WO2023207774A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023207774A1
WO2023207774A1 PCT/CN2023/089692 CN2023089692W WO2023207774A1 WO 2023207774 A1 WO2023207774 A1 WO 2023207774A1 CN 2023089692 W CN2023089692 W CN 2023089692W WO 2023207774 A1 WO2023207774 A1 WO 2023207774A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sci
resource
pssch
transmitted
Prior art date
Application number
PCT/CN2023/089692
Other languages
English (en)
French (fr)
Inventor
张天虹
杨帆
黎超
黄海宁
李君瑶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023207774A1 publication Critical patent/WO2023207774A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • the network device when network devices and terminal devices transmit on the unlicensed spectrum, for downlink transmission, the network device sends a physical downlink control channel (PDCCH) ) and physical downlink shared channel (PDSCH), are transmitted in a non-interleaved manner, that is, transmitted on continuous RBs in the frequency domain.
  • the network device may instruct the terminal device to transmit the physical downlink shared channel (PUSCH) and the physical uplink control channel (PUCCH) of format 0 and format 1 according to the interlace ) method is transmitted, that is, transmitted on discontinuous RBs in the frequency domain. In this way, the terminal device only needs to decode in a corresponding manner when decoding.
  • the terminal device may cause decoding failure when decoding, or may increase the overhead through blind detection in a variety of ways.
  • This application provides a communication method and device to clarify the transmission method of SCI and data and ensure the side transmission of the terminal device.
  • the present application provides a communication method.
  • the method can be applied to a first terminal device, a processor, a chip or a functional module in the first terminal device.
  • the method can include: determining the first side row control The transmission method of sidelink control information (SCI); and then sending the first SCI to the second terminal device in the determined transmission method of the first SCI, where the first SCI can indicate the transmission method of data; and
  • the indicated data transmission method is used to send the data to the second terminal device.
  • sending can also be described as mapping or multiplexing, etc.
  • the terminal devices in the resource pool all transmit SCI according to the fixed transmission method, and the receiving terminal device decodes the SCI according to the fixed SCI transmission method, which can avoid unnecessary hardware overhead.
  • the sending terminal device can determine the data transmission mode according to the data size, and can dynamically indicate the data transmission mode to the receiving terminal device through the first SCI, so that the receiving terminal device accurately receives the data according to the instructed data transmission mode, Improve data transfer performance.
  • the first SCI may be a first-order SCI, and the first-order SCI is carried on the PSCCH;
  • the data is carried on PSSCH.
  • the PSSCH may also include a second-level SCI and/or a media access control unit (media access control, MAC CE).
  • the transmission method of the second-level SCI is consistent with the transmission of the data.
  • the method is the same, and the transmission method of the MAC CE is the same as the transmission method of the data. Therefore, after the transmission mode of the first SCI is determined, the transmission mode of the PSCCH is determined, and after the data transmission mode is determined, the transmission mode of the PSSCH and other information carried in the PSSCH is determined.
  • the transmission mode of the first SCI can be determined in the following manner: a predefined or preconfigured transmission mode of the first SCI can be determined; or the first information can be received from a network device, and the first information can be received from a network device. A piece of information indicates the transmission mode of the first SCI. In this way, the transmission mode of the first SCI can be accurately determined through multiple methods, and then the first SCI can be accurately sent according to the determined transmission mode of the first SCI.
  • the transmission method of the first SCI can be an interlace-based transmission or a non-interleaved transmission method;
  • the transmission method of the data can be an interlace-based transmission method or a non-interleaved transmission method; where , the interleaved transmission method may refer to transmission on discontinuous RBs in the frequency domain; the non-interleaved transmission method may refer to transmission on continuous RBs in the frequency domain.
  • the appropriate transmission method can be selected based on the actual occupied channel bandwidth requirements.
  • the English definition of the interleaved transmission method can also be interlace RB-based transmission.
  • the English definition of the non-interleaved transmission method may be contiguous RB-based transmission.
  • the transmission method of the first SCI is an interleaved transmission method, and the data transmission method is an interleaved transmission method; or, the transmission method of the first SCI is an interleaved transmission method, and the data transmission method is a non-interleaved transmission method; or, the transmission method of the first SCI is an interleaved transmission method; or, the transmission method of the first SCI is an interleaved transmission method.
  • the transmission method of the first SCI is a non-interleaved transmission method, and the data transmission method is an interleaved transmission method; or, the transmission method of the first SCI is a non-interleaved transmission method, and the data transmission method is a non-interleaved transmission method.
  • one or more of the following operations may also be performed: determine the frequency domain resource of the data or the PSSCH carrying the data; determine whether the data or the PSSCH carrying the data is in the first resource or determine whether the data or the PSSCH carrying the data or the second SCI is transmitted on the first resource; determine whether the data or the PSSCH carrying the data is transmitted on the second resource; wherein,
  • the time domain location of the first resource may be the time domain location where the first SCI is located, and the frequency domain location of the first resource may be excluding the frequency domain location where the data or the PSSCH carrying the data is located.
  • a frequency domain position other than the frequency domain position where the first SCI is located; the time domain position of the second resource may be the time domain position where the first SCI is located, and the frequency domain position of the second resource may be the The resource block RB of the first SCI is not transmitted in the interlace or sub-channel where the first SCI is located.
  • the first SCI and the second SCI may schedule the same PSCCH.
  • the second SCI is a repetition of the first SCI. In this way, repeated SCI can be transmitted to improve PSCCH coverage and improve reception reliability of the second terminal device.
  • the method for determining the data or the frequency domain resources of the PSSCH carrying the data may be: determining the predefined or preconfigured frequency domain resources of the data or the PSSCH carrying the data. ; Or, receive second information from the network device, the second information indicating the data or the frequency domain resource of the PSSCH carrying the data. In this way, the data or the frequency domain resources of the PSSCH carrying the data can be accurately determined in various ways, so that the data or the PSSCH can be transmitted on the accurate frequency domain resources.
  • the method for determining whether the data or the PSSCH carrying the data is transmitted on the first resource may be: determining whether the predefined data or the PSSCH carrying the data is transmitted on the first resource, or , Third information is received from the network device, the third information indicating whether the data or the PSSCH carrying the data is transmitted on the first resource. In this way, it can be accurately determined in multiple ways whether data or PSSCH is transmitted on the first resource, so that waste of resources can be avoided when data or PSSCH is transmitted on the first resource.
  • Determining that the data or the PSSCH carrying the data or the second SCI is transmitted on the first resource includes: determining that the predefined data or the PSSCH carrying the data or the second SCI is transmitted on the first resource. Transmission on a resource; or, the third information indicates that the data or the PSSCH or second SCI carrying the data is transmitted on the first resource; in this way, the data transmission on the first resource can be accurately determined in a variety of ways or PSSCH or the second SCI, thereby avoiding resource waste, and when transmitting the second SCI on the first resource, the reliability of receiving the SCI by the second terminal device can be improved.
  • the method for determining whether the data or the PSSCH carrying the data is transmitted on the second resource may be: determining whether the predefined data or the PSSCH carrying the data is transmitted on the second resource. ; Or, receive fourth information from the network device, the fourth information indicating whether the data or the PSSCH carrying the data is transmitted on the second resource. In this way, whether data or PSSCH is transmitted on the second resource can be accurately determined through multiple methods, thereby avoiding resource waste when transmitting data or PSSCH on the second resource.
  • the first SCI may also indicate one or more of the following: the frequency domain resource of the data or the PSSCH carrying the data; whether the data or the PSSCH carrying the data is in the first The data is transmitted on a resource, or the data or the PSSCH carrying the data or the second SCI is transmitted on the first resource; whether the data or the PSSCH carrying the data is transmitted on the second resource.
  • the second terminal device can be caused to determine frequency domain resources for data or PSSCH transmission according to the indication of the first SCI.
  • the second terminal device may be caused to receive the second SCI on the first resource.
  • the dynamic indication through the first SCI can be more flexible than the RRC indication.
  • the terminal device in the resource pool can more flexibly determine the number of interleaving or sub-channels of PSSCH. For example, large data packets use more interleaving, and small data packets use less interleaving. If RRC indicates, the terminal device in the resource pool can only have fixed frequency domain resources for determining the PSSCH, which is inflexible.
  • the proportion of the number of sub-channels of data to the channel where the sub-channel of data is located or the number of sub-channels of data to the total number of sub-channels is greater than 80%
  • the transmission method of the data is: Non-interleaved transmission method.
  • IBE in-band emission
  • the data or the frequency domain resources of the PSSCH carrying the data can be determined by the following method: the data or the number of interleaves or sub-channels of the PSSCH carrying the data can be determined; or , it can be determined whether the data or the PSSCH carrying the data occupies the channel where the interleave or sub-channel of the data or the PSSCH carrying the data is located. In this way, the accurate frequency domain resources for transmitting data or PSSCH can be determined.
  • the frequency domain position of the first SCI is determined to be transmitted, and the frequency domain position of the first SCI is based on the starting RB position of the first SCI, the ending RB position of the first SCI and At least two parameters in the number of RBs of the first SCI are determined.
  • the frequency domain position of the first SCI can be flexibly determined so that the first SCI can be accurately transmitted.
  • the frequency domain position of the second SCI or other SCI is determined by the same method as the frequency domain position of the first SCI and can be mutually referenced.
  • the starting RB position of the first SCI may be related to at least two of the following parameters: the index of the subchannel where the first SCI is located, the number of RBs in a subchannel, the The number or offset of RBs in the first SCI; or, the starting RB position of the first SCI can be related to at least two of the following parameters: the index of the interleave where the first SCI is located, an interleaved RB number, the number of RBs of the first SCI or the offset; or, the end RB position of the first SCI may be related to at least two of the following parameters: the subchannel where the first SCI is located index, the number of RBs of a subchannel, the number of RBs of the first SCI, or the offset; or, the end RB position of the first SCI may be related to at least two of the following parameters: The index of the interlace where the first SCI is located, the number of RBs in an interlace, the number of RBs in the
  • the starting RB position of the first SCI may be related to the index of the subchannel where the first SCI is located and the number of RBs of a subchannel; the ending RB position of the first SCI may be related to The index of the subchannel where the first SCI is located, the number of RBs of a subchannel, and the number of RBs of the first SCI are related.
  • the starting RB position of the first SCI may be related to the index of the interleave where the first SCI is located and the number of RBs in an interleave; or, the ending RB position of the first SCI may be related to the first SCI
  • the index of the interlace, the number of RBs in an interlace, and the number of RBs in the first SCI are related.
  • the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number and offset of RBs of a subchannel; the ending RB position of the first SCI is related to the The index of the subchannel where an SCI is located, the number of RBs of a subchannel, the number of RBs of the first SCI and the offset are related.
  • the starting RB position of the first SCI is related to the index of the interleave where the first SCI is located, the number and offset of an interleaved RB; the ending RB position of the first SCI is related to the first SCI
  • the index of the interlace, the number of RBs in an interlace, the number of RBs in the first SCI are related to the offset.
  • the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located and the number of RBs of the first SCI; the ending RB position of the first SCI is related to the first SCI
  • the index of the subchannel is related to the number of RBs of the first SCI.
  • the starting RB position of the first SCI is related to the interleaved index where the first SCI is located and the number of RBs of the first SCI; the ending RB position of the first SCI is related to the interleaving index where the first SCI is located.
  • the interleaved index is related to the number of RBs in the first SCI.
  • the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number and offset of the RBs of the first SCI; the ending RB position of the first SCI is related to the The index of the subchannel where the first SCI is located, the number of RBs of the first SCI and the offset are related.
  • the starting RB position of the first SCI is related to the interleaving index where the first SCI is located, the number of RBs and the offset of the first SCI; the ending RB position of the first SCI is related to the The interleaved index where the first SCI is located, the number of RBs of the first SCI, and the offset are related.
  • the starting RB position of the first SCI and/or the ending RB position of the first SCI can be determined through multiple methods, and then the frequency domain position of the first SCI can be accurately determined.
  • the frequency domain position of the first SCI may be determined in a preconfigured manner, or the frequency domain position of the first SCI may be determined in a predefined manner, or the first SCI may be determined in a predefined manner.
  • the method of determining the frequency domain location can be configured for the network device. In this way, the frequency domain position of the first SCI can be accurately determined through multiple methods, and then the frequency domain position of the first SCI can be accurately determined through the determination method. For example, the frequency domain position of the first SCI may be determined based on at least two of the starting RB position of the first SCI, the ending RB position of the first SCI, and the number of RBs of the first SCI. Parameters determined.
  • the method can be applied to the scenario of side-linked unlicensed spectrum.
  • dynamic indication of the data transmission mode can be achieved in the scenario of side-link unlicensed spectrum.
  • this application provides a communication method, which can be applied to a second terminal device, a processor, a chip or a functional module in the second terminal device, etc.
  • the method can include: determining the transmission of the first SCI method, and then receive the first SCI from the first terminal device in a certain transmission method of the first SCI, where the first SCI indicates the transmission method of data; and then receive the first SCI from the first terminal device in the transmission method of the data.
  • the terminal device receives the data.
  • the terminal devices in the resource pool all transmit SCI according to the fixed transmission method, and the receiving terminal device decodes the SCI according to the fixed SCI transmission method, which can avoid unnecessary hardware overhead.
  • the receiving terminal device can identify the data transmission mode dynamically indicated by the first SCI, so that the receiving terminal device accurately receives data according to the indicated data transmission mode and improves data transmission performance.
  • the first SCI is a first-order SCI
  • the first-order SCI is carried on the physical sidelink control channel PSCCH
  • the data is carried on the physical sidelink shared channel PSSCH
  • the PSSCH also includes
  • the second-level SCI and/or the media access control unit MAC CE the transmission method of the second-level SCI is the same as the transmission method of the data
  • the transmission method of the MAC CE is the same as the transmission method of the data. Therefore, after the transmission mode of the first SCI is determined, the transmission mode of the PSCCH is determined, and after the data transmission mode is determined, the transmission mode of the PSSCH and other information carried in the PSSCH is determined.
  • the transmission mode of the first SCI can be determined in the following manner: determining a predefined or preconfigured transmission mode of the first SCI; or, receiving first information from a network device, the first information Indicates the transmission mode of the first SCI. In this way, the transmission mode of the first SCI can be accurately determined through multiple methods, and then the first SCI can be accurately sent according to the determined transmission mode of the first SCI.
  • the transmission mode of the first SCI may be an interleaved transmission mode or a non-interleaved transmission mode;
  • the data transmission mode may be an interleaved transmission mode or a non-interleaved transmission mode;
  • the interleaved transmission mode may refer to Transmission on discontinuous RBs in the frequency domain;
  • the non-interleaved transmission method may refer to transmission on continuous RBs in the frequency domain. In this way, the appropriate transmission method can be selected based on the actual occupied channel bandwidth requirements.
  • the transmission method of the first SCI is an interleaved transmission method, and the data transmission method is an interleaved transmission method; or, the transmission method of the first SCI is an interleaved transmission method, and the data transmission method is a non-interleaved transmission method; or, the transmission method of the first SCI is an interleaved transmission method; or, the transmission method of the first SCI is an interleaved transmission method.
  • the transmission method of the first SCI is a non-interleaved transmission method, and the data transmission method is an interleaved transmission method; or, the transmission method of the first SCI is a non-interleaved transmission method, and the data transmission method is a non-interleaved transmission method.
  • one or more of the following operations may also be performed: determine the frequency domain resource of the data or the PSSCH carrying the data; determine whether the data or the PSSCH carrying the data is in the first resource or determine whether the data or the PSSCH carrying the data or the second SCI is transmitted on the first resource; determine whether the data or the PSSCH carrying the data is transmitted on the second resource; wherein, The time domain location of the first resource is the time domain location where the first SCI is located, and the frequency domain location of the first resource is the frequency domain location where the data or the PSSCH carrying the data is located, excluding the A frequency domain position other than the frequency domain position where the first SCI is located; the time domain position of the second resource is the time domain position where the first SCI is located, and the frequency domain position of the second resource is the first SCI The resource block RB of the first SCI is not transmitted in the interlace or sub-channel.
  • the first SCI and the second SCI may schedule the same PSCCH. In this way, repeated SCI can be transmitted to improve reception reliability of the second terminal device.
  • the method for determining the data or the frequency domain resources of the PSSCH carrying the data may be: determining the predefined or preconfigured frequency domain resources of the data or the PSSCH carrying the data. ;
  • second information is received from the network device, and the second information indicates the data or the frequency domain resource of the PSSCH carrying the data.
  • the data or the frequency domain resources of the PSSCH carrying the data can be accurately determined in various ways, so that the data or the PSSCH can be transmitted on the accurate frequency domain resources.
  • the method for determining whether the data or the PSSCH carrying the data is transmitted on the first resource may be: determining whether the predefined data or the PSSCH carrying the data is transmitted on the first resource, or , receiving third information from the network device, the third information indicating whether the data or the PSSCH carrying the data is transmitted on the first resource. In this way, it can be accurately determined in multiple ways whether data or PSSCH is transmitted on the first resource, so that waste of resources can be avoided when data or PSSCH is transmitted on the first resource.
  • Determining that the data or the PSSCH or the second SCI carrying the data is transmitted on the first resource may be: determining that the predefined data or the PSSCH carrying the data or the second SCI is transmitted on the first resource. Transmission on a resource; or, the third information indicates that the data or the PSSCH or second SCI carrying the data is transmitted on the first resource; in this way, the data transmission on the first resource can be accurately determined in a variety of ways or PSSCH or the second SCI, thereby avoiding resource waste, and when transmitting the second SCI on the first resource, the reliability of receiving the SCI by the second terminal device can be improved.
  • the method for determining whether the data or the PSSCH carrying the data is transmitted on the second resource may be: determining whether the predefined or preconfigured data or the PSSCH carrying the data is transmitted on the second resource. Transmit on the second resource; or receive fourth information from the network device, the fourth information indicating whether the data or the PSSCH carrying the data is transmitted on the second resource. In this way, whether data or PSSCH is transmitted on the second resource can be accurately determined through multiple methods, thereby avoiding resource waste when transmitting data or PSSCH on the second resource.
  • the first SCI may also indicate one or more of the following: the frequency domain resource of the data or the PSSCH carrying the data; whether the data or the PSSCH carrying the data is in the first The data is transmitted on a resource, or the data or the PSSCH carrying the data or the second SCI is transmitted on the first resource; whether the data or the PSSCH carrying the data is transmitted on the second resource.
  • the second terminal device can be caused to determine frequency domain resources for data or PSSCH transmission according to the indication of the first SCI.
  • the second terminal device may be caused to receive the second SCI on the first resource.
  • the dynamic indication through the first SCI can be more flexible than the RRC indication.
  • the terminal device in the resource pool can more flexibly determine the number of interleaving or sub-channels of PSSCH. For example, large data packets use more interleaving, and small data packets use less interleaving. If RRC indicates, the terminal device in the resource pool can only have fixed frequency domain resources for determining the PSSCH, which is inflexible.
  • the method for determining the data or the frequency domain resources of the PSSCH carrying the data may be: determining the data or the frequency domain resources of the PSSCH carrying the data according to the first SCI. This allows the second terminal device to determine frequency domain resources for data or PSSCH transmission according to the indication of the first SCI.
  • the method of determining whether the data or the PSSCH carrying the data is transmitted on the first resource may be: determining whether the data or the PSSCH carrying the data is transmitted on the first resource according to the first SCI. In this way, it can be determined whether to transmit data or PSSCH in the first resource according to the indication of the first SCI.
  • Determining that the data or the PSSCH or the second SCI that carries the data is transmitted on the first resource.
  • the method may be: determining that the data or the PSSCH that carries the data or the second SCI is transmitted on the first resource according to the first SCI. transmitted on the first resource. In this way, it can be determined whether the data or the PSSCH or the second SCI is transmitted in the first resource according to the indication of the first SCI.
  • the method of determining whether the data or the PSSCH carrying the data is transmitted on the second resource may be: determining whether the data or the PSSCH carrying the data is transmitted on the second resource according to the first SCI. so Whether to transmit data or PSSCH in the second resource may be determined according to the indication of the first SCI.
  • the proportion of the number of sub-channels of data to the channel where the sub-channel of data is located or the number of sub-channels of data to the total number of sub-channels is greater than 80%
  • the transmission method of the data is: Non-interleaved transmission method.
  • data transmission in a non-interleaved transmission method can already meet 80% of the bandwidth, it is better to use a non-interleaved transmission method, which can improve the performance of the communication system.
  • the method for determining the frequency domain resources of the data or the PSSCH carrying the data may be: determining the number of interleavings or the number of sub-channels of the data or the PSSCH carrying the data; or, Determine whether the data or the PSSCH carrying the data occupies the channel where the interleave or sub-channel of the data or the PSSCH carrying the data is located. In this way, the accurate frequency domain resources for transmitting data or PSSCH can be determined.
  • the frequency domain position of the first SCI is determined to be received, and the frequency domain position of the first SCI is based on the starting RB position of the first SCI, the ending RB position of the first SCI and At least two parameters in the number of RBs of the first SCI are determined. In this way, the frequency domain position of the first SCI can be flexibly determined so that the first SCI can be accurately transmitted.
  • the starting RB position of the first SCI is related to at least two of the following parameters: the index of the subchannel where the first SCI is located, the number of RBs of a subchannel, the The number or offset of RBs in an SCI; or, the starting RB position of the first SCI is related to at least two of the following parameters: the index of the interleave where the first SCI is located, the number of RBs in an interleave , the number of RBs of the first SCI or the offset; or, the end RB position of the first SCI is related to at least two of the following parameters: the index of the subchannel where the first SCI is located, The number of RBs of a subchannel, the number of RBs of the first SCI, or the offset; or, the end RB position of the first SCI is related to at least two of the following parameters: the first The index of the interlace where the SCI is located, the number of RBs in an interlace, the number of RBs
  • the starting RB position of the first SCI may be related to the index of the subchannel where the first SCI is located and the number of RBs of a subchannel; the ending RB position of the first SCI may be related to The index of the subchannel where the first SCI is located, the number of RBs of a subchannel, and the number of RBs of the first SCI are related.
  • the starting RB position of the first SCI may be related to the index of the interleave where the first SCI is located and the number of RBs in an interleave; or, the ending RB position of the first SCI may be related to the first SCI
  • the index of the interlace, the number of RBs in an interlace, and the number of RBs in the first SCI are related.
  • the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number and offset of RBs of a subchannel; the ending RB position of the first SCI is related to the The index of the subchannel where an SCI is located, the number of RBs of a subchannel, the number of RBs of the first SCI and the offset are related.
  • the starting RB position of the first SCI is related to the index of the interleave where the first SCI is located, the number and offset of an interleaved RB; the ending RB position of the first SCI is related to the first SCI
  • the index of the interlace, the number of RBs in an interlace, the number of RBs in the first SCI are related to the offset.
  • the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located and the number of RBs of the first SCI; the ending RB position of the first SCI is related to the first SCI
  • the index of the subchannel is related to the number of RBs of the first SCI.
  • the starting RB position of the first SCI is related to the interleaved index where the first SCI is located and the number of RBs of the first SCI; the ending RB position of the first SCI is related to the interleaving index where the first SCI is located.
  • the interleaved index is related to the number of RBs in the first SCI.
  • the starting RB position of the first SCI is the same as the first SCI The index of the subchannel where the first SCI is located, the number of RBs of the first SCI, and the offset are related; the end RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number of RBs of the first SCI The number is related to the offset.
  • the starting RB position of the first SCI is related to the interleaving index where the first SCI is located, the number of RBs and the offset of the first SCI; the ending RB position of the first SCI is related to the The interleaved index where the first SCI is located, the number of RBs of the first SCI, and the offset are related.
  • the starting RB position of the first SCI and/or the ending RB position of the first SCI can be determined through multiple methods, and then the frequency domain position of the first SCI can be accurately determined.
  • the frequency domain position of the first SCI is determined in a preconfigured manner, or the frequency domain position of the first SCI is determined in a predefined manner, or the frequency domain position of the first SCI is determined in a preconfigured manner.
  • the domain location is determined in a way that the network device is configured. In this way, the frequency domain position of the first SCI can be accurately determined through multiple methods, and then the frequency domain position of the first SCI can be accurately determined through the determination method.
  • the frequency domain position of the first SCI may be determined based on at least two of the starting RB position of the first SCI, the ending RB position of the first SCI, and the number of RBs of the first SCI. Parameters determined.
  • the method is applied to the scenario of side-linked unlicensed spectrum.
  • dynamic indication of the data transmission mode can be achieved in the scenario of side-link unlicensed spectrum.
  • the present application provides a communication method, which can be applied to network devices, processors, chips, or a functional module in the network device.
  • the method can include: after determining the transmission mode of the first SCI, The terminal device sends first information, where the first information indicates the transmission mode of the first SCI.
  • the network device can indicate the transmission mode of the first SCI to the first terminal device and the second terminal device, so that the first terminal device sends the first SCI to the second terminal device using the transmission of the first SCI.
  • the first SCI is a first-order SCI
  • the first-order SCI is carried on the PSCCH. Therefore, after the transmission mode of the first SCI is determined, the transmission mode of the PSCCH is determined.
  • the transmission mode of the first SCI may be an interleaved transmission mode or a non-interleaved transmission mode; the interleaved transmission mode may refer to transmission on discontinuous RBs in the frequency domain; the non-interleaved transmission mode It can refer to transmission on continuous RBs in the frequency domain. This can indicate the appropriate transmission method based on the actual occupied channel bandwidth requirements.
  • one or more operations may also be performed: sending second information to the terminal device, the second information indicating data or frequency domain resources of the PSSCH carrying the data;
  • the device sends third information, the third information indicating whether the data or the PSSCH carrying the data is transmitted on the first resource, or indicating whether the data or the PSSCH carrying the data or the second SCI is transmitted on the first resource.
  • the terminal device can transmit data or PSSCH on accurate frequency domain resources.
  • two SCIs may be transmitted to improve reception reliability of the receiving terminal device.
  • the data is carried on PSSCH, which also includes a second-level SCI and/or a medium access control unit MAC CE.
  • the transmission method of the second-level SCI is consistent with the transmission of the data.
  • the method is the same, the transmission method of the MAC CE is the same as the transmission method of the data, and the transmission method of the data is an interleaved transmission method or a non-interleaved transmission method.
  • the PSSCH and PSSCH The transmission method of other information carried in it.
  • the proportion of the number of sub-channels of data to the channel where the sub-channel of data is located or the number of sub-channels of data to the total number of sub-channels is greater than 80%, and the transmission method of the data is: Non-interleaved transmission method. This allows the channel occupied bandwidth to be satisfied during data transmission and improves transmission performance.
  • the second information may indicate the data or the frequency domain resource of the PSSCH carrying the data in the following manner: the second information indicates the interleaving of the data or the PSSCH carrying the data. or the number of sub-channels; or, the second information indicates whether the data or the PSSCH carrying the data occupies the channel where the interleaving or sub-channel of the data or the PSSCH carrying the data is located. This can indicate the exact frequency domain resources for transmitting data or PSSCH.
  • the terminal device may also be configured with a method of determining the frequency domain position of the first SCI, and the frequency domain position of the first SCI is based on the starting RB position of the first SCI, the The end RB position of the first SCI and the number of RBs of the first SCI are determined by at least two parameters. In this way, the frequency domain position of the first SCI can be flexibly determined so that the first SCI can be accurately transmitted.
  • the starting RB position of the first SCI is related to at least two of the following parameters: the index of the subchannel where the first SCI is located, the number of RBs of a subchannel, the The number or offset of RBs in an SCI; or, the starting RB position of the first SCI is related to at least two of the following parameters: the index of the interleave where the first SCI is located, the number of RBs in an interleave , the number of RBs of the first SCI or the offset; or, the end RB position of the first SCI is related to at least two of the following parameters: the index of the subchannel where the first SCI is located, The number of RBs of a subchannel, the number of RBs of the first SCI, or the offset; or, the end RB position of the first SCI is related to at least two of the following parameters: the first The index of the interlace where the SCI is located, the number of RBs in an interlace, the number of RBs
  • the starting RB position of the first SCI may be related to the index of the subchannel where the first SCI is located and the number of RBs of a subchannel; the ending RB position of the first SCI may be related to The index of the subchannel where the first SCI is located, the number of RBs of a subchannel, and the number of RBs of the first SCI are related.
  • the starting RB position of the first SCI may be related to the index of the interleave where the first SCI is located and the number of RBs in an interleave; or, the ending RB position of the first SCI may be related to the first SCI
  • the index of the interlace, the number of RBs in an interlace, and the number of RBs in the first SCI are related.
  • the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number and offset of RBs of a subchannel; the ending RB position of the first SCI is related to the The index of the subchannel where an SCI is located, the number of RBs of a subchannel, the number of RBs of the first SCI and the offset are related.
  • the starting RB position of the first SCI is related to the index of the interleave where the first SCI is located, the number and offset of an interleaved RB; the ending RB position of the first SCI is related to the first SCI
  • the index of the interlace, the number of RBs in an interlace, the number of RBs in the first SCI are related to the offset.
  • the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located and the number of RBs of the first SCI; the ending RB position of the first SCI is related to the first SCI
  • the index of the subchannel is related to the number of RBs of the first SCI.
  • the starting RB position of the first SCI is related to the interleaved index where the first SCI is located and the number of RBs of the first SCI; the ending RB position of the first SCI is related to the interleaving index where the first SCI is located.
  • the interleaved index is related to the number of RBs in the first SCI.
  • the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number and offset of the RBs of the first SCI; the ending RB bit of the first SCI
  • the setting is related to the index of the subchannel where the first SCI is located, the number of RBs and the offset of the first SCI.
  • the starting RB position of the first SCI is related to the interleaving index where the first SCI is located, the number of RBs and the offset of the first SCI; the ending RB position of the first SCI is related to the The interleaved index where the first SCI is located, the number of RBs of the first SCI, and the offset are related.
  • the starting RB position of the first SCI and/or the ending RB position of the first SCI can be determined through multiple methods, and then the frequency domain position of the first SCI can be accurately determined.
  • the method is applied to the scenario of side-linked unlicensed spectrum.
  • the indication of the transmission mode of the first SCI can be implemented in the scenario of side-link unlicensed spectrum.
  • the present application provides a communication method, which can be applied to a first terminal device, a processor, a chip or a functional module in the first terminal device.
  • the first terminal device is taken as an example.
  • the method can be The method includes: the first terminal device receives sidelink control information of the second terminal device, and the sidelink control information may indicate a third resource used for sidelink transmission of the second terminal device; the first terminal device according to the The third resource indicated by the sidelink control information and the transmission mode of the physical sidelink control channel PSCCH of the second terminal device determine the resources used for sidelink transmission of the first terminal device; and/or, the The first terminal device determines the resources used for sidelink transmission by the first terminal device according to the third resource indicated by the sidelink control information and the transmission mode of the physical sidelink shared channel PSSCH of the second terminal device.
  • the terminal device can sense the resources that can be used for side-link transmission, thereby selecting the correct resource for side-link transmission and avoiding transmission conflicts with other terminal devices.
  • the second terminal device transmits the PSCCH on the third resource in an interleaved transmission manner or a non-interleaved manner, and/or transmits the PSSSH on the third resource in an interleaved transmission manner or a non-interleaved manner.
  • the first terminal device can accurately exclude the third resource according to the transmission mode of the PSCCH and/or PSSCH of the second terminal device.
  • the method for determining the resources used for sidelink transmission of the first terminal device may be: the first terminal device determines the transmission mode of the PSCCH and/or the PSSCH of the second terminal device. a transmission mode, excluding the third resource indicated by the sidelink control information from the candidate resource set, and determining the resource used for sidelink transmission of the first terminal device.
  • the first terminal device can accurately determine the resources available to it, thereby selecting the correct resources for side transmission and avoiding transmission conflicts with other terminal devices.
  • the first terminal device and the second terminal device can transmit in the same time slot and different interleaves, instead of transmitting in different time slots one after another, which can reduce the delay.
  • the transmission mode of the PSSCH is a non-interleaved transmission mode
  • the first terminal device excludes the third resource indicated by the sidelink control information from the initial candidate resource set.
  • the method may be The method is: the first terminal device excludes the resources in the channel where the third resource is located from the initial candidate resource set. This ensures that the remaining resources after exclusion can ensure its own side-link transmission, thereby selecting the correct resources for side-link transmission and avoiding transmission conflicts with other terminal devices.
  • the resources in the channel where the third resource is located may include: the resources in the channel where the third resource is located in the time slot where the third resource is located.
  • the first terminal device does not need to include these resources into the candidate resource set when selecting resources, and directly excludes the resources in the channel where the third resource is located in the time slot where the third resource is located, which can reduce calculation overhead.
  • the transmission mode of the PSCCH is a non-interleaved transmission mode
  • the first terminal device excludes the third resource indicated by the sidelink control information from the initial candidate resource set.
  • the method may be means: the first terminal device excludes the channel in the third resource from the initial candidate resource set. Resources occupied by PSCCH. This can determine more resources as its own available resources and improve resource utilization.
  • the transmission mode of the PSSCH is a non-interleaved transmission mode and the transmission mode of the PSCCH is a non-interleaved transmission mode
  • the first terminal device excludes the sidelink from the initial candidate resource set.
  • the method for controlling the third resource indicated by the information may be: the first terminal device excludes resources in the channel where the third resource is located from the initial candidate resource set. This ensures that the remaining resources after exclusion can ensure its own side-link transmission, thereby selecting the correct resources for side-link transmission and avoiding transmission conflicts with other terminal devices.
  • the transmission mode of the PSSCH is an interleaved transmission mode
  • the first terminal device may not exclude resources other than the third resource in the channel where the third resource is located. This can determine more resources as its own available resources and improve resource utilization.
  • the resources other than the third resource in the channel where the third resource is located may include: in the time slot where the third resource is located, the resources other than the third resource in the channel where the third resource is located. resource.
  • the transmission mode of the PSCCH is an interleaved transmission mode
  • the first terminal device excludes the third resource indicated by the sidelink control information from the initial candidate resource set.
  • the method may be : The first terminal device excludes the resources occupied by the PSCCH in the interlace in which the third resource is located from the initial candidate resource set. This can determine more resources as its own available resources and improve resource utilization.
  • the first terminal device determines to transmit the PSCCH and/or the PSSCH on a fourth resource, and the fourth resource belongs to the first terminal device for sidelink transmission.
  • resource; the fourth resource is a channel, and the first terminal device can transmit the PSCCH and/or the PSSCH in an interleaved manner or a non-interleaved manner on the fourth resource; or the fourth resource is interleaved,
  • the first terminal device may transmit the PSCCH and/or the PSSCH in an interleaved manner on a fourth resource. In this way, the first terminal device can transmit the PSCCH and/or the PSSCH as required according to the actual situation of available resources, thereby improving transmission performance.
  • the present application provides a communication method, which can be applied to a second terminal device, a processor, a chip or a functional module in the second terminal device.
  • the second terminal device is taken as an example.
  • the method can be used The method includes: the second terminal device determines sidelink control information, and sends the sidelink control information to the first terminal device, where the sidelink control information may indicate a third resource used for sidelink transmission of the second terminal device.
  • the first terminal device can determine the transmission mode for the first terminal device based on the third resource indicated by the sidelink control information and the transmission mode of the physical sidelink control channel PSCCH of the second terminal device. resources for device sidelink transmission; and/or, the first terminal device determines based on the third resource indicated by the sidelink control information and the transmission mode of the physical sidelink shared channel PSSCH of the second terminal device. Resources used for sidelink transmission by the first terminal device. In this way, the terminal device can sense the resources that can be used for side-link transmission, thereby selecting the correct resource for side-link transmission and avoiding transmission conflicts with other terminal devices.
  • the present application also provides a communication device.
  • the communication device may be a first terminal device, a processor, a chip or a functional module in the first terminal device.
  • the communication device has the ability to implement the above-mentioned first aspect. or the functionality of the method in each possible design example of the first aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit. These units can perform the corresponding functions in the above-mentioned first aspect or each possible design example of the first aspect. For details, see the method examples. Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory.
  • the transceiver is used to send and receive information or data, and to communicate with other devices in the communication system.
  • the processor is configured to support the communication device to perform corresponding functions in the above-mentioned first aspect or each possible design example of the first aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the communications device.
  • the present application also provides a communication device.
  • the communication device may be a second terminal device, a processor, a chip or a functional module in the second terminal device.
  • the communication device has the ability to implement the above second aspect. or the functionality of the method in each possible design example of the second aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit. These units can perform the corresponding functions in the above second aspect or each possible design example of the second aspect. For details, see the method examples. Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory.
  • the transceiver is used to send and receive information or data, and to communicate with other devices in the communication system.
  • the processor is configured to support the communication device to perform corresponding functions in the above second aspect or each possible design example of the second aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the communications device.
  • the present application also provides a communication device.
  • the communication device may be a network device, a processor, a chip or a functional module in the network device, etc.
  • the communication device has the ability to implement the above third aspect or the third aspect. function of the method in each of the possible design examples.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit. These units can perform the corresponding functions in the above third aspect or each possible design example of the third aspect. For details, see the method examples. Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory.
  • the transceiver is used to send and receive information or data, and to communicate with other devices in the communication system.
  • the processor is configured to support the communication device to perform corresponding functions in the above third aspect or each possible design example of the third aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the communications device.
  • the present application also provides a communication device.
  • the communication device may be a first terminal device, a processor, a chip or a functional module in the first terminal device.
  • the communication device has the ability to implement the fourth aspect. or the functionality of the method in each possible design example of the fourth aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit. These units can perform the corresponding functions in the above fourth aspect or each possible design example of the fourth aspect. For details, see the method examples. Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory.
  • the transceiver is used to send and receive information or data, and to communicate with other devices in the communication system.
  • the processor is configured to support the communication device to perform corresponding functions in the above-mentioned fourth aspect or each possible design example of the fourth aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the communications device.
  • the present application also provides a communication device.
  • the communication device may be a second terminal device, and the second terminal device may be a second terminal device.
  • a processor, a chip, a functional module, etc. in the terminal device, the communication device has the function of implementing the method in the above-mentioned fifth aspect or each possible design example of the fifth aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit. These units can perform the corresponding functions in the above fifth aspect or each possible design example of the fifth aspect. For details, see the method examples. Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally a memory.
  • the transceiver is used to send and receive information or data, and to communicate with other devices in the communication system.
  • the processor is configured to support the communication device to perform corresponding functions in the above fifth aspect or each possible design example of the fifth aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the communications device.
  • embodiments of the present application provide a communication system, which may include the above-mentioned first terminal device, second terminal device, network device, etc.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions.
  • the program instructions When the program instructions are run on a computer, the computer is caused to execute the first aspect of the embodiments of the application and In any possible design thereof, or in the second aspect and any possible design thereof, or in the third aspect and any possible design thereof, or in the fourth aspect and any possible design thereof, or in the fifth aspect Aspects and methods described in any of its possible designs.
  • computer-readable storage media can be any available media that can be accessed by a computer.
  • computer-readable media may include non-transitory computer-readable media, random-access memory (random-access memory, RAM), read-only memory (read-only memory, ROM), electrically erasable memory
  • RAM random-access memory
  • ROM read-only memory
  • programmable read-only memory electrically EPROM, EEPROM
  • CD-ROM or other optical disk storage magnetic disk storage media or other magnetic storage devices, or can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media accessed by a computer.
  • embodiments of the present application provide a computer program product that includes computer program code or instructions.
  • the computer program code or instructions are run on a computer, any one of the above-mentioned aspects or the first aspect is possible.
  • the method is executed.
  • the present application also provides a chip, including a processor, the processor being coupled to a memory and configured to read and execute program instructions stored in the memory, so that the chip implements the above-mentioned first step.
  • a chip including a processor, the processor being coupled to a memory and configured to read and execute program instructions stored in the memory, so that the chip implements the above-mentioned first step.
  • aspect or any possible design of the first aspect, or the above-mentioned second aspect or any possible design of the second aspect, or the above-mentioned third aspect or any possible design of the third aspect, or the above-mentioned third aspect The fourth aspect or any possible design of the fourth aspect, or the method described in the above fifth aspect or any possible design of the fifth aspect.
  • Figure 1 is a staggered schematic diagram provided by this application.
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by this application.
  • FIG. 3 is an architectural schematic diagram of another communication system provided by this application.
  • FIG. 4 is an architectural schematic diagram of another communication system provided by this application.
  • FIG. 5 is an architectural schematic diagram of another communication system provided by this application.
  • FIG. 6 is an architectural schematic diagram of another communication system provided by this application.
  • Figure 7 is a schematic flow chart of a communication method provided by this application.
  • Figure 8 is a schematic diagram of a first SCI transmission method provided by this application and a data transmission method
  • Figure 9 is a schematic diagram of a first resource and a second resource provided by this application.
  • Figure 10 is a schematic diagram of the frequency domain position of a first SCI provided by this application.
  • Figure 11 is a schematic diagram of the frequency domain position of another first SCI provided by this application.
  • Figure 12 is a schematic flow chart of another communication method provided by this application.
  • Figure 13 is a schematic diagram of another first SCI transmission method provided by this application, which is a sum data transmission method
  • Figure 14 is a schematic diagram of another first SCI transmission method provided by this application, which is a sum data transmission method
  • FIG. 15 is a schematic diagram of two terminal devices transmitting PSSCH provided by this application.
  • Figure 16 is a schematic flow chart of another communication method provided by this application.
  • Figure 17 is a schematic structural diagram of a communication device provided by this application.
  • Figure 18 is a structural diagram of a communication device provided by this application.
  • Embodiments of the present application provide a communication method and device to clarify the transmission method of SCI and data and ensure side transmission of terminal devices.
  • the method and the device described in this application are based on the same technical concept. Since the principles of solving problems by the method and the device are similar, the implementation of the device and the method can be referred to each other, and the repeated parts will not be repeated.
  • PSCCH Physical sidelink control channel
  • PSCCH carries first-order sidelink control information (SCI).
  • SCI sidelink control information
  • PSCCH occupies two or three orthogonal frequency division multiplexing (OFDM) symbols starting from the second sidelink symbol; in the frequency domain, the physical resource block (physical resource block) that carries PSCCH resource block (PRB) starts from the lowest PRB of the lowest sub-channel of the associated physical sidelink shared channel (PSSCH), and the number of PRBs occupied by PSCCH is within the subband range of one PSSCH.
  • PSCCH consists of ⁇ 10, 12, 15, 20, 25 ⁇ resource blocks (RB), and the specific value is determined by pre-configuration or network configuration. Among them, PRB and RB can be replaced with each other.
  • the scheduling granularity of PSSCH is one time slot in the time domain, and one or more consecutive sub-channels in the frequency domain.
  • the PSSCH carries at least one of second-order SCI, data or media access control (media access control, MAC CE).
  • PSFCH physical sidelink feedback channel
  • 12 symbols are used to carry PSSCH; on resources with PSFCH, 9 symbols are used to carry PSSCH.
  • PSSCH occupies continuous L subCh sub-channels.
  • the first OFDM symbol copies the information sent on the second symbol for automatic gain control (automatic gain control, AGC).
  • PSFCH carries feedback information.
  • the penultimate and third OFDM symbols carry PSFCH.
  • the signal on the third to last symbol is a repetition of the signal on the second to last symbol to facilitate AGC adjustment on the receiving side.
  • Interleaving m consists of common resource blocks (CRB) ⁇ m,M+m,2M+m,3M+m,... ⁇ .
  • M is the interleaving number, that is, the number of interleavings, and m ⁇ 0,1,...,M-1 ⁇ , m is the interleaving number or index.
  • the value of M is related to sub-carrier spacing (SCS). For example, when the subcarrier spacing is 15 kilohertz (kHz), the value of M may be 10. For another example, when the subcarrier spacing is 30 kHz, the value of M may be 5.
  • the interleaved resource units in this application may be resource blocks, or other frequency domain resource units or time domain resource units.
  • CRB can be understood as RB.
  • Resource allocation methods include continuous and staggered methods.
  • interlacing can also be recorded as interleaving, interlacing, progressive, and combing.
  • One interlace includes N non-consecutive RBs, and the transmission bandwidth (such as a channel) includes M interlaces.
  • the spacing between RBs within the interlace can be the same or different.
  • the interval between RBs can be M RBs.
  • the interval between RBs is M-1 RBs.
  • the horizontal axis represents the frequency domain, and the unit is RB
  • the vertical axis represents the time domain, and the unit is symbol.
  • 51 RBs that is, the 51 grids shown in Figure 1.
  • 10 or 11 equally spaced RBs form an interleave, with a total of 5 interleaves.
  • Interleave 0 corresponds to the RBs of the 11 white examples shown in Figure 1
  • Interleave 1 Interleave 2
  • Interleave 3 and Interleave 4 respectively correspond to the RBs of the 10 different shaded examples shown in Figure 1. See Figure 1 for details.
  • the transmission bandwidth (eg channel) of SL-U may be 5 megahertz (MHz) to 100MHz.
  • MHz 5 megahertz
  • the number of RBs under different transmission bandwidths (such as channels) and different SCS is shown in Table 1.
  • Table 2 shows the combination of the number of interleaves M and the number of RBs included in the interleave N under different SCS.
  • New radio (NR) sidelink (SL) communication is based on resource pools.
  • the resource pool refers to a time-frequency resource dedicated to SL communication.
  • the frequency domain resources contained in the resource pool are continuous.
  • the time domain resources contained in the resource pool can be continuous or discontinuous.
  • Different resource pools are distinguished by SL resource pool identifiers (such as SL-ResourcePoolID).
  • the terminal device receives on the receiving resource pool and sends on the sending resource pool. If the resource pools have the same resource pool index, the time-frequency resources of the resource pools can be considered to be completely overlapping.
  • the SL resource pool can also be understood as: a collection of resources that can be used for SL transmission.
  • the resource pool may also be called a channel, an operating channel, a nominal channel bandwidth, or a bandwidth. That is, the resource pool, channel, and bandwidth are all used to represent the set of resources that can be used for SL transmission.
  • the resource pool includes at least one channel.
  • the resource pool includes a channel with a channel bandwidth of 20MHz and a resource pool bandwidth of 20MHz.
  • the resource pool includes 2 channels, the channel bandwidth is 20MHz, and the resource pool bandwidth is 40MHz.
  • the resource pool includes 10 channels, the channel bandwidth is 20MHz, and the resource pool bandwidth is 100MHz.
  • a channel may include one or more subchannels, or may include one or more interleaves.
  • the relationship between subchannels and interleaving can be any of the following:
  • the unit of frequency domain resources is a subchannel.
  • One subchannel includes one interleave, and the subchannel is composed of N discontinuous RBs.
  • the unit of frequency domain resources is a sub-channel, and a sub-channel is composed of N consecutive RBs.
  • the unit of frequency domain resources is an interleave, and the interleave is composed of N non-consecutive RBs.
  • the unit of frequency domain resources is a sub-channel, and a sub-channel is composed of N consecutive RBs.
  • a channel refers to a carrier or a part of a carrier consisting of a set of contiguous resource blocks (RBs) that performs channel access procedures in unlicensed spectrum. It can be understood that the channel is the bandwidth for the terminal device to perform channel access.
  • RBs resource blocks
  • the channel can also be called an RB set (RB set).
  • Channel occupation refers to the transmission on one or more channels by the terminal device after performing the channel access process.
  • the terminal device performs type 1 (listen-before-talk, LBT) and then occupies the channel for transmission for a continuous period of time, which is called channel occupancy time (COT).
  • the frequency domain unit of COT is the channel, and the time domain unit is milliseconds (ms) or time slot.
  • CO can be a time concept, that is, the time of SL transmission; it can also be a resource concept, that is, the time-frequency resources occupied by SL transmission.
  • COT can be a time concept, that is, the time of SL transmission; it can also be a resource concept, that is, the time-frequency resources occupied by SL transmission.
  • Terminal devices can be located in adjacent Or multiple non-adjacent channel transmissions, the terminal device’s transmission on multiple channels can be understood as: the terminal device’s transmission occupies one COT, and the COT occupies multiple channels in the frequency domain; or, the terminal device’s transmission occupies Multiple COTs, each COT occupies 1 channel in the frequency domain.
  • COT and CO may be the same concept.
  • the terminal device may transmit PSCCH and or PSSCH on M adjacent channels, or may transmit PSCCH and or PSSCH on one channel.
  • the terminal device transmits PSCCH on interlaces A and PSSCH on interlaces B, where A is less than or equal to B, and A and B are both integers.
  • Time domain resources include symbols, slots, mini-slots, partial slots, sub-frames, radio frames, and sensing slots. sensing slot), etc.
  • Frequency domain resources include resource element (RE), resource block (RB), subchannel (subchannel), resource pool (resource pool), bandwidth (bandwidth), bandwidth part (BWP), and carrier (carrier), channel (channel), interlace (interlace), etc.
  • RE resource element
  • RB resource block
  • subchannel subchannel
  • resource pool resource pool
  • bandwidth bandwidth
  • BWP bandwidth part
  • carrier carrier
  • channel channel
  • interlace interlace
  • this article uses time domain resources as time slots and frequency domain resources as subchannels or interleaving to describe the resources for transmitting PSCCH or PSSCH.
  • SL communication on unlicensed spectrum is called SL-U.
  • Wi-Fi terminal device, Bluetooth terminal device, and Zigbee terminal device may be referred to as different system terminal devices for SL terminal devices.
  • the nominal channel bandwidth is the widest frequency band allocated to a single channel, including guard bands.
  • OCB is the bandwidth that contains 99% of the signal power.
  • the nominal channel bandwidth of a single operating channel is 20MHz.
  • OBC should be between 80% and 100% of the nominal channel bandwidth. For terminal devices with multiple transmit chains, each transmit chain shall meet this requirement.
  • OCB can vary with time or payload.
  • the terminal device can temporarily transmit at less than 80% of its nominal channel bandwidth, and the minimum transmission bandwidth is 2MHz.
  • Interleaved transmission is to meet OCB requirements. Taking SCS with 20MHz bandwidth and 30kHz as an example, the transmission bandwidth has 51 RBs. If a subchannel consists of 10 consecutive RBs, there are 5 subchannels (remaining 1 RB is free). If the terminal device transmits on a sub-channel, the occupied bandwidth is about 4MHz, which does not meet the OCB requirement of "OCB should be between 80% and 100% of the nominal channel bandwidth".
  • the channel bandwidth will be occupied by about 20MHz, that is, 100% of the nominal bandwidth; if the interleaved transmission with index 1 is used, the channel bandwidth will be occupied by about 20 MHz. 18MHz, which is about 46/51 ⁇ 90% of the bandwidth. Can meet the needs of OCB.
  • Sidelink communication refers to communication between terminal devices through sidelinks.
  • D2D device-to-device
  • D2D technology emerged at the historic moment.
  • the application of D2D technology can reduce the burden of cellular networks, reduce battery power consumption of terminal devices, increase data rates, and can well meet the needs of proximity services.
  • D2D technology allows multiple D2D-enabled terminal devices to conduct direct discovery and direct communication with or without network infrastructure.
  • Internet of Vehicles application scenarios based on D2D technology have been proposed. However, due to security considerations, the latency requirements in this scenario are very high and cannot be achieved with existing D2D technology.
  • V2X communication refers to the communication between vehicles and anything in the outside world, including vehicle-to-vehicle communication (vehicle to vehicle, V2V), vehicle-to-pedestrian communication (vehicle to pedestrian, V2P), and vehicle-to-infrastructure communication. Communication (vehicle to infrastructure, V2I), vehicle to network communication (vehicle to network, V2N), etc.
  • V2X communication is aimed at high-speed equipment represented by vehicles. It is the basic technology and key technology applied in scenarios with very high communication delay requirements in the future, such as smart cars, autonomous driving, intelligent transportation systems and other scenarios.
  • V2X communication can support communication scenarios with and without network coverage, and its resource allocation method can adopt the network access equipment scheduling mode, such as evolution universal terrestrial radio access network node B (eNB) Scheduling mode and terminal device self-selected mode.
  • eNB evolution universal terrestrial radio access network node B
  • the vehicle terminal device can transmit some of its own information, such as position, speed, intention (turning, merging, reversing) and other information periodically as well as information triggered by some non-periodic events to surrounding vehicles.
  • the terminal device transmits, and similarly the vehicle terminal device will also receive information from surrounding terminal devices in real time.
  • SL-U is a communication scenario for sideline communication in Rel-18.
  • the communication technology follows the V2X communication architecture and extends communication scenarios to short-distance communication between smart homes, augmented reality (AR), virtual reality ( Communication between virtual reality, VR), extended reality (eXtended reality, XR), and mixed reality (mixed reality, MR) wearable devices, mobile phones, and computers.
  • AR augmented reality
  • VR virtual reality
  • XR extended reality
  • mixed reality mixed reality
  • sideline communication may include at least one of D2D communication, LTE V2X communication, NR V2X communication, and SL-U communication.
  • the terminal device may be, for example, a terminal device, or a module used to implement the functions of the terminal device, such as a chip or a chip system, and the chip or chip system may be provided in the terminal device.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice and/or data connectivity to users. equipment.
  • the terminal device may include a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • terminal devices can be: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable Wearable devices, virtual reality (VR) devices, augmented reality (AR) devices, XR devices, MR devices, wireless terminals in industrial control, and self-driving devices Wireless terminals, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or smart Wireless terminals in homes (smart homes), etc.
  • MID mobile internet devices
  • VR virtual reality
  • AR augmented reality
  • XR devices XR devices
  • MR devices magnetic resonance devices
  • Wireless terminals Wireless terminals, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or smart Wireless terminals in homes (smart homes), etc.
  • the terminal device can also be a device-to-device communication (D2D) terminal device, a vehicle to everything (V2X) communication terminal device, a smart vehicle, or a vehicle-machine system (or Internet of Vehicles system) ( telematics box (TBOX), machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment.
  • D2D device-to-device communication
  • V2X vehicle to everything
  • TBOX telematics box
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • the terminal device may be a vehicle, a ship or an aircraft, or a terminal-type roadside unit, or a communication module or chip built into the vehicle or roadside unit.
  • the terminal device may be a vehicle-mounted module.
  • the terminal device may also be a road side unit (RSU). If the various terminal devices introduced above are located on the vehicle, such as placed or installed
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Used, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device can also be smart equipment such as amusement equipment, smart appliances, or drones.
  • a terminal device is taken as an example for description.
  • Network device which can also be called network equipment, is a device that provides access to terminal devices.
  • Network devices may include radio access network (RAN) devices, such as base stations.
  • RAN radio access network
  • Network equipment may also refer to equipment that communicates with terminal equipment over the air interface.
  • the network equipment may include an evolved base station (evolved Node B) in the LTE system or long term evolution-advanced (LTE-A), which may be referred to as eNB or e-NodeB).
  • eNB is a device deployed in a wireless access network that meets the fourth generation (the fourth generation, 4G) standards of mobile communication technology to provide wireless communication functions for terminal equipment.
  • the network device can also be a new radio controller (NR controller), it can be a (gNode B, gNB) in the 5G system, it can be a centralized network element (centralized unit), it can be a new wireless base station, it can be
  • the radio frequency remote module can be a micro base station (also called a small station), a relay, a distributed unit, various forms of macro base stations, or a transmission and reception point. (transmission reception point, TRP), transmission measurement function (TMF), transmission point (transmission point, TP) or any other wireless access equipment, the embodiments of the present application are not limited thereto.
  • Network equipment may also include a radio network controller (RNC), a Node B (NB), a base station controller (BSC), a base transceiver station (BTS), and a home base station.
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • HNB home evolved NodeB
  • BBU base band unit
  • RRU remote radio unit
  • Wifi wireless fidelity
  • access point access point
  • AP wireless access point
  • the baseband pool (BBU pool) and RRU in the network cloud radio access netowrk, CRAN), etc.
  • the embodiments of this application do not limit the specific technologies and specific equipment forms used by network equipment.
  • a network device may correspond to an eNB in a 4G system and a gNB in a 5G system.
  • the base station in the embodiment of the present application may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer functions of the wireless network they possess. For example, the functions of the packet data convergence protocol (PDCP) layer and above are set in CU and the protocol layer below PDCP, such as wireless link. Functions such as the radio link control (RLC) layer and the medium access control (medium access control, MAC) layer are set in the DU. It should be noted that this division of protocol layers is just an example, and division can also be performed on other protocol layers.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the radio frequency device can be remote and not placed in the DU, or it can be integrated in the DU, or partially remote and partially integrated in the DU.
  • the control plane (CP) and user plane (UP) of the CU can also be separated and implemented into different entities, respectively control plane CU entities (CU-CP entities). and user plane CU entities (CU-UP entities).
  • CU-CP entities control plane CU entities
  • CU-UP entities user plane CU entities
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the UE can be sent to the CU through the DU.
  • the DU may directly encapsulate the signaling through the protocol layer and transparently transmit it to the terminal device or CU without parsing the signaling.
  • the CU is divided into network equipment on the RAN side.
  • the CU can also be divided into network equipment on the core network (core network, CN) side. This application does not limit this.
  • the network device may also be a central processing unit (central processing element, CPE), router, etc.
  • CPE central processing element
  • the network device may also be a functional module, a chip or a chip system.
  • functional modules, chips or chip systems may be disposed within the network device.
  • a network device is taken as an example for description.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • At least one (item) of the following” or similar expressions thereof refers to any combination of these items, including any combination of single item (items) or plural items (items).
  • at least one of a, b or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Can be single or multiple.
  • FIGS. 2-6 illustrate the architectures of various communication systems to which the communication methods provided by embodiments of the present application can be applied.
  • Figure 2 shows the architecture of a communication system including cellular communication and terminal device direct communication.
  • the communication system shown in Figure 2 may include at least one network device and at least two terminal devices.
  • the network device can send information, etc. to the terminal device 1 through the downlink
  • the terminal device 1 can send information, etc. to the network device through the uplink
  • the terminal device 1 and the terminal device 2 can be directly connected through the side link. communication.
  • terminal device 1 and terminal device 2 are both within the coverage range of the network device.
  • terminal device 1 can also be within the coverage range of the network device, and terminal device 2 can be outside the coverage range of the network device. , this application does not limit this.
  • Figure 3 shows the architecture of a communication system including cellular communication and vehicle network communication.
  • the communication system shown in FIG. 3 may include at least one network device and at least two terminal devices.
  • one network device and three terminal devices are shown in FIG. 3 .
  • the terminal devices are shown as vehicles, as shown in Vehicle 1 , Vehicle 2 and Vehicle 3 in FIG. 3 .
  • the network device can send information, etc. to vehicle 1 through the downlink, and vehicle 1 can send information, etc. to the network device through the uplink.
  • Direct communication between vehicle 1 and vehicle 2 can be carried out through the side link.
  • Vehicle 1 Direct communication with vehicle 3 can also be carried out through a side link.
  • vehicle 1 and vehicle 2 are within the coverage range of the network device, and vehicle 3 is outside the coverage range of the network device.
  • vehicle 1 can also be within the coverage range of the network device, and vehicle 2 and Vehicles 3 are both outside the coverage range of the network device, or vehicle 1 and vehicle 3 can be within the coverage range of the network device, and vehicle 2 is outside the coverage range of the network device. This application does not limit this.
  • the above-mentioned cellular communication may include 5G NR communication or LTE communication, etc.
  • FIG. 4 shows the architecture of a V2X communication system.
  • V2X communication may include V2V, V2P, V2I, and V2N.
  • a V2X communication system involves direct communication between two terminal devices.
  • the two terminal devices may be vehicles or vehicle-mounted terminal devices located in the vehicle.
  • one terminal device may be a vehicle or a vehicle-mounted terminal device located in a vehicle, and the other terminal device may be a mobile terminal, a wearable device, or other terminal device carried by pedestrians.
  • one terminal device may be a vehicle or a vehicle-mounted terminal device located in the vehicle, and the other terminal device may be an infrastructure such as an RSU.
  • one terminal device may be a vehicle or a vehicle-mounted terminal device located in the vehicle, and the other terminal device may be a base station.
  • FIG. 5 shows the architecture of a communication system for direct communication between terminal devices.
  • Two terminal devices may be included in the communication system. Communication between two terminal devices can occur via sidelinks.
  • FIG. 4 shows an example in which one terminal device is an AR, VR or MR device, and the other terminal device is a processing device or a display device.
  • FIG. 6 shows the architecture of a communication system including WiFi communication and direct connection communication.
  • the communication system shown in FIG. 6 may include at least one network device and at least two terminal devices.
  • FIG. 6 shows one network device and three terminal devices (terminal device 1, terminal device 2 and terminal device 3 in FIG. 6).
  • the network device is shown as a router.
  • the router can send information, etc. to the terminal device 1 through the downlink
  • the terminal device 1 can send information, etc. to the router through the uplink
  • the terminal device 1 and the terminal device 2 can perform direct communication through the side link.
  • the terminal device 1 and the terminal device 3 may also perform direct communication through a side link.
  • the network device configures the terminal equipment to send the PUSCH and PUCCH in an interleaved transmission mode or a non-interleaved transmission mode.
  • the interleaved transmission method can support multiple terminal devices to transmit on the same time slot at the same time. That is to say, in the NR-U scenario, the network device directly indicates the transmission mode to the terminal device. Then, the network device decodes PUCCH and PUSCH according to the indicated transmission mode.
  • the PDSCH and PDCCH sent by network equipment are in non-interleaved For transmission in a non-interleaved manner, the terminal device can directly decode it in a non-interleaved manner.
  • both the sending device and the receiving device are terminal devices. There is no clear determination method for the way that two terminal devices receive or transmit PSCCH and PSSCH, which may cause the receiving terminal device or the resource-aware terminal device to not know whether the PSCCH is transmitted in an interleaved manner or in a non-interleaved manner. of.
  • the receiving terminal device or the resource-aware terminal device needs to try to decode the PSCCH according to these two methods respectively. This is equivalent to doubling the decoding overhead, which requires extremely high performance for the terminal device. Moreover, due to performance limitations, some terminal devices can only support decoding the PSCCH once, that is, they cannot attempt to decode the PSCCH in both interleaved and non-interleaved modes. This will cause the decoding of the PSCCH to fail, greatly affecting the reliability of communication.
  • the network device is a device with strong performance and decodes the PUCCH in a fixed manner. The performance of the terminal device is weaker than that of the network device.
  • the terminal device If the terminal device is required to decode the PSCCH in two ways: interleaved and non-interleaved, the terminal device needs to be implemented with a large hardware overhead, which is difficult to implement.
  • the terminal device due to the diversity of SL-U business scenarios, it is necessary to support the transmission of large data packets in the resource pool and the transmission of large data packets in the resource pool. Therefore, PSSCH needs to be flexibly transmitted in an interleaved or non-interleaved manner.
  • NR-U's main service model is the XR service.
  • the downlink data packets of the XR service are large and the uplink data packets are small. Therefore, when the network device transmits the PDSCH, it can occupy the full channel or occupy at least 80% of the channel in the frequency domain.
  • the terminal device transmits PUSCH if it transmits in a non-interleaved manner, it may not be able to occupy at least 80% of the channel. If the entire channel is occupied, the signal-to-interference-to-noise ratio will decrease and the decoding performance will be affected.
  • the network device is used to indicate through RRC signaling that PUCCH and PUSCH are permanently transmitted in an interleaved manner, or that PUCCH and PUSCH are permanently transmitted in a non-interleaved manner.
  • XR business is also a major scenario for SL-U.
  • the data packet sent by terminal device 1 to terminal device 2 is large, and the data packet sent by terminal device 2 to terminal device 1 is small.
  • they can be transmitted in a non-interleaved manner; for small data packets, an interleaved method is more suitable.
  • even for other SL-U services there are similar problems, that is, some service data packets are large and some service data packets are small.
  • embodiments of the present application propose a communication method that can clarify the transmission method of SCI and data and ensure side transmission of the terminal device.
  • the device that performs sending SCI and data may be a terminal device, a processor, a chip or a functional module in the terminal device, etc.
  • the terminal device may be understood as a sending terminal device.
  • the device that performs receiving SCI and data can be a terminal device, a processor, a chip or a functional module in the terminal device, etc.
  • the terminal device can be understood as a receiving terminal device.
  • One terminal device can serve as both a transmitting terminal device and a transmitting terminal device.
  • the following description takes the sending terminal device as the first terminal device and the receiving terminal device as the second terminal device as an example, which is not limited in this application.
  • the terminal device in the resource pool can transmit PSCCH and or PSSCH on M adjacent channels, or can transmit PSCCH and or PSSCH on one channel.
  • the terminal device transmits PSCCH on A interlace
  • PSSCH is transmitted on B interlaces, where A is less than or equal to B, and both A and B are integers.
  • B is an integer multiple of A.
  • embodiments of the present application provide a communication method, which is suitable for the communication system shown in Figures 2 to 6.
  • the process of this method may include:
  • Step 701 The first terminal device determines the transmission mode of the first SCI.
  • the first SCI is the first-order SCI
  • the first-order SCI is carried on the PSCCH.
  • first-order SCI and PSCCH may be described alternatively.
  • the first terminal device can determine the transmission mode of the first SCI in the following two ways:
  • Method a1 The first terminal device determines the predefined transmission method of the first SCI.
  • the transmission mode of the first SCI is defined by the protocol.
  • Method a2 the first terminal device receives the first information from the network device, or the first terminal device obtains the first information (that is, obtains the preconfigured first information), and the first information indicates the transmission mode of the first SCI .
  • the first information may be RRC information, for example, PC-5 RRC information.
  • one possible way is to pre-configure the transmission mode of the first SCI for the first terminal device through the first information; another possible way is for the network device to configure the first terminal device for the first terminal device through the first information.
  • a SCI transmission method is to pre-configure the transmission mode of the first SCI for the first terminal device through the first information; another possible way is for the network device to configure the first terminal device for the first terminal device through the first information.
  • preconfigured can be understood as preconfigured on the terminal device and/or preconfigured on the SIM card.
  • all terminal devices in the resource pool transmit the first SCI according to the transmission mode indicated by the first information.
  • the transmission mode of the first SCI may be an interleaved transmission mode or a non-interleaved transmission mode.
  • the transmission mode of the first SCI is an interleaved transmission mode, which can also be understood as the first SCI is interlaced.
  • the transmission mode of the first SCI is a non-interlaced transmission mode, which can also be understood as the first SCI is non-interlaced.
  • the interleaved transmission method in this application may refer to transmission on discontinuous (that is, discrete) RBs in the frequency domain; optionally, discontinuity may also be called non-adjacent.
  • the discontinuous (ie discrete) RBs may be equally spaced in the frequency domain.
  • Transmission on discontinuous (ie discrete) RBs in the frequency domain can also be described as interleaving RBs in the frequency domain.
  • transmission on one interlace is discontinuous, and transmission on two or more interlaces can be understood as continuous transmission.
  • the non-interleaved transmission method can refer to transmission on contiguous or adjacent RBs in the frequency domain.
  • the non-interleaved mode can also be understood as transmission on continuous frequency domain resources, transmission on sub-channels, transmission in the form of sub-channels or transmission on sub-channels of continuous RBs.
  • the terminal device can also transmit on the sub-channel in an interleaved transmission mode, which can also be said to be on a sub-channel with discontinuous RBs. transmission.
  • the two transmission modes are distinguished by “interleaved transmission mode” and “non-interleaved transmission mode”.
  • the number of RBs in a sub-channel and the number of RBs in an interleave can be configured to be equal. number.
  • Step 702 The second terminal device determines the transmission mode of the first SCI.
  • the method for the second terminal device to determine the transmission mode of the first SCI is similar to that for the first terminal device. Reference can be made to the above methods a1 and a2, which will not be described in detail here.
  • the second terminal device is a terminal device through which the first terminal device receives the first SCI and data. That is, the second terminal device can be understood as a receiving terminal device or a terminal device that performs resource awareness.
  • the first terminal device and the second terminal device determine the transmission mode of the first SCI, they determine the transmission mode of all SCIs, so that the transmission mode of the first SCI can be determined.
  • the network device indicates the SCI transmission mode to the first terminal device and the second terminal device through RRC information, so that the first terminal device and the second terminal device can determine the transmission mode of any SCI.
  • the first SCI is taken as an example for explanation, and the same applies to other SCIs.
  • the first terminal device and the second terminal device determine the transmission mode of the first SCI, which can also be understood as the first terminal device and the second terminal device determining the transmission mode of the PSCCH carrying the first SCI, or the first terminal device determines the transmission mode of the PSCCH carrying the first SCI.
  • the device and the second terminal device determine the transmission mode of the PSCCH. It should be understood that the transmission method of the PSCCH and the transmission method of the first SCI can be understood to be the same.
  • Step 703 The first terminal device sends the first SCI to the second terminal device in a certain transmission mode of the first SCI.
  • the second terminal device receives the first SCI from the first terminal device in a certain transmission mode of the first SCI.
  • SCI the first SCI indicates how the data is transmitted.
  • sending or receiving can also be described as transmission, mapping, multiplexing, decoding, etc., and this application does not limit this.
  • Step 704 The first terminal device sends data to the second terminal device in a data transmission mode, and accordingly, the second terminal device receives data from the first terminal device in a data transmission mode.
  • the data transmission method may be an interleaved transmission method or a non-interleaved transmission method.
  • the first terminal device determines the data transmission mode, and sends the data to the second terminal device in the data transmission mode.
  • the second terminal device determines the transmission mode of the data indicated by the first SCI based on the first SCI, and receives the data from the first terminal device in the data transmission mode indicated by the first SCI.
  • the data is carried on the PSSCH.
  • the PSSCH can only carry data, or it can also include the second-order SCI and/or MAC CE.
  • the transmission method of the second-order SCI is the same as the data transmission method
  • the transmission method of the MAC CE is the same as the data transmission method.
  • the transmission method is the same. It should be understood that the transmission method of PSSCH is the same as the transmission method of data.
  • the transmission method of the first SCI indicating data can also be described as the transmission method of the first SCI indicating PSSCH.
  • the transmission mode of the first SCI indicating data or PSSCH can also be understood as indicating whether to transmit in an interleaved transmission mode, or as indicating whether to transmit in a non-interleaved transmission mode.
  • the first SCI may indicate the data transmission mode through the first field in the first SCI.
  • the first field may be the most significant bit (the most significant bit, MSB) or the least significant bit (least significant bit, LSB) in the first SCI.
  • the first field may include 1 bit, and this 1 bit indicates the data transmission mode.
  • the value of the first field can be ⁇ 0,1 ⁇ .
  • the first field is "0", it means that the data transmission mode is cross.
  • Interleaved transmission mode when the first field is "1”, it means that the data transmission mode is non-interleaved transmission mode.
  • the first field is "1” it indicates that the data transmission mode is interleaved transmission mode
  • when the first field is "0" it indicates that the data transmission mode is non-interleaved transmission mode.
  • the value of the first field may be ⁇ enable (enable), disable (disable) ⁇ , or ⁇ interlaced (interlaced), non-interlaced (non-interlaced) ⁇ .
  • the indication method is the same as the value of the first field, which can be ⁇ 0,1 ⁇ , and will not be described again.
  • the first SCI may indicate the data transmission mode by whether to include the first field. For example, when the first SCI includes the first field, it indicates that the data transmission mode is an interleaved transmission mode; when the first SCI does not include the first field, it indicates that the data transmission mode is a non-interleaved transmission mode. Alternatively, when the first SCI does not include the first field, it indicates that the data transmission mode is an interleaved transmission mode, and when the first SCI includes the first field, it indicates that the data transmission mode is a non-interleaved transmission mode. For example, the value of the first field can be ⁇ enable ⁇ or ⁇ interlaced ⁇ . The indication method is the same as the value of the first field, which can be ⁇ 0 ⁇ , and will not be described again.
  • the first terminal device when the transmission mode of the first SCI is an interleaved transmission mode, when the first SCI indicates that the data transmission mode is an interleaved transmission mode, the first terminal device sends the interleaved starting RB position of the first SCI ( For example, the starting position of the RB with the lowest index (that is, the smallest) of the interleave in which the data is located may be the same.
  • the first terminal device transmits the PSCCH on A interlaces and the PSSCH on B interlaces.
  • a and B are both positive integers.
  • the starting RB position of the A interlaces is the same as the RB starting position of the interleave with the lowest index of the B interlaces.
  • the first terminal device when the transmission mode of the first SCI is an interleaved transmission mode, when the first SCI indicates that the transmission mode of the data is a non-interleaved transmission mode, the first terminal device sends the interleaved starting RB position of the first SCI The starting position of the RB is the same as the subchannel with the lowest index of the subchannel where the data is located.
  • the first terminal device transmits PSCCH on A interlaces and transmits PSSCH on B sub-channels.
  • a and B are both positive integers.
  • the starting RB position of the A interleave is the same as the RB starting position of the subchannel with the lowest index of the B subchannel.
  • the ratio of the number of data sub-channels to the channel where the data sub-channel is located or the ratio of the number of data sub-channels to the total number of sub-channels is greater than 80%, and the data transmission method is a non-interleaved transmission method.
  • the channel may be a channel of LBT; or may be a channel for performing channel access.
  • the first terminal device performs channel access on the channel, and after successful channel access, transmits the first SCI and/or data on the channel in an interleaved or non-interleaved manner.
  • the bandwidth of the channel is Z*20MHz, and Z is an integer greater than or equal to 1.
  • the transmission mode of the first SCI is an interleaved transmission mode
  • the first SCI can occupy A interleaves.
  • M is the total number of interleavings in the resource pool.
  • the first terminal device sends data to the second terminal device in interleaved transmission mode
  • the data occupies B interleaves
  • the value range of B is ⁇ 1, 2, 3, 4,...,M ⁇ ; or the first terminal device uses non-
  • the data occupies B sub-channels.
  • the value range of B is ⁇ 1,2,3,4,...,P ⁇ .
  • P is the total number of sub-channels in the resource pool.
  • B is greater than or equal to A, or B is an integer multiple of A.
  • the first SCI may occupy A interleaves through preconfiguration or network device configuration. All transmitting terminal devices in the resource pool transmit SCI on A interlaces.
  • the transmission mode of the first SCI is an interleaved transmission mode
  • the data transmission mode is a non-interleaved transmission mode.
  • the resource pool includes 4 sub-channels
  • the first terminal device searches for The first SCI is transmitted on an interleave with index 0, and data is transmitted on 4 sub-channels with index 0, 1, 2, and 3.
  • the resource pool includes 4 sub-channels.
  • the first terminal device transmits the first SCI on an interleave with index 0, and on 3 sub-channels with indexes 0, 1, and 2. transfer data on.
  • the starting RB position of the first SCI is the same as the starting RB position of the subchannel with the lowest subchannel index where the data is located, that is, the starting RB of interleave 0 is the same as the starting RB of subchannel 0.
  • the transmission mode of the first SCI is an interleaved transmission mode
  • the data transmission mode is an interleaved transmission mode.
  • the resource pool includes 4 interlaces.
  • the first terminal device transmits the first SCI on one interlace with index 0, and on 3 interlaces with indexes 0, 1, and 2. transfer data.
  • the starting RB position of the first SCI is the same as the starting RB position of the interleave with the lowest interleaving index of the data, and both are the starting RB of interleave 0.
  • the first terminal device transmits the first SCI on XX and transmits data on YY, which means that the first terminal device sends the first SCI to the second terminal device on XX and the second terminal device on YY.
  • the terminal device sends data, and accordingly, the second terminal device receives the first SCI from the first terminal device on XX and the data from the first terminal device on YY.
  • similar understanding of transmission by the first terminal device is the same, and will not be explained one by one below.
  • the first SCI can be described as PSCCH, and the data can be described as PSSCH. Similar replacements can be made in the following examples, which are not limited in this application.
  • the first terminal device may determine the data or the frequency domain resource of the PSSCH carrying the data.
  • the first terminal device determines the data or the frequency domain resource of the PSSCH that carries the data. Specifically, it can be understood as: the first terminal device determines the data or the number or sub-interleaving of the PSSCH that carries the data. The number of channels; or, the first terminal device determines whether the data or the PSSCH carrying the data occupies the channel where the interleave or sub-channel of the data or the PSSCH carrying the data is located.
  • the first terminal device determines the data or the frequency domain resource of the PSSCH carrying the data, which may include the following two methods:
  • Method b1 The first terminal device determines the predefined data or the frequency domain resource of the PSSCH carrying the data.
  • the data or the frequency domain resource of the PSSCH carrying the data is predefined by the protocol.
  • Method b2 The first terminal device receives the second information from the network device, or the first terminal device obtains the second information (that is, obtains the preconfigured second information), and the second information indicates the data or the PSSCH carrying the data. frequency domain resources.
  • Method b3 The first terminal device can determine the data or the frequency domain resource of the PSSCH carrying the data by itself.
  • the second information may indicate the data or the number of interlaces or the number of sub-channels of the PSSCH carrying the data.
  • the second information may include bits, through the bits indicate data or the number of interleaves of the PSSCH carrying the data, where M is the total number of interleaves in the resource pool.
  • the second information may include bits, through the bits indicate data or the number of subchannels of the PSSCH carrying the data, and P is the total number of subchannels in the resource pool.
  • the first information indicates "PSSCH is transmitted in an interleaved manner"
  • the second information indicates the number of interleaved PSSCHs.
  • the second information indicates the number of sub-channels of PSSCH. number.
  • the second information may indicate whether the data or the PSSCH carrying the data occupies the channel where the interleaving or sub-channel of the data or the PSSCH carrying the data is located.
  • the second information may indicate whether the data occupies the channel where the interleave or sub-channel of the data is located.
  • the second information may indicate whether the PSSCH carrying the data occupies the channel where the interlace or sub-channel of the PSSCH carrying the data is located.
  • the second information may include 1 bit.
  • the 1 bit indicates that the data or the PSSCH carrying the data occupy a portion (for example, 1 ) interleaving or all interleaving, the all interleaving is the channel where the interleaving of the data or the PSSCH carrying the data is occupied; or when the transmission mode of the data or the PSSCH carrying the data is a non-interleaved transmission mode, through
  • This 1 bit indicates that the data or the PSSCH carrying the data occupies part (for example, 1) of the sub-channels or all of the sub-channels.
  • the entire sub-channel is the sub-channel that is full of the data or the PSSCH carrying the data.
  • whether the 1 bit exists in the second information may also be used to indicate whether the data or the PSSCH carrying the data occupies the channel where the interleaving or sub-channel of the data or the PSSCH carrying the data is located.
  • the value of the second information may be ⁇ 0,1 ⁇ . When the second information is "0", it indicates “full”, when it is “1”, it indicates “not full”, or when the second information is " When "1” it indicates “full”, when it is "0” it indicates "not full”.
  • the value of the second information may be ⁇ enable, disable ⁇ , and the indication method is the same as the value of the first field, which may be ⁇ 0,1 ⁇ , which will not be described again.
  • whether the data occupies the interleave or the channel where the sub-channel of the data is located can also be indicated by whether there is second information, or whether the PSSCH carrying the data is full by whether the PSSCH carrying the data is occupied by whether there is second information.
  • the channel on which the interleave or sub-channel of the PSSCH carrying the data is located. For example, “full” is indicated when the second information is present, and “not full” is indicated when the second information is not present, or “full” is indicated when the second information is not present, and "not full” is indicated when the second information is present.
  • the value of the second information may be ⁇ enable ⁇
  • the indication method is the same as the value of the second information may be ⁇ 0 ⁇ , which will not be described again.
  • the partial interleaving may also include the case of no interleaving, that is, the case of 0 interleavings.
  • the second information may be RRC information, such as PC-5 RRC information.
  • the second terminal device may also determine the data or the frequency domain resource of the PSSCH carrying the data.
  • the second terminal device determines the data or the frequency domain resource of the PSSCH carrying the data. Specifically, it can also be understood as: the second terminal device determines the data or the interleaving number of the PSSCH carrying the data or The number of sub-channels; or, the second terminal device determines whether the data or the PSSCH carrying the data occupies the channel where the interleaving or sub-channel of the data or the PSSCH carrying the data is located.
  • the method for the second terminal device to determine the data or the frequency domain resources of the PSSCH carrying the data may be the same as the method for the first terminal device to determine the data or the frequency domain resources of the PSSCH carrying the data.
  • the methods are similar, please refer to the above-mentioned method b1 and method b2, and will not be described again here.
  • the second terminal device is determined through the second information sent by the network device.
  • the first SCI may also indicate the data or the frequency domain resource of the PSSCH that carries the data.
  • the second terminal device may determine the data or the frequency domain of the PSSCH that carries the data based on the first SCI. resource.
  • the method in which the first SCI indicates the data or the frequency domain resources of the PSSCH carrying the data may be similar to the method in which the above-mentioned second information indicates the data or the frequency domain resources of the PSSCH carrying the data. Refer to each other and will not be described in detail here.
  • the first terminal device may determine whether the data or the PSSCH carrying the data is transmitted on the first resource; or, the first terminal device may determine whether the data or the PSSCH carrying the data is transmitted on the first resource.
  • the PSSCH or the second SCI is transmitted on the first resource.
  • the first SCI and the second SCI may schedule the same data, or the second SCI may be a duplicate of the first SCI.
  • the first terminal device occupies the same frequency domain position as the first resource and transmits the PSSCH, no other terminal device occupies the first resource. This can have the following beneficial effects:
  • the first terminal device can send a repetition of the first SCI on the first resource, and the second terminal device can combine decoding, thereby improving the reliability of the PSCCH and increasing the coverage of the PSCCH.
  • the first terminal device may also transmit the PSSCH on the first resource. Compared with not transmitting PSSCH on the first resource, there are more resources to map data, and PSSCH can be transmitted at a relatively low code rate, thereby improving the anti-interference capability and reliability of PSSCH.
  • transmitting on the first resource can ensure that the transmission width of the first terminal device in the frequency domain does not change, that is to say, the first terminal device transmits with constant power on the time slot, Power control is easy to implement.
  • the time domain location of the first resource is the time domain location where the first SCI is located
  • the frequency domain location of the first resource is the frequency domain location where the data or the PSSCH carrying the data is located, excluding A frequency domain position other than the frequency domain position where the first SCI is located.
  • the time domain position of the first resource may be the first 2, first 3 or first 4 symbols of the time slot.
  • the frequency domain position of the first resource is an interlace in which the data or PSSCH is located, in which the PSCCH is not mapped, or in which the data or PSSCH is located in an interlace that does not coincide with the PSCCH interleave, or in which the data or PSSCH is located in a subchannel in which the PSCCH is not mapped.
  • PSSCH occupies B interlaces.
  • B is greater than 1
  • the symbols where B-1 interleaved PSCCHs are located are not occupied. Since other terminal devices will not use the symbols where the B-1 interleaved PSCCHs are located, the first terminal device can transmit data or PSSCH or the second SCI at the above-mentioned positions.
  • the first terminal device determines whether the data or the PSSCH carrying the data is transmitted on the first resource, which may include the following two methods:
  • Method c1 The first terminal device determines whether the predefined data or the PSSCH carrying the data is transmitted on the first resource.
  • the protocol predetermines whether the data or the PSSCH carrying the data is transmitted on the first resource.
  • Method c2 The first terminal device receives the third information from the network device, or the first terminal device obtains the third information (that is, obtains the preconfigured third information), the third information indicates the data or carries the Whether the PSSCH of the data is transmitted on the first resource.
  • the third information may indicate whether the data or the PSSCH carrying the data is transmitted on the first resource through 1 bit.
  • the value of the third information may be ⁇ 0,1 ⁇ .
  • the third information is "0”, it means that the data or the PSSCH carrying the data is transmitted on the first resource.
  • the third information is "1” ” means that the data or the PSSCH carrying the data is not transmitted on the first resource; or, when the third information is “1”, it means that the data or the PSSCH carrying the data is transmitted on the first resource.
  • the third information is "0" it means that the data or the PSSCH carrying the data is not transmitted on the first resource.
  • the value of the third information may be ⁇ enable, disable ⁇ , and the indication method is the same as the value of the third information, which may be ⁇ 0,1 ⁇ , which will not be described again.
  • whether the data or the PSSCH carrying the data is transmitted on the first resource may be indicated by whether the third information exists.
  • the third information it means that the data or the PSSCH carrying the data is transmitted on the first resource; when the third information does not exist, it means that the data or the PSSCH carrying the data is not transmitted on the first resource; or , when the third information does not exist, it means that the data or the PSSCH carrying the data is transmitted on the first resource; when the third information exists, it means that the data or the PSSCH carrying the data is not transmitted on the first resource.
  • the value of the third information may be ⁇ enable ⁇ .
  • the indication method and the value of the third information may be ⁇ 0 ⁇ , which will not be described again.
  • the first terminal device When the third information indicates that data or the PSSCH carrying the data is transmitted on the first resource, the first terminal device sends the data or the PSSCH carrying the data to the second terminal device on the first resource. When the third information indicates that the data or the PSSCH carrying the data is not transmitted on the first resource, the first terminal device does not send the data or the PSSCH carrying the data to the second terminal device on the first resource.
  • the first terminal device transmits the first SCI on an interleave with index 0, and on the 4 sub-channels with indexes 0, 1, 2, and 3.
  • PSSCH is transmitted on the channel.
  • the third information indicates that when the PSSCH is transmitted on the first resource, the first terminal device transmits the PSSCH on the first resource.
  • the first resource is the first three symbols of the slot in the time domain, and is the RBs in sub-channels 0, 1, 2, and 4 that do not overlap with interleave 0 in the frequency domain.
  • the first terminal device transmits the first SCI on an interleave with index 0, and on 3 sub-channels with indexes 0, 1, and 2 PSSCH is transmitted on.
  • the third information indicates that when the PSSCH is transmitted on the first resource, the first terminal device transmits the PSSCH on the first resource.
  • the first resource is the first three symbols of the slot in the time domain, and is the RBs in sub-channels 0, 1, and 2 that do not overlap with interleave 0 in the frequency domain.
  • the resource pool includes 4 interlaces.
  • the first terminal device transmits the first SCI on one interlace with index 0, and on 3 interleaves with indexes 0, 1, and 2. Transmit PSSCH.
  • the third information indicates that when the PSSCH is transmitted on the first resource, the first terminal device transmits the PSSCH on the first resource.
  • the first resource is the first three symbols of the slot in the time domain, and is the two interlaces with indexes 1 and 2 in the frequency domain.
  • Method c3 The first terminal device can determine by itself whether the data or the PSSCH carrying the data is transmitted on the first resource.
  • the first terminal device determines that the data or the PSSCH or the second SCI carrying the data is transmitted on the first resource, which may include the following two methods:
  • Method d1 The first terminal device determines that the predefined data or the PSSCH or the second SCI carrying the data is transmitted on the first resource.
  • the protocol predetermines that the data or the PSSCH or the second SCI carrying the data are transmitted on the first resource.
  • Method d2 The first terminal device receives the third information from the network device, or the first terminal device obtains the third information (that is, obtains the preconfigured third information), the third information indicates the data or carries the The PSSCH or the second SCI of the data is transmitted on the first resource.
  • the third information indicates that the data or the PSSCH carrying the data is transmitted on the first resource
  • the first terminal device When the third information indicates that the second SCI is transmitted on the first resource, the first terminal device sends the second SCI to the second terminal device on the first resource. At this time, it can be understood that the first terminal device sends two repeated SCIs to the second terminal device.
  • the first terminal device transmits on B interlaces SCI, and 1 PSSCH is transmitted on B interlaces.
  • Each SCI in the SCI is used to schedule the same PSSCH.
  • the third information indicates that the second SCI is transmitted on the first resource.
  • the resource pool includes 4 interlaces.
  • the first terminal device transmits 3 identical SCIs on the 3 interlaces with indexes 0, 1, and 2 respectively, and transmits the PSSCH on the 3 interlaces with indexes 0, 1, and 2.
  • the first terminal device transmits the first SCI on one interlace with index 0, and transmits two second SCIs on two interlaces with indexes 1 and 2 (ie, the frequency domain position of the first resource). .
  • the third information is implemented, it is implemented according to the above method c2, or according to the above method d2.
  • the specific way to implement it can be predefined through the protocol, or an instruction message can be used to indicate which method to follow. Realization, this application does not limit this.
  • the third information may be RRC information, such as PC-5 RRC.
  • Method d3 The first terminal device can determine by itself that the data or the PSSCH or the second SCI carrying the data is transmitted on the first resource.
  • an implicit association method can also be used to indicate whether the data or PSSCH is transmitted on the first resource.
  • instructing multiple terminal devices to perform frequency division transmission in the COT may include instructing multiple terminal devices to perform frequency division transmission in the COT on the time slot where the PSCCH of the sending terminal device is located, or there are other terminals on the time slot where the PSCCH of the sending terminal device is located. The device frequency-division transmits in this time slot.
  • the second terminal device may also determine whether the data or the PSSCH carrying the data is transmitted on the first resource, or the second terminal device may also determine whether the data or the PSSCH carrying the data is transmitted on the first resource.
  • the PSSCH or the second SCI of the data is transmitted on the first resource.
  • the method for the second terminal device to determine whether the data or the PSSCH carrying the data is transmitted on the first resource is the same as the method for the first terminal device to determine whether the data or the PSSCH carrying the data is transmitted on the first resource.
  • the method of transmitting on a resource is similar. Please refer to the above-mentioned method c1 and methods c2 and c3, which will not be described again here.
  • the second terminal device determines the method for transmitting the data or the PSSCH carrying the data or the second SCI on the first resource, and determines the data or the PSSCH carrying the data or the second SCI with the first terminal device.
  • the method of transmitting SCI on the first resource is similar. For reference, please refer to the above-mentioned method d1 and methods d2 and d3, which will not be described again here.
  • the first SCI may also indicate whether the data or the PSSCH carrying the data is transmitted on the first resource, or whether the data or the PSSCH carrying the data or the second SCI is transmitted on the first resource. transmitted on one resource.
  • the second terminal device may determine whether the data or the PSSCH carrying the data is transmitted on the first resource according to the first SCI, or determine whether the data or the PSSCH carrying the data or the second resource is transmitted according to the first SCI. The SCI is transmitted on the first resource.
  • the first SCI indicates whether the data or the PSSCH carrying the data is transmitted on the first resource
  • the method of transmitting the data or the PSSCH carrying the data or the second SCI on the first resource, and the third information indicating whether the data or the PSSCH carrying the data is transmitted on the first resource Alternatively, the method of transmitting the data or the PSSCH or the second SCI carrying the data on the first resource is similar and may be referred to each other, and will not be described in detail here.
  • the first terminal device may determine whether the data or the PSSCH carrying the data is transmitted on a second resource; wherein the time domain location of the second resource may be the first A time domain location where the SCI is located, and the frequency domain location of the second resource is an RB where the first SCI is not transmitted in the interleave or sub-channel where the first SCI is located.
  • the time domain position of the second resource may be the symbols mapped by the first SCI, such as the first 2, first 3 or first 4 symbols of the time slot.
  • the frequency domain location of the second resource may be an RB in the interlace where the first SCI is located that is not mapped to the first SCI, or an RB in the interlace where the first SCI is located that does not coincide with the RB where the first SCI is mapped, or an RB in which the first SCI is located.
  • the remaining RBs that map to the first SCI are excluded from interleaving.
  • the first SCI may not occupy all the RBs in the interleave. Since other terminal devices will not use these RBs, the first terminal device may transmit data or PSSCH on these RBs.
  • the first terminal device occupies the same interleave or sub-channel where the second resource is located and transmits the PSCCH, no other terminal device occupies the second resource.
  • the following beneficial effects can be achieved:
  • the first terminal device may also upload PSSCH in the second resource. Compared with not transmitting PSSCH on the second resource, there are more resources to map data, and PSSCH can be transmitted at a relatively low code rate, thereby improving the anti-interference capability and reliability of PSSCH.
  • transmitting on the second resource can ensure that the transmission width of the first terminal device in the frequency domain does not change, that is to say, the first terminal device transmits with constant power on the time slot, Power control is easy to implement.
  • the first terminal device determines whether the data or the PSSCH carrying the data is transmitted on the second resource, which may include the following method:
  • Method e1 The first terminal device determines whether the predefined data or the PSSCH carrying the data is transmitted on the second resource.
  • the protocol predetermines whether the data or the PSSCH carrying the data is transmitted on the second resource.
  • Method e2 The first terminal device receives the fourth information from the network device, or the first terminal device obtains the fourth information (that is, obtains the preconfigured fourth information), the fourth information indicates the data or carries the Whether the PSSCH of the data is transmitted on the second resource.
  • the fourth information may also indicate whether the data or the PSSCH carrying the data is transmitted on the second resource through 1 bit, or indicate whether the data or the PSSCH carrying the data is present through whether the fourth information exists. transmitted on the second resource.
  • the specific indication method is similar to the third information and can refer to each other, so it will not be described in detail here.
  • the first terminal device sends the data or the PSSCH carrying the data to the second terminal device on the second resource.
  • the fourth information indicates that the data or the PSSCH carrying the data is not transmitted on the second resource
  • the first terminal device does not send the data or the PSSCH carrying the data to the second terminal device on the second resource.
  • the second resource transmits a set of data or PSSCH together with the resource on which the data or PSSCH is originally intended to be transmitted.
  • the first terminal device transmits the first SCI on an interlace with an index of 0, wherein the RBs with indexes of 0 to 4 in the interlace are mapped
  • the first SCI the first SCI is not mapped on 1 RB with index 5 in this interleave.
  • the fourth information indicates that the data or PSSCH is transmitted on the second resource
  • the first terminal device transmits the data or PSSCH on the second resource.
  • the second resource is the first 3 symbols of the slot in the time domain, and is 1 RB with index 6 in the interleave with index 0 in the frequency domain.
  • first resource and the second resource are shown on the same drawing in Figure 9, it should be understood that the solutions of the first resource and the second resource can be two independent solutions. For example, it is determined only through the third information whether the data or the PSSCH carrying the data is transmitted on the first resource. In this case, only the first resource may be reflected in FIG. 9 . For another example, it is determined only through the fourth information that the data or the PSSCH carrying the data is transmitted on the second resource. In this case, only the second resource may be reflected in FIG. 9 . This application does not limit this.
  • the above three solutions of the second information, the third information, and the fourth information are also independent, or they can be a combination of at least two.
  • the fourth information may be RRC information, such as PC-5 RRC information.
  • Method e3 The first terminal device can determine by itself whether the data or the PSSCH carrying the data is transmitted on the second resource.
  • whether the data or PSSCH is transmitted on the second resource may also be indicated through an implicit indication.
  • the first SCI mapping is predefined, preconfigured or configured by the network device and occupies one or more interlaces, it is implicitly indicated not to transmit data or PSSCH on the second resource.
  • the first SCI mapping is predefined, preconfigured or configured by the network device and does not occupy one or more interlaces, it is implicitly indicated to transmit data or PSSCH on the second resource.
  • the ratio of the number of data or PSSCH subchannels to the total number of subchannels in the resource pool is less than or equal to 80%, there is an implicit instruction to transmit the data or PSSCH on the second resource.
  • the interleaving number B of data or PSSCH is equal to 1, it is implicitly indicated that the data or PSSCH is transmitted in the second resource.
  • the interleaving number B of data or PSSCH is greater than 1, it is implicitly indicated that data or PSSCH is not to be transmitted in the second resource.
  • the allowed data or PSCCH temporarily does not meet the OCB, it is implicitly indicated not to transmit the data or PSSCH on the second resource.
  • the PSCCH is not allowed to temporarily fail to meet the OCB, it is implicitly instructed to transmit data or PSSCH on the second resource.
  • the second terminal device may also determine whether the data or the PSSCH carrying the data is transmitted on the second resource.
  • the method for the second terminal device to determine whether the data or the PSSCH carrying the data is transmitted on the second resource may be the same as the method for the first terminal device to determine whether the data or the PSSCH carrying the data is transmitted on the second resource.
  • the method of transmitting on the second resource is similar. Please refer to the above-mentioned method e1, method e2 and e3, which will not be described again here.
  • the first SCI may also indicate whether the data or the PSSCH carrying the data is transmitted on the second resource.
  • the second terminal device may determine whether the data or the PSSCH carrying the data is transmitted on the second resource according to the first SCI.
  • the first SCI indicates whether the data or the PSSCH carrying the data is transmitted on the second resource
  • the above-mentioned fourth information indicates whether the data or the PSSCH carrying the data is transmitted on the second resource.
  • the transmission methods are similar and can be referred to each other, so they will not be described in detail here.
  • the fourth information takes effect.
  • second information, third information and fourth information may be included in the same message, part of the information may be included in the same message, or may be included in different messages. This application does not make any reference to this. limited.
  • the first terminal device may determine the frequency domain position at which the first SCI is sent, and the frequency domain position at the first SCI may be based on the starting RB position of the first SCI, the The end RB position of the first SCI and the number of RBs of the first SCI are determined by at least two parameters.
  • the number of RBs in the first SCI may be ⁇ 10,12,15,20,25 ⁇
  • the number of RBs in the sub-channel may be ⁇ 10,12,15,20,25,50,75,100 ⁇ . That is to say, the first SCI may not be able to map a full sub-channel. Therefore, the first terminal device needs to determine the frequency domain position at which the first SCI is sent.
  • the starting RB position of the first SCI may be related to at least two of the following parameters: the index of the subchannel where the first SCI is located, the number of RBs of a subchannel, the The number or offset of RBs in a SCI.
  • the ending RB position of the first SCI may be related to at least two of the following parameters: the index of the subchannel where the first SCI is located, the number of RBs of a subchannel, the number of RBs of the first SCI, or The offset.
  • the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located and the number of RBs in a subchannel.
  • the ending RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number of RBs in a subchannel, and the number of RBs in the first SCI.
  • the starting RB position of the first SCI may satisfy the formula p ⁇ N subCH or p ⁇ N subCH +C.
  • the end RB position of the first SCI may satisfy the formula p ⁇ N subCH +N PSCCH -1 or p ⁇ N subCH +N PSCCH -1+C.
  • p is the index of the subchannel where the first SCI is located, and the value range can be ⁇ 0,1,2,...,P-1 ⁇ ;
  • N subCH is the number of RBs of a subchannel;
  • N PSCCH is the RB of the first SCI number;
  • C is a constant, for example, C is the starting RB of the resource pool or the starting RB of the channel.
  • each first SCI occupies 4 RBs. That is, the number of RBs of the first SCI is 4, and each sub-channel has 6 RBs.
  • the indices of the subchannels where the first SCI is located are 0, 1, 2, and 3 respectively.
  • the RBs in bold black boxes in Figures 10 and 11 are resources that can be used to transmit the first SCI. Taking the first SCI being transmitted on subchannel 0 as an example, (a) in Figure 10 and (a) in Figure 11 show the index 0 of the subchannel of the first SCI.
  • the starting RB of the first SCI of subchannel index 0 is the RB with index 0, or the RB with index C.
  • the ending RB of the first SCI of subchannel index 0 is the RB with index 3, or the RB with index 3+C.
  • C is the starting RB of the resource pool.
  • Figure 10 only shows a diagram of the first SCI corresponding to the first terminal device. It should be understood that Figure 10 may also include SCIs of other terminal devices, for example, the SCI corresponding to sub-channel index 3 in Figure 10
  • the bold black box includes the position indicated by RB.
  • Determination method 2 is another example: the starting RB position of the first SCI and the index of the subchannel where the first SCI is located, The number of RBs in a sub-channel is related to the first offset.
  • the end RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number of RBs in a subchannel, the number of RBs in the first SCI, and the first offset.
  • the starting RB position of the first SCI may satisfy the formula p ⁇ N subCH + ⁇ 1 or p ⁇ N subCH + ⁇ 1+C.
  • the end RB position of the first SCI may satisfy the formula p ⁇ N subCH + ⁇ +N PSCCH -1 or p ⁇ N subCH + ⁇ 1+N PSCCH -1+C.
  • ⁇ 1 is the first offset, and the value range of ⁇ can be ⁇ 0,1,2,...,N subCH -1 ⁇ or ⁇ 0,1,2,...,N subCH -2 ⁇ RBs. optionally, or
  • the resource pool has 4 sub-channels of the first SCI
  • the number of RBs of the first SCI is 4 RBs
  • each sub-channel has 6 RBs
  • ⁇ 1 is 1 RB.
  • the indices of the subchannels where the first SCI is located are 0, 1, 2, and 3 respectively.
  • the RBs with bold black boxes in Figures 10 and 11 are resources that can be used to transmit the first SCI. Taking the first SCI being transmitted on subchannel 0 as an example, (b) in Figure 10 and (b) in Figure 11 show the index 0 of the subchannel of the first SCI.
  • the starting RB of the first SCI of subchannel index 0 is the RB with index 1, or the RB with index 1+C.
  • the ending RB of the first SCI of subchannel index 0 is the RB with index 4, or the RB with index 4+C.
  • C is the starting RB of the resource pool.
  • Determination method 3 is another example where the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located and the number of RBs of the first SCI.
  • the ending RB position of the first SCI is related to the index of the subchannel where the first SCI is located and the number of RBs in a subchannel.
  • the starting RB position of the first SCI satisfies the formula p ⁇ N PSCCH or p ⁇ N PSCCH +C.
  • the end RB position of the first SCI may satisfy the formula (p+1) ⁇ N PSCCH -1 or (p+1) ⁇ N PSCCH -1+C.
  • the resource pool has 4 sub-channels of the first SCI
  • the number of RBs of the first SCI is 4 RBs
  • each sub-channel has 6 RBs.
  • the indices of the subchannels where the first SCI is located are 0, 1, 2, and 3 respectively.
  • the RBs with bold black boxes in Figures 10 and 11 are resources that can be used to transmit the first SCI. Taking the first SCI being transmitted on subchannel 0 as an example, (c) in Figure 10 and (c) in Figure 11 show the index 0 of the subchannel of the first SCI.
  • the starting RB of the first SCI of subchannel index 0 is the RB with index 0, or the RB with index C.
  • the ending RB of the first SCI of subchannel index 0 is the RB with index 3, or the RB with index 3+C.
  • Determination method 4 is another example where the starting RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number of RBs of the first SCI, and the second offset.
  • the ending RB position of the first SCI is related to the index of the subchannel where the first SCI is located, the number of RBs of the first SCI, and the second offset.
  • the starting RB position of the first SCI may satisfy the formula p ⁇ N PSCCH + ⁇ 2 or p ⁇ N PSCCH + ⁇ 2+C.
  • the end RB position of the first SCI may satisfy the formula (p+1) ⁇ N PSCCH -1+ ⁇ or (p+1) ⁇ N PSCCH -1+ ⁇ +C.
  • ⁇ 2 is the second offset, and the value range of ⁇ 2 is ⁇ 0,1,2,...,N PR -1 ⁇ or ⁇ 0,1,2,...,N PR -2 ⁇ RBs; N PR is the resource Number of RBs in the pool or channel. optionally, or
  • the starting RB position of the first SCI may be related to at least two of the following parameters: the index of the interleave where the first SCI is located, the number of RBs in an interleave, the first The number of RBs in the SCI or the offset.
  • the ending RB of the first SCI may be related to at least two of the following parameters: the index of the interleave where the first SCI is located, the number of RBs in an interleave, the number of RBs in the first SCI, or the offset. Shift amount.
  • the second terminal device may determine the frequency domain position at which the first SCI is received, and the frequency domain position at the first SCI is based on the starting RB position of the first SCI, the The ending RB position of the first SCI and the number of RBs of the first SCI are determined by at least two parameters.
  • the method for determining the starting RB position of the first SCI and the ending RB position of the first SCI may refer to the foregoing description, and will not be described again here.
  • the frequency domain position of the first SCI may be determined in a preconfigured manner, or the frequency domain position of the first SCI may be determined in a predefined manner, or the frequency domain position of the first SCI may be determined in a preconfigured manner.
  • the location is determined is configurable for the network device.
  • the determination method may be any one of the above-mentioned determination methods 1 to 4.
  • the sending terminal device can determine the data transmission mode according to the data size, and can dynamically indicate the data transmission mode to the receiving terminal device through the first SCI, so that the receiving terminal device can transmit the data according to the indicated data.
  • the transmission method accurately receives data and improves data transmission performance.
  • step 703 and step 704 are taken as an example. It should be understood that the application does not limit the order of step 703 and step 704. Optionally, step 703 and step 704 may occur simultaneously.
  • embodiments of the present application provide another communication method, which is suitable for the communication system shown in Figures 2-6.
  • the process of this method may include:
  • Step 1201 The network device determines the transmission mode of the first SCI and/or the data transmission mode.
  • Step 1202 The network device sends the transmission method of the first SCI and/or the data transmission method to the first terminal device, and sends the transmission method of the first SCI and/or the data transmission method to the second terminal device.
  • the network device may send fifth information to the first terminal device and the second terminal device, where the fifth information indicates the transmission method of the first SCI and/or the data transmission method.
  • the fifth information may indicate an interleaved transmission mode.
  • the transmission mode of the first SCI and/or data is an interleaved transmission mode.
  • the fifth information may indicate a non-interleaved transmission mode. In this case, the transmission mode of the first SCI and/or data is a non-interleaved transmission mode.
  • whether the fifth information exists in a message indicates the transmission mode of the first SCI and/or the data transmission mode. For example, when the fifth information exists, it indicates that the transmission mode of the first SCI and/or data is interleaved transmission. When the fifth information does not exist, it indicates that the transmission mode of the first SCI and/or data is non-interleaved transmission. Way. For another example, when the fifth information exists, it indicates that the transmission mode of the first SCI and/or data is non-interleaved transmission mode. When the fifth information does not exist, it indicates that the transmission mode of the first SCI and/or data is interleaved. transfer method.
  • the fifth information may respectively indicate the transmission method of the first SCI and/or the data transmission method.
  • the fifth information may indicate any of the following: the transmission mode of the first SCI and data is an interleaved transmission mode, the transmission mode of the first SCI and data is a non-interleaved transmission mode, the first SCI transmission mode is an interleaved transmission mode and the data The transmission mode is non-interleaved transmission mode, the first SCI transmission mode is non-interleaved transmission mode and the data transmission mode is interleaved transmission mode.
  • the fifth information may indicate that the default transmission mode of the first SCI and data is an interleaved transmission mode.
  • the fifth information may indicate that the default transmission mode of the first SCI and data is a non-interleaved transmission mode.
  • the fifth information may be RRC information, for example, PC-5 RRC information.
  • Step 1203 The first terminal device sends the first SCI to the second terminal device in the first SCI transmission mode, and/or sends data to the second terminal device in the data transmission mode.
  • the second terminal device transmits the first SCI
  • the first SCI is received from the first terminal device in a data transmission mode, and/or the data is received from the first terminal device in a data transmission mode.
  • the first terminal device when the transmission mode of the first SCI and/or data is an interleaved transmission mode, the first terminal device sends the first SCI and/or data to the second terminal device in an interleaved transmission mode.
  • M is the total number of interleaves in the resource pool.
  • B is greater than or equal to A, or B is an integer multiple of A.
  • the interlace in which the first terminal device sends the first SCI is the interleave with the smallest index among the B interlaces in which the data is sent. If the resource pool configuration does not allow multi-user frequency division transmission, the starting position of the data sent by the first terminal device is the interleave with the smallest index in the resource pool.
  • the resource pool includes 1 channel, 1 channel includes 4 interleaves, and 1 interleave includes 6 RBs.
  • the first SCI occupies one interleave.
  • data occupies 4 interleaves; in the right image of Figure 13, data occupies 3 interleaves.
  • the first terminal device when the transmission mode of the first SCI and/or data is a non-interleaved transmission mode, the first terminal device sends the first SCI and/or data to the second terminal device in a non-interleaved transmission mode.
  • the first terminal device sends the first SCI to the second terminal device on one or more sub-channels, or several RBs of the sub-channel.
  • P is the total number of sub-channels in the resource pool.
  • the transmission bandwidth of the data is greater than or equal to 80% of the bandwidth of the resource pool; or the number of sub-channels of the data is greater than or equal to the number of sub-channels obtained by multiplying 80% of the number of sub-channels of the resource pool.
  • the starting RB position of the first SCI sent by the first terminal device may be the starting RB position of the subchannel with the smallest index among the B subchannels for transmitting data.
  • the source pool includes 1 channel; 1 channel includes 4 sub-channels.
  • the first SCI occupies one sub-channel.
  • data occupies 4 sub-channels; in the right picture of Figure 14, data occupies 2 sub-channels.
  • first SCI may be described as PSCCH, and the data may be described as PSSCH, which is not limited in this application.
  • the embodiment shown in FIG. 12 can reuse other solutions in the embodiment shown in FIG. 7 except for the first SCI and data transmission determination method, which will not be described in detail here.
  • the first terminal device and the second terminal device perform one or more of the following operations: determine the frequency domain resource of the data or the PSSCH carrying the data; determine whether the data or the PSSCH carrying the data Transmit on the first resource, or determine whether the data or the PSSCH carrying the data or the second SCI is transmitted on the first resource; determine whether the data or the PSSCH carrying the data is on the second resource transmission.
  • the specific operation method please refer to the foregoing description, such as the indication scheme of the second information, the third information, the fourth information, etc., which will not be described again here.
  • the SCI and/or data transmission mode can be flexibly configured for the terminal device through the network device, and the implementation method is simple.
  • PSCCH for interleaved transmission
  • PSCCH for non-interleaved transmission
  • PSSCH for interleaved transmission
  • PSSCH so different terminal devices may transmit PSCCH and/or PSSCH in different ways.
  • the left picture in Figure 15 shows two terminal devices transmitting PSSCH in an interleaved transmission mode
  • the right picture in Figure 15 shows Illustration of two terminal devices transmitting PSSCH in a non-interleaved manner. This will have an impact on the resource selection of the sending terminal device.
  • this application proposes a communication method so that the first terminal device can Set the reserved resources to select the resources you can use for side transmission.
  • Figure 16 shows a communication method suitable for the communication system shown in Figures 2-6. Referring to Figure 16, the process of this method may include:
  • Step 1601 The first terminal device receives sidelink control information (ie, SCI) of the second terminal device, where the sidelink control information indicates the third resource used for sidelink transmission of the second terminal device.
  • sidelink control information ie, SCI
  • the second terminal device transmits the PSCCH on the third resource in an interleaved transmission manner or a non-interleaved manner, and/or transmits the PSSSH on the third resource in an interleaved transmission manner or a non-interleaved manner.
  • the third resource is a reserved resource of the second terminal device.
  • the third resources include retransmission reserved resources, periodic reserved resources, and periodic reserved resources of retransmission reserved resources.
  • the third resource can be understood as a sidelink transmission resource reserved for the second terminal device.
  • Step 1602a The first terminal device determines resources for sidelink transmission of the first terminal device based on the third resource indicated by the sidelink control information and the transmission mode of the PSCCH of the second terminal device. .
  • Step 1602b The first terminal device determines resources for sidelink transmission of the first terminal device based on the third resource indicated by the sidelink control information and the PSSCH transmission mode of the second terminal device. .
  • step 1602a and step 1602b may exist at the same time, or only one of them may exist, and this application does not limit this.
  • the first terminal device performs resource sensing before performing sidelink transmission.
  • Resource awareness refers to receiving the SCI in the resource pool and excluding resources reserved by other terminal devices within its own resource selection window based on the reservation information indicated by the SCI.
  • Step 1602a and/or step 1602b can be understood as performing resource exclusion.
  • the first terminal device determines the resources used for the sidelink transmission of the first terminal device.
  • the method may be: the first terminal device may determine the resource of the PSCCH of the second terminal device.
  • the transmission mode and/or the PSSCH transmission mode excludes the first resource indicated by the sidelink control information from the candidate resource set, and determines the resource used for sidelink transmission of the first terminal device.
  • the candidate resource set is the resources within the resource selection window that the first terminal device can select.
  • the first terminal device may measure the signal strength of the resource where the sidelink control information is located. If the signal strength is greater than the first channel strength threshold, the third resource indicated by the sidelink control information is excluded from the candidate resource set.
  • the PSSCH transmission mode is a non-interleaved transmission mode
  • the first terminal device excludes the third resource indicated by the sidelink control information from the initial candidate resource set.
  • the method may be: : The first terminal device excludes resources in the channel where the third resource is located from the initial candidate resource set.
  • the first terminal device excludes resources in the channel where the third resource is located from the initial candidate resource set, which may include: the first terminal device may, according to the transmission period indicated by the SCI, in the initial candidate resource set The resources in the channel where the third resource is located are excluded from the resource set; or the first terminal device may exclude the resources in the channel where the third resource is located in the initial candidate resource set, and the retransmission preset of the third resource is Reserve resources.
  • the third resource does not occupy the channel where the third resource is located.
  • the transmission mode of the PSCCH is a non-interleaved transmission mode
  • the first terminal device excludes the third resource indicated by the sidelink control information from the initial candidate resource set.
  • the method may be: : The first terminal device excludes the resources occupied by the PSCCH in the channel where the third resource is located from the initial candidate resource set.
  • the transmission mode of the PSSCH is a non-interleaved transmission mode and the transmission mode of the PSCCH is a non-interleaved transmission mode
  • the first terminal device excludes the sidelink control from the initial candidate resource set.
  • the method may be: the first terminal device excludes resources in the channel where the third resource is located from the initial candidate resource set.
  • the transmission mode of the PSSCH is an interleaved transmission mode
  • the first terminal device may not exclude resources other than the third resource in the channel where the third resource is located.
  • the fourth example can be implemented simultaneously with the above second example.
  • the transmission mode of the PSCCH is an interleaved transmission mode
  • the first terminal device excludes the third resource indicated by the sidelink control information from the initial candidate resource set.
  • the method may be: The first terminal device excludes the resources occupied by the PSCCH in the interlace in which the third resource is located from the initial candidate resource set.
  • the fifth example can be implemented simultaneously with the above-mentioned first example.
  • the first terminal device may determine to transmit the PSCCH and/or the PSSCH on a fourth resource, and the fourth resource belongs to the first terminal device.
  • the first terminal device may transmit the PSCCH and/or the PSSCH on the second resource in an interleaved manner or a non-interleaved manner.
  • the fourth resource includes D channels in the frequency domain, and D is an integer greater than or equal to 1.
  • the first terminal device may transmit the PSCCH and/or the PSSCH in an interleaved manner on the second resource.
  • the fourth resource when the fourth resource is interleaving, the fourth resource may be all interleaving in the channel, or may be part of the interleaving in the channel.
  • the fourth resource includes C interlaces in the frequency domain, the value range of C is ⁇ 1, 2,...,M-1 ⁇ , and M is the number of interlaces in the channel or resource pool.
  • the above-mentioned first terminal device may be a terminal device that transmits PSCCH and/or PSSCH.
  • the above-mentioned transmission may be understood as transmission, mapping, multiplexing, decoding, etc.
  • the above-mentioned first terminal device may also be a terminal device that receives PSCCH and/or PSSCH.
  • the above-mentioned transmission may be understood as reception, mapping, multiplexing, decoding, etc.
  • PSCCH can be described alternatively with SCI
  • PSSCH can be described alternatively with data, which is not limited in this application.
  • the terminal device can sense the resources that can be used for side-link transmission, thereby selecting the correct resource for side-link transmission and avoiding transmission conflicts with other terminal devices.
  • interleaving index and the sub-channel index are both explained with 0 as an example. It should be understood that the interleaving index and the sub-channel index can also start from 1. This application will Not limited.
  • the communication device 1700 may include a transceiver unit 1701 and a processing unit 1702 .
  • the transceiver unit 1701 is used for the communication device 1700 to communicate, such as receiving information (message or data) or sending information (message or data), and the processing unit 1702 is used to perform the actions of the communication device 1700 Control management.
  • the processing unit 1702 can also control the steps performed by the transceiver unit 1701.
  • the communication device 1700 may be the first terminal device in the above embodiment, a processor of the first terminal device, a chip, a chip system, a functional module, etc.
  • the communication device Specifically, 1700 may be the second terminal device in the above embodiment, the processor of the second terminal device, or a chip, or a chip system, or a functional module, etc.
  • the communication device 1700 may be the network device in the above embodiment, a processor in the network device, a chip, a chip system, a functional module, etc.
  • the transceiver unit 1701 can implement Figures 7, 12, and 16
  • the sending and receiving operations performed by the first terminal device in the embodiment shown for example, the sending operations in steps 703 and 704, etc.; the processing unit 1702 can implement the sending and receiving operations performed by the first terminal device in the embodiments shown in Figures 7, 12, and 16.
  • FIG. 7 , FIG. 12 , and FIG. 16 for specific relevant descriptions, please refer to the relevant descriptions in the embodiments shown in FIG. 7 , FIG. 12 , and FIG. 16 , and will not be introduced in detail here.
  • the transceiver unit 1701 can implement the functions of the second terminal device in Figures 7, 12, and 16.
  • the second terminal device performs other operations other than the sending and receiving operations, such as step 702 and so on.
  • FIG. 7 , FIG. 12 , and FIG. 16 for specific relevant descriptions, please refer to the relevant descriptions in the embodiments shown in FIG. 7 , FIG. 12 , and FIG. 16 , and will not be introduced in detail here.
  • the transceiver unit 1701 can implement the functions of Figures 7, 12, and 16.
  • Other operations other than the operation, such as step 1201, etc. please refer to the relevant descriptions in the embodiments shown in FIG. 7 , FIG. 12 , and FIG. 16 , and will not be introduced in detail here.
  • each functional unit in the embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
  • the communication device 1800 may include a transceiver 1801 and a processor 1802 .
  • the communication device 1800 may also include a memory 1803.
  • the memory 1803 may be disposed inside the communication device 1800 or may be disposed outside the communication device 1800 .
  • the processor 1802 can control the transceiver 1801 to receive and send information, messages or data, etc.
  • the processor 1802 may be a central processing unit (CPU), and the network processing unit network processor (NP) or a combination of CPU and NP.
  • the processor 1802 may further include hardware chips.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • the transceiver 1801, the processor 1802 and the memory 1803 are connected to each other.
  • the transceiver 1801, the processor 1802 and the memory 1803 are connected to each other through a bus 1804;
  • the bus 1804 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard. Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 18, but it does not mean that there is only one bus or one type of bus.
  • the memory 1803 is used to store programs, etc.
  • the program may include program code including computer operating instructions.
  • the memory 1803 may include RAM, and may also include non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 1802 executes the application program stored in the memory 1803 to implement the above functions, thereby realizing the functions of the communication device 1800 .
  • the communication device 1800 may be the network device in the above embodiment; it may also be the first terminal device in the above embodiment; it may also be the second terminal device in the above embodiment.
  • the transceiver 1801 when the communication device 1800 implements the functions of the first terminal device in the embodiments shown in Figures 7, 12, and 16, the transceiver 1801 can implement the functions shown in Figures 7, 12, and 16 The transceiver operation performed by the first terminal device in the embodiment; the processor 1802 can implement other operations other than the transceiver operation performed by the first terminal device in the embodiment shown in FIG. 7, FIG. 12, and FIG. 16.
  • the processor 1802 can implement other operations other than the transceiver operation performed by the first terminal device in the embodiment shown in FIG. 7, FIG. 12, and FIG. 16.
  • the transceiver 1801 when the communication device 1800 implements the functions of the second terminal device in the embodiments shown in Figures 7, 12, and 16, the transceiver 1801 can implement the functions shown in Figures 7, 12, and 16 The transceiver operation performed by the second terminal device in the embodiment; the processor 1802 can implement other operations except the transceiver operation performed by the second terminal device in the embodiment shown in FIG. 7, FIG. 12, and FIG. 16.
  • the processor 1802 can implement other operations except the transceiver operation performed by the second terminal device in the embodiment shown in FIG. 7, FIG. 12, and FIG. 16.
  • the transceiver 1801 can implement the implementations shown in Figures 7, 12, and 16
  • the processor 1802 may implement other operations other than the sending and receiving operations performed by the network device in the embodiments shown in FIG. 7, FIG. 12, and FIG. 16.
  • FIG. 7 , FIG. 12 , and FIG. 16 For specific relevant descriptions, please refer to the relevant descriptions in the embodiments shown in FIG. 7 , FIG. 12 , and FIG. 16 , and will not be introduced in detail here.
  • embodiments of the present application provide a communication system, which may include the network device, a first terminal device, a second terminal device, etc. involved in the above embodiments.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • Embodiments of the present application also provide a computer program product, the computer program product is used to store computer programs, When the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • An embodiment of the present application also provides a chip, including a processor, which is coupled to a memory and configured to call a program in the memory so that the chip implements the communication method provided by the above method embodiment.
  • An embodiment of the present application also provides a chip, which is coupled to a memory, and is used to implement the communication method provided by the above method embodiment.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Communication Control (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以明确SCI和数据的传输方式,保证终端装置的侧行传输,适用于V2X,车联网,智能驾驶等领域。第一终端装置和第二终端装置确定第一SCI的传输方式;进而第一终端装置以确定的所述第一SCI的传输方式向第二终端装置发送所述第一SCI,所述第一SCI可以指示数据的传输方式;从而第二终端装置可以以指示的所述数据的传输方式从所述第一终端装置接收所述数据。通过上述方法,发送终端装置可以根据数据大小来确定数据的传输方式,并可以通过第一SCI将数据的传输方式动态指示给接收终端装置,以使接收终端装置按照指示的数据的传输方式准确接收数据,提高数据传输性能。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年04月29日提交中国专利局、申请号为202210474935.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在新无线非授权频谱(new radio on unlicensed spectrum,NR-U)中,网络装置和终端装置在非授权频谱上传输时,对于下行传输,网络装置发送物理下行控制信道(physical downlink control channel,PDCCH)和物理下行共享信道(physical downlink shared channel,PDSCH)时,均按照非交错方式传输,即在频域上连续的RB上传输。对于上行传输,例如,网络装置可以指示终端装置发送物理上行共享信道(physical downlink shared channel,PUSCH)和格式0和格式1的物理上行控制信道(physical uplink control channel,PUCCH)时,按照交错(interlace)方式传输,即在频域上不连续的RB上传输。这样终端装置在译码时按照对应的方式译码即可。
然而,在侧行非授权频谱(sidelink on unlicensed spectrum,SL-U)中,目前还没有明确物理侧行共享信道(physical sidelink shared channel,PSSCH)和物理侧行控制信道(physical sidelink control channel,PSCCH)的传输方式,由此终端装置在译码时,可能会导致译码失败,或者通过多种方式盲检而增大开销。
发明内容
本申请提供一种通信方法及装置,用以明确SCI和数据的传输方式,保证终端装置的侧行传输。
第一方面,本申请提供了一种通信方法,该方法可以应用于第一终端装置,第一终端装置中的处理器、芯片或一个功能模块等,该方法可以包括:确定第一侧行控制信息(sidelink control information,SCI)的传输方式;进而以确定的所述第一SCI的传输方式向第二终端装置发送所述第一SCI,所述第一SCI可以指示数据的传输方式;以及以指示的所述数据的传输方式向所述第二终端装置发送所述数据。可选的,发送也可以描述为映射(mapping)或复用(multiplexing)等。
通过上述方法,资源池中的终端设备都按照固定的传输方式传输SCI,接收终端装置按照固定的SCI传输方式译码SCI,可以避免不必要的硬件开销。同时,发送终端装置可以根据数据大小来确定数据的传输方式,并可以通过第一SCI将数据的传输方式动态指示给接收终端装置,以使接收终端装置按照指示的数据的传输方式准确接收数据,提高数据传输性能。
在一个可能的设计中,所述第一SCI可以为第一阶SCI,所述第一阶SCI承载于PSCCH; 所述数据承载于PSSCH,所述PSSCH还可以包括第二阶SCI和/或媒体接入控制控制单元(media access control,MAC CE),所述第二阶SCI的传输方式与所述数据的传输方式相同,所述MAC CE的传输方式与所述数据的传输方式相同。由此在确定了第一SCI的传输方式后,即确定了PSCCH的传输方式,以及确定了数据的传输方式后,即确定了PSSCH以及PSSCH中承载的其他信息的传输方式。
在一个可能的设计中,可以通过如下方式确定第一SCI的传输方式:可以确定预定义或预配置的所述第一SCI的传输方式;或者,可以从网络装置接收第一信息,所述第一信息指示所述第一SCI的传输方式。这样可以通过多种方式准确确定第一SCI的传输方式,进而以确定的第一SCI的传输方式准确发送第一SCI。
在一个可能的设计中,所述第一SCI的传输方式可以为交错传输方式(interlace-based transmission)或非交错传输方式;所述数据的传输方式可以为交错传输方式或非交错传输方式;其中,所述交错传输方式可以指在频域上不连续的RB上传输;所述非交错传输方式可以指在频域上连续的RB上传输。这样可以根据实际占用信道带宽需求来选择合适的传输方式。
可选的,所述交错传输方式的英文释义还可以为interlace RB-based transmission。
可选的,所述非交错传输方式的英文释义可以为contiguous RB-based transmission。
例如,第一SCI的传输方式为交错传输方式,数据的传输方式为交错的传输方式;或者,第一SCI的传输方式为交错传输方式,数据的传输方式为非交错的传输方式;或者,第一SCI的传输方式为非交错传输方式,数据的传输方式为交错的传输方式;或者,第一SCI的传输方式为非交错传输方式,数据的传输方式为非交错的传输方式。
在一个可能的设计中,还可以执行以下一项或多项操作:确定所述数据或者承载所述数据的PSSCH的频域资源;确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输;其中,所述第一资源的时域位置可以为所述第一SCI所在的时域位置,所述第一资源的频域位置可以为所述数据或者承载所述数据的PSSCH所在的频域位置中除去所述第一SCI所在的频域位置以外的频域位置;所述第二资源的时域位置可以为所述第一SCI所在的时域位置,所述第二资源的频域位置可以为所述第一SCI所在的交错或者子信道中未传输所述第一SCI的资源块RB。通过上述操作,可以在准确的频域资源上传输数据或者PSSCH。或者,当确定在第一资源上传输第二SCI时,可以传输两个SCI,以提高第二终端装置的接收可靠性。
在一种可能的设计中,所述第一SCI和所述第二SCI可以调度相同的PSCCH。或者,所述第二SCI是所述第一SCI的重复。这样,可以传输重复的SCI,以提高PSCCH的覆盖、提升第二终端装置的接收可靠性。
在一个可能的设计中,所述确定所述数据或者承载所述数据的PSSCH的频域资源,方法可以为:确定预定义或者预配置的所述数据或者承载所述数据的PSSCH的频域资源;或者,从网络装置接收第二信息,所述第二信息指示所述数据或者承载所述数据的PSSCH的频域资源。这样可以通过多种方式准确地确定数据或者承载所述数据的PSSCH的频域资源,从而在准确的频域资源上传输数据或者PSSCH。
所述确定所述数据或者承载所述数据的PSSCH是否在所述第一资源上传输,方法可以为:确定预定义的所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者, 从所述网络装置接收第三信息,所述第三信息指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输。这样可以通过多种方式准确确定第一资源上是否传输数据或PSSCH,从而在第一资源上传输数据或PSSCH时可以避免资源浪费。
所述确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输,包括:确定预定义的所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;或者,所述第三信息指示所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;这样可以通过多种方式准确确定第一资源上传输数据或PSSCH或第二SCI,从而避免资源浪费,并且在第一资源上传输第二SCI的情况下可以提高第二终端装置的接收SCI的可靠性。
所述确定所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输,方法可以为:确定预定义的所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输;或者,从所述网络装置接收第四信息,所述第四信息指示所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。这样可以通过多种方式准确确定第二资源上是否传输数据或PSSCH,从而在第二资源上传输数据或PSSCH时可以避免资源浪费。
在一个可能的设计中,所述第一SCI还可以指示以下一项或多项:所述数据或者承载所述数据的PSSCH的频域资源;所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;所述数据或者承载所述数据的PSSCH是否在第二资源上传输。进而可以使第二终端装置根据第一SCI的指示确定数据或PSSCH传输的频域资源。或者,当指示在第一资源上传输第二SCI时,可以使第二终端装置在第一资源接收第二SCI。通过第一SCI的动态指示,可以比RRC指示更灵活。以确定PSSCH的频域资源为例,第一SCI指示的话,资源池中的终端装置可以更灵活的确定PSSCH的交错或子信道数。如大数据包用更多的交错、小数据包用较少的交错。RRC指示的话,资源池的终端装置只能有固定的确定PSSCH的频域资源,不灵活。
在一个可能的设计中,所述数据的子信道数占所述数据的子信道所在信道的比例或者所述数据的子信道数占子信道总数的比例大于80%,所述数据的传输方式为非交错传输方式。这样可以使数据传输时满足信道占用带宽,提升传输性能。例如,以交错方式传输会增大数据实际占用的带宽,这会增大峰均比和造成带内辐射(in-band emission,IBE)。当数据以非交错的传输方式传输已经能够满足80%的带宽时,用非交错传输方式更佳,可以提升通信系统的性能。
在一个可能的设计中,可以通过以下方法确定所述数据或者承载所述数据的PSSCH的频域资源:可以确定所述数据或者承载所述数据的PSSCH的交错个数或子信道个数;或者,可以确定所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。这样可以确定传输数据或PSSCH的准确频域资源。
在一个可能的设计中,确定发送所述第一SCI的频域位置,所述第一SCI的频域位置基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。这样可以灵活确定第一SCI的频域位置,以使第一SCI准确传输。本申请中,第二SCI或其他SCI的频域位置与第一SCI的频域位置确定方法相同,可以相互参见。
在一个可能的设计中,所述第一SCI的起始RB位置可以与以下参数中的至少两个参数相关:所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数或偏移量;或者,所述第一SCI的起始RB位置可以与以下参数中的至少两个参数相关:所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数或所述偏移量;或者,所述第一SCI的结束RB位置可以与以下参数中的至少两个参数相关:所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数或所述偏移量;或者,所述第一SCI的结束RB位置可以与以下参数中的至少两个参数相关:所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数或所述偏移量。通过上述方法,可以通过多种方法确定第一SCI的起始RB位置和/或第一SCI的结束RB位置,进而可以准确确定第一SCI的频域位置。
在一个可能的设计中,所述第一SCI的起始RB位置可以与所述第一SCI所在子信道的索引以及一个子信道的RB个数相关;所述第一SCI的结束RB位置可以与所述第一SCI所在子信道的索引、一个子信道的RB个数和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置可以与所述第一SCI所在交错的索引以及一个交错的RB个数相关;或者,所述第一SCI的结束RB位置可以与所述第一SCI所在交错的索引、一个交错的RB个数和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引、一个子信道的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数和所述偏移量相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在交错的索引、一个交错的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数和所述偏移量相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引和所述第一SCI的RB个数相关;所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在交错的索引和所述第一SCI的RB个数相关;所述第一SCI的结束RB位置与所述第一SCI所在交错的索引和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引、所述第一SCI的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引、所述第一SCI的RB个数和偏移量相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在交错的索引、所述第一SCI的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在交错的索引、所述第一SCI的RB个数和偏移量相关。通过上述方法,可以通过多种方法确定第一SCI的起始RB位置和/或第一SCI的结束RB位置,进而可以准确确定第一SCI的频域位置。
在一个可能的设计中,所述第一SCI的频域位置的确定方式可以为预配置的,或者所述第一SCI的频域位置的确定方式可以为预定义的,或者所述第一SCI的频域位置的确定方式可以为网络装置配置的。这样可以通过多种方式准确确定第一SCI的频域位置的确定方式,进而通过确定方式准确确定第一SCI的频域位置。例如,第一SCI的频域位置的确定方法可以为基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。
在一个可能的设计中,所述方法可以应用于侧行非授权频谱的场景。进而可以在侧行非授权频谱的场景中实现数据的传输方式的动态指示。
第二方面,本申请提供了一种通信方法,该方法可以应用于第二终端装置,第二终端装置中的处理器、芯片或一个功能模块等,该方法可以包括:确定第一SCI的传输方式,进而以确定的所述第一SCI的传输方式从第一终端装置接收所述第一SCI,所述第一SCI指示数据的传输方式;然后以所述数据的传输方式从所述第一终端装置接收所述数据。
通过上述方法,资源池中的终端设备都按照固定的传输方式传输SCI,接收终端装置按照固定的SCI传输方式译码SCI,可以避免不必要的硬件开销。同时,接收终端装置可以识别第一SCI动态指示的数据的传输方式,以使接收终端装置按照指示的数据的传输方式准确接收数据,提高数据传输性能。
在一个可能的设计中,所述第一SCI为第一阶SCI,所述第一阶SCI承载于物理侧行控制信道PSCCH;所述数据承载于物理侧行共享信道PSSCH,所述PSSCH还包括第二阶SCI和/或媒体接入控制控制单元MAC CE,所述第二阶SCI的传输方式与所述数据的传输方式相同,所述MAC CE的传输方式与所述数据的传输方式相同。由此在确定了第一SCI的传输方式后,即确定了PSCCH的传输方式,以及确定了数据的传输方式后,即确定了PSSCH以及PSSCH中承载的其他信息的传输方式。
在一个可能的设计中,可以通过如下方式确定第一SCI的传输方式:确定预定义或预配置的所述第一SCI的传输方式;或者,从网络装置接收第一信息,所述第一信息指示所述第一SCI的传输方式。这样可以通过多种方式准确确定第一SCI的传输方式,进而以确定的第一SCI的传输方式准确发送第一SCI。
在一个可能的设计中,所述第一SCI的传输方式可以为交错传输方式或非交错传输方式;所述数据的传输方式可以为交错传输方式或非交错传输方式;所述交错传输方式可以指在频域上不连续的RB上传输;所述非交错传输方式可以指在频域上连续的RB上传输。这样可以根据实际占用信道带宽需求来选择合适的传输方式。
例如,第一SCI的传输方式为交错传输方式,数据的传输方式为交错的传输方式;或者,第一SCI的传输方式为交错传输方式,数据的传输方式为非交错的传输方式;或者,第一SCI的传输方式为非交错传输方式,数据的传输方式为交错的传输方式;或者,第一SCI的传输方式为非交错传输方式,数据的传输方式为非交错的传输方式。
在一个可能的设计中,还可以执行以下一项或多项操作:确定所述数据或者承载所述数据的PSSCH的频域资源;确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输;其中,所述第一资源的时域位置为所述第一SCI所在的时域位置,所述第一资源的频域位置为所述数据或者承载所述数据的PSSCH所在的频域位置中除去所述第一SCI所在的频域位置以外的频域位置;所述第二资源的时域位置为所述第一SCI所在的时域位置,所述第二资源的频域位置为所述第一SCI所在的交错或者子信道中未传输所述第一SCI的资源块RB。通过上述操作,可以在准确的频域资源上传输数据或者PSSCH。或者,当确定在第一资源上传输第二SCI时,可以传输两个SCI,以提高PSCCH的覆盖、提升第二终端装置的接收可靠性。
在一种可能的设计中,所述第一SCI和所述第二SCI可以调度相同的PSCCH。这样,可以传输重复的SCI,以提高第二终端装置的接收可靠性。
在一个可能的设计中,所述确定所述数据或者承载所述数据的PSSCH的频域资源,方法可以为:确定预定义或者预配置的所述数据或者承载所述数据的PSSCH的频域资源; 或者,从网络装置接收第二信息,所述第二信息指示所述数据或者承载所述数据的PSSCH的频域资源。这样可以通过多种方式准确地确定数据或者承载所述数据的PSSCH的频域资源,从而在准确的频域资源上传输数据或者PSSCH。
所述确定所述数据或者承载所述数据的PSSCH是否在所述第一资源上传输,方法可以为:确定预定义的所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,从所述网络装置接收第三信息,所述第三信息指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输。这样可以通过多种方式准确确定第一资源上是否传输数据或PSSCH,从而在第一资源上传输数据或PSSCH时可以避免资源浪费。
确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输,方法可以为:确定预定义的所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;或者,所述第三信息指示所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;这样可以通过多种方式准确确定第一资源上传输数据或PSSCH或第二SCI,从而避免资源浪费,并且在第一资源上传输第二SCI的情况下可以提高第二终端装置的接收SCI的可靠性。
所述确定所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输,方法可以为:确定预定义的或预配置的所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输;或者,从所述网络装置接收第四信息,所述第四信息指示所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。这样可以通过多种方式准确确定第二资源上是否传输数据或PSSCH,从而在第二资源上传输数据或PSSCH时可以避免资源浪费。
在一个可能的设计中,所述第一SCI还可以指示以下一项或多项:所述数据或者承载所述数据的PSSCH的频域资源;所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;所述数据或者承载所述数据的PSSCH是否在第二资源上传输。进而可以使第二终端装置根据第一SCI的指示确定数据或PSSCH传输的频域资源。或者,当指示在第一资源上传输第二SCI时,可以使第二终端装置在第一资源接收第二SCI。通过第一SCI的动态指示,可以比RRC指示更灵活。以确定PSSCH的频域资源为例,第一SCI指示的话,资源池中的终端装置可以更灵活的确定PSSCH的交错或子信道数。如大数据包用更多的交错、小数据包用较少的交错。RRC指示的话,资源池的终端装置只能有固定的确定PSSCH的频域资源,不灵活。
在一个可能的设计中,确定所述数据或者承载所述数据的PSSCH的频域资源,方法可以为:根据所述第一SCI确定所述数据或者承载所述数据的PSSCH的频域资源。这样可以使第二终端装置根据第一SCI的指示确定数据或PSSCH传输的频域资源。
确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,方法可以为:根据所述第一SCI确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输。这样可以根据第一SCI的指示确定是否在第一资源传输数据或PSSCH。
确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输,方法可以为:根据所述第一SCI确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输。这样可以根据第一SCI的指示确定在第一资源传输数据或PSSCH或第二SCI。
确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输,方法可以为:根据所述第一SCI确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输。这样 可以根据第一SCI的指示确定是否在第二资源传输数据或PSSCH。
在一个可能的设计中,所述数据的子信道数占所述数据的子信道所在信道的比例或者所述数据的子信道数占子信道总数的比例大于80%,所述数据的传输方式为非交错传输方式。这样可以使数据传输时满足信道占用带宽,提升传输性能。例如,以交错方式传输会增大数据实际占用的带宽,这会增大峰均比和造成IBE。当数据以非交错的传输方式传输已经能够满足80%的带宽时,用非交错传输方式更佳,可以提升通信系统的性能。
在一个可能的设计中,确定所述数据或者承载所述数据的PSSCH的频域资源,方法可以为:确定所述数据或者承载所述数据的PSSCH的交错个数或子信道个数;或者,确定所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。这样可以确定传输数据或PSSCH的准确频域资源。
在一个可能的设计中,确定接收所述第一SCI的频域位置,所述第一SCI的频域位置基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。这样可以灵活确定第一SCI的频域位置,以使第一SCI准确传输。
在一个可能的设计中,所述第一SCI的起始RB位置与以下参数中的至少两个参数相关:所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数或偏移量;或者,所述第一SCI的起始RB位置与以下参数中的至少两个参数相关:所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数或所述偏移量;或者,所述第一SCI的结束RB位置与以下参数中的至少两个参数相关:所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数或所述偏移量;或者,所述第一SCI的结束RB位置与以下参数中的至少两个参数相关:所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数或所述偏移量。通过上述方法,可以通过多种方法确定第一SCI的起始RB位置和/或第一SCI的结束RB位置,进而可以准确确定第一SCI的频域位置。
在一个可能的设计中,所述第一SCI的起始RB位置可以与所述第一SCI所在子信道的索引以及一个子信道的RB个数相关;所述第一SCI的结束RB位置可以与所述第一SCI所在子信道的索引、一个子信道的RB个数和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置可以与所述第一SCI所在交错的索引以及一个交错的RB个数相关;或者,所述第一SCI的结束RB位置可以与所述第一SCI所在交错的索引、一个交错的RB个数和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引、一个子信道的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数和所述偏移量相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在交错的索引、一个交错的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数和所述偏移量相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引和所述第一SCI的RB个数相关;所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在交错的索引和所述第一SCI的RB个数相关;所述第一SCI的结束RB位置与所述第一SCI所在交错的索引和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置与所述第一SCI 所在子信道的索引、所述第一SCI的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引、所述第一SCI的RB个数和偏移量相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在交错的索引、所述第一SCI的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在交错的索引、所述第一SCI的RB个数和偏移量相关。通过上述方法,可以通过多种方法确定第一SCI的起始RB位置和/或第一SCI的结束RB位置,进而可以准确确定第一SCI的频域位置。
在一个可能的设计中,所述第一SCI的频域位置的确定方式为预配置的,或者所述第一SCI的频域位置的确定方式为预定义的,或者所述第一SCI的频域位置的确定方式为网络装置配置的。这样可以通过多种方式准确确定第一SCI的频域位置的确定方式,进而通过确定方式准确确定第一SCI的频域位置。例如,第一SCI的频域位置的确定方法可以为基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。
在一个可能的设计中,所述方法应用于侧行非授权频谱的场景。进而可以在侧行非授权频谱的场景中实现数据的传输方式的动态指示。
第三方面,本申请提供了一种通信方法,该方法可以应用于网络装置,网络装置中的处理器、芯片或一个功能模块等,该方法可以包括:确定第一SCI的传输方式后,向终端装置发送第一信息,所述第一信息指示所述第一SCI的传输方式。
通过上述方法,网络装置可以将第一SCI的传输方式指示给第一终端装置和第二终端装置,以使第一终端装置以第一SCI的传输向第二终端装置发送第一SCI。
在一个可能的设计中,所述第一SCI为第一阶SCI,所述第一阶SCI承载于PSCCH。由此在确定了第一SCI的传输方式后,即确定了PSCCH的传输方式。
在一个可能的设计中,所述第一SCI的传输方式可以为交错传输方式或非交错传输方式;所述交错传输方式可以指在频域上不连续的RB上传输;所述非交错传输方式可以指在频域上连续的RB上传输。这样可以根据实际占用信道带宽需求来指示合适的传输方式。
在一个可能的设计中,还可以执行一项或多项操作:向所述终端装置发送第二信息,所述第二信息指示数据或者承载所述数据的PSSCH的频域资源;向所述终端装置发送第三信息,所述第三信息指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,指示所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;向所述终端装置发送第四信息,所述第四信息指示所述数据或者承载所述数据的PSSCH是否在第二资源上传输;其中,所述第一资源的时域位置为第一SCI所在的时域位置,所述第一资源的频域位置为所述数据或者承载所述数据的PSSCH所在的频域位置中除去所述第一SCI所在的频域位置以外的频域位置;所述第二资源的时域位置为所述第一SCI所在的时域位置,所述第二资源的频域位置为所述第一SCI所在的交错或者子信道中未传输所述第一SCI的资源块RB。通过上述操作,可以使终端装置在准确的频域资源上传输数据或者PSSCH。或者,当指示在第一资源上传输第二SCI时,可以传输两个SCI,以提高接收终端装置的接收可靠性。
在一个可能的设计中,所述数据承载于PSSCH,所述PSSCH还包括第二阶SCI和/或媒体接入控制控制单元MAC CE,所述第二阶SCI的传输方式与所述数据的传输方式相同,所述MAC CE的传输方式与所述数据的传输方式相同,所述数据的传输方式为交错传输方式或非交错传输方式。由此确定了数据的传输方式后,即确定了PSSCH以及PSSCH 中承载的其他信息的传输方式。
在一个可能的设计中,所述数据的子信道数占所述数据的子信道所在信道的比例或者所述数据的子信道数占子信道总数的比例大于80%,所述数据的传输方式为非交错传输方式。这样可以使数据传输时满足信道占用带宽,提升传输性能。
在一个可能的设计中,所述第二信息可以通过如下方式指示所述数据或者承载所述数据的PSSCH的频域资源:所述第二信息指示所述数据或者承载所述数据的PSSCH的交错个数或子信道个数;或者,所述第二信息指示所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。这样可以指示传输数据或PSSCH的准确频域资源。
在一个可能的设计中,还可以为所述终端装置配置所述第一SCI的频域位置的确定方式,所述第一SCI的频域位置基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。这样可以灵活确定第一SCI的频域位置,以使第一SCI准确传输。
在一个可能的设计中,所述第一SCI的起始RB位置与以下参数中的至少两个参数相关:所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数或偏移量;或者,所述第一SCI的起始RB位置与以下参数中的至少两个参数相关:所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数或所述偏移量;或者,所述第一SCI的结束RB位置与以下参数中的至少两个参数相关:所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数或所述偏移量;或者,所述第一SCI的结束RB位置与以下参数中的至少两个参数相关:所述第一SCI所在交错的索引、一个交错的RB个数、所述SCI的RB个数或所述偏移量。通过上述方法,可以通过多种方法确定第一SCI的起始RB位置和/或第一SCI的结束RB位置,进而可以准确确定第一SCI的频域位置。
在一个可能的设计中,所述第一SCI的起始RB位置可以与所述第一SCI所在子信道的索引以及一个子信道的RB个数相关;所述第一SCI的结束RB位置可以与所述第一SCI所在子信道的索引、一个子信道的RB个数和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置可以与所述第一SCI所在交错的索引以及一个交错的RB个数相关;或者,所述第一SCI的结束RB位置可以与所述第一SCI所在交错的索引、一个交错的RB个数和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引、一个子信道的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数和所述偏移量相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在交错的索引、一个交错的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数和所述偏移量相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引和所述第一SCI的RB个数相关;所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在交错的索引和所述第一SCI的RB个数相关;所述第一SCI的结束RB位置与所述第一SCI所在交错的索引和所述第一SCI的RB个数相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引、所述第一SCI的RB个数和偏移量相关;所述第一SCI的结束RB位 置与所述第一SCI所在子信道的索引、所述第一SCI的RB个数和偏移量相关。或者,所述第一SCI的起始RB位置与所述第一SCI所在交错的索引、所述第一SCI的RB个数和偏移量相关;所述第一SCI的结束RB位置与所述第一SCI所在交错的索引、所述第一SCI的RB个数和偏移量相关。通过上述方法,可以通过多种方法确定第一SCI的起始RB位置和/或第一SCI的结束RB位置,进而可以准确确定第一SCI的频域位置。
在一个可能的设计中,所述方法应用于侧行非授权频谱的场景。进而可以在侧行非授权频谱的场景中实现第一SCI的传输方式的指示。
第四方面,本申请提供了一种通信方法,该方法可以应用于第一终端装置,第一终端装置中的处理器、芯片或一个功能模块等,第一终端装置为例说明,该方法可以包括:第一终端装置接收第二终端装置的侧行控制信息,所述侧行控制信息可以指示用于所述第二终端装置侧行传输的第三资源;所述第一终端装置根据所述侧行控制信息指示的所述第三资源和所述第二终端装置的物理侧行控制信道PSCCH的传输方式,确定用于所述第一终端装置侧行传输的资源;和/或,所述第一终端装置根据所述侧行控制信息指示的所述第三资源和所述第二终端装置的物理侧行共享信道PSSCH的传输方式,确定用于所述第一终端装置侧行传输的资源。
通过上述方法,终端装置可以感知可以用于侧行传输的资源,从而选择正确的资源进行侧行传输,避免与其他终端装置之间的传输冲突。
在一个可能的设计中,第二终端装置在第三资源上以交错传输方式或非交错方式传输PSCCH,和/或,在第三资源上以交错传输方式或非交错方式传输PSSSH。这样,第一终端装置可以根据第二终端装置的PSCCH和/或PSSCH的传输方式准确排除第三资源。
在一个可能的设计中,所述确定用于所述第一终端装置侧行传输的资源,方法可以为:所述第一终端装置根据所述第二终端装置的PSCCH的传输方式和/或PSSCH的传输方式,在候选资源集合中排除所述侧行控制信息指示的所述第三资源,确定所述用于所述第一终端装置侧行传输的资源。这样第一终端装置可以准确确定自身可用的资源,从而选择正确的资源进行侧行传输,避免与其他终端装置之间的传输冲突。并且,第一终端装置可以与第二终端装置在相同的时隙、不同的交错上传输,而非先后在不同的时隙上传输,可以降低时延。
在一个可能的设计中,所述PSSCH的传输方式为非交错传输方式,所述第一终端装置在所述初始候选资源集合中排除所述侧行控制信息指示的所述第三资源,方法可以为:所述第一终端装置在所述初始候选资源集合中排除所述第三资源所在信道中的资源。这样可以保证排除后的剩余资源可以保证自身的侧行传输,从而选择正确的资源进行侧行传输,避免与其他终端装置之间的传输冲突。
在一个可能的设计中,所述第三资源所在信道中的资源可以包括:在所述第三资源所在时隙上,所述第三资源所在信道中的资源。
通过上述方法,在所述第三资源所在时隙上,信道中除了第三资源的资源并不能满足OCB需求。因此第一终端装置在资源选择时没必要将这些资源纳入候选资源集,直接排除第三资源所在时隙上所述第三资源所在信道中的资源,可以减小计算开销。
在一个可能的设计中,所述PSCCH的传输方式为非交错传输方式,所述第一终端装置在所述初始候选资源集合中排除所述侧行控制信息指示的所述第三资源,方法可以为:所述第一终端装置在所述初始候选资源集合中排除所述第三资源中所在信道中所述 PSCCH占用的资源。这样可以确定较多的资源作为自身的可用资源,提高资源利用率。
在一个可能的设计中,所述PSSCH的传输方式为非交错传输方式且所述PSCCH的传输方式为非交错传输方式,所述第一终端装置在所述初始候选资源集合中排除所述侧行控制信息指示的所述第三资源,方法可以为:所述第一终端装置在所述初始候选资源集合中排除所述第三资源所在信道中的资源。这样可以保证排除后的剩余资源可以保证自身的侧行传输,从而选择正确的资源进行侧行传输,避免与其他终端装置之间的传输冲突。
在一个可能的设计中,所述PSSCH的传输方式为交错传输方式,所述第一终端装置可以不排除所述第三资源所在信道中除所述第三资源以外的资源。这样可以确定较多的资源作为自身的可用资源,提高资源利用率。
在一个可能的设计中,第三资源所在信道中除所述第三资源以外的资源可以包括:在所述第三资源所在时隙上,第三资源所在信道中除所述第三资源以外的资源。
在一个可能的设计中,所述PSCCH的传输方式为交错传输方式,所述第一终端装置在所述初始候选资源集合中排除所述侧行控制信息指示的所述第三资源,方法可以为:所述第一终端装置在所述初始候选资源集合中排除所述第三资源所在交错中所述PSCCH占用的资源。这样可以确定较多的资源作为自身的可用资源,提高资源利用率。
在一个可能的设计中,所述第一终端装置确定在第四资源上传输所述PSCCH和/或所述PSSCH,所述第四资源属于所述用于所述第一终端装置侧行传输的资源;所述第四资源为信道,所述第一终端装置可以在第四资源上以交错方式或非交错方式传输所述PSCCH和/或所述PSSCH;或者,所述第四资源为交错,所述第一终端装置可以在第四资源上以交错方式传输所述PSCCH和/或所述PSSCH。这样第一终端装置可以根据可用资源的实际情况以符合需求的传输所述PSCCH和/或所述PSSCH,提升传输性能。
第五方面,本申请提供了一种通信方法,该方法可以应用于第二终端装置,第二终端装置中的处理器、芯片或一个功能模块等,第二终端装置为例说明,该方法可以包括:第二终端装置确定侧行控制信息,并向第一终端装置发送所述侧行控制信息,所述侧行控制信息可以指示用于所述第二终端装置侧行传输的第三资源。
通过上述方法,可以使第一终端装置根据所述侧行控制信息指示的所述第三资源和所述第二终端装置的物理侧行控制信道PSCCH的传输方式,确定用于所述第一终端装置侧行传输的资源;和/或,所述第一终端装置根据所述侧行控制信息指示的所述第三资源和所述第二终端装置的物理侧行共享信道PSSCH的传输方式,确定用于所述第一终端装置侧行传输的资源。这样终端装置可以感知可以用于侧行传输的资源,从而选择正确的资源进行侧行传输,避免与其他终端装置之间的传输冲突。
第六方面,本申请还提供了一种通信装置,所述通信装置可以是第一终端装置,第一终端装置中的处理器、芯片或一个功能模块等,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选地还包括存储器,所述收发器用于收发信息或数据,以及用于与通信系统中的其他设备进行通信交互, 所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第七方面,本申请还提供了一种通信装置,所述通信装置可以是第二终端装置,第二终端装置中的处理器、芯片或一个功能模块等,该通信装置具有实现上述第二方面或第二方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选地还包括存储器,所述收发器用于收发信息或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第八方面,本申请还提供了一种通信装置,所述通信装置可以是网络装置,网络装置中的处理器、芯片或一个功能模块等,该通信装置具有实现上述第三方面或第三方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第三方面或第三方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选地还包括存储器,所述收发器用于收发信息或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第三方面或第三方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第九方面,本申请还提供了一种通信装置,所述通信装置可以是第一终端装置,第一终端装置中的处理器、芯片或一个功能模块等,该通信装置具有实现上述第四方面或第四方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第四方面或第四方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选地还包括存储器,所述收发器用于收发信息或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第四方面或第四方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第十方面,本申请还提供了一种通信装置,所述通信装置可以是第二终端装置,第二 终端装置中的处理器、芯片或一个功能模块等,该通信装置具有实现上述第五方面或第五方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第五方面或第五方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选地还包括存储器,所述收发器用于收发信息或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第五方面或第五方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第十一方面,本申请实施例提供了一种通信系统,可以包括上述提及的第一终端装置、第二终端装置和网络装置等。
第十二方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计中,或第二方面及其任一可能的设计中,或第三方面及其任一可能的设计中,或第四方面及其任一可能的设计中,或第五方面及其任一可能的设计中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第十三方面,本申请实施例提供一种计算机程序产品,包括计算机程序代码或指令的,当计算机程序代码或指令在计算机上运行时,使得上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中,或者上述第三方面或第三方面任一种可能的设计中,或者上述第四方面或第四方面任一种可能的设计中,或者上述第五方面或第五方面任一种可能的设计中,所述的方法被执行。
第十四方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中,或者上述第三方面或第三方面任一种可能的设计中,或者上述第四方面或第四方面任一种可能的设计中,或者上述第五方面或第五方面任一种可能的设计中所述的方法。
上述第六方面至第十四面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案,或者第二方面或第二方面中的各种可能方案,或者第三方面或第三方面中的各种可能方案,或者第四方面或第四方面中的各种可能方案,或者第五方面或第五方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种交错的示意图;
图2为本申请提供的一种通信系统的架构示意图;
图3为本申请提供的另一种通信系统的架构示意图;
图4为本申请提供的另一种通信系统的架构示意图;
图5为本申请提供的另一种通信系统的架构示意图;
图6为本申请提供的另一种通信系统的架构示意图;
图7为本申请提供的一种通信方法的流程示意图;
图8为本申请提供的一种第一SCI的传输方式为和数据的传输方式的示意图;
图9为本申请提供的一种第一资源和第二资源的示意图;
图10为本申请提供的一种第一SCI的频域位置的示意图;
图11为本申请提供的另一种第一SCI的频域位置的示意图;
图12为本申请提供的另一种通信方法的流程示意图;
图13为本申请提供的另一种第一SCI的传输方式为和数据的传输方式的示意图;
图14为本申请提供的另一种第一SCI的传输方式为和数据的传输方式的示意图;
图15为本申请提供的一种两个终端设备传输PSSCH的示意图;
图16为本申请提供的另一种通信方法的流程示意图;
图17为本申请提供的一种通信装置的结构示意图;
图18为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以明确SCI和数据的传输方式,保证终端装置的侧行传输。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)物理侧行控制信道(physical sidelink control channel,PSCCH)
PSCCH的调度粒度在时域上单位为一个时隙,频域上单位为连续一个或者多个子信道。PSCCH承载一阶侧行控制信息(sidelink control information,SCI)。在时域上,PSCCH占用从第二个侧行符号开始的两个或三个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号;在频域上,承载PSCCH的物理资源块(physical resource block,PRB)从关联的物理侧行共享信道(physical sidelink shared channel,PSSCH)的最低子信道的最低PRB开始,且PSCCH占据的PRB个数在一个PSSCH的子带范围内。PSCCH由{10,12,15,20,25}个资源块(resource block,RB)组成,具体取值由预配置或者网络配置。其中,PRB和RB可以互相替换。
2)物理侧行共享信道(physical sidelink shared channel,PSSCH)
PSSCH的调度粒度在时域上单位为一个时隙,频域上单位为连续一个或者多个子信道。PSSCH承载二阶SCI、数据或媒体接入控制控制单元(media access control,MAC CE)中的至少一种。时域上,在没有物理侧行反馈信道(physical sidelink feedback channel,PSFCH)的资源上,有12个符号用于承载PSSCH;在有PSFCH的资源上,有9个符号用于承载 PSSCH。频域上,PSSCH占据连续LsubCh个子信道。另外,在一个时隙内,第一个OFDM符号复制第二个符号上发送的信息,用于自动增益控制(automatic gain cntrol,AGC)。
3)物理侧行反馈信道(physical sidelink feedback channel,PSFCH)
PSFCH承载反馈信息。在有PSFCH的资源上,倒数第二个和第三个OFDM符号承载PSFCH。倒数第三个符号上的信号是倒数第二个符号上信号的重复,以便接收侧进行AGC调整。
4)交错(interlace或Interlaced resource blocks)或交错方式
协议定义了多个交错的资源块(multiple interlaces of resource blocks),以下简称交错。交错m由公共资源块(common resource block,CRB){m,M+m,2M+m,3M+m,…}组成。其中M为交错数,也即交错的个数,且m∈{0,1,…,M-1},m为交错的编号或索引。可选地,M的取值与子载波间隔(sub-carrier spacing,SCS)有关。例如,在子载波间隔为15千赫兹(kHz)时,M取值可以为10。再例如,在子载波间隔为30kHz时,M取值可以为5。可选地,本申请中交错的资源单元可以是资源块,也可以是其它的频域资源单元或时域资源单元。
为了便于表述,CRB可以理解为RB。
资源分配方式包括连续的和交错的两种方式。其中,交错还可以记作交织、隔行、逐行、梳齿。1个交错包括N个不连续的RB,传输带宽(例如信道)中包含M个交错。可选地,交错内的RB之间的间隔可以相同或者不同。例如,1个交错内,RB的间隔可以为M个RB,可选地,RB之间的间隔如果不算交错所包含的RB,则RB之间的间隔为M-1个RB。例如图1所示,横轴代表频域,单位为RB,纵轴代表时域,单位为符号。在20MHz频率带宽内,30KHz子载波间隔下,共有51个RB,即图1中所示的51个格子。51个资源块中,10个或者11个等间隔的RB组成一个交错,共计有5个交错。交错0对应图1中示出的11个白色示例的RB,交错1、交错2、交错3和交错4分别对应图1中示出的10个不同阴影示例的RB,详见图1所示。
SL-U的传输带宽(例如信道)可以是5兆赫兹(MHz)至100MHz。在不同SCS下有不同个数个RB组成。在不同传输带宽(例如信道)、不同SCS下的RB数如表1所示。
表1最大传输带宽内的RB数
以20兆赫兹(MHz)传输带宽为例,表2示出了不同SCS下交错个数M和交错包含的RB个数N的组合。
表2

5)资源池(resource pool)
新空口(new radio,NR)侧行(sidelink,SL)通信基于资源池进行。资源池指的是一块专用于SL通信的时频资源。资源池包含的频域资源是连续的。资源池包含的时域资源可以是连续的,也可以是不连续的。不同的资源池由SL资源池标识(例如SL-ResourcePoolID)区分。终端装置在收资源池上接收,在发资源池上发送。如果资源池具有相同的资源池索引,则可以认为资源池的时频资源是完全重合的。
在侧行非授权频谱(Sidelink on unlicensed spectrum,SL-U)中,由于频带是由多种形式的终端装置共享的,如SL终端装置与无线保真(wireless fidelity,Wi-Fi)终端装置、蓝牙终端装置在相同的频带上传输。因此,不一定有SL专用资源池的概念。SL资源池还可以理解为:可以用于SL传输的资源集合。在本实施例中,资源池还可以称作信道(channel)、工作信道(operating channel)、名义信道(nominal channel bandwidth)、带宽(bandwith)。即资源池、信道、带宽均用于表示可以用于SL传输的资源集合。
资源池与信道的关系:资源池中包括至少一个信道。例如,资源池包括一个信道,信道带宽为20MHz,资源池带宽为20MHz。再例如,资源池包括2个信道,信道带宽为20MHz,资源池带宽为40MHz。再例如,资源池包括10个信道,信道带宽为20MHz,资源池带宽为100MHz。
信道可以包括一个或多个子信道,或者也可以包括一个或多个交错。
子信道与交错的关系可以为以下任意一种:
子信道与交错的关系1:对于交错传输方式,频域资源的单位为子信道,1个子信道包括1个交错,子信道由不连续的N个RB组成。对于非交错传输方式,频域资源的单位为子信道,子信道由连续的N个RB组成。
子信道与交错的关系2:对于交错传输方式,频域资源的单位为交错,交错由不连续的N个RB组成。对于非交错传输方式,频域资源的单位为子信道,子信道为连续的N个RB组成。
6)信道(channel)和信道占用(channel occupancy,CO)
信道是指在非授权频谱中执行信道接入过程的一组连续资源块(RB)组成的载波或载波的一部分。可以理解为,信道为终端装置执行信道接入的带宽。
可选的,信道还可以称为RB集合(RB set)。
信道占用是指终端装置在执行信道接入过程后在一个或者多个信道上的传输。终端装置执行类型1(type1)先听后说(listen-before-Talk,LBT)后在一段连续的时间内占用信道传输称为信道占用时间(channel occupancy time,COT)。COT的频域单元为信道,时域单元为毫秒(ms)或者时隙。在本申请中,CO可以是一个时间概念,即SL传输的时间;也可是一个资源的概念,即SL传输所占的时频资源。COT可以是一个时间概念,即SL传输的时间;也可是一个资源的概念,即SL传输所占的时频资源。终端装置可以在相邻 或者不相邻的多个信道传输,终端装置在多个信道传输可以理解成:终端装置的传输占用了1个COT,COT在频域上占用了多个信道;或者,终端装置的传输占用了多个COT,每个COT在频域上占用了1个信道。在本申请中,若不做进一步区分,COT和CO可以为同一概念。
终端装置在资源池中,可以在相邻的M个信道上传输PSCCH和或PSSCH,也可以在1个信道上传输PSCCH和或PSSCH。以终端装置在A个交错上传输PSCCH、在B个交错上传输PSSCH为例,其中A小于等于B,A和B均为整数。
对于终端装置在1个信道上传输,终端装置在传输PSSCH的B个交错中的索引最小的A个交错上传输PSCCH。例如,A=1,B=4,M=1,用于传输PSSCH的交错索引分别为0、1、2、3,终端装置在交错0上传输PSCCH。
对于终端装置在相邻的M个信道上传输,终端装置在信道索引最小的信道上,在A个交错上传输PSCCH;终端装置在M个信道上,总共在B个交错上传输PSSCH。例如,A=1,B=4,M=2,信道索引分别为0和1,则终端装置在信道0上的交错0上传输PSCCH和PSSCH,在信道0上的交错1上传输PSSCH;在信道1的交错0和交错1上传输PSSCH。
7)时域资源、频域资源
时域资源包括符号(symbol)、时隙(slot)、迷你时隙(mini-slot)、部分时隙(partial slot)、子帧(sub-frame)、无线帧(frame)、感知时隙(sensing slot)等。
频域资源包括资源单元(resource element,RE)、资源块(resource block,RB)、子信道(subchannel)、资源池(resource pool)、带宽(bandwidth)、带宽部分(bandwidth part,BWP)、载波(carrier)、信道(channel)、交错(interlace)等。
为了便于描述,本文以时域资源为时隙、频域资源为子信道或交错描述传输PSCCH或PSSCH的资源。
8)非授权频谱(unlicensed spectrum)
为了充分、合理、有效地利用无线电频谱资源,保证无线电业务的正常运行,防止各种无线电业务、无线电台站和系统之间的相互干扰,对频段进行了划分。2/3/4G等技术使用是授权频谱,需要由电信运营商申请才能使用,干扰小,安全。
WiFi、蓝牙、无线个域网(Zigbee)等技术使用的是非授权频谱,目的是作为运营商增强其服务提供的补充工具。无需申请就能使用授权频谱通信,并且免费。在非授权频谱上,通信需要遵守某些规定,例如先听后说(listen-before-Talk,LBT)和占用先到带宽(occupied channel bandwidth,OCB)需求,用于保证在该频谱上运行的各类终端装置之间的接入公平性。在非授权频谱上的SL通信称为SL-U。其中,Wi-Fi终端装置、蓝牙终端装置、Zigbee终端装置对于SL终端装置可以简称异系统终端装置。
9)OCB需求
名义信道带宽是分配给单个信道的最宽频带,包括保护频带。OCB是包含信号功率99%的带宽。单个工作信道的名义信道带宽为20MHz。OBC应在名义信道带宽的80%和100%之间。对于具有多个发射链(transmit chains)的终端装置,每个发射链都应满足此要求。OCB可以随时间或有效负载而变化。在信道占用时间(channel occupancy time,COT)期间,终端装置可以临时以低于其名义信道带宽的80%传输,且最小传输带宽为2MHz。
交错传输就是为了满足OCB需求。以20MHz带宽、30kHz的SCS为例,传输带宽有51个RB。如果一个子信道由10个连续的RB组成,则有5个子信道(剩余1个RB空闲)。 若终端装置在一个子信道上发送,占用带宽约4MHz,不满足“OCB应在名义信道带宽的80%和100%之间”的OCB需求。若以交错方式发送,仍以图1为例,如在索引为0的交错发送,则占用信道带宽约20MHz,即100%的名义带宽;如在索引为1的交错发送,则占用信道带宽约18MHz,即约46/51≈90%的带宽。可以满足OCB的需求。
10)侧行通信
侧行通信指终端装置与终端装置之间通过侧行链路进行的通信。
随着无线通信技术的发展,人们对高数据速率和用户体验的需求日益增长,同时人们对了解周边人或事物并与之通信的邻近服务的需求逐渐增加,因此设备到设备(device-to-device,D2D)技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担、减少终端装置的电池功耗、提高数据速率,并能很好地满足邻近服务的需求。D2D技术允许多个支持D2D功能的终端装置在有网络基础设施或无网络基础设施的情况下进行直接发现和直接通信。鉴于D2D技术的特点和优势,基于D2D技术的车联网应用场景被提出,但是因涉及安全性的考虑,这种场景下对时延的要求非常高,现有的D2D技术无法实现。
因此,在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术的网络下,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出,V2X通信是指车辆与外界的任何事物的通信,包括车与车的通信(vehicle to vehicle,V2V)、车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、车与网络的通信(vehicle to network,V2N)等。
V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。V2X通信可以支持有网络覆盖和无网络覆盖的通信场景,其资源分配方式可以采取网络接入设备调度模式,如演进通用陆地无线接入网节点B(evolution universal terrestrial radio access network node B,eNB)调度模式和终端装置自选模式。基于V2X技术,车辆(vehicle)终端装置,能将自身的一些信息,例如位置、速度、意图(转弯、并线、倒车)等信息周期性以及一些非周期性的事件触发的信息向周围的车辆终端装置发送,同样地车辆终端装置也会实时接收周围终端装置的信息。
SL-U是侧行通信在Rel-18的通信场景,通信技术沿用V2X的通信架构,将通信场景延伸至如智能家居之间的短距通信,增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、扩展现实(eXtended reality,XR)、混合现实(mixed reality,MR)的穿戴设备、手机、电脑之间的通信。
D2D通信、LTE V2X通信、NR V2X通信、SL-U通信的链路均为侧行链路(sidelink)。在本申请中,侧行通信可以包括D2D通信、LTE V2X通信、NR V2X通信、SL-U通信中的至少一种。
11)终端装置,例如可以是终端设备,或者是用于实现终端设备的功能的模块,例如芯片或芯片系统,该芯片或芯片系统可以设置在终端设备中。终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备可以包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿 戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、XR设备、MR设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。
终端装置还可以是设备到设备通信(device-to-device,D2D)终端设备、车与任何事物(vehicle to everything,V2X)通信终端设备、智能车辆、车机系统(或称车联网系统)(telematics box,TBOX)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备。例如,终端装置可以为车辆、船舶或飞行器等载具或终端型路边单元,或内置于车辆或路边单元的通信模块或芯片。例如终端装置可以是车载模组。终端装置也可以为路侧单元(road side unit,RSU)。而如上介绍的各种终端设备,如果位于车辆上,例如放置在车辆内或安装在车辆内,都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on board unit,OBU)。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
终端装置还可以为游乐设备、智能电器等智能设备或无人机等。
在本申请实施例的描述中,以终端装置为例进行说明。
12)网络装置,也可以称为网络设备,为终端装置提供接入的设备。网络设备可以包括无线接入网(radio access network,RAN)设备,例如基站。网络设备也可以是指在空口与终端设备通信的设备。网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolved Node B),可简称为eNB或e-NodeB)。eNB是一种部署在无线接入网中满足第四代移动通信技术(the fourth generation,4G)标准的为终端设备提供无线通信功能的装置。网络设备还可以是新无线控制器(new radio controller,NR controller),可以是5G系统中的(gNode B,gNB),可以是集中式网元(centralized unit),可以是新无线基站,可以是射频拉远模块,可以是微基站(也称为小站),可以是中继(relay),可以是分布式网元(distributed unit),可以是各种形式的宏基站,可以是传输接收点(transmission reception point,TRP)、传输测量功能(transmission measurement function,TMF)或传输点(transmission point,TP)或者任何其它无线接入设备,本申请实施例不限于此。网络设备也可以包括无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)或射频拉远单元(remote radio unit,RRU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或者在云无线接 入网(cloud radio access netowrk,CRAN)中的基带池(BBU pool)和RRU等。本申请的实施例对网络设备所使用的具体技术和具体设备形态不做限定。例如,网络设备在4G系统中可以对应eNB,在5G系统中对应gNB。
另外,本申请实施例中的基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施例中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。在该网络架构中,CU产生的信令可以通过DU发送给终端设备,或者UE产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端设备或CU。在该网络架构中,将CU划分为RAN侧的网络设备,此外,也可以将CU划分作为核心网(core network,CN)侧的网络设备,本申请对此不做限制。
本申请中,网络装置也可以是中央处理单元(central processing element,CPE)、路由器等。
本申请中,网络装置也可以是一个功能模块、芯片或芯片系统。可选地,功能模块、芯片或芯片系统可以设置于网络装置内。
在本申请实施例的描述中,以网络装置为例进行说明。
13)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
本申请可以应用于侧行通信场景,例如SL-U等场景。在本申请中,终端装置可以位于网络装置的覆盖范围内,也可以位于网络装置的覆盖范围外,覆盖范围内的终端装置也可以和覆盖范围外的终端装置进行直连通信(也称侧行链路通信)。示例性的,图2-图6示出了本申请实施例提供的通信方法可以适用的多种通信系统的架构。
图2示出了一种包括蜂窝通信以及终端装置直连通信的通信系统的架构。该图2所示的通信系统可以包括至少一个网络装置和至少两个终端装置,图2中仅以一个网络装置和 两个终端装置(如图2所示的终端装置1和终端装置2)示出。其中,网络装置可以通过下行链路向终端装置1发送信息等,终端装置1可以通过上行链路向网络装置发送信息等,终端装置1和终端装置2之间可以通过侧行链路进行直连通信。
在图2中,以终端装置1和终端装置2均在网络装置的覆盖范围内示出,可选地,也可以终端装置1在网络装置的覆盖范围内,终端装置2在网络装置的覆盖范围外,本申请对此不作限定。
图3示出了一种包括蜂窝通信和车辆网通信的通信系统的架构。图3所示的通信系统可以包括至少一个网络装置和至少两个终端装置。示例性的,图3中以一个网络装置和三个终端装置示出,在图3中终端装置以车辆为例示出,如图3中的车辆1、车辆2和车辆3所示。其中,网络装置可以通过下行链路向车辆1发送信息等,车辆1可以通过上行链路向网络装置发送信息等,车辆1和车辆2之间可以通过侧行链路进行直连通信,车辆1和车辆3之间也可以通过侧行链路进行直连通信。
在图3中,以车辆1和车辆2在网络装置的覆盖范围内,车辆3在网络装置的覆盖范围外示出,可选地,也可以车辆1在网络装置的覆盖范围内,车辆2和车辆3均在网络装置的覆盖范围外,或者也可以车辆1和车辆3在网络装置的覆盖范围内,车辆2在网络装置的覆盖范围外,本申请对此不作限定。
上述蜂窝通信可以包括5G NR通信或LTE通信等。
图4示出了一种V2X通信系统的架构。其中,如图4所示,V2X通信可以包括V2V、V2P、V2I、V2N。V2X通信系统包括两个终端装置之间的直接通信。其中,对于V2V通信,两个终端装置可以是车辆或位于车辆中的车载终端装置等。对于V2P通信,两个终端装置中,一个终端装置可以是车辆或位于车辆中的车载终端装置等,另一个终端装置可以是移动终端、可穿戴设备等由行人随身携带的终端装置。对于V2I通信,两个终端装置中,一各终端装置可以是车辆或位于车辆中的车载终端装置等,另一个终端装置可以是RSU等基础设施。对于V2N通信,两个终端装置中,一个终端装置可以是车辆或位于车辆中的车载终端装置等,另一终端装置可以是基站。
图5示出了一种终端装置直连通信的通信系统的架构。该通信系统中可以包括两个终端装置。两个终端装置之间可以通过侧行链路进行通信。图4中以一个终端装置为AR或VR或MR设备,另一个终端装置为处理设备或显示设备为例示出。
图6示出了一种包含WiFi通信和直连通信的通信系统的架构。图6所示的通信系统可以包括至少一个网络装置和至少两个终端装置。示例性的,图6中以一个网络装置和三个终端装置(如图6中的终端装置1、终端装置2和终端装置3)示出,在图6中网络装置以路由器为例示出。其中,路由器可以通过下行链路向终端装置1发送信息等,终端装置1可以通过上行链路向路由器发送信息等,终端装置1和终端装置2之间可以通过侧行链路进行直连通信,终端装置1和终端装置3之间也可以通过侧行链路进行直连通信。
需要说明的是,上述通信系统仅为示例性说明,并不作为对本申请通信系统的限定。
目前,在NR-U场景中,网络装置和终端装置在非授权频谱上传输时,需要满足OCB的需求。网络装置为终端设备配置发送PUSCH和PUCCH方式为交错传输方式或者非交错传输方式。其中,交错传输方式可以支持多个终端设备同时在相同的时隙上传输。也即在NR-U的场景中,由网络装置直接给终端装置指示传输方式。进而,网络装置就按照指示的传输方式译码PUCCH和PUSCH。网络设备发送的PDSCH和PDCCH都是以非交错 方式传输的,终端装置直接按照非交错的方式译码即可。
然而,在SL-U场景中,为了满足OCB需求,若占用带宽小于80%则发送终端装置需要采用交错发送。这就造成了有的PSCCH和PSSCH是以连续RB方式发送的(即非交错),有的PSCCH和PSSCH是以交错传输方式发送的。目前,在SL-U场景中,发送装置和接收装置都是终端装置。对于两个终端装置接收或发送PSCCH和PSSCH的方式还没有明确的确定方法,可能会导致接收终端装置或做资源感知的终端装置不知道PSCCH是以交错方式传输的,还是以非交错的方式传输的。接收终端装置或做资源感知的终端装置就需要按照这两种方式分别尝试译码PSCCH。这相当于把译码的开销增大了一倍,对于给终端装置的性能要求极高。并且,受限于性能,有的终端装置仅能支持译码一次PSCCH,即不能够按照这交错和非交错两种方式分别尝试译码PSCCH。这就会造成对于PSCCH的译码失败,极大地影响了通信的可靠性。网络装置为性能较强的装置,其按照一种固定的方式译码PUCCH。终端装置的性能比网络装置较弱,如果要求终端装置按照交错和非交错2种方式分别译码PSCCH,需要终端装置以较大硬件开销来实现,实现较为困难。另外,由于SL-U业务场景的多样性,需要支持在资源池中能够有大数据包的传输,也要支持在资源池中能够有大数据包的传输。因此需要PSSCH灵活地以交错或者非交错的方式传输。
例如,以XR业务为例说明:NR-U的主要业务模型是XR业务,XR业务的下行数据包很大、上行数据包较小。因此,网络装置在传输PDSCH时,在频域上可以占满信道或者占至少80%的信道。相应地,终端装置在传输PUSCH时,如果以非交错的方式传输,不一定能够占至少80%的信道。如果占满整个信道,又会造成信干噪比下降,影响译码性能。另外,如果不同的终端装置在不同的时隙上分别传输PUSCH,在时延性能上不如不同的终端装置在相同的时隙上分别传输PUSCH。基于以上分析,NR-U中,才使用了网络装置通过RRC信令指示PUCCH和PUSCH固定地以交错方式传输,或者PUCCH和PUSCH固定地以非交错方式传输。
同理,XR业务也是SL-U的一个主要场景。类似地,终端装置1给终端装置2发送的数据包很大,终端装置2给终端装置1发送的数据包很小。对于大数据包,可以以非交错的方式传输;而对于小数据包,更适合用交错的方式传输。这就造成了,在SL-U的资源池中,既有交错方式传输的SL信息、也有以非交错的方式传输的SL信息。另外,即使对于其他SL-U业务,也存在类似的问题,即:有的业务数据包大,有的业务数据包小。因此也会出现在SL-U的资源池中,既有交错方式传输的SL信息、也有以非交错的方式传输的SL信息的情形。这样就会造成上述提及的SL-U场景中开销增大、译码失败等问题。
基于此,本申请实施例提出一种通信方法,可以明确SCI和数据的传输方式,保证终端装置的侧行传输。
在本申请实施例中,执行发送SCI和数据的装置可以是终端装置,终端装置中的处理器、芯片或一个功能模块等,该终端装置可以理解为发送终端装置。执行接收SCI和数据的装置可以为终端装置,终端装置中的处理器、芯片或一个功能模块等,该终端装置可以理解为接收终端装置。一个终端装置既可以作为发送终端装置,也可以作为发送终端装置。下面以发送终端装置为第一终端装置,接收终端装置为第二终端装置为例进行说明,本申请对此不作限定。
在本申请中,终端装置在资源池中,可以在相邻的M个信道上传输PSCCH和或PSSCH,也可以在1个信道上传输PSCCH和或PSSCH。以终端装置在A个交错上传输PSCCH、 在B个交错上传输PSSCH为例,其中A小于等于B,A和B均为整数。例如B为A的整数倍。
对于终端装置在1个信道上传输,终端装置在传输PSSCH的B个交错中的索引最小的A个交错上传输PSCCH。例如,A=1,B=4,M=1,用于传输PSSCH的交错索引分别为0、1、2、3,终端装置在交错0上传输PSCCH。
对于终端装置在相邻的M个信道上传输,终端装置在信道索引最小的信道上,在A个交错上传输PSCCH;终端装置在M个信道上,总共在B个交错上传输PSSCH。例如,A=1,B=4,M=2,信道索引分别为0和1,则终端装置在信道0上的交错0上传输PSCCH和PSSCH,在信道0上的交错1上传输PSSCH;在信道1的交错0和交错1上传输PSSCH。
基于以上实施例,本申请实施例提供了一种通信方法,适用于如图2-图6所示的通信系统。参阅图7所示,该方法的流程可以包括:
步骤701:第一终端装置确定第一SCI的传输方式。
示例性的,第一SCI为第一阶SCI,第一阶SCI承载于PSCCH。在本申请中,第一阶SCI和PSCCH可以替换描述。
第一终端装置可以通过以下两种方式确定第一SCI的传输方式:
方式a1、第一终端装置确定预定义的第一SCI的传输方式。
在该方式a1中,第一SCI的传输方式为协议定义好的。
方式a2、第一终端装置从网络装置接收第一信息,或者,第一终端装置获取第一信息(即获取预配置的第一信息),所述第一信息指示所述第一SCI的传输方式。
在该方式a2中,第一信息可以为RRC信息,例如为PC-5RRC信息。
在该方式a2中,一种可能的方式是通过第一信息为第一终端装置预配置第一SCI的传输方式;另一种可能的方式是网络装置通过第一信息为第一终端装置配置第一SCI的传输方式。
可选地,预配置可以理解为预配置在终端装置上和/或是预配置在SIM卡上的。
示例性的,资源池中的终端装置均按照第一信息指示的传输方式传输第一SCI。
在一种可选的实施方式中,第一SCI的传输方式可以为交错传输方式或非交错传输方式。第一SCI的传输方式为交错传输方式,还可以理解为第一SCI是交错的(interlaced)。第一SCI的传输方式为非交错传输方式,还可以理解为第一SCI是非交错的(non-interlaced)。
其中,本申请中交错传输方式可以指在频域上不连续(即离散)的RB上传输;可选地,不连续也可以称为不相邻。该不连续(即离散)的RB在频域上可以是等间隔的。在频域上不连续(即离散)的RB上传输也可以描述为在频域上交错RB。可选地,在一个交错上的传输是不连续的,在两个或两个以上的交错上可以理解为是连续传输。
非交错传输方式可以指在频域上连续的(contiguous或adjacent)RB上传输。可选地,非交错方式也可以理解为在连续的频域资源上传输、在子信道上传输、以子信道形式传输或在连续RB的子信道上传输。
值得注意的是,如果将子信道定义为交错(例如:1个子信道定义为1个交错),终端装置也可以交错传输方式在子信道上传输,还可以称为在不连续RB的子信道上传输。
在本申请中,为了不引起歧义,以“交错传输方式”和“非交错传输方式”来区分两种传输方式。
一种示例中,一个子信道中的RB个数和一个交错中的RB个数可以配置为相等的个 数。
步骤702:第二终端装置确定第一SCI的传输方式。
同理,第二终端设备确定第一SCI的传输方式的方法与第一终端设备类似,可以参考上述方式a1和a2,此处不再详细描述。
其中,第二终端装置为第一终端装置接收第一SCI和数据的终端装置。即,第二终端装置可以理解为接收终端装置或者做资源感知的终端装置。
在一种可选地实施方式中,第一终端装置和第二终端装置确定第一SCI的传输方式时,确定是所有SCI的传输方式,从而可以确定第一SCI的传输方式。例如,网络装置通过RRC信息为第一终端装置和第二终端装置指示SCI传输方式,以使第一终端装置和第二终端装置可以确定任一个SCI的传输方式。本申请中,以第一SCI为例进行说明,其他SCI同理。
可选地,第一终端装置和第二终端装置确定第一SCI的传输方式也可以理解为第一终端装置和第二终端装置确定承载第一SCI的PSCCH的传输方式,或者理解为第一终端装置和第二终端装置确定PSCCH的传输方式。应理解,PSCCH的传输方式与第一SCI的传输方式理解可以相同。
需要说明的是,本申请不限定步骤701和步骤702的先后顺序。
步骤703:第一终端装置以确定的第一SCI的传输方式向第二终端装置发送第一SCI,相应地,第二终端装置以确定的第一SCI的传输方式从第一终端装置接收第一SCI,第一SCI指示数据的传输方式。
需要说明的是,本申请中发送或接收还可以描述为传输、映射(mapping)、复用(multiplexing)、译码等,本申请对此不作限定。
步骤704:第一终端装置以数据的传输方式向第二终端装置发送数据,相应地,第二终端装置以数据的传输方式从第一终端装置接收数据。
示例性的,数据的传输方式可以为交错传输方式或非交错传输方式。
可选的,第一终端装置确定数据的传输方式,并以数据的传输方式向第二终端装置发送数据。
第二终端装置根据第一SCI,确定第一SCI指示的数据的传输方式,以第一SCI指示的数据的传输方式从第一终端装置接收数据。
其中,数据承载于PSSCH,该PSSCH可以只承载数据,也可以还包括第二阶SCI和/或MAC CE,第二阶SCI的传输方式与数据的传输方式相同,MAC CE的传输方式与数据的传输方式相同。应理解,PSSCH的传输方式与数据的传输方式相同。
可选地,第一SCI指示数据的传输方式还可以描述为第一SCI指示PSSCH的传输方式。
其中,第一SCI指示数据或PSSCH的传输方式也可以理解为指示是否以交错传输方式传输,或者理解为是否以非交错传输方式传输。
在一种可选地实施方式中,第一SCI可以通过第一SCI中的第一字段指示数据的传输方式。例如,该第一字段可以为第一SCI中的最高有效位(the most significant bit,MSB)或者最低有效位(least significant bit,LSB)。
在一种示例中,第一字段可以包括1个比特(bit),通过这1个比特指示数据的传输方式。例如,第一字段的取值可以是{0,1},当第一字段为“0”时表示数据的传输方式为交 错传输方式,当第一字段为“1”时表示数据的传输方式为非交错传输方式。或者,当第一字段为“1”时表示数据的传输方式为交错传输方式,当第一字段为“0”时表示数据的传输方式为非交错传输方式。
再例如,第一字段的取值可以是{使能(enable),去使能(disable)},还可以是{交错(interlaced),非交错(non-interlaced)}。指示方法与第一字段的取值可以是{0,1}相同,不再赘述。
在另一种示例中,第一SCI可以通过是否包括第一字段来指示数据的传输方式。例如,当第一SCI中包括第一字段时表示数据的传输方式为交错传输方式,当第一SCI中不包括第一字段时表示数据的传输方式为非交错传输方式。或者,当第一SCI中不包括第一字段时表示数据的传输方式为交错传输方式,当第一SCI中包括第一字段时表示数据的传输方式为非交错传输方式。例如,第一字段的取值可以是{enable},还可以是{interlaced}。指示方法与第一字段的取值可以是{0}相同,不在赘述。
可选地,在第一SCI的传输方式为交错传输方式的情况下,当第一SCI指示数据的传输方式为交错传输方式时,第一终端装置发送第一SCI的交错的起始RB位置(例如索引最小的RB)与数据所在交错的索引最低(即最小)的交错的RB起始位置可以相同。
例如第一终端装置在A个交错上传输PSCCH,在B个交错上传输PSSCH。其中A和B均为正整数。该A个交错的起始RB位置与该B个交错的索引最低的交错的RB起始位置相同。
可选地,在第一SCI的传输方式为交错传输方式的情况下,当第一SCI指示数据的传输方式为非交错传输方式时,第一终端装置发送第一SCI的交错的起始RB位置与数据所在子信道的索引最低的子信道的RB起始位置相同。
例如第一终端装置在A个交错上传输PSCCH,在B个子信道上传输PSSCH。其中A和B均为正整数。该A个交错的起始RB位置与该B个子信道的索引最低的子信道的RB起始位置相同。
可选地,数据的子信道数占所述数据的子信道所在信道的比例或者所述数据的子信道数占子信道总数的比例大于80%,所述数据的传输方式为非交错传输方式。可选地,所述信道可以为LBT的信道;或者可以为执行信道接入的信道。
示例性的,第一终端装置在信道上执行信道接入,信道接入成功后以交错或者非交错的方式在信道上传输第一SCI和/或数据。信道的带宽为Z*20MHz,Z为大于或等于1的整数。
例如,假设第一SCI的传输方式为交错传输方式,第一SCI可以占A个交错。A的取值范围是{1,2,3,4,…,M},例如A=1。其中,M为资源池的交错总数。第一终端装置以交错传输方式向第二终端装置发送数据时,数据占B个交错,B的取值范围是{1,2,3,4,…,M};或者第一终端装置以非交错传输方式传输数据时,数据占B个子信道。其中,B的取值范围是{1,2,3,4,…,P}。其中,P为资源池的子信道总数。B大于等于A,或者B为A的整数倍。
可选地,可以通过预配置或者网络装置配置第一SCI占A个交错。资源池中的所有发送终端装置都在A个交错上传输SCI。
一种举例中,以第一SCI的传输方式为交错传输方式,数据的传输方式为非交错传输方式为例说明。例如,如图8中的(a)所示,资源池包括4个子信道,第一终端装置在索 引为0的一个交错上传输第一SCI,在索引为0、1、2、3的4个子信道上传输数据。又例如,如图8中的(b)所示,资源池包括4个子信道,第一终端装置在索引为0的一个交错上传输第一SCI,在索引为0、1、2的3个子信道上传输数据。其中第一SCI的交错的起始RB位置与数据所在子信道索引最低的子信道的RB起始位置相同,即交错0的起始RB与子信道0的起始RB相同。
又一种举例中,以第一SCI的传输方式为交错传输方式,数据的传输方式为交错传输方式为例说明。例如,如图8中的(c)所示,资源池包括4个交错,第一终端装置在索引为0的一个交错上传输第一SCI,在索引为0、1、2的3个交错上传输数据。其中第一SCI的交错的起始RB位置与数据的交错索引最低的交错的RB起始位置相同,均为交错0的起始RB。
应理解,本申请中,第一终端装置在XX上传输第一SCI,在YY上传输数据,即表示第一终端装置在XX上向第二终端装置发送第一SCI,在YY上向第二终端装置发送数据,相应地,第二终端装置在XX上从第一终端装置接收第一SCI,在YY上从第一终端装置接收数据。在本申请其他地方的描述的中,类似的对于第一终端装置传输的理解同理,下面不再一一说明。
需要说明的是,上述举例描述中,第一SCI可以以PSCCH替换描述,数据可以以PSSCH替换描述,下面涉及的举例可以做类似替换,本申请不作限定。
在一种可选地实施方式中,第一终端装置可以确定数据或者承载数据的PSSCH的频域资源。
示例性的,第一终端装置确定所述数据或者承载所述数据的PSSCH的频域资源,具体可以理解为:第一终端装置确定所述数据或者承载所述数据的PSSCH的交错个数或子信道个数;或者,第一终端装置确定所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。
示例性的,第一终端装置确定数据或者承载数据的PSSCH的频域资源,可以包括以下两种方法:
方法b1、第一终端装置确定预定义的所述数据或者承载所述数据的PSSCH的频域资源。
在该方法b1中,数据或者承载所述数据的PSSCH的频域资源是协议预定义好的。
方法b2、第一终端装置从网络装置接收第二信息,或者,第一终端装置获取第二信息(即获取预配置的第二信息),第二信息指示所述数据或者承载所述数据的PSSCH的频域资源。
方法b3、第一终端装置可以自行确定所述数据或者承载所述数据的PSSCH的频域资源。
一种可能的方式中,第二信息可以指示数据或者承载所述数据的PSSCH的交错个数或子信道个数。示例性的,第二信息可以包括个比特,通过该个比特指示数据或者承载所述数据的PSSCH的交错个数,其中M为资源池的总交错数。或者,第二信息可以包括个比特,通过该个比特指示数据或者承载所述数据的PSSCH的子信道个数,P为资源池中的子信道总数。
可选地,对于第一信息指示“PSSCH以交错方式传输”,第二信息指示PSSCH的交错个数。对于第一信息指示“PSSCH以非交错方式传输”,第二信息指示PSSCH的子信道个 数。
另一种可能的方式中,第二信息可以指示所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。
可选地,第二信息可以指示所述数据是否占满所述数据的交错或子信道所在的信道。
可选地,第二信息可以指示承载所述数据的PSSCH是否占满承载所述数据的PSSCH的交错或子信道所在的信道。
例如,第二信息可以包括1个比特,当数据或者承载所述数据的PSSCH传输方式为交错传输方式时,通过该1个比特指示所述数据或者承载所述数据的PSSCH占部分(例如1个)交错或全部交错,该全部交错即为占满所述数据或者承载所述数据的PSSCH的交错所在的信道;或者,当数据或者承载所述数据的PSSCH传输方式为非交错传输方式时,通过该1个比特指示所述数据或者承载所述数据的PSSCH占部分(例如1个)个子信道或全部子信道,该全部子信道即为占满所述数据或者承载所述数据的PSSCH的子信道所在的信道。又例如,还可以通过该第二信息是否存在该1个比特来指示所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。例如,第二信息的取值可以为{0,1},当第二信息为“0”时指示“占满”,为“1”时指示“不占满”,或者当第二信息为“1”时指示“占满”,为“0”时指示“不占满”。
再例如,第二信息的取值可以是{使能(enable),去使能(disable)},指示方法与第一字段的取值可以是{0,1}相同,不再赘述。
可选的,也可以通过是否存在第二信息来指示所述数据是否占满所述数据的交错或子信道所在的信道,或者通过是否存在第二信息来指示承载所述数据的PSSCH是否占满承载所述数据的PSSCH的交错或子信道所在的信道。例如,存在第二信息时指示“占满”,不存在第二信息时指示“不占满”,或者不存在第二信息时指示“占满”,存在第二信息时指示“不占满”。例如,第二信息的取值可以是{enable},指示方法与第二信息的取值可以是{0}相同,不在赘述。
可选地,所述部分交错也可以包括没有交错的情况,即0个交错的情况。
示例性的,第二信息可以为RRC信息,例如PC-5RRC信息。
在一种可选的实施方式中,第二终端装置也可以确定所述数据或者承载所述数据的PSSCH的频域资源。
示例性的,第二终端装置确定所述数据或者承载所述数据的PSSCH的频域资源,具体也可以理解为:第二终端装置确定所述数据或者承载所述数据的PSSCH的交错个数或子信道个数;或者,第二终端装置确定所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。
一种示例中,第二终端装置确定所述数据或者承载所述数据的PSSCH的频域资源的方法,可以与上述第一终端装置确定所述数据或者承载所述数据的PSSCH的频域资源的方法类似,可以参见上述方法b1和方法b2,此处不再重复描述。例如,参见b2方法,第二终端装置通过网络装置发送的第二信息确定。另一种示例中,第一SCI还可以指示数据或者承载所述数据的PSSCH的频域资源,进而,第二终端装置可以根据第一SCI确定所述数据或者承载所述数据的PSSCH的频域资源。
可选地,第一SCI指示数据或者承载所述数据的PSSCH的频域资源的方法,可以与上述第二信息指示所述数据或者承载所述数据的PSSCH的频域资源的方法类似,可以相 互参见,此处不再详细描述。
在一种可选的实施方式中,第一终端装置可以确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输;或者,第一终端装置可以确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输。可选地,第一SCI与第二SCI可以调度相同的数据,或者第二SCI是第一SCI的重复。
通过上述方法,因为第一终端装置占用了与第一资源相同频域位置传输了PSSCH,所以不会有其他终端装置占用第一资源了。这样可以有如下有益效果:
1)第一终端装置可在第一资源上发送第一SCI的重复,第二终端装置可以合并译码,从而提升PSCCH的可靠性,增大PSCCH的覆盖。
2)第一终端装置也可以在第一资源上传输PSSCH。相对于不在第一资源上传输PSSCH,有更多的资源可以映射数据,就可以用相对较低的码率传输PSSCH,提升PSSCH的抗干扰能力,提升可靠性。
3)相对于不在第一资源上传输,在第一资源上传输可以保证第一终端装置在频域上的传输宽度没有改变,也就是说第一终端装置在时隙上以恒定的功率传输,功率控制容易实现。
其中,所述第一资源的时域位置为所述第一SCI所在的时域位置,所述第一资源的频域位置为所述数据或者承载所述数据的PSSCH所在的频域位置中除去所述第一SCI所在的频域位置以外的频域位置。
例如,第一资源的时域位置可以为时隙的前2个、前3个或前4个符号。第一资源的频域位置为数据或者PSSCH所在的交错中未映射PSCCH的交错,或者数据或者PSSCH所在的交错中不与PSCCH的交错重合的交错,或者数据或者PSSCH所在的子信道中未映射PSCCH的RB,或者数据或者PSSCH所在的子信道中与PSCCH交错重合的RB。例如,当PSCCH占1个交错,PSSCH占B个交错。在B大于1时,有B-1个交错的PSCCH所在的符号没有占用。由于其他终端装置不会使用这B-1个交错的PSCCH所在的符号,因此第一终端装置可以上述位置传输数据或PSSCH或第二SCI。
示例性的,第一终端装置确定所述数据或者承载所述数据的PSSCH是否在所述第一资源上传输,可以包括如下两种方法:
方法c1、第一终端装置确定预定义的所述数据或者承载所述数据的PSSCH是否在第一资源上传输。
在该方法c1中,协议预定好所述数据或者承载所述数据的PSSCH是否在第一资源上传输。
方法c2、第一终端装置从所述网络装置接收第三信息,或者,第一终端装置获取第三信息(即获取预配置的第三信息),所述第三信息指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输。
可选地,第三信息可以通过1个比特来指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输。例如,第三信息的取值可以为{0,1},当第三信息为“0”时表示所述数据或者承载所述数据的PSSCH在第一资源上传输,当第三信息为“1”时表示所述数据或者承载所述数据的PSSCH不在第一资源上传输;或者,当第三信息为“1”时表示所述数据或者承载所述数据的PSSCH在第一资源上传输,当第三信息为“0”时表示所述数据或者承载所述数据的PSSCH不在第一资源上传输。
再例如,第三信息的取值可以是{使能(enable),去使能(disable)},指示方法与第三信息的取值可以是{0,1}相同,不再赘述。
可选地,可以通过该第三信息是否存在来指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输。当第三信息存在时表示所述数据或者承载所述数据的PSSCH在第一资源上传输,当第三信息不存在时表示所述数据或者承载所述数据的PSSCH不在第一资源上传输;或者,当第三信息不存在时表示所述数据或者承载所述数据的PSSCH在第一资源上传输,当第三信息存在时表示所述数据或者承载所述数据的PSSCH不在第一资源上传输。例如,第三信息的取值可以是{enable}。指示方法与第三信息的取值可以是{0}相同,不在赘述。
当第三信息指示数据或者承载所述数据的PSSCH在第一资源上传输时,第一终端装置在第一资源上向第二终端装置发送数据或者承载所述数据的PSSCH。当第三信息指示数据或者承载所述数据的PSSCH不在第一资源上传输时,第一终端装置不在第一资源上向第二终端装置发送数据或者承载所述数据的PSSCH。
需要说明的是,当数据或PSSCH在第一资源上传输时,可以理解为第一资源与本来要传输数据或PSSCH的资源上一起传输一组数据或PSSCH。
例如,图9中的(a)所示,假设资源池包括4个子信道,第一终端装置在索引为0的一个交错上传输第一SCI,在索引为0、1、2、3的4个子信道上传输PSSCH。第三信息指示在第一资源上传输PSSCH时,第一终端装置在第一资源上传输PSSCH。此时,第一资源在时域上为时隙的前3个符号,在频域上为子信道0、1、2、4中不与交错0重合的RB。
又例如,图9中的(b)所示,假设资源池包括4个子信道,第一终端装置在索引为0的一个交错上传输第一SCI,在索引为0、1、2的3个子信道上传输PSSCH。第三信息指示在第一资源上传输PSSCH时,第一终端装置在第一资源上传输PSSCH。此时,第一资源在时域上为时隙的前3个符号,在频域上为子信道0、1、2中不与交错0重合的RB。
又例如,图9中的(c)所示,资源池包括4个交错,第一终端装置在索引为0的一个交错上传输第一SCI,在索引为0、1、2的3个交错上传输PSSCH。第三信息指示在第一资源上传输PSSCH时,第一终端装置在第一资源上传输PSSCH。第一资源在时域上为时隙的前3个符号,在频域上为索引为1、2的2个交错。
方法c3、第一终端装置可以自行确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输。
示例性的,第一终端装置确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输,可以包括以下两种方法:
方法d1、第一终端装置确定预定义的所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输。
在该方法d1中,协议预定好所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输。
方法d2、第一终端装置从所述网络装置接收第三信息,或者,第一终端装置获取第三信息(即获取预配置的第三信息),所述第三信息指示所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输。
当第三信息指示所述数据或承载所述数据的PSSCH在所述第一资源上传输时,可以 参考上述方法c2中第三信息指示所述数据或承载所述数据的PSSCH在所述第一资源上传输时的描述,此处不再详细描述。
当第三信息指示第二SCI在所述第一资源上传输时,第一终端装置在第一资源上向第二终端装置发送第二SCI。此时,可以理解为第一终端装置向第二终端装置发送了重复的两个SCI。
例如,第一终端装置在B个交错上传输个SCI,在B个交错上传输1个PSSCH。对于A=1,第一终端装置在B个交错上传输B个SCI,在B个交错上传输1个PSSCH。其中,个SCI里的每一个SCI都用于调度相同的PSSCH。
例如,图9中的(c)所示,第三信息指示第二SCI在第一资源传输时。资源池包括4个交错,第一终端装置在索引为0、1、2的3个交错上分别传输3个相同的SCI,在索引为0、1、2的3个交错上传输PSSCH。在该例中,第一终端装置在索引为0的1个交错上传输第一SCI,在索引为1、2的2个交错上(即第一资源的频域位置)传输两个第二SCI。
需要说明的是,第三信息在实现时,按照上述方法c2实现,或按照上述方法d2实现,具体以哪种方式实现,可以通过协议预定义好,也可以通过一个指示信息指示按照哪种方法实现,本申请对此不作限定。
可选地,第三信息可以是RRC信息,例如是PC-5RRC。
方法d3、第一终端装置可以自行确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输。
可选地,除了上述方法,还可以通过一种隐式关联方式来指示数据或PSSCH是否在第一资源上传输。例如,当现有信息COT共享指示指示多个终端装置在COT中频分传输时,隐式关联第一资源上不映射数据或PSSCH;否则,关联在第一资源上映射数据或PSSCH。可选地,指示多终端装置在COT中频分传输可以包括指示在发送终端装置的PSCCH所在时隙上多终端装置在COT中频分传输,或者在发送终端装置的PSCCH所在时隙上还有其他终端装置在该时隙中频分传输。
在一种可选地实施方式中,第二终端装置也可以确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,第二终端装置也可以确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输。
一种示例中,第二终端装置确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输的方法,与上述第一终端装置确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输的方法类似,可以参见上述方法c1和方法c2、c3,此处不再重复描述。
第二终端装置确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输的方法,与上述第一终端装置定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输的方法类似,可以参见上述方法d1和方法d2、d3,此处不再重复描述。
另一种示例中,第一SCI还可以指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输。进而,第二终端装置可以根据第一SCI确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,根据第一SCI确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输。
可选地,第一SCI指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输, 或者,所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输的方法,与第三信息指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输的方法类似,可以相互参见,此处不再详细描述。
在一种可选地实施方式中,第一终端装置可以确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输;其中,所述第二资源的时域位置可以为所述第一SCI所在的时域位置,所述第二资源的频域位置为所述第一SCI所在的交错或者子信道中未传输所述第一SCI的RB。例如,第二资源的时域位置可以为第一SCI映射的符号,如时隙的前2个、前3个或前4个符号。第二资源的频域位置可以为第一SCI所在的交错中未映射第一SCI的RB,或者第一SCI所在的交错中不与映射第一SCI的RB重合的RB,或者第一SCI所在的交错中排除了映射第一SCI的RB剩余的RB。
也就是说第一SCI可能占不满交错中的所有RB,由于其他终端装置不会使用这些RB,因此第一终端装置可以在这些RB上传输数据或PSSCH。
通过上述方法,因为第一终端装置占用了与第二资源所在交错或子信道传输了PSCCH,所以不会有其他终端装置占用第二资源了。由此,可以达到如下有益效果:
1)第一终端装置也可以在第二资源上传PSSCH。相对于不在第二资源上传输PSSCH,有更多的资源可以映射数据,就可以用相对较低的码率传输PSSCH,提升PSSCH的抗干扰能力,提升可靠性。
2)相对于不在第二资源上传输,在第二资源上传输可以保证第一终端装置在频域上的传输宽度没有改变,也就是说第一终端装置在时隙上以恒定的功率传输,功率控制容易实现。
示例性的,第一终端装置确定所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输,可以包括如下方法:
方法e1、第一终端装置确定预定义的所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。
在该方法e1中,协议预定好所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。
方法e2、第一终端装置从所述网络装置接收第四信息,或者,第一终端装置获取第四信息(即获取预配置的第四信息),所述第四信息指示所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。
第四信息同样可以通过1个比特指示所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输,或者通过第四信息是否存在指示所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。具体的指示方法与第三信息类似,可以相互参见,此处不再详细描述。
当第四信息指示数据或者承载所述数据的PSSCH在第二资源上传输时,第一终端装置在第二资源上向第二终端装置发送数据或者承载所述数据的PSSCH。当第四信息指示数据或者承载所述数据的PSSCH不在第二资源上传输时,第一终端装置不在第二资源上向第二终端装置发送数据或者承载所述数据的PSSCH。
需要说明的是,当数据或PSSCH在第二资源上传输时,可以理解为第二资源与本来要传输数据或PSSCH的资源上一起传输一组数据或PSSCH。
例如,如图9中的(a)-(c)所示,第一终端装置在索引为0的一个交错上传输第一SCI,其中,在该交错中索引为0~4的RB上映射了第一SCI,在该交错中索引为5的1个RB上未映射第一SCI。第四信息指示数据或PSSCH在第二资源上传输时,第一终端装置在第二资源上传输数据或PSSCH。此时,第二资源在时域上为时隙的前3个符号,在频域上为索引为0的交错中索引为6的1个RB。
需要说明,虽然在图9中把第一资源和第二资源体现在同一张附图上了,但是,应理解第一资源和第二资源的方案可以是两个独立的方案。例如,仅通过第三信息确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,此时图9中可以仅体现第一资源。再例如,仅通过第四信息确定数据或者承载所述数据的PSSCH在第二资源上传输,此时图9中可以仅体现第二资源。本申请对此不作限定。
还需要说明,上述第二信息、第三信息、第四信息的三个方案也是独立的,或者也可以是至少两个组合的。例如仅存在第二信息的方案,例如,仅存在第三信息的方案,再例如,仅存在第四信息的方案。本申请对此不作限定。
示例性的,第四信息可以为RRC信息,例如PC-5RRC信息。
方法e3、第一终端装置可以自行确定所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。
可选地,除上述方法以外,还可以通过隐式指示的指示数据或PSSCH是否在第二资源上传输。
例如,预定义、预配置或网络装置配置第一SCI映射占满一个或多个交错时,隐式指示不在第二资源上传输数据或PSSCH。
例如,预定义、预配置或网络装置配置第一SCI映射不占满一个或多个交错时,隐式指示在第二资源上传输数据或PSSCH。
又例如,数据或PSSCH的子信道个数占第一SCI所在的信道的比例大于或等于80%时,隐式指示不在第二资源上传输数据或PSSCH。
又例如,数据或PSSCH的子信道个数占第一SCI所在的信道的比例小于或等于80%时,隐式指示在第二资源上传输数据或PSSCH。
又例如,数据或PSSCH的子信道个数占资源池中子信道总数的比例大于或等于80%时,隐式指示不在第二资源上传输数据或PSSCH。
又例如,数据或PSSCH的子信道个数占资源池中子信道总数的比例小于或等于80%时,隐式指示在第二资源上传输数据或PSSCH。
又例如,数据或PSSCH的交错个数B等于1时,隐式指示在第二资源传输数据或PSSCH。数据或PSSCH的交错数B大于1时,隐式指示不在第二资源传输数据或PSSCH。
又例如,允许数据或PSCCH临时不满足OCB时,隐式指示不在第二资源传输数据或PSSCH。或者,不允许PSCCH临时不满足OCB时,隐式指示在第二资源传输数据或PSSCH。
在一种可选地实施方式中,第二终端装置也可以确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输。
一种示例中,第二终端装置确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输的方法,可以与上述第一终端装置确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输的方法类似,可以参见上述方法e1、方法e2和e3,此处不再重复描述。
另一种示例中,第一SCI还可以指示所述数据或者承载所述数据的PSSCH是否在第二资源上传输。进而,第二终端装置可以根据第一SCI确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输。
可选地,第一SCI指示所述数据或者承载所述数据的PSSCH是否在第二资源上传输的方法,与上述第四信息指示所述数据或者承载所述数据的PSSCH是否在第二资源上传输的方法类似,可以相互参见,此处不再详细描述。
可选地,第一信息指示数据或者承载所述数据的PSSCH以非交错方式传输时,第四信息生效。
需要说明的是,上述第二信息、第三信息和第四信息可以包含于同一个消息中,也可以部分信息包含于同一个消息中,也可以包含在不同的消息中,本申请对此不作限定。
在一种可选的实施方式中,第一终端装置可以确定发送所述第一SCI的频域位置,所述第一SCI的频域位置可以基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。
由于第一SCI的RB数可以是{10,12,15,20,25}个,子信道的RB数可以是{10,12,15,20,25,50,75,100}个。也就是说第一SCI可能不能映射满一个子信道。因此需要第一终端装置确定发送第一SCI的频域位置。
在一种示例中,所述第一SCI的起始RB位置可以与以下参数中的至少两个参数相关:所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数或偏移量。所述第一SCI的结束RB位置可以与以下参数中的至少两个参数相关:所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数或所述偏移量。
确定方式1例如,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引以及一个子信道的RB个数相关。所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引、一个子信道的RB个数和所述第一SCI的RB个数相关。示例性的,第一SCI的起始RB位置可以满足公式p×NsubCH或p×NsubCH+C。和或,第一SCI的结束RB位置可以满足公式p×NsubCH+NPSCCH-1或p×NsubCH+NPSCCH-1+C。其中,p为第一SCI所在子信道的索引,取值范围可以为{0,1,2,…,P-1};NsubCH为一个子信道的RB数;NPSCCH为第一SCI的RB数;C为常数,如C为资源池的起始RB或信道的起始RB。
假设,资源池有4个第一SCI的子信道,每个第一SCI占4个RB,即第一SCI的RB数为4,每个子信道有6个RB。第一SCI所在子信道的索引分别为0、1、2、3。图10和图11中加粗黑框的RB为可以用于传输第一SCI的资源。以第一SCI在子信道0传输为例举例说明,如图10中的(a)和图11中的(a)示出了第一SCI的子信道的索引0。子信道的索引0的第一SCI的起始RB为索引为0的RB,或者索引为C的RB。子信道的索引0的第一SCI的结束RB为索引为3的RB,或者索引为3+C的RB。子信道的索引3的第一SCI的起始RB为索引为3*6=18的RB,或者索引为18+C的RB。子信道的索引3的第一SCI的结束RB为索引为3*6+4-1=21的RB,或者索引为21+C的RB。这里C为资源池的起始RB。
可选的,图10中仅示出了第一终端装置对应的第一SCI的示意,应理解,图10中还可以包括其他终端装置的SCI,例如可以在图10中子信道索引3对应的加粗黑框包括RB所示的位置示出。
确定方式2又例如,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引、 一个子信道的RB个数以及第一偏移量相关。所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引、一个子信道的RB个数、所述第一SCI的RB个数以及第一偏移量相关。示例性的,第一SCI的起始RB位置可以满足公式p×NsubCH+Δ1或p×NsubCH+Δ1+C。第一SCI的结束RB位置可以满足公式p×NsubCH+Δ+NPSCCH-1或p×NsubCH+Δ1+NPSCCH-1+C。Δ1为第一偏移量,Δ的取值范围可以为{0,1,2,…,NsubCH-1}或者{0,1,2,…,NsubCH-2}个RB。可选地,或者
假设,资源池有4个第一SCI的子信道,第一SCI的RB数为4个RB,每个子信道有6个RB,Δ1为1个RB。第一SCI所在子信道的索引分别为0、1、2、3。图10和图11中黑色加粗黑框的RB为可以用于传输第一SCI的资源。以第一SCI在子信道0传输为例举例说明,如图10中的(b)和图11中的(b)示出了第一SCI的子信道的索引0。子信道的索引0的第一SCI的起始RB为索引为1的RB,或者索引为1+C的RB。子信道的索引0的第一SCI的结束RB为索引为4的RB,或者索引为4+C的RB。子信道的索引3的第一SCI的起始RB为索引为3*6+1=19的RB,或者索引为19+C的RB。子信道的索引3的第一SCI的结束RB为索引为3*6+1+4-1=22的RB,或者索引为22+C的RB。这里C为资源池的起始RB。
确定方式3又例如,所述第一SCI的起始RB位置与所述第一SCI所在子信道的索引和所述第一SCI的RB个数相关。所述第一SCI的结束RB位置与所述第一SCI所在子信道的索引、一个子信道的RB个数相关。示例性的,第一SCI的起始RB位置满足公式p×NPSCCH或p×NPSCCH+C。第一SCI的结束RB位置可以满足公式(p+1)×NPSCCH-1或(p+1)×NPSCCH-1+C。
假设,资源池有4个第一SCI的子信道,第一SCI的RB数为4个RB,每个子信道有6个RB。第一SCI所在子信道的索引分别为0、1、2、3。图10和图11中黑色加粗黑框的RB为可以用于传输第一SCI的资源。以第一SCI在子信道0传输为例举例说明,如图10中的(c)和图11中的(c)示出了第一SCI的子信道的索引0。子信道的索引0的第一SCI的起始RB为索引为0的RB,或者索引为C的RB。子信道的索引0的第一SCI的结束RB为索引为3的RB,或者索引为3+C的RB。子信道的索引3的第一SCI的起始RB为索引为3*4=12的RB,或者索引为12+C的RB。子信道的索引3的第一SCI的结束RB为索引为(3+1)*4-1=15的RB,或者索引为15+C的RB。
确定方式4又例如,第一SCI的起始RB位置与第一SCI所在子信道的索引、第一SCI的RB个数和第二偏移量相关。第一SCI的结束RB位置与第一SCI所在子信道的索引、第一SCI的RB个数和第二偏移量相关。示例性的,第一SCI的起始RB位置可以满足公式p×NPSCCH+Δ2或p×NPSCCH+Δ2+C。第一SCI的结束RB位置可以满足公式(p+1)×NPSCCH-1+Δ或(p+1)×NPSCCH-1+Δ+C。Δ2为第二偏移量,Δ2的取值范围为{0,1,2,…,NPR-1}或者{0,1,2,…,NPR-2}个RB;NPR为资源池或信道中的RB数。可选地,或者
在又一种示例中,所述第一SCI的起始RB位置可以与以下参数中的至少两个参数相关:所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数或所述偏移量。所述第一SCI的结束RB可以与以下参数中的至少两个参数相关:所述第一SCI所在交错的索引、一个交错的RB个数、所述第一SCI的RB个数或所述偏移量。
在一种可选的实施方式中,第二终端装置可以确定接收所述第一SCI的频域位置,所述第一SCI的频域位置基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。
示例性的,所述第一SCI的起始RB位置和所述第一SCI的结束RB位置的确定方法可以参考前述描述,此处不再赘述。
可选地,所述第一SCI的频域位置的确定方式可以为预配置的,或者所述第一SCI的频域位置的确定方式可以为预定义的,或者所述第一SCI的频域位置的确定方式可以为网络装置配置的。例如,确定方式可以是上述确定方式1~确定方式4中的任一种。
采用本申请提供的通信方法,发送终端装置可以根据数据大小来确定数据的传输方式,并可以通过第一SCI将数据的传输方式动态指示给接收终端装置,以使接收终端装置按照指示的数据的传输方式准确接收数据,提高数据传输性能。
需要说明的是,为方便描述以步骤703和步骤704为例示出,应理解,本申请不限制步骤703和步骤704的先后顺序。可选地,步骤703和步骤704可以是同时发生的。
基于以上实施例,本申请实施例提供了另一种通信方法,适用于如图2-图6所示的通信系统。参阅图12所示,该方法的流程可以包括:
步骤1201:网络装置确定第一SCI的传输方式和/或数据的传输方式。
其中,第一SCI和数据的介绍,以及第一SCI的传输方式和数据的传输方式可以参见图7所示的实施例中涉及的相关描述,此处不再赘述。
步骤1202:网络装置向第一终端装置发送第一SCI的传输方式和/或数据的传输方式,以及向第二终端装置发送第一SCI的传输方式和/或数据的传输方式。
可选地,网络装置可以向第一终端装置和第二终端装置发送第五信息,第五信息指示第一SCI的传输方式和/或数据的传输方式。
一种示例中,第五信息可以指示交错传输方式,此时,第一SCI和/或数据的传输方式均为交错传输方式。或者,第五信息可以指示非交错传输方式,此时,第一SCI和/或数据的传输方式均为非交错传输方式。
另一种示例中,通过第五信息是否存在于一个消息中指示第一SCI的传输方式和/或数据的传输方式。例如,当第五信息存在时,指示第一SCI和/或数据的传输方式均为交错传输方式,当第五信息不存在时,指示第一SCI和/或数据的传输方式均为非交错传输方式。又例如,当第五信息存在时,指示第一SCI和/或数据的传输方式均为非交错传输方式,当第五信息不存在时,指示第一SCI和/或数据的传输方式均为交错传输方式。
又一种示例中,第五信息可以分别指示第一SCI的传输方式和/或数据的传输方式。例如,第五信息可以指示以下任一项:第一SCI和数据的传输方式为交错传输方式、第一SCI和数据的传输方式为非交错传输方式、第一SCI传输方式为交错传输方式且数据的传输方式为非交错传输方式、第一SCI传输方式为非交错传输方式且数据的传输方式为交错传输方式。
可选地,第五信息可以指示默认第一SCI和数据的传输方式为交错传输方式。
可选地,第五信息可以指示默认第一SCI和数据的传输方式为非交错传输方式。
其中,第五信息可以为RRC信息,例如为PC-5RRC信息。
步骤1203:第一终端装置以第一SCI的传输方式向第二终端装置发送第一SCI,和/或以数据的传输方式向第二终端装置发送数据。相应地,第二终端装置以第一SCI的传输 方式从第一终端装置接收第一SCI,和/或以数据的传输方式从第一终端装置接收数据。
例如,当第一SCI和/或数据的传输方式为交错传输方式时,第一终端装置以交错传输方式向第二终端装置发送第一SCI和/或数据。
示例性的,第一终端装置在A个交错上向第二终端装置发送第一SCI,A={1,2,3,4,…,M}。第一终端装置在B个交错上向第二终端装置发送数据,B={1,2,3,4,…,M}。其中M为资源池中的交错总数。可选地,B大于或等于A,或者B为A的整数倍。可选地,第一终端装置发送第一SCI的交错为发送数据的B个交错中的索引最小的交错。若资源池配置不允许多用户频分传输,第一终端装置发送数据的起始位置为资源池中索引最小的交错。
如图13所示,假设资源池包括1个信道,1个信道包括4个交错,1个交错包括6个RB。图13中的左右两图中,第一SCI占1个交错。在图13的左图中,数据占4个交错;在图13的右图中数据占3个交错。
又例如,当第一SCI和/或数据的传输方式为非交错传输方式时,第一终端装置以非交错传输方式向第二终端装置发送第一SCI和/或数据。
示例性的,第一终端装置在1或多个子信道,或子信道的若干RB上向第二终端装置发送第一SCI。第一终端装置在B个子信道上向第二终端装置发送数据,B={1,2,3,4,…,P}。其中P为资源池中的子信道总数。可选地,数据的传输带宽大于或等于资源池带宽的80%的带宽;或者数据的子信道数大于或等于资源池的子信道数乘以80%得到的子信道数。可选地,第一终端装置发送第一SCI的RB起始位置可以为发送数据的B个子信道中的索引最小的子信道的起始RB位置。
如图14所示,假设源池包括1个信道;1个信道包括4个子信道。在图14的左右两图中,第一SCI占一个子信道。在图14的左图中,数据占4个子信道;在图14的右图中数据占2个子信道。
需要说明的是,上述第一SCI可以以PSCCH替换描述,数据可以以PSSCH替换描述,本申请不作限定。
需要说明的是,图12所示的实施例中可以复用图7所示的实施例中除了第一SCI和数据的传输确定方法以外的其他方案,此处不再详细描述。例如,第一终端装置和第二终端装置执行的以下一项或多项操作等:确定所述数据或者承载所述数据的PSSCH的频域资源;确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输。其中,具体的操作方式可以参见前述描述,例如涉及的第二信息、第三信息、第四信息的指示方案等,此处不再重复描述。
采用该通信方法,可以通过网络装置可以为终端装置灵活配置SCI和/或数据的传输方式,实现方法简单。
通过上述实施例可知,第一SCI的传输方式存在两种,数据的传输方式也存在两种,所以资源池中会出现交错传输的PSCCH、非交错传输的PSCCH、交错传输的PSSCH、非交错传输的PSSCH,这样不同的终端装置可能传输PSCCH和/或PSSCH的方式不同,例如,图15中左图示出了两个终端设备以交错传输方式传输PSSCH的示意,图15中右图示出了两个终端设备以非交错方式传输PSSCH的示意。这样会对发送终端装置的资源选择产生影响。基于此,本申请提出一种通信方法,以使第一终端装置可以根据其他终端装 置的预留资源来选择自己可以用的进行侧行传输的资源。
图16示出了一种通信方法,适用于如图2-图6所示的通信系统。参阅图16所示,该方法的流程可以包括:
步骤1601:第一终端装置接收第二终端装置的侧行控制信息(即SCI),所述侧行控制信息指示用于所述第二终端装置侧行传输的第三资源。
其中,第二终端装置在第三资源上以交错传输方式或非交错方式传输PSCCH,和/或,在第三资源上以交错传输方式或非交错方式传输PSSSH。
可选地,该第三资源为第二终端装置的预留资源。可选地,该第三资源包括重传预留资源、周期预留资源、重传预留资源的周期预留资源。
第三资源可以理解为预留给第二终端装置的侧行传输资源。
步骤1602a:所述第一终端装置根据所述侧行控制信息指示的所述第三资源和所述第二终端装置的PSCCH的传输方式,确定用于所述第一终端装置侧行传输的资源。
步骤1602b:所述第一终端装置根据所述侧行控制信息指示的所述第三资源和所述第二终端装置的PSSCH的传输方式,确定用于所述第一终端装置侧行传输的资源。
其中,步骤1602a和步骤1602b可以同时存在,也可以只存在其中一个,本申请对此不作限定。
可选地,第一终端装置在进行侧行传输之前,进行资源感知。资源感知即接收资源池内的SCI,根据SCI指示的预留信息排除自身资源选择窗内被其他终端装置预留的资源。步骤1602a和/或步骤1602b可以理解为进行资源排除。
在一种可选地实施方式中,第一终端装置确定用于所述第一终端装置侧行传输的资源,方法可以为:所述第一终端装置可以根据所述第二终端装置的PSCCH的传输方式和/或PSSCH的传输方式,在候选资源集合中排除所述侧行控制信息指示的所述第一资源,确定所述用于所述第一终端装置侧行传输的资源。所述候选资源集合即为所述第一终端装置可以进行选择的资源选择窗内的资源。
可选地,第一终端装置可以测量侧行控制信息所在的资源的信号强度。该信号强度大于第一信道强度阈值,则在候选资源集合中排除所述侧行控制信息指示的所述第三资源。
第一种示例中,所述PSSCH的传输方式为非交错传输方式,所述第一终端装置在所述初始候选资源集合中排除所述侧行控制信息指示的所述第三资源,方法可以为:所述第一终端装置在所述初始候选资源集合中排除所述第三资源所在信道中的资源。
可选地,所述第一终端装置在所述初始候选资源集合中排除所述第三资源所在信道中的资源,可以包括:第一终端装置可以根据SCI指示的传输周期,在所述初始候选资源集合中排除所述第三资源所在信道中的资源;或者,第一终端装置可以在所述初始候选资源集合中排除所述第三资源所在信道中的资源,以及第三资源的重传预留资源。
在该示例中,第三资源没有占满第三资源所在的信道。
第二种示例中,所述PSCCH的传输方式为非交错传输方式,所述第一终端装置在所述初始候选资源集合中排除所述侧行控制信息指示的所述第三资源,方法可以为:所述第一终端装置在所述初始候选资源集合中排除所述第三资源所在信道中所述PSCCH占用的资源。
第三种示例中,所述PSSCH的传输方式为非交错传输方式且所述PSCCH的传输方式为非交错传输方式,所述第一终端装置在所述初始候选资源集合中排除所述侧行控制信息 指示的所述第三资源,方法可以为:所述第一终端装置在所述初始候选资源集合中排除所述第三资源所在信道中的资源。
第四种示例中,所述PSSCH的传输方式为交错传输方式,所述第一终端装置可以不排除所述第三资源所在信道中除所述第三资源以外的资源。
可选地,所述第四种示例可以与上述第二种示例同时实现。
第五种示例中,所述PSCCH的传输方式为交错传输方式,所述第一终端装置在所述初始候选资源集合中排除所述侧行控制信息指示的所述第三资源,方法可以为:所述第一终端装置在所述初始候选资源集合中排除所述第三资源所在交错中所述PSCCH占用的资源。
可选地,所述第五种示例可以与上述第一种示例同时实现。
通过上述各种方法实现资源排除后,所述第一终端装置可以确定在第四资源上传输所述PSCCH和/或所述PSSCH,所述第四资源属于所述用于所述第一终端装置侧行传输的资源;也即,所述第四资源属于在候选资源集合中排除了第三资源后剩余的可用资源中的资源。
一种可能的方式中,当所述第四资源为信道时,所述第一终端装置可以在第二资源上以交错方式或非交错方式传输所述PSCCH和/或所述PSSCH。
例如,第四资源在频域上包括D个信道,D为大于或者等于1的整数。
另一种可能的方式中,当所述第四资源为交错时,所述第一终端装置可以在第二资源上以交错方式传输所述PSCCH和/或所述PSSCH。
可选地,所述第四资源为交错时,第四资源可以是信道中的全部交错,也可以是信道中的部分交错。
例如,第四资源在频域上包括C个交错,C的取值范围为{1,2,…,M-1},M为信道或资源池中的交错数。
需要说明的是,上述第一终端装置可以是发送PSCCH和/或PSSCH的终端装置,此时,上述涉及的传输可以理解为发送、映射、复用、译码等。上述第一终端装置也可以是接收PSCCH和/或PSSCH的终端装置,此时,上述涉及的传输可以理解为接收、映射、复用、译码等。
需要说明的是,上述PSCCH可以与SCI替换描述,PSSCH可以与数据替换描述,本申请对此不作限定。
通过上述方法,终端装置可以感知可以用于侧行传输的资源,从而选择正确的资源进行侧行传输,避免与其他终端装置之间的传输冲突。
需要说明的是,在本申请实施例的描述中,交错的索引和子信道的索引均是以0为例说明的,应理解,交错的索引和子信道的索引也可以从1开始,本申请对此不作限定。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图17所示,通信装置1700可以包括收发单元1701和处理单元1702。其中,所述收发单元1701用于所述通信装置1700进行通信,例如接收信息(消息或数据)或发送信息(消息或数据),所述处理单元1702用于对所述通信装置1700的动作进行控制管理。所述处理单元1702还可以控制所述收发单元1701执行的步骤。
示例性地,该通信装置1700具体可以是上述实施例中的第一终端装置、所述第一终端装置的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。或者,该通信装置 1700具体可以是上述实施例中的第二终端装置、所述第二终端装置的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。或者,该通信装置1700具体可以是上述实施例中的网络装置、所述网络装置中的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述通信装置1700用于实现上述图7、图12、图16所述的实施例中第一终端装置的功能时,收发单元1701可以实现图7、图12、图16所示的实施例中的由第一终端装置执行的收发操作,例如,步骤703和704中的发送操作等;处理单元1702可以实现图7、图12、图16所示的实施例中由第一终端装置执行的除收发操作以外的其他操作,例如步骤701等。具体的相关具体描述可以参见上述图7、图12、图16所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述通信装置1700用于实现上述图7、图12、图16所述的实施例中第二终端装置的功能时,收发单元1701可以实现图7、图12、图16所示的实施例中的由第二终端装置执行的收发操作,例如,步骤703和704中的接收操作等;处理单元1702可以实现图7、图12、图16所示的实施例中由第二终端装置执行的除收发操作以外的其他操作,例如步骤702等。具体的相关具体描述可以参见上述图7、图12、图16所示的实施例中的相关描述,此处不再详细介绍。
在又一个实施例中,所述通信装置1700用于实现上述图7、图12、图16所述的实施例中网络装置的功能时,收发单元1701可以实现图7、图12、图16所示的实施例中的由网络装置执行的收发操作,例如,步骤1202中的发送操作等;处理单元1702可以实现图7、图12、图16所示的实施例中由网络装置执行的除收发操作以外的其他操作,例如步骤1201等。具体的相关具体描述可以参见上述图7、图12、图16所示的实施例中的相关描述,此处不再详细介绍。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图18所示,通信装置1800可以包括收发器1801和处理器1802。可选地,所述通信装置1800中还可以包括存储器1803。其中,所述存储器1803可以设置于所述通信装置1800内部,还可以设置于所述通信装置1800外部。其中,所述处理器1802可以控制所述收发器1801接收和发送信息、消息或数据等。
具体地,所述处理器1802可以是中央处理器(central processing unit,CPU),网络处 理器(network processor,NP)或者CPU和NP的组合。所述处理器1802还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器1801、所述处理器1802和所述存储器1803之间相互连接。可选地,所述收发器1801、所述处理器1802和所述存储器1803通过总线1804相互连接;所述总线1804可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选地实施方式中,所述存储器1803,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1803可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器1802执行所述存储器1803所存放的应用程序,实现上述功能,从而实现通信装置1800的功能。
示例性地,该通信装置1800可以是上述实施例中的网络装置;还可以是上述实施例中的第一终端装置;还可以是上述实施例中的第二终端装置。
在一个实施例中,所述通信装置1800在实现图7、图12、图16所示的实施例中第一终端装置的功能时,收发器1801可以实现图7、图12、图16所示的实施例中的由第一终端装置执行的收发操作;处理器1802可以实现图7、图12、图16所示的实施例中由第一终端装置执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图7、图12、图16所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置1800在实现图7、图12、图16所示的实施例中第二终端装置的功能时,收发器1801可以实现图7、图12、图16所示的实施例中的由第二终端装置执行的收发操作;处理器1802可以实现图7、图12、图16所示的实施例中由第二终端装置执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图7、图12、图16所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置1800在实现图7、图12、图16所示的实施例中网络装置的功能时,收发器1801可以实现图7、图12、图16所示的实施例中的由网络装置执行的收发操作;处理器1802可以实现图7、图12、图16所示的实施例中由网络装置执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图7、图12、图16所示的实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的网络装置、第一终端装置和第二终端装置等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序, 该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (47)

  1. 一种通信方法,其特征在于,包括:
    确定第一侧行控制信息SCI的传输方式;
    以确定的所述第一SCI的传输方式向第二终端装置发送所述第一SCI,所述第一SCI指示数据的传输方式;
    以所述数据的传输方式向所述第二终端装置发送所述数据。
  2. 如权利要求1所述的方法,其特征在于,所述第一SCI为第一阶SCI,所述第一阶SCI承载于物理侧行控制信道PSCCH;所述数据承载于物理侧行共享信道PSSCH,所述PSSCH还包括第二阶SCI和/或媒体接入控制控制单元MAC CE,所述第二阶SCI的传输方式与所述数据的传输方式相同,所述MAC CE的传输方式与所述数据的传输方式相同。
  3. 如权利要求1或2所述的方法,其特征在于,所述确定第一SCI的传输方式,包括:
    确定预定义的所述第一SCI的传输方式;或者
    从网络装置接收第一信息,所述第一信息指示所述第一SCI的传输方式。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一SCI的传输方式为交错传输方式或非交错传输方式;所述数据的传输方式为交错传输方式或非交错传输方式;
    所述交错传输方式指在频域上不连续的RB上传输;
    所述非交错传输方式指在频域上连续的RB上传输。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括以下一项或多项:
    确定所述数据或者承载所述数据的PSSCH的频域资源;
    确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输;
    其中,所述第一资源的时域位置为所述第一SCI所在的时域位置,所述第一资源的频域位置为所述数据或者承载所述数据的PSSCH所在的频域位置中除去所述第一SCI所在的频域位置以外的频域位置;
    所述第二资源的时域位置为所述第一SCI所在的时域位置,所述第二资源的频域位置为所述第一SCI所在的交错或者子信道中未传输所述第一SCI的资源块RB。
  6. 如权利要求5所述的方法,其特征在于,
    所述确定所述数据或者承载所述数据的PSSCH的频域资源,包括:确定预定义的所述数据或者承载所述数据的PSSCH的频域资源;或者,从网络装置接收第二信息,所述第二信息指示所述数据或者承载所述数据的PSSCH的频域资源;
    所述确定所述数据或者承载所述数据的PSSCH是否在所述第一资源上传输,包括:确定预定义的所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,从所述网络装置接收第三信息,所述第三信息指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输;
    所述确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输,包括:确定预定义的所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;或者,所述第三信息指示所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    所述确定所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输,包括:确定预定义的所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输;或者,从所述网络装置接收第四信息,所述第四信息指示所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一SCI还指示以下一项或多项:
    所述数据或者承载所述数据的PSSCH的频域资源;
    所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    所述数据或者承载所述数据的PSSCH是否在第二资源上传输。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述数据的子信道数占所述数据的子信道所在信道的比例或者所述数据的子信道数占子信道总数的比例大于80%,所述数据的传输方式为非交错传输方式。
  9. 如权利要求5-7任一项所述的方法,其特征在于,确定所述数据或者承载所述数据的PSSCH的频域资源,包括:
    确定所述数据或者承载所述数据的PSSCH的交错个数或子信道个数;或者
    确定所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    确定发送所述第一SCI的频域位置,所述第一SCI的频域位置基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。
  11. 一种通信方法,其特征在于,包括:
    确定第一侧行控制信息SCI的传输方式;
    以确定的所述第一SCI的传输方式从第一终端装置接收所述第一SCI,所述第一SCI指示数据的传输方式;
    以所述数据的传输方式从所述第一终端装置接收所述数据。
  12. 如权利要求11所述的方法,其特征在于,所述第一SCI为第一阶SCI,所述第一阶SCI承载于物理侧行控制信道PSCCH;所述数据承载于物理侧行共享信道PSSCH,所述PSSCH还包括第二阶SCI和/或媒体接入控制控制单元MAC CE,所述第二阶SCI的传输方式与所述数据的传输方式相同,所述MAC CE的传输方式与所述数据的传输方式相同。
  13. 如权利要求11或12所述的方法,其特征在于,所述确定第一SCI的传输方式,包括:
    确定预定义的所述第一SCI的传输方式;或者
    从网络装置接收第一信息,所述第一信息指示所述第一SCI的传输方式。
  14. 如权利要求11-13任一项所述的方法,其特征在于,所述第一SCI的传输方式为交错传输方式或非交错传输方式;所述数据的传输方式为交错传输方式或非交错传输方式;
    所述交错传输方式指在频域上不连续的RB上传输;
    所述非交错传输方式指在频域上连续的RB上传输。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述方法还包括以下一项或多项:
    确定所述数据或者承载所述数据的PSSCH的频域资源;
    确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输;
    其中,所述第一资源的时域位置为所述第一SCI所在的时域位置,所述第一资源的频域位置为所述数据或者承载所述数据的PSSCH所在的频域位置中除去所述第一SCI所在的频域位置以外的频域位置;
    所述第二资源的时域位置为所述第一SCI所在的时域位置,所述第二资源的频域位置为所述第一SCI所在的交错或者子信道中未传输所述第一SCI的资源块RB。
  16. 如权利要求15所述的方法,其特征在于,
    所述确定所述数据或者承载所述数据的PSSCH的频域资源,包括:确定预定义的所述数据或者承载所述数据的PSSCH的频域资源;或者,从网络装置接收第二信息,所述第二信息指示所述数据或者承载所述数据的PSSCH的频域资源;
    所述确定所述数据或者承载所述数据的PSSCH是否在所述第一资源上传输,包括:确定预定义的所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,从所述网络装置接收第三信息,所述第三信息指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输;
    确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输,包括:确定预定义的所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;或者,所述第三信息指示所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    所述确定所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输,包括:确定预定义的所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输;或者,从所述网络装置接收第四信息,所述第四信息指示所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。
  17. 如权利要求15所述的方法,其特征在于,所述第一SCI还指示以下一项或多项:
    所述数据或者承载所述数据的PSSCH的频域资源;
    所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    所述数据或者承载所述数据的PSSCH是否在第二资源上传输。
  18. 如权利要求17所述的方法,其特征在于,
    确定所述数据或者承载所述数据的PSSCH的频域资源,包括:根据所述第一SCI确定所述数据或者承载所述数据的PSSCH的频域资源;
    确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,包括:根据所述第一SCI确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输;
    确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输,包括:根据所述第一SCI确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输,包括:根据所述第一SCI确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输。
  19. 如权利要求11-18任一项所述的方法,其特征在于,所述数据的子信道数占所述数据的子信道所在信道的比例或者所述数据的子信道数占子信道总数的比例大于80%,所述数据的传输方式为非交错传输方式。
  20. 如权利要求15-18任一项所述的方法,其特征在于,确定所述数据或者承载所述数据的PSSCH的频域资源,包括:
    确定所述数据或者承载所述数据的PSSCH的交错个数或子信道个数;或者
    确定所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。
  21. 如权利要求11-20任一项所述的方法,其特征在于,所述方法还包括:
    确定接收所述第一SCI的频域位置,所述第一SCI的频域位置基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。
  22. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一侧行控制信息SCI的传输方式;
    收发单元,用于以确定的所述第一SCI的传输方式向第二终端装置发送所述第一SCI,所述第一SCI指示数据的传输方式;以及
    以所述数据的传输方式向所述第二终端装置发送所述数据。
  23. 如权利要求22所述的装置,其特征在于,所述第一SCI为第一阶SCI,所述第一阶SCI承载于物理侧行控制信道PSCCH;所述数据承载于物理侧行共享信道PSSCH,所述PSSCH还包括第二阶SCI和/或媒体接入控制控制单元MAC CE,所述第二阶SCI的传输方式与所述数据的传输方式相同,所述MAC CE的传输方式与所述数据的传输方式相同。
  24. 如权利要求22或23所述的装置,其特征在于,所述处理单元在确定第一SCI的传输方式时,用于:
    确定预定义的所述第一SCI的传输方式;或者
    控制所述收发单元从网络装置接收第一信息,所述第一信息指示所述第一SCI的传输方式。
  25. 如权利要求22-24任一项所述的装置,其特征在于,所述第一SCI的传输方式为交错传输方式或非交错传输方式;所述数据的传输方式为交错传输方式或非交错传输方式;
    所述交错传输方式指在频域上不连续的RB上传输;
    所述非交错传输方式指在频域上连续的RB上传输。
  26. 如权利要求22-25任一项所述的装置,其特征在于,所述处理单元,还用于执行以下一项或多项:
    确定所述数据或者承载所述数据的PSSCH的频域资源;
    确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输;
    其中,所述第一资源的时域位置为所述第一SCI所在的时域位置,所述第一资源的频域位置为所述数据或者承载所述数据的PSSCH所在的频域位置中除去所述第一SCI所在的频域位置以外的频域位置;
    所述第二资源的时域位置为所述第一SCI所在的时域位置,所述第二资源的频域位置 为所述第一SCI所在的交错或者子信道中未传输所述第一SCI的资源块RB。
  27. 如权利要求26所述的装置,其特征在于,
    所述处理单元在确定所述数据或者承载所述数据的PSSCH的频域资源时,用于:确定预定义的所述数据或者承载所述数据的PSSCH的频域资源;或者,控制所述收发单元从网络装置接收第二信息,所述第二信息指示所述数据或者承载所述数据的PSSCH的频域资源;
    所述处理单元在确定所述数据或者承载所述数据的PSSCH是否在所述第一资源上传输时,用于:确定预定义的所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,控制所述收发单元从所述网络装置接收第三信息,所述第三信息指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输;
    所述处理单元在确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输时,用于:确定预定义的所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;或者,所述第三信息指示所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    所述处理单元在确定所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输时,用于:确定预定义的所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输;或者,控制所述收发单元从所述网络装置接收第四信息,所述第四信息指示所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。
  28. 如权利要求26或27所述的装置,其特征在于,所述第一SCI还指示以下一项或多项:
    所述数据或者承载所述数据的PSSCH的频域资源;
    所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    所述数据或者承载所述数据的PSSCH是否在第二资源上传输。
  29. 如权利要求22-28任一项所述的装置,其特征在于,所述数据的子信道数占所述数据的子信道所在信道的比例或者所述数据的子信道数占子信道总数的比例大于80%,所述数据的传输方式为非交错传输方式。
  30. 如权利要求26-28任一项所述的装置,其特征在于,所述处理单元,在确定所述数据或者承载所述数据的PSSCH的频域资源时,用于:
    确定所述数据或者承载所述数据的PSSCH的交错个数或子信道个数;或者
    确定所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。
  31. 如权利要求22-30任一项所述的装置,其特征在于,所述处理单元还用于:
    确定发送所述第一SCI的频域位置,所述第一SCI的频域位置基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。
  32. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一侧行控制信息SCI的传输方式;
    收发单元,用于以确定的所述第一SCI的传输方式从第一终端装置接收所述第一SCI,所述第一SCI指示数据的传输方式;以及
    以所述数据的传输方式从所述第一终端装置接收所述数据。
  33. 如权利要求32所述的装置,其特征在于,所述第一SCI为第一阶SCI,所述第一阶SCI承载于物理侧行控制信道PSCCH;所述数据承载于物理侧行共享信道PSSCH,所述PSSCH还包括第二阶SCI和/或媒体接入控制控制单元MAC CE,所述第二阶SCI的传输方式与所述数据的传输方式相同,所述MAC CE的传输方式与所述数据的传输方式相同。
  34. 如权利要求32或33所述的装置,其特征在于,所述处理单元,在确定第一SCI的传输方式时,用于:
    确定预定义的所述第一SCI的传输方式;或者
    控制所述收发单元从网络装置接收第一信息,所述第一信息指示所述第一SCI的传输方式。
  35. 如权利要求32-34任一项所述的装置,其特征在于,所述第一SCI的传输方式为交错传输方式或非交错传输方式;所述数据的传输方式为交错传输方式或非交错传输方式;
    所述交错传输方式指在频域上不连续的RB上传输;
    所述非交错传输方式指在频域上连续的RB上传输。
  36. 如权利要求32-35任一项所述的装置,其特征在于,所述处理单元还用于执行以下一项或多项:
    确定所述数据或者承载所述数据的PSSCH的频域资源;
    确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输;
    其中,所述第一资源的时域位置为所述第一SCI所在的时域位置,所述第一资源的频域位置为所述数据或者承载所述数据的PSSCH所在的频域位置中除去所述第一SCI所在的频域位置以外的频域位置;
    所述第二资源的时域位置为所述第一SCI所在的时域位置,所述第二资源的频域位置为所述第一SCI所在的交错或者子信道中未传输所述第一SCI的资源块RB。
  37. 如权利要求36所述的装置,其特征在于,
    所述处理单元,在确定所述数据或者承载所述数据的PSSCH的频域资源时,用于:确定预定义的所述数据或者承载所述数据的PSSCH的频域资源;或者,控制所述收发单元从网络装置接收第二信息,所述第二信息指示所述数据或者承载所述数据的PSSCH的频域资源;
    所述处理单元,在确定所述数据或者承载所述数据的PSSCH是否在所述第一资源上传输时,用于:确定预定义的所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,控制所述收发单元从所述网络装置接收第三信息,所述第三信息指示所述数据或者承载所述数据的PSSCH是否在第一资源上传输;
    所述处理单元,在确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输时,用于:确定预定义的所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;或者,所述第三信息指示所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    所述处理单元,在确定所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输时,用于:确定预定义的所述数据或者承载所述数据的PSSCH是否在所述第二资源 上传输;或者,控制所述收发单元从所述网络装置接收第四信息,所述第四信息指示所述数据或者承载所述数据的PSSCH是否在所述第二资源上传输。
  38. 如权利要求36所述的装置,其特征在于,所述第一SCI还指示以下一项或多项:
    所述数据或者承载所述数据的PSSCH的频域资源;
    所述数据或者承载所述数据的PSSCH是否在第一资源上传输,或者,所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    所述数据或者承载所述数据的PSSCH是否在第二资源上传输。
  39. 如权利要求38所述的装置,其特征在于,
    所述处理单元,在确定所述数据或者承载所述数据的PSSCH的频域资源时,用于:根据所述第一SCI确定所述数据或者承载所述数据的PSSCH的频域资源;
    所述处理单元,在确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输时,用于:根据所述第一SCI确定所述数据或者承载所述数据的PSSCH是否在第一资源上传输;
    所述处理单元,在确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输时,用于:根据所述第一SCI确定所述数据或承载所述数据的PSSCH或第二SCI在所述第一资源上传输;
    所述处理单元,在确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输时,用于:根据所述第一SCI确定所述数据或者承载所述数据的PSSCH是否在第二资源上传输。
  40. 如权利要求32-39任一项所述的装置,其特征在于,所述数据的子信道数占所述数据的子信道所在信道的比例或者所述数据的子信道数占子信道总数的比例大于80%,所述数据的传输方式为非交错传输方式。
  41. 如权利要求36-39任一项所述的装置,其特征在于,所述处理单元,在确定所述数据或者承载所述数据的PSSCH的频域资源时,用于:
    确定所述数据或者承载所述数据的PSSCH的交错个数或子信道个数;或者
    确定所述数据或者承载所述数据的PSSCH是否占满所述数据或者承载所述数据的PSSCH的交错或子信道所在的信道。
  42. 如权利要求32-41任一项所述的装置,其特征在于,所述处理单元还用于:
    确定接收所述第一SCI的频域位置,所述第一SCI的频域位置基于所述第一SCI的起始RB位置、所述第一SCI的结束RB位置和所述第一SCI的RB个数中的至少两个参数确定。
  43. 一种通信装置,其特征在于,包括存储器、处理器和收发器,其中:
    所述收发器,用于所述通信装置进行通信;
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求1-10任一项所述的方法。
  44. 一种通信装置,其特征在于,存储器、处理器和收发器,其中:
    所述收发器,用于所述通信装置进行通信;
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要 求11-21任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时以执行如权利要求1-10中任一项所述的方法,或者执行如权利要求11-21中任一项所述的方法。
  46. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得如权利要求1-10中任一项所述的方法,或如权利要求11-21中任一项所述的方法被执行。
  47. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-10中任一项所述的方法,或者实现如述权利要求11-21中任一项所述的方法。
PCT/CN2023/089692 2022-04-29 2023-04-21 一种通信方法及装置 WO2023207774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210474935.8A CN117041894A (zh) 2022-04-29 2022-04-29 一种通信方法及装置
CN202210474935.8 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207774A1 true WO2023207774A1 (zh) 2023-11-02

Family

ID=88517692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089692 WO2023207774A1 (zh) 2022-04-29 2023-04-21 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117041894A (zh)
WO (1) WO2023207774A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152760A (zh) * 2019-06-27 2020-12-29 华为技术有限公司 一种psfch的发送方法及装置
WO2021102815A1 (zh) * 2019-11-28 2021-06-03 华为技术有限公司 系统信息获取方法及装置
WO2021189394A1 (en) * 2020-03-27 2021-09-30 Lenovo (Beijing) Limited Method and apparatus for resource allocation for sidelink communication
WO2021208031A1 (en) * 2020-04-16 2021-10-21 Qualcomm Incorporated Cyclic prefix (cp) extension in channel occupancy time (cot) sharing for sidelink communication
CN114365570A (zh) * 2019-09-20 2022-04-15 高通股份有限公司 用于新无线电未许可(nr-u)中的侧行链路的波形设计

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152760A (zh) * 2019-06-27 2020-12-29 华为技术有限公司 一种psfch的发送方法及装置
CN114365570A (zh) * 2019-09-20 2022-04-15 高通股份有限公司 用于新无线电未许可(nr-u)中的侧行链路的波形设计
WO2021102815A1 (zh) * 2019-11-28 2021-06-03 华为技术有限公司 系统信息获取方法及装置
WO2021189394A1 (en) * 2020-03-27 2021-09-30 Lenovo (Beijing) Limited Method and apparatus for resource allocation for sidelink communication
WO2021208031A1 (en) * 2020-04-16 2021-10-21 Qualcomm Incorporated Cyclic prefix (cp) extension in channel occupancy time (cot) sharing for sidelink communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink physical layer structure for NR V2X", 3GPP DRAFT; R1-1911882, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823064 *

Also Published As

Publication number Publication date
CN117041894A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
WO2020168946A1 (zh) 传输数据的方法和通信装置
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2022141465A1 (zh) 一种资源选择的方法和装置
WO2021244299A1 (zh) 通信方法及通信设备
US20240049263A1 (en) Resource configuration method, device, and storage medium
WO2023207774A1 (zh) 一种通信方法及装置
WO2022141608A1 (zh) 一种通信方法和通信装置
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
EP4228353A1 (en) Method and apparatus for resource determination
US20230027281A1 (en) Control messaging for multi-beam communications
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2022141464A1 (zh) 通信方法及装置
WO2024032548A1 (zh) 信息传输的方法和装置
WO2023116809A1 (zh) 一种通信方法及装置
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2024067656A1 (zh) 上行传输的方法和通信装置
WO2024037571A1 (zh) 资源分配方法、装置以及存储介质
US20240155582A1 (en) Enhancement of handling intra-cell guard band for sidelink (sl) in unlicensed spectrum
WO2023092264A1 (zh) 无线通信方法、终端设备及网络设备
WO2024032565A1 (zh) 资源排除方法和相关产品
WO2023207506A1 (zh) 共享资源分配方法及装置
WO2023011218A1 (zh) 一种资源共享方法及通信装置
WO2023206482A1 (en) Resource allocation with sensing of long term evolution (lte) and new radio (nr) sidelink
US20230354429A1 (en) Sidelink control information (sci) in new radio (nr) unlicensed
WO2023092265A1 (zh) 无线通信方法、第一终端设备及第二终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795207

Country of ref document: EP

Kind code of ref document: A1