing). Multiple Access/Collision Avoidance, CSMA/CA) technology, competitively acquiring resources.
  • Carrier Sensing Carrier Sensing
  • CSMA/CA Multiple Access/Collision Avoidance
  • the working principle is: first wait for the medium (ie spectrum) resource to be "idle”, then the station (or AP) starts to wait for a random time period, during which carrier sense (CS) is continued, if the resource is not until the end of the waiting time If it is still "idle", the station starts to transmit, and the transmission has the constraint of data size and duration. When the constraint is triggered, even if there is still service, the site needs to compete for resources again.
  • medium ie spectrum
  • the WiFi system uses unlicensed spectrum resources based on the CSMA/CA mode, when there is interference, it will actively wait for and avoid the signals of the 3GPP system. Thus, the 3GPP system will occupy unlicensed spectrum resources for a long time, and the WiFi system is always in interference avoidance and waiting. status.
  • one prior art is to reserve a partial subframe of the frame structure of the 3GPP system to the WiFi system, and realize the non-authorization of the two systems by adjusting the vacancy ratio. Fair use of spectrum resources.
  • the invention provides a method and a communication device for using spectrum resources, which can improve utilization of spectrum resources.
  • a method for communicating using a spectrum resource comprising: a first communication device of a first communication system determining a first sub-slot and a second sub-slot in a unit time slot; the first communication device is Communicating with the spectrum resource at a higher priority than the second communication device of the second communication system in the first sub-slot, wherein the first communication device uses the spectrum resource in the second sub-slot with a lower priority than the second The communication device uses the priority of the spectrum resource in the second sub-timeslot.
  • the first communications device uses the spectrum resource to communicate in a first sub-timeslot with a higher priority than the second communications device, including: the first communications device is in the first sub-slot Internally, the spectrum resources are continuously used for communication such that the second communication device communicates using the spectrum resources in the first sub-timeslot when the first communication device does not use the spectrum resources.
  • the method of the first aspect further includes: the first communications device is in the second subslot, and the second communications device is not used Spectrum resources are used for communication when communicating with spectrum resources.
  • the duration of the spectrum resource idle is smaller than the second communication. The length of time the device waits to preempt spectrum resources.
  • the duration of the spectrum resource idle is greater than the second communications. The length of time the device waits to preempt spectrum resources.
  • the first communications device uses the first listener and then the LBT mode to use the spectrum resource to communicate in the second subslot.
  • the second communication device uses the second listener mode to communicate using the spectrum resource in the second subslot.
  • the first interleaved mode and the distributed interframe space DIFS have a longer duration than the second listener mode.
  • the length of time between the start time of the spectrum resource idle in the first listener mode and the start time of the competition window in the first listen mode is greater than the second listener.
  • the duration between the start time of the spectrum resource idling and the start time of the contention window of the first listening mode, wherein the duration of the second communication device waiting to preempt the spectrum resource includes the DIFS of the second listening mode The sum of the duration and the duration of the competition window in which the second listens first.
  • the first communications device uses the first spectrum in the first sub-slot to communicate using the spectrum resource
  • the second The communication device uses the second listener mode to communicate using the spectrum resource in the second subslot.
  • the minimum value of the contention window duration of the first listener mode is greater than the competition window duration of the second listener mode.
  • the minimum value, and/or the maximum value of the contention window duration of the first listening mode is greater than the maximum value of the contention window duration of the second listening mode, wherein the duration of the second communication device waiting to preempt the spectrum resource includes The first is to listen to the sum of the duration of the DIFS and the duration of the second competition.
  • the first communication device is in the first sub-time slot, and is higher than the second communication system.
  • the method of the first aspect further includes: the first communication device acquires current load information of the second communication device; and the first communication device determines the first according to the current load information of the second communication device. Listen to the length of the DIFS and the duration of the competition window after the first listen.
  • the first communication device uses the spectrum resource in a first sub-time slot with a higher priority than the second communication device.
  • the method of the first aspect further includes: the first communication device broadcasts network allocation vector information at a start time of the first sub-slot, wherein the network allocation vector information is used to indicate that the spectrum resource is in a busy state, and the network allocates vector information The duration of the first sub-slot is included such that the second communication device does not use spectral resources for the duration of the first sub-slot.
  • the first communication device in the first communication system determines the first sub-time slot and the second sub-time in the unit time slot Before the gap, the method of the first aspect further includes: determining, by the first communications device, a duration of the unit time slot; the first communications device dividing the spectrum resource into multiple unit time slots in the time domain according to the determined duration of the unit time slot,
  • the unit time slot is one of a plurality of unit time slots, wherein the first communication device of the first communication system determines the first sub-time slot and the second sub-time slot in the unit time slot, including: the first communication device determines the first child The ratio of the time slot and the second sub-slot in the unit time slot; the first communication device will be in the plurality of time slots according to the determined ratio of the first sub-slot and the second sub-slot in the unit time slot
  • Each unit of time The slot is divided into a first sub-slot and a second sub-slot.
  • the method further includes: acquiring, by the first communications device, current load information of the second communications device, where the first communications device determines a ratio of the first sub-slot and the second sub-slot in the unit time slot, including: The communication device determines a ratio of the first sub-slot and the second sub-slot in the unit time slot according to the current load information of the second communication device.
  • the method of the first aspect before the first communications device determines the duration of the unit time slot, further includes: acquiring by the first communications device The requirement of the second communication device for real-time performance, wherein the determining, by the first communication device, the duration of the unit time slot comprises: determining, by the first communication device, the duration of the unit time slot according to the requirement of the second communication device for real-time performance.
  • the spectrum resource is an unlicensed spectrum resource shared by the first communication system and the at least one second communication system, at least one second The second communication device of the communication system uses the unlicensed spectrum resource to communicate in the LBT mode; or the spectrum resource is the licensed spectrum resource shared by the first communication system and the at least one second communication system, and at least one second communication system The second communication device uses the LBT mode to communicate with the licensed spectrum resource.
  • the first communication system is a cellular communication system
  • the second communication system is a wireless local area network communication system
  • the first communication device is a base station.
  • the user equipment the second communication device is a wireless access point or a station, or both the first communication system and the second communication system are cellular communication systems, and the first communication device and the second communication device are both base stations or user equipments.
  • a second aspect provides a communication device, including: a determining module, configured to determine a first subslot and a second subslot in a unit time slot; and a communication module, configured to be high in the first subslot Communicating using the spectrum resource at a priority of the second communication device, wherein the communication device of the second aspect is a communication device of the second communication system, the communication device using the spectrum resource in the second sub-slot has a lower priority than the second The communication device uses the priority of the spectrum resource in the second sub-timeslot.
  • the communication module continuously uses spectrum resources to communicate in the first sub-timeslot, so that the second communication device is used in the first sub-slot, when the communication device does not use the spectrum resource. Spectrum resources are communicated.
  • the communication module is also used in the second sub-slot, when the second communication device does not use the spectrum resource Resources communicate.
  • the duration of the spectrum resource idle is smaller than that of the second communication device. The length of time to grab spectrum resources.
  • the duration of the spectrum resource idle is greater than that of the second communication device. The length of time to grab spectrum resources.
  • the communications module uses the first listener and then the LBT mode to communicate using the spectrum resource in the second subslot.
  • the second communication device uses the second listener mode to communicate using the spectrum resource in the second subslot.
  • the duration of the DIFS of the first listener mode is greater than the duration of the DIFS of the second listener mode or In the first listening, the time between the start time of the spectrum resource idle mode and the start time of the contention window of the first listener mode is greater than the start time of the spectrum resource idle time in the second listener mode. Listening to the duration between the start time of the contention window of the mode, wherein the duration of the second communication device waiting to preempt the spectrum resource includes the duration of the DIFS of the second listener mode and the second listener mode The sum of the durations of the windows.
  • the communications module uses the first listening, speaking, and speaking manner to communicate using the spectrum resource in the second sub-slot.
  • the second communication device uses the second listener mode to communicate using the spectrum resource in the second subslot.
  • the minimum value of the contention window duration of the first listener mode is greater than the competition window of the second listener mode.
  • the communications module is further configured to be in the first sub-slot to be higher than the second communications Before the priority of the second communication device of the system is used to communicate with the spectrum resource, the current load information of the second communication device is obtained, where the determining module is further configured to determine, according to the current load information of the second communication device, the first listening mode The duration of the DIFS and the time of the competition window of the first listener long.
  • the communication module further uses the spectrum resource to communicate in a first sub-timeslot with a higher priority than the second communication device.
  • the start time of the first sub-slot broadcasts network allocation vector information, and uses spectrum resources for communication within the duration of the first sub-slot, wherein the network allocation vector information is used to indicate that the spectrum resource is in a busy state, and the network allocation vector The information includes the duration of the first sub-timeslot such that the second communication device does not use spectral resources for the duration of the first sub-timeslot.
  • the determining module is further configured to determine, before determining the first sub-slot and the second sub-slot in the unit time slot The length of the unit time slot, determining the proportion of the first sub-slot and the second sub-slot in the unit time slot, wherein the unit time slot is one of the plurality of unit time slots, and the spectrum is according to the determined duration of the unit time slot.
  • the resource is divided into a plurality of unit time slots in the time domain, and each unit time slot of the plurality of time slots is determined according to the determined proportion of the first sub-time slot and the second sub-slot in the unit time slot. It is divided into a first sub-slot and a second sub-slot.
  • the communications module is further configured to determine, in the determining module, a proportion of the first sub-slot and the second sub-slot in the unit time slot Previously, the current load information of the second communication device is obtained, wherein the determining module determines the proportion of the first sub-slot and the second sub-slot in the unit time slot according to the current load information of the second communication device.
  • the communications module is further configured to acquire the real-time requirement of the second communications device before the determining module determines the duration of the unit time slot.
  • the communication module determines the duration of the unit time slot according to the requirement of the second communication device for real-time performance.
  • the spectrum resource is an unlicensed spectrum resource shared by the first communications system and the at least one second communications system, at least one second The second communication device of the communication system uses the unlicensed spectrum resource to communicate in the LBT mode; or the spectrum resource is the licensed spectrum resource shared by the first communication system and the at least one second communication system, and at least one second communication system The second communication device uses the LBT mode to communicate with the licensed spectrum resource.
  • the first communication system is a cellular communication system
  • the second communication system is a wireless local area network communication system
  • the first communication device is a base station.
  • the second communication device is a wireless access point or a site, or
  • the first communication system and the second communication system are both cellular communication systems, and the first communication device and the second communication device are both base stations or user equipment.
  • the device of the first communication system uses the spectrum resource to communicate in the first sub-time slot of the unit time slot with higher priority than the device of the second communication system, and the second sub-unit slot Within the time slot, the spectrum resource is used for communication at a lower priority than the device of the second communication system. Since spectrum resources can be used by two communication systems with different priorities in different time slots, the reservation of fixed spectrum resources for the second communication system is avoided, thereby improving the utilization of spectrum resources.
  • FIG. 1 is a schematic architectural diagram of a communication system in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of unit time slot division in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a CSMA/CA approach in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic flow diagram of a method of communicating using spectrum resources, in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic flow diagram of a process for communicating using unlicensed spectrum resources, in accordance with another embodiment of the present invention.
  • Figure 6A is a schematic illustration of a CSMA/CA approach in accordance with one embodiment of the present invention.
  • Figure 6B is a schematic illustration of a CSMA/CA approach in accordance with another embodiment of the present invention.
  • FIG. 7 is a schematic flow diagram of a process for communicating using unlicensed spectrum resources, in accordance with another embodiment of the present invention.
  • FIG. 8 is a structural schematic diagram of a communication device in accordance with another embodiment of the present invention.
  • FIG. 9 is a structural schematic diagram of a communication device in accordance with another embodiment of the present invention.
  • the technical solution of the present invention can be applied to various communication systems, for example, GSM (Global System of Mobile communication) system, CDMA (Code) Division Multiple Access (CDMA) system, WCDMA (Wideband Code Division Multiple Access) system, GPRS (General Packet Radio Service), LTE (Long Term Evolution)
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the embodiment of the present invention is not limited to the system, the LTE-A (Advanced Long Term Evolution) system, the UMTS (Universal Mobile Telecommunication System) system, the UMTS (Universal Mobile Telecommunication System), etc.
  • the LTE network is taken as an example for description.
  • Embodiments of the present invention can be used in wireless networks of different standards.
  • a wireless access network may include different network elements in different systems.
  • the network elements of the radio access network in LTE and LTE-A include an eNB (eNodeB, an evolved base station), and the network elements of the radio access network in WCDMA include an RNC (Radio Network Controller) and a NodeB, similar to Other wireless networks, such as the WiMax (Worldwide Interoperability for Microwave Access), may use a similar solution to the embodiment of the present invention, but the related modules in the base station system may be different, and the embodiment of the present invention does not.
  • the following embodiments will be described by taking an eNodeB as an example.
  • user equipment includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset).
  • MS Mobile Station
  • Mobile Terminal mobile terminal
  • Mobile Telephone mobile Telephone
  • handset mobile phone
  • the portable device the user equipment can communicate with one or more core networks via a radio access network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN radio access network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • a plurality of WiFi systems exist in the base station coverage of the 3GPP system, and the 3GPP system and the WiFi system are deployed in the same unlicensed frequency band as an example.
  • the embodiment of the present invention is not limited thereto, and the present invention is not limited thereto.
  • Embodiments may also be adapted to scenarios in which other communication systems are deployed in the same frequency as the target unlicensed band.
  • FIG. 1 is a schematic architectural diagram of a communication system 100 in accordance with one embodiment of the present invention.
  • the communication system 100 includes at least one 3GPP base station (BS) 110 and at least one WiFi access point (AP) 120 and a user equipment 111 under the coverage of the 3GPP base station and a station (STA) 121 under the coverage of the WiFi access point.
  • the 3GPP base station 110 and The WiFi access point 120 is deployed in the same frequency as the unlicensed spectrum resource.
  • the 3GPP base station 110 can communicate with the user equipment 111 under its coverage using unlicensed spectrum resources, and the Wifi access point 120 can use unlicensed spectrum resources and its coverage.
  • Site 121 communicates.
  • FIG. 1 is described by taking a 3GPP system and a WiFi system as an example, the embodiment of the present invention is not limited thereto.
  • the embodiment of the present invention may also be applied to other communications using licensed spectrum resources.
  • a system eg, a GSM system
  • a system that communicates using unlicensed spectrum resources eg, Bluetooth
  • FIG. 2 is a schematic diagram of unit time slot division in accordance with one embodiment of the present invention.
  • an embodiment of the present invention may divide an unlicensed spectrum resource into a plurality of unit time slots in a time domain, and divide each unit time slot into a first sub-slot and a second sub-slot, where
  • the priority of the 3GPP base station 110 and the user equipment 111 using the resource bandwidth in the unlicensed spectrum resource is higher than the access point 120 of the WiFi system and the resource bandwidth of the site 121 using the unlicensed spectrum resource.
  • priority In the second subslot, the priority of the 3GPP base station 110 and the user equipment 111 communicating using the resource bandwidth in the unlicensed spectrum resource is lower than the resource bandwidth in the unlicensed spectrum resource of the access point 120 and the station 121 of the WiFi system. The priority of communication.
  • the 3GPP base station 110 and the user equipment 111 can preferentially communicate using the resource bandwidth in the unlicensed spectrum resource, and in the second subslot, the access point 120 and the station 121 of the WiFi system
  • the resource bandwidth in the unlicensed spectrum resource can be preferentially used for communication.
  • FIG. 2 is described by taking the first sub-slot in the unit time slot before the second sub-slot, the embodiment of the present invention is not limited thereto, for example, the first sub-slot. It is also possible to be located after the second subslot in the unit time slot.
  • the unit time slot includes the first sub-slot and the second sub-slot
  • the embodiment of the present invention is not limited thereto, for example, the unit time slot may include multiple First first time slots and/or multiple second sub time slots.
  • FIG. 3 is a schematic diagram of a CSMA/CA approach in accordance with an embodiment of the present invention. The embodiment of FIG. 3 is described by taking a WiFi system as an example.
  • the CSMA/CA technology is used to detect and avoid conflicts when more than two network devices transmit data over the network.
  • the CSMA/CA technology works as follows: A device (for example, a station or an AP) of a WiFi system first performs Carrier Sensing (CS) to determine whether an unlicensed spectrum resource (media resource) is busy, if the site or After determining that the unlicensed spectrum resource is idle or ending the busy state, the AP starts waiting for the duration of preempting the unlicensed spectrum resource, that is, the station or AP first waits for a time period DIFS, and then the station or AP starts to wait for a random time period (competition Window or rollback time).
  • CS Carrier Sensing
  • the station begins transmitting data. If the station or the AP detects that the unlicensed spectrum resource is busy again when the duration of the waiting for preempting the unlicensed spectrum resource ends, the station waits for the duration of the preemption of the unlicensed spectrum resource.
  • the transmission has constraints on data size and duration. When the constraint is triggered, the station needs to compete for resources again even if there is still traffic.
  • the station first listens to whether the unlicensed spectrum resources (eg, the bandwidth or channel to be occupied) are used by other stations, that is, whether the unlicensed spectrum resources are idle. If the unlicensed spectrum resource is idle, the station waits for the Distributed Inter-frame Spacing (DIFS) duration. If the unlicensed spectrum resource is busy, the station continues to listen. If there are other sites occupying unlicensed spectrum resources while waiting for the DIFS duration, the site waits for the DIFS duration again and continues to listen. If the DIFS is full for a long time, it starts to enter the countdown state, that is, enters the competition window, and the duration of the competition window is also called the backoff time.
  • DIFS Distributed Inter-frame Spacing
  • the station performs data transmission after the countdown is completed. If other stations occupy unlicensed spectrum resources during the countdown period, the station continues to listen, waits for other stations to transmit data, records the countdown time, and then waits for other stations to transfer the data before continuing to wait for the DIFS duration. After waiting for the DIFS duration, The countdown is continued from the countdown time of the record, and the data transfer is performed after the countdown ends.
  • the above backoff time may be randomly determined, and the contention window may be expressed as (CW min , CW max ).
  • the WiFi system of the embodiment of the present invention describes the mechanism for the WiFi system to compete for unlicensed spectrum resources by taking the CSMA/CA mechanism as an example, but the embodiment of the present invention is not limited thereto, and the WiFi system of the embodiment of the present invention is also Other mechanisms such as Listen Before Talk (LBT) can be used to compete for unlicensed spectrum resources or to authorize spectrum resources.
  • LBT Listen Before Talk
  • FIG. 4 is a schematic flow diagram of a method of communicating using spectrum resources, in accordance with one embodiment of the present invention.
  • the method of FIG. 4 can be performed by the 3GPP base station of FIG.
  • the first communications device of the first communications system determines a first subslot and a second subslot in a unit time slot, wherein the first communications device and the second communications system of the first communications system are in a unit time slot
  • the second communication device shares the spectrum resource.
  • the unit time slot may be any one of a plurality of unit time slots divided for the spectrum resource in the time domain.
  • the first communication device of the first communication communication system and the second communication device of the second communication system may each use the spectral resources with different priorities within the first sub-slot and the second sub-slot.
  • the duration of the first sub-slot may be equal to the duration of the second sub-slot.
  • the embodiment of the present invention is not limited thereto, and the duration of the first sub-slot may not be equal to the duration of the second sub-slot.
  • the first sub-slot may be placed before the second sub-slot, or the first sub-slot may be placed after the second sub-slot.
  • the first communication system can be a 3GPP system and the second communication system can be a WiFi system.
  • the embodiment of the present invention is not limited thereto.
  • the first communication system may also be a GSM system or other system that uses licensed spectrum resources for communication
  • the second communication system may be a Bluetooth system or other system that uses spectrum resources for communication.
  • the first communication device may be a base station or user equipment in a 3GPP system
  • the second communication device may be an AP or a station in a WiFi system.
  • the first communications device uses the spectrum resource to communicate in a first sub-timeslot with a higher priority than the second communications device, where the first communications device uses the spectrum resource in the second sub-slot to have a lower priority.
  • the second communication device uses the priority of the spectrum resource in the second sub-timeslot.
  • the priority of the first communication device using the spectrum resource for communication is higher than the priority for the second communication device to communicate using the spectrum resource.
  • the priority of the first communication device using the spectrum resource for communication is lower than the priority for the second communication device to communicate using the spectrum resource.
  • the first communication device can preferentially use the spectrum resource for communication
  • the second communication device can preferentially use the spectrum resource for communication.
  • the embodiment of the present invention is described by taking two sub-slots in a unit time slot as an example, the embodiment of the present invention is not limited thereto, and the unit time slot may include more sub-time slots, and may be It is necessary to set a priority of the communication device of the first communication system and the communication device of the second communication system to use the spectrum resource in each sub-slot, as long as the first communication device uses the spectrum resource in the at least one sub-slot.
  • the priority is higher than the priority of the second communication device using the spectrum resource, and in the at least one sub-slot, the priority of the first communication device using the spectrum resource is lower than the priority of the second communication device using the spectrum resource.
  • the embodiment of the present invention is described by taking the second communication device in the second communication system as an example, there may be multiple communication devices in the second communication system, and multiple communication devices in the second communication system are The spectrum resources can be contending with the same priority in the second subslot.
  • the above spectrum resource may be a bandwidth or a plurality of segments of bandwidth, or may be one or Multiple channels, even all bands.
  • the spectrum resource may be an unlicensed spectrum resource, and the embodiment of the present invention is not limited thereto.
  • the spectrum resource may also be a licensed spectrum resource.
  • an apparatus of a first communication system of an embodiment of the present invention communicates using a spectrum resource in a first subslot of a unit time slot with a higher priority than a device of the second communication system, and In the second subslot of the unit time slot, the spectrum resource is used for communication at a lower priority than the device of the second communication system. Since spectrum resources can be used by two communication systems with different priorities in different time slots, the reservation of fixed spectrum resources for the second communication system is avoided, thereby improving the utilization of spectrum resources.
  • the first communication device continues to communicate using the spectrum resources in the first sub-timeslot such that the second communication device is within the first sub-slot, not at the first communication device Use spectrum resources for communication when using spectrum resources.
  • the spectrum resource in the first sub-time slot is occupied by the first communication device, and the second communication device can use the spectrum resource only when the first communication device does not use the spectrum resource in the first sub-slot, so that When the first communication device uses the spectrum resource, the spectrum resource can be effectively utilized by the second communication device, thereby improving the utilization of the spectrum resource.
  • the method of FIG. 4 further includes: the first communications device uses the spectrum resource to communicate in the second subslot, when the second communications device does not use the spectrum resource.
  • the spectrum resource in the second sub-time slot is occupied by the second communication device, and the first communication device can use the spectrum resource only when the second communication device does not use the spectrum resource in the second sub-slot, so that It is satisfied that the second communication device uses the spectrum resource, and when the second communication device does not use the spectrum resource, the spectrum resource can be reclaimed by the first communication device, thereby improving the utilization of the spectrum resource.
  • the duration of the spectrum resource idle is less than the duration of the second communication device waiting to preempt the spectrum resource.
  • the duration of the second communication device waiting to preempt the spectrum resource is equal to the sum of the DIFS duration and the backoff time. Since the first communication device continuously occupies the spectrum resource during communication, and the idle time of the resource is smaller than the second communication device waits for the preemption frequency
  • the duration of the spectral resource such that the second communication device is always in a waiting state during communication of the first communication device.
  • the idle time of the resource is usually smaller than the length of time that the WiFi system waits to preempt the spectrum resource when communicating in the CSMA/CA mode.
  • the first communication device can communicate using the spectrum resources in the same manner as it would when communicating with the licensed spectrum resources, thereby ensuring that the priority of using the spectrum resources is higher than the priority of the spectrum resources used by the WiFi system.
  • the base station can also communicate in the first sub-timeslot by using the CSMA/CA mode, as long as the duration of the base station using the waiting for preempting the spectrum resource is less than the duration of the second communication device waiting to preempt the spectrum resource.
  • the duration of the spectrum resource idle is greater than the duration of the second communications device waiting to preempt the spectrum resource.
  • the first communication device uses the first listener and then the LBT mode to communicate using the spectrum resource in the second subslot, and the second communication device adopts the second subslot in the second subslot.
  • the spectrum resource is used for communication.
  • the length of the distributed interframe interval of the first listening mode is greater than the duration of the distributed interframe space of the second listening mode or the first listening first.
  • the duration between the start time of the spectrum resource idle mode and the start time of the contention window of the first listener mode is greater than the start time of the spectrum resource idle mode in the second listener mode to the first listener mode.
  • the duration between the start moments of the contention window, wherein the duration of the second communication device waiting to preempt the spectrum resource includes the sum of the duration of the DIFS of the second listener mode and the duration of the competition window of the second listener mode.
  • the LBT mode may be the CSMA/CA mode.
  • the duration between the end of the resource busy of the spectrum resource in the CSMA/CA mode of the first communication device to the start time of the contention window of the CSMA/CA mode of the first communication device is greater than the CSMA/CA mode of the second communication device.
  • the first communication device communicates using the spectrum resource in a first listener mode in a second subslot, and the second communication device uses a second in the second subslot. After listening to the mode, the spectrum resource is used for communication.
  • the minimum value of the competition window duration of the first listening and speaking mode is greater than the minimum value of the competition window duration of the second listening mode, and/or the first listening first.
  • the maximum value of the competition window duration is greater than the competition window duration of the second listener mode.
  • the maximum value, wherein the duration of the second communication device waiting to preempt the spectrum resource includes the sum of the duration of the DIFS of the second listener mode and the duration of the competition window of the second listener mode.
  • the method of FIG. 4 is further performed before the first communication device communicates with the spectrum resource at a higher priority than the second communication device of the second communication system in the first sub-time slot.
  • the first communication device acquires the current load information of the second communication device, and the first communication device determines, according to the current load information of the second communication device, the duration of the DIFS of the first listener mode and the first listener mode. The length of the competition window.
  • the first communication device is capable of adjusting and controlling two parameters related to the ability to reclaim idle resources: DIFS and CW, mainly for reducing the competition overhead in the time domain when the first communication device uses the spectrum resource. . Since the priority of the first communication device using the spectrum resource is designed to be lower than the priority of the second communication using the spectrum resource, the duration of the first communication device waiting to preempt the spectrum resource needs to be greater than the duration of the second communication device waiting for the spectrum resource. This creates additional competition overhead in the time domain.
  • the (DIFS, CW) used by the first communication device is more the same as the (DIFS, CW) of the second communication device, that is, the closer the priorities of the two are, the smaller the competition overhead is. Therefore, in order to reduce the competition overhead of the first communication device, the (DIFS, CW) used by the first communication device may be made as close as possible to the second communication device (DIFS, if the load requirement of the second communication device is satisfied). CW).
  • the method of FIG. 4 further includes: the first communications.
  • the device broadcasts network allocation vector information at a start time of the first sub-slot, wherein the network allocation vector information is used to indicate that the spectrum resource is in a busy state, and the network allocation vector information includes a duration of the first sub-slot, such that the first communication device
  • the spectrum resource is not used in the duration of the first sub-slot, wherein the first communication device communicates with the spectrum resource at a higher priority than the second communication device in the first sub-slot, including: the first communication device is The spectrum resources are used for communication within the duration of the first subslot.
  • devices of multiple second communication systems may notify whether or not to occupy spectrum resources by means of broadcast network allocation vector information, that is, whether the spectrum resources are in a busy state or an idle state, and devices that receive network allocation vector information will not
  • the bandwidth of the spectrum resource is used on the bandwidth of the spectrum resource to be occupied in the first sub-time slot occupied by the network allocation vector information.
  • the first communication device may simulate that the device of the second communication system transmits the network allocation vector information at the start time of the first sub-slot, so that the second communication device knows that the spectrum resource is occupied, thereby waiting for the resource to be idle in the first sub-slot. This ensures that the priority of the first communication device using the spectrum resource in the first sub-timeslot is higher than the priority of the second communication device in the first sub-timeslot.
  • the method of FIG. 4 further includes: the first communications device Determining a duration of the unit time slot; the first communication device divides the spectrum resource into a plurality of unit time slots in the time domain according to the determined duration of the unit time slot, and the unit time slot is one of the plurality of unit time slots; the first communication The device determines a ratio of the first sub-slot and the second sub-slot in the unit time slot; the first communication device according to the determined ratio of the first sub-slot and the second sub-slot in the unit time slot Each of the plurality of time slots is divided into a first sub-slot and a second sub-slot.
  • the ratio of the first sub-timeslot and the second sub-timeslot may be preset or may be determined in real time according to load information of the first communication device and/or the second communication device.
  • the method of FIG. 4 further includes: acquiring, by the first communications device, the second The current load information of the communication device, wherein the first communication device determines a ratio of the first sub-slot and the second sub-slot in the unit time slot, including: the first communication device determines the first according to the current load information of the second communication device The ratio of subslots and second subslots in unit time slots.
  • the first communications device listens to the working status of the second communications device in the second sub-slot to obtain current traffic load information of the second communications device, for example, obtains traffic of the second communications device, and the like. Information and information such as traffic of the first communication device's own service.
  • the first communication device determines a ratio of the first sub-slot and the second sub-slot in the unit time slot based on the current traffic load information of the second communication device and the current traffic load information of the first communication device, and according to the determined first The ratio of the sub-slot to the second sub-slot in the unit time slot divides the unit time slot into a first sub-slot and a second sub-slot.
  • the proportion of the second subslot in the unit time slot may be larger, and if the current traffic load of the second communication device is lower, the second subslot The proportion in the unit time slot can be small. Since the first communication device considers the load condition of the second communication device when dividing the first sub-slot and the second sub-slot, the influence on the second communication device can be reduced.
  • the first communications device may further obtain network a priori information by means of high layer signaling, where the network prior information may be used to indicate a rule of a historical service of the second communications device, for example,
  • a communication device can acquire load information of a historical service of the second communication device according to the network prior information.
  • the first communication device can also be based on the current traffic load of the second communication device
  • the information and the current traffic load information of the first communication device and the network prior information of the first communication device and/or the second communication device determine a ratio of the first sub-slot and the second sub-slot in the unit time slot, and The ratio of the determined first sub-slot to the second sub-slot in the unit time slot divides the unit time slot into a first sub-slot and a second sub-slot.
  • the specific division process is detailed in the embodiment of FIG. 5, and details are not described herein again.
  • the ratio of the duration of the first sub-slot and the second sub-slot in the unit time slot can be adjusted according to the load condition of the first communication system and/or the second communication device, thereby The utilization of the spectrum has been further improved.
  • the method of FIG. 4 further includes: the first communications device acquires a requirement for real-time performance of the second communications device, where the first communications device Determining the duration of the unit time slot includes: determining, by the first communication device, the duration of the unit time slot according to the requirement of the second communication device for real-time performance.
  • a shorter unit time slot may be used, and if the second communication device has lower requirements for real-time service, a longer unit time slot may be adopted.
  • the duration of the unit time slot can be adapted to the change of the real-time requirement of the service, thereby improving resources.
  • the utilization rate satisfies the real-time requirement of the service of the second communication device, and reduces the impact on the second communication device.
  • the spectrum resource is an unlicensed spectrum resource shared by the first communication system and the at least one second communication system
  • the second communication device of the at least one second communication system uses the LBT mode to use the unlicensed spectrum. Resources communicate.
  • the LBT mode may be a carrier sense multiple access/collision detection CSMA/CA mode.
  • the spectrum resource is an authorized spectrum resource shared by the first communication system and the at least one second communication system, and the second communication device of the at least one second communication system adopts an LBT mode authorization before listening Spectrum resources are communicated.
  • the first communication system is a cellular communication system
  • the second communication system is a wireless local area network communication system
  • the first communication device is a base station or a user equipment
  • the second communication device is a wireless access point or a station.
  • the first communication system is a 3GPP system and the second communication system is a WiFi system.
  • the first communication device is a base station
  • the second device may be a wireless access point or station.
  • the trusted device is a user device
  • the second device may be a wireless access point or a site.
  • the first communication system and the second communication system are both cellular communication systems, and the first communication device and the second communication device are both base stations or user equipment.
  • the first communication system and the second communication system may both be 3GPP systems.
  • the second device may be a base station or a user equipment.
  • the second device may be a base station or a user equipment.
  • the first communication system and the second communication system may both be WiFi systems.
  • the first communication device is a wireless access point
  • the second device may be a wireless access point or site.
  • the first communication device is a site
  • the second device may be a wireless access point or site.
  • FIG. 5 is a schematic flow diagram of a process for communicating using unlicensed spectrum resources, in accordance with another embodiment of the present invention.
  • the eNodeB represents the control base station of the current serving cell of the UE, but the present invention is not limited to the specific system represented by the term, but can be similarly applied to other forms of base stations.
  • the eNodeB obtains the real-time requirement of the service of the WiFi system deployed in the same frequency.
  • the eNodeB can perform statistics on the characteristics of the services of the WiFi system deployed in the same frequency to determine the real-time requirements of the WiFi system. For example, the base station can count the transmission period of the service data packet or the time interval of transmitting the data packet. For example, the base station can count the number of data packets transmitted by a WiFi system over a period of time, and obtain a transmission period or a time interval for transmitting data packets accordingly. If the transmission period is low or the time interval of the data packet is short, the WiFi system has higher requirements for real-time service. Otherwise, the WiFi system has low requirements for real-time service.
  • the eNodeB divides multiple unit time slots in the time domain of the unlicensed spectrum resource based on the real-time performance of the WiFi system.
  • the eNodeB determines the duration of the unit time slot based on the real-time requirement of the WiFi system, and divides the plurality of unit time slots in the time domain according to the determined unit time slot duration. For example, if the WiFi system has higher requirements for real-time service, a shorter unit time slot can be used. If the WiFi system has lower requirements for real-time service, a longer unit time slot can be used.
  • these unit time slots can also be configured by the 3GPP system.
  • the eNodeB can obtain the duration of the unit time slot configured by the 3GPP system through high-level signaling.
  • these unit time slots can be designed to be of equal duration, for example, can be designed to be a duration of 1 ms, which has the advantages of simple design and control, and, in addition, because the control is simple, the signaling overhead is small, and the embodiment of the present invention is This is not limited.
  • the unit time slots can also be designed to be non-equal time. This has the advantage that the duration of the unit time slot can be adjusted according to the real-time requirement of the service, so that the duration of the unit time slot can be adapted to the real-time performance of the service. The change in requirements.
  • the eNodeB obtains current service load information and/or network prior information of the WiFi system deployed in the same frequency, and current service load information of the eNodeB.
  • the eNodeB listens to the working status of the WiFi system deployed in the same frequency in the second sub-slot to obtain the current service load information of the WiFi system, for example, information such as the traffic of the WiFi system and the service of the eNodeB itself. Information such as traffic.
  • the eNodeB can obtain the network prior information by using the high-level signaling, where the a priori information can be used to indicate the history of the WiFi service.
  • the eNodeB can obtain the WiFi system according to the network prior information. Historical business load information.
  • the eNodeB divides the unit time slot into a first sub-slot and a second sub-slot based on the current service load information of the WiFi system and the current service load information of the eNodeB.
  • the eNodeB determines a ratio of the first sub-slot and the second sub-slot in the unit time slot based on the current service load information of the WiFi system and the current service load information of the eNodeB, and according to the determined first sub-slot and the first The ratio of the two sub-slots in the unit time slot divides the unit time slot into a first sub-slot and a second sub-slot.
  • the proportion of the second subslot in the unit time slot may be larger, if the current traffic load of the WiFi system is lower, for example, If the load is less than the preset threshold, the proportion of the second sub-slot in the unit time slot may be small.
  • the eNodeB may further determine the unit time of the first sub-slot and the second sub-slot based on the current service load information of the WiFi system and the current service load information of the eNodeB and the network prior information of the eNodeB and/or the WiFi system.
  • the eNodeB may determine an initial value of the traffic load according to the network prior information, determine an initial value of the ratio of the first sub-slot and the second sub-slot in the unit time slot according to the initial value, and divide the initial value according to the initial value. One sub-slot and second sub-slot. Then, in the next unit time slot, according to the acquired current traffic load information of the eNodeB and/or the WiFi system and the first sub-timeslot and the second The proportion of the sub-slots in the unit time slots is adjusted so that the ratio of the first sub-slots and the second sub-slots in the unit time slots can be adapted to the changes in the current traffic load of the eNodeB and the WiFi system more quickly.
  • embodiments of the present invention do not limit the order of execution of 510, 520 and 530, 540, for example, 530 and 540 may be performed prior to 510 and 520.
  • the eNodeB simulates, by the device of the WiFi system, a signal carrying Network Allocation Vector (NAV) information at a start time of the first sub-timeslot.
  • NAV Network Allocation Vector
  • the signal may be a Beacon/Request To Send (RTS) signal, the NAV information including the duration of the first sub-timeslot in the current unit time slot.
  • the eNodeB can transmit a signal containing the NAV on the bandwidth of the unlicensed spectrum resource to be occupied, thereby exclusively claiming its occupation of the bandwidth.
  • the NAV is used to indicate how long the medium of the target unlicensed spectrum resource is to be occupied. For example, the value of the NAV is not zero (for example, 1 us) indicates that the medium is busy, and the value of NAV is 0 indicates that the medium is idle.
  • the receiving end After receiving the signal containing NAV, the receiving end will start the internal counter to start counting down. When the counter is not reset to 0, the receiving end considers that the channel is busy.
  • the eNodeB communicates using unlicensed spectrum resources in the first subslot.
  • the device of the WiFi system receives the NAV information, it is determined that the unlicensed spectrum resource is in a busy state in the first subslot, so that the resource cannot be successfully contending on the first subslot unless the eNodeB stops working, that is, the eNodeB is
  • the priority of using the target unlicensed spectrum resource on the first sub-slot is higher than the priority of the device of the WiFi system using the target unlicensed spectrum resource on the first sub-slot, so that the eNodeB can take precedence in the first sub-time slot. Communicate using target unlicensed spectrum resources.
  • the eNodeB uses the CSMA/CA mode to communicate using the unlicensed spectrum resource in the second subslot.
  • the devices of the eNodeB and the WiFi system use the CSMA/CA mode to communicate using the unlicensed spectrum resources in the second subslot, wherein the duration of the DIFS of the CSMA/CA mode of the eNodeB is greater than the CSMA/CA mode of the device of the WiFi system.
  • the duration of the DIFS Referring to FIG. 6A, the DIFS when the eNodeB adopts the CSMA/CA mode is larger than the DIFS when the device of the WiFi system adopts the CSMA/CA mode.
  • the duration between the busy end of the unlicensed spectrum resource in the CSMA/CA mode of the eNodeB and the start time of the contention window of the CSMA/CA mode of the eNodeB is greater than the end of the unlicensed spectrum resource in the CSMA/CA mode of the device of the WiFi system.
  • eNodeB The time between the start of the unlicensed spectrum resource idle in the CSMA/CA mode and the start time of the contention window of the CSMA/CA mode of the eNodeB is greater than the start time of the unlicensed spectrum resource idle in the CSMA/CA mode of the device of the WiFi system.
  • the duration between the start of the contention window of the CSMA/CA mode of the WiFi system device is DIFS+ ⁇ , and when the WiFi adopts the CSMA/CA mode, the busy end time of the resource reaches the start time of the contention window. The duration between them is DIFS.
  • the eNodeB determines the duration of the DIFS and the duration of the contention window according to the current load information of the WiFi system.
  • the duration of the DIFS of the eNodeB and the duration of the contention window as close as possible to the duration of the DIFS of the WiFi system and the duration of the contention window, in order to satisfy the load of the WiFi system. It is required to increase the duration of the DIFS of the WiFi system and the duration of the contention window. Therefore, it is necessary to balance between the two according to the load requirement of the WiFi system to determine the length of the appropriate DIFS and the duration of the contention window.
  • the eNodeB notifies the user equipment unit time slot duration, the ratio of the duration of the first sub-time slot and the second sub-time slot, and the duration of the DIFS and the duration of the contention window.
  • the eNodeB sends, by using a system message, the determined duration of the unit time slot and the duration of the first sub-slot and the second sub-slot in the unit time slot to each user equipment under the jurisdiction or service of the eNodeB, so as to be used by the user.
  • the device communicates using the target unlicensed spectrum resource in the unit time slot according to the duration of the unit time slot and the ratio of the duration of the first sub-time slot and the second sub-time slot.
  • embodiments of the present invention do not limit the order of execution of 550, 560, and 570, for example, 570 may be performed prior to 550 or 560.
  • FIG. 7 is a schematic flow diagram of a process for communicating using unlicensed spectrum resources, in accordance with another embodiment of the present invention.
  • the eNodeB represents a control base station of the current serving cell of the UE, but the present invention is not limited to the specific system represented by the term, but can be similarly applied to other forms of base stations.
  • 710 to 740 of FIG. 7 are similar to 510 to 540 of FIG. 5, and a detailed description is omitted as appropriate.
  • the eNodeB obtains real-time requirements for services of the WiFi system deployed in the same frequency.
  • the eNodeB divides multiple unit time slots in the time domain of the unlicensed spectrum resource based on the real-time performance of the WiFi system.
  • the eNodeB obtains current service load information and/or network of the WiFi system deployed in the same frequency. The a priori information and the current traffic load information of the eNodeB.
  • the eNodeB divides the unit time slot into a first sub-slot and a second sub-slot based on current traffic load information of the WiFi system and current service load information of the eNodeB.
  • embodiments of the present invention do not limit the order of execution of 710, 720, and 730, 740, for example, 730 and 740 may be performed prior to 710 and 720.
  • the eNodeB uses the unlicensed spectrum resources for communication in the first sub-timeslot in the same manner as the licensed spectrum.
  • a centralized control by a BS and a persistent scheduling based on a synchronization frame are generally adopted.
  • an eNodeB uses an unlicensed spectrum resource for communication in a first sub-slot in a persistent manner, the unlicensed spectrum resource is used by the WiFi.
  • the use is based on the CSMA/CA method.
  • interference occurs, it will actively wait for and circumvent the 3GPP system signal.
  • 3GPP preferentially occupies the spectrum resources in the first sub-timeslot, and the WiFi users are always in interference avoidance and waiting. status.
  • the eNodeB communicates with the unlicensed spectrum resource in a second sub-timeslot with a lower priority than the WiFi system.
  • the first communication device uses the first CSMA/CA mode to communicate using the unlicensed spectrum resource in the second subslot, wherein the second communication device uses the second CSMA/CA mode to use the unlicensed spectrum resource in the second subslot.
  • the minimum value of the contention window duration of the first CSMA/CA mode is greater than the minimum value of the competition window duration of the second CSMA/CA mode, and/or the maximum value of the contention window duration of the first CSMA/CA mode is greater than the second The maximum value of the competing window duration in the CSMA/CA mode.
  • the eNodeB determines, according to the current load information of the WiFi system, a duration of the DIFS and a duration of the contention window.
  • the eNodeB notifies the user equipment unit time slot duration, the ratio of the duration of the first sub-time slot and the second sub-time slot, and the duration of the DIFS and the duration of the contention window.
  • embodiments of the present invention do not limit the order of execution of 760 and 770, for example, 770 may be performed prior to 760.
  • the eNodeB in the second subslot, when the WIFI does not use the channel, the eNodeB can recover resources in time to avoid waste. Moreover, the eNodeB can analyze the service characteristics of the WIFI system according to the network prior information and/or the traffic load information monitored or heard (such as service traffic, frequency of channel usage, duration occupied by each channel, etc.), Therefore, the resource usage of the WIFI system is predicted, and the eNodeB can adjust the unit time slot and the first according to the prediction result. The proportion of one sub-slot and the second sub-slot, so that the influence on the second communication system can be reduced as much as possible.
  • embodiments of the present invention are also capable of adjusting and controlling two parameters related to the ability to reclaim idle resources: DIFS and CW, mainly to reduce the competition overhead of the eNodeB in the time domain.
  • DIFS digital versatile access
  • CW mainly to reduce the competition overhead of the eNodeB in the time domain.
  • the (DIFS, CW) used by the eNodeB is more similar to that of the WIFI device (DIFS, CW), that is, the closer the priorities of the two are, the smaller the competition overhead is.
  • FIG. 8 is a block diagram showing the structure of a communication device 800 in accordance with another embodiment of the present invention.
  • Communication device 800 includes a determination module 810 and a communication module 820.
  • the embodiment of Fig. 8 corresponds to the embodiment of Fig. 4, and a detailed description is omitted as appropriate.
  • Communication device 800 is the first communication device 400 of FIG.
  • the determining module 810 is configured to determine a first sub-slot and a second sub-slot in a unit time slot.
  • the communication module 820 is configured to use the spectrum resource to communicate in a first sub-timeslot with a higher priority than the second communication device of the second communication system, where the communication device 800 is a communication device of the first communication system, and the communication device 800
  • the priority of using the spectrum resource in the second sub-slot is lower than the priority of the second communication device using the spectrum resource in the second sub-slot.
  • an apparatus of a first communication system of an embodiment of the present invention communicates using a spectrum resource in a first subslot of a unit time slot with a higher priority than a device of the second communication system, and In the second subslot of the unit time slot, the spectrum resource is used for communication at a lower priority than the device of the second communication system. Since spectrum resources can be used by two communication systems with different priorities in different time slots, the reservation of fixed spectrum resources for the second communication system is avoided, thereby improving the utilization of spectrum resources.
  • communication module 820 continues to communicate using spectrum resources in a first sub-slot such that the second communication device uses the spectrum in the first sub-timeslot when communication device 800 is not using spectrum resources. Resources communicate.
  • the communication module 820 also uses the spectrum resource to communicate when the second communication device does not use the spectrum resource in the second sub-slot.
  • the duration of the spectrum resource idle is smaller than the duration of the second communication device waiting to preempt the spectrum resource.
  • the duration of the spectrum resource idle is greater than the duration of the second communication device waiting to preempt the spectrum resource.
  • the communication module 820 uses the first listener and then the LBT mode to communicate using the spectrum resource in the second subslot, and the second communication device uses the second listener in the second subslot.
  • the mode uses the spectrum resource for communication.
  • the length of the distributed inter-frame interval of the first listening mode is greater than the duration of the distributed inter-frame interval of the second listening mode or the spectrum resource is idle in the first listening mode.
  • the time between the start time and the start time of the competition window of the first listen mode is greater than the start time of the spectrum resource idle in the second listener mode to the start time of the first listener mode.
  • the duration between the second communication device waiting to preempt the spectrum resource includes the sum of the duration of the DIFS of the second listener mode and the duration of the competition window of the second listener mode.
  • the communication module 820 uses the first audio-speech mode to communicate in the second sub-timeslot, and the second communication device adopts the second first-listening mode in the second sub-slot.
  • the minimum value of the competition window duration of the first listening and speaking mode is greater than the minimum value of the competition window duration of the second listening mode, and/or the competition window duration of the first listening mode.
  • the maximum value is greater than the maximum duration of the contention window of the second listening mode, and the duration of the second communication device waiting to preempt the spectrum resource includes the duration of the DIFS of the second listening mode and the second listening mode. The sum of the durations of the competition window.
  • the communication module 820 is further configured to acquire the second communication before using the spectrum resource to communicate in a first sub-slot with a higher priority than the second communication device of the second communication system.
  • the current load information of the device wherein the determining module 810 is further configured to determine, according to current load information of the first communication system and current load information of the second communication device, a duration of the first listener mode and a first listener mode The length of the competition window.
  • the communication module 820 also broadcasts network allocation vector information at the beginning of the first sub-slot before communicating with the spectrum resource at a higher priority than the priority of the second communication device in the first sub-slot. And communicating using a spectrum resource within a duration of the first sub-slot, wherein the network allocation vector information is used to indicate that the spectrum resource is in a busy state, and the network allocation vector information includes a duration of the first sub-slot, such that the second communication The device does not use spectrum resources for the duration of the first subslot.
  • the determining module 810 further determines a duration of the unit time slot, and determines the first sub-slot and the second, before determining the first sub-slot and the second sub-slot in the unit time slot.
  • a ratio of a sub-slot in a unit time slot wherein the unit time slot is one of a plurality of unit time slots, and the spectrum resource is divided into a plurality of unit time slots in the time domain according to the determined duration of the unit time slot, and According to the institute The ratio of the first sub-slot and the second sub-slot in the unit time slot is determined, and each of the plurality of time slots is divided into a first sub-slot and a second sub-slot.
  • the communication module 820 is further configured to acquire current load information of the first communication system and obtain current load information of the second communication device, before the determining module 810 determines the duration of the unit time slot, where The determining module 810 determines a ratio of the first sub-slot and the second sub-slot in the unit time slot according to the current load information of the first communication system and the current load information of the second communication device.
  • the communication module 820 is further configured to acquire a requirement for real-time performance of the second communication device, wherein the communication module 820 determines the duration of the unit time slot according to the requirement of the second communication device for real-time performance.
  • the spectrum resource is an unlicensed spectrum resource shared by the first communication system and the at least one second communication system
  • the second communication device of the at least one second communication system uses the LBT mode to use the unlicensed spectrum. Resources communicate.
  • the spectrum resource is an authorized spectrum resource shared by the first communication system and the at least one second communication system, and the second communication device of the at least one second communication system adopts an LBT mode authorization before listening Spectrum resources are communicated.
  • the first communication system is a cellular communication system
  • the second communication system is a wireless local area network communication system
  • the first communication device is a base station or a user equipment
  • the second communication device is a wireless access point or a station.
  • the first communication system and the second communication system are both cellular communication systems, and the first communication device and the second communication device are both base stations or user equipment.
  • the first communication system and the second communication system may both be WiFi systems.
  • the first communication device is a wireless access point
  • the second device may be a wireless access point or site.
  • the first communication device is a site
  • the second device may be a wireless access point or site.
  • FIG. 9 is a structural schematic diagram of a communication device 900 in accordance with another embodiment of the present invention.
  • Communication device 900 includes a processor 910, a memory 920, a transceiver 930, and a communication bus 940.
  • the embodiment of Fig. 9 corresponds to the embodiment of Fig. 4, and a detailed description is omitted as appropriate.
  • Communication device 900 is the first communication device 400 of FIG.
  • the processor 910 is configured to call, by using the communication bus 940, the code stored in the memory 920 to determine a first sub-slot and a second sub-slot in the unit time slot.
  • the transceiver 930 communicates with the spectrum resource in a first sub-slot at a higher priority than the second communication device of the second communication system, wherein the communication device 900 is a communication device of the first communication system, and the communication device 900 is at The priority of using the spectrum resource in the two sub-timeslots is lower than the priority of the second communication device using the spectrum resources in the second sub-timeslot.
  • an apparatus of a first communication system of an embodiment of the present invention communicates using a spectrum resource in a first subslot of a unit time slot with a higher priority than a device of the second communication system, and In the second subslot of the unit time slot, the spectrum resource is used for communication at a lower priority than the device of the second communication system. Since spectrum resources can be used by two communication systems with different priorities in different time slots, the reservation of fixed spectrum resources for the second communication system is avoided, thereby improving the utilization of spectrum resources.
  • the transceiver 930 can be implemented as a receiver and/or a transmitter.
  • transceiver 930 continues to communicate using spectrum resources in a first sub-slot such that the second communication device uses the spectrum in the first sub-timeslot when communication device 900 is not using spectrum resources. Resources communicate.
  • the transceiver 930 is also in the second sub-slot, using the spectrum resource for communication when the second communication device does not use the spectrum resource.
  • the duration of the spectrum resource idle is smaller than the duration of the second communication device waiting to preempt the spectrum resource.
  • the duration of the spectrum resource idle is greater than the time when the second communication device waits to preempt the spectrum resource.
  • the transceiver 930 uses the first listener and then the LBT mode to communicate using the spectrum resource in the second subslot, and the second communication device uses the second listener in the second subslot.
  • the mode uses the spectrum resource for communication.
  • the length of the distributed inter-frame interval of the first listening mode is greater than the duration of the distributed inter-frame interval of the second listening mode or the spectrum resource is idle in the first listening mode.
  • the time between the start time and the start time of the competition window of the first listen mode is greater than the start time of the spectrum resource idle in the second listener mode to the start time of the first listener mode.
  • the duration between the second communication device waiting to preempt the spectrum resource includes the duration of the second listening and speaking mode and the second listening mode. The sum of the durations of the windows.
  • the transceiver 930 communicates using the spectrum resource in the first sub-slot mode in the second sub-slot, and the second communication device adopts the second-in-speak mode in the second sub-slot.
  • the minimum value of the competition window duration of the first listening and speaking mode is greater than the minimum value of the competition window duration of the second listening mode, and/or the competition window duration of the first listening mode.
  • the maximum value is greater than the maximum value of the contention window duration of the second listening mode, and the time that the second communication device waits to preempt the spectrum resource includes the duration of the DIFS of the second listening mode and the second listening mode. The sum of the durations of the competition window.
  • the processor 910 is further configured to acquire the second communication before using the spectrum resource to communicate in a first sub-slot with a priority higher than a priority of the second communications device of the second communications system.
  • the current load information of the device and determining, according to the current load information of the second communication device, the duration of the first listener mode DIFS and the duration of the first listener mode.
  • the transceiver 930 also broadcasts network allocation vector information at the beginning of the first sub-slot, and in the first sub-time, before the communication is performed using the spectrum resource at a higher priority than the priority of the second communication device in the first sub-slot.
  • the spectrum resource is used for communication within the duration of the slot, wherein the network allocation vector information is used to indicate that the spectrum resource is in a busy state, and the network allocation vector information includes a duration of the first sub-slot, such that the second communication device is in the first sub-slot. No spectrum resources are used for the duration.
  • the processor 910 further determines a duration of the unit time slot before determining the first sub-slot and the second sub-slot in the unit time slot, and determines the first sub-slot and the first a ratio of two sub-slots in a unit time slot, wherein the unit time slot is one of a plurality of unit time slots, and the processor 910 divides the spectrum resource into multiple units in the time domain according to the determined duration of the unit time slot. a time slot, and dividing each of the plurality of time slots into the first sub-slot and the second according to the determined ratio of the first sub-slot and the second sub-slot in the unit time slot Subslot.
  • the transceiver 930 further acquires current load information of the second communications device before determining a ratio of the first sub-slot and the second sub-slot in the unit time slot, where the processor 910 Determining a ratio of the first sub-slot and the second sub-slot in the unit time slot according to current load information of the second communication device.
  • the transceiver 930 further acquires a requirement of the second communication device for real-time performance before determining that the module determines the duration of the unit time slot, wherein the processor 910 meets the real-time requirement of the second communication device. Determine the length of the unit time slot.
  • the spectrum resource is a first communication system and at least one second The licensed spectrum resource shared by the communication system, the second communication device of the at least one second communication system uses the LBT mode to communicate with the licensed spectrum resource.
  • the LBT mode may be a carrier sense multiple access/collision detection CSMA/CA mode.
  • the first communication system is a cellular communication system
  • the second communication system is a wireless local area network communication system
  • the first communication device is a base station or a user equipment
  • the second communication device is a wireless access point or a station.
  • the first communication system is a 3GPP system and the second communication system is a WiFi system.
  • the first communication device is a base station
  • the second device may be a wireless access point or station.
  • the first communication device is a user device
  • the second device may be a wireless access point or site.
  • the first communication system and the second communication system are both cellular communication systems, and the first communication device and the second communication device are both base stations or user equipment.
  • the first communication system and the second communication system may both be 3GPP systems.
  • the second device may be a base station or a user equipment.
  • the second device may be a base station or a user equipment.
  • the first communication system and the second communication system may both be WiFi systems.
  • the first communication device is a wireless access point
  • the second device may be a wireless access point or site.
  • the first communication device is a site
  • the second device may be a wireless access point or site.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and may be implemented in actual implementation.
  • multiple units or components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提出了一种使用频谱资源进行通信的方法和通信设备。该方法包括:第一通信系统的第一通信设备确定单位时隙中的第一子时隙和第二子时隙;第一通信设备在第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信,其中第一通信设备在第二子时隙内使用频谱资源的优先级低于第二通信设备在第二子时隙内使用频谱资源的优先级。本发明的实施例能够提高频谱资源的利用率。

Description

使用频谱资源进行通信的方法和通信设备 技术领域
本发明涉及通信系统,尤其是涉及一种使用频谱资源进行通信的方法和通信设备。
背景技术
无线电频谱资源是一种具有稀缺性的战略资源。频谱资源可以被划分为两类:授权频段和非授权频段。例如,无线高保真(WIreless Fidelity,WiFi)、蓝牙等技术使用的频谱资源,一般免费开放给大众,无需授权,称为非授权频段。
由于频谱资源的稀缺性,已分配的授权频段无法满足未来的需求。为了获取新的频谱,可以利用非授权频段作为授权频段的有益补充。
然而,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)系统拟部署的非授权频段,早已部署/正在部署在其它系统中。WiFi技术采用非授权频段,例如,5GHz频段的802.11a/n/ac,60GHz频段的802.11ad。
通常,WiFi系统是由一个接入点(Access Point,AP)和若干个站点(Station,STA)组成。3GPP系统常采用的由基站(Base Station,BS)集中控制、基于同步帧的持续调度的方式使用频谱资源,WiFi系统采用一种被称为带冲突避免的载波侦听多址接入(Carrier Sensing Multiple Access/Collision Avoidance,CSMA/CA)技术,竞争地获取资源。其工作原理为:首先等待媒介(即频谱)资源“空闲”,然后站点(或AP)开始等待一个随机时段,在此期间继续载波侦听(Carrier Sensing,CS),如果直到等待时刻结束时资源仍为“空闲”,则站点开始传输,传输有数据大小和持续时长的约束,当触发约束时,即使仍有业务,站点需再次竞争资源。
由于WiFi系统基于CSMA/CA方式使用非授权频谱资源,当出现干扰后,它会主动等待、回避3GPP系统的信号,这样,3GPP系统会长期占据非授权频谱资源,WiFi系统始终处于干扰回避、等待状态。
为了克服上述技术问题,一种现有技术是在3GPP系统的帧结构中空置部分子帧预留给WiFi系统,并通过空置比例的调整,实现两系统对非授权 频谱资源的公平使用。
然而,在上述技术方案中,如果WiFi系统在该子帧内没有或者只有少量的业务需求,则会导致频谱资源浪费。
发明内容
本发明提供了一种使用频谱资源的方法和通信设备,能够提高频谱资源的利用率。
第一方面,提供了一种使用频谱资源进行通信的方法,包括:第一通信系统的第一通信设备确定单位时隙中的第一子时隙和第二子时隙;第一通信设备在第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信,其中第一通信设备在第二子时隙内使用频谱资源的优先级低于第二通信设备在第二子时隙内使用频谱资源的优先级。
在第一种可能的实现方式下,第一通信设备在第一子时隙内,以高于第二通信设备的优先级使用频谱资源进行通信,包括:第一通信设备在第一子时隙内,持续使用频谱资源进行通信,以使得第二通信设备在第一子时隙内,在第一通信设备不使用频谱资源时使用频谱资源进行通信。
结合第一方面或第一种可能的实现方式,在第二种可能的实现方式下,第一方面的方法还包括:第一通信设备在第二子时隙内,在第二通信设备不使用频谱资源时使用频谱资源进行通信。
结合第一方面或上述任一种可能的实现方式,在第三种可能的实现方式下,第一通信设备在第一子时隙内使用频谱资源进行通信时频谱资源空闲的时长小于第二通信设备等待抢占频谱资源的时长。
结合第一方面或上述任一种可能的实现方式,在第四种可能的实现方式下,第一通信设备在第二子时隙内使用频谱资源进行通信时频谱资源空闲的时长大于第二通信设备等待抢占频谱资源的时长。
结合第一方面或第四种可能的实现方式,在第五种可能的实现方式下,第一通信设备在第二子时隙内采用第一先听后说LBT方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的分布式帧间间隔DIFS的时长大于第二先听后说方式的DIFS的时长或者第一先听后说方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长大于第二先听后说 方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长,其中,第二通信设备等待抢占频谱资源的时长包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争窗口的时长之和。
结合第一方面或第四种可能的实现方式,在第六种可能的实现方式下,第一通信设备在第二子时隙内采用第一先听后说方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的竞争窗口时长的最小值大于第二先听后说方式的竞争窗口时长的最小值,和/或第一先听后说方式的竞争窗口时长的最大值大于第二先听后说方式的竞争窗口时长的最大值,其中,第二通信设备等待抢占频谱资源的时长包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争窗口的时长之和。
结合第五种可能的实现方式或第六种可能的实现方式,在第七种可能的实现方式下,在第一通信设备在第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信之前,第一方面的方法还包括:第一通信设备获取第二通信设备的当前负荷信息;第一通信设备根据第二通信设备的当前负荷信息确定第一先听后说方式的DIFS的时长与第一先听后说方式的竞争窗口的时长。
结合第一方面或上述任一种可能的实现方式,在第八种可能的实现方式下,在第一通信设备在第一子时隙内,以高于第二通信设备的优先级使用频谱资源进行通信之前,第一方面的方法还包括:第一通信设备在第一子时隙的开始时刻广播网络分配矢量信息,其中网络分配矢量信息用于指示频谱资源处于忙状态,并且网络分配矢量信息包括第一子时隙的时长,以使得第二通信设备在第一子时隙的时长内不使用频谱资源。
结合第一方面或上述任一种可能的实现方式,在第九种可能的实现方式下,在第一通信系统的第一通信设备确定单位时隙中的第一子时隙和第二子时隙之前,第一方面的方法还包括:第一通信设备确定单位时隙的时长;第一通信设备按照所确定的单位时隙的时长将频谱资源在时域上划分为多个单位时隙,单位时隙为多个单位时隙之一,其中第一通信系统的第一通信设备确定单位时隙中的第一子时隙和第二子时隙,包括:第一通信设备确定第一子时隙和第二子时隙在单位时隙中的比例;第一通信设备根据所确定的述第一子时隙和第二子时隙在单位时隙中的比例,将多个时隙中的每个单位时 隙划分为第一子时隙和第二子时隙。
结合第一方面或第九种可能的实现方式,在第十种可能的实现方式下,在第一通信设备确定第一子时隙和第二子时隙在单位时隙中的比例之前,第一方面的方法还包括:第一通信设备获取第二通信设备的当前负荷信息,其中第一通信设备确定第一子时隙和第二子时隙在单位时隙中的比例,包括:第一通信设备根据第二通信设备的当前负荷信息确定第一子时隙和第二子时隙在单位时隙中的比例。
结合第一方面或第九种可能的实现方式,在第十一种可能的实现方式下,在第一通信设备确定单位时隙的时长之前,第一方面的方法还包括:第一通信设备获取第二通信设备对实时性的要求,其中第一通信设备确定单位时隙的时长,包括:第一通信设备按照第二通信设备对实时性的要求确定单位时隙的时长。
结合第一方面或上述任一种可能的实现方式,在第十二种可能的实现方式下,频谱资源为第一通信系统和至少一个第二通信系统共享的非授权频谱资源,至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用非授权频谱资源进行通信;或者,频谱资源为第一通信系统和至少一个第二通信系统共享的授权频谱资源,至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用授权频谱资源进行通信。
结合第一方面或上述任一种可能的实现方式,在第十三种可能的实现方式下,第一通信系统为蜂窝通信系统,第二通信系统为无线局域网通信系统,第一通信设备为基站或用户设备,第二通信设备为无线接入点或站点,或者,第一通信系统和第二通信系统均为蜂窝通信系统,第一通信设备和第二通信设备均为基站或用户设备。
第二方面提供了一种通信设备,包括:确定模块,用于确定单位时隙中的第一子时隙和第二子时隙;通信模块,用于在第一子时隙内,以高于第二通信设备的优先级使用频谱资源进行通信,其中第二方面的通信设备为第二通信系统的通信设备,该通信设备在第二子时隙内使用频谱资源的优先级低于第二通信设备在第二子时隙内使用频谱资源的优先级。
在第一种可能的实现方式下,通信模块在第一子时隙内,持续使用频谱资源进行通信,以使得第二通信设备在第一子时隙内,在通信设备不使用频谱资源时使用频谱资源进行通信。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式下,通信模块还在第二子时隙内,在第二通信设备不使用频谱资源时使用频谱资源进行通信。
结合第二方面或上述任一种可能的实现方式,在第三种可能的实现方式下,通信模块在第一子时隙内使用频谱资源进行通信时频谱资源空闲的时长小于第二通信设备等待抢占频谱资源的时长。
结合第二方面或上述任一种可能的实现方式,在第四种可能的实现方式下,通信模块在第二子时隙内使用频谱资源进行通信时频谱资源空闲的时长大于第二通信设备等待抢占频谱资源的时长。
结合第二方面或第二方面的第四种可能的实现方式,在第五种可能的实现方式下,通信模块在第二子时隙内采用第一先听后说LBT方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的DIFS的时长大于第二先听后说方式的DIFS的时长或者第一先听后说方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长大于第二先听后说方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长,其中,第二通信设备等待抢占频谱资源的时长包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争窗口的时长之和。
结合第二方面或第二方面的第四种可能的实现方式,在第六种可能的实现方式下,通信模块在第二子时隙内采用第一先听后说方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的竞争窗口时长的最小值大于第二先听后说方式的竞争窗口时长的最小值,和/或第一先听后说方式的竞争窗口时长的最大值大于第二先听后说方式的竞争窗口时长的最大值,其中,第二通信设备等待抢占频谱资源的时长包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争窗口的时长之和。
结合第二方面的第五种可能的实现方式或第六种可能的实现方式,在第七种可能的实现方式下,通信模块还用于在第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信之前,获取第二通信设备的当前负荷信息,其中确定模块还用于根据第二通信设备的当前负荷信息确定第一先听后说方式的DIFS的时长与第一先听后说方式的竞争窗口的时 长。
结合第二方面或上述任一种可能的实现方式,在第八种可能的实现方式下,通信模块还在第一子时隙内,以高于第二通信设备的优先级使用频谱资源进行通信之前,第一子时隙的开始时刻广播网络分配矢量信息,并在第一子时隙的时长内使用频谱资源进行通信,其中网络分配矢量信息用于指示频谱资源处于忙状态,并且网络分配矢量信息包括第一子时隙的时长,以使得第二通信设备在第一子时隙的时长内不使用频谱资源。
结合第二方面或上述任一种可能的实现方式,在第九种可能的实现方式下,确定模块还用于在确定单位时隙中的第一子时隙和第二子时隙之前,确定单位时隙的时长,确定第一子时隙和第二子时隙在单位时隙中的比例,其中单位时隙为多个单位时隙之一,按照所确定的单位时隙的时长将频谱资源在时域上划分为多个单位时隙,并且根据所确定的述第一子时隙和第二子时隙在单位时隙中的比例,将多个时隙中的每个单位时隙划分为第一子时隙和第二子时隙。
结合第二方面或第九种可能的实现方式,在第十种可能的实现方式下,通信模块还用于在确定模块确定第一子时隙和第二子时隙在单位时隙中的比例之前,获取第二通信设备的当前负荷信息,其中确定模块根据第二通信设备的当前负荷信息确定第一子时隙和第二子时隙在单位时隙中的比例。
结合第二方面或第九种可能的实现方式,在第十一种可能的实现方式下,通信模块还用于在确定模块确定单位时隙的时长之前,获取第二通信设备对实时性的要求,其中通信模块按照第二通信设备对实时性的要求确定单位时隙的时长。
结合第二方面或上述任一种可能的实现方式,在第十二种可能的实现方式下,频谱资源为第一通信系统和至少一个第二通信系统共享的非授权频谱资源,至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用非授权频谱资源进行通信;或者,频谱资源为第一通信系统和至少一个第二通信系统共享的授权频谱资源,至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用授权频谱资源进行通信。
结合第二方面或上述任一种可能的实现方式,在第十三种可能的实现方式下,第一通信系统为蜂窝通信系统,第二通信系统为无线局域网通信系统,第一通信设备为基站或用户设备,第二通信设备为无线接入点或站点,或者, 第一通信系统和第二通信系统均为蜂窝通信系统,第一通信设备和第二通信设备均为基站或用户设备。
基于上述技术方案,第一通信系统的设备在单位时隙的第一子时隙内,以高于第二通信系统的设备的优先级使用频谱资源进行通信,并且在单位时隙的第二子时隙内,以低于第二通信系统的设备的优先级使用频谱资源进行通信。由于频谱资源可以由两个通信系统在不同的时隙中以不同的优先级使用,避免了为第二通信系统预留固定的频谱资源,因此提高了频谱资源的利用率。
附图说明
图1是根据本发明的一个实施例的通信系统的示意性架构图。
图2是根据本发明的一个实施例的单位时隙划分的示意图。
图3是根据本发明的一个实施例的CSMA/CA方式的示意图。
图4是根据本发明的一个实施例的使用频谱资源进行通信的方法的示意性流程图。
图5是根据本发明的另一实施例的使用非授权频谱资源进行通信的过程示意性流程图。
图6A是根据本发明的一个实施例的CSMA/CA方式的示意图。
图6B是根据本发明的另一实施例的CSMA/CA方式的示意图。
图7是根据本发明的另一实施例的使用非授权频谱资源进行通信的过程的示意性流程图。
图8是根据本发明的另一实施例的通信设备的结构性示意图。
图9是根据本发明的另一实施例的通信设备的结构性示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:GSM(Global System of Mobile communication,全球移动通讯)系统、CDMA(Code  Division Multiple Access,码分多址)系统、WCDMA(,Wideband Code Division Multiple Access,宽带码分多址)系统、GPRS(General Packet Radio Service,通用分组无线业务)、LTE(Long Term Evolution,长期演进)系统、LTE-A(Advanced long term evolution,先进的长期演进)系统、UMTS(Universal Mobile Telecommunication System,通用移动通信系统)等,本发明实施例并不限定,但为描述方便,本发明实施例将以LTE网络为例进行说明。
本发明实施例可以用于不同的制式的无线网络。无线接入网络在不同的系统中可包括不同的网元。例如,LTE和LTE-A中无线接入网络的网元包括eNB(eNodeB,演进型基站),WCDMA中无线接入网络的网元包括RNC(Radio Network Controller,无线网络控制器)和NodeB,类似地,WiMax(Worldwide Interoperability for Microwave Access,全球微波互联接入)等其它无线网络也可以使用与本发明实施例类似的方案,只是基站系统中的相关模块可能有所不同,本发明实施例并不限定,但为描述方便,下述实施例将以eNodeB为例进行说明。
还应理解,在本发明实施例中,用户设备(UE,User Equipment)包括但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
下面以3GPP系统的基站覆盖范围内存在多个WiFi系统,并且3GPP系统和WiFi系统同频部署在目标非授权(unlicensed)频段为例进行说明,本发明的实施例并不限于此,本发明的实施例也可以适于其它通信系统同频部署在目标非授权频段的场景。
图1是根据本发明的一个实施例的通信系统100的示意性架构图。
通信系统100包括至少一个3GPP基站(BS)110和至少一个WiFi接入点(AP)120以及3GPP基站覆盖下的用户设备111和WiFi接入点覆盖下的站点(STA)121。3GPP基站110和WiFi接入点120同频部署在非授权频谱资源。3GPP基站110可以使用非授权频谱资源与其覆盖范围下的用户设备111通信,而Wifi接入点120可以使用非授权频谱资源与其覆盖范围下 的站点121通信。
应理解,虽然图1的实施例是以3GPP系统和WiFi系统为例进行说明,本发明的实施例并不限于此,例如,本发明的实施例也可以适用于其它使用授权频谱资源进行通信的系统(例如,GSM系统)和使用非授权频谱资源进行通信的系统(例如,蓝牙)。
图2是根据本发明的一个实施例的单位时隙划分的示意图。
参见图2,本发明的实施例可以将非授权频谱资源在时域上划分多个单位时隙,并且将每个单位时隙划分成第一子时隙和第二子时隙,其中,在第一子时隙内,3GPP基站110和用户设备111使用非授权频谱资源中的资源带宽进行通信的优先级高于WiFi系统的接入点120和站点121使用非授权频谱资源中的资源带宽的优先级。在第二子时隙内,3GPP基站110和用户设备111使用非授权频谱资源中的资源带宽进行通信的优先级低于WiFi系统的接入点120和站点121使用非授权频谱资源中的资源带宽进行通信的优先级。换句话说,第一子时隙内,3GPP基站110和用户设备111可以优先使用非授权频谱资源中的资源带宽进行通信,在第二子时隙内,WiFi系统的接入点120和站点121可以优先使用非授权频谱资源中的资源带宽进行通信。
应理解,虽然图2的实施例以第一子时隙在单位时隙中位于第二子时隙之前为例进行说明,但本发明的实施例并不限于此,例如,第一子时隙在单位时隙中也可以位于第二子时隙之后。
还应理解,虽然图2的实施例以单位时隙包含第一子时隙和第二子时隙为例进行说明,但本发明的实施例并不限于此,例如,单位时隙可以包括多个第一子时隙和/或多个第二子时隙。
图3是根据本发明的一个实施例的CSMA/CA方式的示意图。图3的实施例以WiFi系统为例进行说明。
参见图3,CSMA/CA技术用于检测和避免两个以上的网络设备在网络上进行数据传输时的冲突。CSMA/CA技术的工作原理为:WiFi系统的设备(例如,站点或AP)首先进行载波侦听(Carrier Sensing,CS),以确定非授权频谱资源(媒介资源)是否处于忙状态,如果站点或AP确定非授权频谱资源空闲或结束忙状态,则开始等待抢占非授权频谱资源的时长,即站点或AP首先等待一个时段DIFS,然后站点或AP开始等待一个随机时段(竞争 窗口或回退时间)。在此期间继续载波侦听,如果直到上述等待抢占非授权频谱资源的时长结束时非授权频谱资源仍为“空闲”,则站点开始传输数据。如果站点或AP在上述等待抢占非授权频谱资源的时长结束时侦听到非授权频谱资源又处于忙状态,则重新开始等待抢占非授权频谱资源的时长。另外,传输有数据大小和持续时长的约束,当触发约束时,即使仍有业务,站点需再次竞争资源。
具体而言,站点首先侦听非授权频谱资源(例如,拟占用带宽或信道)有没有被其它站点使用,即非授权频谱资源是否空闲。如果非授权频谱资源空闲,则该站点等待分布式帧间间隔(Distributed Inter-frame Spacing,DIFS)时长,如果非授权频谱资源忙,则该站点继续侦听。如果在等待DIFS时长过程有其它站点占用非授权频谱资源,则该站点重新等待DIFS时长,并且继续侦听。如果DIFS时长期满,则开始进入倒计时状态,即进入竞争窗口,该竞争窗口时长也称为回退时间。在倒计时的过程,如果非授权频谱资源空闲,即其它站点没有传输数据,则倒计时完成后该站点进行数据传输。如果倒计时期间有其它站点占用非授权频谱资源,则该站点继续侦听,等待其他站点传输数据,并记录倒计时时间,然后等待其他站点传输完数据后再继续等待DIFS时长,在等待DIFS时长后,从记录的倒计时时间开始继续进行倒计时,并且等倒计时结束后再进行数据传输。上述回退时间可以是随机确定的,竞争窗口可以表示为(CWmin,CWmax),例如,在WLAN中,CW可以设置为2^n-1,其中n为正整数,以方便在二进制器件上实现。例如,CWmin=2^4-1=15,CWmax=2^5-1=31,表示窗口的大小可以在[15,31]的区间内随机选取。
应理解,本发明的实施例的WiFi系统虽然以CSMA/CA机制为例描述WiFi系统竞争非授权频谱资源的机制,但本发明的实施例并不限于此,本发明的实施例的WiFi系统也可以采用其它先听后讲(Listen Before Talk,LBT)的机制竞争非授权频谱资源或者授权频谱资源。
图4是根据本发明的一个实施例的使用频谱资源进行通信的方法的示意性流程图。例如,图4的方法可以由图1的3GPP基站来执行。
410,第一通信系统的第一通信设备确定单位时隙中的第一子时隙和第二子时隙,其中在单位时隙内,第一通信系统的第一通信设备和第二通信系统的第二通信设备共享频谱资源。
例如,单位时隙可以为针对频谱资源在时域上划分的多个单位时隙中的任一时隙。第一通信通信系统的第一通信设备和第二通信系统的第二通信设备均可以在第一子隙和第二子时隙内以不同的优先级使用频谱资源。第一子时隙的时长可以等于第二子时隙的时长,本发明的实施例并不限于此,第一子时隙的时长也可以不等于第二子时隙的时长。在单位时隙中,第一子时隙可以设置在第二子时隙之前,或者第一子时隙可以设置在第二子时隙之后。
例如,第一通信系统可以为3GPP系统,第二通信系统可以为WiFi系统。本发明的实施例对此不作限定,例如,第一通信系统还可以为GSM系统或者其它使用授权频谱资源进行通信的系统,第二通信系统可以为蓝牙系统或者其它使用频谱资源进行通信的系统。第一通信设备可以是3GPP系统中的基站或用户设备,第二通信设备可以是WiFi系统中的AP或站点。
420,第一通信设备在第一子时隙内,以高于第二通信设备的优先级使用频谱资源进行通信,其中第一通信设备在第二子时隙内使用频谱资源的优先级低于第二通信设备在第二子时隙内使用频谱资源的优先级。
具体而言,在第一子时隙内,第一通信设备使用频谱资源进行通信的优先级高于第二通信设备使用频谱资源进行通信的优先级。在第二子时隙内,第一通信设备使用频谱资源进行通信的优先级低于第二通信设备使用频谱资源进行通信的优先级。换句话说,第一子时隙内,第一通信设备可以优先使用频谱资源进行通信,在第二子时隙内,第二通信设备可以优先使用频谱资源进行通信。
应理解,虽然本发明的实施例是以单位时隙中的两个子时隙为例进行说明,但本发明的实施例并不限于此,单位时隙可以包括更多个子时隙,并且可以根据需要设置第一通信系统的通信设备和第二通信系统的通信设备在各个子时隙中使用频谱资源进行通信的优先级,只要使得在至少一个子时隙中,第一通信设备使用频谱资源的优先级高于第二通信设备使用频谱资源的优先级,并且使得在至少一个子时隙中,第一通信设备使用频谱资源的优先级低于第二通信设备使用频谱资源的优先级即可。
还应理解,虽然本发明的实施例以第二通信系统中的第二通信设备为例进行说明,但第二通信系统中可以存在多个通信设备,第二通信系统中的多个通信设备在第二子时隙内可以以相同的优先级竞争频谱资源。
还应理解,上述频谱资源可以是一段带宽或多段带宽,也可以是一个或 多个信道,甚至可以是全部的频段。
根据本发明的实施例,频谱资源可以为非授权频谱资源,本发明的实施例并不限于此,例如,频谱资源也可以为授权频谱资源。
根据本发明的实施例,本发明的实施例的第一通信系统的设备在单位时隙的第一子时隙内,以高于第二通信系统的设备的优先级使用频谱资源进行通信,并且在单位时隙的第二子时隙内,以低于第二通信系统的设备的优先级使用频谱资源进行通信。由于频谱资源可以由两个通信系统在不同的时隙中以不同的优先级使用,避免了为第二通信系统预留固定的频谱资源,因此提高了频谱资源的利用率。
根据本发明的实施例,在420中,第一通信设备在第一子时隙内,持续使用频谱资源进行通信,以使得第二通信设备在第一子时隙内,在第一通信设备不使用频谱资源时使用频谱资源进行通信。
换句话说,第一子时隙内的频谱资源被第一通信设备占用,只有在第一通信设备在第一子时隙内不使用频谱资源时,第二通信设备才能使用频谱资源,这样在保证了第一通信设备使用频谱资源的同时,使得在第一通信设备不使用频谱资源时,频谱资源可以被第二通信设备有效利用,从而提高了频谱资源的利用率。
可选地,作为另一实施例,在420中,图4的方法还包括:第一通信设备在第二子时隙内,在第二通信设备不使用频谱资源时使用频谱资源进行通信。
换句话说,第二子时隙内的频谱资源被第二通信设备占用,只有在第二通信设备在第二子时隙内不使用频谱资源时,第一通信设备才能使用频谱资源,这样不仅满足了第二通信设备使用频谱资源,而且在第二通信设备不使用频谱资源时,频谱资源可以被第一通信设备收回,从而提高频谱资源的利用率。
根据本发明的实施例,在420中,第一通信设备在第一子时隙内使用频谱资源进行通信时频谱资源空闲的时长小于第二通信设备等待抢占频谱资源的时长。
例如,当第二通信设备采用CSMA/CA方式时,第二通信设备的等待抢占频谱资源的时长等于DIFS时长与回退时间之和。由于第一通信设备在通信时持续占用频谱资源,并且资源空闲的时间小于第二通信设备等待抢占频 谱资源的时长,从而使得第二通信设备在第一通信设备通信期间始终处于等待状态。例如,在3GPP系统中,基站在使用授权频谱资源进行通信时,资源空闲的时间通常小于WiFi系统采用CSMA/CA方式进行通信时等待抢占频谱资源的时长,因此,在第一子时隙中,第一通信设备可以采用与其在使用授权频谱资源进行通信时采用的相同方式使用频谱资源进行通信,从而保证其使用频谱资源的优先级要高于WiFi系统使用频谱资源的优先级。当然,基站在第一子时隙中也可以采用CSMA/CA方式进行通信,只要满足基站使用等待抢占频谱资源的时长小于第二通信设备等待抢占频谱资源的时长即可。
可选地,作为另一实施例,在420中,第一通信设备在第二子时隙内使用频谱资源进行通信时频谱资源空闲的时长大于第二通信设备等待抢占频谱资源的时长。
根据本发明的实施例,在420中,第一通信设备在第二子时隙内采用第一先听后说LBT方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的分布式帧间间隔的时长大于第二先听后说方式的分布式帧间间隔的时长或者第一先听后说方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长大于第二先听后说方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长,其中,第二通信设备等待抢占频谱资源的时长包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争窗口的时长之和。
根据本发明的实例,LBT方式可以为CSMA/CA方式。例如,第一通信设备的CSMA/CA方式中频谱资源的资源忙的结束时刻到第一通信设备的CSMA/CA方式的竞争窗口的开始时刻之间的时长大于第二通信设备的CSMA/CA方式中频谱资源的资源忙的结束时刻到第二通信设备的CSMA/CA方式的竞争窗口的开始时刻之间的时长。
根据本发明的实施例,在420中,第一通信设备在第二子时隙内采用第一先听后说方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的竞争窗口时长的最小值大于第二先听后说方式的竞争窗口时长的最小值,和/或第一先听后说方式的竞争窗口时长的最大值大于第二先听后说方式的竞争窗口时长 的最大值,其中,第二通信设备等待抢占频谱资源的时长包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争窗口的时长之和。
可选地,作为另一实施例,在第一通信设备在第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信之前,图4的方法还包括:第一通信设备获取第二通信设备的当前负荷信息;第一通信设备根据第二通信设备的当前负荷信息确定第一先听后说方式的DIFS的时长与第一先听后说方式的竞争窗口的时长。
根据本发明的实施例,第一通信设备能够调整和控制与回收闲置资源能力相关的两个参数:DIFS和CW,主要是为了减小第一通信设备使用频谱资源时在时域上的竞争开销。由于第一通信设备使用频谱资源的优先级被设计为低于第二通信使用频谱资源的优先级,因此,第一通信设备等待抢占频谱资源的时长需要大于第二通信设备等待频谱资源的时长,从而在时域上产生了额外的竞争开销。第一通信设备使用的(DIFS,CW)越趋同于第二通信设备的(DIFS,CW),即两者的优先级越接近,则竞争开销越小。因此,为了减少第一通信设备的竞争开销,可以在满足第二通信设备的负荷要求的情况下,尽可能使第一通信设备使用的(DIFS,CW)接近于第二通信设备的(DIFS,CW)。
可选地,作为另一实施例,在第一通信设备在第一子时隙内,以高于第二通信设备的优先级使用频谱资源进行通信之前,图4的方法还包括:第一通信设备在第一子时隙的开始时刻广播网络分配矢量信息,其中网络分配矢量信息用于指示频谱资源处于忙状态,并且网络分配矢量信息包括第一子时隙的时长,以使得第一通信设备在第一子时隙的时长内不使用频谱资源,其中第一通信设备在第一子时隙内,以高于第二通信设备的优先级使用频谱资源进行通信,包括:第一通信设备在第一子时隙的时长内使用频谱资源进行通信。
例如,多个第二通信系统的设备之间可以通过广播网络分配矢量信息的方式来通知是否占用频谱资源,即频谱资源是否处于忙状态或空闲状态,接收到网络分配矢量信息的设备将不会在网络分配矢量信息占用的第一子时隙内在拟占用频谱资源的带宽上使用频谱资源的带宽。第一通信设备可以模拟第二通信系统的设备在第一子时隙的开始时刻发送网络分配矢量信息,使得第二通信设备获知频谱资源被占用,从而在第一子时隙内等待资源空闲, 这样可以确保第一通信设备在第一子时隙内使用频谱资源的优先级高于第二通信设备在第一子时隙内频谱资源的优先级。
可选地,作为另一实施例,在第一通信系统的第一通信设备确定单位时隙中的第一子时隙和第二子时隙之前,图4的方法还包括:第一通信设备确定单位时隙的时长;第一通信设备按照所确定的单位时隙的时长将频谱资源在时域上划分为多个单位时隙,单位时隙为多个单位时隙之一;第一通信设备确定第一子时隙和第二子时隙在单位时隙中的比例;第一通信设备根据所确定的述第一子时隙和第二子时隙在单位时隙中的比例,将多个时隙中的每个单位时隙划分为第一子时隙和第二子时隙。
例如,第一子时隙和第二子时隙的比例可以预先设置,也可以实时地根据第一通信设备和/或第二通信设备的负荷信息来确定。
可选地,作为另一实施例,在第一通信设备确定第一子时隙和第二子时隙在单位时隙中的比例之前,图4的方法还包括:第一通信设备获取第二通信设备的当前负荷信息,其中第一通信设备确定第一子时隙和第二子时隙在单位时隙中的比例,包括:第一通信设备根据第二通信设备的当前负荷信息确定第一子时隙和第二子时隙在单位时隙中的比例。
具体地,第一通信设备在第二子时隙内对第二通信设备的工作状况进行侦听,以获取第二通信设备的当前业务负荷信息,例如,获取第二通信设备的业务的流量等信息以及第一通信设备自身的业务的流量等信息。第一通信设备基于第二通信设备的当前业务负荷信息和第一通信设备的当前业务负荷信息确定第一子时隙和第二子时隙的在单位时隙的比例,并且按照确定的第一子时隙与第二子时隙在单位时隙的比例,将单位时隙划分成第一子时隙和第二子时隙。例如,如果第二通信设备的当前业务负荷较高,则第二子时隙在单位时隙所占的比例可以较大,如果第二通信设备的当前业务负荷较低,则第二子时隙在单位时隙所占的比例可以较小。由于第一通信设备在划分第一子时隙和第二子时隙时考虑了第二通信设备的负荷情况,因此,能够降低对第二通信设备的影响。
可选地,作为另一实施例,第一通信设备还可以通过高层信令的方式获取网络先验信息,该网络先验信息可以用于指示第二通信设备的历史业务的规律,例如,第一通信设备可以根据该网络先验信息获取第二通信设备的历史业务的负荷信息。第一通信设备还可以基于第二通信设备的当前业务负荷 信息和第一通信设备的当前业务负荷信息以及第一通信设备和/或第二通信设备的网络先验信息确定第一子时隙和第二子时隙的在单位时隙的比例,并且按照确定的第一子时隙与第二子时隙在单位时隙的比例将单位时隙划分成第一子时隙和第二子时隙。具体的划分过程详见图5的实施例,在此不再赘述。
根据本发明的实施例,由于第一子时隙和第二子时隙在单位时隙中的时长的比例可以根据第一通信系统和/或第二通信设备的负荷情况进行调整,从而使得对于频谱的利用率得以进一步提高。
可选地,作为另一实施例,在第一通信设备确定单位时隙的时长之前,图4的方法还包括:第一通信设备获取第二通信设备对实时性的要求,其中第一通信设备确定单位时隙的时长,包括:第一通信设备按照第二通信设备对实时性的要求确定单位时隙的时长。
具体地,如果第二通信设备对业务实时性的要求较高,则可以采用较短的单位时隙,如果第二通信设备对业务实时性的要求较低,则可以采用较长的单位时隙。
根据本发明的实施例,由于将单位时隙可以根据第二通信设备的业务的实时性的要求进行调整,使得单位时隙的时长能够适应业务的实时性的要求的变化,从而能够在提高资源利用率的同时满足第二通信设备的业务的实时性要求,降低了对第二通信设备的影响。
根据本发明的实施例,频谱资源为第一通信系统和至少一个第二通信系统共享的非授权频谱资源,至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用非授权频谱资源进行通信。
例如,LBT方式可以为载波侦听多点接入/冲突检测CSMA/CA方式。
可替代地,作为另一实施例,频谱资源为第一通信系统和至少一个第二通信系统共享的授权频谱资源,至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用授权频谱资源进行通信。
根据本发明的实施例,第一通信系统为蜂窝通信系统,第二通信系统为无线局域网通信系统,第一通信设备为基站或用户设备,第二通信设备为无线接入点或站点,
例如,第一通信系统为3GPP系统,第二通信系统为WiFi系统。在第一通信设备为基站的情况下,第二设备可以为无线接入点或站点。在第一通 信设备为用户设备的情况下,第二设备可以为无线接入点或站点。
可替代地,作为另一实施例,第一通信系统和第二通信系统均为蜂窝通信系统,第一通信设备和第二通信设备均为基站或用户设备。
例如,第一通信系统和第二通信系统可以均为3GPP系统。在第一通信设备为基站的情况下,第二设备可以为基站或用户设备。在第一通信设备为用户设备的情况下,第二设备可以为基站或用户设备。
可替代地,作为另一实施例,第一通信系统和第二通信系统可以均为WiFi系统。在第一通信设备为无线接入点的情况下,第二设备可以为无线接入点或站点。在第一通信设备为站点的情况下,第二设备可以为无线接入点或站点。
下面结合具体例子,更加详细地描述本发明的实施例。
图5是根据本发明的另一实施例的使用非授权频谱资源进行通信的过程示意性流程图。在图5中,eNodeB表示UE的当前服务小区的控制基站,但是本发明不限于该术语代表的具体制式,而是可以类似地应用于其他形式的基站。
510,eNodeB获取同频部署的WiFi系统的业务对实时性的要求。
具体地,eNodeB可以通过对同频部署的WiFi系统的业务的特点进行统计,以确定WiFi系统对业务实时性的要求。例如,基站可以统计业务数据包的传输周期或传输数据包的时间间隔。例如,基站可以统计一段时间内某个WiFi系统传输的数据包的个数,并据此得到传输周期或传输数据包的时间隔。如果传输周期较低或数据包的时间间隔较短,则说明WiFi系统对业务实时性的要求较高,否则,说明WiFi系统对业务实时性的要求较低。
520,eNodeB基于WiFi系统的实时性要求在非授权频谱资源的时域上划分多个单位时隙。
具体地,eNodeB基于WiFi系统的实时性要求确定单位时隙的时长,并且根据确定的单位时隙时长在时域上划分多个单位时隙。例如,如果WiFi系统对业务实时性的要求较高,则可以采用较短的单位时隙,如果WiFi系统对业务实时性的要求较低,则可以采用较长的单位时隙。
可替代地,这些单位时隙也可以由3GPP系统配置,例如,eNodeB可以通过高层信令方式获取3GPP系统配置的单位时隙的时长。
应理解,这些单位时隙可以设计为等时长,例如,可以设计为1ms的时长,这样的好处在于设计和控制简单,另外,由于控制简单,使得信令开销较小,本发明的实施例对此不作限定,例如,这些单位时隙也可以设计为非等时长,这样的好处在于可以根据业务的实时性的要求调整单位时隙的时长,从而使得单位时隙的时长能够适应业务的实时性的要求的变化。
530,eNodeB获取同频部署的WiFi系统的当前业务负荷信息和/或网络先验信息以及eNodeB的当前业务负荷信息。
例如,eNodeB在第二子时隙内对同频部署的WiFi系统的工作状况进行侦听,以获取WiFi系统的当前业务负荷信息,例如,获取WiFi系统的业务的流量等信息以及eNodeB自身的业务的流量等信息。
可选地,eNodeB还可以通过高层信令的方式获取网络先验信息,该网络先验信息可以用于指示WiFi系统的历史业务的规律,例如,eNodeB可以根据该网络先验信息获取WiFi系统的历史业务的负荷信息。
540,eNodeB基于WiFi系统的当前业务负荷信息和eNodeB的当前业务负荷信息将单位时隙划分成第一子时隙和第二子时隙。
具体地,eNodeB基于WiFi系统的当前业务负荷信息和eNodeB的当前业务负荷信息确定第一子时隙和第二子时隙的在单位时隙的比例,并且按照确定的第一子时隙与第二子时隙在单位时隙的比例,将单位时隙划分成第一子时隙和第二子时隙。例如,如果WiFi系统的当前业务负荷较高,例如,负荷大于预设阈值,则第二子时隙在单位时隙所占的比例可以较大,如果WiFi系统的当前业务负荷较低,例如,负荷小于预设阈值,,则第二子时隙在单位时隙所占的比例可以较小。
可选地,eNodeB还可以基于WiFi系统的当前业务负荷信息和eNodeB的当前业务负荷信息以及eNodeB和/或WiFi系统的网络先验信息确定第一子时隙和第二子时隙的在单位时隙的比例,并且按照确定的第一子时隙与第二子时隙在单位时隙的比例将单位时隙划分成第一子时隙和第二子时隙。例如,eNodeB可以根据该网络先验信息确定业务负荷的初始值,根据该初始值确定第一子时隙和第二子时隙在单位时隙的比例的初始值,并根据该初始值划分第一子时隙和第二子时隙。然后,在接下来的单位时隙中,可以根据获取的eNodeB和/或WiFi系统的当前业务负荷信息和对第一子时隙和第二 子时隙在单位时隙的比例进行调整,从而能够使得第一子时隙和第二子时隙在单位时隙的比例更快地适应eNodeB和WiFi系统的当前业务负荷的变化。
应理解,本发明的实施例对510、520与530、540的执行顺序不作限定,例如,530和540可以在510和520之前执行。
550,eNodeB在第一子时隙的开始时刻,模拟WiFi系统的设备广播携带网络分配矢量(Network Allocation Vector,NAV)信息的信号。
例如,该信号可以是信标(Beacon)/请求发送(Request To Send,RTS)信号,该NAV信息包括当前单位时隙中的第一子时隙的时长。eNodeB可以在拟占用的非授权频谱资源的带宽上发送包含NAV的信号,从而排他性地宣称其对该带宽的占用。NAV用于指示要占用目标非授权频谱资源的媒介多长时间,例如,NAV的值不为零(例如,1us)表示媒介忙,NAV的值为0表示媒介空闲。接收端接收到包含NAV的信号后会启动内部计数器开始倒计时,在计数器未归0时刻,接收端均认为信道处于忙状态。
560,eNodeB在第一子时隙内,使用非授权频谱资源进行通信。
例如,如果WiFi系统的设备接收到NAV信息,则确定在第一子时隙内非授权频谱资源处于忙状态,从而无法在第一子时隙上成功竞争资源,除非eNodeB停止工作,即eNodeB在第一子时隙上使用目标非授权频谱资源的优先级高于WiFi系统的设备在第一子时隙上使用目标非授权频谱资源的优先级,这样,eNodeB能够在第一子时隙内优先使用目标非授权频谱资源进行通信。
570,eNodeB在第二子时隙内,采用CSMA/CA方式使用非授权频谱资源进行通信。
例如,eNodeB和WiFi系统的设备在第二子时隙内均采用CSMA/CA方式使用非授权频谱资源进行通信,其中eNodeB的CSMA/CA方式的DIFS的时长大于WiFi系统的设备的CSMA/CA方式的DIFS的时长。参见图6A,eNodeB采用的CSMA/CA方式时的DIFS大于WiFi系统的设备采用CSMA/CA方式时的DIFS。
eNodeB的CSMA/CA方式中非授权频谱资源忙的结束时刻到eNodeB的CSMA/CA方式的竞争窗口的开始时刻之间的时长大于WiFi系统的设备的CSMA/CA方式中非授权频谱资源忙的结束时刻到WiFi系统的设备的CSMA/CA方式的竞争窗口的开始时刻之间的时长。或者说,eNodeB的 CSMA/CA方式中非授权频谱资源空闲的开始时刻到eNodeB的CSMA/CA方式的竞争窗口的开始时刻之间的时长大于WiFi系统的设备的CSMA/CA方式中非授权频谱资源空闲的开始时刻到WiFi系统的设备的CSMA/CA方式的竞争窗口的开始时刻之间的时长。参见图6B,eNodeB采用CSMA/CA方式时资源忙的结束时刻到竞争窗口的开始时刻之间的时长为DIFS+Δ,而WiFi采用CSMA/CA方式时资源忙的结束时刻到竞争窗口的开始时刻之间的时长为DIFS。
580,eNodeB根据WiFi系统的当前负荷信息确定DIFS的时长与竞争窗口的时长。
为了减小eNodeB采用CSMA/CA方式带来的额外竞争开销,需要使得eNodeB的DIFS的时长和竞争窗口的时长尽可能接近WiFi系统的DIFS的时长和竞争窗口的时长,而为了满足WiFi系统的负荷要求,又需要增加WiFi系统的DIFS的时长和竞争窗口的时长,因此,需要根据WiFi系统的负荷要求在两者之间进行均衡,以确定合适的DIFS的时长和竞争窗口的时长。
590,eNodeB通知用户设备单位时隙的时长、第一子时隙和第二子时隙的时长的比例以及DIFS的时长与竞争窗口的时长。
例如,eNodeB通过系统消息,将确定的单位时隙的时长以及第一子时隙和第二子时隙在单位时隙中的时长的比例发送至eNodeB所管辖或服务的各个用户设备,以便用户设备根据单位时隙的时长以及第一子时隙和第二子时隙的时长的比例在单位时隙内使用目标非授权频谱资源进行通信。
应理解,本发明的实施例对550、560与570的执行顺序不作限定,例如,570可以在550或560之前执行。
图7是根据本发明的另一实施例的使用非授权频谱资源进行通信的过程的示意性流程图。在图7中,eNodeB表示UE的当前服务小区的控制基站,但是本发明不限于该术语代表的具体制式,而是可以类似地应用于其他形式的基站。图7的710至740与图5的510至540类似,在此适当省略详细的描述。
710,eNodeB获取同频部署的WiFi系统的业务对实时性的要求。
720,eNodeB基于WiFi系统的实时性要求在非授权频谱资源的时域上划分多个单位时隙。
730,eNodeB获取同频部署的WiFi系统的当前业务负荷信息和/或网络 先验信息以及eNodeB的当前业务负荷信息。
740,eNodeB基于WiFi系统的当前业务负荷信息和eNodeB的当前业务负荷信息将单位时隙划分成第一子时隙和第二子时隙。
应理解,本发明的实施例对710、720与730、740的执行顺序不作限定,例如,730和740可以在710和720之前执行。
760,eNodeB在第一子时隙内,采用与使用授权频谱相同的方式使用非授权频谱资源进行通信。
例如,在3GPP系统通常采用由BS集中控制、基于同步帧的持续调度的方式,在eNodeB在第一子时隙采用持续调度的方式使用非授权频谱资源进行通信时,由WiFi对非授权频谱资源的使用是基于CSMA/CA方式,当出现干扰后,它会主动等待、规避3GPP系统信号,最终造成的结果是3GPP在第一子时隙内优先占据频谱资源,WiFi用户始终处于干扰回避、等待状态。
770,eNodeB在第二子时隙内,以低于WiFi系统的优先级使用非授权频谱资源进行通信。
第一通信设备在第二子时隙内采用第一CSMA/CA方式使用非授权频谱资源进行通信,其中第二通信设备在第二子时隙内采用第二CSMA/CA方式使用非授权频谱资源进行通信,第一CSMA/CA方式的竞争窗口时长的最小值大于第二CSMA/CA方式的竞争窗口时长的最小值,和/或第一CSMA/CA方式的竞争窗口时长的最大值大于第二CSMA/CA方式的竞争窗口时长的最大值。
780,eNodeB根据WiFi系统的当前负荷信息确定DIFS的时长与竞争窗口的时长。
790,eNodeB通知用户设备单位时隙的时长、第一子时隙和第二子时隙的时长的比例以及DIFS的时长与竞争窗口的时长。
应理解,本发明的实施例对760与770的执行顺序不作限定,例如,770可以在760之前执行。
根据本发明的实施例,在第二子时隙内,当WIFI不使用信道时,eNodeB能够及时回收资源,避免造成浪费。而且,eNodeB能够根据网络先验信息和/或监测或侦听到的业务负荷信息,分析出WIFI系统的业务特点(比如业务流量、信道使用频繁度、每次使用信道时占用的时长等),从而预测出WIFI系统的资源使用情况,eNodeB可以根据该预测结果,调整单位时隙以及第 一子时隙和第二子时隙的占比,从而可以尽可能降低对第二通信系统的影响。另外,本发明的实施例还能够调整和控制与回收闲置资源能力相关的两个参数:DIFS和CW,主要是为了减小eNodeB在时域上的竞争开销。eNodeB使用的(DIFS,CW)越趋同于WIFI的设备的(DIFS,CW),即两者的优先级越接近,则竞争开销越小。
上面描述了根据本发明实施例的使用非授权频谱资源进行通信的方法,下面分别结合图8至图9描述根据本发明实施例的通信设备。
图8是根据本发明的另一实施例的通信设备800的结构性示意图。通信设备800包括确定模块810和通信模块820。图8的实施例对应于图4的实施例,在此适当省略详细的描述。通信设备800为图4的第一通信设备400。
确定模块810用于确定单位时隙中的第一子时隙和第二子时隙。通信模块820用于在第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信,其中通信设备800为第一通信系统的通信设备,通信设备800在第二子时隙内使用频谱资源的优先级低于第二通信设备在第二子时隙内使用频谱资源的优先级。
根据本发明的实施例,本发明的实施例的第一通信系统的设备在单位时隙的第一子时隙内,以高于第二通信系统的设备的优先级使用频谱资源进行通信,并且在单位时隙的第二子时隙内,以低于第二通信系统的设备的优先级使用频谱资源进行通信。由于频谱资源可以由两个通信系统在不同的时隙中以不同的优先级使用,避免了为第二通信系统预留固定的频谱资源,因此提高了频谱资源的利用率。
根据本发明的实施例,通信模块820在第一子时隙内,持续使用频谱资源进行通信,以使得第二通信设备在第一子时隙内,在通信设备800不使用频谱资源时使用频谱资源进行通信。
可选地,作为另一实施例,通信模块820还在第二子时隙内,在第二通信设备不使用频谱资源时使用频谱资源进行通信。
可选地,作为另一实施例,通信模块820在第一子时隙内使用频谱资源进行通信时频谱资源空闲的时长小于第二通信设备等待抢占频谱资源的时长。
根据本发明的实施例,通信模块820在第二子时隙内使用频谱资源进行通信时频谱资源空闲的时长大于第二通信设备等待抢占频谱资源的时长。
根据本发明的实施例,通信模块820在第二子时隙内采用第一先听后说LBT方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的分布式帧间间隔的时长大于第二先听后说方式的分布式帧间间隔的时长或者第一先听后说方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长大于第二先听后说方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长,第二通信设备等待抢占频谱资源的时长包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争窗口的时长之和。
根据本发明的实施例,通信模块820在第二子时隙内采用第一先听后说方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的竞争窗口时长的最小值大于第二先听后说方式的竞争窗口时长的最小值,和/或第一先听后说方式的竞争窗口时长的最大值大于第二先听后说方式的竞争窗口时长的最大值,第二通信设备等待抢占频谱资源的时长包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争窗口的时长之和。
可选地,作为另一实施例,通信模块820还用于在第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信之前,获取第二通信设备的当前负荷信息,其中确定模块810还用于根据第一通信系统的当前负荷信息和第二通信设备的当前负荷信息确定第一先听后说方式DIFS的时长与第一先听后说方式竞争窗口的时长。
根据本发明的实施例,通信模块820还在第一子时隙内,以高于第二通信设备的优先级使用频谱资源进行通信之前,在第一子时隙的开始时刻广播网络分配矢量信息,并在第一子时隙的时长内使用频谱资源进行通信,其中网络分配矢量信息用于指示频谱资源处于忙状态,并且网络分配矢量信息包括第一子时隙的时长,以使得第二通信设备在第一子时隙的时长内不使用频谱资源。
可选地,作为另一实施例,确定模块810还在确定单位时隙中的第一子时隙和第二子时隙之前,确定单位时隙的时长,确定第一子时隙和第二子时隙在单位时隙中的比例,其中上述单位时隙为多个单位时隙之一,按照所确定的单位时隙的时长将频谱资源在时域上划分为多个单位时隙,并且根据所 确定的述第一子时隙和第二子时隙在单位时隙中的比例,将多个时隙中的每个单位时隙划分为第一子时隙和第二子时隙。
可选地,作为另一实施例,通信模块820还用于在确定模块810确定单位时隙的时长之前,获取第一通信系统的当前负荷信息,并获取第二通信设备的当前负荷信息,其中确定模块810根据第一通信系统的当前负荷信息和第二通信设备的当前负荷信息确定第一子时隙和第二子时隙在单位时隙中的比例。
可替代地,作为另一实施例,通信模块820还用于获取第二通信设备对实时性的要求,其中通信模块820按照第二通信设备对实时性的要求确定单位时隙的时长。
根据本发明的实施例,频谱资源为第一通信系统和至少一个第二通信系统共享的非授权频谱资源,至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用非授权频谱资源进行通信。
可替代地,作为另一实施例,频谱资源为第一通信系统和至少一个第二通信系统共享的授权频谱资源,至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用授权频谱资源进行通信。
根据本发明的实施例,第一通信系统为蜂窝通信系统,第二通信系统为无线局域网通信系统,第一通信设备为基站或用户设备,第二通信设备为无线接入点或站点,
可替代地,作为另一实施例,第一通信系统和第二通信系统均为蜂窝通信系统,第一通信设备和第二通信设备均为基站或用户设备。
可替代地,作为另一实施例,第一通信系统和第二通信系统可以均为WiFi系统。在第一通信设备为无线接入点的情况下,第二设备可以为无线接入点或站点。在第一通信设备为站点的情况下,第二设备可以为无线接入点或站点。
通信设备800的各个单元的操作和功能可以参考上述图4的方法,为了避免重复,在此不再赘述。
图9是根据本发明的另一实施例的通信设备900的结构性示意图。通信设备900包括处理器910、存储器920、收发器930和通信总线940。图9的实施例对应于图4的实施例,在此适当省略详细的描述。通信设备900为图4的第一通信设备400。
处理器910,用于通过通信总线940调用存储器920中存储的代码,以确定单位时隙中的第一子时隙和第二子时隙。收发器930在第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信,其中通信设备900为第一通信系统的通信设备,通信设备900在第二子时隙内使用频谱资源的优先级低于第二通信设备在第二子时隙内使用频谱资源的优先级。
根据本发明的实施例,本发明的实施例的第一通信系统的设备在单位时隙的第一子时隙内,以高于第二通信系统的设备的优先级使用频谱资源进行通信,并且在单位时隙的第二子时隙内,以低于第二通信系统的设备的优先级使用频谱资源进行通信。由于频谱资源可以由两个通信系统在不同的时隙中以不同的优先级使用,避免了为第二通信系统预留固定的频谱资源,因此提高了频谱资源的利用率。
应理解,可替代地,作为另一实施例,收发器930可以实现为接收机和/或发射机。
根据本发明的实施例,收发器930在第一子时隙内,持续使用频谱资源进行通信,以使得第二通信设备在第一子时隙内,在通信设备900不使用频谱资源时使用频谱资源进行通信。
可选地,作为另一实施例,收发器930还在第二子时隙内,在第二通信设备不使用频谱资源时使用频谱资源进行通信。
可选地,作为另一实施例,收发器930在第一子时隙内使用频谱资源进行通信时频谱资源空闲的时长小于第二通信设备等待抢占频谱资源的时长。
根据本发明的实施例,通信设备900在第二子时隙内使用频谱资源进行通信时频谱资源空闲的时长大于第二通信设备等待抢占频谱资源的时间。
根据本发明的实施例,收发器930在第二子时隙内采用第一先听后说LBT方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的分布式帧间间隔的时长大于第二先听后说方式的分布式帧间间隔的时长或者第一先听后说方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长大于第二先听后说方式中频谱资源空闲的开始时刻到第一先听后说方式的竞争窗口的开始时刻之间的时长,第二通信设备等待抢占频谱资源的时间包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争 窗口的时长之和。
根据本发明的实施例,收发器930在第二子时隙内采用第一先听后说方式使用频谱资源进行通信,第二通信设备在第二子时隙内采用第二先听后说方式使用频谱资源进行通信,第一先听后说方式的竞争窗口时长的最小值大于第二先听后说方式的竞争窗口时长的最小值,和/或第一先听后说方式的竞争窗口时长的最大值大于第二先听后说方式的竞争窗口时长的最大值,第二通信设备等待抢占频谱资源的时间包括第二先听后说方式的DIFS的时长与第二先听后说方式的竞争窗口的时长之和。
可选地,作为另一实施例,处理器910还用于在第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信之前,获取第二通信设备的当前负荷信息,并且根据第二通信设备的当前负荷信息确定第一先听后说方式DIFS的时长与第一先听后说方式竞争窗口的时长。
收发器930还在第一子时隙内,以高于第二通信设备的优先级使用频谱资源进行通信之前,在第一子时隙的开始时刻广播网络分配矢量信息,并在第一子时隙的时长内使用频谱资源进行通信,其中网络分配矢量信息用于指示频谱资源处于忙状态,并且网络分配矢量信息包括第一子时隙的时长,以使得第二通信设备在第一子时隙的时长内不使用频谱资源。
可选地,作为另一实施例,处理器910还在确定单位时隙中的第一子时隙和第二子时隙之前,确定单位时隙的时长,并且确定第一子时隙和第二子时隙在单位时隙中的比例,其中上述单位时隙为多个单位时隙之一,处理器910按照所确定的单位时隙的时长将频谱资源在时域上划分为多个单位时隙,并且根据所确定的述第一子时隙和第二子时隙在单位时隙中的比例,将多个时隙中的每个单位时隙划分为第一子时隙和第二子时隙。
可选地,作为另一实施例,收发器930还在确定第一子时隙和第二子时隙在单位时隙中的比例之前,获取第二通信设备的当前负荷信息,其中处理器910根据第二通信设备的当前负荷信息确定第一子时隙和第二子时隙在单位时隙中的比例。
可替代地,作为另一实施例,收发器930还在确定模块确定单位时隙的时长之前,获取第二通信设备对实时性的要求,其中处理器910按照第二通信设备对实时性的要求确定单位时隙的时长。
可替代地,作为另一实施例,频谱资源为第一通信系统和至少一个第二 通信系统共享的授权频谱资源,至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用授权频谱资源进行通信。
例如,LBT方式可以为载波侦听多点接入/冲突检测CSMA/CA方式。
根据本发明的实施例,第一通信系统为蜂窝通信系统,第二通信系统为无线局域网通信系统,第一通信设备为基站或用户设备,第二通信设备为无线接入点或站点,
例如,第一通信系统为3GPP系统,第二通信系统为WiFi系统。在第一通信设备为基站的情况下,第二设备可以为无线接入点或站点。在第一通信设备为用户设备的情况下,第二设备可以为无线接入点或站点。
可替代地,作为另一实施例,第一通信系统和第二通信系统均为蜂窝通信系统,第一通信设备和第二通信设备均为基站或用户设备。
例如,第一通信系统和第二通信系统可以均为3GPP系统。在第一通信设备为基站的情况下,第二设备可以为基站或用户设备。在第一通信设备为用户设备的情况下,第二设备可以为基站或用户设备。
可替代地,作为另一实施例,第一通信系统和第二通信系统可以均为WiFi系统。在第一通信设备为无线接入点的情况下,第二设备可以为无线接入点或站点。在第一通信设备为站点的情况下,第二设备可以为无线接入点或站点。
通信设备900的各个单元的操作和功能可以参考上述图4的方法,为了避免重复,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种使用频谱资源进行通信的方法,其特征在于,包括:
    第一通信系统的第一通信设备确定单位时隙中的第一子时隙和第二子时隙;
    所述第一通信设备在所述第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用频谱资源进行通信,其中所述第一通信设备在所述第二子时隙内使用所述频谱资源的优先级低于所述第二通信设备在第二子时隙内使用频谱资源的优先级。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信设备在所述第一子时隙内,以高于所述第二通信设备的优先级使用所述频谱资源进行通信,包括:
    所述第一通信设备在所述第一子时隙内,持续使用所述频谱资源进行通信,以使得所述第二通信设备在所述第一子时隙内,在所述第一通信设备不使用所述频谱资源时使用所述频谱资源进行通信。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述第一通信设备在所述第二子时隙内,在所述第二通信设备不使用所述频谱资源时使用所述频谱资源进行通信。
  4. 根据权利要求1至3中的任一项所述的方法,其特征在于,所述第一通信设备在所述第一子时隙内使用所述频谱资源进行通信时所述频谱资源空闲的时长小于所述第二通信设备等待抢占所述频谱资源的时长;
    和/或,
    所述第一通信设备在所述第二子时隙内使用所述频谱资源进行通信时所述频谱资源空闲的时长大于所述第二通信设备等待抢占所述频谱资源的时长。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一通信设备在所述第二子时隙内采用第一先听后说LBT方式使用所述频谱资源进行通信,所述第二通信设备在所述第二子时隙内采用第二先听后说方式使用所述频谱资源进行通信,
    所述第一先听后说方式的分布式帧间间隔DIFS的时长大于第二先听后说方式的DIFS的时长;
    或者,
    所述第一先听后说方式中所述频谱资源空闲的开始时刻到所述第一先听后说方式的竞争窗口的开始时刻之间的时长大于第二先听后说方式中所述频谱资源空闲的开始时刻到所述第一先听后说方式的竞争窗口的开始时刻之间的时长,
    其中,所述第二通信设备等待抢占所述频谱资源的时长包括所述第二先听后说方式的DIFS的时长与所述第二先听后说方式的竞争窗口的时长之和。
  6. 根据权利要求4所述的方法,其特征在于,所述第一通信设备在所述第二子时隙内采用第一先听后说方式使用所述频谱资源进行通信,所述第二通信设备在所述第二子时隙内采用第二先听后说方式使用所述频谱资源进行通信,
    所述第一先听后说方式的竞争窗口时长的最小值大于第二先听后说方式的竞争窗口时长的最小值;
    或者,
    所述第一先听后说方式的竞争窗口时长的最大值大于第二先听后说方式的竞争窗口时长的最大值,
    其中所述第二通信设备等待抢占所述频谱资源的时长包括所述第二先听后说方式的DIFS的时长与所述第二先听后说方式的竞争窗口的时长之和。
  7. 根据权利要5或6所述的方法,其特征在于,在所述第一通信设备在所述第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用所述频谱资源进行通信之前,所述方法还包括:
    所述第一通信设备获取所述第二通信设备的当前负荷信息;
    所述第一通信设备根据所述第二通信设备的当前负荷信息确定所述第一先听后说方式的DIFS的时长与所述第一先听后说方式的竞争窗口的时长。
  8. 根据权利要求1至3中的任一项所述的方法,其特征在于,在所述第一通信设备在所述第一子时隙内,以高于所述第二通信设备的优先级使用所述频谱资源进行通信之前,所述方法还包括:
    所述第一通信设备在所述第一子时隙的开始时刻广播网络分配矢量信息,其中所述网络分配矢量信息用于指示所述频谱资源处于忙状态,并且所 述网络分配矢量信息包括所述第一子时隙的时长,以使得所述第二通信设备在所述第一子时隙的时长内不使用所述频谱资源。
  9. 根据权利要求1至8中的任一项所述的方法,其特征在于,在所述第一通信系统的第一通信设备确定单位时隙中的第一子时隙和第二子时隙之前,所述方法还包括:
    所述第一通信设备确定所述单位时隙的时长;
    所述第一通信设备按照所确定的所述单位时隙的时长将所述频谱资源在时域上划分为多个单位时隙,所述单位时隙为所述多个单位时隙之一,
    其中所述第一通信系统的第一通信设备确定单位时隙中的第一子时隙和第二子时隙,包括:
    所述第一通信设备确定所述第一子时隙和所述第二子时隙在所述单位时隙中的比例;
    所述第一通信设备根据所确定的述第一子时隙和所述第二子时隙在所述单位时隙中的比例,将所述多个时隙中的每个单位时隙划分为所述第一子时隙和所述第二子时隙。
  10. 根据权利要求9所述的方法,其特征在于,在所述第一通信设备确定所述第一子时隙和所述第二子时隙在所述单位时隙中的比例之前,所述方法还包括:
    所述第一通信设备获取所述第二通信设备的当前负荷信息,
    其中所述第一通信设备确定所述第一子时隙和所述第二子时隙在所述单位时隙中的比例,包括:
    所述第一通信设备根据所述第二通信设备的当前负荷信息确定所述第一子时隙和所述第二子时隙在所述单位时隙中的比例。
  11. 根据权利要求9所述的方法,其特征在于,在所述第一通信设备确定所述单位时隙的时长之前,所述方法还包括:
    所述第一通信设备获取所述第二通信设备对实时性的要求,
    其中所述第一通信设备确定所述单位时隙的时长,包括:
    所述第一通信设备按照所述第二通信设备对实时性的要求确定所述单位时隙的时长。
  12. 根据权利要求1至11中的任一项所述的方法,其特征在于,
    所述频谱资源为所述第一通信系统和所述至少一个第二通信系统共享 的非授权频谱资源,所述至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用非授权频谱资源进行通信;
    或者,
    所述频谱资源为所述第一通信系统和所述至少一个第二通信系统共享的授权频谱资源,所述至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用授权频谱资源进行通信。
  13. 根据权利要求1至12中的任一项所述的方法,其特征在于,
    所述第一通信系统为蜂窝通信系统,所述第二通信系统为无线局域网通信系统,所述第一通信设备为基站或用户设备,所述第二通信设备为无线接入点或站点,
    或者,
    所述第一通信系统和所述第二通信系统均为蜂窝通信系统,所述第一通信设备和所述第二通信设备均为基站或用户设备。
  14. 一种通信设备,其特征在于,包括:
    确定模块,用于确定单位时隙中的第一子时隙和第二子时隙;
    通信模块,用于在所述第一子时隙内,以高于第一通信系统的第二通信设备的优先级使用所述频谱资源进行通信,其中所述通信设备为第一通信系统的通信设备,所述通信设备在所述第二子时隙内使用所述频谱资源的优先级低于所述第二通信设备在第二子时隙内使用频谱资源的优先级。
  15. 根据权利要求14所述的通信设备,其特征在于,所述通信模块在所述第一子时隙内,持续使用所述频谱资源进行通信,以使得所述第二通信设备在所述第一子时隙内,在所述通信设备不使用所述频谱资源时使用所述频谱资源进行通信。
  16. 根据权利要求14所述的通信设备,其特征在于,所述通信模块还在所述第二子时隙内,在所述第二通信设备不使用所述频谱资源时使用所述频谱资源进行通信。
  17. 根据权利要求14或15所述的通信设备,其特征在于,所述通信模块在所述第一子时隙内使用所述频谱资源进行通信时所述频谱资源空闲的时长小于所述第二通信设备等待抢占所述频谱资源的时长;和/或,所述通信模块在所述第二子时隙内使用所述频谱资源进行通信时所述频谱资源空闲的时长大于所述第二通信设备等待抢占所述频谱资源的时长。
  18. 根据权利要求17所述的通信设备,其特征在于,所述通信模块在所述第二子时隙内采用第一先听后说LBT方式使用所述频谱资源进行通信,所述第二通信设备在所述第二子时隙内采用第二先听后说方式使用所述频谱资源进行通信,所述第一先听后说方式的分布式帧间间隔DIFS的时长大于第二先听后说方式的DIFS的时长,或者,所述第一先听后说方式中所述频谱资源空闲的开始时刻到所述第一先听后说方式的竞争窗口的开始时刻之间的时长大于第二先听后说方式中所述频谱资源空闲的开始时刻到所述第一先听后说方式的竞争窗口的开始时刻之间的时长,所述第二通信设备等待抢占所述频谱资源的时长包括所述第二先听后说方式的DIFS的时长与所述第二先听后说方式的竞争窗口的时长之和。
  19. 根据权利要求17所述的通信设备,其特征在于,所述通信模块在所述第二子时隙内采用第一先听后说方式使用所述频谱资源进行通信,所述第二通信设备在所述第二子时隙内采用第二先听后说方式使用所述频谱资源进行通信,所述第一先听后说方式的竞争窗口时长的最小值大于第二先听后说方式的竞争窗口时长的最小值,或者,所述第一先听后说方式的竞争窗口时长的最大值大于第二先听后说方式的竞争窗口时长的最大值,所述第二通信设备等待抢占所述频谱资源的时间包括所述第二先听后说方式的DIFS的时长与所述第二先听后说方式的竞争窗口的时长之和。
  20. 根据权利要18或19所述的通信设备,其特征在于,所述通信模块还用于在所述第一子时隙内,以高于第二通信系统的第二通信设备的优先级使用所述频谱资源进行通信之前,获取所述第二通信设备的当前负荷信息,其中所述确定模块还用于根据所述第二通信设备的当前负荷信息确定所述第一先听后说方式的DIFS的时长与所述第一先听后说方式的竞争窗口的时长。
  21. 根据权利要14至16中的任一项所述的通信设备,其特征在于,所述通信模块还在所述第一子时隙内,以高于所述第二通信设备的优先级使用所述频谱资源进行通信之前,在所述第一子时隙的开始时刻广播网络分配矢量信息,并在所述第一子时隙的时长内使用所述频谱资源进行通信,其中所述网络分配矢量信息用于指示所述频谱资源处于忙状态,并且所述网络分配矢量信息包括所述第一子时隙的时长,以使得所述第二通信设备在所述第一子时隙的时长内不使用所述频谱资源。
  22. 根据权利要求14至21中的任一项所述的通信设备,其特征在于,
    所述确定模块还用于在确定单位时隙中的第一子时隙和第二子时隙之前,确定所述单位时隙的时长,确定所述第一子时隙和所述第二子时隙在所述单位时隙中的比例,其中所述单位时隙为所述多个单位时隙之一,按照所确定的所述单位时隙的时长将所述频谱资源在时域上划分为多个单位时隙,并且根据所确定的述第一子时隙和所述第二子时隙在所述单位时隙中的比例,将所述多个时隙中的每个单位时隙划分为所述第一子时隙和所述第二子时隙。
  23. 根据权利要求22所述的通信设备,其特征在于,所述通信模块还用于在确定所述第一子时隙和所述第二子时隙在所述单位时隙中的比例之前,获取所述第二通信设备的当前负荷信息,其中所述确定模块根据所述第二通信设备的当前负荷信息确定所述第一子时隙和所述第二子时隙在所述单位时隙中的比例。
  24. 根据权利要求22所述的通信设备,其特征在于,所述通信模块还用于在所述确定模块确定所述单位时隙的时长之前,获取所述第二通信设备对实时性的要求,其中所述通信模块按照所述第二通信设备对实时性的要求确定所述单位时隙的时长。
  25. 根据权利要求14至24中的任一项所述的通信设备,其特征在于,
    所述频谱资源为所述第一通信系统和所述至少一个第二通信系统共享的非授权频谱资源,所述至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用非授权频谱资源进行通信;
    或者,
    所述频谱资源为所述第一通信系统和所述至少一个第二通信系统共享的授权频谱资源,所述至少一个第二通信系统的第二通信设备采用先听后说LBT方式使用授权频谱资源进行通信。
  26. 根据权利要求14至25中的任一项所述的方法,其特征在于,
    所述第一通信系统为蜂窝通信系统,所述第二通信系统为无线局域网通信系统,所述第一通信设备为基站或用户设备,所述第二通信设备为无线接入点或站点,
    或者,
    所述第一通信系统和所述第二通信系统均为蜂窝通信系统,所述第一通 信设备和所述第二通信设备均为基站或用户设备。
PCT/CN2014/092897 2014-12-03 2014-12-03 使用频谱资源进行通信的方法和通信设备 WO2016086366A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/092897 WO2016086366A1 (zh) 2014-12-03 2014-12-03 使用频谱资源进行通信的方法和通信设备
CN201480083321.0A CN107006015B (zh) 2014-12-03 2014-12-03 使用频谱资源进行通信的方法和通信设备
EP14907460.1A EP3211953B1 (en) 2014-12-03 2014-12-03 Method and communication device for using spectrum resource for communication
US15/610,002 US10506615B2 (en) 2014-12-03 2017-05-31 Method for performing communication by using spectrum resource and communications device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092897 WO2016086366A1 (zh) 2014-12-03 2014-12-03 使用频谱资源进行通信的方法和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/610,002 Continuation US10506615B2 (en) 2014-12-03 2017-05-31 Method for performing communication by using spectrum resource and communications device

Publications (1)

Publication Number Publication Date
WO2016086366A1 true WO2016086366A1 (zh) 2016-06-09

Family

ID=56090815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092897 WO2016086366A1 (zh) 2014-12-03 2014-12-03 使用频谱资源进行通信的方法和通信设备

Country Status (4)

Country Link
US (1) US10506615B2 (zh)
EP (1) EP3211953B1 (zh)
CN (1) CN107006015B (zh)
WO (1) WO2016086366A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111507650A (zh) * 2020-07-02 2020-08-07 深圳微品致远信息科技有限公司 一种边缘计算平台算力分配调度方法及系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524266B2 (en) 2017-10-20 2019-12-31 Google Llc Switching transmission technologies within a spectrum based on network load
US11272540B2 (en) * 2018-08-09 2022-03-08 Ofinno, Llc Channel access and uplink switching
WO2020112534A1 (en) * 2018-11-30 2020-06-04 Idac Holdings, Inc. Adaptive nr unlicensed spectrum sharing and transmission mechanism for different channel access priorities
CN111405534B (zh) * 2020-03-11 2023-08-25 锐迪科微电子(上海)有限公司 信息传输方法、第一终端及计算机存储介质
US11678369B2 (en) 2020-12-10 2023-06-13 Charter Communications Operating, Llc Wireless channel monitoring, acquisition, and usage
US11464044B2 (en) 2020-12-10 2022-10-04 Charter Communications Operating, Llc Wireless channel monitoring, acquisition, and alignment
US11758583B2 (en) * 2020-12-10 2023-09-12 Charter Communications Operating, Llc Wireless channel monitor system and channel use
CN112996050B (zh) * 2021-04-15 2023-05-02 珠海泰芯半导体有限公司 数据传输方法、装置、存储介质及无线节点
CN117858262B (zh) * 2024-03-07 2024-05-14 成都爱瑞无线科技有限公司 基站资源调度优化方法、装置、基站、设备、介质及产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328759A (zh) * 1998-11-24 2001-12-26 艾利森电话股份有限公司 用于移动电信系统的接入方法
CN1692576A (zh) * 2002-10-01 2005-11-02 皇家飞利浦电子股份有限公司 具有不可(再)分配和可(再)分配时隙的电信系统
CN1809004A (zh) * 2005-01-19 2006-07-26 华为技术有限公司 随机接入实现方法
CN101199135A (zh) * 2005-05-26 2008-06-11 松下电器产业株式会社 电力线通信系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060089099A1 (en) * 2004-10-26 2006-04-27 Buchwald Gregory J Method and apparatus for allowing communication units to utilize non-licensed spectrum
US9113464B2 (en) * 2006-01-06 2015-08-18 Proxense, Llc Dynamic cell size variation via wireless link parameter adjustment
US7813271B2 (en) * 2006-09-25 2010-10-12 Futurewei Technologies, Inc. Aggregated link traffic protection
US8554236B2 (en) * 2007-06-18 2013-10-08 Intel Mobile Communications GmbH Method for transmitting data and transmitter
US8320321B2 (en) * 2007-06-22 2012-11-27 Motorola Solutions, Inc. Optimizing positions of time slots in a hybrid time division multiple access (TDMA)-carrier sense multiple access (CSMA) medium access control (MAC) for multi-hop ad hoc networks
US20090109929A1 (en) * 2007-10-29 2009-04-30 Electronics And Telecommunications Research Institute Media access method performed by reader in dense reader environment
US7948945B2 (en) * 2008-01-23 2011-05-24 Honeywell International Inc. Method and apparatus for improved message delivery for higher priority nodes or messages in an industrial wireless network
US8837354B2 (en) * 2009-04-24 2014-09-16 Honeywell International Inc. Apparatus and method for supporting wireless actuators and other devices in process control systems
US8767640B2 (en) * 2009-11-09 2014-07-01 Adeptence, Llc Method and apparatus for directional centralized contention based period in a wireless communication system
CN101790239B (zh) * 2010-02-23 2012-09-05 中国电信股份有限公司 分组调度方法和前向业务调度器
EP2413649B1 (en) * 2010-07-28 2015-02-25 ABB Research Ltd. Wireless communication method and system with collision avoidance protocol
US9781745B2 (en) * 2012-03-19 2017-10-03 Tyco Fire & Security Gmbh Scalable protocol for large WSNS having low duty cycle end nodes
KR101353585B1 (ko) * 2012-06-11 2014-02-11 강릉원주대학교산학협력단 무선 센서 네트워크 시스템 및 노드장치, 센싱 메시지 처리방법
US9191889B2 (en) * 2012-07-26 2015-11-17 Stmicroelectronics, Inc. Slot-based power save improvement
US9949292B2 (en) * 2013-09-11 2018-04-17 Qualcomm Incorporated Coupling uplink and downlink CCA in LTE-U
US9629169B2 (en) * 2013-09-16 2017-04-18 Marvell World Trade Ltd. Access point coordination for traffic control in wireless networks
US9743432B2 (en) * 2013-09-23 2017-08-22 Qualcomm Incorporated LTE-U uplink waveform and variable multi-subframe scheduling
US10051660B2 (en) * 2013-10-03 2018-08-14 Qualcomm Incorporated Virtual carriers for LTE/LTE-A communications in a shared spectrum
US9345047B2 (en) * 2013-10-04 2016-05-17 Qualcomm Incorporated Techniques for assessing clear channel in an unlicensed radio frequency spectrum band
US9220115B2 (en) * 2013-10-23 2015-12-22 Qualcomm Incorporated Techniques for channel access in asynchronous unlicensed radio frequency spectrum band deployments
US9801147B2 (en) * 2013-11-25 2017-10-24 Qualcomm Incorporated Method of synchronization within an LTE/LTE-A system in unlicensed spectrum
US9491777B2 (en) * 2014-01-10 2016-11-08 Qualcomm Incorporated Techniques for prioritizing the reporting of uplink control information for cells utilizing contention based radio frequency spectrum
EP3094124B1 (en) * 2014-01-29 2019-04-03 Huawei Technologies Co., Ltd. Data processing method and device
US9949315B2 (en) * 2014-02-24 2018-04-17 Qualcomm Incorporated Techniques for enabling asynchronous transmissions in an unlicensed radio frequency spectrum band
US10342041B2 (en) * 2014-05-12 2019-07-02 Telefonaktiebolaget Lm Ericsson (Publ) Access to a communications channel in a wireless communications network
US20180270835A1 (en) * 2017-03-17 2018-09-20 Mediatek Inc. Techniques of cross-link interference mitigation in flexible duplex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328759A (zh) * 1998-11-24 2001-12-26 艾利森电话股份有限公司 用于移动电信系统的接入方法
CN1692576A (zh) * 2002-10-01 2005-11-02 皇家飞利浦电子股份有限公司 具有不可(再)分配和可(再)分配时隙的电信系统
CN1809004A (zh) * 2005-01-19 2006-07-26 华为技术有限公司 随机接入实现方法
CN101199135A (zh) * 2005-05-26 2008-06-11 松下电器产业株式会社 电力线通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3211953A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111507650A (zh) * 2020-07-02 2020-08-07 深圳微品致远信息科技有限公司 一种边缘计算平台算力分配调度方法及系统

Also Published As

Publication number Publication date
EP3211953B1 (en) 2019-04-03
EP3211953A1 (en) 2017-08-30
US10506615B2 (en) 2019-12-10
EP3211953A4 (en) 2017-11-08
US20170265208A1 (en) 2017-09-14
CN107006015B (zh) 2020-01-17
CN107006015A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
US11950280B2 (en) Channelization and BWP
WO2016086366A1 (zh) 使用频谱资源进行通信的方法和通信设备
EP3606105B1 (en) Controlling radio access method and apparatus
US9706572B2 (en) Techniques for obtaining and maintaining access to a wireless communication medium
EP2757850B1 (en) Radio communication in unlicensed band
US11589384B2 (en) Data transmission method, terminal device, and network device
WO2020168946A1 (zh) 传输数据的方法和通信装置
CN107005999B (zh) 用于时域帧结构的动态优化的方法和系统
EP3216297B1 (en) Media access control for license-assisted access
KR20180111831A (ko) 비면허 통신 채널들에서의 페이징을 위한 방법들 및 장치
WO2017166212A1 (zh) 信号传输方法、终端设备、接入网设备以及信号传输系统
WO2016072908A1 (en) Dynamic listen before talk in license-assisted access
US20160353485A1 (en) Managing medium access for wireless devices
WO2020063577A1 (en) Transmission medium sharing in a wireless communications network
WO2015146340A1 (ja) 装置及び方法
CN109565692B (zh) 使用非授权频谱的上行传输方法、资源分配方法、用户设备及基站
CN114073157A (zh) 信道接入优先级的选择
WO2016082216A1 (zh) 使用频谱资源进行通信的方法和通信设备
WO2015096029A1 (zh) 数据传输方法和设备
WO2021237573A1 (zh) 信息传输方法、装置及通信设备
WO2023165468A9 (zh) 一种资源确定方法及装置
WO2023115275A1 (zh) 一种共享信道占用时间的方法及其终端设备
EP3703455B1 (en) Methods, terminal device and system for data transmission
US20220400514A1 (en) Controlling transmission medium access in an open spectrum
CN117835184A (zh) 一种通信方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907460

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014907460

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE