WO2021102859A1 - 同步信号块指示方法及通信装置 - Google Patents

同步信号块指示方法及通信装置 Download PDF

Info

Publication number
WO2021102859A1
WO2021102859A1 PCT/CN2019/121772 CN2019121772W WO2021102859A1 WO 2021102859 A1 WO2021102859 A1 WO 2021102859A1 CN 2019121772 W CN2019121772 W CN 2019121772W WO 2021102859 A1 WO2021102859 A1 WO 2021102859A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal block
indication information
side link
ssb
Prior art date
Application number
PCT/CN2019/121772
Other languages
English (en)
French (fr)
Inventor
张云昊
徐修强
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980102014.5A priority Critical patent/CN114642044A/zh
Priority to PCT/CN2019/121772 priority patent/WO2021102859A1/zh
Publication of WO2021102859A1 publication Critical patent/WO2021102859A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a synchronization signal block indication method and a communication device.
  • 5G mobile communication technology (or referred to as a new air interface (new radio, NR)) can support three types of communication, namely enhanced mobile broadband (enhanced mobile broadband, eMBB) communication, high reliability and low Ultra-reliable low-latency communication (URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC Ultra-reliable low-latency communication
  • mMTC massive machine type communications
  • mMTC can also be called the large-scale Internet of Things.
  • mMTC can be applied in scenarios such as homes, industries, and public places, which can include a large number of terminal devices of various forms.
  • a plant can include a large number of monitoring equipment (camera), machines, sensors, etc.; in daily work and life scenarios, it can include mobile phones, wearable devices, smart home appliances, and vehicle terminals Wait.
  • the embodiments of the present application provide a synchronization signal block indication method and a communication device, by which a terminal device can obtain a synchronization signal block with low power consumption, thereby reducing the power consumption speed of the terminal device.
  • the first aspect of the embodiments of the present application provides a synchronization signal block indication method, including:
  • the synchronization signal block is received from the network device.
  • the first terminal device is a power-insensitive terminal device
  • the method for executing the first aspect may be a power-sensitive second terminal device, or a component of the second terminal device (such as a processor, chip, Or chip system, etc.).
  • the resource location of the synchronization signal block is obtained by receiving the indication information from the first terminal device, and then the synchronization signal block is received from the network device according to the resource location of the synchronization signal block, without directly blindly checking the network device
  • the broadcast synchronization signal block can reduce the number of times that the second terminal device searches for the synchronization signal block, thereby obtaining the synchronization signal block with low power consumption, and can slow down the power consumption of the second terminal device.
  • the above-mentioned indication information is carried by a side link synchronization signal. That is, the resource location of the synchronization signal block is indicated by the side link synchronization signal, so that the second terminal device can learn the resource location of the synchronization signal block through the side link synchronization signal, so that the second terminal device can receive the synchronization signal block from the network device, Thereby, signaling overhead can be saved.
  • the foregoing indication information is carried by a side link synchronization signal, and may include: a pattern of the side link synchronization signal is used to indicate the resource location of the synchronization signal block.
  • the pattern of the side link synchronization signal is used to indicate the frequency domain position offset and/or the time domain position offset of the side link synchronization signal relative to the synchronization signal block.
  • the pattern of the side link synchronization signal is used to indicate the frequency domain position offset and/or the time domain position offset of the reference position relative to the synchronization signal block.
  • the reference position is a specific position in the side link synchronization signal.
  • the pattern of the side link synchronization signal includes the sequence value of the side link synchronization signal.
  • the resource location of the synchronization signal block is implicitly indicated through the pattern of the side link synchronization signal, so that the second terminal device can learn the resource location of the synchronization signal block when the pattern of the side link synchronization signal is known.
  • the second terminal device receives the synchronization signal block from the network device, so that signaling overhead can be saved.
  • the transmission period of the side link synchronization signal is less than the transmission period of the synchronization signal block set, and the synchronization signal block set includes one or more synchronization signal blocks.
  • the transmission period of the synchronization signal block set is 40 milliseconds, and the transmission period of the side link synchronization signal is 20 milliseconds. That is, the density of the side link synchronization signal in the time domain is increased to reduce the number of times the second terminal device searches for the side link synchronization signal, thereby reducing power consumption. Further, the density of the side link synchronization signal in the frequency domain can be increased, or the density of the side link synchronization signal in the time domain and the frequency domain can be increased.
  • the above-mentioned indication information is carried through the side link control channel. That is, the indication information is carried in the side link control information.
  • the indication information is carried through the side link control channel to indicate the resource location of the synchronization signal block, so that the second terminal device can learn the resource location of the synchronization signal block.
  • the above indication information may include time domain indication information, which is used to indicate the time domain resource position of the synchronization signal block; or, used to indicate the time domain resource position of the synchronization signal block relative to the side link control channel; or, It is used to indicate the time domain resource position of the synchronization signal block relative to the side link data channel, and the side link data channel is a data channel associated with the side link control channel.
  • the above indication information may include frequency domain indication information, which is used to indicate the frequency domain resource position of the synchronization signal block; or, used to indicate the frequency domain resource position of the synchronization signal block relative to the side link data channel; or, It is used to indicate the frequency domain resource position of the synchronization signal block relative to the side link control channel, and the side link data channel is a data channel associated with the side link control channel.
  • the above-mentioned indication information may include the above-mentioned time domain indication information and the above-mentioned frequency domain indication information.
  • the above-mentioned indication information is carried through the side link data channel. That is, the indication information is carried in the side link data information.
  • the indication information is carried through the side link data channel to indicate the resource location of the synchronization signal block, so that the second terminal device can learn the resource location of the synchronization signal block.
  • the above indication information includes time domain indication information, which is used to indicate the time domain resource position of the synchronization signal block; or, used to indicate the time domain resource position of the synchronization signal block relative to the side link data channel; or, use To indicate the time domain resource position of the synchronization signal block relative to the side link control channel, the side link control channel is a control channel associated with the side link data channel.
  • the above indication information includes frequency domain indication information, which is used to indicate the frequency domain resource position of the synchronization signal block; or, is used to indicate the frequency domain resource position of the synchronization signal block relative to the side link data channel; or, use To indicate the frequency domain resource position of the synchronization signal block relative to the side link control channel, the side link control channel is a control channel associated with the side link data channel.
  • the above-mentioned indication information may include the above-mentioned time domain indication information and the above-mentioned frequency domain indication information.
  • the above-mentioned indication information is carried through a side link broadcast channel. That is, the indication information is carried in the side link broadcast information.
  • the side link broadcast channel carries indication information to indicate the resource location of the synchronization signal block, so that the second terminal device can learn the resource location of the synchronization signal block.
  • the above indication information includes time domain indication information, which is used to indicate the time domain resource position of the synchronization signal block; or, used to indicate the time domain resource position of the synchronization signal block relative to the side link synchronization signal block; or, use To indicate the time domain resource position of the synchronization signal block relative to the side link broadcast channel.
  • the above indication information includes frequency domain indication information, which is used to indicate the frequency domain resource position of the synchronization signal block; or, used to indicate the frequency domain resource position of the synchronization signal block relative to the side link synchronization signal block; or, use To indicate the frequency domain resource position of the synchronization signal block relative to the side link broadcast channel.
  • the above-mentioned indication information may include the above-mentioned time domain indication information and the above-mentioned frequency domain indication information.
  • the side link synchronization signal block may include a side link synchronization signal and a side link broadcast channel
  • the side link synchronization signal may include a side link primary synchronization signal and a side link secondary synchronization signal.
  • the above indication information is carried by the side link control channel, the side link data channel, or the side link broadcast channel, which can be understood as an explicit indication method.
  • the foregoing indication information is also used to indicate the transmission period of the synchronization signal block set.
  • the second terminal device determines the resource position of the synchronization signal block in the transmission period of the subsequent synchronization signal block set according to the transmission period of the synchronization signal block set and the resource position of the synchronization signal block, and accumulates these synchronization signal blocks. Enhance the reception strength of the synchronization signal block, thereby enhancing coverage.
  • the indication information is used to indicate the resource location of the synchronization signal block 3, and the synchronization signal block 3 is the third synchronization signal block in the transmission period.
  • the second terminal device can determine the subsequent synchronization signal block 3 according to the resource location of the synchronization signal block 3 and the transmission period.
  • the transmission period of the synchronization signal and the resource location of the synchronization signal block are indicated by different indication information.
  • the above indication information is also used to indicate a cell identity.
  • the cell identity is the identity of the cell to which the first terminal device or the second terminal device belongs, and the first terminal device and the second terminal device belong to the same cell.
  • the cell identifier and the resource location of the synchronization signal block are indicated by different indication information.
  • the resource location of the synchronization signal block indicated by the above indication information is the resource location of the synchronization signal block searched by the first terminal device, which may be referred to as the resource location of the first synchronization signal block
  • the second terminal device may determine the resource position of the second synchronization signal block according to the transmission period of the synchronization signal block set and the resource position of the first synchronization signal block, and the resource position of the second synchronization signal block may be the transmission of the subsequent synchronization signal block set
  • the synchronization signal block in the same period as the first synchronization signal block sequence for example, the first synchronization signal block is the third synchronization signal block in the transmission period 1 of the synchronization signal block set, and the second synchronization signal block is the synchronization signal block set.
  • the transmission period 2 of the synchronization signal block set is the next transmission period of the transmission period 1 of the synchronization signal block set.
  • the second terminal device may receive the first synchronization signal block or the second synchronization signal block from the network device.
  • the resource location of the synchronization signal indicated by the indication information is the resource location of the second synchronization signal block determined by the first terminal device, and the second terminal device may receive the second synchronization signal block from the network device.
  • a second aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a second terminal device, or a device in the second terminal device, or a device that can be matched and used with the second terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. Exemplary,
  • the processing module is configured to use the communication module to receive indication information from the first terminal device, the indication information is used to indicate the resource location of the synchronization signal block; according to the resource location of the synchronization signal, the communication module is used to receive the synchronization signal block from the network device.
  • a third aspect of the embodiments of the present application provides a communication device, which includes a processor, configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and/or data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface, and other devices may For network equipment, first terminal equipment, etc.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to use a transceiver to receive instruction information from the first terminal device, where the instruction information is used to indicate the resource location of a synchronization signal block; according to the resource location of the synchronization signal, use the transceiver to receive the information from the network device Sync signal block.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method provided in the first aspect.
  • a fifth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, configured to implement the method provided in the above-mentioned first aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • a sixth aspect of the embodiments of the present application provides a synchronization signal block indication method, including:
  • the second terminal device is a terminal device sensitive to power consumption
  • the method for executing the sixth aspect may be the first terminal device that is not sensitive to power consumption, or a component of the first terminal device (such as a processor, a chip, Or chip system, etc.).
  • the first terminal device determines the resource location of the first synchronization signal block, and the first synchronization signal block is the synchronization signal block searched by the first terminal device.
  • the first terminal device determines the resource location of the second synchronization signal block, and the second synchronization signal block and the first synchronization signal block are synchronization signal blocks in the same order or sequence in transmission periods of different synchronization signal block sets.
  • the first synchronization signal block is the third synchronization signal block in transmission cycle 1 of the synchronization signal block set
  • the second synchronization signal block is the third synchronization signal block in transmission cycle 2 of the synchronization signal block set.
  • the transmission period 2 of the set is the next transmission period of the transmission period 1 of the synchronization signal block set.
  • a seventh aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a first terminal device, or a device in the first terminal device, or a device that can be matched and used with the first terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the sixth aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. Exemplary,
  • the processing module uses the communication module to send instruction information to the second terminal device, where the instruction information is used to indicate the resource location of the synchronization signal block, and the synchronization signal block is used to communicate with the network device.
  • An eighth aspect of the embodiments of the present application provides a communication device, which includes a processor, configured to implement the method described in the sixth aspect.
  • the device may also include a memory for storing instructions and/or data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the sixth aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface, and other devices may For network equipment, second terminal equipment, etc.
  • the device includes:
  • Memory used to store program instructions
  • the processor using the transceiver, sends instruction information to the second terminal device, where the instruction information is used to indicate the resource location of the synchronization signal block, and the synchronization signal block is used to communicate with the network device.
  • the processor is specifically configured to determine the resource location of the first synchronization signal block, and the first synchronization signal block is the synchronization signal block searched by the first terminal device.
  • the processor is specifically configured to determine the resource location of the second synchronization signal block, where the second synchronization signal block and the first synchronization signal block are synchronization signal blocks in the same order or sequence in transmission periods of different synchronization signal block sets.
  • the ninth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method provided in the sixth aspect.
  • a tenth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, configured to implement the method provided in the sixth aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the eleventh aspect of the embodiments of the present application provides a communication system that includes a communication device (for example, a first terminal device) that realizes the function of a first terminal device and a communication device (for example, a second terminal device) that realizes the function of a second terminal device.
  • Terminal equipment optionally including network equipment.
  • a twelfth aspect of the embodiments of the present application provides a computer program product, including instructions, which when run on a computer, cause the computer to execute the method provided in the first aspect or the sixth aspect.
  • FIG. 1 is an example diagram of a time domain position of a synchronization signal block provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a synchronization signal block indication method provided by an embodiment of this application.
  • FIG. 4 is an example diagram of a CUE searching for an SSB according to an embodiment of the application
  • FIG. 5 is an example diagram of TUE obtaining SSB according to an embodiment of the application.
  • FIG. 6 is a schematic flowchart of another synchronization signal block indication method provided by an embodiment of this application.
  • FIG. 7 is an example diagram of indicating SSB through a side link control channel provided by an embodiment of the application.
  • FIG. 8 is an example diagram of indicating SSB through a side link data channel provided by an embodiment of the application.
  • FIG. 9 is an example diagram of indicating SSB through a side link broadcast channel provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a logical structure of a communication device provided by an embodiment of this application.
  • FIG. 11 is a simplified schematic diagram of the physical structure of another communication device provided by an embodiment of this application.
  • Side links can also be called side links, secondary links, or side links.
  • the side link is a link used for device-to-device (D2D) direct communication.
  • D2D device-to-device
  • a side link is a link between a terminal device and another terminal device, which is used to directly transmit information between the one terminal device and another terminal device. The information does not require a network device to connect between the one terminal device and the other terminal device. Forwarding between devices.
  • transmission may include sending and/or receiving.
  • transmitting information between one terminal device and another terminal device includes: the one terminal device sends the information to the other terminal device, and the other terminal device receives the information from the one terminal device; or, the one terminal device receives the information from the one terminal device.
  • the other terminal device receives the information, and the other terminal device sends the information to the one terminal device.
  • the transmission of information by network equipment and terminal equipment includes: the network equipment sends downlink information to the terminal equipment, and the terminal equipment receives the downlink information from the network equipment; or, the terminal equipment sends uplink information to the network equipment, and the network equipment receives the uplink information from the terminal equipment. information.
  • Side link physical layer channels mainly include side link data channels (such as physical sidelink shared channel (PSSCH), and/or physical sidelink discovery channel (PSDCH)), physical Physical sidelink control channel (PSCCH), sidelink synchronization signal (SL-SS), and/or physical sidelink broadcast channel (PSBCH).
  • PSSCH can also be described as a side link shared channel
  • PSDCH can also be described as a side link discovery channel
  • PSCCH can also be described as a side link control channel
  • PSBCH can also be described as a side link broadcast channel.
  • PSCCH can carry or be used to indicate PSSCH scheduling information, for example, used to indicate one or more of the following transmission parameters of PSSCH: resource location (such as time domain resource and/or frequency domain resource location), transmission block size (transport block size, TBS), modulation and coding scheme (MCS), modulation and coding scheme, coding rate, and redundancy version (redundancy version, RV), etc.
  • the PSSCH may carry data information, for example, data information sent from one terminal device to another terminal device, and the data information may include high-level control signaling and/or service data.
  • SL-SS can include sidelink primary synchronization signal (SL-PSS) and sidelink secondary synchronization signal (SL-SSS).
  • SL-PSS and SL-SSS appear in pairs, It can be a ZC (Zadoff-Chu) sequence, which is transmitted on a specified time-frequency resource (similar to the time-frequency resource of a synchronized signal block (SSB) described below).
  • ZC Zadoff-Chu
  • a network device can manage one or more cells.
  • the terminal device can randomly access the network device in a cell managed by the network device to communicate with the network device in the cell. Before the terminal device randomly accesses the network device or communicates with the network device, it needs to achieve downlink synchronization with the network device, so that cell system information can be obtained.
  • the system information may include information such as the cell's random access configuration.
  • the network device periodically broadcasts the synchronization signal block SSB to the terminal device, and the SSB includes synchronization signals (for example, primary synchronization signal (PSS) and secondary synchronization signal (SSS)) ) And physical broadcast channel (physical broadcast channel, PBCH).
  • synchronization signals for example, primary synchronization signal (PSS) and secondary synchronization signal (SSS)
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the information carried on the PBCH may be referred to as a master information block (MIB).
  • MIB master information block
  • the PSS, SSS, and PBCH may be combined and sent in the form of SSB, or may be sent in separate forms, which is not limited in the embodiment of the present application.
  • the relative resource positions of PSS, SSS, and PBCH can be predefined or fixed, or the resource position of the other can be obtained according to one of them, for example, the resource position of SSS and/or PBCH can be obtained according to PSS, and the PSS can be obtained according to SSS And/or the resource location of the PBCH, the resource location of the PSS and/or SSS can be obtained according to the PBCH.
  • the terminal device may use the SSB to communicate with the network device.
  • the terminal device receives the SSB in the time-frequency resource (for example, the first terminal device searches for the SSB in the time-frequency resource, for example, the second terminal device receives the SSB in the time-frequency resource according to the instruction of the first terminal device), and uses the SSB
  • the synchronization signal in the network realizes the downlink synchronization with the network equipment.
  • the terminal device can further obtain other system information according to the indication of the MIB in the SSB.
  • the terminal device can access the network device in the cell, and then the terminal device can send data to the network device (for example, send uplink data through the physical uplink shared channel (PUSCH)), or receive data from the network device Data (for example, receiving downlink data through a physical downlink shared channel (PDSCH)).
  • the network device for example, send uplink data through the physical uplink shared channel (PUSCH)
  • PUSCH physical uplink shared channel
  • PDSCH physical downlink shared channel
  • the terminal device may perform the process of searching for the SSB after being turned on or when the downlink synchronization signal is lost. Searching for SSB can also be described as blind SSB or scanning SSB.
  • the terminal device scans the SSB in the time domain position and the frequency domain position where the SSB may appear, which may include time domain scanning and frequency domain scanning.
  • the synchronization raster of the SSB in the frequency domain is set or specified, which is used to determine the possible frequency points of the center frequency of the SSB, as shown in Table 1 below .
  • Table 1 in the frequency range of 0 ⁇ 3000MHz, the center frequency of SSB may appear at the frequency point N*1200kHz+M*50kHz. If the terminal device does not have previously saved cell information (for example, when it is just turned on), it will try different N and M values one by one, and detect the synchronization signal at the frequency points determined by the different N and M values.
  • Table 1 the ranges of GSCN and GSCN are used to limit the values of N and M.
  • Table 1 is only used as an example. In practice, the formulas in Table 1 can be other polynomials, and the number of rows in Table 1 can also be other rows, etc., which is not limited in the embodiment of the present application.
  • the time-domain position of the SSB can be independently configured for each sub-carrier interval.
  • the time-domain positions of the SSBs with different sub-carrier intervals can be the same or different.
  • This application implements The examples are not restricted.
  • multiple SSBs are included in one SSB set (burst), and the duration of one SSB burst is 5 milliseconds (ms).
  • the network device can send the SSB by means of spatial beam scanning, and the terminal device scans an SSB burst within 5ms.
  • the length of a radio frame is 10 ms, and the radio frame includes the first half frame and the second half frame, and the radio frame may also be referred to as a frame for short.
  • the network device can support sending an SSB burst in the first 5ms (first half frame) or sending an SSB burst in the last 5ms (second half frame).
  • the instruction is performed, for example, by a demodulation reference signal (DMRS) of the PBCH.
  • DMRS demodulation reference signal
  • the reference signal may also be referred to as a pilot.
  • the duration of one SSB burst may also be other values, which is not limited in the embodiment of the present application.
  • the number of SSBs included in one SSB burst can be referred to as the SSB burst size (size).
  • the maximum SSB burst size is 4, that is, a maximum of 4 SSBs are transmitted within 5ms; for the sub-3GHz to sub-6GHz frequency band, the maximum SSB burst size is 8, that is, a maximum of 8 SSBs are transmitted within 5ms.
  • SSB For frequency bands greater than 6GHz, the maximum SSB burst is 64, that is, up to 64 SSBs can be transmitted within 5ms.
  • the network device can configure the transmission period of the SSB burst for the terminal device through the parameters in the system information block (SIB) 1 (for example, ssb-PeriodicityServingCell), which can be ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ one of.
  • SIB system information block
  • the transmission period of the SSB burst is 20 ms, which means that an SSB burst is transmitted every 20 ms.
  • SSB burst, SSB set, and synchronization signal block set are the same concept and can be interchanged; the transmission period of SSB burst and synchronization signal block set are the same concept and can be interchanged.
  • the terminal device can search for the SSB according to the default transmission period of the SSB burst.
  • the default transmission period of the SSB burst is 40 ms, and the SSB burst If the duration is 5ms, the terminal device can search for up to 8 SSB bursts on one frequency point, and if the SSB is not found, it will search for the SSB on another frequency point.
  • the transmission period of the SSB burst is 20 ms, and the SSB burst size is 8.
  • the SSB burst is sent in the first half (5 ms) of a frame in a transmission cycle, and 8 SSBs are sent every 5 ms.
  • a network device sends an SSB burst, it can use 8 different beam directions to send 8 SSBs in the SSB burst, and each SSB corresponds to a beam direction.
  • the terminal device does not know the time domain location of the SSB when it has not obtained the downlink synchronization with the network device or loses the downlink synchronization with the network device, so it needs to blindly detect the time domain symbols.
  • the terminal device may need to retrieve the synchronization signal on each time domain symbol within 20 ms until the PSS and SSS are acquired.
  • the first terminal device may also be described as a cooperative user equipment (cooperating user equipment, CUE) or a cooperative terminal device.
  • the CUE can directly blindly detect the synchronization signal block SSB from the network device, and can indicate the resource location of the SSB to other UEs (for example, the following TUE), which can assist other UEs in receiving the SSB from the network device.
  • the CUE can receive downlink signals, such as PDSCH and/or downlink reference signals and other downlink signals from the network equipment; the CUE can send uplink signals, such as PUSCH and/or uplink reference signals and other uplink signals, to the network equipment.
  • the second terminal device can also be described as a target user equipment (targeting user equipment, TUE) or a target terminal device, etc.
  • the TUE can receive the SSB from the network device with the help of other UEs (for example, CUE).
  • the TUE may receive the SSB from the network device according to instructions from other UEs (such as the aforementioned CUE).
  • the TUE may directly communicate with the network device according to the SSB. For example, the TUE obtains the resource location of the SSB according to the instruction of the CUE, receives the SSB from the network device according to the resource location of the SSB, and uses the synchronization signal in the SSB to achieve downlink synchronization with the network device.
  • the TUE can obtain other system information according to the MIB in the SSB. According to the system information, the TUE can access network equipment in the cell, and can send other uplink signals such as PUSCH and/or uplink reference signals to the network equipment, or can receive other downlink signals such as PDSCH and/or downlink reference signals from the network equipment.
  • the TUE can access network equipment in the cell, and can send other uplink signals such as PUSCH and/or uplink reference signals to the network equipment, or can receive other downlink signals such as PDSCH and/or downlink reference signals from the network equipment.
  • the first terminal device is a terminal device that is not sensitive to power consumption, for example, a machine with a stable power supply, a monitoring device, or a mobile phone with a large battery capacity;
  • the second terminal device is a power
  • the consumption-sensitive terminal device may be, for example, a sensor, a wearable device, or an NR light (light) user equipment (UE).
  • the first terminal devices are all terminal devices that are insensitive to power consumption, or are all terminal devices that are sensitive to power consumption.
  • power consumption refers to power efficiency, and can also be described as energy consumption, energy consumption, power consumption, or battery consumption.
  • a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • words such as “first” and “second” are used to distinguish technical features with basically the same or similar functions. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • the network device involved in the embodiments of the present application may also be referred to as a network side device, and may include a base station (BS), and may be a device that is deployed in a wireless access network and can communicate with a terminal device wirelessly.
  • the base station may have many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the network equipment involved in the embodiments of this application may be a base station in 5G or a base station in long term evolution (LTE), where the base station in 5G may also be referred to as a transmission reception point. , TRP) or next generation Node B (gNB).
  • TRP transmission reception point
  • gNB next generation Node B
  • the device used to implement the function of the network device may be a network device; it may also be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device or combined with the network device. Matching use.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • the first terminal device and the second terminal device involved in the embodiments of this application may be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; and can also be deployed on the water (such as a ship Etc.); it can also be deployed in the air (for example, on airplanes, balloons, and satellites).
  • the terminal device may be a UE, where the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, smart vehicle terminal equipment, wireless terminal in industrial control, wireless terminal in unmanned driving , Wireless terminal in telemedicine, wireless terminal in smart grid, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the UE may also be a sensor in the industrial field, etc.
  • the device used to realize the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip system. The device may be installed in the terminal device or connected to the terminal device. Matching use.
  • the terminal devices can be classified into TUE and CUE.
  • the first terminal device uses the CUE as an example
  • the second terminal device uses the TUE as an example to describe the technical solutions provided by the embodiments of the present application.
  • the terminal device when the terminal device blindly detects the SSB from the network device, it needs to try the possible sequence of the synchronization signal at every possible frequency point and every symbol in the process of searching for the SSB.
  • the embodiments of the present application provide a synchronization signal block indication method and a communication device, so that a power-sensitive terminal device can obtain a synchronization signal block with low power consumption, thereby reducing the power consumption of such terminal devices.
  • the method provided in the embodiment of the present application can also be applied to terminal devices that are not sensitive to power consumption to improve user experience.
  • the first terminal device sends instruction information to the second terminal device, and the instruction information is used to indicate the resource location of the synchronization signal block SSB sent by the network device; the second terminal device according to the resource location of the synchronization signal block , Receive the synchronization signal block from the network device.
  • the first terminal device and/or the second terminal device may communicate with the network device according to the received SSB.
  • the second terminal device communicates with the network device according to the SSB, for example, when transmitting PDSCH and/or PUSCH, it can directly transmit the PDSCH and/or PUSCH with the network device without the assistance of the first terminal device, that is, without the first terminal device forwarding Or indicate the PDSCH and/or PUSCH.
  • the terminal device determines the type of the terminal device (the terminal device is the first terminal device or the second terminal device).
  • the type of the terminal device may be pre-configured in the subscriber identity module (SIM) card, for example, the terminal device may be configured as the first terminal device or the second terminal device in the SIM card.
  • SIM subscriber identity module
  • different number segments are configured for the terminal device.
  • the first terminal device and the second terminal device use different number segments, and the terminal device determines the type of the terminal device according to the number segment.
  • the terminal device can determine itself as the first terminal device or the second terminal device.
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of this application.
  • the network architecture includes a network device 201, a first terminal device 202, and a second terminal device 203. It should be noted that the form and quantity of the devices shown in FIG. 2 are used as examples, and do not constitute a limitation to the embodiments of the present application.
  • Figure 2 takes an SSB burst size of 4 as an example.
  • the network device 201 can send the SSB burst in the first half frame or the second half frame.
  • the 4 SSBs in an SSB burst can be marked as SSB-1, SSB-2, and SSB- respectively. 3 and SSB-4.
  • the first terminal device 202 blindly detects the SSB from the network device 201; the second terminal device 203 obtains the resource location of the SSB from the first terminal device 202, and receives the SSB from the network device 201 according to the resource location of the SSB.
  • the network device 201 broadcasts the SSB burst periodically, and the first terminal device 202 searches for the SSB.
  • the first terminal device 202 determines the resource location of the SSB in the case of searching for a certain SSB in a certain transmission period. Assuming that the first terminal device 202 searches for the SSB-3 in the transmission period 1, then the resource location of the SSB-3 in the transmission period 1 is determined. After that, the first terminal device 202 may send instruction information to the second terminal device 203, where the instruction information is used to indicate the resource location of the SSB-3 in the transmission period 1. Upon receiving the indication information, the second terminal device 203 may receive the SSB in the transmission period 1 or the SSB in the transmission period n from the network device 201 according to the indication information.
  • the second terminal device 203 may also receive the SSB in multiple transmission periods from the network device 201, for example, receive the SSB in the transmission period 2 and the SSB in the transmission period 3.
  • the first terminal device 202 when searching for a certain SSB in a certain transmission period, determines the resource location or multiple transmission periods of the SSB in the next or several transmission periods The resource location of the SSB in. Assuming that the first terminal device 202 searches for the SSB-3 in the transmission period 1, then determine the resource location of the SSB-3 in the transmission period n, or determine the SSB-3 in each transmission period from the transmission period i to the transmission period j. Resource location. Among them, n, i, and j are all positive integers, representing the next few transmission periods of transmission period 1, and j is greater than i.
  • the first terminal device 202 may send instruction information to the second terminal device 203, where the instruction information is used to indicate the resource location of the SSB-3 in the transmission period n, or used to indicate each of the transmission period i to the transmission period j.
  • the second terminal device 203 receives the instruction information, it can receive the SSB in the transmission period n from the network device 201 or receive the SSB in multiple transmission periods according to the instruction information.
  • the second terminal device 203 when it receives the SSB from the network device 201, it can receive SSB-3, or can receive SSB-1, SSB-2, or SSB-4. If in an SSB burst, the relative positions between different SSBs are predefined or fixed, such as between SSB-3 and SSB-1, between SSB-3 and SSB-2, and/or SSB-3 and SSB The relative position between -4 is fixed, and the second terminal device can obtain the position of SSB-1, SSB-2 and/or SSB-4 according to the position of SSB-3, so that it can receive SSB-1, SSB-2 or SSB-4.
  • the above-mentioned indication information sent by the first terminal device 202 to the second terminal device 203 may not indicate the resource location of SSB-3, but the resource location of SSB-1, SSB-2, or SSB-4 in the transmission period. .
  • the first terminal device 202 does not know the resource location of the SSB when blindly detecting the SSB broadcast by the network device 201.
  • the second terminal device 203 may not directly search or blindly detect the SSB broadcast by the network device 201. Instead, the resource location of the SSB is obtained through the instruction information of the first terminal device 202, and the SSB is received from the network device 201 according to the resource location, thereby reducing the power consumption of the second terminal device 203 when receiving the SSB from the network device, so that the second terminal The device 203 obtains the SSB broadcast by the network device 201 with relatively low power consumption.
  • the second terminal device may perform: receiving instruction information from the first terminal device, and receiving the SSB from the network device according to the instruction information; and, blindly detecting the SSB from the network device. After obtaining the SSB in one of the ways, the second terminal device can stop the process. Through this method, it is possible to speed up the acquisition of the SSB by the second terminal device from the network device, thereby reducing the power consumption when the second terminal device acquires the SSB.
  • the above indication information can be carried by the side link synchronization signal (SL-SS), or can be carried by the side link control channel, the side link data channel or the side link broadcast channel. That is, the above-mentioned indication information may be sent by the first terminal device to the second terminal device through the SL-SS, the side link control channel, the side link data channel, or the side link broadcast channel.
  • SL-SS side link synchronization signal
  • the above-mentioned indication information may be sent by the first terminal device to the second terminal device through the SL-SS, the side link control channel, the side link data channel, or the side link broadcast channel.
  • the above transmission period refers to the transmission period of the SSB burst, which can also be described as the transmission period of the synchronization signal block set.
  • the transmission period of the SSB burst can be one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ , or It is other numerical value, which is not limited in the embodiment of the present application.
  • the embodiments of this application are described using SSB as an example.
  • the technical essence is to prevent the second terminal device from blindly detecting information from the network equipment.
  • Other names, terms or methods used to describe the essence of the technology also fall under the protection of the embodiments of this application. range.
  • the SSB in the method provided in the embodiment of this application may be replaced with information or channel used to carry synchronization signals, or information or channel used to transmit synchronization signals, etc.; for example, the SSB in the method provided in the embodiments of this application It can be replaced with a broadcast channel for carrying broadcast signals, or with a reference signal for broadcast signals, etc.
  • the communication between the first terminal device 202 and the second terminal device 203 may be implemented through a side link, and the communication mode may be a unicast mode, a multicast mode, or a broadcast mode.
  • Unicast is a one-to-one communication mode between terminal devices, and the terminal device that can receive unicast data is a single terminal device.
  • Multicast is a one-to-many communication mode between terminal devices, and terminal devices that can receive multicast data are terminal devices in a specific group. Broadcasting is a one-to-all communication mode between terminal devices, and terminal devices in a specific area around the sender can receive broadcast data.
  • the embodiment of the present application can be applied to a scenario where the second terminal device 203 has not yet started searching for the SSB, or has started to try to search but has not searched for the SSB.
  • the second terminal device 203 may have been synchronized with the first terminal device 202, or may not have been synchronized with the first terminal device 202.
  • embodiments of the present application is also applicable to the fourth generation (4 th generation, 4G) mobile communication system technology (e.g. the LTE), can also be applied to future communication systems,
  • the sixth generation (6 th generation, 6G) mobile communication technology system, etc. the embodiment of the present application does not make a limitation.
  • the embodiments of this application can also be applied to a system including three types of communication entities.
  • the three types of communication entities include a first entity (such as a base station), a second entity (which can blindly detect a signal from the first entity), and a third entity (through With the assistance of the second entity, the signal is received from the first entity).
  • the first entity may broadcast the synchronization signal;
  • the second entity may receive the synchronization signal from the first entity and send the indication information of the synchronization signal to the third entity;
  • the third entity may receive the indication information of the synchronization signal from the second entity, and send the synchronization signal from the second entity according to the indication information.
  • the first entity receives the synchronization signal.
  • the second entity receiving the synchronization signal from the first entity may be blindly detecting the synchronization signal from the first entity; or the fourth entity may indicate the location of the synchronization signal to the second entity, so that the second entity can receive the synchronization signal from the first entity
  • the synchronization signal is not limited in the embodiment of this application.
  • the resource locations involved in the embodiments of the present application may include one or more of the following: time domain resource locations, frequency domain resource locations, code domain resource locations, and space domain resource locations.
  • the first terminal device uses CUE as an example
  • the second terminal device uses TUE as an example
  • the resource location includes time domain resource locations and frequency domain resource locations as examples.
  • FIG. 3 is a schematic flowchart of a synchronization signal block indication method provided by an embodiment of this application, which may include but is not limited to the following steps:
  • the network device broadcasts the SSB burst.
  • the network device may periodically broadcast the SSB burst to the UEs within its coverage area, for example, broadcast the SSB burst to the UEs in the cell covered by it.
  • the period of broadcasting the SSB burst can be understood as the transmission period of the SSB burst, which can be one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ , or other values, which is not limited in this embodiment of the application.
  • the transmission period of the SSB burst is 20 ms
  • the SSB burst size is 4, and the network device broadcasts an SSB burst every 20 ms.
  • the SSB burst includes 4 SSBs.
  • the network device also periodically broadcasts system information to UEs within its coverage area, and the period of broadcasting the system information may be the same or different from the period of broadcasting the SSB burst.
  • System information and SSB burst can be carried in the same information and broadcast, or different information can be broadcast separately.
  • the CUE searches for the SSB and determines the resource location of the SSB.
  • the CUE searches for the SSB broadcast by the network device, and when the SSB is found in the current transmission period i, it determines the resource location of the SSB. Further, the CUE may determine the resource location of the SSB or other SSBs in the subsequent transmission period i+k.
  • the current transmission period i and the subsequent transmission period i+k both refer to the transmission period of the SSB burst.
  • i is an integer, such as 0, 1, 2 or other integers
  • k is a positive integer, such as 1, 2, 3 or other positive integers, which are not limited in the embodiments of the present application.
  • the CUE searches for SSB-3 in the transmission period i of the SSB burst through blind detection.
  • SSB-3 can be regarded as the SSB with the highest received power or signal-to-noise ratio on the CUE side among the four SSBs, or the received energy or signal-to-noise ratio exceeds the threshold.
  • the CUE can determine the resource location of SSB-3 in the transmission period i of the SSB burst, and the resource location of the SSB determined by the CUE is the resource location of the SSB-3 searched by the CUE in the transmission period i of the SSB burst.
  • the SSB searched by the CUE can also be described as the SSB received by the CUE, or the SSB expected by the CUE to be received by the TUE.
  • the distance between CUE and TUE is close, that is, the distance between the two is less than the preset value (for example, 5m, etc.)
  • TUE and CUE can receive the same beam
  • TUE and CUE can receive the same SSB burst
  • this SSB can be called the SSB that the CUE expects the TUE to receive.
  • the SSB that the TUE can receive or the SSB that the CUE expects that the TUE can receive is indicated by black shading.
  • the CUE can obtain the transmission period of the synchronization signal block set according to the SSB.
  • the CUE receives the SSB-3, it can obtain the common search space of a cell (that is, the cell to which the CUE belongs) or a group of UEs (that is, a group of UEs including the CUE) according to the MIB indication in the SSB.
  • the CUE obtains the resource configuration information of the public physical downlink control channel (physical downlink control channel, PDCCH), and searches for the public PDCCH in the search space of the public PDCCH according to the resource configuration information; in the case of searching for the public PDCCH, obtains the public PDCCH Carrying downlink control information (DCI); receiving a physical downlink shared channel (PDSCH) according to the instruction of the DCI, and the PDSCH carries SIB1.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the parameter in SIB1 (for example, ssb-PeriodicityServingCell) can indicate the transmission period of SSB burst, that is, the transmission period of the synchronization signal block set, so that the UE within the coverage of the network equipment can learn the transmission period of the synchronization signal block set, and then determine The SSB that the UE may search for in the subsequent SSB burst transmission period.
  • SIB1 for example, ssb-PeriodicityServingCell
  • the CUE may determine the resource location of the SSB-3 in the transmission period of the subsequent SSB burst.
  • the resource position of SSB-3 in the transmission period of SSB burst can be determined according to the resource position of SSB-3 in the transmission period i of SSB burst and the transmission period of SSB burst indicated by SIB1. For example, determine the resource position of SSB-3 in the transmission period of SSB burst.
  • the resource position of SSB-3 in the transmission period i+1 is determined
  • the resource position of SSB-3 in the transmission period i+2 of the SSB burst is determined, and so on.
  • the resource location of the SSB determined by the CUE is the resource location of SSB-3 in the subsequent SSB burst transmission period.
  • the CUE determines the resource location of the first SSB, and the first SSB is the SSB searched by the CUE in the transmission period of the SSB burst where the first SSB is located; in the second implementation manner , The CUE determines the resource location of the second SSB, and the location of the second SSB in the transmission period of the SSB burst where it is located is the same as the location of the first SSB in the transmission period where it is located.
  • the first SSB is SSB-3 in the transmission period i of the SSB burst
  • the second SSB is SSB-3 in the transmission period i+1 of the SSB burst.
  • the CUE determining the resource location of the first SSB may include determining the time domain resource location of the first SSB, or determining the frequency domain resource location of the first SSB, or determining the time domain resource location of the first SSB and the time domain resource location of the first SSB. Frequency domain resource location.
  • the CUE can refer to the aforementioned (3) terminal device to scan the frequency domain in the process of searching for the SSB to determine the frequency domain resource location of the first SSB.
  • the frequency domain resource location may be represented by one or more of frequency points, frequency domain grids, resource blocks (RB) to which they are mapped, and subcarriers to which they are mapped.
  • the frequency of the SSB may include the frequency of the center frequency of the SSB, the frequency of the start frequency, or the frequency of the end frequency.
  • the RB to which the SSB is mapped may include the start RB, the center RB, or the end RB to which the SSB is mapped.
  • the subcarrier to which the SSB is mapped may include the start subcarrier, the center subcarrier, or the end subcarrier to which the SSB is mapped.
  • the CUE may try the N and M values multiple times according to Table 1 and the frequency band of the cell where it is located (for example, 0-3000 MHz), and then determine the frequency point of the center frequency of the first SSB.
  • the CUE can obtain the frequency band of the cell where it is located by searching for the public PDCCH.
  • the CUE can refer to the aforementioned (3) terminal device to scan the time domain in the process of searching for the SSB to determine the time domain resource location of the first SSB.
  • the time domain resource location can be represented by one or more of seconds, milliseconds, frame index, subframe index, slot index, and symbol index.
  • the time domain resource location of the first SSB can be represented as The third symbol of the first slot of the first subframe of the second frame.
  • the CUE determining the resource location of the second SSB may include determining the time domain resource location of the second SSB, or determining the frequency domain resource location of the second SSB, or determining the time domain resource location of the second SSB and the second SSB Frequency domain resource location.
  • the frequency domain resource location of the second SSB is the same as the frequency domain resource location of the first SSB.
  • the time domain resource location of the second SSB differs from the time domain resource location of the first SSB by one or more SSB burst transmission periods.
  • the time domain resource location of the second SSB is the same as that of the first SSB.
  • the time domain resource location differs by two SSB burst transmission cycles. Assuming that the SSB burst transmission cycle is 20 ms, then the time domain resource location of the second SSB differs from the time domain resource location of the first SSB by 40 ms.
  • the SSB that the TUE can receive or the SSB that the CUE expects that the TUE can receive is different from the SSB that the CUE receives.
  • the SSB received by the CUE is SSB-3
  • the CUE estimates that the SSB that the TUE can receive is SSB-4 according to the relative position between the TUE and the CUE, and the CUE can indicate the location of the SSB-4 to the TUE.
  • the indicated SSB-4 and the SSB-3 received by the CUE are in the same SSB burst transmission period, the indicated SSB-4 can be regarded as the first SSB.
  • the indicated SSB-4 and the SSB- received by the CUE are 3
  • the indicated SSB-4 can be regarded as the second SSB.
  • the relative resource positions of SSB-3 and SSB-4 are predefined or fixed.
  • the SSB that the TUE can receive or the SSB that the CUE expects that the TUE can receive is the same as the SSB that the CUE receives is used as an example for description.
  • the SSB received by the TUE may be different from the SSB received by the CUE.
  • the SSB received by the CUE is SSB-3
  • the SSB received by the TUE is SSB-4, etc.
  • the embodiment of this application does not Do restrictions.
  • the SSB received by the CUE is SSB-3
  • the CUE indicates the location of SSB-3 to TUE
  • the TUE can estimate the location of SSB-1, SSB-2 and/or SSB-4 according to the location of SSB-3, And try to receive the indicated SSB-3 and the estimated SSB-1, SSB-2, and/or SSB-4.
  • the SSB received by the TUE is SSB-4.
  • the resource location of each SSB is predefined or fixed, or the relative resource location of one SSB and another SSB is predefined or fixed.
  • the CUE sends a side link synchronization signal to the TUE.
  • the TUE receives the side link synchronization signal from the CUE.
  • the side link synchronization signal may carry indication information, and the indication information may be used to indicate the resource location of the first SSB or indicate the resource location of the second SSB.
  • the side link synchronization signal may carry the indication information, or it may be described as: the indication information is sent or received through the side link synchronization signal, or indicates the resource location of the first SSB or the second SSB through the side link synchronization signal.
  • the pattern of the side link synchronization signal is used to indicate the resource location of the synchronization signal block.
  • the indication information indicates the resource location of the first SSB or the second SSB, and specifically, the resource location of the first SSB or the second SSB may be indicated by a pattern of the side link synchronization signal.
  • a pattern of a side link synchronization signal corresponds to an index.
  • the agreement may agree on a table between the CUE and TUE, or the CUE and TUE may agree on the table in other ways.
  • Each row in the table is used to indicate a time domain resource location, frequency domain resource location, and/or time-frequency domain resource location of a first SSB or a second SSB.
  • each row represents a time-frequency resource position offset (or offset range) as an example, see Table 2 below.
  • Table 2 are only examples, and other values may be used in practical applications; the number of patterns in Table 2 is only an example, and other numbers of patterns may be used in practical applications, which are not limited in the embodiments of the present application.
  • the pattern of the side link synchronization signal is used to indicate the frequency domain position offset and/or the time domain position offset of the side link synchronization signal relative to the first SSB or the second SSB.
  • the frequency offset represents the frequency offset of the side link synchronization signal relative to the first SSB or the second SSB.
  • the offset may be a certain value or a range.
  • the unit of the frequency offset can be RB or subcarrier, and can also be the N or M value in Table 1.
  • the frequency offset represents frequency domain offset information.
  • the time-domain offset information indicates the time-domain offset of the side link synchronization signal relative to the first SSB or the second SSB. It can be represented by slot offset and symbol offset. Slot offset and symbol offset can be determined values or can be range.
  • offset can be a positive or negative value, or it can be 0.
  • a positive value indicates a right offset or an up offset
  • a negative value indicates a left offset or a down offset.
  • slot offset may be predefined as 0, or symbol offset may be predefined as 0.
  • the frequency offset can be predefined as 0.
  • the pattern of the side link synchronization signal is used to indicate the frequency domain position offset and/or the time domain position offset of the reference position relative to the first SSB or the second SSB.
  • the frequency offset indicates the frequency offset of the reference position relative to the first SSB or the second SSB
  • slot offset and symbol offset indicate the time domain offset of the reference position relative to the first SSB or the second SSB. the amount.
  • the reference position is the time domain position of the first symbol of the side link synchronization signal and the frequency domain position of the starting frequency, or the time domain position of the first symbol of the side link synchronization signal and the frequency domain position of the center frequency. Frequency domain position etc.
  • the reference location may be pre-configured or notified by signaling. This signaling may be notified by the network equipment to the CUE and TUE, or CUE notified to the TUE, and there is no restriction in the implementation of this application.
  • slot offset may be predefined as 0, or symbol offset may be predefined as 0.
  • the frequency offset can be predefined as 0.
  • the CUE selects index2 from Table 2 according to the resource location of the second SSB and the location of the side link synchronization signal, and then it indicates the value of the side link synchronization signal
  • the frequency of the start frequency is offset by 5 RBs from the frequency of the start frequency of the second SSB, and the slot where the first coincidence of the side link synchronization signal is relative to the slot where the first symbol of the second SSB is located Offset by 2 slots, the symbol position of the first symbol of the side link synchronization signal in its slot is offset by 1 symbol relative to the first symbol of the second SSB in its symbol position.
  • the CUE can determine the pattern of the side link synchronization signal according to the determined index.
  • the side link synchronization signal may include the side link primary synchronization signal (SL-PSS) and the side link secondary synchronization signal (SL-SSS), then the CUE determines the pattern of the SL-PSS and the pattern of the SL-SSS, respectively.
  • the pattern of the side link synchronization signal may also be referred to as the sequence value of the side link synchronization signal.
  • the SL-PSS sequence value d PSS is based on There are three patterns, which can be expressed as:
  • d PSS sequence length is 128, d PSS (n) d PSS represents the n-th element.
  • x 0 (i+7) (x 0 (i+4)+x 0 (i))mod2
  • x 1 (i+7) (x 1 (i+1)+x 1 (i))mod2,
  • [x 0 (6) x 0 (5) x 0 (4) x 0 (3) x 0 (2) x 0 (1) x 0 (0)] [0 0 0 0 0 1],
  • [x 1 (6) x 1 (5) x 1 (4) x 1 (3) x 1 (2) x 1 (1) x 1 (0)] [0 0 0 0 0 1].
  • d SSS sequence length is 128,
  • d SSS represents the n-th element.
  • Side link identification can be expressed as Similar to the cell ID can be expressed as SL-PSS has three patterns, SL-SSS has 336 patterns, then the combination of SL-PSS and SL-SSS can form 1008 different patterns of side link synchronization signals. Among the 1008 side link synchronization signal patterns, some or all of the patterns can be used to correspond to the value of index in Table 2, that is, to indicate a certain row in Table 2.
  • the protocol may stipulate the correspondence between the side link synchronization signal pattern and each index in Table 2.
  • the network equipment can also configure the correspondence between the side link synchronization signal pattern and each index in Table 2 for CUE and TUE through high-level signaling (the prerequisite is that CUE and TUE have entered wireless Resource control (radio resource control, RRC) connected state).
  • RRC wireless Resource control
  • the CUE determines the pattern according to the selected index value, that is, confirm with That is, the patterns of SL-PSS and SL-SSS are determined, and the CUE sends the side link synchronization signal corresponding to the determined pattern to the TUE through the side link. It can also be understood that the CUE sends the side link synchronization signal corresponding to the determined pattern to the TUE.
  • the CUE can use unicast or broadcast or multicast to send side link synchronization signals to the TUE.
  • CUE can increase the density of side link synchronization signal (SL-SS) in time and frequency domain, and send SL-SS to TUE to reduce the number of times TUE searches for SL-SS, thereby reducing TUE Power consumption.
  • SL-SS side link synchronization signal
  • the density of SL-SS in the time domain is increased, so that the CUE sends the SL-SS to the TUE more frequently in the time domain.
  • Increasing the density of the SL-SS in the time domain can also be described as the transmission period of the SL-SS is shorter than the transmission period of the SSB burst.
  • the transmission period of the SSB burst is 40 ms, and the transmission period of the SL-SS can be 20 ms.
  • the SL-SS transmission period can be agreed or pre-defined in the protocol, and then the CUE sends the SL-SS to the TUE according to the agreed SL-SS transmission period, thereby reducing the number of times the TUE searches for the SL-SS. In turn, the power consumption of TUE is reduced.
  • the frequency and cycle for sending SL-SS are predefined in the SIM card of the CUE (or called the user identification card, etc.), and the CUE sends SL-SS to the CUE according to the frequency and cycle predefined by the SIM card, thereby reducing TUE The number of times to search for SL-SS, thereby reducing the power consumption of TUE.
  • the CUE can send one pattern of SL-SS to TUE, and it can also send multiple patterns of SL-SS to TUE.
  • the CUE sends the transmission period of the SSB burst to the TUE so that the TUE can learn the transmission period of the SSB burst, determine the resource location of the second SSB, or determine the resource location of the SSB that the TUE may receive in the subsequent transmission period of the SSB burst.
  • the transmission period of the SSB burst can also be indicated by indication information, which can be sent to the TUE together with the SL-SS, or sent to the TUE separately.
  • the TUE determines the resource location of the SSB according to the side link synchronization signal.
  • the TUE can blindly check the SL-SS on the time-frequency resources.
  • the process of blindly checking the SL-SS is similar to that of the terminal device searching for the SSB, that is, in the SL-SS Search for SL-SS on possible time-frequency positions.
  • the TUE can obtain the location of other SL-SS according to the previously detected SL-SS, and then receive the other SL-SS.
  • SL-SS is transmitted periodically or at a predefined fixed location.
  • the TUE When the TUE receives the SL-SS, it detects the pattern of the SL-PSS and SL-SSS sequences, and then determines the index corresponding to the pattern. For example, determine the row corresponding to the index in Table 2, and then according to the resources of the SL-SS The location and the line determine the resource location of the SSB.
  • the SL-SS pattern is used to indicate the resource location of the first SSB
  • Table 2 is used to indicate the offset information of the first SSB relative to the SL-SS
  • the TUE receives the SL-SS Next, determine the corresponding index according to the resource location of the SL-SS and the pattern of the SL-SS, determine the row corresponding to the index in Table 2, and then determine the resource location of the first SSB.
  • the TUE determines the resource location of the first SSB, it can determine the resource location of the second SSB according to the transmission period of the SSB burst.
  • the second SSB and the first SSB are the same SSB in the transmission period of different SSB bursts.
  • the SL-SS pattern is used to indicate the resource location of the second SSB
  • Table 2 is used to indicate the offset information of the second SSB relative to the SL-SS
  • the TUE receives the SL-SS Next, determine the corresponding index according to the resource location of the SL-SS and the pattern of the SL-SS, determine the row corresponding to the index in Table 2, and then determine the resource location of the second SSB.
  • the TUE receives the SSB from the network device according to the resource location of the SSB.
  • the TUE determines the resource location of the first SSB
  • the TUE receives the first SSB from the network device at the resource location.
  • the TUE may not receive the first SSB, so the TUE further determines the resource location of the second SSB, and receives the second SSB from the network device at the resource location of the second SSB.
  • the TUE determines the resource location of the second SSB, the TUE receives the second SSB from the network device at the resource location.
  • TUE obtaining SSB shown in Figure 5.
  • the SSB burst size is 4, and the CUE sends two patterns of SL-SS within the observation time.
  • the first pattern indicates deviation.
  • Shift information 1 the second pattern indicates offset information 2.
  • the TUE receives the SL-SS of the first pattern or the second pattern, it determines the respective offset information, and then determines the resource location of the SSB.
  • the TUE does not need to directly blindly detect the SSB broadcast by the network device, and obtains the resource location of the SSB through the SL-SS received from the CUE, and then receives the SSB from the network device through the resource location. It can be seen that the TUE does not need to directly blindly check the SSB broadcast by the network device, which can reduce the number of times that the TUE searches for the SSB; the SL-SS of the CUE is used to receive the SSB from the network device, and the SSB can be obtained with low power consumption; and the embodiment shown in Figure 3 can slow down TUE power consumption speed.
  • CUE can increase the density of SL-SS in the time-frequency domain, send SL-SS to TUE, reduce the number of times that TUE searches for SL-SS, and further reduce the power consumption of TUE.
  • FIG. 6 is a schematic flowchart of another synchronization signal block indication method provided by an embodiment of this application, which may include but is not limited to the following steps:
  • the network device broadcasts the SSB burst.
  • the CUE searches for the SSB and determines the resource location of the SSB.
  • step 601 to step 602 please refer to the specific description of step 301 to step 302 in the embodiment shown in FIG. 3, which will not be repeated here.
  • the CUE sends indication information to the TUE.
  • the TUE receives the indication information from the CUE.
  • the indication information is used to indicate the resource location of the first SSB or the second SSB.
  • the indication information is carried through the side link control channel (PSCCH). It can also be described as the indication information carried in the PSCCH, or the CUE sends the indication information to the TUE through the PSCCH, or the PSCCH indicates the first Resource location of one SSB or second SSB, etc.
  • the PSCCH is used to carry side link control information (SL control information, SCI).
  • SCI side link control information
  • the SCI can also carry indication information.
  • the SCI can indicate the control of the transmitting end to the receiving end in the side link, and the load is small.
  • the SCI is used to indicate the scheduling information of the side link data channel (PSSCH or PSDCH).
  • the side link data channel is used to carry side link data information, which can be scheduled by SCI and can carry more information.
  • the indication information may include time domain indication information, or frequency domain indication information, or time domain indication information and frequency domain indication information.
  • the time domain indication information can be indicated in any of the following three ways (the indication information is used to indicate the resource location of the second SSB as an example for description, and the indication information is used for The method of indicating the resource location of the first SSB is similar):
  • the time domain indication information is used to indicate the time domain resource location of the second SSB, which can be understood as the time domain indication information is used to directly indicate the time domain resource location of the second SSB, which can be understood as an absolute time indication manner.
  • the time domain resource location of the second SSB may include at least one of the following: the frame number or range of the radio frame in which the second SSB is located, the subframe number or range of the subframe, the slot number or range of the slot, and the index of the symbol Or range.
  • the time domain indication information may indicate an index, and the index may be used to determine the time domain resource location of the second SSB. For example, see Table 3 below.
  • the TUE After the TUE receives the index from the CUE, it can look up Table 3, and get the time domain resource location of the second SSB through Table 3.
  • Table 3 The values in Table 3 are only examples, and may be other values in practical applications; the number of rows of the index in Table 3 is only an example, and may be other rows in practical applications, which is not limited in the embodiment of the present application.
  • some or all of the parameters can be set as default values, and which parameters are the default values can be agreed upon by the CUE and TUE through an agreement or the like.
  • some parameters may be a certain column or certain columns of parameters other than the index column in Table 3, for example, the subframe number or range of the subframe in which the second SSB is located may be set as default values; All parameters can be the parameters of all columns except for the index column in Table 3.
  • the CUE can notify the TUE. For example, the CUE can notify the TUE of the offset of the parameter corresponding to the index notified last time, which can reduce the signaling overhead.
  • the parameter column of the slot number of the slot where the second SSB is located is not the default value.
  • the CUE can notify the TUE of the offset of the slot number of the slot where the second SSB corresponding to the previously notified index is located, assuming the offset is 2.
  • the previously notified index is 2, and the slot number of the slot where the second SSB corresponding to index2 is located is 2, then the TUE can learn that the slot number of the slot where the second SSB is located this time is 4 or 0.
  • the parameter column of the slot number of the slot where the second SSB is located is not the default value.
  • the CUE can notify the TUE of the offset relative to the preset value.
  • the TUE can know this The slot number of the slot where the second SSB is located is 4 or 0.
  • the preset value can be agreed upon by agreement.
  • SCI SCI default, TUE obtains some or all of the parameters by default.
  • SCI can be understood as CUE has not sent SCI, or CUE has not sent indication information.
  • the time domain indication information is used to indicate the time domain resource position of the second SSB relative to the PSCCH, which can be understood as the time domain indication information used to indicate the relative time between the second SSB and the PSCCH, which can be understood as a kind of relative time Indicates the way.
  • the time domain resource position of the second SSB relative to the PSCCH for example, may be the time domain resource position of the second SSB relative to the first symbol of the PSCCH, that is, the position of the first symbol of the PSCCH is used as the reference time domain position.
  • the time domain resource location may include at least one of the following: the number of offset frames (optional, if the number of frames is not offset, the number of offset frames is not included or the number of offset frames is 0), the number of offset subframes (Optional) The number of offset slots and the number of offset symbols.
  • the time domain indication information may indicate an index, and the index may be used to indicate the time domain resource position of the second SSB relative to the PSCCH. For example, see Table 4 below.
  • the TUE After the TUE receives the index and PSCCH from the CUE, it can look up Table 4 and obtain the time domain offset of the second SSB relative to the PSCCH from Table 4, and then obtain the second SSB according to the time domain resource location of the PSCCH and the time domain offset.
  • the location of the time domain resource The values in Table 4 are only examples, and may be other values in practical applications; the number of rows of the index in Table 4 is only an example, and may be other rows in practical applications, which is not limited in the embodiment of the present application.
  • Offset slot number Number of offset symbols 1 1 1 0 2 5 2 1 ⁇ 2 3 10 ⁇ 12 4 10 4 0 10 ⁇ 16 10 ⁇ 14
  • the time domain indication information is used to indicate the time domain resource position of the second SSB relative to the side link data channel, which can be understood as the time domain indication information used to indicate the relative time between the second SSB and the side link data channel .
  • the side link data channel is a data channel associated with the PSCCH, which can be understood as a PSCCH scheduled side link data channel, that is, a PSCCH scheduled side link data channel carrying time domain indication information.
  • the third method is also a relative time indication method, similar to the second method.
  • the time domain resource location of the second SSB can be determined according to the above three methods, that is, the appearance time of the second SSB.
  • the time domain indication information or indication information is also used to indicate the transmission period of the SSB burst, so that the TUE detects the second SSB according to the resource location provided by the CUE, and then detects the next or the next data according to the transmission period of the SSB burst.
  • SSB and accumulate the SSB to increase the reception strength of the synchronization signal, thereby enhancing coverage, or to receive the updated SSB.
  • the time domain indication information includes first indication information and second indication information, the first indication information is used to indicate the resource location of the second SSB, and the second indication information is used to indicate the transmission period of the SSB burst.
  • the first indication information and the second indication information may be carried in the same PSCCH, or may be carried in different PSCCHs.
  • the frequency domain indication information can be indicated in any of the following three ways (the indication information is used to indicate the resource location of the second SSB as an example for description, and the indication information is used to indicate The method of the resource location of the first SSB is similar):
  • the frequency domain indication information is used to indicate the frequency domain resource location of the second SSB, which can be understood as the frequency domain indication information is used to directly indicate the frequency domain resource location of the second SSB, which can be understood as an absolute frequency domain indication method.
  • the frequency domain resource location includes the N value and the M value, and optionally includes the frequency band of the cell where the CUE is located.
  • the TUE can determine the frequency of the second SSB according to the N value, M value and frequency band in combination with Table 1.
  • the CUE can inform the TUE of the frequency band of the cell where it is located.
  • the TUE can reside in the same frequency band as the CUE.
  • the frequency band of the cell where the CUE is located can also be considered as the frequency band of the cell where the TUE is located.
  • the TUE uses N*1200kHz+M*50kHz and the indicated N and M values to determine the frequency of the second SSB.
  • the TUE can infer the frequency band of the cell where the TUE is located based on the frequency point where the PSCCH or SL-SS is located. For example, if the frequency of SL-SS is 2000MHz, then TUE can infer that the frequency band of the cell where TUE is located is 0-3000MHz.
  • the CUE can broadcast the N value and the M value to the TUE so that the TUE can determine the frequency of the second SSB.
  • the frequency domain indication information is used to indicate the frequency domain resource position of the second SSB relative to the PSCCH, which can be understood as the frequency domain indication information is used to indicate the relative frequency domain position between the second SSB and the PSCCH, which can be understood as a kind of Relative frequency domain indication method.
  • the frequency domain resource position of the second SSB relative to the PSCCH may be the frequency domain resource position of the second SSB relative to the PSCCHSCI, for example, may be the time domain resource position of the second SSB relative to the PSCCH reference frequency position, such as the reference frequency domain
  • the position is the lowest frequency domain position, the middle frequency domain position, or the highest frequency domain position of the PSCCH, and the frequency domain position may be an RB position or a subcarrier position.
  • the frequency domain resource location may include the offset value of N and the offset value of M shown in Table 1.
  • the TUE calculates the frequency offset value of the second SSB relative to the PSCCH according to the offset value of N and the offset value of M, and determines the frequency domain resource position of the second SSB according to the reference frequency position of the PSCCH.
  • TUE can refer to Method A for obtaining the frequency band of its cell.
  • the frequency band of the cell where the TUE is located is 0 ⁇ 3000MHz. If the TUE uses the lowest frequency position of the PSCCH as the reference frequency domain position, then according to the offset value of N and the offset value of M, use N*1200kHz+M*50kHz To determine the frequency of the second SSB.
  • the frequency domain indication information is used to indicate the frequency domain resource position of the second SSB relative to the side link data channel, which can be understood as the frequency domain indication information used to indicate the relative frequency between the second SSB and the side link data channel. Domain location.
  • the side link data channel is a data channel associated with the PSCCH, which can be understood as a PSCCH scheduled side link data channel, that is, a PSCCH scheduled side link data channel carrying frequency domain indication information.
  • Mode C can also be understood as a relative frequency domain indication mode, similar to Mode B.
  • the indication information is also used to indicate the cell ID.
  • the cell ID is the identity of the cell where the TUE or CUE is located, and can also be understood as the cell ID corresponding to the first SSB or the second SSB.
  • the SCI includes first indication information and third indication information, the first indication information is used for indicating the resource location of the second SSB, and the third indication information is used for the cell ID.
  • the first indication information and the third indication information may be carried in the same PSCCH, or may be carried in different PSCCHs.
  • the CUE informs the TUE of the cell ID, which can save the power consumption of the TUE blindly checking the cell ID.
  • Tx indicates that the transmitting end of the side link is CUE
  • Rx indicates that the receiving end of the side link is TUE.
  • the indication information is carried through the side link data channel (PSSCH or PSDCH), which can also be described as the indication information carried in the side link data channel, or the CUE is carried through the side link data channel Send indication information to the TUE, or the side link data channel to indicate the resource location of the first SSB or the second SSB, etc.
  • PSSCH side link data channel
  • PSDCH side link data channel
  • the indication information may include time domain indication information, or frequency domain indication information, or time domain indication information and frequency domain indication information.
  • the time domain indication information can be indicated in any of the following three ways (the indication information is used to indicate the resource location of the second SSB as an example for description, and the indication information is used to indicate The method of the resource location of the first SSB is similar):
  • the time domain indication information is used to indicate the time domain resource location of the second SSB, which can be understood as the time domain indication information is used to directly indicate the time domain resource location of the second SSB, which can be understood as an absolute time indication manner.
  • the time domain indication information is used to indicate the time domain resource position of the second SSB relative to the side link data channel, which can be understood as the time domain indication information used to indicate the relative time between the second SSB and the side link data channel , Can be understood as a way of relative time indication.
  • the time domain indication information is used to indicate the time domain resource position of the second SSB relative to the PSCCH, which can be understood as the time domain indication information is used to indicate the relative time between the second SSB and the PSCCH, which can be understood as a kind of relative time Indicates the way.
  • the PSCCH is a control channel associated with the side link data channel. It can be understood that the side link data channel is a data channel scheduled by the PSCCH.
  • the frequency domain indication information can be indicated in any of the following three ways (the indication information is used to indicate the resource location of the second SSB as an example for description, and the indication information is used to indicate The method of the resource location of the first SSB is similar):
  • the frequency domain indication information is used to indicate the frequency domain resource location of the second SSB, which can be understood as the frequency domain indication information is used to directly indicate the frequency domain resource location of the second SSB, which can be understood as an absolute frequency domain indication method.
  • the frequency domain indication information is used to indicate the frequency domain resource position of the second SSB relative to the side link data channel. It can be understood that the frequency domain indication information is used to indicate the relative frequency between the second SSB and the side link data channel.
  • the domain position can be understood as a relative frequency domain indication.
  • the frequency domain indication information is used to indicate the frequency domain resource position of the second SSB relative to the PSCCH, which can be understood as the frequency domain indication information is used to indicate the relative frequency domain position between the second SSB and the PSCCH, which can be understood as a kind of Relative frequency domain indication method.
  • the PSCCH is a control channel associated with the side link data channel. It can be understood that the side link data channel is a data channel scheduled by the PSCCH.
  • the second indication information For a possible implementation manner of the second indication information, refer to the example diagram of indicating the SSB through the side link data channel shown in FIG. 8.
  • the indication information is carried through the side link broadcast channel. It can also be described as the indication information carried in the side link broadcast channel, or the CUE sends indication information to the TUE through the side link broadcast channel. , Or the side link broadcast channel indicates the resource location of the first SSB or the second SSB, etc.
  • the indication information may include time domain indication information, or frequency domain indication information, or time domain indication information and frequency domain indication information.
  • the time domain indication information can be indicated in any of the following three ways (the indication information is used to indicate the resource location of the second SSB as an example for description, and the indication information is used to indicate The method of the resource location of the first SSB is similar):
  • the time domain indication information is used to indicate the time domain resource location of the second SSB, which can be understood as the time domain indication information is used to directly indicate the time domain resource location of the second SSB, which can be understood as an absolute time indication manner.
  • the time domain indication information is used to indicate the time domain resource position of the second SSB relative to the side link synchronization signal block. It can be understood that the time domain indication information is used to indicate the difference between the second SSB and the side link synchronization signal block. Relative time can be understood as a way of indicating relative time.
  • the time domain indication information is used to indicate the time domain resource position of the second SSB relative to the side link broadcast channel, which can be understood as the time domain indication information used to indicate the relative time between the second SSB and the side link broadcast channel , Can be understood as a way of relative time indication.
  • the frequency domain indication information can be indicated in any of the following three ways (the indication information is used to indicate the resource location of the second SSB as an example for description, and the indication information is used to indicate The method of the resource location of the first SSB is similar):
  • the frequency domain indication information is used to indicate the frequency domain resource location of the second SSB, which can be understood as the frequency domain indication information is used to directly indicate the frequency domain resource location of the second SSB.
  • the frequency domain indication information is used to indicate the frequency domain resource position of the second SSB relative to the side link synchronization signal block. It can be understood that the frequency domain indication information is used to indicate the distance between the second SSB and the side link synchronization signal block.
  • the relative frequency domain position can be understood as a relative frequency domain indication method.
  • Method C The frequency domain indication information is used to indicate the frequency domain resource position of the second SSB relative to the side link broadcast channel, which can be understood as the frequency domain indication information is used to indicate the relative frequency between the second SSB and the side link broadcast channel. Domain location.
  • the side link synchronization signal block includes a side link synchronization signal (SL-SS) and a side link broadcast channel
  • SL-SS side link synchronization signal
  • SL-SS includes SL-PSS and SL-SSS.
  • the side link broadcast channel is similar to PBCH.
  • the indication information For the third possible implementation manner of the indication information, refer to the example diagram of indicating the SSB through the side link broadcast channel shown in FIG. 9.
  • the TUE determines the resource location of the SSB according to the indication information.
  • the TUE determines the resource location of the first SSB or the second SSB according to the indication information.
  • the TUE receives the SSB from the network device according to the resource location of the SSB.
  • step 605 For the implementation process of step 605, please refer to the specific description of step 305 in the embodiment shown in FIG. 3, which will not be repeated here.
  • the TUE determines the resource location of the SSB according to the indication information, and can obtain the SSB from the resource location, or search for and obtain the SSB within a resource location range.
  • the synchronization signal sequence value corresponding to the cell ID is used to detect the SSB.
  • the sequence values of PSS and SSS in the SSB can refer to the sequence values of SL-PSS and SL-SSS in step 303, and the side link communication ID in step 303 can be replaced with the cell ID. If the CUE does not notify the TUE cell ID, the TUE needs to detect the SSB 1008 times at most to correctly detect the SSB. After the TUE knows the cell ID, it can detect the SSB correctly at most once when detecting the SSB, thus reducing the TUE. Power consumption.
  • the TUE does not need to directly blindly detect the SSB broadcast by the network device, and obtains the resource location of the SSB through the indication information sent by the CUE, and then receives the SSB from the network device through the resource location. It can be seen that the TUE does not need to directly blindly detect the SSB broadcast by the network equipment, which can reduce the number of times the TUE searches for the SSB; inform the TUE cell ID through the CUE, which can reduce the power consumption of the TUE blindly detect the cell ID; and the embodiment shown in Figure 6 can slow down the TUE Power consumption speed.
  • the CUE implicitly indicates the resource location of the SSB through the SL-SS; in the embodiment shown in FIG. 6, the CUE uses the side link control information or the side link data channel or the side link
  • the indication information in the channel broadcast channel explicitly indicates the resource location of the SSB.
  • the TUE has not been synchronized with the CUE, or the synchronization signal of the CUE has been acquired to synchronize with the CUE; in the embodiment shown in FIG. 6, the TUE has acquired the synchronization signal of the CUE, Synchronize with the CUE, and then the CUE sends indication information to the TUE through the side link control information or the side link data channel or the side link broadcast channel.
  • Both the embodiment shown in FIG. 3 and the embodiment shown in FIG. 6 can realize that the TUE obtains the SSB with low power consumption, thereby reducing the power consumption speed of the TUE.
  • the method provided in the embodiments of the present application is introduced from the perspective of interaction, and the communication system provided in the embodiments of the present application is also introduced.
  • the terminal device and the network device may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. . Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 10 is a schematic diagram of the logical structure of a communication device provided in an embodiment of this application.
  • the communication device 90 includes a processing module 901 and a communication module 902.
  • the communication device can realize the function of the first terminal device in the embodiment of the present application, and can also realize the function of the second terminal device in the embodiment of the present application.
  • the communication device 90 is used to implement the function of the second terminal device in the embodiment of the present application:
  • the processing module 901 is used to receive indication information from the first terminal device using the communication module 902, the indication information is used to indicate the resource location of the synchronization signal block; according to the resource location of the synchronization signal, the communication module 902 is used to receive the synchronization signal block from the network device .
  • the communication device 90 is used to implement the functions of the second terminal device. For details, refer to the functions implemented by the TUE in the embodiment shown in FIG. 3 or FIG. 6, and details are not described herein again.
  • the communication device 90 is used to implement the function of the first terminal device in the embodiment of the present application:
  • the communication module 902 is configured to send instruction information to the second terminal device, where the instruction information is used to indicate the resource location of the synchronization signal block, and the synchronization signal block is used to communicate with the network device.
  • the processing module 901 is used to determine the resource location of the synchronization signal block.
  • the communication device 90 is used to implement the functions of the first terminal device. For details, reference may be made to the functions implemented by the CUE in the embodiment shown in FIG. 3 or FIG. 6, which will not be repeated here.
  • the division of modules in the embodiments of this application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • FIG. 11 is a schematic diagram of a logical structure of a communication device provided in an embodiment of this application.
  • the communication device 100 shown in FIG. 11 can be used to implement the function of the second terminal device in the above method.
  • the device can be the second terminal device, or the device in the second terminal device, or it can be matched with the second terminal device.
  • the communication device 100 may also be used to implement the function of the first terminal device in the above method.
  • the device may be the first terminal device, the device in the first terminal device, or the device matched with the first terminal device.
  • the communication device 100 may also be used to implement the function of the network device in the above method.
  • the communication device 100 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 100 includes at least one processor 1020.
  • the processor 1020 may execute step 304 in the embodiment shown in FIG. 3; step 604 in the embodiment shown in FIG. 6 .
  • the processor 1020 may execute step 302 in the embodiment shown in FIG. 3; and step 602 in the embodiment shown in FIG. 6.
  • the communication device 100 may also include at least one memory 1030 for storing program instructions and/or data.
  • the memory 1030 and the processor 1020 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may operate in cooperation with the memory 1030.
  • the processor 1020 may execute program instructions stored in the memory 1030. At least one of the at least one memory may be included in the processor.
  • the communication device 100 may further include a communication interface 1010 for communicating with other devices through a transmission medium, so that the communication device 100 can communicate with other devices.
  • the communication interface may be a transceiver, an interface, a bus, a circuit, or a device capable of implementing the transceiver function.
  • the other device may be a network device or a first terminal device, and the communication interface 1010 may perform step 303 in the embodiment shown in FIG. 3 And step 305; step 603 and step 605 in the embodiment shown in FIG. 6.
  • the other devices may be network devices or second terminal devices, and the communication interface 1010 may perform step 301 in the embodiment shown in FIG. 3 And step 303; step 601 and step 603 in the embodiment shown in FIG. 6.
  • the embodiment of the present application does not limit the specific connection medium between the aforementioned communication interface 1010, the processor 1020, and the memory 1030.
  • the memory 1030, the processor 1020, and the communication interface 1010 are connected by a bus 1040.
  • the bus is represented by a thick line in FIG. 11, and the connection modes between other components are only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the embodiment of the present application also provides a communication system, which may include a first terminal device and a second terminal device, and optionally, a network device.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, terminal equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium, or a semiconductor medium.
  • the embodiments can be mutually cited.
  • methods and/or terms between method embodiments can be mutually cited, such as functions and/or functions between device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种同步信号块指示方法及通信装置,可以应用于物联网场景中,用于低功耗地获取同步信号块。其中,该方法可包括:第一终端设备向第二终端设备发送指示信息,该指示信息用于指示该同步信号块的资源位置;第二终端设备在接收到该指示信息的情况下,根据该同步信号块的资源位置,从网络设备接收该同步信号块;从而第二终端设备无需直接盲检网络设备广播的同步信号块,通过第一终端设备的协助从网络设备接收同步信号块,可减少搜索次数,减少功耗开销。

Description

同步信号块指示方法及通信装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种同步信号块指示方法及通信装置。
背景技术
第五代(5 th generation,5G)移动通信技术(或称为新空口(new radio,NR))可以支持三大类型通信,分别为增强移动宽带(enhanced mobile broadband,eMBB)通信、高可靠低时延通信(ultra-reliable low-latency communication,URLLC)和海量机器类通信(massive machine type communications,mMTC)。
其中,mMTC也可以称为大规模物联网。mMTC可以应用在家庭、工业、公共场所等场景中,该场景中可以包括大量的、各种形态的终端设备。例如,在工业自动化场景中,厂房中可以包括大量的监控设备(camera)、机器(machine)、传感器(sensor)等;日常工作生活场景中,可以包括手机、穿戴式设备、智能家电、车载终端等。
发明内容
本申请实施例提供一种同步信号块指示方法及通信装置,通过该方法终端设备可以低功耗获取同步信号块,进而减缓该终端设备的功耗速度。
本申请实施例第一方面提供一种同步信号块指示方法,包括:
从第一终端设备接收指示信息,该指示信息用于指示同步信号块的资源位置;
根据同步信号块的资源位置,从网络设备接收该同步信号块。
可选地,第一终端设备为功耗不敏感的终端设备,执行第一方面的方法可以是功耗敏感的第二终端设备,也可以是第二终端设备的部件(例如处理器、芯片、或芯片系统等)。
本申请实施例第一方面,通过从第一终端设备接收指示信息获知同步信号块的资源位置,进而根据该同步信号块的资源位置,从网络设备接收该同步信号块,无需直接盲检网络设备广播的同步信号块,可减少第二终端设备搜索同步信号块的次数,进而可以低功耗获取同步信号块,可减缓第二终端设备的功耗速度。
在一种可能的实现方式中,上述指示信息是通过侧链路同步信号携带的。即通过侧链路同步信号对同步信号块的资源位置进行指示,使得第二终端设备通过侧链路同步信号可以获知同步信号块的资源位置,以便第二终端设备从网络设备接收同步信号块,从而可以节省信令开销。
在一种可能的实现方式中,上述指示信息是通过侧链路同步信号携带的,可包括:侧链路同步信号的图样用于指示同步信号块的资源位置。可选地,侧链路同步信号的图样用于指示该侧链路同步信号相对于同步信号块的频域位置偏移、和/或时域位置偏移。可选地,侧链路同步信号的图样用于指示参考位置相对于同步信号块的频域位置偏移、和/或时域位置偏移。可选地,参考位置是侧链路同步信号中的特定位置。可选地,侧链路同步信号的图样包括侧链路同步信号的序列值。
该方式中,通过侧链路同步信号的图样隐式指示同步信号块的资源位置,使得第二终端设备在获知侧链路同步信号的图样的情况下,可以获知同步信号块的资源位置,以便第 二终端设备从网络设备接收同步信号块,从而可以节省信令开销。
在一种可能的实现方式中,侧链路同步信号的传输周期小于同步信号块集的传输周期,同步信号块集中包括一个或多个同步信号块。例如同步信号块集的传输周期为40毫秒,侧链路同步信号的传输周期为20毫秒。即增加侧链路同步信号在时域的密度,以减少第二终端设备搜索侧链路同步信号的次数,从而减少功耗。进一步的,还可增加侧链路同步信号在频域的密度,或可增加侧链路同步信号在时域以及频域的密度。
在一种可能的实现方式中,上述指示信息是通过侧链路控制信道携带的。即指示信息携带在侧链路控制信息中。通过侧链路控制信道携带指示信息,对同步信号块的资源位置进行指示,以便第二终端设备获知同步信号块的资源位置。
上述指示信息可包括时域指示信息,时域指示信息用于指示同步信号块的时域资源位置;或,用于指示同步信号块相对于该侧链路控制信道的时域资源位置;或,用于指示同步信号块相对于侧链路数据信道的时域资源位置,该侧链路数据信道是与该侧链路控制信道相关联的数据信道。
上述指示信息可包括频域指示信息,频域指示信息用于指示同步信号块的频域资源位置;或,用于指示同步信号块相对于该侧链路数据信道的频域资源位置;或,用于指示同步信号块相对于侧链路控制信道的频域资源位置,该侧链路数据信道是与该侧链路控制信道相关联的数据信道。
上述指示信息可包括上述时域指示信息和上述频域指示信息。
在一种可能的实现方式中,上述指示信息是通过侧链路数据信道携带的。即指示信息携带在侧链路数据信息中。通过侧链路数据信道携带指示信息,对同步信号块的资源位置进行指示,以便第二终端设备获知同步信号块的资源位置。
上述指示信息包括时域指示信息,时域指示信息用于指示同步信号块的时域资源位置;或,用于指示同步信号块相对于该侧链路数据信道的时域资源位置;或,用于指示同步信号块相对于侧链路控制信道的时域资源位置,该侧链路控制信道是与该侧链路数据信道相关联的控制信道。
上述指示信息包括频域指示信息,频域指示信息用于指示同步信号块的频域资源位置;或,用于指示同步信号块相对于该侧链路数据信道的频域资源位置;或,用于指示同步信号块相对于侧链路控制信道的频域资源位置,侧链路控制信道是与侧链路数据信道相关联的控制信道。
上述指示信息可包括上述时域指示信息和上述频域指示信息。
在一种可能的实现方式中,上述指示信息是通过侧链路广播信道携带的。即指示信息携带在侧链路广播信息中。通过侧链路广播信道携带指示信息,对同步信号块的资源位置进行指示,以便第二终端设备获知同步信号块的资源位置。
上述指示信息包括时域指示信息,时域指示信息用于指示同步信号块的时域资源位置;或,用于指示同步信号块相对于侧链路同步信号块的时域资源位置;或,用于指示同步信号块相对于该侧链路广播信道的时域资源位置。
上述指示信息包括频域指示信息,频域指示信息用于指示同步信号块的频域资源位置;或,用于指示同步信号块相对于侧链路同步信号块的频域资源位置;或,用于指示同步信 号块相对于该侧链路广播信道的频域资源位置。
上述指示信息可包括上述时域指示信息和上述频域指示信息。
其中,侧链路同步信号块可包括侧链路同步信号和侧链路广播信道,侧链路同步信号可包括侧链路主同步信号和侧链路辅同步信号。
上述指示信息通过侧链路控制信道、侧链路数据信道或侧链路广播信道携带,可以理解是一种显式指示方式。
在一种可能的实现方式中,上述指示信息还用于指示同步信号块集的传输周期。通过该方式,第二终端设备根据同步信号块集的传输周期以及同步信号块的资源位置,确定后续同步信号块集的传输周期中同步信号块的资源位置,对这些同步信号块进行累加,可以增强同步信号块的接收强度,从而增强覆盖。例如指示信息用于指示同步信号块3的资源位置,同步信号块3为传输周期中的第三个同步信号块,那么第二终端设备可根据同步信号块3的资源位置以及传输周期,确定后续传输周期中同步信号块3的资源位置。或,同步信号的传输周期与同步信号块的资源位置通过不同的指示信息进行指示。
在一种可能的实现方式中,上述指示信息还用于指示小区标识,该小区标识为第一终端设备或第二终端设备所属小区的标识,第一终端设备与第二终端设备属于同一小区。或,小区标识与同步信号块的资源位置通过不同的指示信息进行指示。
在一种可能的实现方式中,上述指示信息所指示的同步信号块的资源位置,为第一终端设备搜索到的同步信号块的资源位置,可将其称为第一同步信号块的资源位置,第二终端设备可根据同步信号块集的传输周期和第一同步信号块的资源位置确定第二同步信号块的资源位置,第二同步信号块的资源位置可以是后续同步信号块集的传输周期中与第一同步信号块顺序相同的同步信号块,例如第一同步信号块为同步信号块集的传输周期1中的第三个同步信号块,第二同步信号块为同步信号块集的传输周期2中的第三个同步信号块,同步信号块集的传输周期2为同步信号块集的传输周期1的下一个传输周期。第二终端设备可从网络设备接收第一同步信号块或第二同步信号块。
或,上述指示信息所指示的同步信号的资源位置,为第一终端设备确定的第二同步信号块的资源位置,第二终端设备可从网络设备接收第二同步信号块。
本申请实施例第二方面提供一种通信装置,该通信装置可以是第二终端设备,也可以是第二终端设备中的装置,或者是能够与第二终端设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性的,
处理模块,用于利用通信模块从第一终端设备接收指示信息,该指示信息用于指示同步信号块的资源位置;根据同步信号的资源位置,利用通信模块从网络设备接收同步信号块。
针对指示信息等的介绍可参考第一方面的相应介绍,这里不再赘述。
本申请实施例第三方面提供一种通信装置,该装置包括处理器,用于实现上述第一方面描述的方法。该装置还可以包括存储器,用于存储指令和/或数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的指令时,可以实现上述第一方面描述的方法。该装 置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为网络设备、第一终端设备等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用收发器从第一终端设备接收指示信息,该指示信息用于指示同步信号块的资源位置;根据所述同步信号的资源位置,利用所述收发器从网络设备接收所述同步信号块。
针对指示信息等的介绍可参考第一方面的相应介绍,这里不再赘述。
本申请实施例第四方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面提供的方法。
本申请实施例第五方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面提供的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第六方面提供一种同步信号块指示方法,包括:
向第二终端设备发送指示信息,该指示信息用于指示所述同步信号块的资源位置,该同步信号块用于和网络设备进行通信。
可选地,第二终端设备为功耗敏感的终端设备,执行第六方面的方法可以是功耗不敏感的第一终端设备,也可以是第一终端设备的部件(例如处理器、芯片、或芯片系统等)。
在一种可能的实现方式中,第一终端设备确定第一同步信号块的资源位置,第一同步信号块为第一终端设备搜索到的同步信号块。或,第一终端设备确定第二同步信号块的资源位置,第二同步信号块与第一同步信号块为不同同步信号块集的传输周期中相同顺序或排序的同步信号块。例如第一同步信号块为同步信号块集的传输周期1中的第三个同步信号块,第二同步信号块为同步信号块集的传输周期2中的第三个同步信号块,同步信号块集的传输周期2为同步信号块集的传输周期1的下一个传输周期。
针对指示信息等的介绍可参考第一方面的相应介绍,这里不再赘述。
本申请实施例第七方面提供一种通信装置,该通信装置可以是第一终端设备,也可以是第一终端设备中的装置,或者是能够与第一终端设备匹配使用的装置。一种设计中,该装置可以包括执行第六方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性的,
处理模块,利用通信模块,向第二终端设备发送指示信息,该指示信息用于指示同步信号块的资源位置,所述同步信号块用于和网络设备进行通信。
针对指示信息等的介绍可参考第一方面的相应介绍,这里不再赘述。
本申请实施例第八方面提供一种通信装置,该装置包括处理器,用于实现上述第六方面描述的方法。该装置还可以包括存储器,用于存储指令和/或数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的指令时,可以实现上述第六方面描述的方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为网络 设备、第二终端设备等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,利用收发器,向第二终端设备发送指示信息,该指示信息用于指示同步信号块的资源位置,该同步信号块用于和网络设备进行通信。
在一种可能的实现方式中,处理器,具体用于确定第一同步信号块的资源位置,第一同步信号块为第一终端设备搜索到的同步信号块。或,处理器,具体用于确定第二同步信号块的资源位置,第二同步信号块与第一同步信号块为不同同步信号块集的传输周期中相同顺序或排序的同步信号块。
针对指示信息等的介绍可参考第一方面的相应介绍,这里不再赘述。
本申请实施例第九方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第六方面提供的方法。
本申请实施例第十方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第六方面提供的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十一方面提供一种通信系统,该通信系统包括实现第一终端设备的功能的通信装置(例如第一终端设备)和实现第二终端设备的功能的通信装置(例如第二终端设备),可选的还包括网络设备。
本申请实施例第十二方面提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第六方面提供的方法。
附图说明
图1为本申请实施例提供的一种同步信号块的时域位置的示例图;
图2为本申请实施例提供的一种网络架构示意图;
图3为本申请实施例提供的一种同步信号块指示方法的流程示意图;
图4为本申请实施例提供的CUE搜索SSB的示例图;
图5为本申请实施例提供的TUE获取SSB的示例图;
图6为本申请实施例提供的另一种同步信号块指示方法的流程示意图;
图7为本申请实施例提供的通过侧链路控制信道指示SSB的示例图;
图8为本申请实施例提供的通过侧链路数据信道指示SSB的示例图;
图9为本申请实施例提供的通过侧链路广播信道指示SSB的示例图;
图10为本申请实施例提供的一种通信装置的逻辑结构示意图;
图11为本申请实施例提供的另一种通信装置的实体结构简化示意图。
具体实施方式
为了更好地理解本申请实施例提供的技术方案,首先对本申请实施例涉及的技术或名称进行介绍。
(1)侧链路(sidelink,SL)
侧链路,也可以称为边链路、副链路或旁链路等。侧链路是用于设备到设备(device-to-device,D2D)直接通信的链路。例如,侧链路是一个终端设备和另一个终端设 备之间的链路,用于该一个终端设备和另一个终端设备直接传输信息,该信息不需要网络设备在该一个终端设备和另一个终端设备之间进行转发。
在本申请实施例中,传输可以包括发送和/或接收。例如,一个终端设备和另一个终端设备传输信息,包括:该一个终端设备向该另一个终端设备发送该信息,该另一个终端设备从该一个终端设备接收该信息;或,该一个终端设备从该另一个终端设备接收该信息,该另一个终端设备向该一个终端设备发送该信息。例如,网络设备和终端设备传输信息,包括:网络设备向终端设备发送下行信息,终端设备从网络设备接收该下行信息;或,终端设备向网络设备发送上行信息,网络设备从终端设备接收该上行信息。
侧链路物理层信道主要包括侧链路数据信道(如物理侧链路共享信道(physical sidelink shared channel,PSSCH)、和/或物理侧链路发现信道(physical sidelink discovery channel,PSDCH))、物理侧链路控制信道(physical sidelink control channel,PSCCH)、侧链路同步信号(sidelink synchronization signal,SL-SS)、和/或物理侧链路广播信道(physical sidelink broadcast channel,PSBCH)。PSSCH也可以描述为侧链路共享信道,PSDCH也可以描述为侧链路发现信道,PSCCH也可以描述为侧链路控制信道,PSBCH也可以描述为侧链路广播信道。
其中,PSCCH可以携带或者用于指示PSSCH的调度信息,例如用于指示PSSCH的以下传输参数中的一种或多种:资源位置(如时域资源和/或频域资源位置)、传输块大小(transport block size,TBS)、调制和编码机制(modulation and coding scheme,MCS)、调制机制、编码码率、和冗余版本(redundancy version,RV)等。PSSCH可以携带数据信息,例如携带从一个终端设备发送至另一个终端设备的数据信息,该数据信息中可以包括高层控制信令和/或业务数据。
终端设备与终端设备之间通信的基础包括终端设备之间实现同步,终端设备之间可使用SL-SS实现终端设备之间的同步。SL-SS可包括侧链路主同步信号(sidelink primary synchronization signal,SL-PSS)和侧链路辅同步信号(sidelink secondary synchronization signal,SL-SSS),SL-PSS与SL-SSS成对出现,可均为ZC(Zadoff-Chu)序列,在规定的时频资源上传输(与下述同步信号块(synchronized signal block,SSB)的时频资源相似)。
(2)终端设备与网络设备之间的下行同步
一个网络设备可以管理一个或多个小区。终端设备可以在网络设备所管理的小区中随机接入网络设备,以在该小区中与网络设备进行通信。终端设备随机接入网络设备之前或者与网络设备进行通信之前,需实现与网络设备之间的下行同步,从而可以获取小区系统信息,该系统信息中可以包括小区的随机接入的配置等信息。
在一种可能的实现中,网络设备周期性地向终端设备广播同步信号块SSB,SSB中包括同步信号(例如主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS))和物理广播信道(physical broadcast channel,PBCH)。PBCH上承载的信息可以称为主系统信息块(master information block,MIB)。
在本申请实施例中,PSS、SSS和PBCH可以SSB的形式组合发送,也可以以分离的形式发送,本申请实施例不做限制。PSS、SSS和PBCH的相对资源位置可以是预定义的或者固定的,或者根据其中一个可以得到其中另一个的资源位置,例如根据PSS可以得到SSS 和/或PBCH的资源位置,根据SSS可以得到PSS和/或PBCH的资源位置,根据PBCH可以得到PSS和/或SSS的资源位置。
终端设备,例如第一终端设备和/或第二终端设备,可以利用SSB和网络设备进行通信。示例性地,终端设备在时频资源中接收SSB(例如第一终端设备在时频资源中搜索SSB,例如第二终端设备根据第一终端设备的指示在时频资源中接收SSB),利用SSB中的同步信号实现与网络设备之间的下行同步。进一步地,终端设备可以根据SSB中MIB的指示,进一步地获取其他系统信息。根据该系统信息,终端设备可以在小区中接入网络设备,随后终端设备可向网络设备发送数据(例如通过物理上行共享信道(physical uplink shared channel,PUSCH)发送上行数据),或从网络设备接收数据(例如通过物理下行共享信道(physical downlink shared channel,PDSCH)接收下行数据)。
终端设备,例如第一终端设备,可在开机后或失去下行同步信号的情况下,执行搜索SSB的过程。搜索SSB,也可以描述为盲检SSB或扫描SSB等。
(3)终端设备搜索SSB的过程
终端设备在SSB可能出现的时域位置和频域位置中扫描SSB,可包括时域扫描和频域扫描。
对于频域扫描,在一种可能的实现中,设置或规定了SSB在频域的同步栅格(synchronization raster),用于确定SSB的中心频率可能出现的频点,可参见下表1所示。以表1为例,在0~3000MHz频段内,SSB的中心频率可能出现在频点N*1200kHz+M*50kHz上。若终端设备无先前保存的小区(cell)信息(例如刚开机时),将逐一尝试不同的N和M值,在不同N和M值确定的频点上检测同步信号。
表1
Figure PCTCN2019121772-appb-000001
表1中,GSCN以及GSCN的范围用于限定N和M的取值。表1仅用于举例,实际中表1中的公式可以是其它多项式,表1中的行数也可以是其它行数等,本申请实施例不做限制。
对于时域扫描,在支持多子载波间隔的通信系统中,可以为各子载波间隔独立配置SSB的时域位置,不同子载波间隔的SSB的时域位置可以相同,也可以不同,本申请实施例不 做限制。在一种可能的实现中,多个SSB包括于一个SSB集(burst)中,一个SSB burst的时长为5毫秒(ms)。实现过程中,网络设备可以采用空间波束扫描的方式发送SSB,终端设备在5ms内扫描完一个SSB burst。一个无线帧的长度为10ms,该无线帧中包括前半帧和后半帧,该无线帧还可以简称为帧。网络设备可以支持在前5ms(前半帧)发送一个SSB burst或在后5ms(后半帧)发送一个SSB burst。可选地,网络设备是在前5ms发送还是后5ms发送了一个SSB burst可由PBCH的参考信号
Figure PCTCN2019121772-appb-000002
进行指示,例如由PBCH的解调参考信号(demodulation reference signal,DMRS)进行指示。在本申请实施例中,参考信号还可以称为导频。一个SSB burst的时长还可以是其它的值,本申请实施例不做限制。
一个SSB burst所包括的SSB个数,可以称为SSB burst大小(size)。示例性地,对于sub-3GHz频段,SSB burst size最大为4,即5ms内最多传输4个SSB;对于sub-3GHz~sub-6GHz频段,SSB burst size最大为8,即5ms内最多传输8个SSB;对于大于6GHz的频段,SSB burst最大为64,即5ms内最多传输64个SSB。网络设备可通过系统信息块(system information block,SIB)1中的参数(例如ssb-PeriodicityServingCell)为终端设备配置SSB burst的传输周期,可以是{5ms,10ms,20ms,40ms,80ms,160ms}中的一个。例如SSB burst的传输周期为20ms,表示每20ms传输一个SSB burst。本申请实施例中,SSB burst与SSB集、同步信号块集是同一个概念,可以互换;SSB burst的传输周期与同步信号块集的传输周期是同一个概念,可以互换。
终端设备在未从网络设备获得SSB burst的传输周期的情况下,例如刚开机时,终端设备可以按照默认的SSB burst的传输周期搜索SSB,例如该默认的SSB burst的传输周期为40ms,SSB burst的时长为5ms,那么终端设备可以在一个频点上最多搜索8个SSB burst,若未搜索到SSB则在另一个频点上搜索SSB。
示例性的,可参见图1所示的SSB的时域位置的示例图。图1中,SSB burst的传输周期为20ms,SSB burst size为8,SSB burst在一个传输周期中的一帧的前半帧(5ms)中发送,每5ms发送8个SSB。网络设备在发送一个SSB burst时,可以分别使用8个不同的波束方向发送该SSB burst中的8个SSB,每个SSB对应一个波束方向。示例性地,终端设备在未获得与网络设备之间的下行同步或失去与网络设备之间的下行同步的情况下,不知道SSB所在的时域位置,因此需要在各个时域符号上盲检SSB中的同步信号,基于图1所示的示例,终端设备可能需要在20ms内的每个时域符号上检索同步信号,直到获取到PSS和SSS。
(4)第一终端设备和第二终端设备
在本申请实施例中,第一终端设备还可以描述为协作用户设备(cooperating user equipment,CUE)或协作终端设备等。CUE可以直接从网络设备盲检测同步信号块SSB,可向其他UE(例如下述TUE)指示SSB的资源位置,即可协助其他UE从网络设备接收SSB。CUE可以从网络设备接收下行信号,例如PDSCH和/或下行参考信号等其它下行信号;CUE可以向网络设备发送上行信号,如PUSCH和/或上行参考信号其它上行信号。
第二终端设备还可以描述为目标用户设备(targeting user equipment,TUE)或目标终 端设备等。TUE可以借助其他UE(例如CUE)从网络设备接收SSB。TUE可以根据其他UE(例如上述CUE)的指示从网络设备接收SSB,TUE从网络设备接收SSB后,可以根据SSB与网络设备直接通信。例如,TUE根据CUE的指示得到SSB的资源位置,根据SSB的资源位置从网络设备接收SSB,利用SSB中的同步信号实现与网络设备之间的下行同步。TUE可以根据SSB中的MIB获取其他系统信息。根据该系统信息,TUE可以在小区中接入网络设备,并可向网络设备发送PUSCH和/或上行参考信号等其他上行信号,或可以从网络设备PDSCH和/或下行参考信号等其它下行信号。
可选地,在本申请实施例中,第一终端设备是功耗不敏感的终端设备,例如可以是有稳定电源的机器、监控设备或电池容量较大的手机等;第二终端设备是功耗敏感的终端设备,例如可以是传感器、穿戴式设备或NR轻(light)用户设备(user equipment,UE)等。
可选地,在本申请实施例中,第一终端设备都是功耗不敏感的终端设备,或者都是功耗敏感的终端设备。
本申请实施例中,功耗指的是功率效率,也可以描述为能耗、能量消耗、电量消耗或电池消耗等。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能基本相同或相似的技术特征进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例涉及的网络设备也可以称为网络侧设备,可以包括基站(base station,BS),可以是一种部署在无线接入网络中能够和终端设备进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的网络设备可以是5G中的基站或长期演进(long term evolution,LTE)中的基站,其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代基站节点(next generation Node B,gNB)。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例涉及的第一终端设备和第二终端设备可以是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是UE,其中,UE包括具有无线通信功能的手持式设备、车载设备、穿戴式设备或计算设备。示例性地,UE可以 是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、智能汽车(smart vehicle)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、等等。UE还可以是工业领域中的传感器等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中或者和终端设备匹配使用。根据终端设备是否根据其他终端设备的指示从网络设备接收SSB,或者根据终端设备是否仅通过盲检测从网络设备接收SSB,可将终端设备分为TUE和CUE。本申请实施例提供的技术方案中,第一终端设备以CUE为例,第二终端设备以TUE为例,描述本申请实施例提供的技术方案。
在一种可能的实现中,终端设备从网络设备盲检测SSB时,在搜索SSB的过程中,均需要在每个可能的频点、每个符号上尝试同步信号可能的序列。例如,PSS存在3种可能的序列,假设可能的频点有10个,可能的符号位置有10个,那么终端设备最少需尝试一次,最多需尝试10*10*3=300次才能搜索到网络设备发送的PSS。可见,终端设备搜索SSB的过程是持续接收、多次尝试的过程,功耗较高。对于功耗敏感的终端设备,若按照该方法搜索SSB,将加快该终端设备的功耗速度。
鉴于此,本申请实施例提供了同步信号块指示方法及通信装置,使得功耗敏感的终端设备可以以低功耗获取同步信号块,从而降低该类终端设备的功耗。可选地,本申请实施例提供的方法还可以应用于功耗不敏感的终端设备,以提高用户体验。
在本申请实施例中,第一终端设备向第二终端设备发送指示信息,该指示信息用于指示网络设备所发送的同步信号块SSB的资源位置;第二终端设备根据同步信号块的资源位置,从网络设备接收同步信号块。第一终端设备和/或第二终端设备可以根据所接收到的SSB和网络设备进行通信。第二终端设备根据SSB和网络设备进行通信时,例如传输PDSCH和/或PUSCH时,可以直接和网络设备传输该PDSCH和/或PUSCH,无需第一终端设备的协助,即无需第一终端设备转发或指示该PDSCH和/或PUSCH。
在本申请实施例中,终端设备有多种可能的实现方式确定该终端设备的类型(该终端设备是第一终端设备,或者,是第二终端设备)。一种可能的方式中,可以在用户身份模块(subscriber indentity module,SIM)卡中预先配置终端设备的类型,例如在SIM卡中配置终端设备为第一终端设备或第二终端设备。一种可能的方式中,为终端设备配置不同的号码段,例如,第一终端设备和第二终端设备使用的号码段不同,终端设备根据号码段确定该终端设备的类型。一种可能的方式中,终端设备可以自行确定其作为第一终端设备或第二终端设备。
请参见图2,为本申请实施例提供的一种网络架构示意图。该网络架构中包括网络设备201、第一终端设备202和第二终端设备203。需要说明的是,图2所示的设备的形态和数量用于举例,并不构成对本申请实施例的限定。
图2以一个SSB burst size为4为例,网络设备201可在前半帧或后半帧发送该SSB burst,一个SSB burst中的4个SSB可以分别记为SSB-1、SSB-2、SSB-3和SSB-4。第一终端设 备202从网络设备201盲检测SSB;第二终端设备203从第一终端设备202获得SSB的资源位置,并根据该SSB的资源位置从与网络设备201接收SSB。
网络设备201周期性地广播SSB burst,第一终端设备202搜索SSB。
在一种实现方式中,第一终端设备202在搜索到某个传输周期中的某个SSB的情况下,确定该SSB的资源位置。假设第一终端设备202搜索到传输周期1中的SSB-3,那么确定传输周期1中的SSB-3的资源位置。之后,第一终端设备202可向第二终端设备203发送指示信息,该指示信息用于指示传输周期1中的SSB-3的资源位置。第二终端设备203在接收到该指示信息的情况下,可根据该指示信息,从网络设备201接收传输周期1中的SSB,或传输周期n中的SSB。其中,n为正整数,表示传输周期1的下几个传输周期,例如n=2,表示传输周期1的下一个传输周期;n=3,表示传输周期1的下两个传输周期。第二终端设备203还可以从网络设备201接收多个传输周期中的SSB,例如接收传输周期2中的SSB,传输周期3中的SSB。
在另一种实现方式中,第一终端设备202在搜索到某个传输周期中的某个SSB的情况下,确定下一个或下几个传输周期中的该SSB的资源位置或多个传输周期中的该SSB的资源位置。假设第一终端设备202搜索到传输周期1中的SSB-3,那么确定传输周期n中的SSB-3的资源位置,或确定传输周期i至传输周期j中每个传输周期中SSB-3的资源位置。其中,n,i和j均为正整数,表示传输周期1的下几个传输周期,j大于i。之后,第一终端设备202可向第二终端设备203发送指示信息,该指示信息用于指示传输周期n中的SSB-3的资源位置,或用于指示传输周期i至传输周期j中每个传输周期中SSB-3的资源位置。第二终端设备203在接收到该指示信息的情况下,可根据该指示信息,从网络设备201接收传输周期n中的SSB,或接收多个传输周期中的SSB。
上述两种实现方式中,第二终端设备203从网络设备201接收SSB时,可以接收SSB-3,也可以接收SSB-1、SSB-2或SSB-4。如果一个SSB burst中,不同SSB之间的相对位置是预定义的或者固定的,如SSB-3与SSB-1之间、SSB-3与SSB-2之间、和/或SSB-3与SSB-4之间的相对位置是固定的,第二终端设备可以根据SSB-3的位置得到SSB-1、SSB-2和/或SSB-4的位置,从而可以接收SSB-1、SSB-2或SSB-4。类似的原理,第一终端设备202向第二终端设备203发送的上述指示信息可以不指示SSB-3的资源位置,而是指示传输周期中SSB-1、SSB-2或SSB-4的资源位置。
第一终端设备202在盲检测网络设备201广播的SSB时并不知道SSB的资源位置,不同于第一终端设备202,第二终端设备203可以不直接搜索或盲检测网络设备201广播的SSB,而是通过第一终端设备202的指示信息获知SSB的资源位置,根据该资源位置从网络设备201接收SSB,从而降低了第二终端设备203从网络设备接收SSB时的功耗,使得第二终端设备203以较小的功耗获取到网络设备201广播的SSB。
可选地,本申请实施例中,第二终端设备可以进行:从第一终端设备接收指示信息,根据该指示信息从网络设备接收SSB;和,从网络设备盲检测SSB。通过其中一种方式获得SSB后,第二终端设备便可以停止该过程。通过该方法,可以加快第二终端设备从网络设备获取SSB,从而降低第二终端设备获取SSB时的功耗。
上述指示信息可通过侧链路同步信号(SL-SS)携带,也可以通过侧链路控制信道、侧 链路数据信道或侧链路广播信道携带。即,上述指示信息可通过SL-SS、侧链路控制信道、侧链路数据信道或侧链路广播信道,由第一终端设备发送至第二终端设备。
上述传输周期指的是SSB burst的传输周期,也可以描述为同步信号块集的传输周期,SSB burst的传输周期可以是{5ms,10ms,20ms,40ms,80ms,160ms}中的一个,也可以是其它的数值,本申请实施例不做限制。本申请实施例以SSB为例进行描述,其技术本质是为了避免第二终端设备从网络设备盲检测信息,其他用于描述该技术本质的名称、术语或方法也落入本申请实施例的保护范围。例如,本申请实施例提供的方法中的SSB可以被替换为用于承载同步信号的信息或信道,或用于发送同步信号的信息或信道等;例如,本申请实施例提供的方法中的SSB可以被替换为用于承载广播信号的广播信道,或者被替换为广播信号的参考信号等。
第一终端设备202与第二终端设备203之间的通信可以通过侧链路实现,通信方式可以是单播方式、组播方式或广播方式。单播为终端设备之间一对一的通信模式,能够接收单播数据的终端设备是单一的终端设备。组播为终端设备之间一对多的通信模式,能够接收组播数据的终端设备是特定组内的终端设备。广播为终端设备之间一对所有的通信模式,发送端周围特定区域的终端设备都能够接收广播数据。
本申请实施例可以应用于第二终端设备203尚未开始搜索SSB,或已开始尝试搜索但未搜索到SSB的场景中。第二终端设备203在通过第一终端设备202获取SSB的过程中,可能已经与第一终端设备202同步,也可能尚未与第一终端设备202同步。
图2所示的网络架构以5G系统为例,本申请实施例还可以应用于第四代(4 th generation,4G)移动通信技术系统中(如LTE),还可以应用于未来通信系统中,例如第六代(6 th generation,6G)移动通信技术系统等,本申请实施例不做限制。
本申请实施例还可以应用于包括三种通信实体的系统中,这三种通信实体包括第一实体(例如基站)、第二实体(可从第一实体盲检测信号)和第三实体(通过第二实体的协助,从第一实体接收该信号)。第一实体可以广播同步信号;第二实体可以从第一实体接收同步信号,向第三实体发送同步信号的指示信息;第三实体可以从第二实体接收同步信号的指示信息,根据指示信息从第一实体接收同步信号。其中,第二实体从第一实体接收同步信号,可以是从第一实体盲检测同步信号;或者可以由第四实体向第二实体指示同步信号的位置,使得第二实体可以从第一实体接收同步信号,本申请实施例不做限制。
本申请实施例中涉及的资源位置可以包括以下一种或多种:时域资源位置、频域资源位置、码域资源位置和空域资源位置。
下面将结合图2所示的网络架构对本申请实施例提供的同步信号块指示方法进行详细介绍。在介绍过程中,第一终端设备以CUE为例,第二终端设备以TUE为例,资源位置以包括时域资源位置和频域资源位置为例。
请参见图3,为本申请实施例提供的一种同步信号块指示方法的流程示意图,可以包括但不限于如下步骤:
301,网络设备广播SSB burst。
网络设备可以周期性地向其覆盖范围内的UE广播SSB burst,例如向其覆盖的小区中的UE广播SSB burst。广播SSB burst的周期可以理解为SSB burst的传输周期,可以是 {5ms,10ms,20ms,40ms,80ms,160ms}中的一个,或者其它的数值,本申请实施例不做限制。例如,SSB burst的传输周期为20ms,SSB burst size为4,网络设备每20ms广播一个SSB burst,该SSB burst包括4个SSB。
可选的,网络设备还周期性地向其覆盖范围内的UE广播系统信息,广播系统信息的周期可与广播SSB burst的周期相同或不相同。系统信息可与SSB burst携带在同一信息中广播,也可携带不同的信息分别广播。
302,CUE搜索SSB,并确定SSB的资源位置。
CUE搜索网络设备广播的SSB,并在当前的传输周期i中搜索到SSB的情况下,确定该SSB的资源位置。进一步的,CUE可确定后续传输周期i+k中该SSB或其它SSB的资源位置。其中,当前的传输周期i和后续传输周期i+k均指的是SSB burst的传输周期。其中,i为整数,例如0、1、2或其它整数,k为正整数,例如1、2、3或其它正整数,本申请实施例不做限制。
示例性的,可参见图4所示的CUE搜索SSB的示例图,该示例中假设SSB burst size为4,即5ms内传输4个SSB;SSB burst的传输周期为20ms;当前的SSB burst的传输周期为SSB burst的传输周期i。CUE通过盲检在SSB burst的传输周期i中搜索到SSB-3,SSB-3可以认为是四个SSB中在CUE侧接收功率或信噪比最高的SSB,或接收能量或信噪比超过门限的SSB等。
CUE可确定SSB burst的传输周期i中SSB-3的资源位置,那么CUE确定的SSB的资源位置即为CUE在SSB burst的传输周期i搜索到的SSB-3的资源位置。CUE搜索到的SSB,也可以描述为CUE接收到的SSB,或CUE期望TUE接收的SSB等。本申请实施例中,如果CUE与TUE距离接近,即两者之间的距离小于预设值(例如5m等),这样TUE与CUE可以接收相同的波束,那么TUE与CUE可以接收同一SSB burst的传输周期中的同一SSB,或接收不同SSB burst的传输周期中的同一SSB,该SSB可以称为CUE期望TUE接收的SSB。图4中,用黑色阴影表示TUE可以接收到的SSB或CUE期望TUE可以接收到的SSB。
CUE可以根据SSB得到同步信号块集的传输周期。CUE在接收到SSB-3的情况下,可根据SSB中的MIB指示,获取小区(即该CUE所属的小区)或一组UE(即包括该CUE的一组UE)的公共搜索空间。即CUE获取公共物理下行控制信道(physical downlink control channel,PDCCH)的资源配置信息,根据该资源配置信息在公共PDCCH的搜索空间中搜索公共PDCCH;在搜索到公共PDCCH的情况下,获取公共PDCCH上携带的下行控制信息(downlink control information,DCI);根据该DCI的指示接收物理下行共享信道(physical downlink shared channel,PDSCH),该PDSCH上携带SIB1。其中,SIB1中的参数(例如ssb-PeriodicityServingCell)可以指示SSB burst的传输周期,即同步信号块集的传输周期,以便网络设备覆盖范围内的UE可以获知同步信号块集的传输周期,进而可以确定后续SSB burst的传输周期中UE可能搜索到的SSB。
进一步的,CUE在接收到SSB burst的传输周期i中的SSB-3之后,可确定后续SSB burst的传输周期中的SSB-3的资源位置。具体可根据SSB burst的传输周期i中的SSB-3的资源位置,以及SIB1所指示的SSB burst的传输周期,确定后续SSB burst的传输周期中的SSB-3 的资源位置,例如确定SSB burst的传输周期i+1中的SSB-3的资源位置,确定SSB burst的传输周期i+2中的SSB-3的资源位置等等。那么CUE确定的SSB的资源位置即为后续SSB burst的传输周期中的SSB-3的资源位置。
由上归纳可知,在第一种实现方式中,CUE确定第一SSB的资源位置,第一SSB为CUE在第一SSB所在SSB burst的传输周期中搜索到的SSB;在第二种实现方式中,CUE确定第二SSB的资源位置,第二SSB在其所在SSB burst的传输周期中的位置与第一SSB在其所在传输周期中的位置相同。例如,第一SSB为SSB burst的传输周期i中的SSB-3,第二SSB为SSB burst的传输周期i+1中的SSB-3。
示例性地,CUE确定第一SSB的资源位置可包括确定第一SSB的时域资源位置,或确定第一SSB的频域资源位置,或确定第一SSB的时域资源位置和第一SSB的频域资源位置。
CUE可参考前述(3)终端设备搜索SSB的过程中对频域扫描,确定第一SSB的频域资源位置。频域资源位置可用频点、频域栅格、所映射至的资源块(resource block,RB)、和所映射至的子载波等中的一个或多个表示。SSB的频点可以包括SSB的中心频率的频点、起始频率的频点、或结束频率的频点等。SSB所映射至的RB可以包括SSB所映射至的起始RB、中心RB或结束RB等。SSB所映射至的子载波可以包括SSB所映射至的起始子载波、中心子载波或结束子载波等。
示例性的,CUE可根据表1和其所在小区的频段(例如为0~3000MHz)多次尝试N和M值,进而确定第一SSB的中心频率的频点。CUE可通过搜索公共PDCCH的过程获取其所在小区的频段。
CUE可参考前述(3)终端设备搜索SSB的过程中对时域扫描,确定第一SSB的时域资源位置。时域资源位置可采用秒、毫秒、帧索引、子帧索引、时隙(slot)索引、符号(symbol)索引中的一种或多种表示,例如第一SSB的时域资源位置可表示为第二帧的第一个子帧的第一个时隙的第三个符号。
示例性地,CUE确定第二SSB的资源位置可包括确定第二SSB的时域资源位置,或确定第二SSB的频域资源位置,或确定第二SSB的时域资源位置和第二SSB的频域资源位置。可选地,第二SSB的频域资源位置与第一SSB的频域资源位置相同。第二SSB的时域资源位置与第一SSB的时域资源位置相差一个或多个SSB burst的传输周期。例如,第一SSB为SSB burst的传输周期i中的SSB-3,第二SSB为SSB burst的传输周期i+2中的SSB-3,那么第二SSB的时域资源位置与第一SSB的时域资源位置相差两个SSB burst的传输周期,假设SSB burst的传输周期为20ms,那么第二SSB的时域资源位置与第一SSB的时域资源位置相差40ms。
可选地,本申请中,TUE可以接收到的SSB或CUE期望TUE可以接收到的SSB与CUE接收到的SSB不同。示例性地,CUE接收到的SSB是SSB-3,CUE根据TUE和CUE之间的相对位置,估计出TUE可以接收到的SSB是SSB-4,则CUE可以向TUE指示SSB-4的位置。当所指示的SSB-4和CUE接收到的SSB-3在同一个SSB burst的传输周期时,所指示的SSB-4可以看做第一SSB,当所指示的SSB-4和CUE接收到的SSB-3不在同一个SSB burst的传输周期时,所指示的SSB-4可以看做第二SSB。在一个SSB burst的传输周 期中,SSB-3和SSB-4的相对资源位置是预定义的或者固定的。为了简化描述,本申请的各个实施例中,以TUE可以接收到的SSB或CUE期望TUE可以接收到的SSB与CUE接收到的SSB相同为例进行描述。
可选地,本申请中,TUE接收到的SSB可以与CUE接收到的SSB不同,例如CUE接收到的SSB是SSB-3,TUE可以接收到的SSB是SSB-4等,本申请实施例不做限制。示例性地,CUE接收到的SSB是SSB-3,CUE向TUE指示SSB-3的位置,TUE可以根据SSB-3的位置估计出SSB-1、SSB-2和/或SSB-4的位置,并尝试接收所指示的SSB-3和所估计出的SSB-1、SSB-2和/或SSB-4,TUE接收到的SSB是SSB-4。在一个SSB burst的传输周期中,各SSB的资源位置是预定义的或者固定的,或一个SSB和另一个SSB的相对资源位置是预定义的或者固定的。
303,CUE向TUE发送侧链路同步信号。相应的,TUE从CUE接收侧链路同步信号。
其中,侧链路同步信号可携带指示信息,该指示信息可用于指示第一SSB的资源位置,或指示第二SSB的资源位置。侧链路同步信号可携带该指示信息,也可以描述为:该指示信息通过侧链路同步信号发送或接收,或通过侧链路同步信号指示第一SSB或第二SSB的资源位置等。
可选地,侧链路同步信号的图样用于指示同步信号块的资源位置。通过指示信息指示第一SSB或第二SSB的资源位置,具体可通过侧链路同步信号的图样(pattern)指示第一SSB或第二SSB的资源位置。
在一种实现方式中,如表2所示,一种侧链路同步信号的图样对应一个索引。例如,协议可约定CUE与TUE之间的一个表格,或CUE与TUE通过其他方式约定该表格。该表格中的每一行用于指示一种第一SSB或第二SSB的时域资源位置、频域资源位置、和/或时频域资源位置。本申请实施例以每一行表示一个时频资源位置偏移(offset)(或offset的范围)为例,可参见下表2。表2中的值仅为举例,实际应用中可以是其它的值;表2中的图样的个数仅为举例,实际应用中可以是其它个数的图样,本申请实施例不做限制。
表2
Figure PCTCN2019121772-appb-000003
可选地,侧链路同步信号的图样(pattern)用于指示侧链路同步信号相对于第一SSB或第二SSB的频域位置偏移、和/或时域位置偏移。表2中,频点offset表示侧链路同步信号相对于第一SSB或第二SSB的频点偏移量,偏移量可以是一个确定的数值,也可以是一个范围。频点offset的单位可以是RB或子载波,也可以是表1中的N或M值,频点offset表示频域偏移信息。时域偏移信息表示侧链路同步信号相对于第一SSB或第二SSB的时域偏移量,可采用slot offset和symbol offset表示,slot offset和symbol offset可以是确定的数值,也可以是范围。表2中,offset可以是正值,也可以是负值,或者可以是0,例如,正 值表示右偏移或上偏移,负值表示左偏移或下偏移。可选地,slot offset可以预定义为0,或者symbol offset可以预定义为0。可选地,频点offset可以预定义为0。
可选地,侧链路同步信号的图样(pattern)用于指示参考位置相对于第一SSB或第二SSB的频域位置偏移、和/或时域位置偏移。例如,表2中,频点offset表示参考位置相对于第一SSB或第二SSB的频点偏移量,slot offset和symbol offset表示参考位置相对于第一SSB或第二SSB的时域偏移量。可选地,参考位置为侧链路同步信号的第一个符号的时域位置以及起始频率的频域位置,或为侧链路同步信号的第一个符号的时域位置以及中心频率的频域位置等。参考位置可以是预配置的,也可以是信令通知的,这个信令可以是网络设备通知给CUE和TUE,也可以是CUE通知给TUE,本申请实施里不做限制。可选地,slot offset可以预定义为0,或者symbol offset可以预定义为0。可选地,频点offset可以预定义为0。
示例性的,以CUE向TUE指示第二SSB的资源位置为例,CUE根据第二SSB的资源位置和侧链路同步信号的位置,从表2中选择index2,那么表示侧链路同步信号的起始频率的频点相对于第二SSB的起始频率的频点偏移5个RB,侧链路同步信号的第一个符合所在的slot相对于第二SSB的第一个符号所在的slot偏移2个slot,侧链路同步信号的第一个符号在其所在slot的符号位置相对于第二SSB的第一个符号在其所在的符号位置偏移1个符号。
CUE在确定index的情况下,可根据确定的index确定侧链路同步信号的图样。侧链路同步信号可以包括侧链路主同步信号(SL-PSS)和侧链路辅同步信号(SL-SSS),那么CUE分别确定SL-PSS的pattern和SL-SSS的pattern。其中,侧链路同步信号的图样还可以称为侧链路同步信号的序列值。
在一种实现方式中,SL-PSS序列值d PSS根据
Figure PCTCN2019121772-appb-000004
的不同,有三种pattern,可表示为:
Figure PCTCN2019121772-appb-000005
其中,
Figure PCTCN2019121772-appb-000006
x(i+7)=(x(i+4)+x(i))mod2,[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。d PSS的序列长度为128,d PSS(n)表示d PSS中第n个元素。
SL-SSS序列值d SSS根据
Figure PCTCN2019121772-appb-000007
的不同,有336种pattern,可表示为:
d SSS(n)=[1-2*x 0((n+m 0)mod127)]*[1-2*x 1((n+m 1)mod127)]
Figure PCTCN2019121772-appb-000008
其中,
Figure PCTCN2019121772-appb-000009
x 0(i+7)=(x 0(i+4)+x 0(i))mod2,x 1(i+7)=(x 1(i+1)+x 1(i))mod2, [x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)]=[0 0 0 0 0 0 1],[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)]=[0 0 0 0 0 0 1]。d SSS的序列长度为128,d SSS(n)表示d SSS中第n个元素。
侧链路标识(identity,ID)可表示为
Figure PCTCN2019121772-appb-000010
类似于小区ID可表示为
Figure PCTCN2019121772-appb-000011
SL-PSS有三种pattern,SL-SSS有336种pattern,那么SL-PSS与SL-SSS组合可构成1008种不同的侧链路同步信号的pattern。在这1008种侧链路同步信号pattern中,部分或全部pattern可用于对应至表2中index的值,即指示表2中的某一行。
在一种实现方式中,协议可以约定侧链路同步信号pattern与表2中的各个index之间的对应关系。在另一种实现方式中,网络设备也可以通过高层信令为CUE和TUE配置侧链路同步信号pattern与表2中的各个index之间的对应关系(前提条件是CUE和TUE曾进入过无线资源控制(radio resource control,RRC)连接态)。例如,侧链路同步信号pattern与index之间的对应关系可表示为:
Figure PCTCN2019121772-appb-000012
CUE根据选择的index值确定pattern,即确定
Figure PCTCN2019121772-appb-000013
Figure PCTCN2019121772-appb-000014
也即确定SL-PSS和SL-SSS的pattern,CUE通过侧链路向TUE发送所确定的pattern对应的侧链路同步信号。也可以理解为,CUE向TUE发送所确定的pattern对应的侧链路同步信号。CUE可以采用单播或广播或组播的方式,向TUE发送侧链路同步信号。
在一种实现方式中,相对SSB,CUE可以增加侧链路同步信号(SL-SS)在时频域的密度,向TUE发送SL-SS,以减少TUE搜索SL-SS的次数,从而减少TUE的功耗。示例性的,增加SL-SS在时域的密度,使得CUE向TUE发送SL-SS在时域上更频繁。增加SL-SS在时域的密度也可以描述为SL-SS的传输周期小于SSB burst的传输周期,例如SSB burst的传输周期为40ms,那么SL-SS的传输周期可以是20ms。
在一种实现方式中,协议中可以约定或者预定义SL-SS的传输周期,那么CUE按照约定的SL-SS的传输周期向TUE发送SL-SS,从而减少TUE的搜索SL-SS的次数,进而减少TUE的功耗。或,CUE的SIM卡(或称为用户身份识别卡等)中预定义发送SL-SS的频点和周期,CUE按照SIM卡预定义的频点和周期向CUE发送SL-SS,从而减少TUE的搜索SL-SS的次数,进而减少TUE的功耗。
CUE可以向TUE发送一种pattern的SL-SS,也可以向TUE发送多种pattern的SL-SS。
可选的,CUE向TUE发送SSB burst的传输周期,以便TUE获知SSB burst的传输周期,确定第二SSB的资源位置,或确定后续SSB burst的传输周期中TUE可能接收到的SSB的资源位置。SSB burst的传输周期也可通过指示信息进行指示,该指示信息可与SL-SS一同发送至TUE,也可以分别发送至TUE。
304,TUE根据侧链路同步信号确定SSB的资源位置。
在TUE还未检测出CUE发送的SL-SS的场景中,TUE可以在时频资源上盲检SL-SS,盲检SL-SS的过程与终端设备搜索SSB的过程类似,即在SL-SS可能出现的时频位置上搜索SL-SS。在TUE已经检测过CUE发送的SL-SS的场景中,TUE可以根据之前检测的SL-SS得到其他SL-SS所在的位置,进而接收该其他SL-SS。其中,SL-SS是周期性地传输的, 或者在预定义的固定位置传输的。TUE在接收到SL-SS的情况下,检测出SL-PSS和SL-SSS序列的pattern,进而确定pattern对应的index,例如在表2中确定该index对应的行,进而根据SL-SS的资源位置和该行,确定SSB的资源位置。
在一种实现方式中,SL-SS的pattern用于指示第一SSB的资源位置,那么表2用于表示第一SSB相对于SL-SS的偏移信息,TUE在接收到SL-SS的情况下,根据SL-SS的资源位置以及SL-SS的pattern确定对应的index,在表2中确定该index对应的行,进而确定第一SSB的资源位置。
进一步的,TUE在确定出第一SSB的资源位置的情况下,可根据SSB burst的传输周期,确定第二SSB的资源位置。第二SSB与第一SSB为不同SSB burst的传输周期中的同一SSB。
在一种实现方式中,SL-SS的pattern用于指示第二SSB的资源位置,那么表2用于表示第二SSB相对于SL-SS的偏移信息,TUE在接收到SL-SS的情况下,根据SL-SS的资源位置以及SL-SS的pattern确定对应的index,在表2中确定该index对应的行,进而确定第二SSB的资源位置。
305,TUE根据SSB的资源位置,从网络设备接收SSB。
在一种实现方式中,若TUE确定第一SSB的资源位置,那么TUE在该资源位置上从网络设备接收第一SSB。考虑传输时延,TUE可能接收不到第一SSB,那么TUE进一步确定第二SSB的资源位置,在第二SSB的资源位置上从网络设备接收第二SSB。
在一种实现方式中,若TUE确定第二SSB的资源位置,那么TUE在该资源位置上从网络设备接收第二SSB。
示例性的,可参见图5所示的TUE获取SSB的示例图,该示例中假设SSB burst size为4,CUE在观察的时间内先后发送两种pattern的SL-SS,第一种pattern指示偏移信息1,第二中pattern指示偏移信息2。TUE在接收到第一种pattern或第二种pattern的SL-SS的情况下,确定各自对应的偏移信息,进而确定SSB的资源位置。
在图3所示的实施例中,TUE不需要直接盲检网络设备广播的SSB,通过从CUE接收的SL-SS获取SSB的资源位置,进而通过该资源位置从网络设备接收SSB。可见,TUE无需直接盲检网络设备广播的SSB,可减少TUE搜索SSB的次数;通过CUE的SL-SS实现从网络设备接收SSB,可以低功耗获取SSB;进而图3所示实施例可减缓TUE的功耗速度。CUE可增加SL-SS在时频域的密度,向TUE发送SL-SS,减少TUE搜索SL-SS的次数,可进一步减少TUE的功耗。
请参见图6,为本申请实施例提供的另一种同步信号块指示方法的流程示意图,可以包括但不限于如下步骤:
601,网络设备广播SSB burst。
602,CUE搜索SSB,并确定SSB的资源位置。
步骤601-步骤602的实现过程可参见图3所示实施例中步骤301-步骤302的具体描述,在此不再赘述。
603,CUE向TUE发送指示信息。相应的,TUE接收来自CUE的指示信息。其中,指示信息用于指示第一SSB或第二SSB的资源位置。
在第一种指示信息可能的实现方式中,指示信息通过侧链路控制信道(PSCCH)携带,也可以描述为指示信息携带在PSCCH中,或CUE通过PSCCH向TUE发送指示信息,或PSCCH指示第一SSB或第二SSB的资源位置等。PSCCH用于承载侧链路控制信息(SL control information,SCI),可选的,SCI也可以携带指示信息。SCI可表示侧链路中,发送端对接收端的控制,载荷较小,例如SCI用于指示侧链路数据信道(PSSCH或PSDCH)的调度信息。侧链路数据信道用于承载侧链路数据信息,可由SCI调度,承载信息可较多。
指示信息可包括时域指示信息,或频域指示信息,或时域指示信息和频域指示信息。
对于指示信息包括时域指示信息的情况,时域指示信息可使用以下三种方式中的任一种进行指示(以指示信息用于指示第二SSB的资源位置为例进行描述,指示信息用于指示第一SSB的资源位置的方法是类似的):
方式一,时域指示信息用于指示第二SSB的时域资源位置,可以理解为时域指示信息用于直接指示第二SSB的时域资源位置,可以理解为一种绝对时间指示方式。其中,第二SSB的时域资源位置可包括以下至少一项:第二SSB所在的无线帧的帧号或范围、子帧的子帧号或范围、slot的slot号或范围、和符号的索引或范围。可选地,时域指示信息可以指示索引,该索引可用于确定第二SSB的时域资源位置。例如可参见下表3所示。TUE从CUE接收到索引后,可以查找表3,通过表3得到第二SSB的时域资源位置。表3中的值仅为举例,实际应用中可以是其它的值;表3中的索引的行数仅为举例,实际应用中可以是其它行,本申请实施例不做限制。
表3
Figure PCTCN2019121772-appb-000015
表3中,部分或全部参数可以设置为默认值,具体哪些参数是默认值可由CUE和TUE通过协议等方式约定。可选地,部分参数可以是表3中除index这列参数之外的某列或某几列参数,例如第二SSB所在的子帧的子帧号或范围这列参数可以设置为默认值;全部参数可以是表3中除index这列参数之外的所有列的参数。对于不是默认值的那部分参数,可由CUE通知TUE,例如,CUE通知TUE相对于前一次所通知的index对应的参数的偏移,这样可以降低信令开销。例如,第二SSB所在的slot的slot号这列参数不为默认值,CUE可通知TUE相对于前一次所通知的index对应的第二SSB所在的slot的slot号的偏移,假设偏移为2,前一次所通知的index为2,index2对应的第二SSB所在的slot的slot号为2,那么TUE可获知此次第二SSB所在的slot的slot号为4或0。再例如,第二SSB所在的slot的slot号这列参数不为默认值,CUE可通知TUE相对于预设值的偏移,假设偏移为2,预设值为2,那么TUE可获知此次第二SSB所在的slot的slot号为4或0。预设值可由协议约定。在SCI缺省的情况下,TUE默认获得部分或全部参数。SCI缺省可以理解为CUE 未发送SCI,或CUE未发送指示信息。
方式二,时域指示信息用于指示第二SSB相对于PSCCH的时域资源位置,可以理解为时域指示信息用于指示第二SSB与PSCCH之间的相对时间,可以理解为一种相对时间指示方式。第二SSB相对于PSCCH的时域资源位置,例如可以是第二SSB相对于PSCCH的第一个符号的时域资源位置,即将PSCCH的第一个符号的位置作为参考时域位置。方式二中,时域资源位置可以包括以下至少一项:偏移帧数(可选,若帧数未偏移则不包括偏移帧数或偏移帧数为0)、偏移子帧数(可选)、偏移slot数和偏移符号数。可选地,时域指示信息可以指示索引,该索引可用于指示第二SSB相对于PSCCH的时域资源位置。例如可参见下表4所示。TUE从CUE接收到该索引和PSCCH后,可以查找表4,通过表4得到第二SSB相对于PSCCH的时域偏移,进而根据PSCCH的时域资源位置和该时域偏移得到第二SSB的时域资源位置。表4中的值仅为举例,实际应用中可以是其它的值;表4中的索引的行数仅为举例,实际应用中可以是其它行,本申请实施例不做限制。
表4
index 偏移子帧数 偏移slot数 偏移符号数
1 1 1 0
2 5 2 1~2
3 10~12 4 10
4 0 10~16 10~14
表4中,部分或全部参数(可参考表3中相应的解释)可以设置为默认值,具体哪些参数是默认值可由CUE和TUE通过协议等方式约定;对于不是默认值的那部分参数,可由CUE通知TUE。在SCI缺省的情况下,TUE默认获得部分或全部参数。
方式三,时域指示信息用于指示第二SSB相对于侧链路数据信道的时域资源位置,可以理解为时域指示信息用于指示第二SSB与侧链路数据信道之间的相对时间。其中,侧链路数据信道是与PSCCH相关联的数据信道,可以理解为是PSCCH调度的侧链路数据信道,即携带时域指示信息的PSCCH调度的侧链路数据信道。方式三也是一种相对时间指示方式,与方式二类似。
TUE在接收到PSCCH或SCI的情况下,根据上述三种方式可确定第二SSB的时域资源位置,即第二SSB的出现时间。
可选的,时域指示信息或指示信息还用于指示SSB burst的传输周期,以使TUE根据CUE提供的资源位置检测到第二SSB后,再根据SSB burst的传输周期检测下一个或下几个SSB并对SSB累加,可以增强同步信号接接收强度,从而增强覆盖,或者可以接收更新的SSB。或时域指示信息包括第一指示信息和第二指示信息,第一指示信息用于指示第二SSB的资源位置,第二指示信息用于指示SSB burst的传输周期。第一指示信息与第二指示信息可携带在同一PSCCH中,也可以携带在不同PSCCH中。
对于指示信息包括频域指示信息的情况,频域指示信息可使用以下三种方式的任一种进行指示(以指示信息用于指示第二SSB的资源位置为例进行描述,指示信息用于指示第一SSB的资源位置的方法是类似的):
方式A,频域指示信息用于指示第二SSB的频域资源位置,可以理解为频域指示信息 用于直接指示第二SSB的频域资源位置,可以理解为一种绝对频域指示方式。其中,频域资源位置包括N值和M值,可选的包括CUE所在小区的频段,TUE可根据N值、M值和频段,结合表1确定第二SSB的频点。CUE可以将其所在小区的频段告知TUE,TUE可以与CUE驻留在同一频段,那么CUE所在小区的频段,也可以认为是TUE所在小区的频段。例如,小区的频段为0~3000MHz,则TUE使用N*1200kHz+M*50kHz以及所指示的N值和M值,确定第二SSB的频点。
其中,CUE可通过log2(3)=2bit,指示CUE所在小区的频段是表1的三行中的哪一行,或者指示CUE所在小区的频段的索引。
可选的,TUE可根据PSCCH或SL-SS所在的频点,推断TUE所在小区的频段。例如,SL-SS所在的频点是2000MHz,那么TUE可推断出TUE所在小区的频段为0~3000MHz。
在一种实现方式中,CUE可以向TUE广播N值和M值,以便TUE可以确定第二SSB的频点。
方式B,频域指示信息用于指示第二SSB相对于PSCCH的频域资源位置,可以理解为频域指示信息用于指示第二SSB与PSCCH之间的相对频域位置,可以理解为一种相对频域指示方式。第二SSB相对于PSCCH的频域资源位置,可以是第二SSB相对于PSCCHSCI的频域资源位置,例如可以是第二SSB相对于PSCCH的参考频率位置的时域资源位置,例如该参考频域位置为PSCCH的最低频域位置、中间频域位置或最高频域位置,该频域位置可以是RB位置或子载波位置。方式B中,频域资源位置可以包括表1中所示的N的偏移值和M的偏移值。TUE根据N的偏移值和M的偏移值计算出第二SSB相对PSCCH的频率偏移值,结合根据PSCCH的参考频率位置确定第二SSB的频域资源位置。TUE获取其所在小区的频段可参考方式A。
示例性的,TUE所在小区的频段为0~3000MHz,如果TUE以PSCCH的最低频率位置作为参考频域位置,则根据N的偏移值和M的偏移值,使用N*1200kHz+M*50kHz,确定第二SSB的频点。
方式C,频域指示信息用于指示第二SSB相对于侧链路数据信道的频域资源位置,可以理解为频域指示信息用于指示第二SSB与侧链路数据信道之间的相对频域位置。其中,侧链路数据信道是与PSCCH相关联的数据信道,可以理解为是PSCCH调度的侧链路数据信道,即携带频域指示信息的PSCCH调度的侧链路数据信道。方式C也可以理解为一种相对频域指示方式,与方式B类似。
可选的,指示信息还用于指示小区ID,小区ID即为TUE或CUE所在小区的标识,也可以理解为第一SSB或第二SSB对应的小区ID。或SCI包括第一指示信息和第三指示信息,第一指示信息用于指示第二SSB的资源位置,第三指示信息用于小区ID。第一指示信息与第三指示信息可携带在同一PSCCH中,也可以携带在不同PSCCH中。CUE告知TUE小区ID,可以省去TUE盲检小区ID的功耗。
对于第一种指示信息可能的实现方式,可参见图7所示的通过PSCCH指示SSB的示例图。图7中,Tx表示侧链路的发送端为CUE,Rx表示侧链路的接收端为TUE。
在第二种指示信息可能的实现方式中,指示信息通过侧链路数据信道(PSSCH或PSDCH)携带,也可以描述为指示信息携带在侧链路数据信道中,或CUE通过侧链路数 据信道向TUE发送指示信息,或侧链路数据信道指示第一SSB或第二SSB的资源位置等。
指示信息可包括时域指示信息,或频域指示信息,或时域指示信息和频域指示信息。
对于指示信息包括时域指示信息的情况,时域指示信息可使用以下三种方式的任一种进行指示(以指示信息用于指示第二SSB的资源位置为例进行描述,指示信息用于指示第一SSB的资源位置的方法是类似的):
方式一,时域指示信息用于指示第二SSB的时域资源位置,可以理解为时域指示信息用于直接指示第二SSB的时域资源位置,可以理解为一种绝对时间指示方式。
方式二,时域指示信息用于指示第二SSB相对于侧链路数据信道的时域资源位置,可以理解为时域指示信息用于指示第二SSB与侧链路数据信道之间的相对时间,可以理解为一种相对时间指示方式。
方式三,时域指示信息用于指示第二SSB相对于PSCCH的时域资源位置,可以理解为时域指示信息用于指示第二SSB与PSCCH之间的相对时间,可以理解为一种相对时间指示方式。其中,PSCCH是与侧链路数据信道相关联的控制信道,可以理解的是,侧链路数据信道是由PSCCH调度的数据信道。
对于指示信息包括频域指示信息的情况,频域指示信息可使用以下三种方式的任一种进行指示(以指示信息用于指示第二SSB的资源位置为例进行描述,指示信息用于指示第一SSB的资源位置的方法是类似的):
方式A,频域指示信息用于指示第二SSB的频域资源位置,可以理解为频域指示信息用于直接指示第二SSB的频域资源位置,可以理解为一种绝对频域指示方式。
方式B,频域指示信息用于指示第二SSB相对于侧链路数据信道的频域资源位置,可以理解为频域指示信息用于指示第二SSB与侧链路数据信道之间的相对频域位置,可以理解为一种相对频域指示方式。
方式C,频域指示信息用于指示第二SSB相对于PSCCH的频域资源位置,可以理解为频域指示信息用于指示第二SSB与PSCCH之间的相对频域位置,可以理解为一种相对频域指示方式。其中,PSCCH是与侧链路数据信道相关联的控制信道,可以理解的是,侧链路数据信道是由PSCCH调度的数据信道。
对于第二种指示信息可能的实现方式,可参见图8所示的通过侧链路数据信道指示SSB的示例图。
在第三种指示信息可能的实现方式中,指示信息通过侧链路广播信道携带,也可以描述为指示信息携带在侧链路广播信道中,或CUE通过侧链路广播信道向TUE发送指示信息,或侧链路广播信道指示第一SSB或第二SSB的资源位置等。
指示信息可包括时域指示信息,或频域指示信息,或时域指示信息和频域指示信息。
对于指示信息包括时域指示信息的情况,时域指示信息可使用以下三种方式的任一种进行指示(以指示信息用于指示第二SSB的资源位置为例进行描述,指示信息用于指示第一SSB的资源位置的方法是类似的):
方式一,时域指示信息用于指示第二SSB的时域资源位置,可以理解为时域指示信息用于直接指示第二SSB的时域资源位置,可以理解为一种绝对时间指示方式。
方式二,时域指示信息用于指示第二SSB相对于侧链路同步信号块的时域资源位置, 可以理解为时域指示信息用于指示第二SSB与侧链路同步信号块之间的相对时间,可以理解为一种相对时间指示方式。
方式三,时域指示信息用于指示第二SSB相对于侧链路广播信道的时域资源位置,可以理解为时域指示信息用于指示第二SSB与侧链路广播信道之间的相对时间,可以理解为一种相对时间指示方式。
对于指示信息包括频域指示信息的情况,频域指示信息可使用以下三种方式的任一种进行指示(以指示信息用于指示第二SSB的资源位置为例进行描述,指示信息用于指示第一SSB的资源位置的方法是类似的):
方式A,频域指示信息用于指示第二SSB的频域资源位置,可以理解为频域指示信息用于直接指示第二SSB的频域资源位置。
方式B,频域指示信息用于指示第二SSB相对于侧链路同步信号块的频域资源位置,可以理解为频域指示信息用于指示第二SSB与侧链路同步信号块之间的相对频域位置,可以理解为一种相对频域指示方式。
方式C,频域指示信息用于指示第二SSB相对于侧链路广播信道的频域资源位置,可以理解为频域指示信息用于指示第二SSB与侧链路广播信道之间的相对频域位置。
在本申请实施例中,侧链路同步信号块中包括侧链路同步信号(SL-SS)和侧链路广播信道,SL-SS包括SL-PSS和SL-SSS。侧链路广播信道类似于PBCH。
对于第三种指示信息可能的实现方式,可参见图9所示的通过侧链路广播信道指示SSB的示例图。
需要说明的是,第二种和第三种指示信息可能的实现方式中,与第一种指示信息可能的实现方式中相同或类似的部分,可参见第一种指示信息可能的实现方式中相应的描述。
604,TUE根据指示信息确定SSB的资源位置。
TUE根据指示信息,确定第一SSB或第二SSB的资源位置。
605,TUE根据SSB的资源位置,从网络设备接收SSB。
步骤605的实现过程可参见图3所示实施例中步骤305的具体描述,在此不再赘述。
TUE根据指示信息确定SSB的资源位置,可在该资源位置上获取SSB,也可在一个资源位置范围内搜索并获取SSB。在检测SSB时,使用小区ID对应的同步信号序列值来检测SSB。其中SSB中的PSS和SSS的序列值可参考步骤303中的SL-PSS和SL-SSS的序列值,将步骤303中的侧链路通信ID替换为小区ID即可。若CUE不通知TUE小区ID,那么TUE在检测SSB时最多需检测1008次才能正确检测出SSB,TUE获知小区ID后,在检测SSB时,最多检测一次便可以正确检测出SSB,因此可以减少TUE的功耗。
在图6所示的实施例中,TUE不需要直接盲检网络设备广播的SSB,通过从CUE发送的指示信息获取SSB的资源位置,进而通过该资源位置从网络设备接收SSB。可见,TUE无需直接盲检网络设备广播的SSB,可减少TUE搜索SSB的次数;通过CUE告知TUE小区ID,可减少TUE盲检小区ID的功耗;进而图6所示实施例可减缓TUE的功耗速度。
可以理解的是,图3所示实施例中,CUE通过SL-SS隐式指示SSB的资源位置;图6所示实施例中,CUE通过侧链路控制信息或侧链路数据信道或侧链路广播信道中的指示信息显式指示SSB的资源位置。示例性地,图3所示实施例中,TUE还未与CUE未同步, 或已经获取了CUE的同步信号,与CUE同步;图6所示实施例中,TUE已经获取了CUE的同步信号,与CUE同步,然后CUE通过侧链路控制信息或侧链路数据信道或侧链路广播信道向TUE发送指示信息。图3所示实施例和图6所示实施例均能实现TUE以低功耗获取SSB,从而减缓TUE的功耗速度。
上述本申请提供的实施例中,从交互的角度对本申请实施例提供的方法进行了介绍,还对本申请实施例提供的通信系统进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
请参见图10,为本申请实施例提供的通信装置的逻辑结构示意图。图10中,通信装置90包括处理模块901和通信模块902。该通信装置可以实现本申请实施例中的第一终端设备的功能,也可以实现本申请实施例中的第二终端设备的功能。
对于通信装置90用于实现本申请实施例中的第二终端设备的功能的情况:
处理模块901,用于利用通信模块902从第一终端设备接收指示信息,该指示信息用于指示同步信号块的资源位置;根据同步信号的资源位置,利用通信模块902从网络设备接收同步信号块。
通信装置90用于实现第二终端设备的功能,具体可参见图3或图6所示实施例中TUE所实现的功能,在此不再赘述。
对于通信装置90用于实现本申请实施例中的第一终端设备的功能的情况:
通信模块902,用于向第二终端设备发送指示信息,该指示信息用于指示同步信号块的资源位置,所述同步信号块用于和网络设备进行通信。处理模块901,用于确定同步信号块的资源位置。
通信装置90用于实现第一终端设备的功能,具体可参见图3或图6所示实施例中CUE所实现的功能,在此不再赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参见图11,为本申请实施例提供的通信装置的逻辑结构示意图。图11所示的通信装置100可以用于实现上述方法中第二终端设备的功能,该装置可以是第二终端设备,也可以是第二终端设备中的装置,或者是和第二终端设备匹配使用的装置。通信装置100还可以用于实现上述方法中第一终端设备的功能,该装置可以是第一终端设备,也可以第一终端设备中的装置,或者是和第一终端设备匹配使用的装置。通信装置100还可以用于实现上述方法中网络设备的功能。
通信装置100可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置100包括至少一个处理器1020。对于通信装置100用于实现第二终端设备(例 如TUE)的功能的情况,示例性的,处理器1020可以执行图3所示实施例中的步骤304;图6所示实施例中的步骤604。对于通信装置100用于实现第一终端设备(例如CUE)的情况,示例性的,处理器1020可以执行图3所示实施例中的步骤302;图6所示实施例中的步骤602。
通信装置100还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置100还可以包括通信接口1010,用于通过传输介质和其它设备进行通信,从而用于通信装置100可以和其它设备进行通信。通信接口可以是收发器、接口、总线、电路或者能够实现收发功能的装置。示例性的,通信装置100用于实现第二终端设备(例如TUE)的功能时,该其它设备可以是网络设备、第一终端设备,通信接口1010可以执行图3所示实施例中的步骤303和步骤305;图6所示实施例中的步骤603和步骤605。示例性的,通信装置100用于实现第一终端设备(例如CUE)的功能时,该其它设备可以是网络设备、第二终端设备,通信接口1010可以执行图3所示实施例中的步骤301和步骤303;图6所示实施例中的步骤601和步骤603。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图11中以存储器1030、处理器1020以及通信接口1010之间通过总线1040连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例还提供一种通信系统,该系统可以包括第一终端设备和第二终端设备,可选的,还包括网络设备。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时, 全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (41)

  1. 一种同步信号块指示方法,其特征在于,包括:
    从第一终端设备接收指示信息,所述指示信息用于指示同步信号块的资源位置;
    根据所述同步信号块的资源位置,从网络设备接收所述同步信号块。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息是通过侧链路同步信号携带的。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息是通过侧链路同步信号携带的包括:所述侧链路同步信号的图样用于指示所述同步信号块的资源位置。
  4. 根据权利要求2或3所述的方法,其特征在于,所述侧链路同步信号的传输周期小于同步信号块集的传输周期,所述同步信号块集中包括一个或多个所述同步信号块。
  5. 根据权利要求1所述的方法,其特征在于,所述指示信息是通过侧链路控制信道携带的。
  6. 根据权利要求5所述的方法,其特征在于,所述指示信息包括时域指示信息;
    其中,所述时域指示信息用于指示所述同步信号块的时域资源位置;或,用于指示所述同步信号块相对于所述侧链路控制信道的时域资源位置;或,用于指示所述同步信号块相对于侧链路数据信道的时域资源位置,所述侧链路数据信道是与所述侧链路控制信道相关联的数据信道。
  7. 根据权利要求5或6所述的方法,其特征在于,所述指示信息包括频域指示信息;
    其中,所述频域指示信息用于指示所述同步信号块的频域资源位置;或,用于指示所述同步信号块相对于所述侧链路控制信道的频域资源位置;或,用于指示所述同步信号块相对于侧链路数据信道的频域资源位置,所述侧链路数据信道是与所述侧链路控制信道相关联的数据信道。
  8. 根据权利要求1所述的方法,其特征在于,所述指示信息是通过侧链路数据信道携带的。
  9. 根据权利要求8所述的方法,其特征在于,所述指示信息包括时域指示信息;
    其中,所述时域指示信息用于指示所述同步信号块的时域资源位置;或,用于指示所述同步信号块相对于所述侧链路数据信道的时域资源位置;或,用于指示所述同步信号块相对于侧链路控制信道的时域资源位置,所述侧链路控制信道是与所述侧链路数据信道相关联的控制信道。
  10. 根据权利要求8或9所述的方法,其特征在于,所述指示信息包括频域指示信息;
    其中,所述频域指示信息用于指示所述同步信号块的频域资源位置;或,用于指示所述同步信号块相对于所述侧链路数据信道的频域资源位置;或,用于指示所述同步信号块相对于侧链路控制信道的频域资源位置,所述侧链路控制信道是与所述侧链路数据信道相关联的控制信道。
  11. 根据权利要求1所述的方法,其特征在于,所述指示信息是通过侧链路广播信道携带的。
  12. 根据权利要求11所述的方法,其特征在于,所述指示信息包括时域指示信息;
    其中,所述时域指示信息用于指示所述同步信号块的时域资源位置;或,用于指示所述同步信号块相对于侧链路同步信号块的时域资源位置;或,用于指示所述同步信号块相对于所述侧链路广播信道的时域资源位置。
  13. 根据权利要求11或12所述的方法,其特征在于,所述指示信息包括频域指示信息;
    其中,所述频域指示信息用于指示所述同步信号块的频域资源位置;或,用于指示所述同步信号块相对于侧链路同步信号块的频域资源位置;或,用于指示所述同步信号块相对于所述侧链路广播信道的频域资源位置。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述指示信息还用于指示同步信号块集的传输周期,所述同步信号块集中包括一个或多个所述同步信号块。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述指示信息还用于指示小区标识,所述小区标识为所述第一终端设备所属小区的标识。
  16. 一种同步信号块指示方法,其特征在于,包括:
    向第二终端设备发送指示信息,所述指示信息用于指示所述同步信号块的资源位置,所述同步信号块用于和网络设备进行通信。
  17. 根据权利要求16所述的方法,其特征在于,所述向第二终端设备发送指示信息,包括:
    通过侧链路同步信号向第二终端设备发送指示信息。
  18. 根据权利要求17所述的方法,其特征在于,所述侧链路同步信号的图样用于指示所述同步信号块的资源位置。
  19. 根据权利要求16或17所述的方法,其特征在于,所述侧链路同步信号的传输周期小于同步信号块集的传输周期,所述同步信号块集中包括一个或多个所述同步信号块。
  20. 根据权利要求16所述的方法,其特征在于,所述向第二终端设备发送指示信息,包括:
    通过侧链路控制信道向第二终端设备发送指示信息。
  21. 根据权利要求20所述的方法,其特征在于,所述指示信息包括时域指示信息;
    其中,所述时域指示信息用于指示所述同步信号块的时域资源位置;或,用于指示所述同步信号块相对于所述侧链路控制信道的时域资源位置;或,用于指示所述同步信号块相对于侧链路数据信道的时域资源位置,所述侧链路数据信道是与所述侧链路控制信道相关联的数据信道。
  22. 根据权利要求20或21所述的方法,其特征在于,所述指示信息包括频域指示信息;
    其中,所述频域指示信息用于指示所述同步信号块的频域资源位置;或,用于指示所述同步信号块相对于所述侧链路控制信道的频域资源位置;或,用于指示所述同步信号块相对于侧链路数据信道的频域资源位置,所述侧链路数据信道是与所述侧链路控制信道相关联的数据信道。
  23. 根据权利要求16所述的方法,其特征在于,所述向第二终端设备发送指示信息,包括:
    通过侧链路数据信道向第二终端设备发送指示信息。
  24. 根据权利要求23所述的方法,其特征在于,所述指示信息包括时域指示信息;
    其中,所述时域指示信息用于指示所述同步信号块的时域资源位置;或,用于指示所述同步信号块相对于所述侧链路数据信道的时域资源位置;或,用于指示所述同步信号块相对于侧链路控制信道的时域资源位置,所述侧链路控制信道是与所述侧链路数据信道相关联的控制信道。
  25. 根据权利要求23或24所述的方法,其特征在于,所述指示信息包括频域指示信息;
    其中,所述频域指示信息用于指示所述同步信号块的频域资源位置;或,用于指示所述同步信号块相对于所述侧链路数据信道的频域资源位置;或,用于指示所述同步信号块相对于侧链路控制信道的频域资源位置,所述侧链路控制信道是与所述侧链路数据信道相关联的控制信道。
  26. 根据权利要求16所述的方法,其特征在于,所述向第二终端设备发送指示信息,包括:
    通过侧链路广播信道向第二终端设备发送指示信息。
  27. 根据权利要求26所述的方法,其特征在于,所述指示信息包括时域指示信息;
    其中,所述时域指示信息用于指示所述同步信号块的时域资源位置;或,用于指示所述同步信号块相对于侧链路同步信号块的时域资源位置;或,用于指示所述同步信号块相对于所述侧链路广播信道的时域资源位置。
  28. 根据权利要求26或27所述的方法,其特征在于,所述指示信息包括频域指示信息;
    其中,所述频域指示信息用于指示所述同步信号块的频域资源位置;或,用于指示所述同步信号块相对于侧链路同步信号块的频域资源位置;或,用于指示所述同步信号块相对于所述侧链路广播信道的频域资源位置。
  29. 根据权利要求16-28任一项所述的方法,其特征在于,所述指示信息还用于指示同步信号块集的传输周期,所述同步信号块集中包括一个或多个所述同步信号块。
  30. 根据权利要求16-29任一项所述的方法,其特征在于,所述指示信息还用于指示小区标识,所述小区标识为所述第二终端设备所属小区的标识。
  31. 一种通信装置,其特征在于,所述通信装置包括通信模块和处理模块;
    所述处理模块,利用所述通信模块:从第一终端设备接收指示信息,所述指示信息用于指示同步信号块的资源位置;根据所述同步信号的资源位置,从网络设备接收所述同步信号块。
  32. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口;
    所述处理器,利用所述通信接口:从第一终端设备接收指示信息,所述指示信息用于指示同步信号块的资源位置;根据所述同步信号的资源位置,从网络设备接收所述同步信号块。
  33. 一种通信装置,其特征在于,用于实现权利要求1-15任一项所述的方法。
  34. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器和 所述处理器耦合,使得所述通信装置执行权利要求1-15任一项所述的方法。
  35. 一种通信装置,其特征在于,所述通信装置包括通信模块和处理模块;
    所述处理模块,利用所述通信模块:向第二终端设备发送指示信息,所述指示信息用于指示所述同步信号块的资源位置,所述同步信号块用于和网络设备进行通信。
  36. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口;
    所述处理器,利用所述通信接口:向第二终端设备发送指示信息,所述指示信息用于指示所述同步信号块的资源位置,所述同步信号块用于和网络设备进行通信。
  37. 一种通信装置,其特征在于,用于实现权利要求16-30任一项所述的方法。
  38. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器和所述处理器耦合,使得所述通信装置执行权利要求16-30任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-30任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-30任一项所述的方法。
  41. 一种通信系统,其特征在于,所述通信系统包括第一通信装置和第二通信装置,所述第二通信装置用于实现权利要求1-15任一项所述的方法,所述第一通信装置用于实现权利要求16-30任一项所述的方法。
PCT/CN2019/121772 2019-11-28 2019-11-28 同步信号块指示方法及通信装置 WO2021102859A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980102014.5A CN114642044A (zh) 2019-11-28 2019-11-28 同步信号块指示方法及通信装置
PCT/CN2019/121772 WO2021102859A1 (zh) 2019-11-28 2019-11-28 同步信号块指示方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121772 WO2021102859A1 (zh) 2019-11-28 2019-11-28 同步信号块指示方法及通信装置

Publications (1)

Publication Number Publication Date
WO2021102859A1 true WO2021102859A1 (zh) 2021-06-03

Family

ID=76129854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121772 WO2021102859A1 (zh) 2019-11-28 2019-11-28 同步信号块指示方法及通信装置

Country Status (2)

Country Link
CN (1) CN114642044A (zh)
WO (1) WO2021102859A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115315996A (zh) * 2022-06-23 2022-11-08 上海移远通信技术股份有限公司 无线通信的方法及装置
WO2023124718A1 (zh) * 2021-12-27 2023-07-06 华为技术有限公司 一种通信方法和装置
WO2024012273A1 (zh) * 2022-07-14 2024-01-18 维沃移动通信有限公司 信息确定方法、装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236256A1 (en) * 2017-06-19 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) MEASURES TAKING INTO ACCOUNT THE CONFIGURATION OF SS BLOCKS
CN109474939A (zh) * 2017-09-08 2019-03-15 维沃移动通信有限公司 一种同步信号块测量方法、终端及网络设备
CN109565650A (zh) * 2018-11-15 2019-04-02 北京小米移动软件有限公司 同步信号块的配置信息的广播、接收方法和装置
CN109586873A (zh) * 2017-09-29 2019-04-05 中兴通讯股份有限公司 确定同步信号块的时域位置的方法及装置
WO2019216627A1 (ko) * 2018-05-09 2019-11-14 엘지전자 주식회사 Nr v2x에서 사이드링크 단말이 전송 파라미터를 조정하는 방법 및 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391410B (zh) * 2017-08-10 2020-09-11 电信科学技术研究院 同步信号块传输信息的指示、确定方法、基站及终端
CN109391420A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 同步信号块指示及确定方法、网络设备和终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236256A1 (en) * 2017-06-19 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) MEASURES TAKING INTO ACCOUNT THE CONFIGURATION OF SS BLOCKS
CN109474939A (zh) * 2017-09-08 2019-03-15 维沃移动通信有限公司 一种同步信号块测量方法、终端及网络设备
CN109586873A (zh) * 2017-09-29 2019-04-05 中兴通讯股份有限公司 确定同步信号块的时域位置的方法及装置
WO2019216627A1 (ko) * 2018-05-09 2019-11-14 엘지전자 주식회사 Nr v2x에서 사이드링크 단말이 전송 파라미터를 조정하는 방법 및 장치
CN109565650A (zh) * 2018-11-15 2019-04-02 北京小米移动软件有限公司 同步信号块的配置信息的广播、接收方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124718A1 (zh) * 2021-12-27 2023-07-06 华为技术有限公司 一种通信方法和装置
CN115315996A (zh) * 2022-06-23 2022-11-08 上海移远通信技术股份有限公司 无线通信的方法及装置
WO2023245568A1 (zh) * 2022-06-23 2023-12-28 上海移远通信技术股份有限公司 无线通信的方法及装置
WO2024012273A1 (zh) * 2022-07-14 2024-01-18 维沃移动通信有限公司 信息确定方法、装置及终端

Also Published As

Publication number Publication date
CN114642044A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
US11632727B2 (en) Method and apparatus for transmitting synchronization signal in wireless communication system
US10555346B2 (en) Method for configuring physical channel, base station and user equipment
US20200169956A1 (en) Method and apparatus for detecting indication information, and methods and devices for relaying transmission
JP6741805B2 (ja) Mtcデバイスに適したpdcchの初期化
JP7450615B2 (ja) 非免許キャリアでのシステム情報(si)変更通知方法及び装置
EP2632213B1 (en) Method and apparatus for performing network entry/reentry in wireless communication system
RU2771139C1 (ru) Способ и устройство для проверки действительности сохраненной системной информации
CN104184548A (zh) 随机接入序列传输方法和装置
WO2021102859A1 (zh) 同步信号块指示方法及通信装置
CN111713147B (zh) 将波束图案映射到寻呼资源的方法和装置
AU2020206899B2 (en) Method and apparatus for two-step random access procedure
US20220369387A1 (en) Data transmission method and apparatus
US20220369300A1 (en) Configuration information obtaining method and apparatus
JP6754489B2 (ja) ランダムアクセスを促進する方法、ネットワークノード及び端末デバイス
WO2021102815A1 (zh) 系统信息获取方法及装置
US20230371040A1 (en) Information determination method and apparatus, device, and storage medium
US20240008097A1 (en) Communication method, apparatus, and system
WO2021103026A1 (zh) 在带宽部分上进行通信的方法
CN113473641A (zh) 一种通信方法和通信装置
US20220330291A1 (en) Method and apparatus of communication for reduced-capability user equipment in wireless communication system
US20220061098A1 (en) Communication method and device for reduced-capability ue in wireless communication system
US12010651B2 (en) Wireless communication method, terminal, and network device
US20220321263A1 (en) Method and apparatus for random access
US20240137908A1 (en) Method and apparatus for paging procedure in wireless communication system
US20230309061A1 (en) Wireless communication method, terminal, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954532

Country of ref document: EP

Kind code of ref document: A1