WO2021102815A1 - 系统信息获取方法及装置 - Google Patents

系统信息获取方法及装置 Download PDF

Info

Publication number
WO2021102815A1
WO2021102815A1 PCT/CN2019/121656 CN2019121656W WO2021102815A1 WO 2021102815 A1 WO2021102815 A1 WO 2021102815A1 CN 2019121656 W CN2019121656 W CN 2019121656W WO 2021102815 A1 WO2021102815 A1 WO 2021102815A1
Authority
WO
WIPO (PCT)
Prior art keywords
system information
terminal device
side link
network device
processor
Prior art date
Application number
PCT/CN2019/121656
Other languages
English (en)
French (fr)
Inventor
张云昊
徐修强
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980102538.4A priority Critical patent/CN114747293A/zh
Priority to PCT/CN2019/121656 priority patent/WO2021102815A1/zh
Publication of WO2021102815A1 publication Critical patent/WO2021102815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for obtaining system information.
  • terminal equipment In various application scenarios such as homes, industries, and public places, terminal equipment (TE) has gradually shown large numbers and multiple forms, etc. feature.
  • TE terminal equipment
  • monitoring equipment cameras
  • machines machines
  • sensors sensors
  • Terminal equipment etc.
  • the increase in the number of terminal devices and application scenarios how to reduce the power consumption of terminal devices has become an urgent problem to be solved.
  • the embodiments of the present application provide a method and device for acquiring system information.
  • the embodiments of the present application provide a method for acquiring system information.
  • the method can be executed by a second terminal device or by other devices (such as a processor, a chip, or a chip system, etc.), and the other device can be installed Used in the second terminal device or matched with the second terminal device.
  • the method includes: receiving system information from a first terminal device, where the system information is system information of a cell managed by the network device, and communicating with the network device according to the system information.
  • the second terminal device can receive the system information of the cell managed by the network device from the first terminal device instead of receiving the system information of the cell from the network device, which helps to realize the lower power consumption of the second terminal device. Obtain system information.
  • the method includes: directly communicating with the network device according to the system information.
  • the method includes: communicating with the network device through an uplink channel and/or a downlink channel between the second terminal device and the network device according to the system information.
  • the system information is carried on the side link data channel.
  • the second terminal device can receive the system information carried on the side link data channel, which is helpful for the second terminal device to obtain the system information with lower power consumption.
  • the method includes: receiving the transmission parameter information of the side link data channel through the side link broadcast channel or the side link synchronization signal block, and the transmission parameter information includes the resource location of the side link data channel, Parameters such as modulation and coding scheme.
  • the second terminal device obtains the transmission parameter information of the side link data channel with lower power consumption.
  • the transmission parameters of the side link data channel are predefined.
  • the transmission parameters of the side link data channel are all predefined.
  • the transmission parameter part of the side link data channel is predefined.
  • the method includes: receiving the transmission parameter information of the side link data channel through the side link control channel.
  • the second terminal device can receive the transmission parameter information of the side link data channel carried on the side link control channel, which helps to realize the second terminal device receiving the side link data channel with lower power consumption. Transmission parameter information.
  • the method includes: receiving a side link synchronization signal from the first terminal device, where the side link synchronization signal is used to indicate a transmission parameter of a side link control channel.
  • the relative resource positions of the side link synchronization signal and the side link control channel are fixed, and the resource positions include resource positions in the time domain and/or frequency domain.
  • the second terminal device can obtain the transmission parameters of the side link control channel according to the indication of the synchronization signal, which helps to realize that the second terminal device receives the side link control channel with lower power consumption.
  • the method includes: receiving the transmission parameters of the side link control channel through the side link broadcast channel.
  • the transmission parameter includes a resource location
  • the resource location includes a resource location in a time domain and/or a frequency domain.
  • the second terminal device obtains the transmission parameter information of the side link control channel with lower power consumption.
  • the system information is carried on the side link broadcast channel.
  • the second terminal device can receive the system information carried on the side link broadcast channel, which is helpful for the second terminal device to obtain the system information with lower power consumption.
  • the transmission parameters of the side link broadcast channel are predefined.
  • the transmission parameters of the side link broadcast channel are all predefined.
  • the transmission parameter part of the side link broadcast channel is predefined.
  • the system information is carried on the side link control channel.
  • the transmission parameters of the side link control channel are predefined.
  • the transmission parameters of the side link control channel are all predefined.
  • the transmission parameter part of the side link control channel is predefined.
  • the second terminal device can receive the system information carried on the side link control channel, which helps to realize that the second terminal device obtains the system information with lower power consumption.
  • the method includes: receiving a side link synchronization signal, where the side link synchronization signal is used to indicate a transmission parameter of a side link control channel.
  • the relative resource positions of the side link synchronization signal and the side link control channel are fixed, and the resource positions include resource positions in the time domain and/or frequency domain.
  • the second terminal device can obtain the transmission parameters of the side link control channel according to the indication of the synchronization signal, which helps to realize that the second terminal device receives the side link control channel with lower power consumption.
  • the embodiments of the present application provide a method for obtaining system information.
  • the method can be executed by the first terminal or by other devices (such as a processor, a chip, or a chip system), and the other device can be installed in It is used in the first terminal device or matched with the first terminal device.
  • the method includes: receiving system information from a network device, the system information being system information of a cell managed by the network device, and sending system information to a second terminal device, the system information being used for the second terminal device to communicate with the network device.
  • the embodiments of the present application provide a communication method, which can be executed by a network device or by other devices (such as a processor, a chip, or a chip system, etc.), and the other device can be installed in the network device. Or match with network equipment.
  • the method includes: sending system information to a first terminal device, where the system information is system information of a cell managed by the network device; and communicating with a second terminal device.
  • the network device communicates directly with the second terminal device.
  • the network device and the second terminal device communicate through an uplink channel and/or a downlink channel between the second terminal device and the network device.
  • the embodiments of the present application provide a side link synchronization signal transmission method.
  • the method can be executed by a second terminal device or by other devices (such as a processor, a chip, or a chip system, etc.). Other devices can be installed in the second terminal device or used in conjunction with the second terminal device.
  • the method includes: receiving a side link synchronization signal from a first terminal device.
  • the time domain period of the side link synchronization signal is less than or equal to the time domain period of the synchronization signal sent by the network device.
  • the frequency domain grid of the side link synchronization signal is less than or equal to the frequency domain grid of the synchronization signal sent by the network device.
  • the time-frequency domain resource location of the side link synchronization signal can be denser than the time-frequency domain resource location of the synchronization signal sent by the network device to the terminal device. Therefore, the second terminal device can receive the side link with lower power consumption. Sync signal.
  • the application embodiment provides a side link synchronization signal transmission method.
  • the method can be executed by the first terminal device or by other devices (for example, a processor, a chip, or a chip system, etc.).
  • the device can be installed in the first terminal device or used in conjunction with the first terminal device.
  • the method includes: sending a side link synchronization signal to a second terminal device.
  • the time domain period of the side link synchronization signal is less than or equal to the time domain period of the synchronization signal sent by the network device.
  • the frequency domain grid of the side link synchronization signal is less than or equal to the frequency domain grid of the synchronization signal sent by the network device.
  • a device in a sixth aspect, may be a second terminal device, or a device in the second terminal device, or a device that can be matched and used with the second terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect or the fourth aspect.
  • the modules may be hardware circuits, software, or hardware Circuit combined with software implementation.
  • the device may include a receiving unit and a processing unit.
  • the receiving unit is configured to receive system information from the first terminal device, where the system information is system information of a cell managed by the network device;
  • the processing unit is configured to communicate with the network device according to the system information.
  • a device in a seventh aspect, may be a first terminal device, or a device in the first terminal device, or a device that can be matched and used with the first terminal device.
  • the device may include a module that performs one-to-one correspondence of the method/operation/step/action described in the second aspect or the fifth aspect.
  • the module may be a hardware circuit, software, or hardware Circuit combined with software implementation.
  • the device may include a receiving unit for receiving system information from a network device, where the system information is system information of a cell managed by the network device; a sending unit, for sending the second terminal device System information, where the system information is used by the second terminal device to communicate with the network device.
  • a device in an eighth aspect, may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the third aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software. .
  • the device may include a sending unit for: sending system information to the first terminal device, where the system information is system information of a cell managed by the network device; and communicating with the second terminal device.
  • an embodiment of the present application provides a device including a processor, configured to implement the method described in the first aspect or the fourth aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect or the fourth aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, and other devices may be Network equipment or first terminal equipment.
  • the device includes:
  • the processor is configured to use a communication interface to receive system information from a first terminal device, where the system information is system information of a cell managed by the network device; and communicate with the network device according to the system information.
  • an embodiment of the present application provides a device including a processor, configured to implement the method described in the second or fifth aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the second aspect or the fifth aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, and other devices may be Network equipment or second terminal equipment.
  • the device includes:
  • the processor is configured to use a communication interface: receive system information from a network device, where the system information is system information of a cell managed by the network device; send the system information to a second terminal device, and the system information is used for all
  • the second terminal device communicates with the network device.
  • an embodiment of the present application provides a device, which includes a processor, configured to implement the method described in the third aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the third aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, and other devices may be The first terminal device or the second terminal device.
  • the device includes:
  • the processor is configured to use the communication interface to send system information to the first terminal device, where the system information is system information of the cell managed by the network device; and to communicate with the second terminal device.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored.
  • the computer executes the first, second, and third aspects described above.
  • embodiments of the present application provide a computer program product, which includes computer program code or instructions, which when run on a computer, cause the computer to execute the first, second, and first aspects described above.
  • an embodiment of the present application provides a chip, including: a processor coupled to a memory, and the processor is configured to implement the first, second, third, and fourth aspects described above, The method described in the fifth aspect, any possible design of the first aspect, any possible design of the second aspect, and any possible design of the third aspect.
  • an embodiment of the present application provides a system, including: the device described in the sixth aspect and the device described in the seventh aspect.
  • the communication system may further include the device described in the eighth aspect.
  • an embodiment of the present application provides a system, including: the device described in the ninth aspect and the device described in the tenth aspect.
  • the communication system may further include the device described in the eleventh aspect.
  • FIG. 1 is an example diagram of a communication system to which an embodiment of the application can be applied;
  • FIG. 2 is an example diagram of the process of downlink synchronization between terminal equipment and network equipment and obtaining system information from the network equipment according to an embodiment of the application;
  • FIG. 3 is a diagram of an example of interaction of a communication method provided by an embodiment of the application.
  • 4A to 4D are diagrams showing examples of the time domain resource positions of the physical side link shared channel provided by embodiments of the application.
  • 5A to 5B are exemplary diagrams of the relative relationship between the resource positions of the side link synchronization signal and the side link control channel provided by the embodiments of the application;
  • FIG. 6 is an example diagram of a resource location of a side link synchronization signal provided by an embodiment of this application.
  • FIG. 7 is a structural example diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is an exemplary diagram of another communication device provided by an embodiment of the application.
  • LTE long term evolution
  • 5G fifth generation
  • WiFi wireless fidelity
  • NR new radio
  • the technical solutions provided by the embodiments of this application can be applied to device-to-device (D2D), machine type communication (MTC), vehicle to everything (V2X), Communication scenarios such as vehicle-to-vehicle (V2V), Internet of Things (IoT), and massive machine-type communications (mMTC).
  • D2D device-to-device
  • MTC machine type communication
  • V2X vehicle to everything
  • Communication scenarios such as vehicle-to-vehicle (V2V), Internet of Things (IoT), and massive machine-type communications (mMTC).
  • terminal equipment gradually presents characteristics such as large numbers and multiple forms.
  • some terminal devices are not sensitive to power consumption, such as machines with stable power supplies, monitoring equipment, automobiles, and mobile phones with large battery capacity; some terminal devices are not easy to charge or pursue user experience. Power consumption is more sensitive, and there is a need for low power consumption, such as sensors, wearable devices, etc.
  • the technical solution provided by the embodiments of the present application aims to reduce the power consumption of terminal devices. It can be used for terminal devices that are not sensitive to power consumption, for example, in pursuit of user experience; it can also be used for terminal devices that are sensitive to power consumption, such as To meet the low power consumption requirements of terminal equipment.
  • Fig. 1 shows an example diagram of a communication system to which the technical solution provided in the embodiments of the present application can be applied.
  • the communication system includes at least one network device (the network device 100 is shown in the figure), and one or more terminal devices that communicate with the network device (the terminal device 110, the terminal device 111, the terminal device 112, and the terminal device are shown in the figure).
  • Equipment 113 The terminal device 110 shown in FIG. 1 can communicate with the network device 100; the terminal device 111, the terminal device 112, and the terminal device 113 shown can communicate with the network device 100 through the terminal device 110.
  • Network equipment and terminal equipment can also be referred to as communication equipment.
  • the numbers of terminal devices and network devices in FIG. 1 are only examples, and the embodiments of the present application are not limited.
  • the terminal device used to cooperate with other terminal devices to communicate with the network device may be called a cooperative terminal device (also may be called a first terminal device, a source terminal device, a relay terminal device, or a cooperative user equipment ( cooperation user equipment, CUE), etc.), for example, the terminal device 110 in FIG. 1 may be a CUE; a terminal device that can communicate with a network device through the CUE may be called a target terminal device (also called a second terminal device, target User equipment (target user equipment, TUE), etc.), for example, the terminal device 111, the terminal device 112, and the terminal device 113 in FIG. 1 may be TUEs.
  • a cooperative terminal device also may be called a first terminal device, a source terminal device, a relay terminal device, or a cooperative user equipment ( cooperation user equipment, CUE), etc.
  • the terminal device 110 in FIG. 1 may be a CUE
  • a terminal device that can communicate with a network device through the CUE may be called a target terminal device (also called a second terminal device
  • the communication between the CUE and the TUE may adopt a device-to-device (D2D) communication method.
  • D2D communication may include: user data may be directly transmitted between terminal devices without passing through network devices.
  • the CUE and TUE may use sidelinks (Sidelink, SL) to communicate.
  • SAlink Sidelink
  • side links are links between terminal devices, and side links may also be called side links, side links, D2D links, or V2X links.
  • the terminal device 111, the terminal device 112, and the terminal device 113 shown can communicate with the network device 100 through the terminal device 110, which can be understood as: the terminal device 110 forwards to the terminal device 111, the terminal device 112, and the terminal device 113 All or part of the information of the network device 100.
  • the sending method used in forwarding includes: unicast, multicast or broadcast.
  • communication between terminal devices can be classified into unicast, multicast, and broadcast according to the communication mode.
  • Unicast is a one-to-one communication mode between terminal devices, and the terminal device that can receive unicast data is a single terminal device.
  • Multicast is a one-to-many communication mode between terminal devices, and terminal devices that can receive multicast data are terminal devices in a specific group.
  • Broadcasting is a one-to-all communication mode between terminal devices, and terminal devices in a specific area around the sender can receive broadcast data.
  • the network device may be a device with a wireless transceiver function.
  • a wireless transceiver function Including but not limited to: base station, NodeB, evolved Node B (eNB or e-NodeB) in LTE, base station in NR (such as next generation Node B, gNodeB or gNB) , Or the transmission receiving point/transmission reception point (TRP), the third generation partnership project (3 rd generation partnership project, 3GPP) subsequent evolution of the base station, the access node in the WiFi system, the wireless relay node, Wireless backhaul nodes, etc.
  • eNB evolved Node B
  • NR such as next generation Node B, gNodeB or gNB
  • TRP transmission receiving point/transmission reception point
  • 3GPP third generation partnership project
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc., which is not limited in the embodiment of the application.
  • one base station may include one TRP, or one base station may include multiple co-site or non-co-site TRPs.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the device used to implement the function of the network device may be a network device; it may also be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device or combined with the network device. Matching use.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the terminal equipment may be user equipment (UE), access terminal equipment, user unit, user station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, user terminal equipment, Terminal equipment, wireless terminal equipment, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a handheld device with wireless communication function, a computing device, and a wireless Other processing equipment of modem, mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control ( Wireless terminal equipment in industrial control), in-vehicle terminal equipment, wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical (remote medical), wireless terminal equipment in smart grid (smart grid), Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, wearable terminal equipment, terminal equipment in 5G network,
  • WLL wireless
  • the device used to realize the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip system.
  • the device may be installed in the terminal device or connected to the terminal device. Matching use.
  • the technical solutions provided by the embodiments of the present application are described by taking as an example the apparatus for realizing the functions of the terminal equipment being the terminal equipment.
  • the network device may directly communicate with the terminal device, or may communicate with the terminal device through a relay station.
  • the terminal device can communicate with multiple network devices of different technologies.
  • the terminal device can communicate with an LTE base station that supports an LTE network, can also communicate with a 5G base station that supports a 5G network, and can also support dual connection.
  • the relay station may be a network device or another terminal device, which is not limited in the embodiment of the present application. In the embodiments of the present application, there may be two, three, four, or more multiple ones, which is not limited in the embodiments of the present application.
  • a network device can manage one or more (for example, 3, or 6, etc.) cells, and the terminal device can neutralize the cells in one or more of them (for example, 2 or 3, etc.) Network devices communicate.
  • a terminal device communicates with a network device, it can perform downlink synchronization with the network device, obtain system information from the network device, etc., and access the network device according to the system information, so that the terminal device can perform uplink and/or downlink data with the network device transmission.
  • the terminal device acquiring system information from the network device can be regarded as the terminal device acquiring the system information of the cell where the terminal device is located from the network device.
  • the terminal equipment accessing the network equipment includes the terminal equipment establishing a link with the network equipment in the cell.
  • the data transmission between the terminal equipment and the network equipment can be regarded as the data transmission between the terminal equipment and the network equipment in the cell.
  • Figure 2 exemplarily shows an example diagram of the process of downlink synchronization between terminal equipment and network equipment and obtaining system information from the network equipment, including but not limited to:
  • Operation 201 the terminal device detects the synchronization signal and the broadcast information from the network device.
  • the network device sends a synchronized signal block (synchronized signal block, SSB) to the terminal device.
  • the SSB includes a primary synchronized signal (PSS), a secondary synchronized signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronized signal
  • SSS secondary synchronized signal
  • PBCH physical broadcast channel
  • the synchronization signal is used for the terminal equipment and the network equipment to perform downlink synchronization, and it may be one signal or multiple separated signals (for example, separated into PSS and SSS), which is not limited in the embodiment of the present application.
  • the PSS, SSS, and PBCH can be combined and sent in the form of SSB, or can be sent in a separate form, which is not limited in the embodiment of the present application.
  • the terminal equipment can perform downlink synchronization with the network equipment according to the synchronization signal.
  • the identity of the cell where the terminal device is located can also be obtained.
  • Operation 202 The terminal device obtains system information according to the broadcast information.
  • PBCH can be used to carry master information block (MIB).
  • MIB can be used to indicate the resource configuration information of the public physical downlink control channel (physical downlink control channel, PDCCH).
  • the resource configuration information of the public PDCCH includes the search space where the public PDCCH is located.
  • the cyclic redundancy check (CRC) of the public PDCCH may be scrambled by the system information radio network temporary identifier (SI-RNTI).
  • SI-RNTI system information radio network temporary identifier
  • the PDSCH scheduled by the public PDCCH can be used to carry system information.
  • the information carried on the PDCCH may be referred to as downlink control information (DCI).
  • DCI can be used to indicate PDSCH transmission parameters.
  • PDSCH transmission parameters include one or more of the following: resource configuration information (such as time domain resource and/or frequency domain resource configuration information), transport block size (transport block size, TBS) ), modulation and coding scheme (MCS), redundancy version (RV), etc.
  • the terminal device can receive the MIB through the PBCH, and obtain the resource configuration information of the public PDCCH through the MIB, for example, the search space of the public PDCCH.
  • the terminal device detects the common PDCCH in the search space, so as to obtain the transmission parameters of the PDSCH scheduled by the common PDCCH.
  • the terminal device receives the PDSCH according to the transmission parameters of the PDSCH, so that the system information can be received through the PDSCH.
  • the terminal device when the terminal device detects the synchronization signal, it needs to try to retrieve from the possible sequence values of the synchronization signal at the possible candidate resource positions of the synchronization signal.
  • This process may be referred to as blind detection of the synchronization signal.
  • the possible sequence values of the synchronization signal include one or more sequence values.
  • the blind detection process is a process of continuous signal reception and multiple demodulation attempts, so the energy consumption is high. Therefore, how the terminal device can reduce energy consumption during the process of acquiring system information has become a problem that needs to be solved urgently.
  • the CUE sends the system information of the cell managed by the network device to the TUE through the cooperation of the terminal device, so as to reduce the energy consumption of the TUE in the process of obtaining the system information.
  • words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner to facilitate understanding.
  • the transmission between the network device and the terminal device may be bidirectional, for example, it may include the network device sending data to the terminal device, for example, sending downlink data via PDSCH); it may also include the terminal device sending data to the network device , For example, send uplink data through PUSCH.
  • the terminal equipment can be a CUE or a TUE.
  • FIG. 3 is a diagram of an example of interaction of a communication method 300 provided by an embodiment of the application.
  • the first terminal device, the second terminal device, and the network device are used as an example of the execution body of the interaction signal to illustrate the communication method, but this embodiment of the application does not limit the execution body of the interaction signal.
  • the network device in FIG. 3 may be replaced with a device, module, chip, chip system, or processor that implements the method on the network device side.
  • the first terminal device in FIG. 3 may be replaced with a device, module, chip, chip system, or processor that implements the method on the first terminal device side. It can be understood that FIG.
  • FIG. 3 only uses the first terminal device as an example for schematic illustration, and the first terminal device may be a CUE (for example, a mobile phone), which is not limited in the embodiment of the present application.
  • the second terminal device in FIG. 3 may be replaced with a device, module, chip, chip system, or processor that implements the second terminal device-side method. It can be understood that FIG. 3 only uses the second terminal device as an example for schematic illustration, and the second terminal device may be a TUE (for example, a wearable device), which is not limited in the embodiment of the present application.
  • the method 300 may include:
  • Operation 301 The first terminal device receives system information from a network device, where the system information is system information of a cell managed by the network device.
  • the network device may manage one or more (for example, 3, or 6, etc.) cells, and the system information received by the first terminal device from the network device may be one or more (for example, 2 or 3) managed by the network device.
  • the system information received by the first terminal device from the network device may be system information of one or more (for example, 2 or 3) cells where the first terminal device is located.
  • the network device in operation 301 may also be replaced with another terminal device.
  • the first terminal device receives system information from the other terminal device, and the system information may be the system information of the cell A where the other terminal device is located.
  • the other terminal device receives the system information of the cell A from the network device, and the other terminal device sends the system information of the cell A to the first terminal device.
  • the system information of the cell managed by the network device may include one or more of the following information: network device identification, cell identification, system frame number, subcarrier spacing, common channel configuration parameters (such as one or more of the following parameters) Types: uplink initial BWP parameters (such as one or more of the following parameters: subcarrier spacing, resource location, and bandwidth, etc.), downlink initial BWP parameters (such as one or more of the following parameters: subcarrier spacing, Resource location, bandwidth, etc.), common DCI search space, paging search space, random access preamble sequence configuration, access preamble resource configuration, supplementary uplink configuration, and network equipment sending synchronization signal blocks cycle).
  • the subcarrier interval may be the message 2 and message 4 subcarrier intervals when the second terminal device and the network device are initially connected, and/or the subcarrier interval used by the network device when broadcasting system information (SI) .
  • Operation 302 the first terminal device sends system information to the second terminal device; correspondingly, the second terminal device receives the system information.
  • the first terminal device may send the system information to the second terminal device in a broadcast, multicast or unicast manner.
  • the first terminal device receives the system information of the cell B from the network device, and the first terminal device sends the system information of the cell B to the second terminal device.
  • cell B may be one cell or multiple cells, which is not limited in the embodiment of the present application.
  • the first terminal device sends the system information it may be in cell B or not in cell B, which is not limited in the embodiment of the present application.
  • the first terminal device is not in cell B when sending the system information, but the first terminal device has accessed the network device in cell B once.
  • the second terminal device receives the system information, it may be in cell B or not in cell B, which is not limited in the embodiment of the present application.
  • the second terminal device is not in cell B when receiving the system information, but the second terminal device can then access the network device in cell B.
  • the first terminal device forwards the system information to the second terminal device, for example, the first terminal device forwards the system information received by the first terminal device in operation 301 to the second terminal device.
  • sending system information can be understood as sending after preprocessing. For example, after the first terminal device preprocesses the system information received in operation 301, it sends the preprocessed system information to the second terminal device. system message.
  • the above preprocessing may include one or more of the following operations: information reassembly, scrambling, modulation, content reduction (such as reducing information domain), adding content (such as increasing information domain), extracting content (such as extracting information domain) ), and physical resource mapping.
  • the system information sent by the first terminal device to the second terminal device can be used to indicate one or more of the following parameters: network device identification, cell identification, system frame number, subcarrier spacing, common channel configuration parameters (such as the following One or more of the parameters: uplink initial BWP parameters (for example, one or more of the following parameters: subcarrier spacing, resource location, and bandwidth, etc.), downlink initial BWP parameters (for example, one of the following parameters or Various: subcarrier spacing, resource location, bandwidth, etc.), common DCI search space, paging search space, random access preamble sequence configuration, access preamble resource configuration, supplementary uplink configuration and The period at which the network device sends the synchronization signal block).
  • the subcarrier interval may be the message 2 and message 4 subcarrier intervals when the second terminal device and the network device are initially connected, and/or the subcarrier interval used by the network device when broadcasting system information (SI) .
  • the system information sent by the first terminal device may only establish a first-level mechanism.
  • the first terminal device combines the master information block (MIB) and system information block 1 (SIB1) in the system information of the network device to form a piece of information and sends it to the second terminal device.
  • MIB master information block
  • SIB1 system information block 1
  • the system information in operation 302 is carried on the side link data channel.
  • the first terminal device sending system information to the second terminal device includes: the first terminal device sends the system information to the second terminal device through a side link data channel.
  • the side link data channel includes a channel used to carry data information between the terminal and the terminal.
  • the side link data channel may be, for example, a physical sidelink shared channel (PSSCH) or a physical sidelink discovery channel (PSDCH).
  • PSSCH physical sidelink shared channel
  • PSDCH physical sidelink discovery channel
  • the side link data channel may also be referred to as a side link data channel, a side link data channel, a D2D link data channel or other names, which are not limited in the embodiment of the present application.
  • the system information in operation 302 is carried on the side link broadcast channel.
  • the first terminal device sending system information to the second terminal device includes: the first terminal device sends the system information to the second terminal device through a side link broadcast channel.
  • the side link broadcast channel includes a channel that carries broadcast information between the terminal and the terminal and/or side link system information.
  • the side link broadcast channel may be, for example, a physical side link broadcast channel (PSBCH).
  • PSBCH physical side link broadcast channel
  • the side link broadcast channel may also be called a side link broadcast channel, a side link broadcast channel, a D2D link broadcast channel or other names, which are not limited in the embodiment of the present application.
  • the system information in operation 302 is carried on the side link control channel.
  • the first terminal device sending system information to the second terminal device includes: the first terminal device sends the system information to the second terminal device through a side link control channel.
  • the side link control channel includes a channel used to carry control information between the terminal equipment and the terminal equipment.
  • the side link control channel may be, for example, a physical side link control channel (PSCCH).
  • PSCCH physical side link control channel
  • the side link control channel may also be called a side link control channel, a side link control channel, a D2D link control channel, or other names, which are not limited in the embodiment of the present application.
  • Operation 303 The second terminal device communicates with the network device in operation 301 according to the system information received from the first terminal device in operation 302.
  • the second terminal device communicating with the network device may include that the second terminal device obtains the access resource configuration of the cell from the system information (for example, one or more of the following configurations: initial uplink and downlink BWP, random access Enter the preamble sequence configuration, access preamble resource configuration, etc.), perform random access and other processes with the network equipment in the cell, and perform uplink or downlink data transmission with the network equipment after access.
  • the second terminal device receives downlink data from the network device through the physical downlink shared channel (PDSCH), and/or the second terminal device sends the data to the network device through the physical uplink shared channel (PUSCH) Upstream data.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the second terminal device communicating with the network device may include that the second terminal device obtains the common channel configuration parameter from the system information for receiving a paging message sent by the network device.
  • the communication may also include other communication processes between the second terminal device and the network device, which is not limited in this application.
  • the second terminal device for the second terminal device to communicate with the network device, it can also be understood as the second terminal device directly communicates with the network device, and the direct communication can be understood as the second terminal device does not need to use the means to communicate with the network device.
  • Other network element equipment such as the first terminal equipment.
  • the communication between the second terminal device and the network device can also be understood as the second terminal device communicating with the network device through the uplink channel and/or the downlink channel between the second terminal device and the network device.
  • the second terminal device receives downlink data from the network device through the PDSCH, and/or the second terminal device sends uplink data to the network device through the PUSCH.
  • the first terminal and the second terminal cooperate with the terminal device, and the first terminal device sends the system information of the cell managed by the network device to the second terminal device, reducing the process for the second terminal to obtain the system information. Energy consumption in.
  • System information transmission mode 1 System information is carried on the side link data channel.
  • the second terminal device determines the transmission parameters of the PSSCH, and receives the PSSCH according to the transmission parameters of the PSSCH, so that the system information can be received through the PSSCH.
  • the transmission parameters of the PSSCH may include one or more of the following parameters: time domain resource location, frequency domain resource location, frequency domain offset, demodulation reference signal information (such as the location of the demodulation reference signal, The number of symbols, etc.), TBS, MCS, RV, frequency hopping flags, and transmit power control (TPC) commands (command), etc.
  • demodulation reference signal information such as the location of the demodulation reference signal, The number of symbols, etc.
  • TBS MCS
  • RV frequency hopping flags
  • TPC transmit power control
  • for the introduction of PSSCH transmission parameters please refer to the introduction of PSSCH transmission parameters in the 3GPP standard protocols TS38.212 and TS38.331, or refer to the 3GPP standard protocols TS36.212 and TS36.331 for PSSCH transmission.
  • the embodiments of the present application are not limited to this.
  • the transmission parameters of the channel for example, PDCCH, PDSCH, PUSCH, PSSCH, PSCCH, etc.
  • the channel can also be referred to as scheduling information or other names of the channel, which is not used in this embodiment of the application. limit.
  • the frequency domain resource position of the PSSCH may be used to indicate one or more of the following parameters: the frequency domain position of the PSSCH relative to the frequency domain of another channel (for example, PSCCH, PSBCH, or side link synchronization signal) Position offset (for example, the offset of the starting subcarrier of the PSSCH relative to the starting subcarrier of the PSCCH, the offset of the starting resource block (RB) of the PSSCH relative to the starting RB of the PSCCH), the start of the PSSCH Frequency domain position (e.g. start subcarrier, and/or start RB, etc.), end frequency domain position of PSSCH (e.g. end subcarrier, and/or end RB, etc.), PSSCH length (e.g. number of subcarriers) , And/or the number of RBs), etc.
  • Position offset for example, the offset of the starting subcarrier of the PSSCH relative to the starting subcarrier of the PSCCH, the offset of the starting resource block (RB) of the PSSCH relative to the starting RB
  • the time domain resource position of the PSSCH may be used to indicate one or more of the following parameters: the time domain position of the PSSCH relative to the time domain of another channel (for example, PSCCH, PSBCH, or side link synchronization signal) Position offset (e.g., the offset of the PSSCH starting slot relative to the PSCCH starting slot, the PSSCH starting symbol relative to the PSCCH starting symbol, etc.), the PSSCH starting time domain position (such as starting Start symbol index, and/or start slot index, etc.), PSSCH end time domain position (such as end symbol index, and/or end slot index, etc.), and PSCCH time domain length (e.g. number of symbols , And/or the number of time slots in which it is located), etc.
  • Position offset e.g., the offset of the PSSCH starting slot relative to the PSCCH starting slot, the PSSCH starting symbol relative to the PSCCH starting symbol, etc.
  • the PSSCH starting time domain position such as starting Start symbol index, and/or start slot index, etc.
  • the second terminal device may determine the transmission parameter of the PSSCH according to any one of the following three possible transmission parameter determination methods.
  • the transmission parameters of the PSSCH may be predefined.
  • the transmission parameters of the PSSCH are predefined, and may include that the transmission parameters of the PSSCH are pre-defined, fixed, or pre-stored in the protocol.
  • the first terminal device indicates the PSSCH transmission parameter to the second terminal device.
  • the second terminal device receives the transmission parameter of the PSSCH.
  • the first terminal device indicates the time-frequency resource location of the PSSCH, TBS, MCS, frequency hopping indicator, and TPC to the second terminal device.
  • part of the transmission parameters of the PSSCH is predefined, and part of the transmission parameters is indicated by the first terminal device.
  • the time domain resource location of the PSSCH is predefined, and the MCS, TBS, frequency domain resource location, frequency hopping indication, and TPC are indicated by the first terminal device.
  • the MCS of the PSSCH is predefined, and the TBS, time-frequency resource location, frequency hopping indication, and TPC are indicated by the first terminal device.
  • the TBS of the PSSCH is predefined, and the MCS, time-frequency resource location, frequency hopping indication, and TPC are indicated by the first terminal device.
  • the first terminal device may indicate the transmission parameters of the PSSCH in any one of the following indication mode 1 and indication mode 2. This method can be applied to the above-mentioned second possible design and the third possible design.
  • Indication mode 1 Indicate one or more information fields to the second terminal device, and one of the one or more information fields is used to indicate one or more transmission parameters of the PSSCH.
  • Indication mode 2 Indicate a transmission parameter value set for the second terminal device from the candidate transmission parameter value set, for example, indicate the index of the transmission parameter value set.
  • the candidate transmission parameter value set includes one or more transmission parameter value sets, and one transmission parameter value set corresponds to an index.
  • a set of transmission parameter values corresponds to a value of a set of PSSCH transmission parameters.
  • the candidate transmission parameter value set includes three transmission parameter value sets: transmission parameter value set 1, transmission parameter value set 2, and transmission parameter value set 3, with indexes of 0, 1, and 2, respectively. . If the index indicated by the first terminal device to the second terminal device is 1, in the transmission parameters of the PSSCH: the value of TBS is TBS 2, the value of MCS is MCS 2, and the value of time-frequency resource is time-frequency resource 2.
  • Transmission parameter value collection 1 0 TBS 1 MCS 1 Time frequency resource 1 Transmission parameter value collection 2 1 TBS 2 MCS 2 Time frequency resource 2 Transmission parameter value collection 3 2 TBS 3 MCS 3 Time-frequency resources 3
  • the first terminal device may send the PSSCH transmission parameter to the second terminal device in any one of the method A1, the method A2, and the method A3.
  • the first terminal device indicates the PSSCH transmission parameter to the second terminal device through the side link control channel (for example, PSCCH).
  • the side link control channel for example, PSCCH
  • the second terminal device receives the PSSCH transmission parameter from the first terminal device through the side link control channel (for example, PSCCH).
  • the second terminal device receives the PSSCH according to the transmission parameters of the PSSCH, so that the system information can be received through the PSSCH.
  • the second terminal device determines the transmission parameters of the PSCCH, and receives the PSCCH according to the transmission parameters of the PSCCH.
  • the transmission parameters of the PSCCH may include one or more of the following parameters: the resource location to which the PSCCH is mapped (including the time domain resource location and/or the frequency domain resource location), the TBS of the PSCCH, and the MCS of the PSCCH , Frequency hopping flag and TPC.
  • the implementation method for the second terminal device to determine the PSCCH transmission parameters is similar to the three possible transmission parameter determination methods described above (the first possible transmission parameter determination method to the third possible transmission parameter determination method) , The difference is that the PSSCH in the above three possible transmission parameter determination methods can be replaced with PSCCH.
  • the first terminal device When the first terminal device indicates the PSCCH transmission parameter to the second terminal device, the first terminal device may indicate the PSCCH transmission parameter to the second terminal device in any of the manner B1 and the manner B2.
  • Manner B1 The first terminal device indicates the PSCCH transmission parameters to the second terminal device through a side link broadcast channel (for example, PSBCH).
  • a side link broadcast channel for example, PSBCH
  • the second terminal device receives the resource position of the side link control channel (for example, PSCCH) from the first terminal device through the side link broadcast channel (for example, PSBCH), and the resource position may include the time domain and/or the frequency domain Resource location.
  • the resource position may include the time domain and/or the frequency domain Resource location.
  • at least one of the TBS, MCS, frequency hopping indicator, and TPC of the PSCCH may be predefined, or may be indicated through the PSBCH.
  • at least one item may be one, two or more items, which is not limited in the embodiments of the present application.
  • Manner B2 The first terminal device indicates the PSCCH transmission parameters to the second terminal device through a sidelink synchronized signal (SL-SS).
  • SL-SS sidelink synchronized signal
  • the second terminal device receives the resource location of the side link control channel (for example, PSCCH) from the first terminal device through the side link synchronization signal.
  • the resource location may include the resource location in the time domain and/or the frequency domain.
  • at least one of the TBS, MCS, frequency hopping indicator, and TPC of the PSCCH may be predefined, or may be indicated through the PSBCH.
  • the first terminal device may indicate the resource location of the PSCCH to the second terminal device in any of the manner C1, the manner C2, and the manner C3.
  • the SL-SS is used for the side link synchronization between the first terminal device and the second terminal device. It can be one signal or multiple separated signals (for example, separated into a side-link master synchronization signal).
  • sidelink primary synchronization signal, SL-PSS sidelink primary synchronization signal
  • SL-SSS sidelink secondary synchronization signal
  • a sidelink synchronization signal block may include SL-PSS, SL-SSS, and a first channel, where the first channel may be used to carry PSSCH transmission parameters.
  • the first channel may be PSBCH, or may be other channels.
  • the first channel is PSBCH as an example for description.
  • the SL-PSS, SL-SSS, and PSBCH may be combined and sent in the form of SL-SSB, or may be sent in a separate form, which is not limited in the embodiment of the present application.
  • the frequency domain resource positions of any two of SL-PSS, SL-SSS and PSBCH can be the same or different;
  • the time domain resource positions of any two of SL-PSS, SL-SSS and PSBCH can be continuous (For example, it is mapped to a continuous symbol), and it can also be discrete, which is not limited in the embodiment of the present application.
  • the PSBCH is in a symbol after the SL-PSS, and the PSBCH is in a symbol before the SL-SSS.
  • Method C1 SL-SS is used to indicate the PSCCH time domain resource location.
  • the PSCCH frequency domain resource location may be predefined, or the PSCCH frequency domain resource location is indicated by the PSBCH.
  • the relative time domain resource positions of the side link synchronization signal and the side link control channel are fixed.
  • the first terminal device sends the SL-SS to the second terminal device in the time unit n, and then sends the PSCCH to the second terminal device in the time unit n+k.
  • n is an integer greater than or equal to
  • k is an integer (for example, k may be -2, -1, 0, 1, 2, which is not limited in the embodiment of the present application), and k may be predefined.
  • the time unit may be any of the following time units: seconds, milliseconds, frames, subframes, transmission time interval (TTI), time slots, and symbols.
  • the relative relationship between the side link synchronization signal and the time domain symbol position of the side link control channel is fixed.
  • the side link synchronization signal and the side link control channel are mapped to the same time slot or the same TTI.
  • the 3rd and 9th symbols carry SL-PSS
  • the 5th and 11th symbols carry the side link secondary synchronization signal SL-SSS
  • the fourth , 6 symbols carry one PSCCH
  • the 10th and 12th symbols carry one PSCCH.
  • the second terminal device may determine the time domain resource location of the PSCCH according to the resource location of the SL-SS. It can be understood that the time-domain resource positions of the PSCCH and the synchronization signal are only examples, and the embodiments of the present application do not limit them.
  • the start position of the time domain resource of the PSCCH is in the fourth symbol after the position of the SL-PSS time domain resource.
  • Method C2 SL-SS is used to indicate the PSCCH frequency domain resource location.
  • the PSCCH time domain resource location may be predefined, or the PSCCH time domain resource location is indicated by the PSBCH.
  • the relative frequency domain resource positions of the side link synchronization signal and the side link control channel are fixed.
  • the first terminal device sends the SL-SS to the second terminal device on the frequency domain unit m, and then sends the PSCCH to the second terminal device on the frequency domain unit m+j.
  • m is an integer greater than or equal to
  • j is an integer (for example, j may be -2, -1, 0, 1, 2, which is not limited in the embodiment of the present application), and j may be predefined.
  • the frequency domain unit may be one or more of the following frequency domain units: subcarrier, resource block (resource block, RB), resource element (resource element, RE), and hertz.
  • the relative relationship between the side link synchronization signal and the RB position of the side link control channel is fixed.
  • the SL-SS and PSCCH are located at the same frequency domain position.
  • the frequency domain resource position of the PSCCH is the position of the SL-SS after the frequency domain position is positively shifted by 20 RBs along the frequency domain.
  • the positive frequency domain in the implementation of this application can be understood as the direction in which the frequency increases.
  • Method C3 SL-SS is used to indicate the PSCCH time domain and frequency domain resource positions.
  • the relative resource positions of the side link synchronization signal and the side link control channel are fixed.
  • the first terminal device sends the SL-SS to the second terminal device on the time unit n1 and the frequency domain unit m1, and then sends the PSCCH to the second terminal device on the time unit n1+k1 and the frequency domain unit m1+j1.
  • n1 and m1 are integers greater than or equal to
  • k1 and j1 are integers (for example, k1 and j1 may be -2, -1, 0, 1, 2, which is not limited by the embodiment of the application), and k1 and j1 can be Is predefined.
  • the values of n1 and m1 may be the same or different; the values of k1 and j1 may be the same or different, which is not limited in the embodiment of the present application.
  • the relative resource positions of the side link synchronization signal and the side link control channel may be as shown in FIG. 5A and FIG. 5B, and the specific description may refer to the foregoing manner C1 and manner C2, which will not be repeated here.
  • SL-SS in the method in which the first terminal device indicates PSCCH transmission parameters to the second terminal device through the side link SL-SS can be replaced with SL-SSB, so as to obtain that the first terminal device passes through the side link.
  • the SL-SSB indicates the PSCCH transmission parameters to the second terminal device;
  • the SL-SS in the method in which the first terminal device indicates the PSCCH transmission parameters to the second terminal device through the side link SL-SS can be replaced with SL-PSS to obtain a method for the first terminal device to indicate PSCCH transmission parameters to the second terminal device through the side link SL-PSS;
  • the above first terminal device can be indicated to the second terminal device through the side link SL-SS
  • the SL-SS is replaced with SL-SSS to obtain a method for the first terminal device to indicate the PSCCH transmission parameters to the second terminal device through the side link SL-SSS.
  • the first terminal device indicates the PSSCH transmission parameter to the second terminal device through a side link broadcast channel (for example, PSBCH).
  • a side link broadcast channel for example, PSBCH
  • the second terminal device receives the transmission parameters of the side link data channel through the side link broadcast channel, that is, the transmission parameters of the side link data channel are carried on the side link broadcast channel.
  • the second terminal device receives the PSSCH according to the transmission parameters of the PSSCH, so that the system information can be received through the PSSCH.
  • the PSBCH may indicate the resource location of the PSSCH through the information field carried in the PSBCH.
  • the method for the first terminal device to indicate the resource location of the PSSCH to the second terminal device through the PSBCH is similar to the method for the first terminal device to indicate the resource location of the PSCCH to the second terminal device through the SL-SS described in B2 above.
  • the PSCCH in B2 above is replaced with PSSCH, and the SL-SS is replaced with PSBCH.
  • Method A3 The first terminal device indicates the PSSCH transmission parameter to the second terminal device through the SL-SS.
  • the second terminal device receives the resource location of the PSSCH from the first terminal device through the SL-SS.
  • the resource location may include the resource location in the time domain and/or the frequency domain.
  • at least one of the transmission parameters such as TBS, MCS, and RV of the PSSCH may be predefined or indicated through the PSBCH.
  • the method for the first terminal device to indicate the resource location of the PSSCH to the second terminal device through SL-SS is similar to the method described in B2 above for the first terminal device to indicate the resource location of the PSCCH to the second terminal device through the SL-SS.
  • PSCCH in B2 above is replaced with PSSCH.
  • the information carried by the PSCCH may be referred to as sidelink control information (SCI).
  • SCI sidelink control information
  • the second terminal device may receive the system information block from the first terminal device in a variety of different ways.
  • the system information block may be defined as complete system information sent by the first terminal device, and the system information block may be composed of multiple system information sub-blocks.
  • the embodiment of this application uses 12 system information sub-blocks to form a system information block as an example.
  • the embodiment of this application is not limited. For example, it can be other positive integers (such as 1, 2, 4, 6, etc.) )
  • the system information sub-block forms a system information block.
  • Figures 4A and 4B show example diagrams of time-domain resource locations of the PSSCH.
  • the boxes labeled 1 to 12 represent the system information block sent by the first terminal device to the second terminal device, and the system information block includes 12 system information sub-blocks.
  • the 12 system information sub-blocks may be carried by one or more PSSCHs, which is not limited in the embodiment of the present application.
  • the PSCCH indicates the time domain resource location of the PSSCH, and the PSSCH carries system information blocks.
  • a group of PSCCHs includes a positive integer number (for example, four) PSCCHs, the group of PSCCHs may correspond to the same system information block, and the time domain position of the system information block is after the group of PSCCHs. Then, after receiving one of the PSCCHs in the group, the second terminal device can receive the PSSCH according to the transmission parameters of the PSSCH indicated by the PSCCH, so as to obtain the system information block carried by the PSSCH.
  • the embodiments of the present application are not limited to the example shown in FIG. 4A.
  • PSCCHs may be used to indicate a PSSCH, such as 1, 2, or other positive integers; different system information
  • the number of PSCCHs corresponding to the blocks may be the same or different, which is not limited in the embodiment of the present application.
  • the PSCCH in this method can also be replaced with SL-SS, SL-PSS, SL-SSS or PSBCH.
  • multiple PSCCHs correspond to one system information block, which can reduce the side link resource overhead.
  • the 12 sub-blocks in the system information block are arranged in a positive integer number (for example, 1, 2, 3, 4, 6, 12) time units in sequence. And send in a certain pattern in the time domain, for example, periodically and continuously repeat sending.
  • the PSCCH indicates the start position of the PSSCH, for example, indicates the offset of the time domain start position of the PSSCH relative to the time domain position of the PSCCH.
  • the second terminal device can determine the start position of the PSSCH.
  • the PSSCH is received on an integer number of time resources to obtain the system information block carried by the PSSCH.
  • the time unit may be seconds, milliseconds, frames, subframes, TTIs, time slots, symbols, etc., which are not limited in the embodiment of the present application.
  • the 12 sub-blocks in the system information block are sequentially arranged on 12 symbols, and when the starting position of the PSSCH indicated by the PSCCH corresponds to the No. 4 system information sub-block, the second terminal device can receive 4 and 5 in sequence. , 6, 7, 8, 9, 10, 11, 12, 1, 2, and 3 system information sub-blocks to obtain a complete system information block.
  • the number of time units in which the 12 sub-blocks in the system information block are located can be predefined, or sent by the first terminal device to the second terminal device, for example, sent via PSCCH or PSBCH.
  • the application examples are not limited.
  • the pattern of the 12 sub-blocks in the system information block in the time domain can be predefined, or sent by the first terminal device to the second terminal device, for example, sent via PSCCH or PSBCH, which is not limited in this embodiment of the application.
  • the PSCCH in this method can also be replaced with SL-SS, SL-PSS, SL-SSS or PSBCH.
  • the system information block is sent in a certain pattern in the time domain, which can reduce the side link control signaling overhead of the first terminal device.
  • System information transmission mode 2 System information is carried on the side link control channel.
  • the second terminal device determines the transmission parameters of the side link control channel (PSCCH), and receives the PSCCH according to the transmission parameters of the PSCCH, so that the system information can be received through the PSCCH.
  • PSCCH side link control channel
  • the implementation method for the second terminal device to determine the transmission parameters of the PSCCH is similar to the method for determining the transmission parameters of the PSCCH described in the above manner A1.
  • System information transmission mode 3 System information is carried on the side link broadcast channel.
  • the second terminal device determines the transmission parameters of the PSBCH, and receives the PSBCH according to the transmission parameters of the PSBCH, so that the system information can be received through the PSBCH.
  • the transmission parameters of the PSBCH are predefined.
  • the first terminal device may send the SL-SS to the second terminal device in a shorter time domain period.
  • FIG. 6 is an example of a side link synchronization signal provided by an embodiment of the present application. Sample map of resource location. Wherein, the time domain period of the SL-SS is less than or equal to the time domain period of the synchronization signal sent from the network device to the terminal device.
  • the frequency domain resource location of the SL-SS may be denser than the frequency domain resource location of the synchronization signal sent by the network device to the terminal device.
  • the distance between the frequency domain positions of adjacent SL-SSs is less than or equal to the distance between the frequency domain positions of adjacent synchronization signals sent from the network device to the terminal device (raster, grid).
  • the frequency domain may include more SL-SS.
  • independent SL-SS subcarrier intervals can be configured for each bandwidth or bandwidth part, and the SL-SS subcarrier intervals corresponding to different bandwidths or bandwidth parts may be the same or different, which is not limited in the embodiment of the present application.
  • an independent SL-SS frequency domain interval can be configured for each frequency band, and the SL-SS frequency domain interval (grid) corresponding to different frequency bands can be the same or different, which is not limited in the embodiment of this application. .
  • independent SL-SS time domain periods can be configured for each frequency band, and the SL-SS time domains corresponding to different frequency bands may be the same or different, which is not limited in the embodiment of the present application.
  • the three methods of system information transmission described above can be used in combination, that is, the method of system information transmission can be one or more of the three methods (single method, two methods).
  • the system information is carried on the side link data channel.
  • part of the system information is carried on the side link data channel, and part of the system information is carried on the side link control channel.
  • the system information is partly carried on the side link data channel, part is carried on the side link control channel, and part is carried on the side link broadcast channel.
  • the terminal device determines the type of the terminal (the terminal device is the first terminal device or the second terminal device).
  • the type of the terminal device may be pre-configured in the subscriber identity module (SIM) card, for example, the terminal device may be configured as the first terminal device or the second terminal device in the SIM card.
  • SIM subscriber identity module
  • different number segments are configured for the terminal device.
  • the first terminal device and the second terminal device use different number segments, and the terminal device determines the type of the terminal device according to the number segment.
  • the terminal device can determine itself as the first terminal device or the second terminal device.
  • the embodiments of the present application also provide corresponding devices, including corresponding modules for executing the foregoing embodiments.
  • the module can be software, hardware, or a combination of software and hardware.
  • FIG. 7 shows a communication device 700 according to an embodiment of the present application.
  • the communication device 700 may be the terminal device mentioned in the above embodiment or a device that supports the terminal device to implement the above method, or the communication device 700 may be the above method.
  • the network equipment mentioned in the embodiment may be a device that supports the network equipment to implement the foregoing method.
  • the communication device 700 includes at least one processing unit 730, a receiving unit 710, and a sending unit 720.
  • processing unit in the embodiment of the present application may be referred to as a processing module
  • receiving unit may also be referred to as a receiving module
  • sending unit may also be referred to as a sending module.
  • the receiving unit and the sending unit may also be called together or integrated together as a transceiver unit.
  • the communication apparatus 700 may correspondingly implement the corresponding operations of the first terminal device in the foregoing method, and the communication apparatus 700 may include a unit for executing the method executed by the first terminal device in the foregoing method.
  • each unit in the communication device 700 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding procedures of the above-mentioned method.
  • the communication device 700 includes: a receiving unit 710, configured to receive system information from a network device, where the system information is system information of a cell managed by the network device; and a sending unit 720, configured to send system information to the second terminal device information.
  • the communication device 700 may further include a processing unit 730 for processing the received information and/or for generating information to be sent.
  • the communication device 700 may correspondingly implement the corresponding operations of the second terminal device in the foregoing method, and the communication device 700 may include a unit for executing the method executed by the second terminal device in the foregoing method.
  • each unit in the communication device 700 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding procedures of the above-mentioned method.
  • the communication device 700 includes: a receiving unit 710, configured to receive system information from a first terminal device, where the system information is system information of a cell managed by the network device; a processing unit 730, configured to communicate with the network device based on the system information To communicate.
  • the communication device 700 can correspondingly implement the corresponding operations of the network device in the foregoing method, and the communication device 700 may include a unit for executing the method executed by the network device in the foregoing method.
  • each unit in the communication device 700 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding procedures of the above-mentioned method.
  • the communication apparatus 700 includes: a sending unit 720, configured to send system information to the first terminal device, where the system information is system information of a cell managed by the network device.
  • a processing unit 730 and a receiving unit 710 are included to communicate with the second terminal device.
  • the communication device 700 may further include a storage unit 740.
  • the storage unit 740 may be used to store other information such as computer execution instructions and/or data.
  • the processing unit 730 may read the instructions or data stored in the storage unit 740 to implement the corresponding solution.
  • the processing unit 730 may be a processor, such as the processor 801 shown in FIG. 8.
  • the sending unit 720 and the receiving unit 710 may also be transceiving devices, such as the transceiving device 803 shown in FIG. 8, or the sending unit 720 and the receiving unit 710 may also be communication interfaces, circuits, or other devices capable of implementing the transceiving function.
  • the storage unit 740 may be a memory, such as the memory 802 shown in FIG. 8.
  • an embodiment of the present application also provides a communication device for implementing the functions performed by the network device, the first terminal device, or the second terminal device in the foregoing method embodiment.
  • Fig. 8 shows a schematic block diagram of a possible communication device 800 in an embodiment of the present application.
  • the communication device includes at least one processor 801, a memory 802, and optionally includes a transceiver device 803 and a system bus 804.
  • the bus 804 can be a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, and a control bus. For ease of representation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the transceiver 803 is used for the communication device 800 to communicate with other communication equipment (such as wireless access network equipment, or terminal equipment, which is not limited here), such as interactive control signaling and/or service data.
  • 803 can be realized by a circuit with a communication transceiver function, a communication interface, etc.
  • the memory 802 is used to store required program instructions and/or data.
  • the communication device When the at least one processor invokes the program instructions stored in the memory for execution, the communication device is made to implement the function of the first terminal device in the foregoing method, or when the at least one processor invokes the program instructions stored in the memory for execution , Enabling the communication device to implement the function of the second terminal device in the foregoing method, or when the at least one processor invokes the program instruction stored in the memory for execution, enables the communication device to perform the function of the network device in the foregoing method.
  • the at least one processor 801, the memory 802, and the transceiver device 803 are coupled through the system bus 804.
  • the embodiments can be mutually cited.
  • the methods and/or terms between the method embodiments can be mutually cited, for example, the functions and/or terms between the device embodiments can be Mutual references, for example, functions and/or terms between the device embodiments and the method embodiments may be mutually cited.
  • the processors and transceiver devices described in the various embodiments of this application can be implemented in integrated circuits (IC), analog ICs, radio frequency integrated circuits RFIC, mixed-signal ICs, application specific integrated circuits (ASICs), and printed circuits.
  • the processor and transceiver can also be manufactured using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), and P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the processor may include one or more processors, for example, including one or more CPUs.
  • the processor may be a single-core CPU or a multi-core CPU.
  • the transceiver device is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver device may include a transmitter and a receiver, the transmitter is used to send data and/or signals, the receiver is used to receive data and/or signals, and the transceiver may also be a communication interface.
  • Memory includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable programmable read only memory, EPROM), read-only optical disk ( compact disc read-only memory, CD-ROM), which is used to store related instructions and/or data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable memory
  • EPROM erasable programmable read only memory
  • CD-ROM compact disc read-only memory
  • At least one of or “at least one of” herein means all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A alone exists, B alone exists, C exists alone, A and B exist at the same time, B and C exist at the same time, and there are six cases of A, B and C at the same time, where A can be singular or plural, and B can be Singular or plural, C can be singular or plural.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种系统信息获取方法及装置,以有助于解决现有技术中终端设备在获取系统信息过程中能耗开销较大的问题。该方法包括:第一终端设备向第二终端设备发送系统信息,第二终端设备接收该系统信息,该系统信息用于第二终端设备与该网络设备进行通信。通过该方法,有助于降低第二终端设备在获取系统信息的过程中的能耗,满足第二终端设备的节能需求。

Description

系统信息获取方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种系统信息获取方法及装置。
背景技术
随着物联网和大规模机器通信(massive machine-type communications,mMTC)技术的发展,在家庭、工业、公共场所等各应用场景中,终端设备(terminal equipment,TE)逐渐呈现大数量、多形态等特征。例如,一种工业自动化场景中,厂房中存在大量的监控设备(camera)、机器(machine)、传感器(sensor)等;家庭和生活场景中,存在手机、平板、穿戴式设备、智能家电、车载终端设备等。随着终端设备数量和应用场景的增加,如何降低终端设备功耗,成为亟待解决的问题。
发明内容
本申请实施例提供一种系统信息获取方法及装置。
第一方面,本申请实施例提供一种系统信息获取方法,该方法可以由第二终端设备执行,也可以由其它装置(例如处理器、芯片、或芯片系统等)执行,该其它装置可以安装在第二终端设备中或者和第二终端设备匹配使用。该方法包括:从第一终端设备接收系统信息,该系统信息是网络设备管理的小区的系统信息,以及根据该系统信息与该网络设备进行通信。
通过上述方法,使得第二终端设备可以不用从网络设备接收小区的系统信息,而是从第一终端设备接收网络设备管理的小区的系统信息,有助于实现第二终端设备以较低功耗获取系统信息。
在一种可能的实现中,该方法包括:根据系统信息与网络设备直接通信。
在一种可能的实现中,该方法包括:根据系统信息,通过第二终端设备与网络设备之间的上行信道和/或下行信道与该网络设备进行通信。
在一种可能的实现中,系统信息承载在侧链路数据信道上。
通过上述实现方式,第二终端设备可以接收承载在侧链路数据信道上的系统信息,有助于实现第二终端设备以较低功耗获取系统信息。
在一种可能的实现中,该方法包括:通过侧链路广播信道或侧链路同步信号块接收侧链路数据信道的传输参数信息,该传输参数信息包括侧链路数据信道的资源位置、调制和编码方案等参数。
通过上述实现方式,有助于实现第二终端设备以较低功耗获取侧链路数据信道的传输参数信息。
在一种可能的实现中,侧链路数据信道的传输参数是预定义的。可选地,侧链路数据信道的传输参数全部是预定义的。可选地,该侧链路数据信道的传输参数部分是预定义的。
通过上述实现方式,有助于节省信令,实现第二终端设备以较低功耗获取侧链路数据信道的传输参数信息。
在一种可能的实现中,该方法包括:通过侧链路控制信道接收侧链路数据信道的传输参数信息。
通过上述实现方式,第二终端设备可以接收承载在侧链路控制信道上的侧链路数据信道的传输参数信息,有助于实现第二终端设备以较低功耗接收侧链路数据信道的传输参数信息。
在一种可能的实现中,该方法包括:从第一终端设备接收侧链路同步信号,该侧链路同步信号用于指示侧链路控制信道的传输参数。可选地,该侧链路同步信号和侧链路控制信道的相对资源位置是固定的,该资源位置包括时域,和/或,频域的资源位置。
通过上述实现方式,第二终端设备可以根据同步信号的指示获取侧链路控制信道的传输参数,有助于实现第二终端设备以较低功耗接收侧链路控制信道。
在一种可能的实现中,该方法包括:通过侧链路广播信道接收侧链路控制信道的传输参数。可选的,该传输参数包括资源位置,该资源位置包括时域,和/或,频域的资源位置。
通过上述实现方式,有助于实现第二终端设备以较低功耗获取侧链路控制信道的传输参数信息。
在一种可能的实现中,系统信息承载在侧链路广播信道上。
通过上述实现方式,第二终端设备可以接收承载在侧链路广播信道上的系统信息,有助于实现第二终端设备以较低功耗获取系统信息。
在一种可能的实现中,侧链路广播信道的传输参数是预定义的。可选地,侧链路广播信道的传输参数全部是预定义的。可选地,该侧链路广播信道的传输参数部分是预定义的。
通过上述实现方式,有助于节省信令,实现第二终端设备以较低功耗获取侧链路广播信道的传输参数信息。
在一种可能的实现中,系统信息承载在侧链路控制信道上。可选地,侧链路控制信道的传输参数是预定义的。可选地,侧链路控制信道的传输参数全部是预定义的。可选地,侧链路控制信道的传输参数部分是预定义的。
通过上述实现方式,第二终端设备可以接收承载在侧链路控制信道上的系统信息,有助于实现第二终端设备以较低功耗获取系统信息。
在一种可能的实现中,该方法包括:接收侧链路同步信号,该侧链路同步信号用于指示侧链路控制信道的传输参数。可选地,该侧链路同步信号和侧链路控制信道的相对资源位置是固定的,该资源位置包括时域,和/或,频域的资源位置。
通过上述实现方式,第二终端设备可以根据同步信号的指示获取侧链路控制信道的传输参数,有助于实现第二终端设备以较低功耗接收侧链路控制信道。
第二方面,本申请实施例提供一种系统信息获取方法,该方法可以由第一终端执行,也可以由其它装置(例如处理器、芯片、或芯片系统等)执行,该其它装置可以安装在第一终端设备中或者和第一终端设备匹配使用。该方法包括:从网络设备接收系统信息,该系统信息是该网络设备管理的小区的系统信息,以及向第二终端设备发送系统信息,该系统信息用于第二终端设备与网络设备进行通信。
向第二终端设备发送系统信息的方法可以参考第一方面中相应的描述,这里不再赘述。
第三方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,也可以由其它装置(例如处理器、芯片、或芯片系统等)执行,该其它装置可以安装在网络设备中或者和网络设备匹配使用。该方法包括:向第一终端设备发送系统信息,该系统信息是网络设备管理的小区的系统信息;与第二终端设备进行通信。
可选的,网络设备与第二终端设备进行直接通信。可选的,网络设备和第二终端设备通过第二终端设备与网络设备之间的上行信道和/或下行信道进行通信。
第四方面,本申请实施例提供了一种侧链路同步信号传输方法,该方法可以由第二终端 设备执行,也可以由其它装置(例如处理器、芯片、或芯片系统等)执行,该其它装置可以安装在第二终端设备中或者和第二终端设备匹配使用。该方法包括:从第一终端设备接收侧链路同步信号。可选的,该侧链路同步信号的时域周期小于或等于网络设备发送的同步信号的时域周期。可选的,该侧链路同步信号的频域栅格小于或等于网络设备发送的同步信号的频域栅格。
通过上述方法,侧链路同步信号的时频域资源位置可以比网络设备发送至终端设备的同步信号的时频域资源位置密集,因此第二终端设备可以以较低的功耗接收侧链路同步信号。
第五方面,申请实施例提供了一种侧链路同步信号传输方法,该方法可以由第一终端设备执行,也可以由其它装置(例如处理器、芯片、或芯片系统等)执行,该其它装置可以安装在第一终端设备中或者和第一终端设备匹配使用。该方法包括:向第二终端设备发送侧链路同步信号。可选的,该侧链路同步信号的时域周期小于或等于网络设备发送的同步信号的时域周期。可选的,该侧链路同步信号的频域栅格小于或等于网络设备发送的同步信号的频域栅格。
第六方面,提供一种装置,该装置可以是第二终端设备,也可以是第二终端设备中的装置,或者是能够和第二终端设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面或第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种设计中,该装置可以包括接收单元和处理单元。接收单元用于从第一终端设备接收系统信息,所述系统信息是网络设备管理的小区的系统信息;处理单元用于根据所述系统信息与所述网络设备进行通信。
从第一终端设备接收系统信息的方法可以参考第一方面中相应的描述,这里不再赘述。
第七方面,提供一种装置,该装置可以是第一终端设备,也可以是第一终端设备中的装置,或者是能够和第一终端设备匹配使用的装置。一种设计中,该装置可以包括执行第二方面或第五方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种设计中,该装置可以包括接收单元,用于从网络设备接收系统信息,所述系统信息是所述网络设备管理的小区的系统信息;发送单元,用于向第二终端设备发送所述系统信息,所述系统信息用于所述第二终端设备与所述网络设备进行通信。
向第二终端设备发送系统信息的方法可以参考第一方面中相应的描述,这里不再赘述。
第八方面,提供一种装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种设计中,该装置可以包括发送单元,用于:向第一终端设备发送系统信息,该系统信息是网络设备管理的小区的系统信息;与第二终端设备进行通信。
第九方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面或第四方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面或第四方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其 它设备可以为网络设备或第一终端设备。在一种可能的设备中,该装置包括:
处理器,用于利用通信接口:从第一终端设备接收系统信息,所述系统信息是网络设备管理的小区的系统信息;根据所述系统信息与所述网络设备进行通信。
从第一终端设备接收系统信息的方法可以参考第一方面中相应的描述,这里不再赘述。
第十方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二方面或第五方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面或第五方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备或第二终端设备。在一种可能的设备中,该装置包括:
处理器,用于利用通信接口:从网络设备接收系统信息,所述系统信息是所述网络设备管理的小区的系统信息;向第二终端设备发送所述系统信息,所述系统信息用于所述第二终端设备与所述网络设备进行通信。向第二终端设备发送系统信息的方法可以参考第一方面中相应的描述,这里不再赘述。
第十一方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第三方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第三方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为第一终端设备或第二终端设备。在一种可能的设备中,该装置包括:
处理器,用于利用通信接口:向第一终端设备发送系统信息,该系统信息是网络设备管理的小区的系统信息;与第二终端设备进行通信。
第十二方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第一方面、第二方面、第三方面、第四方面、第五方面、第一方面的任一种可能的设计、第二方面任一种可能的设计、第三方面任一种可能的设计中所述的方法。
第十三方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码或指令,所述计算机程序代码或指令在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面、第四方面、第五方面、第一方面的任一种可能的设计、第二方面任一种可能的设计、第三方面任一种可能的设计中所述的方法。
第十四方面,本申请实施例提供一种芯片,包括:处理器,所述处理器与存储器耦合,所述处理器用于实现上述第一方面、第二方面、第三方面、第四方面、第五方面、第一方面的任一种可能的设计、第二方面任一种可能的设计、第三方面任一种可能的设计中所述的方法。
第十五方面、本申请实施例提供一种系统,包括:上述第六方面所述的装置和上述第七方面所述的装置。可选的,该通信系统还可以包括第八方面所述的装置。
第十六方面、本申请实施例提供一种系统,包括:上述第九方面所述的装置和上述第十方面所述的装置。可选的,该通信系统还可以包括第十一方面所述的装置。
附图说明
图1为本申请实施例可以应用的通信系统的示例图;
图2为本申请实施例提供的终端设备与网络设备下行同步及从网络设备获取系统信息流程示例图;
图3为本申请实施例提供的通信方法的交互示例图;
图4A至图4D为本申请实施例提供的物理侧链路共享信道的时域资源位置示例图。
图5A至图5B为本申请实施例提供的侧链路同步信号和侧链路控制信道的资源位置的相对关系示例图;
图6为本申请实施例提供的一种旁链路同步信号的资源位置的示例图;
图7为本申请实施例提供的一种通信装置的结构示例图;
图8为本申请实施例提供的另一种通信装置的示例图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long termevolution,LTE)系统、第五代(5th generation,5G)移动通信系统、无线保真(wireless-fidelity,WiFi)系统、多种通信系统融合的系统、未来演进的通信系统、或者其他可用于提供通信服务的网络系统,本申请实施例不做限定。其中,5G通信系统还可以称为新无线(new radio,NR)系统。示例性地,本申请实施例提供的技术方案可以应用在设备到设备(device-to-device,D2D)、机器类型通信(machine type communication,MTC)、车辆外联(vehicle to everything,V2X)、车辆到车辆(vehicle to vehicle,V2V)、物联网(internet of things,IoT)、大规模机器通信(massive machine-type communications,mMTC)等通信场景。
在通信场景中,终端设备(terminal equipment,TE)逐渐呈现大数量、多形态等特征。在多形态终端设备中,部分终端设备对功耗不敏感,比如有稳定电源的机器、监控设备、汽车,和电池容量较大的手机等;也有部分终端设备因不易充电或追求用户体验,对功耗较为敏感,有低功耗的需求,如sensor、穿戴设备等。本申请实施例提供的技术方案旨在降低终端设备的功耗,其既可以用于对功耗不敏感的终端设备,例如以追求用户体验;又可以用于对功耗敏感的终端设备,例如以满足终端设备的低功耗需求。
图1给出了本申请实施例提供的技术方案可以应用的一种通信系统的示例图。该通信系统包括至少一个网络设备(图中示出了网络设备100),以及与网络设备通信的一个或多个终端设备(图中示出了终端设备110、终端设备111、终端设备112和终端设备113)。图1中所示终端设备110可以与网络设备100通信;所示终端设备111、终端设备112和终端设备113可以通过终端设备110与网络设备100通信。网络设备和终端设备也可以被称为通信设备。图1中终端设备和网络设备的数量仅为示例,本申请实施例并不限定。
在本申请实施例中,用于协作其他终端设备与网络设备进行通信的终端设备可以称为协作终端设备(也可以称为第一终端设备、源终端设备、中继终端设备或协作用户设备(cooperation user equipment,CUE)等),例如图1中的终端设备110可以是CUE;可以借助CUE与网络设备进行通信的终端设备可以称为目标终端设备(也可以被称为第二终端设备、目标用户设备(target user equipment,TUE)等),例如图1中的终端设备111、终端设备112和终端设备113可以是TUE。例如,CUE和TUE之间的通信可以采用设备到设备(device to device,D2D)通信的方式。D2D通信可以包括:用户数据可以不经过网络设备中转而直接在终端设备之间传输。再例如,CUE和TUE可以采用侧链路(sidelink,SL)进行通信。其中,侧链路为终端设备之间的链路,侧链路还可以被称为边链路、旁链路、D2D链路、或 V2X链路等。
本申请实施例中,所示终端设备111、终端设备112和终端设备113可以通过终端设备110与网络设备100通信,可以理解为:终端设备110向终端设备111、终端设备112和终端设备113转发网络设备100的全部或部分信息。其中,转发时使用的发送方式包括:单播、组播或广播。
本申请实施例中,终端设备之间(例如CUE和TUE之间)采用侧链路进行通信可以根据通信模式区分为:单播、组播和广播。单播为终端设备之间一对一的通信模式,能够接收单播数据的终端设备是单一的终端设备。组播为终端设备之间一对多的通信模式,能够接收组播数据的终端设备是特定组内的终端设备。广播为终端设备之间一对所有的通信模式,发送端周围特定区域的终端设备都能够接收广播数据。
本申请实施例中,网络设备可以是一种具有无线收发功能的设备。包括但不限于:基站,节点B(NodeB),LTE中的演进型基站(evolved Node B,eNB或e-NodeB),NR中的基站(如下一代基站(next generation Node B,gNodeB或gNB)、或收发点(transmission receiving point/transmission reception point,TRP)),第三代合作伙伴计划(3 rd generation partnership project,3GPP)后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站、微基站、微微基站、小站、中继站、或气球站等,本申请实施例不做限制。可选的,一个基站中可以包含一个TRP,或者一个基站中可以包括多个共站或非共站的TRP。网络设备也可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是服务器,可穿戴设备,或车载设备等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例描述本申请实施例提供的技术方案。
本申请实施例中,终端设备可以是用户设备(user equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线终端设备、用户代理或用户装置。终端设备也可以是蜂窝电话、无绳电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、车载终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、可穿戴终端设备、5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。终端设备可以是固定的或者移动的。终端设备可以部署在陆地、水中或空中。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例描述本申请实施例提供的技术方案。
可选的,在本申请实施例中,网络设备可以直接与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个网络设备进行通信,例如,终端设备可以与支持LTE网络的LTE基站通信,也可以与支持5G网络的5G基站通信,还可以支持与LTE基站以及5G基站的双连接。其中,中继站可以是网络设备,也可以是另外的终端设备,本申请实施例不做限制。在本申请实施例中,多个可以是2个、3个、4个或者更多个,本申请实施例不做限制。
在无线通信网络中,一个网络设备可以管理一个或多个(例如3个,或6个等)小区,终端设备可以在其中一个或多个小区(例如2个,或3个等)中和该网络设备进行通信。终端设备要和网络设备进行通信时,可以与网络设备进行下行同步、从网络设备获取系统信息等,根据系统信息接入网络设备,从而使得该终端设备可以和网络设备进行上行和/或下行数据传输。终端设备从网络设备获取系统信息可以看做终端设备从网络设备获取终端设备所在的小区的系统信息。终端设备接入网络设备包括终端设备在小区中和网络设备建立链接。终端设备和网络设备进行数据传输可以看做终端设备在小区中和网络设备进行数据传输。
图2示例性的给出了终端设备与网络设备进行下行同步以及从网络设备获取系统信息的流程示例图,包括但不限于:
操作201:终端设备从网络设备检测同步信号和广播信息。
示例性地,网络设备向终端设备发送同步信号块(synchronized signal block,SSB)。SSB中包括主同步信号(primary synchronized signal,PSS)、辅同步信号(secondary synchronized signal,SSS)和物理广播信道(physical broadcast channel,PBCH)。其中,同步信号用于终端设备和网络设备进行下行同步,其可以是一个信号,也可以是分离的多个信号(如分离为PSS和SSS),本申请实施例不做限制。PSS、SSS和PBCH可以以SSB的形式组合发送,也可以以分离的形式发送,本申请实施例不做限制。
终端设备可以根据同步信号与网络设备进行下行同步。可选的,还可以获得终端设备所在的小区标识。
操作202:终端设备根据广播信息获取系统信息。
PBCH可以用于携带主系统信息(master information block,MIB)。MIB可以用于指示公共物理下行控制信道(physical downlink control channel,PDCCH)的资源配置信息。示例性地,公共PDCCH的资源配置信息包括公共PDCCH所在的搜索空间。公共PDCCH的循环冗余校验(cyclic redundancy check,CRC)可以是通过系统信息无线网络临时标识(system information radio network temporary identifier,SI-RNTI)加扰的。公共PDCCH所调度的PDSCH可以用于携带系统信息。
在本申请实施例中,PDCCH上携带的信息可以称为下行控制信息(downlink control information,DCI)。DCI可以用于指示PDSCH的传输参数,PDSCH的传输参数包括以下一种或多种:资源配置信息(如时域资源和/或频域资源的配置信息)、传输块大小(transport block size,TBS)、调制和编码方案(modulation and coding scheme,MCS)、和冗余版本(redundancy version,RV)等。
终端设备可以通过PBCH接收MIB,通过MIB得到公共PDCCH的资源配置信息,例如得到公共PDCCH的搜索空间。终端设备在该搜索空间中检测公共PDCCH,从而可以得到公共PDCCH所调度的PDSCH的传输参数。终端设备根据PDSCH的传输参数接收PDSCH,从而可以通过PDSCH接收系统信息。
在操作201中,终端设备检测同步信号时,需要在同步信号可能的候选资源位置上、从同步信号可能的序列值中尝试检索,该过程可以称为同步信号的盲检。其中,同步信号可能的序列值包括一个或多个序列值。该盲检过程是持续接收信号、多次解调尝试的过程,因此能耗较高。因此,终端设备如何在获取系统信息的过程中降低能耗开销,成为亟需解决的问题。
本申请实施例提供的技术方案中,通过终端设备协作,由CUE向TUE发送网络设备管理的小区的系统信息,以降低TUE在获取该系统信息的过程中的能耗。
下面结合附图,对本申请实施例的技术方案进行详细说明。
在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,为了便于描述本申请实施例的技术方案,在本申请的实施例中,可以采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例中,网络设备和终端设备之间的传输可以是双向的,例如可以包括网络设备向终端设备发送数据,例如通过PDSCH发送下行数据);也可以包括终端设备向网络设备发送数据,例如通过PUSCH发送上行数据。该终端设备可以是CUE,也可以是TUE。
图3为本申请实施例提供的一种通信方法300的交互示例图。图3中以第一终端设备、第二终端设备和网络设备作为该交互示意的执行主体为例来示意该通信方法,但本申请实施例并不限制该交互示意的执行主体。例如,图3中的网络设备可以被替换为实现网络设备侧方法的装置、模块、芯片、芯片系统、或处理器等。图3中的第一终端设备可以被替换为实现第一终端设备侧方法的装置、模块、芯片、芯片系统、或处理器等。可以理解,图3仅以第一终端设备为例进行示意性说明,第一终端设备可以为CUE(例如手机),本申请实施例并不限定。图3中的第二终端设备可以被替换为实现第二终端设备侧方法的装置、模块、芯片、芯片系统、或处理器等。可以理解,图3仅以第二终端设备为例进行示意性说明,第二终端设备可以为TUE(例如可穿戴设备),本申请实施例并不限定。
如图3所示,方法300可以包括:
操作301:第一终端设备从网络设备接收系统信息,该系统信息是该网络设备管理的小区的系统信息。
该网络设备可以管理一个或多个(例如3个,或6个等)小区,第一终端设备从该网络设备接收的系统信息可以是该网络设备管理的一个或多个(例如2个或3个)小区的系统信息。第一终端设备从网络设备接收的系统信息可以是第一终端设备所在的一个或多个(例如2个或3个)小区的系统信息。
可选的,操作301中的网络设备也可以被替换为另外的终端设备。当该网络设备被替换为另外的终端设备时,第一终端设备从该另外的终端设备接收系统信息,该系统信 息可以是该另外的终端设备所在的小区A的系统信息。例如,该另外的终端设备从网络设备接收小区A的系统信息,该另外的终端设备将小区A的系统信息发送给第一终端设备。
网络设备管理的小区的系统信息可以包括以下信息中的一种或多种:网络设备的标识、小区标识、系统帧号、子载波间隔、公共信道配置参数(如以下参数中的一种或多种:上行初始BWP参数(例如以下参数中的一种或多种:子载波间隔、资源位置、和带宽等)、下行初始BWP参数(例如以下参数中的一种或多种:子载波间隔、资源位置、和带宽等)、公共的DCI搜索空间、寻呼(paging)搜索空间、随机接入前导的序列配置、接入前导的资源配置、增补上行链路配置和网络设备发送同步信号块的周期)。其中,子载波间隔可以是第二终端设备与网络设备在初始接入时的消息2和消息4个子载波间隔,和/或网络设备广播系统信息(system information,SI)时所使用的子载波间隔。
可选的,针对系统信息的介绍可以参考3GPP标准协议TS36.331或TS38.331,但本申请实施例并不限制于此。
操作302:第一终端设备向第二终端设备发送系统信息;相应的,第二终端设备接收该系统信息。第一终端设备可以以广播、组播或单播的方式向第二终端设备发送系统信息。
示例性地,第一终端设备从网络设备接收小区B的系统信息,第一终端设备将小区B的系统信息发送至第二终端设备。其中,小区B可以是一个小区,也可以是多个小区,本申请实施例不做限制。第一终端设备在发送该系统信息时,可以在小区B中,也可以不在小区B中,本申请实施例不做限制。例如,第一终端设备在发送该系统信息时不在小区B中,但是该第一终端设备曾经在小区B中接入过网络设备。第二终端设备在接收该系统信息时,可以在小区B中,也可以不在小区B中,本申请实施例不做限制。例如,第二终端设备在接收该系统信息时不在小区B中,但是该第二终端设备随后能够在小区B中接入网络设备。
可以对第一终端设备向第二终端设备发送系统信息有多种不同的理解,包括但不限于以下两种可能的方式。一种可能的方式中,第一终端设备向第二终端设备转发系统信息,例如第一终端设备向第二终端设备转发操作301中第一终端设备接收的系统信息。另一种可能的方式中,发送系统信息可以被理解为进行预处理后发送,例如第一终端设备对操作301中接收到的系统信息进行预处理之后,向第二终端设备发送预处理后的系统信息。上述预处理可以包括以下操作中的一种或多种:信息的重新组装、加扰、调制、减少内容(如减少信息域)、增加内容(如增加信息域)、提取内容(如提取信息域)、和物理资源映射。
第一终端设备向第二终端设备发送的系统信息可以用于指示以下参数中的一种或多种:网络设备的标识、小区标识、系统帧号、子载波间隔、公共信道配置参数(如以下参数中的一种或多种:上行初始BWP参数(例如以下参数中的一种或多种:子载波间隔、资源位置、和带宽等)、下行初始BWP参数(例如以下参数中的一种或多种:子载波间隔、资源位置、和带宽等)、公共的DCI搜索空间、寻呼(paging)搜索空间、随机接入前导的序列配置、接入前导的资源配置、增补上行链路配置和网络设备发送同步信号块的周期)。其中,子载波间隔可以是第二终端设备与网络设备在初始接入时的消息2和消息4个子载波间隔,和/或网络设备广播系统信息(system information,SI)时所使用的子载波间隔。
本申请实施例中,第一终端设备对向第二终端设备发送的系统信息进行预处理的一种可能的实施方式中,第一终端设备发送的系统信息可仅建立一级机制。例如,第一终端设备把网络设备的系统信息中的主系统信息块(master information block,MIB)和系统信息块1(system information block 1,SIB1)组成一条信息发送至第二终端设备,本申请实施例并不限定。
一种可能的方式中,操作302中的系统信息承载在侧链路数据信道上。第一终端设备向第二终端设备发送系统信息包括:第一终端设备通过侧链路数据信道向第二终端设备发送系统信息。
侧链路数据信道包括用来承载终端与终端间数据信息的信道。侧链路数据信道例如可以是物理旁链路共享信道(physical sidelink shared channel,PSSCH),也可以是物理旁链路发现信道(physical sidelink discovery channel,PSDCH)。侧链路数据信道也可以称为边链路数据信道、旁链路数据信道,D2D链路数据信道或其它名称,本申请实施例并不限制。
一种可能的方式中,操作302中的系统信息承载在侧链路广播信道上。第一终端设备向第二终端设备发送系统信息包括:第一终端设备通过侧链路广播信道向第二终端设备发送系统信息。
侧链路广播信道包括承载终端与终端间广播信息和/或侧链路系统信息的信道。侧链路广播信道例如可以是物理侧链路广播信道(physical sidelink broadcast channel,PSBCH)。侧链路广播信道也可以称为边链路广播信道、旁链路广播信道,D2D链路广播信道或其它名称,本申请实施例并不限制。
一种可能的方式中,操作302中的系统信息承载在侧链路控制信道上。第一终端设备向第二终端设备发送系统信息包括:第一终端设备通过侧链路控制信道向第二终端设备发送系统信息。
侧链路控制信道包括用来承载终端设备与终端设备间控制信息的信道。侧链路控制信道例如可以是物理侧链路控制信道(physical sidelink control channel,PSCCH)。侧链路控制信道也可以称为边链路控制信道、旁链路控制信道,D2D链路控制信道或其它名称,本申请实施例并不限制。
操作303:第二终端设备根据操作302中从第一终端设备接收的系统信息,与操作301中的网络设备进行通信。
示例性地,第二终端设备与网络设备进行通信可以包括第二终端设备从该系统信息中获取小区的接入资源配置(例如以下配置中的一种或多种:初始上下行BWP、随机接入前导的序列配置、接入前导的资源等配置),在该小区中与网络设备进行随机接入等过程,接入后和网络设备进行上行或下行数据传输。例如,第二终端设备通过物理下行共享信道(physical downlink shared channel,PDSCH)从网络设备接收下行数据,和/或第二终端设备通过物理上行共享信道(physical uplink shared channel,PUSCH)向网络设备发送上行数据。
示例性地,第二终端设备与网络设备进行通信可以包括第二终端设备从该系统信息中获取公共信道配置参数,用于接收网络设备发送的寻呼消息。该通信也可以包括第二终端设备与网络设备之间的其它通信过程,本申请不做限制。
本申请实施例,对于第二终端设备与网络设备通信,也可以理解为第二终端设备与网络设备进行直接通信,该直接通信可以理解为第二终端设备与网络设备进行通信时不需要借助于其他网元设备,如第一终端设备。
本申请实施例,对于第二终端设备与网络设备通信,也可以理解为第二终端设备通过该第二终端设备与网络设备之间的上行信道和/或下行信道与网络设备进行通信。例如,第二终端设备通过PDSCH从网络设备接收下行数据,和/或第二终端设备通过PUSCH向网络设备发送上行数据。
通过上述方法300,第一终端和第二终端之间通过终端设备协作,由第一终端设备向第二终端设备发送网络设备管理的小区的系统信息,降低第二终端在获取该系统信息的过程中的能耗。
下面,将详细介绍第一终端设备向第二终端设备发送系统信息的方法。
系统信息传输方式1:系统信息是承载在侧链路数据信道上的。
以侧链路数据信道是PSSCH为例,第二终端设备确定PSSCH的传输参数,根据PSSCH的传输参数接收PSSCH,从而可以通过PSSCH接收系统信息。
可选的,PSSCH的传输参数可以包括以下参数中的一种或多种:时域资源位置、频域资源位置、频域偏移、解调参考信号的信息(如解调参考信号的位置、符号个数等)、TBS、MCS、RV、跳频指示(frequency hopping flag)和传输功率控制(transmit power control,TPC)命令(command)等。可选的,关于PSSCH的传输参数的介绍可以参考3GPP标准协议TS38.212和TS38.331中关于PSSCH的传输参数的介绍,或者可以参考3GPP标准协议TS36.212和TS36.331中关于PSSCH的传输参数的介绍,或者可以参考3GPP标准协议TS38.212和/或TS36.212中关于PDSCH或PUSCH的传输参数的介绍,或者可以参考将来5G标准协议中关于PDSCH、PUSCH、PSSCH的传输参数的介绍,但本申请实施例并不限制于此。在本申请实施例中,信道(例如PDCCH、PDSCH、PUSCH、PSSCH、PSCCH等)的传输参数用于接收该信道,其还可以称为该信道的调度信息或其它名称,本申请实施例不做限制。
示例性地,PSSCH的频域资源位置可以用于指示以下参数中的一种或多种:PSSCH的频域位置相对于另一信道(例如PSCCH,PSBCH,或侧链路同步信号)的频域位置的偏移(例如PSSCH的起始子载波相对PSCCH的起始子载波的偏移,PSSCH的起始资源块(resource block,RB)相对PSCCH的起始RB的偏移)、PSSCH的起始频域位置(如起始子载波、和/或起始RB等)、PSSCH的结束频域位置(如结束子载波、和/或结束RB等)、PSSCH的长度(如所在的子载波个数、和/或所在的RB个数)等。
示例性地,PSSCH的时域资源位置可以用于指示以下参数中的一种或多种:PSSCH的时域位置相对于另一信道(例如PSCCH,PSBCH,或侧链路同步信号)的时域位置的偏移(例如PSSCH的起始时隙相对PSCCH的起始时隙的偏移、PSSCH的起始符号相对PSCCH的起始符号的偏移等)、PSSCH的起始时域位置(如起始符号索引、和/或起始时隙索引等)、PSSCH的结束时域位置(如结束符号索引、和/或结束时隙索引等)、和PSCCH的时域长度(例如所在的符号个数、和/或所在的时隙个数)等。
示例性的,第二终端设备可以根据以下三种可能的传输参数确定方法中任一种可能的方法确定PSSCH的传输参数。
在第一种可能的传输参数确定方法中,PSSCH的传输参数可以是预定义的。PSSCH的传输参数是预定义的,可以包括PSSCH的传输参数是协议预先定义的、固定的、或者是预先存储的。
在第二种可能的传输参数确定方法中,第一终端设备向第二终端设备指示PSSCH的传输参数。相应的,第二终端设备接收该PSSCH的传输参数。例如,第一终端设备向第二终端设 备指示PSSCH的时频资源位置、TBS、MCS、跳频指示和TPC。
在第三种可能的传输参数确定方法中,PSSCH的部分传输参数是预定义的,部分传输参数是由第一终端设备指示的。例如,PSSCH的时域资源位置是预定义的,MCS、TBS、频域资源位置、跳频指示和TPC是由第一终端设备指示的。再例如,PSSCH的MCS是预定义的,TBS、时频资源位置、跳频指示和TPC是由第一终端设备指示的。再例如,PSSCH的TBS是预定义的,MCS、时频资源位置、跳频指示和TPC是由第一终端设备指示的。本申请实施例并不限于这三种方式,还可以有其它的组合方式。
可选的,第一终端设备可以通过以下指示方式一和指示方式二中的任一种方式指示PSSCH的传输参数。该方法可以适用于上述第二种可能的设计和第三种可能的设计。
指示方式一:向第二终端设备指示一个或多个信息域,该一个或多个信息域中的一个信息域用于指示PSSCH的一种或多种传输参数。
指示方式二:从候选传输参数值集合中为第二终端设备指示一个传输参数值集合,例如指示该一个传输参数值集合的索引。该候选传输参数值集合中包括一个或多个传输参数值集合,其中一个传输参数值集合对应一个索引。一个传输参数值集合对应于一组PSSCH传输参数的一种值。示例性地,如表1所示,候选传输参数值集合中包括3个传输参数值集合:传输参数值集合1、传输参数值集合2和传输参数值集合3,索引分别为0、1和2。如果第一终端设备向第二终端设备指示的索引为1,则PSSCH的传输参数中:TBS的值为TBS 2,MCS的值为MCS 2,时频资源的值为时频资源2。
表1
  索引 TBS MCS 时频资源
传输参数值集合1 0 TBS 1 MCS 1 时频资源1
传输参数值集合2 1 TBS 2 MCS 2 时频资源2
传输参数值集合3 2 TBS 3 MCS 3 时频资源3
当第一终端设备向第二终端设备指示PSSCH的传输参数时,第一终端设备可以通过方式A1、方式A2和方式A3中的任一种方式,向第二终端设备发送PSSCH的传输参数。
方式A1:第一终端设备通过侧链路控制信道(例如PSCCH)向第二终端设备指示PSSCH的传输参数。
相应的,第二终端设备通过侧链路控制信道(例如PSCCH)从第一终端设备接收PSSCH的传输参数。第二终端设备根据PSSCH的传输参数接收PSSCH,从而可以通过PSSCH接收系统信息。
第二终端设备确定PSCCH的传输参数,根据PSCCH的传输参数接收PSCCH。
可选的,该PSCCH的传输参数可以包括以下参数中的一种或多种:PSCCH所映射至的资源位置(包括时域资源位置和/或频域资源位置)、PSCCH的TBS、PSCCH的MCS、跳频指示(frequency hopping flag)和TPC。
示例性的,第二终端设备确定PSCCH的传输参数的实施方法与上述描述的三种可能的传输参数确定方法(第一种可能的传输参数确定方法至第三种可能的传输参数确定方法)类似,区别在于可以将上述三种可能的传输参数确定方法中的PSSCH替换为PSCCH。
当第一终端设备向第二终端设备指示PSCCH的传输参数时,第一终端设备可以通过方式B1和方式B2中的任一种方式,向第二终端设备指示PSCCH的传输参数。
方式B1:第一终端设备通过侧链路广播信道(例如PSBCH)向第二终端设备指示PSCCH的传输参数。
示例性的,第二终端设备通过侧链路广播信道(例如PSBCH)从第一终端设备接收侧链路控制信道(例如PSCCH)的资源位置,该资源位置可以包括时域,和/或频域的资源位置。可选的,PSCCH的TBS、MCS、跳频指示和TPC中的至少一项可以是预定义的,也可以是通过PSBCH指示的。在本申请实施例中,至少一项可以是一项、2项或者更多项,本申请实施例不做限制。
方式B2:第一终端设备通过侧链路同步信号(sidelink synchronized signal,SL-SS)向第二终端设备指示PSCCH的传输参数。
示例性的,第二终端设备通过侧链路同步信号从第一终端设备接收侧链路控制信道(例如PSCCH)的资源位置。该资源位置可以包括时域,和/或频域的资源位置。可选的,PSCCH的TBS、MCS、跳频指示和TPC中的至少一项可以是预定义的,也可以是通过PSBCH指示的。
当同步信号用于向第二终端设备指示PSCCH的资源位置时,第一终端设备可以通过方式C1、方式C2和方式C3中的任一种方式,向第二终端设备指示PSCCH的资源位置。
本申请实施例中,SL-SS用于第一终端设备和第二终端设备进行旁链路同步,其可以是一个信号,也可以是分离的多个信号(如分离为旁链路主同步信号(sidelink primary synchronization signal,SL-PSS)和旁链路辅同步信号(sidelink secondary synchronization signal,SL-SSS)),本申请实施例不做限制。可选地,侧链路同步信号块(sidelink synchronization signal block,SL-SSB)中可以包括SL-PSS、SL-SSS和第一信道,其中,第一信道可以用于承载PSSCH的传输参数。可选地,第一信道可以是PSBCH,或者可以是其它信道。本申请实施例中以第一信道为PSBCH为例进行描述。
示例性的,SL-PSS、SL-SSS和PSBCH可以以SL-SSB的形式组合发送,也可以以分离的形式发送,本申请实施例不做限制。SL-SSB中,SL-PSS、SL-SSS和PSBCH中任意二者的频域资源位置可以相同,也可以不同;SL-PSS、SL-SSS和PSBCH中任意二者的时域资源位置可以连续(例如被映射至连续的符号),也可以离散,本申请实施例不做限制。例如,如图5B所示的SL-SSB,PSBCH在SL-PSS之后的一个符号中,PSBCH在SL-SSS之前的一个符号中。
方式C1:SL-SS用于指示PSCCH时域资源位置。
可选的,PSCCH频域资源位置可以是预定义的,或者,PSCCH频域资源位置是PSBCH指示的。
示例性的,侧链路同步信号和侧链路控制信道的相对时域资源位置是固定的。例如,第一终端设备在时间单元n上向第二终端设备发送SL-SS,则在时间单元n+k上向第二终端设备发送PSCCH。其中,n为大于等于0的整数,k为整数(例如,k可以为-2,-1,0,1,2,本申请实施例并不限制),k可以是预定义的。在本申请实施例中,时间单元可以是以下时间单元的任意一种:秒、毫秒、帧、子帧、传输时间间隔(tranmission time interval,TTI)、时隙和符号。
可选的,侧链路同步信号和侧链路控制信道的时域符号位置的相对关系是固定的。可选的,侧链路同步信号和侧链路控制信道被映射至相同的时隙或者相同的TTI。
示例性地,如图5A所示,在一个时隙的14个符号中,第3、9个符号承载SL-PSS,第5、11个符号承载旁链路辅同步信号SL-SSS,第4、6个符号承载一个PSCCH,第10、12个符号承载一个PSCCH。第二终端设备从第一终端设备接收到SL-SS后,可以根据SL-SS 的资源位置确定PSCCH的时域资源位置。可以理解的是,该PSCCH与同步信号的时域资源位置仅为示例,本申请实施例不做限制。
示例性地,如图5B所示,PSCCH的时域资源起始位置在SL-PSS时域资源位置之后的第四个符号中。
方式C2:SL-SS用于指示PSCCH频域资源位置。
可选的,PSCCH时域资源位置可以是预定义的,或者,PSCCH时域资源位置是PSBCH指示的。
示例性的,侧链路同步信号和侧链路控制信道的相对频域资源位置是固定的。例如,第一终端设备在频域单元m上向第二终端设备发送SL-SS,则在频域单元m+j上向第二终端设备发送PSCCH。其中,m为大于等于0的整数,j为整数(例如,j可以为-2,-1,0,1,2,本申请实施例并不限制),j可以是预定义的。在本申请实施例中,频域单元可以是以下频域单元的一种或多种:子载波、资源块(resource block,RB)、资源元素(resource element,RE)、和赫兹等。
可选的,侧链路同步信号和侧链路控制信道的RB位置的相对关系是固定的。
示例性地,如图5A所示,SL-SS和PSCCH位于相同的频域位置。
示例性地,如图5B所示,PSCCH的频域资源位置是SL-SS的频域位置沿频域正向偏移20个RB后的位置。本申请实施中的频域正向可以理解为频率增大的方向。
方式C3:SL-SS用于指示PSCCH时域和频域资源位置。
示例性的,侧链路同步信号和侧链路控制信道的相对资源位置是固定的。例如,第一终端设备在时间单元n1和频域单元m1上向第二终端设备发送SL-SS,则在时间单元n1+k1和频域单元m1+j1上向第二终端设备发送PSCCH。其中,n1和m1为大于等于0的整数,k1和j1为整数(例如,k1和j1可以为-2,-1,0,1,2,本申请实施例并不限制),k1和j1可以是预定义的。其中n1和m1的值可以相同,也可以不同;k1和j1的值可以相同,也可以不同,本申请实施例不做限制。
侧链路同步信号和侧链路控制信道的相对资源位置可以如图5A和图5B所示,具体描述可以参考上述方式C1和方式C2,此处不再赘述。
可选的,可以将上述第一终端设备通过侧链路SL-SS向第二终端设备指示PSCCH的传输参数的方法中的SL-SS替换为SL-SSB,以得到第一终端设备通过侧链路SL-SSB向第二终端设备指示PSCCH的传输参数的方法;可以将上述第一终端设备通过侧链路SL-SS向第二终端设备指示PSCCH的传输参数的方法中的SL-SS替换为SL-PSS,以得到第一终端设备通过侧链路SL-PSS向第二终端设备指示PSCCH的传输参数的方法;可以将上述第一终端设备通过侧链路SL-SS向第二终端设备指示PSCCH的传输参数的方法中的SL-SS替换为SL-SSS,以得到第一终端设备通过侧链路SL-SSS向第二终端设备指示PSCCH的传输参数的方法。
方式A2:第一终端设备通过侧链路广播信道(例如PSBCH)向第二终端设备指示PSSCH的传输参数。
相应的,第二终端设备通过侧链路广播信道接收侧链路数据信道的传输参数,也就是说,侧链路数据信道的传输参数承载在侧链路广播信道上。第二终端设备根据PSSCH的传输参数接收PSSCH,从而可以通过PSSCH接收系统信息。
可选的,PSBCH可以通过PSBCH中携带的信息域指示PSSCH的资源位置。
可选的,第一终端设备通过PSBCH向第二终端设备指示PSSCH的资源位置的方法类似 上述B2描述的第一终端设备通过SL-SS向第二终端设备指示PSCCH的资源位置的方法,可以将上述B2中的PSCCH替换为PSSCH,将SL-SS替换为PSBCH。
方法A3:第一终端设备通过SL-SS向第二终端设备指示PSSCH的传输参数。
示例性的,第二终端设备通过SL-SS从第一终端设备接收PSSCH的资源位置。该资源位置可以包括时域,和/或频域的资源位置,可选的,PSSCH的TBS、MCS和RV等传输参数中的至少一项可以是预定义的,也可以是通过PSBCH指示的。
其中,第一终端设备通过SL-SS向第二终端设备指示PSSCH的资源位置的方法类似上述B2描述的第一终端设备通过SL-SS向第二终端设备指示PSCCH的资源位置的方法,需要将上述B2中的PSCCH替换为PSSCH。
在本申请实施例中,PSCCH承载的信息可以称为侧链路控制信息(sidelink control information,SCI)。
本申请实施例中,第二终端设备可以通过多种不同的方式从第一终端设备接收系统信息块。在本申请实施例中,系统信息块可以定义为第一终端设备所发送的完整的系统信息,系统信息块可由多个系统信息子块组合而成。本申请实施例以12个系统信息子块组成一个系统信息块示例性的说明,本申请实施例并不限定,例如可以是其它正整数个(例如1个、2个、4个、6个等)系统信息子块组成一个系统信息块。
图4A和图4B所示为PSSCH的时域资源位置示例图。
图4A和4B中,标号为1至12的方框表示第一终端设备向第二终端设备发送的系统信息块,该系统信息块中包括12个系统信息子块。该12个系统信息子块可以通过一个或多个PSSCH携带,本申请实施例不做限制。
在一种可能的设计中,如图4A所示,PSCCH指示PSSCH的时域资源位置,该PSSCH携带系统信息块。一组PSCCH包括正整数个(如,四个)PSCCH,该组PSCCH可以对应至相同的系统信息块,该系统信息块的时域位置在该组PSCCH之后。则,第二终端设备接收到该组PSCCH中的一个后,便可以根据PSCCH所指示的PSSCH的传输参数接收该PSSCH,从而获得PSSCH所携带的系统信息块。本申请实施例并不限制于图4A所示的示例,例如,在实际应用中,可以是其它个数的PSCCH用于指示一个PSSCH,例如1个、2个或其它正整数个;不同系统信息块所对应的PSCCH的个数可以相同,也可以不同,本申请实施例不做限制。如图4C所示,该方法中的PSCCH还可以被替换为SL-SS,SL-PSS,SL-SSS或PSBCH。
通过图4A所示的设计,多个PSCCH对应一个系统信息块,可以减少旁链路资源开销。
在一种可能的设计中,如图4B所示,系统信息块中的12个子块依次排列在正整数个(例如1个、2个、3个、4个、6个、12个)时间单元上,并在时域上以一定的pattern(图样)发送,例如周期性地连续重复发送。PSCCH指示PSSCH的起始位置,例如指示PSSCH的时域起始位置相对PSCCH的时域位置的偏移,第二终端设备接收到该PSCCH后,可以确定PSSCH的起始位置,并在连续的正整数个时间资源上接收PSSCH,从而获得PSSCH所携带的系统信息块。其中,时间单元可以是秒、毫秒、帧、子帧、TTI、时隙和符号等,本申请实施例不做限制。例如,图4B中,系统信息块中的12个子块依次排列在12个符号上,PSCCH所指示的PSSCH的起始位置对应4号系统信息子块时,第二终端设备可以依次接收4、5、6、7、8、9、10、11、12、1、2、3号系统信息子块, 从而获得完整的系统信息块。该方法中,系统信息块中的12个子块所在的时间单元的个数可以是预定义的,也可以是由第一终端设备发送至第二终端设备的,例如通过PSCCH或PSBCH发送的,本申请实施例不做限制。系统信息块中的12个子块在时域的pattern可以是预定义的,也可以是由第一终端设备发送至第二终端设备的,例如通过PSCCH或PSBCH发送的,本申请实施例不做限制。如图4D所示,该方法中的PSCCH还可以被替换为SL-SS,SL-PSS,SL-SSS或PSBCH。
通过图4B所示的设计,系统信息块在时域以一定的pattern(图样)发送,可以减少第一终端设备的旁链路控制信令开销。
系统信息传输方式2:系统信息是承载在侧链路控制信道上的。
第二终端设备确定侧链路控制信道(PSCCH)的传输参数,根据PSCCH的传输参数接收PSCCH,从而可以通过PSCCH接收系统信息。
可选的,第二终端设备确定PSCCH的传输参数的实施方法类似上述方式A1中描述的确定PSCCH的传输参数的方法。
系统信息传输方式3:系统信息是承载在侧链路广播信道上的。
第二终端设备确定PSBCH的传输参数,根据PSBCH的传输参数接收PSBCH,从而可以通过PSBCH接收系统信息。可选的,PSBCH的传输参数是预定义的。
在本申请实施例中,为了降低功耗,第一终端设备可以以较短时域周期向第二终端设备发送SL-SS,图6为本申请实施例提供的一种旁链路同步信号的资源位置的示例图。其中,SL-SS的时域周期小于或等于从网络设备发送至终端设备的同步信号的时域周期。
可选的,SL-SS的频域资源位置可以比网络设备发送至终端设备的同步信号的频域资源位置密集。例如,相邻SL-SS的频域位置之间的距离(SL-Raster,侧链路-栅格)小于或等于从网络设备发送至终端设备的相邻同步信号的频域位置之间的距离(raster,栅格)。例如,频域可以包括更多的SL-SS。
可选的,针对各带宽或带宽部分可以配置独立的SL-SS子载波间隔,不同带宽或带宽部分对应的SL-SS子载波间隔可以相同,也可以不同,本申请实施例不做限制。
可选的,针对各频段可以配置独立的SL-SS频域间隔(栅格),不同频段对应的SL-SS频域间隔(栅格)可以相同,也可以不同,本申请实施例不做限制。
可选的,针对各频段可以配置独立的SL-SS时域周期,不同频段对应的SL-SS时域可以相同,也可以不同,本申请实施例不做限制。
本申请实施例中,上述介绍的系统信息传输的三种方式可以结合使用,也就是说,系统信息传输的方式可以是上述三种方式中的一种或多种(单种方式,两种方式的组合,三种方式的组合),例如,系统信息承载在侧链路数据信道上。又例如,系统信息部分承载在侧链路数据信道上,部分承载在侧链路控制信道上。又例如,系统信息部分承载在侧链路数据信道上,部分承载在侧链路控制信道上,部分承载在侧链路广播信道上。
在本申请实施例中,终端设备有多种可能的实现方式确定终端的类型(该终端设备是第一终端设备,或者,是第二终端设备)。一种可能的方式中,可以在用户身份模块(subscriber indentity modle,SIM)卡中预先配置终端设备的类型,例如在SIM卡中配置终端设备为第一终端设备或第二终端设备。一种可能的方式中,为终端设备配置不同的号码段,例如,第一终端设备和第二终端设备使用的号码段不同,终端设备根据号码段确定该终端设备的类型。一种可能的方式中,终端设备可以确定自己作为第一终端设备或第二终端设备。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,包括用于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
以下,结合图7至图8详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
图7示出了本申请实施例的一种通信装置700,该通信装置700可以是上述实施例中提到的终端设备或者是支持终端设备实现上述方法的装置,或者该通信装置700可以是上述实施例中提到的网络设备或者是支持网络设备实现上述方法的装置。该通信装置700包括至少一个处理单元730、接收单元710和发送单元720。
需要说明的是,本申请实施例中的处理单元可以称为处理模块,接收单元也可以称为接收模块,发送单元也可以称为发送模块。接收单元和发送单元也可以一起称为或者一起集成为收发单元。
一种可能的设计中,该通信装置700可以对应实现上述方法中的第一终端设备的相应操作,该通信装置700可以包括用于执行上述方法中第一终端设备执行的方法的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现上述方法的相应流程。
示例性地,该通信装置700包括:接收单元710,用于从网络设备接收系统信息,该系统信息是该网络设备管理的小区的系统信息;发送单元720,用于向第二终端设备发送系统信息。该通信装置700还可以包括处理单元730,用于对所接收到的信息进行处理,和/或用于生成要发送的信息。
一种可能的设计中,该通信装置700可以对应实现上述方法中的第二终端设备的相应操作,该通信装置700可以包括用于执行上述方法中第二终端设备执行的方法的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现上述方法的相应流程。
示例性地,该通信装置700包括:接收单元710,用于从第一终端设备接收系统信息,该系统信息是网络设备管理的小区的系统信息;处理单元730,用于根据系统信息与网络设备进行通信。
一种可能的设计中,该通信装置700可以对应实现上述方法中的网络设备的相应操作,该通信装置700可以包括用于执行上述方法中网络设备执行的方法的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现上述方法的相应流程。
示例性地,该通信装置700包括:发送单元720,用于向第一终端设备发送系统信息,该系统信息是网络设备管理的小区的系统信息。可选的,包括处理单元730和接收单元710用于和第二终端设备进行通信。
可选的,对应于上述各个可能的设计,通信装置700还可以包括存储单元740。该存储单元740可以用于存储计算机执行指令和/或数据等其他信息。处理单元730可以读取存储单元740中存储的指令或者数据,实现对应的方案。
一种可能的设计中,处理单元730可以是处理器,例如图8所示的处理器801。发送单元720和接收单元710还可以是收发装置,例如图8所示的收发装置803,或者,发送单元720和接收单元710还可以是通信接口、电路或其他能够实现收发功能的装置。存储单元740可以是存储器,例如图8所示的存储器802。
基于相同的技术构思,本申请实施例还提供了一种通信装置,用于实现上述方法实施例中网络设备、第一终端设备或第二终端设备所执行的功能。附图8示出了本申请实施例一种可能的通信装置800的示意性框图。该通信装置包括至少一个处理器801,存储器802,可选 的包含收发装置803和系统总线804,总线804可以是PCI总线或EISA总线等,总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。该收发装置803用于通信装置800与其他通信设备(如无线接入网设备,或终端设备,此处不做限定)进行通信交互,比如交互控制信令和/或业务数据等,该收发装置803可通过具有通信收发功能的电路、通信接口等来实现。该存储器802用于存储所需的程序指令和/或数据。该至少一个处理器调用该存储器中存储的该程序指令执行时,使得该通信装置实现上述方法中的第一终端设备的功能,或者该至少一个处理器调用该存储器中存储的该程序指令执行时,使得该通信装置实现上述方法中的第二终端设备的功能,或者该至少一个处理器调用该存储器中存储的该程序指令执行时,使得该通信装置上述方法中的网络设备的功能。该至少一个处理器801,存储器802和收发装置803通过该系统总线804耦合。
在本申请实施例中,无逻辑矛盾时,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
本申请各个实施例中描述的处理器和收发装置可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。可选的,处理器可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。收发装置用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发装置可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号,该收发器也可以是通信接口。存储器包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器用于存储相关指令和/或数据。
本领域技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。本申请中的编号(也可被称为索引)的具体取值、数量的具体取值、以及位置仅作为示意的目的,并不是唯一的表示形式,也并不用来限制本申请实施例的范围。本申请中涉及的第一个、第二个等各种数字编号也仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种系统信息获取方法,其特征在于,包括:
    从第一终端设备接收系统信息,所述系统信息是网络设备管理的小区的系统信息;
    根据所述系统信息与所述网络设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述系统信息承载在侧链路数据信道上。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:通过侧链路广播信道或侧链路同步信号块接收所述侧链路数据信道的传输参数信息。
  4. 根据权利要求2所述的方法,其特征在于,所述侧链路数据信道的传输参数是预定义的。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:通过侧链路控制信道接收所述侧链路数据信道的传输参数信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法包括:
    从所述第一终端设备接收侧链路同步信号,所述侧链路同步信号和所述侧链路控制信道的相对资源位置是固定的,所述资源位置包括时域,和/或,频域的资源位置。
  7. 根据权利要求5所述的方法,其特征在于,通过侧链路广播信道接收所述侧链路控制信道的传输参数。
  8. 根据权利要求1所述的方法,其特征在于,所述系统信息承载在侧链路广播信道上。
  9. 根据权利要求1所述的方法,其特征在于,所述系统信息承载在侧链路控制信道上。
  10. 一种系统信息获取方法,其特征在于,包括:
    从网络设备接收系统信息,所述系统信息是所述网络设备管理的小区的系统信息;
    向第二终端设备发送所述系统信息,所述系统信息用于所述第二终端设备与所述网络设备进行通信。
  11. 根据权利要求10所述的方法,其特征在于,所述系统信息承载在侧链路数据信道上。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:通过侧链路广播信道或侧链路同步信号块发送所述侧链路数据信道的传输参数信息。
  13. 根据权利要求11所述的方法,其特征在于,所述侧链路数据信道的传输参数是预定义的。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:通过侧链路控制信道发送所述侧链路数据信道的传输参数信息。
  15. 根据权利要求14所述的方法,其特征在于,所述方法包括:
    向所述第二终端设备发送侧链路同步信号,所述侧链路同步信号和所述侧链路控制信道的相对资源位置是固定的,所述资源位置包括时域,和/或,频域的资源位置。
  16. 根据权利要求14所述的方法,其特征在于,通过侧链路广播信道发送所述侧链路控制信道的传输参数。
  17. 根据权利要求11所述的方法,其特征在于,所述系统信息承载在侧链路广播信道上。
  18. 根据权利要求11所述的方法,其特征在于,所述系统信息承载在侧链路控制信道上。
  19. 一种通信装置,其特征在于,所述装置用于执行权利要求1至9中任一项所述的方法。
  20. 一种通信装置,其特征在于,其特征在于,包括:处理器和存储器,所述处理器与 存储器耦合,所述处理器用于执行权利要求1至9中任一项所述的方法。
  21. 一种通信装置,包括:
    接收单元,用于从第一终端设备接收系统信息,所述系统信息是网络设备管理的小区的系统信息;
    处理单元,用于根据所述系统信息与所述网络设备进行通信。
  22. 一种通信装置,包括:处理器和通信接口;
    所述处理器利用所述通信接口,从第一终端设备接收系统信息,所述系统信息是网络设备管理的小区的系统信息;
    所述处理器还利用所述通信接口,根据所述系统信息与所述网络设备进行通信。
  23. 一种通信装置,其特征在于,所述装置用于执行权利要求10至18中任一项所述的方法。
  24. 一种通信装置,其特征在于,其特征在于,包括:处理器和存储器,所述处理器与存储器耦合,所述处理器用于执行权利要求10至18中任一项所述的方法。
  25. 一种通信装置,包括:
    接收单元,用于从网络设备接收系统信息,所述系统信息是所述网络设备管理的小区的系统信息;
    发送单元,用于向第二终端设备发送所述系统信息,所述系统信息用于所述第二终端设备与所述网络设备进行通信。
  26. 一种通信装置,包括:处理器和通信接口;
    所述处理器利用所述通信接口,从网络设备接收系统信息,所述系统信息是所述网络设备管理的小区的系统信息;
    所述处理器还利用所述通信接口,向第二终端设备发送所述系统信息,所述系统信息用于所述第二终端设备与所述网络设备进行通信。
  27. 一种计算机可读存储介质,其上存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至9任一项所述的方法或者执行如权利要求10至18中任一项所述的方法。
  28. 一种计算机程序产品,所述计算机程序产品中包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机实现权利要求1至9任一项所述的方法或者实现权利要求10至18中任一项所述的方法。
  29. 一种通信系统,其特征在于,包括权利要求19至22任一项所述的通信装置,和权利要求23至26任一项所述的通信装置。
PCT/CN2019/121656 2019-11-28 2019-11-28 系统信息获取方法及装置 WO2021102815A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980102538.4A CN114747293A (zh) 2019-11-28 2019-11-28 系统信息获取方法及装置
PCT/CN2019/121656 WO2021102815A1 (zh) 2019-11-28 2019-11-28 系统信息获取方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121656 WO2021102815A1 (zh) 2019-11-28 2019-11-28 系统信息获取方法及装置

Publications (1)

Publication Number Publication Date
WO2021102815A1 true WO2021102815A1 (zh) 2021-06-03

Family

ID=76129811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121656 WO2021102815A1 (zh) 2019-11-28 2019-11-28 系统信息获取方法及装置

Country Status (2)

Country Link
CN (1) CN114747293A (zh)
WO (1) WO2021102815A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208181A1 (zh) * 2022-04-28 2023-11-02 维沃移动通信有限公司 功率确定方法、终端及可读存储介质
WO2023207774A1 (zh) * 2022-04-29 2023-11-02 华为技术有限公司 一种通信方法及装置
WO2024041193A1 (zh) * 2022-08-26 2024-02-29 华为技术有限公司 一种通信方法及相关装置
WO2024131682A1 (zh) * 2022-12-21 2024-06-27 华为技术有限公司 解调信号的方法和装置,以及发送同步信号的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107432011A (zh) * 2015-03-31 2017-12-01 株式会社Ntt都科摩 用户装置以及控制信息发送方法
US20190028954A1 (en) * 2017-07-19 2019-01-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving a signal in a wireless communication system supporting a relay ue
CN109729566A (zh) * 2017-10-27 2019-05-07 华为技术有限公司 一种信息传输方法和设备
CN110475343A (zh) * 2018-05-10 2019-11-19 索尼公司 电子装置、无线通信方法和计算机可读介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764000B1 (ko) * 2015-02-24 2017-08-02 단국대학교 산학협력단 단말들 간의 직접 통신을 위한 시스템정보 전송방법 및 장치
BR112019013162A2 (pt) * 2016-12-27 2019-12-10 Huawei Tech Co Ltd método para transmitir informações de sistema e dispositivo de terminal
CN110100463A (zh) * 2016-12-30 2019-08-06 华为技术有限公司 传输系统信息的方法和终端设备
WO2018128503A1 (ko) * 2017-01-06 2018-07-12 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
EP3592103B1 (en) * 2017-03-24 2020-10-21 Huawei Technologies Co., Ltd. Method for transmitting system information
US11178636B2 (en) * 2017-03-24 2021-11-16 Huawei Technologies Co., Ltd. System information transmission method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107432011A (zh) * 2015-03-31 2017-12-01 株式会社Ntt都科摩 用户装置以及控制信息发送方法
US20190028954A1 (en) * 2017-07-19 2019-01-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving a signal in a wireless communication system supporting a relay ue
CN109729566A (zh) * 2017-10-27 2019-05-07 华为技术有限公司 一种信息传输方法和设备
CN110475343A (zh) * 2018-05-10 2019-11-19 索尼公司 电子装置、无线通信方法和计算机可读介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208181A1 (zh) * 2022-04-28 2023-11-02 维沃移动通信有限公司 功率确定方法、终端及可读存储介质
WO2023207774A1 (zh) * 2022-04-29 2023-11-02 华为技术有限公司 一种通信方法及装置
WO2024041193A1 (zh) * 2022-08-26 2024-02-29 华为技术有限公司 一种通信方法及相关装置
WO2024131682A1 (zh) * 2022-12-21 2024-06-27 华为技术有限公司 解调信号的方法和装置,以及发送同步信号的方法和装置

Also Published As

Publication number Publication date
CN114747293A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
WO2021102815A1 (zh) 系统信息获取方法及装置
WO2018126472A1 (zh) 信息搜索方法、信息发送方法、装置及系统
CN109600832B (zh) 寻呼消息的传输方法及装置
CN111726821B (zh) 一种通信方法及设备
CN111130732B (zh) 通信资源的配置方法、通信装置、通信设备及存储介质
CN103716776B (zh) 一种d2d的通信方法及用户设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2021030954A1 (zh) 传输模式确定方法及装置
WO2021017611A1 (zh) 数据传输方法和装置
WO2021102859A1 (zh) 同步信号块指示方法及通信装置
CN115103393B (zh) 物理信道监测方法和终端设备
WO2021068259A1 (zh) 联合调度的方法和装置
US20240179728A1 (en) Communication method and communication apparatus
WO2021160117A1 (zh) 配置信息获取方法及装置
CN116746244A (zh) 信息确定方法、信息传输方法、装置、设备及存储介质
EP4021102A1 (en) Method, apparatus and system for receiving and sending control information
WO2023019410A1 (zh) 一种传输下行控制信息dci的方法及其装置
WO2022067703A1 (zh) 一种通信方法及装置
WO2018188095A1 (zh) 一种通信方法及装置
WO2021159418A1 (zh) 一种确定侧链路时长的方法及其装置
CN114342541B (zh) 随机接入的方法和装置
CN113852577B (zh) 无线通信方法和通信装置
US20220329379A1 (en) Signal sending method, signal receiving method, and apparatus
RU2801978C1 (ru) Способ определения режима передачи и устройство

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953767

Country of ref document: EP

Kind code of ref document: A1