WO2024067656A1 - 上行传输的方法和通信装置 - Google Patents

上行传输的方法和通信装置 Download PDF

Info

Publication number
WO2024067656A1
WO2024067656A1 PCT/CN2023/121827 CN2023121827W WO2024067656A1 WO 2024067656 A1 WO2024067656 A1 WO 2024067656A1 CN 2023121827 W CN2023121827 W CN 2023121827W WO 2024067656 A1 WO2024067656 A1 WO 2024067656A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
frequency
time unit
resource set
terminal device
Prior art date
Application number
PCT/CN2023/121827
Other languages
English (en)
French (fr)
Inventor
陆绍中
郭志恒
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067656A1 publication Critical patent/WO2024067656A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to an uplink transmission method and a communication device.
  • Subband full duplex means that in the TDD system, network equipment uses different subbands for uplink and downlink transmission to achieve both reception and transmission in one time slot or one orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • frequency-hopping to send the first signal on the SBFD time slot according to the existing frequency-hopping pattern corresponding to the uplink time slot may cause the terminal device to jump out of the range of the uplink subband on the SBFD time slot.
  • a possible solution is to configure two independent frequency-hopping patterns, one of which is the frequency-hopping pattern corresponding to the SBFD time slot, and the other is the frequency-hopping pattern corresponding to the uplink time slot.
  • the embodiments of the present application provide an uplink transmission method and a communication device, which can ensure that the frequency hopping in the SBFD time slot does not exceed the uplink sub-band range, while reducing the signaling overhead.
  • a communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component of the terminal device (such as a chip or circuit).
  • a component of the terminal device such as a chip or circuit
  • the method may include: a terminal device receives a first signal from a network device, the first signal instructing the terminal device to send a first signal in a frequency hopping manner on a first time unit set, the first signal is carried on a first physical uplink shared channel PUSCH or a first physical uplink control channel PUCCH, and the first time unit set includes at least two SBFD time units; the terminal device determines a second frequency hopping pattern according to the first frequency hopping pattern, wherein the first frequency hopping pattern indicates the positions of N different starting frequency resources for sending the first signal in a frequency hopping manner on at least two uplink time units, the second frequency hopping pattern indicates the positions of N different starting frequency resources for sending the first signal in a frequency hopping manner on at least two SBFD time units, the positions of the starting frequency resources indicated by the second frequency hopping pattern are located in the uplink subband of the at least two SBFD time units, and N is an integer greater than or equal to 2; the terminal device sends the first signal in at least two SBFD time units according to the
  • the terminal device can determine the second frequency hopping pattern of the SBFD time unit based on the first frequency hopping pattern, so that the positions of the N starting frequency resources indicated by the second frequency hopping pattern are located within the uplink subband of the SBFD time unit.
  • This method can not only ensure that the frequency hopping in the SBFD time unit will not exceed the uplink subband range, but also reduce the signaling overhead compared to directly configuring two sets of frequency hopping patterns for the SBFD time unit and the uplink time unit.
  • a communication method is provided.
  • the method can be executed by a network device, or can also be executed by a component of the network device (such as a chip or circuit).
  • a component of the network device such as a chip or circuit.
  • the method may include: a network device sends a first signaling to a terminal device, the first signaling instructing the terminal device to send a first signal in a frequency hopping manner on a first time unit set, the first signal is carried on a first physical uplink shared channel PUSCH or a first physical uplink control channel PUCCH, and the first time unit set includes at least two SBFD time units; the network device determines according to the first frequency hopping pattern A second frequency hopping pattern, wherein the first frequency hopping pattern indicates the positions of N different starting frequency resources for sending the first signal in a frequency hopping manner on at least two uplink time units, the second frequency hopping pattern indicates the positions of N different starting frequency resources for sending the first signal in a frequency hopping manner on at least two SBFD time units, the positions of the starting frequency resources indicated by the second frequency hopping pattern are located in the uplink subband of the at least two SBFD time units, and N is an integer greater than or equal to 2; the network device receives the first signal from the terminal device in at least two SBFD
  • the index RB′ start,j of the j-th starting frequency resource among the N starting frequencies of the second frequency hopping pattern satisfies the following formula: in, It is the index of the starting frequency resource of the uplink subband of the SBFD time unit.
  • RB′ start,j can always be located on the uplink subband of SBFD.
  • the j-th starting frequency resource index RB′ start,j among the N frequency hopping starting frequencies of the second frequency hopping pattern satisfies the following formula: in, is the index of the starting frequency resource of the uplink subband of the SBFD time unit, and [] indicates rounding up, rounding down, or rounding off.
  • a communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component of the terminal device (such as a chip or circuit). There is no limitation on this. For the sake of ease of description, the following is explained by taking the execution by the terminal device as an example.
  • the method may include: a terminal device receives a first signal from a network device, the first signal instructing the terminal device to send a first signal by frequency hopping on a first time unit set, the first signal is carried on a first physical uplink shared channel PUSCH or a first physical uplink control channel PUCCH, and the first time unit set includes at least two SBFD time units; the terminal device determines a second frequency hopping pattern, wherein the second frequency hopping pattern indicates the positions of N different starting frequency resources for sending the first signal by frequency hopping on at least two SBFD time units, the positions of the starting frequency resources indicated by the second frequency hopping pattern are located in the uplink subbands of at least two SBFD time units, and N is an integer greater than or equal to 2; the terminal device sends the first signal to the network device on at least two SBFD time units according to the second frequency hopping pattern.
  • the terminal device directly gives a second frequency hopping pattern with a fixed position according to the position of the uplink subband, which can ensure that the frequency hopping in the SBFD time unit will not exceed the uplink subband range.
  • the signaling overhead is reduced.
  • a communication method is provided.
  • the method can be executed by a network device, or can also be executed by a component of the network device (such as a chip or circuit).
  • a component of the network device such as a chip or circuit.
  • the method may include: a network device sends a first signaling to a terminal device, the first signaling instructs the terminal device to send a first signal by frequency hopping on a first time unit set, the first signal is carried on a first physical uplink shared channel PUSCH or a first physical uplink control channel PUCCH, and the first time unit set includes at least two SBFD time units; the network device determines a second frequency hopping pattern, wherein the second frequency hopping pattern indicates the positions of N different starting frequency resources for sending the first signal by frequency hopping on at least two SBFD time units, the positions of the starting frequency resources indicated by the second frequency hopping pattern are located in the uplink subband of at least two SBFD time units, and N is an integer greater than or equal to 2; the network device receives the first signal from the terminal device on at least two SBFD time units according to the second frequency hopping pattern.
  • N 2
  • the index of a frequency hopping start frequency in the second frequency hopping pattern is is the index of the starting frequency resource of the uplink subband of the SBFD time unit
  • the index of another frequency hopping starting frequency resource in the second frequency hopping pattern is in is the number of frequency resources in the uplink subband of the SBFD time unit
  • L RBs is the number of frequency resources allocated to one PUSCH in the uplink subband.
  • N 2
  • the index of a hopping start frequency in the second hopping pattern is the index of the starting frequency resource of the uplink subband of the SBFD time unit plus the first offset value
  • the index of another hopping start frequency in the second hopping pattern is the index of the ending frequency resource of the uplink subband of the SBFD time unit minus the first offset value
  • the first offset value is determined based on at least one of the following parameters: the offset value of the frequency resource
  • the total number of initial cyclic shift indices in the initial cyclic shift index set is N CS
  • the PUCCH resource index is r PUCCH .
  • a communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component of the terminal device (such as a chip or circuit). There is no limitation on this. For the sake of ease of description, the following is explained using the execution by a terminal device as an example.
  • the method may include: a terminal device receives a first signaling from a network device, the first signaling indicating that the terminal device receives a first signal on a first time unit set, the first signaling includes first information and second information, the first information indicates the position of a starting frequency resource of a first frequency resource set and the number of frequency resources included in the first frequency resource set, the second information indicates an interval between the starting frequency resource in the first frequency resource set and the starting frequency resource in the second frequency resource set, the first signal is carried on a first physical downlink shared channel PDSCH, the first time unit set includes a first time unit, the first time unit is an SBFD time unit including at least two downlink subbands; the terminal device determines a first frequency resource set based on the first information; the terminal device determines a second frequency resource set based on the first information and the second information, the number of frequency resources included in the second frequency resource set is the same as the number of frequency resources included in the first frequency resource set or the number of frequency resources included in the second frequency resource set is predefined or
  • the above technical solution can realize the PDSCH frequency resource allocation in two discontinuous downlink subbands of the SBFD time unit by adding the second information to the first signaling to indicate the interval between the two frequency resource sets, thereby improving the frequency resource utilization rate of the SBFD time unit. And compared with the resource allocation type 0, this method does not need to occupy at least 1 RBG in the protection bandwidth, and can use more frequency resources.
  • the first time unit set also includes a second time unit
  • the second time unit is a downlink time unit
  • the method also includes: the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the second time unit.
  • the first time unit set also includes a second time unit
  • the second time unit is a downlink time unit
  • the method also includes: the terminal device determines a third frequency resource set, wherein the starting frequency resource of the third frequency resource set is the frequency resource with the smallest index in the first frequency resource set and the second frequency resource set, and the ending frequency resource of the third frequency resource set is the frequency resource with the largest index in the first frequency resource set and the second frequency resource set; the terminal device receives the first signal from the network device on the third frequency resource set in the second time unit, and the third frequency resource set is a continuous frequency resource.
  • a communication method is provided.
  • the method can be executed by a network device, or can also be executed by a component of the network device (such as a chip or circuit). There is no limitation on this. For the sake of ease of description, the following is explained using the example of execution by a network device.
  • the method may include: a network device sends a first signaling to a terminal device, the first signaling instructs the terminal device to receive a first signal on a first time unit set, the first signaling includes first information and second information, the first information indicates the position of the starting frequency resource of the first frequency resource set and the number of frequency resources included in the first frequency resource set, the second information indicates the interval between the starting frequency resource in the first frequency resource set and the starting frequency resource in the second frequency resource set, and the first signal is carried on a first physical downlink shared channel PDSCH
  • the first time unit set includes a first time unit, which is an SBFD time unit including at least two downlink subbands; the network device sends a first signal to the terminal device on a first frequency resource set and a second frequency resource set of the first time unit, wherein the number of frequency resources included in the second frequency resource set is the same as the number of frequency resources included in the first frequency resource set or the number of frequency resources included in the second frequency resource set is predefined or configured by the network device.
  • the first time unit set also includes a second time unit
  • the second time unit is a downlink time unit
  • the method also includes: the network device sends a first signal to the terminal device on the first frequency resource set and the second frequency resource set of the second time unit.
  • the first time unit set also includes a second time unit
  • the second time unit is a downlink time unit
  • the method also includes: the network device determines a third frequency resource set, wherein the starting frequency resource of the third frequency resource set is the frequency resource with the smallest index in the first frequency resource set and the second frequency resource set, and the ending frequency resource of the third frequency resource set is the frequency resource with the largest index in the first frequency resource set and the second frequency resource set; the network device sends a first signal to the terminal device on the third frequency resource set of the second time unit, and the third frequency resource set is a continuous frequency resource.
  • a communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component of the terminal device (such as a chip or circuit). There is no limitation on this. For the sake of ease of description, the following is explained using the execution by the terminal device as an example.
  • the method may include: a terminal device receives a first signaling from a network device, the first signaling indicating that the terminal device receives a first signal on a first time unit set; the terminal device determines the first time unit set; when the first time unit is included in the first time unit set, the first time unit is an SBFD time unit including at least two downlink subbands, the first signaling includes first information and second information, the first information indicates the position of the starting frequency resource of the first frequency resource set and the number of frequency resources included in the first frequency resource set, the second information indicates the interval between the starting frequency resource of the first frequency resource set and the starting frequency resource of the second frequency resource set, the terminal device determines the first frequency resource set according to the first information, and the terminal device determines the first frequency resource set according to the first information and The second information determines the second frequency resource set, the number of frequency resources included in the second frequency resource set is the same as the number of frequency resources included in the first frequency resource set or the number of frequency resources included in the second frequency resource set is predefined or configured by the
  • the terminal device interprets the first signaling according to different time unit types.
  • the terminal device believes that the first signaling is configured according to the prior art.
  • the first time unit set only includes SBFD time units of at least two downlink subbands the terminal device believes that the first signaling is interpreted in the manner given in the present application.
  • the first signaling includes the first signaling and the second signaling. In this way, PDSCH frequency resource allocation can be achieved in two discontinuous downlink subbands of the SBFD time unit, thereby improving the frequency resource utilization of the SBFD time unit.
  • a communication method is provided.
  • the method can be executed by a network device, or can also be executed by a component of the network device (such as a chip or circuit). There is no limitation on this. For the sake of ease of description, the following is explained using the execution by a network device as an example.
  • the method may include: a network device sends a first signaling to a terminal device, the first signaling indicating that the terminal device receives a first signal on a first time unit set, when the first time unit is included in the first time unit set, the first time unit is an SBFD time unit including at least two downlink subbands, the first signaling includes first information and second information, the first information indicates the position of the starting frequency resource of the first frequency resource set and the number of frequency resources included in the first frequency resource set, the second information indicates the interval between the starting frequency resource of the first frequency resource set and the starting frequency resource of the second frequency resource set, the network device sends the first signal to the terminal device on the first frequency resource set and the second frequency resource set of the first time unit set, the number of frequency resources included in the second frequency resource set is the same as the number of frequency resources included in the first frequency resource set or the number of frequency resources included in the second frequency resource set is predefined or configured by the network device; when the first time unit is not included in the first time unit set, the first signaling includes fourth
  • a communication device is provided, the device being used to execute the method provided in the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
  • the device may include a unit and/or module, such as a processing unit and/or a communication unit, for executing the method in the first aspect, the third aspect, the fifth aspect, or the seventh aspect and any possible implementation of the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
  • the apparatus is a terminal device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system or a circuit used in a terminal device.
  • the communication unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit;
  • the processing unit may be at least one processor, a processing circuit or a logic circuit.
  • a communication device is provided, the device being used to execute the method provided in the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
  • the device may include a unit and/or module, such as a processing unit and/or a communication unit, for executing the method in the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect and any possible implementation of the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
  • the device is a network device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, chip system or circuit used in a network device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit;
  • the processing unit may be at least one processor, processing circuit or logic circuit.
  • a communication device comprising: at least one processor, the at least one processor is coupled to at least one memory, the at least one memory is used to store computer programs or instructions, and the at least one processor is used to call and run the computer program or instructions from the at least one memory, so that the communication device executes the method in the first aspect or the third aspect or the fifth aspect and any possible implementation of the first aspect or the third aspect or the fifth aspect.
  • the apparatus is a terminal device.
  • the apparatus is a chip, a chip system or a circuit used in a terminal device.
  • a communication device comprising: at least one processor, the at least one processor is coupled to at least one memory, the at least one memory is used to store computer programs or instructions, and the at least one processor is used to call and run the computer program or instructions from the at least one memory, so that the communication device executes the method in the second aspect or the fourth aspect or the sixth aspect or the eighth aspect and any possible implementation manner of the second aspect or the fourth aspect or the sixth aspect or the eighth aspect.
  • the apparatus is a network device.
  • the apparatus is a chip, a chip system, or a circuit used in a network device.
  • a processor for executing the methods provided in the above aspects.
  • a computer-readable storage medium which stores a program code for execution by a device, and the program code includes a method for executing any one of the above-mentioned first to eighth aspects and any possible implementation of the first to eighth aspects.
  • a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute a method in any one of the first to eighth aspects and any possible implementation of the first to eighth aspects.
  • a chip comprising a processor and a communication interface, the processor reads instructions stored in a memory through the communication interface, and executes any one of the first to eighth aspects and any possible implementation of the first to eighth aspects.
  • the chip also includes a memory, in which a computer program or instructions are stored, and the processor is used to execute the computer program or instructions stored in the memory.
  • the processor is used to execute the method in any aspect of the first to eighth aspects above and any possible implementation method of the first to eighth aspects.
  • a communication system which includes the communication device shown in the eleventh aspect and the twelfth aspect.
  • FIG1 is a schematic diagram of a communication system provided in an embodiment of the present application.
  • FIG2 is a time-frequency diagram of sub-band full-duplex.
  • FIG3 is a schematic diagram of configuring two independent frequency hopping patterns for the SBFD timeslot and the uplink timeslot.
  • FIG4 is a schematic flow chart of an uplink transmission method proposed in the present application.
  • FIG5 is a schematic flowchart of a downlink transmission method proposed in the present application.
  • FIG. 6 is a schematic block diagram of a communication device 200 provided in the present application.
  • FIG. 7 is a schematic structural diagram of a communication device 300 provided in the present application.
  • 5G fifth generation
  • NR new radio
  • LTE long term evolution
  • IoT internet of things
  • WiFi wireless-fidelity
  • 3GPP 3rd generation partnership project
  • FIG1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system 100 includes at least one network device, such as the network device 110 shown in FIG1 ; the communication system 100 may also include at least one terminal device, such as the terminal device 120 and/or the terminal device 130 shown in FIG1 .
  • the network device 110 and the terminal device 120/130 may communicate via a wireless link to exchange information. It is understandable that the network device and the terminal device may also be referred to as a communication device.
  • a network device is a network-side device with wireless transceiver functions.
  • a network device may be a device in a radio access network (RAN) that provides wireless communication functions for terminal devices, and is referred to as a RAN device.
  • the network device may be a base station, an evolved NodeB (eNodeB), a next generation NodeB (gNB) in a 5G mobile communication system, a base station that is subsequently evolved by 3GPP, a transmission reception point (TRP), an access node in a WiFi system, a wireless relay node, a wireless backhaul node, etc.
  • a communication system using different radio access technologies (RAT) the names of devices with base station functions may be different.
  • an eNB or eNodeB may be referred to in an LTE system, and a gNB may be referred to in a 5G system or an NR system.
  • a network device may include one or more co-sited or non-co-sited transmission and reception points.
  • a network device may include one or more centralized units (CU), one or more distributed units (DU), or one or more CUs and one or more DUs.
  • CU centralized units
  • DU distributed units
  • the functions of CU can be implemented by one entity or different entities.
  • the functions of CU are further divided, that is, the control plane and the user plane are separated and implemented through different entities, namely the control plane CU entity (i.e., CU-CP entity) and the user plane CU entity (i.e., CU-UP entity).
  • the CU-CP entity and the CU-UP entity can be coupled with the DU to jointly complete the functions of the access network device.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizing the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • Some functions of the wireless access network device can be implemented through multiple network function entities.
  • These network function entities can be network elements in hardware devices, or they can be software functions running on dedicated hardware, or virtualized functions instantiated on a platform (e.g., a cloud platform).
  • the network device may also include an active antenna unit (AAU for short).
  • AAU implements some physical layer processing functions, RF processing and related functions of active antenna.
  • the network device can be a device including one or more of CU node, DU node, AAU node.
  • CU can be divided into access node, access node and access node.
  • the CU can be divided into a network device in a radio access network (RAN), and the CU can also be divided into a network device in a core network (CN), which is not limited in the present application.
  • RAN radio access network
  • CN core network
  • the access network device can be a road side unit (RSU).
  • the multiple access network devices in the communication system can be base stations of the same type or base stations of different types.
  • the base station can communicate with the terminal device or with the terminal device through a relay station.
  • the device for implementing the function of the network device can be the network device itself, or it can be a device that can support the network device to implement the function, such as a chip system or a combination device or component that can implement the function of the access network device, and the device can be installed in the network device.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • Terminal equipment is a user-side device with wireless transceiver functions, which can be a fixed device, mobile device, handheld device (such as a mobile phone), wearable device, vehicle-mounted device, or a wireless device built into the above devices (such as a communication module, modem, or chip system, etc.).
  • Terminal equipment is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as: cellular communication, device-to-device (D2D) communication, V2X communication, machine-to-machine/machine-type communication (M2M/MTC) communication, Internet of Things, virtual reality (VR), augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • the terminal device may be a handheld terminal in cellular communication, a communication device in D2D, an IoT device in MTC, a surveillance camera in intelligent transportation and smart city, or a communication device on a drone, etc.
  • the terminal device may sometimes be referred to as user equipment (UE), user terminal, user device, user unit, user station, terminal, access terminal, access station, UE station, remote station, mobile device or wireless communication device, etc.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device that can support the terminal device to realize the function, such as a chip system or a combination device or component that can realize the function of the terminal device, and the device may be installed in the terminal device.
  • time domain symbol also called OFDM symbol. It should be noted that the time domain symbol can also be named in combination with other multiple access methods, which is not limited in the embodiment of the present application. The length of the time domain symbol can be different for different subcarrier spacings.
  • the symbols in a time slot may include three types: downlink symbols, uplink symbols and flexible symbols.
  • Uplink symbols can only be used for uplink transmission, and downlink symbols can only be used for downlink transmission.
  • Flexible symbols have no fixed transmission direction and can be used for uplink or downlink transmission according to the instructions of control signaling.
  • the symbols in a time slot can be all downlink symbols, or all uplink symbols, or all flexible symbols, or a mixture of several symbols.
  • a time unit may be a time slot, a symbol, a subframe, a half frame, a frame, a mini subframe, a mini time slot, a transmission occasion (TO), or a time slot, a symbol, a time slot set or a symbol set where each hop is located, such as frequency hopping between time slots, frequency hopping within time slots, frequency hopping between repetitions, frequency hopping between time slot groups, etc. This application does not limit this.
  • a subband is a partial frequency band in a carrier, that is, one or more continuous physical resource blocks (PRBs) in the frequency domain.
  • PRBs physical resource blocks
  • a subband can also be understood as a frequency resource.
  • SBFD In the SBFD scheme, a carrier or a bandwidth part (BWP) is divided into multiple non-overlapping sub-bands, and the transmission directions of different sub-bands can be different, that is, a carrier includes a non-overlapping first sub-band and a second sub-band, and the transmission directions of the first sub-band and the second sub-band are different.
  • the first sub-band and the second sub-band refer to two types of sub-bands with different transmission directions, and does not mean that a carrier contains only two sub-bands.
  • a carrier includes sub-band #1 and sub-band #2, wherein the transmission directions of sub-band #1 and sub-band #2 are different.
  • a carrier includes sub-band #1, sub-band #2 and sub-band #3, wherein the transmission directions of sub-band #1 and sub-band #3 are the same, and the transmission directions of sub-band #1 and sub-band #2 are different.
  • the frequency resources on the SBFD time unit include uplink frequency resources and downlink frequency resources, wherein the uplink frequency resources are used for uplink transmission and the downlink frequency resources are used for downlink transmission.
  • Figure 2 is a schematic diagram of the time-frequency division of a typical SBFD solution.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain
  • the two rectangular blocks filled with left slashes in Figure 2 represent a group of time-frequency resources for downlink transmission
  • the rectangular block filled with vertical bars represents a group of time-frequency resources for uplink transmission.
  • the time domain resources in the time domain range occupied by these three time-frequency resources are called SBFD time units.
  • Non-SBFD time unit The frequency resource corresponding to each symbol in all symbols contained in the non-SBFD time unit is only used for downlink transmission or only for uplink transmission.
  • all symbols in the non-SBFD time unit are downlink symbols, or all symbols in the non-full-duplex time unit are uplink symbols, or part of the symbols in the non-full-duplex time unit are downlink symbols and part of the symbols in the non-full-duplex time unit are uplink symbols.
  • the rectangular blocks filled with right slashes in Figure 2 represent a group of time-frequency resources for uplink transmission, and the time slots in the time domain they occupy are called uplink time units. The transmission direction of all frequency resources on these time units is uplink, and these time units can be called non-SBFD time slots.
  • Time unit type including uplink time unit, downlink time unit and SBFD time unit.
  • the frequency resources corresponding to the uplink time unit are only used for uplink transmission;
  • the frequency resources corresponding to the downlink time unit are only used for downlink transmission;
  • the frequency resources corresponding to the SBFD time unit include uplink frequency resources and downlink frequency resources, among which the uplink frequency resources are used for uplink transmission and the downlink frequency resources are used for downlink transmission.
  • Multi-slot PUSCH includes: PUSCH repetition type A, PUSCH repetition type B, and transport block processing over multiple slots (TBoMS PUSCH).
  • Multi-slot PUCCH includes: PUCCH repetition.
  • PUSCH frequency resource allocation including uplink resource allocation type 0 (uplink resource allocation type 0) and uplink resource allocation type 1 (uplink resource allocation type 1). The following is a detailed description of the two frequency resource allocation types.
  • An uplink BWP of a UE includes a total of resource block groups (RBGs), where an RBG is a set of consecutive virtual resource blocks (VRBs).
  • the frequency domain resource assignment field in the downlink control information (DCI) includes a bitmap indicating the resource block group (RBG) assigned to the UE.
  • Each bit in the size bits of the bitmap corresponds to an RBG in the BWP of the UE, so that each RBG in the BWP is addressable.
  • the order of the RBG bitmap is as follows: the most significant bit (MSB) to the least significant bit (LSB) of the bitmap are mapped to RBG 0 to RBG (N RBG -1) of the BWP in sequence. If the corresponding bit value in the bitmap is 1, the RBG corresponding to the bit is allocated to the UE, otherwise the RBG corresponding to the bit is not allocated to the UE.
  • the scheduled UE is indicated with a set of non-interleaved VRBs continuously allocated within the activated BWP, where the size of the activated BWP is
  • the frequency domain resource assignment field in the DCI includes a resource indication value (RIV), which consists of the index of the starting VRB, RB start , and the length of the consecutively allocated VRBs, L RBs , and is defined as follows: else
  • the frequency resource allocation of the downlink PDSCH is similar to that of the uplink PUSCH.
  • the frequency resource allocation of the downlink PDSCH is similar to that of the uplink PUSCH.
  • the PUSCH frequency hopping supported by PUSCH except PUSCH repetition type B includes two modes: intra-slot frequency hopping and inter-slot frequency hopping.
  • Intra-slot frequency hopping can be applied to single-slot and multi-slot PUSCH transmissions.
  • Multi-slot PUSCH transmissions include PUSCH repetition type A and cross-slot transmission block processing PUSCH.
  • the frequency hopping pattern within a time slot is shown below:
  • RB start indicates the index of the starting resource block (RB) in the uplink BWP;
  • RB offset indicates the frequency hopping interval between two frequency hops, and the frequency hopping interval is in RBs.
  • the number of symbols in the first hop is The number of symbols in the second hop is in is the number of symbols occupied by PUSCH transmission in a time slot. For example, if the terminal device transmits uplink signals in multiple uplink time slots according to the frequency hopping pattern, the terminal device allocates the first hop of the PUSCH in the first time slot according to the frequency hopping pattern.
  • the uplink signal is sent on the first frequency resource set of symbols.
  • the index of the starting resource of the first frequency resource set is RB start .
  • the remaining RBs allocated to PUSCH in the first time slot are The uplink signal is sent on a second frequency resource set of symbols, and the index of the starting resource of the second frequency resource set is The terminal device allocates the first time slot of the PUSCH in the second time slot according to the frequency hopping pattern.
  • the uplink signal is sent on the first frequency resource set of symbols, the index of the starting resource of the first frequency resource set is RB start , and the remaining RBs allocated to PUSCH in the second time slot are
  • the uplink signal is sent on a second frequency resource set of symbols, and the index of the starting resource of the second frequency resource set is And so on, I won’t go into details.
  • Inter-slot frequency hopping is only applied to multi-slot PUSCH transmission.
  • the inter-slot frequency hopping pattern is shown as follows:
  • the current time slot is the time slot occupied by multi-slot PUSCH transmission.
  • RB start indicates the index of the starting RB in the uplink BWP.
  • RB offset indicates the frequency hopping interval between two frequency hops. The frequency hopping interval is in RB units.
  • the PUSCH frequency hopping supported by PUSCH repetition type B includes two modes: inter-repetition hopping and inter-slot hopping.
  • Inter-repetition frequency hopping The frequency hopping pattern of inter-repetition frequency hopping is shown as follows:
  • RB start indicates the index of the starting RB in the uplink BWP
  • RB offset indicates the frequency hopping interval between two frequency hops
  • the frequency hopping interval is in units of RB.
  • n indicates the actual repetition in the nth nominal repetition.
  • Inter-time slot frequency hopping is consistent with that of PUSCH repetition type A and TBoMS PUSCH, and will not be described here.
  • PDCCH does not support frequency hopping.
  • PUSCH frequency hopping parameter indication i.e., method for determining RB start and RB offset
  • the RB start is indicated by the frequency domain resource assignment field in the DCI.
  • the length of this field is:
  • uplink resource allocation type 0 that is, the RRC signaling resourceAllocation is configured as "resourceAllocationType0"
  • the length of this field is N RBG bits.
  • uplink resource allocation type 1 that is, the RRC signaling resourceAllocation is configured as "resourceAllocationType1"
  • the length of this field is in, and The meanings are the same, both indicating the number of RBs contained in a BWP. Indicates rounding up.
  • the frequency resource allocation is given as follows:
  • This method only supports uplink resource allocation type 1.
  • RB start and RB offset are indicated by the frequency domain resource allocation field (PUSCH frequency resource allocation) in the RAR UL grant, where the RAR UL grant information content is shown in Table 2.
  • the specific process is as follows:
  • r PUCCH is the PUCCH resource index
  • PUCCH resource indicates multiple sets of frequency hopping parameters of PUCCH
  • one PUCCH resource index corresponds to one set of parameters.
  • the UE determines that the starting PRB index of PUCCH in the second frequency hopping is The index of the starting PRB in the second frequency hopping is
  • the UE configures whether to repeat frequency hopping for PUCCH transmission in different time slots through interslotFrequencyHopping.
  • the UE performs frequency hopping once per time slot, and the PUCCH transmitted by the UE in an even-numbered time slot starts from the first PRB, indicated by startingPRB, and the PUCCH transmitted by the UE in an odd-numbered time slot starts from the second PRB, indicated by secondHopPRB.
  • the time slot where the first repetition of PUCCH transmission occurs is numbered 0, and subsequent time slots are counted sequentially until the UE is in the first repetition.
  • the timeslot is counted until the UE transmits PUCCH in the timeslot.
  • the UE does not expect to be configured for intra-PUCCH timeslot frequency hopping.
  • the UE Frequency hopping is performed between consecutive time slots, which start from the time slot indicated to the UE, and the UE shall transmit the first repetition of PUCCH in this indicated time slot, where, if PUCCH-Frequencyhop-Interval is provided, then is the value of PUCCH-Frequencyhop-Interval; otherwise, is the value of PUCCH-TimeDomainWindowLength.
  • the UE transmits PUCCH in the interval until the UE
  • the UE transmits PUCCH in slots, where the first interval is numbered 0 and the subsequent intervals are counted sequentially; each interval is counted regardless of whether the UE transmits PUCCH in the slot.
  • the PUCCH transmitted by the UE in the even-numbered intervals starts from the first PRB, indicated by startingPRB, and the PUCCH transmitted by the UE in the odd-numbered intervals starts from the second PRB, indicated by secondHopPRB. At this time, the UE does not expect to be configured for intra-PUCCH slot hopping.
  • the frequency hopping pattern between the first PRB and the second PRB is the same in each time slot, where the starting PRB and the second Hop PRB are configured in the RRC signaling PUCCH-Resouce.
  • performing PUSCH frequency hopping according to the frequency hopping pattern corresponding to the existing uplink time slot may cause the terminal device to jump out of the uplink subband range on the SBFD time slot.
  • One solution is to configure two independent frequency hopping patterns (i.e., two sets of frequency hopping starting positions RBstart and frequency hopping intervals RBoffset), one set indicating the frequency hopping pattern of PUSCH in the SBFD time slot, and the other set indicating the frequency hopping pattern of PUSCH in the uplink time slot.
  • the X time slot (i.e., the SBFD time slot) in Figure 3 determines the PUSCH resources in the X time slot according to the frequency hopping pattern used only for the X time slot and sends uplink information on the determined PUSCH
  • the U time slot in Figure 3 determines the PUSCH resources in the U time slot according to the frequency hopping pattern used only for the U time slot and sends uplink information on the determined PUSCH.
  • the first signal is carried on the PUCCH.
  • One solution is to configure two sets of startingPRB and secondHopPRB as the frequency hopping pattern of PUCCH in the SBFD time slot and the frequency hopping pattern of PUCCH in the uplink time slot, respectively. Although this method is simple to implement, it will increase the signaling overhead.
  • the present application proposes an uplink transmission method, which can effectively solve the above technical problems.
  • the method proposed in the present application is described in detail below.
  • Fig. 4 is a schematic flow chart of an uplink transmission method proposed in the present application. The method includes the following steps.
  • the network device sends a first signal to the terminal device.
  • the first signal instructs the terminal device to send a first signal by frequency hopping on a first time unit set, the first signal is carried on a first PUSCH or a first PUCCH, and the first time unit set includes an SBFD time unit.
  • the terminal device receives the first signal from the network device.
  • the first time unit set may include only SBFD time units, or the first time unit set may include uplink time units and SBFD time units.
  • the present application does not limit the number of SBFD time units and uplink time units in the first time unit set. That is, the first time unit set may include L uplink time units and M SBFD time units, where L is a natural number and M is a positive integer.
  • the first signal is a PUSCH
  • the PUSCH may be a single-slot PUSCH or a multi-slot PUSCH.
  • the single-slot PUSCH includes PUSCH, Msg 3 PUSCH and Msg A PUSCH
  • the multi-slot PUSCH includes PUSCH repetition type A, PUSCH repetition type B, TBoMS PUSCH, Msg3 PUSCH repetition, MsgA PUSCH repetition, and the like.
  • the first signal is a PUCCH
  • the PUCCH may be a single-slot PUCCH or a multi-slot PUCCH (ie, PUCCH repetition).
  • the terminal device determines a second frequency hopping pattern according to the first frequency hopping pattern.
  • the first frequency hopping pattern indicates the positions of N different starting frequency resources for sending the first signal in a frequency hopping manner on at least two uplink time units
  • the second frequency hopping pattern indicates the positions of N different starting frequency resources for sending the first signal in a frequency hopping manner on at least two SBFD time units
  • the position of the starting frequency resource indicated by the second frequency hopping pattern is located in the uplink subband of the SBFD time unit
  • N is an integer greater than or equal to 2.
  • the frequency resource in this embodiment can be understood as an RB, wherein 12 subcarriers in the frequency domain constitute one RB.
  • the location of the frequency resource can be indicated by an index of the frequency resource.
  • the second frequency hopping pattern indicates the positions of N different starting frequency resources for sending the first signal in a frequency hopping manner on at least two SBFD time units, which can also be understood in a similar way, and will not be described in detail here. It should be understood that if the first signal is carried on PUSCH, the first frequency hopping pattern and the second frequency hopping pattern are the frequency hopping patterns of PUSCH. If the first signal is carried on PUCCH, the first frequency hopping pattern and the second frequency hopping pattern are the frequency hopping patterns of PUCCH.
  • the first frequency hopping pattern is determined based on the frequency hopping mode of sending the first signal, and the frequency hopping pattern of the first frequency hopping pattern and the second frequency hopping pattern are the same.
  • the frequency hopping mode can be intra-time slot hopping, or inter-time slot hopping, or inter-repetition hopping, or inter-time slot group hopping.
  • the first signal is carried on PUSCH, and the first frequency hopping pattern can refer to the description of the frequency hopping pattern corresponding to PUSH frequency hopping under different frequency hopping modes above.
  • the definition of the time unit in this embodiment is different.
  • the time unit is the time slot; for inter-time slot group frequency hopping: the time unit is the time slot set; for intra-time slot frequency hopping, the time unit is the symbol or symbol set included in each hop; for inter-repetition frequency hopping, the time unit is the symbol set where each nominal repetition is located.
  • the frequency hopping pattern of the first signal is predefined or indicated by the first signaling.
  • Method 1 Modulo operation (i.e. remainder operation) method
  • RB start,j is the index of the jth (1 ⁇ j ⁇ N) starting frequency resource among the N starting frequency resources of the first frequency hopping pattern, It is the number of frequency resources of the uplink subband in the SBFD time unit.
  • the second frequency hopping pattern determined according to the first method is as follows, RB′ start,j is the index of the jth starting frequency resource among the N starting frequency resources of the second frequency hopping pattern, and the RB′ start,j satisfies the following formula:
  • RB′ start,j is always located in the uplink subband of SBFD.
  • the terminal device determines a second frequency hopping pattern according to a first scaling parameter ⁇ and RB start,j , where RB start,j is an index of a j-th starting frequency resource among N starting frequencies of the first frequency hopping pattern, and ⁇ is greater than 0 and less than 1.
  • the second frequency hopping pattern determined according to the second method is as follows, wherein RB′ start,j is the index of the jth (1 ⁇ j ⁇ N) starting frequency resource among the N starting frequency resources of the second frequency hopping pattern, and the RB′ start,j satisfies the following formula:
  • [] can be rounded up, rounded down, or rounded to the nearest integer. It is the index of the starting frequency resource of the uplink subband of the SBFD time unit.
  • the number of RBs included in the BWP allocated by the network device to the terminal device, and the uplink subband is included in the BWP. It is the number of frequency resources of the uplink subband in the SBFD time unit.
  • is semi-statically configured by the network device through SIB1 or RRC, and 0 ⁇ 1.
  • the network device semi-statically instructs the terminal device to select an ⁇ in the candidate value table through SIB1 semi-static or RRC semi-static.
  • the candidate value table may be ⁇ 0.1, 0.2, 0.3, ..., 0.9 ⁇ .
  • first method and the second method can be used to determine the second frequency hopping pattern of the PUSCH, and the second frequency hopping pattern of the PUCCH during initial access and the PUCCH after the initial access.
  • the index of a frequency hopping start frequency in the second frequency hopping pattern is is the index of the starting frequency resource of the uplink subband of the SBFD time unit, and the index of another frequency hopping starting frequency resource in the second frequency hopping pattern is in, is the number of frequency resources of the uplink subband in the SBFD time unit, and L RBs is the number of frequency resources allocated to one PUSCH.
  • the second frequency hopping pattern may be:
  • gap and offset are predefined or preconfigured, and this application does not limit this.
  • the second frequency hopping pattern when the first signal is carried on the first PUCCH, for the PUCCH at the time of initial access, the second frequency hopping pattern
  • the index of one frequency hopping start frequency in the first frequency hopping pattern is the index of the start frequency resource of the uplink subband of the SBFD time unit plus the first offset value
  • the index of another frequency hopping start frequency in the second frequency hopping pattern is the index of the end frequency resource of the uplink subband of the SBFD time unit minus the first offset value
  • the first offset value is determined based on at least one of the following parameters: the offset value of the frequency resource
  • the total number of initial cyclic shift indices in the initial cyclic shift index set is N CS
  • the PUCCH resource index is r PUCCH .
  • the offset value of the frequency resource is The total number of initial cyclic shift indexes N CS in the initial cyclic shift index set is indicated by the network device.
  • a new table 2 is defined, which can be regarded as the sum of the initial cyclic shift indexes in Table 1. Replace with And the last row in Table 1 Replace with The network device indicates an index value in Table 2, and the terminal device determines an index value in Table 2 according to the index value.
  • N CS where It is the number of frequency resources of the uplink subband in the SBFD time unit.
  • the index of a frequency hopping starting frequency in the second frequency hopping pattern is The index of another frequency hopping start frequency in the second frequency hopping pattern is when When , the index of a frequency hopping starting frequency in the second frequency hopping pattern is The index of another frequency hopping start frequency in the second frequency hopping pattern is
  • the index of a frequency hopping start frequency in the second frequency hopping pattern is The index of another frequency hopping start frequency in the second frequency hopping pattern is when When , the index of a frequency hopping start frequency in the second frequency hopping pattern is Another one of the second frequency hopping patterns
  • the index of the frequency hopping start frequency is
  • N RB represents the number of RBs of PUCCH configured by RRC signaling pucch-ResourceCommon in the frequency range FR2-2 defined by 3GPP
  • S430 The network device determines a second frequency hopping pattern according to the first frequency hopping pattern.
  • the network device and the terminal device use the same method to determine the same second frequency hopping pattern to ensure that the network device can correctly receive the first signal sent by the terminal device on the frequency domain resources.
  • the terminal device sends a first signal to the network device in the SBFD time unit of the first time unit set according to the second frequency hopping pattern.
  • the network device receives the first signal in the SBFD time unit of the first time unit set according to the second frequency hopping pattern.
  • the terminal device sends a first signal to the network device in the uplink time unit of the first time unit set according to the first frequency hopping pattern.
  • the network device receives the first signal in the uplink time unit of the first time unit set according to the first frequency hopping pattern.
  • the terminal device can determine P second frequency hopping patterns based on the P types of SBFD time units, and the P types of SBFD time units correspond one-to-one to the P second frequency hopping patterns.
  • the second frequency hopping pattern is not directly configured for the frequency hopping transmission of the SBFD time unit, but a new rule is introduced according to the frequency hopping pattern of the existing uplink time unit (i.e., the first frequency hopping pattern), and the N starting frequency resources of the first frequency hopping pattern are mapped to the uplink subband of the SBFD to obtain the corresponding N starting frequency resources of the second frequency hopping pattern, so as to realize the frequency hopping transmission of the first signal on the SBFD time unit and the uplink time unit.
  • This method can not only ensure that the frequency hopping of the SBFD time slot will not exceed the uplink subband range, but also reduce the signaling overhead compared with the configuration of two sets of frequency hopping patterns in the prior art.
  • downlink resource allocation type 0 can realize non-continuous PDSCH frequency resource allocation, but can only realize frequency resource allocation at the RBG granularity, so the protection bandwidth (Guard band) needs to occupy at least 1 RBG, resulting in serious waste of resources;
  • downlink resource allocation type 1 can realize frequency resource allocation at the RB granularity, but the frequency resource allocation must be continuous, which makes it difficult to indicate the PDSCH frequency resources separately on two non-continuous downlink sub-bands in the SBFD time unit, which also leads to serious waste of resources.
  • the present application proposes a downlink transmission method, which can effectively solve the above technical problems.
  • the method proposed in the present application is described in detail below.
  • Figure 5 is a schematic flow chart of a downlink transmission method proposed in the present application. The method includes the following steps.
  • the network device sends a first signaling to the terminal device.
  • the first signaling indicates that the terminal device receives a first signal on a first time unit set, the first signaling includes first information and second information, the first information indicates the position of the starting frequency resource of the first frequency resource set and the number of frequency resources L RBs included in the first frequency resource set, the second information indicates the interval RB offset between the starting frequency resource in the first frequency resource set and the starting frequency resource in the second frequency resource set, the first signal is carried on the first PDSCH, the first time unit set includes the first time unit, and the first time unit is an SBFD time unit including at least two downlink subbands.
  • any two sub-bands of the at least two downlink sub-bands are respectively located on both sides of the uplink sub-band and/or the guard band of the SBFD time unit.
  • the position of the starting frequency resource can be indicated by the index of the starting frequency resource.
  • the frequency resource in this embodiment can be understood as RB, and the RB offset is the interval between the start RBs of two frequency resource sets.
  • the first signaling is DCI.
  • a frequency domain resource assignment field in the DCI indicates the first information and the second information.
  • the second information may indicate a value among multiple RB offset candidate values or an index corresponding to the value.
  • multiple RB offset candidate values can be configured by the network device through RRC signaling or other signaling, and this application does not make specific limitations on this.
  • the frequency domain resource assignment field in the first signaling DCI is The highest x bits of this field are the second information, indicating the index of the RB offset to be used among the 2 x RB offset candidate values configured by RRC signaling, and the remaining bits of this field are the first information, indicating RIV.
  • the highest 1 bit of the frequency domain resource assignment field i.e., the second information
  • the remaining bits of this field are the first information, indicating RIV
  • the highest 2 bits of the frequency domain resource assignment field i.e., the second information
  • the remaining bits of this field are the first information, indicating RIV.
  • the second information can also be configured as the interval between the ending frequency resources in the first frequency resource set and the ending frequency resources in the second frequency resource set, or the interval between the starting frequency resources in the first frequency resource set and the ending frequency resources in the second frequency resource set, or the interval between the ending frequency resources in the first frequency resource set and the starting frequency resources in the second frequency resource set. This application does not limit this.
  • the terminal device determines a first frequency resource set according to the first information, and the terminal device determines a second frequency resource set according to the first information and the second information, wherein the frequency resources in the first frequency resource set and the second frequency resource set are continuous.
  • the index of the starting frequency resource of the second frequency resource set is RB start +RB offset
  • RB start is the index of the starting frequency resource of the first frequency resource set indicated by the first information.
  • the number of frequency resources included in the second frequency resource set i.e., the length of the second frequency resource set
  • L RBs included in the first frequency resource set i.e., the length of the first frequency resource set
  • the number of frequency resources included in the second frequency resource set is predefined or preconfigured.
  • the calculation method of ⁇ can be predefined or indicated by the network device.
  • is a value indicated by the network device.
  • the network device configures a candidate value set for ⁇ , and the terminal device selects a value from the candidate value set. Or the network device selects a value from a preset candidate value set and sends it to the terminal device. Or the network device selects a value from a preset candidate value set as the value of ⁇ , sends the index of this value in the candidate value set to the terminal device, and the terminal device selects the corresponding value from the candidate value set as the value of ⁇ according to the received index.
  • the candidate value set for ⁇ is ⁇ 0.1, 0.2, ... 1, 2, 3 ... ⁇ .
  • the network device sends a first signal to the terminal device on the first frequency resource set and the second frequency resource set of the first time unit.
  • the terminal device receives the first signal from the network device on the first frequency resource set and the second frequency resource set of the first time unit.
  • the above technical solution can realize the PDSCH frequency resource allocation with RB granularity in two non-adjacent downlink subbands of the SBFD time unit by adding the second information indication in the first signaling, thereby improving the resource utilization of SBFD. And compared with the resource allocation type 0, this method does not need to occupy at least 1 RBG for the protection bandwidth, and can use more frequency resources.
  • the PDSCH frequency resource allocation type is indicated by resourceAllocation in the RRC signaling, that is, the terminal device is instructed to use resource allocation type 0, resource allocation type 1, or a dynamic resource allocation type to determine the frequency resource of the PDSCH on the downlink BWP. Therefore, the resource allocation method proposed in FIG5 can also be regarded as a new resource allocation type. For the convenience of description, this resource allocation type is referred to as resource allocation type 2 in this application.
  • the network device can determine whether the first signaling includes the second information based on the time unit type of the time unit included in the first time unit set. Similarly, the terminal device will also determine how to read the first signaling based on the time unit type of the time unit in the determined first time unit set. At the same time, the network device also needs to indicate the PDSCH frequency resource allocation type through another signaling.
  • the resource allocation type can be a non-dynamic resource configuration type such as resource allocation type 0, 1, or a dynamic resource allocation type.
  • the other signaling is referred to as the second signaling in this application.
  • the first signaling is DCI
  • the second signaling can be RRC signaling.
  • the first time unit set may include multiple time units, or may include only one time unit.
  • the judgment criteria for the network device to determine whether to configure the second information and the terminal device to determine whether the first signaling contains the second information are the same.
  • the interpretation of the first signaling in different scenarios is described here only from the perspective of the terminal device.
  • the terminal device interprets the first signaling in different scenarios, and the method for determining the frequency resource for receiving the first signal.
  • the SBFD time unit in the following scenario description is a SBFD time unit including at least two downlink subbands.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use resource allocation type 2 for PDSCH frequency resource allocation.
  • the terminal device determines, based on the second signaling, that the first signaling includes the first information and the second information, and determines, based on the first signaling, the first frequency resource set and the second frequency resource set.
  • the terminal device does not need to pay attention to the time unit type of the time unit in the first time unit set, regardless of whether the first time unit set only includes SBFD time units, or the first time unit set only includes downlink time units.
  • the terminal device receives the second signaling, the terminal device considers that the first signaling includes the second information.
  • the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use the first dynamic resource allocation type to perform PDSCH frequency resource allocation.
  • the first dynamic resource allocation type indicates that the first signaling will include a third information
  • the third information indicates resource allocation type 0 or resource allocation type 2. That is to say, in this scenario, the use of resource allocation type 0 or resource allocation type 2 can be dynamically indicated.
  • the first signaling is DCI
  • the first signaling includes a frequency domain resource assignment field.
  • the highest 1 bit i.e., an example of the third information
  • the highest 1 bit indicates whether to use the resource allocation type 0 in the prior art or the resource allocation type 2 proposed in this application.
  • the third information in the first signaling can be the highest 1 bit of the frequency domain resource assignment field, which is used to indicate different resource allocation types. It will not be described one by one later.
  • the terminal device determines, based on the second signaling, that the first signaling includes third information, where the third information indicates resource allocation type 0 or resource allocation type 2.
  • the terminal device's understanding of the first signaling is the same as in the prior art, see the previous description.
  • the terminal device determines that the first signaling also includes the first information and the second information, and determines the first frequency resource set and the second frequency resource set according to the first signaling. That is to say, when the third information indicates resource allocation type 2, the terminal device does not need to pay attention to the time unit type of the time unit in the first time unit set, regardless of whether the first time unit set only includes SBFD time units, or the first time unit set only includes downlink time units, the terminal device believes that the first signaling also includes the first information and the second information. Afterwards, the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use a second dynamic resource allocation type to perform PDSCH frequency resource allocation.
  • the second dynamic resource allocation type indicates that the first signaling will include a third information
  • the third information indicates resource allocation type 1 or resource allocation type 2. That is to say, in this scenario, the use of resource allocation type 1 or resource allocation type 2 can be dynamically indicated.
  • the terminal device determines, based on the second signaling, that the first signaling includes third information, where the third information indicates resource allocation type 1 or resource allocation type 2.
  • the terminal device's understanding of the first signaling is the same as in the prior art, see the previous description.
  • the terminal device determines that the first signaling also includes the first information and the second information, and determines the first frequency resource set and the second frequency resource set according to the first signaling. That is, when the third information indicates resource allocation type 2, the terminal device does not need to pay attention to the time unit type of the time unit in the first time unit set, regardless of whether the first time unit set only includes SBFD time units, or the first time unit set only includes downlink time units, the terminal device believes that the first signaling also includes the first information and the second information. Including first information and second information. Afterwards, the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use resource allocation type 1 for PDSCH frequency resource allocation.
  • the terminal device determines the first time unit set.
  • the terminal device determines that the first signaling includes the first information but not the second information, that is, the terminal device's understanding of the first signaling is the same as that in the prior art, see the previous description.
  • the terminal device determines that the first signaling includes the first information and the second information. Afterwards, the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set.
  • the terminal device interprets the first signaling according to different time unit types.
  • the terminal device believes that the first signaling is configured according to the existing technology.
  • the terminal device interprets the first signaling according to the new resource allocation type 2 given in this application.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use a third dynamic resource allocation type to perform PDSCH frequency resource allocation.
  • the third dynamic resource allocation type indicates that the first signaling will include a third information, and the third information indicates resource allocation type 0 or resource allocation type 1. That is to say, in this scenario, the use of resource allocation type 0 or resource allocation type 1 can be dynamically indicated.
  • the terminal device determines, based on the second signaling, that the first signaling includes third information, where the third information indicates resource allocation type 0 or resource allocation type 1.
  • the terminal device's understanding of the first signaling is the same as in the prior art, see the previous description.
  • the terminal device determines a first time unit set, interprets the first signaling for different time unit types and receives the first signal.
  • the interpretation of the first signaling is the same as described in scenario four and will not be repeated here.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use resource allocation type 3 for PDSCH frequency resource allocation.
  • the terminal device determines, based on the second signaling, that the first signaling includes the first information and the second information, and determines, based on the first signaling, the first frequency resource set and the second frequency resource set.
  • the terminal device does not need to pay attention to the time unit type of the time unit in the first time unit set, regardless of whether the first time unit set only includes SBFD time units, or the first time unit set only includes downlink time units.
  • the terminal device receives the second signaling, the terminal device considers that the first signaling includes the first information and the second information.
  • the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set.
  • the terminal device receives the first signal on the third frequency resource set of the first time unit set, wherein the starting frequency resource of the third frequency resource set is the frequency resource with the smallest index in the first frequency resource set and the second frequency resource set, and the ending frequency resource of the third frequency resource set is the frequency resource with the largest index in the first frequency resource set and the second frequency resource set. It should be understood that the frequency resources in the third frequency resource set are all continuous.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use a fourth dynamic resource allocation type to perform PDSCH frequency resource allocation.
  • the fourth dynamic resource allocation type indicates that the first signaling will include a third information
  • the third information indicates resource allocation type 0 or resource allocation type 3. That is to say, in this scenario, the use of resource allocation type 0 or resource allocation type 3 can be dynamically indicated.
  • the terminal device determines, based on the second signaling, that the first signaling includes third information, where the third information indicates resource allocation type 0 or resource allocation type 3.
  • the terminal device's understanding of the first signaling is the same as in the prior art, see the previous description.
  • the terminal device determines that the first information and the second information are included in the first signaling according to the second signaling, and determines the first frequency resource set and the second frequency resource set according to the first signaling, as described in scenario six. Afterwards, when the first time unit set includes only SBFD time units, the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set, and when the first time unit set includes only downlink time units, the terminal device receives the first signal on the third frequency resource set of the first time unit set.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use the fifth dynamic resource allocation type to perform PDSCH frequency resource allocation.
  • the fifth dynamic resource allocation type indicates that the first signaling will include a third information
  • the third information indicates resource allocation type 1 or resource allocation type 3. That is to say, in this scenario, the use of resource allocation type 1 or resource allocation type 3 can be dynamically indicated.
  • the terminal device determines, based on the second signaling, that the first signaling includes third information, where the third information indicates resource allocation type 1 or resource allocation type 3.
  • the terminal device's understanding of the first signaling is the same as in the prior art, see the previous description.
  • the terminal device determines that the first information and the second information are included in the first signaling according to the second signaling, and determines the first frequency resource set and the second frequency resource set according to the first signaling, as described in scenario six. Afterwards, when the first time unit set includes only SBFD time units, the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set, and when the first time unit set includes only downlink time units, the terminal device receives the first signal on the third frequency resource set of the first time unit set.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use the sixth dynamic resource allocation type to perform PDSCH frequency resource allocation.
  • the sixth dynamic resource allocation type indicates that the first signaling will include a third information
  • the third information indicates resource allocation type 2 or resource allocation type 3. That is to say, in this scenario, the use of resource allocation type 2 or resource allocation type 3 can be dynamically indicated.
  • the terminal device determines, based on the second signaling, that the first signaling includes third information, where the third information indicates resource allocation type 2 or resource allocation type 3.
  • the terminal device determines that the first information and the second information are included in the first signaling, and determines the first frequency resource set and the second frequency resource set based on the first signaling, as described in scenario 1. That is to say, in this scenario, the terminal device does not need to pay attention to the time unit type of the time unit in the first time unit set, regardless of whether the first time unit set only includes SBFD time units, or the first time unit set only includes downlink time units.
  • the terminal device receives the second signaling, the terminal device believes that the first signaling also includes the first information and the second information. Afterwards, the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set.
  • the terminal device determines that the first information and the second information are included in the first signaling according to the second signaling, and determines the first frequency resource set and the second frequency resource set according to the first signaling, as described in scenario six. Afterwards, when the first time unit set includes only SBFD time units, the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set, and when the first time unit set includes only downlink time units, the terminal device receives the first signal on the third frequency resource set of the first time unit set.
  • the terminal device receives a second signaling from the network device, where the second signaling is used to instruct the terminal device to use the seventh dynamic resource allocation type to perform PDSCH frequency resource allocation.
  • the seventh dynamic resource allocation type indicates that the first signaling will include a third information
  • the third information indicates resource allocation type 1 or resource allocation type 3. That is to say, in this scenario, the use of resource allocation type 1 or resource allocation type 3 can be dynamically indicated.
  • the terminal device determines, based on the second signaling, that the first signaling includes third information, where the third information indicates resource allocation type 1 or resource allocation type 3.
  • the terminal device determines that the first signaling includes the first information but does not include the second information, that is, the terminal device interprets the first signaling according to the prior art and sends the first signal.
  • the terminal device determines according to the second signaling that the first signaling includes the first information and the second information.
  • the terminal device allocates the first frequency resource set and the second frequency resource set in the first time unit set to the first frequency resource set and the second frequency resource set in the first frequency resource set. A first signal is received on the second frequency resource set.
  • the terminal device determines that the first information and the second information are included in the first signaling according to the second signaling, and determines the first frequency resource set and the second frequency resource set according to the first signaling, as described in scenario six. Afterwards, when the first time unit set includes only SBFD time units, the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the first time unit set, and when the first time unit set includes only downlink time units, the terminal device receives the first signal on the third frequency resource set of the first time unit set.
  • the way in which the terminal device interprets the first signaling and the method for determining the frequency resource set for sending the first signal can refer to the description corresponding to the first time unit set containing only downlink time units. I will not repeat them one by one here.
  • the method for determining the third frequency resource set is consistent with the downlink time unit, that is, the starting frequency resource of the third frequency resource set is the frequency resource with the smallest index of the frequency resource in the first frequency resource set and the second frequency resource set, and the ending frequency resource of the third frequency resource set is the frequency resource with the largest index of the frequency resource in the first frequency resource set and the second frequency resource set, and the frequency resources in the third frequency resource set are all continuous.
  • the third frequency resource set is the frequency resource set of the first frequency resource set and the second frequency resource set that is located in the downlink subband of the SBFD time unit.
  • the above scenario is described for a case where there is only one type of time unit in the first time unit set.
  • the first time unit set includes two types of time units (that is, when the first time unit only includes downlink time units and SBFD time units)
  • how the terminal device interprets the first signaling and determines the frequency resource set for sending the first signal is described below with examples.
  • the network device may not configure the second information for the terminal device, and the network device may indicate a resource allocation type, for example, resource allocation type 0 or 1, to the terminal device through the second signaling. Therefore, the terminal device may interpret the first signaling according to the existing resource configuration method indicated by the second signaling, and the terminal device believes that the first signaling includes the first information (ie, RIV) but does not include the second information. Afterwards, the terminal device sends the first signal on the frequency resource set indicated by the first signaling.
  • the network device when the first time unit set includes a downlink time unit and an SBFD time unit with only one downlink subband, the network device can configure the second information for the terminal device, and the network device can indicate a resource allocation type, for example, resource allocation type 2, to the terminal device through the second signaling, so that the terminal device considers that the first signaling includes the first information and the second information. Afterwards, the terminal device sends the first signal on the third frequency resource set of the downlink time unit of the first time unit set, and the terminal device sends the first signal on the fourth frequency resource set of the SBFD time unit with only one downlink subband of the first time unit set.
  • a resource allocation type for example, resource allocation type 2
  • the fourth frequency resource is the third frequency resource set, and if one of the first frequency resource set and the second frequency resource set is not located in the downlink subband of the SBFD time unit, the fourth frequency resource set is the frequency resource set of the first frequency resource set and the second frequency resource set that is located in the downlink subband of the SBFD time unit.
  • the network device can configure the second information for the terminal device, and the network device can indicate a resource allocation type to the terminal device through the second signaling.
  • the resource allocation type is a first dynamic resource allocation type
  • the first dynamic resource allocation type indicates that the first signaling will include a third information, for example, the third information indicates resource allocation type 2.
  • the terminal device determines that the first signaling also includes the first information and the second information. After that, the terminal device receives the first signal based on the first frequency resource set and the second frequency resource set on the first time unit set.
  • the scenario in which the network device configures the second information for the terminal device can refer to the scenarios one, two, three, six, seven, eight, nine, and ten described above.
  • the network device may configure the second information for the terminal device. For example, in one scenario, the network device may indicate a resource allocation type, for example, resource allocation type 2, to the terminal device through a second signaling, so that the terminal device considers that the first information and the second information are included in the first signaling.
  • a resource allocation type for example, resource allocation type 2
  • the terminal device sends a first signal on a first frequency resource set and a second frequency resource set of an SBFD time unit including at least two downlink subbands in the first time unit set, the terminal device sends a first signal on a third frequency resource set of a downlink time unit in the first time unit set, and the terminal The terminal device sends a first signal on the fourth frequency resource set of the SBFD time unit having only one downlink subband in the first time unit set.
  • the fourth frequency resource is the third frequency resource set, and if one of the first frequency resource set and the second frequency resource set is not located in the downlink subband of the SBFD time unit, the fourth frequency resource set is the frequency resource set of the first frequency resource set and the second frequency resource set that is located in the downlink subband of the SBFD time unit.
  • the terminal device receives the first signal in a first frequency resource set and a second frequency resource set in a first time unit set.
  • the terminal device receives the first signal on the first frequency resource set and the second frequency resource set of the SBFD time unit of the first time unit set, and receives the first signal on the third frequency resource set of the downlink time unit of the first time unit set.
  • the description of the third frequency resource is as described above and will not be repeated here.
  • the devices in the existing network architecture are mainly used as examples for exemplary description, and it should be understood that the embodiments of the present application do not limit the specific form of the devices. For example, devices that can achieve the same function in the future are applicable to the embodiments of the present application.
  • the methods and operations implemented by devices can also be implemented by components of the devices (such as chips or circuits).
  • the method provided by the embodiment of the present application is described in detail above in conjunction with Figures 1 to 5.
  • the above method is mainly introduced from the perspective of interaction between the terminal device and the network device. It can be understood that the terminal device and the network device, in order to implement the above functions, include hardware structures and/or software modules corresponding to the execution of each function.
  • the embodiment of the present application can divide the functional modules of the terminal device or network device according to the above method example.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated module can be implemented in the form of hardware or in the form of software functional modules.
  • the division of the modules in the embodiment of the present application is schematic, which is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each functional module corresponding to each function.
  • the data transmission method provided by the present application is described in detail above.
  • the communication device provided by the present application is described below.
  • the device is used to implement the steps or processes corresponding to the receiving device in the above method embodiment.
  • the device is used to implement the steps or processes corresponding to the sending device in the above method embodiment.
  • FIG6 is a schematic block diagram of a communication device 200 provided in an embodiment of the present application.
  • the device 200 may include a communication unit 210 and a processing unit 220.
  • the communication unit 210 may communicate with the outside, and the processing unit 220 is used for data processing.
  • the communication unit 210 may also be referred to as a communication interface or a transceiver unit.
  • the device 200 can implement steps or processes corresponding to those performed by the sending end device in the above method embodiment, wherein the processing unit 220 is used to perform processing-related operations of the sending end device in the above method embodiment, and the communication unit 210 is used to perform sending-related operations of the sending end device in the above method embodiment.
  • the device 200 can implement steps or processes corresponding to those executed by the receiving device in the above method embodiment, wherein the communication unit 210 is used to execute reception-related operations of the receiving device in the above method embodiment, and the processing unit 220 is used to execute processing-related operations of the receiving device in the above method embodiment.
  • the device 200 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor or a group processor, etc.) and a memory for executing one or more software or firmware programs, a merged logic circuit and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a dedicated processor or a group processor, etc.
  • memory for executing one or more software or firmware programs, a merged logic circuit and/or other suitable components that support the described functions.
  • the device 200 can be specifically the sending end device in the above-mentioned embodiment, and can be used to execute the various processes and/or steps corresponding to the sending end device in the above-mentioned method embodiment, or the device 200 can be specifically the receiving end device in the above-mentioned embodiment, and can be used to execute the various processes and/or steps corresponding to the receiving end device in the above-mentioned method embodiment. To avoid repetition, it will not be repeated here.
  • the apparatus 200 of each of the above-mentioned schemes has the function of implementing the corresponding steps executed by the sending end device in the above-mentioned method, or the apparatus 200 of each of the above-mentioned schemes has the function of implementing the corresponding steps executed by the receiving end device in the above-mentioned method.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the communication unit can be replaced by a transceiver (for example, the sending unit in the communication unit can be replaced by a transmitter, and the receiving unit in the communication unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor, respectively performing the sending and receiving operations and related processing operations in each method embodiment.
  • a transceiver for example, the sending unit in the communication unit can be replaced by a transmitter, and the receiving unit in the communication unit can be replaced by a receiver
  • other units such as the processing unit
  • the communication unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 6 may be an AP or STA in the aforementioned embodiment, or may be a chip or a chip system, for example, a system on chip (SoC).
  • the communication unit may be an input and output circuit or a communication interface; the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
  • the device 300 includes a processor 310 and a transceiver 320.
  • the processor 310 and the transceiver 320 communicate with each other through an internal connection path, and the processor 310 is used to execute instructions to control the transceiver 320 to send signals and/or receive signals.
  • the device 300 may further include a memory 330, and the memory 330 communicates with the processor 310 and the transceiver 320 through an internal connection path.
  • the memory 330 is used to store instructions, and the processor 310 can execute the instructions stored in the memory 330.
  • the device 300 is used to implement the various processes and steps corresponding to the sending end device in the above method embodiment. In another possible implementation, the device 300 is used to implement the various processes and steps corresponding to the receiving end device in the above method embodiment.
  • the device 300 can be specifically the transmitting device or the receiving device in the above-mentioned embodiment, or it can be a chip or a chip system.
  • the transceiver 320 can be the transceiver circuit of the chip, which is not limited here.
  • the device 300 can be used to execute the various steps and/or processes corresponding to the transmitting device or the receiving device in the above-mentioned method embodiment.
  • the memory 330 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A part of the memory may also include a non-volatile random access memory.
  • the memory may also store information about the device type.
  • the processor 310 can be used to execute instructions stored in the memory, and when the processor 310 executes instructions stored in the memory, the processor 310 is used to execute the various steps and/or processes of the above-mentioned method embodiment corresponding to the transmitting device or the receiving device.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
  • the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
  • the processor in the embodiment of the present application can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
  • the above processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the processor in the embodiment of the present application can implement or execute the methods, steps and logic block diagrams disclosed in the embodiment of the present application.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined and performed.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchlink DRAM
  • DR RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) can be integrated into the processor.
  • the present application also provides a computer-readable storage medium, in which computer instructions are stored.
  • computer instructions When the computer instructions are executed on a computer, the operations and/or processes performed by a terminal device or a network device in each method embodiment of the present application are executed.
  • the present application also provides a computer program product, which includes computer program code or instructions.
  • a computer program product which includes computer program code or instructions.
  • the operations and/or processes performed by a terminal device or a network device in each method embodiment of the present application are executed.
  • the present application also provides a chip, the chip including a processor.
  • a memory for storing a computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory, so that the operation and/or processing performed by the terminal device or the network device in any method embodiment is executed.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit, etc.
  • the chip may further include a memory.
  • the present application also provides a communication system, including the terminal device and network device in the embodiments of the present application.
  • memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • the device embodiments described above are only schematic, for example, the division of the unit is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the scheme of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into a processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the method in each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • the first information and the second information do not represent the difference in information volume, content, priority or importance.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item or similar expressions means one or more items, that is, any combination of these items, including any combination of single items or plural items.
  • at least one item of a, b, or c means: a, b, c, a and b, a and c, b and c, or a, b and c.
  • the above is an example of three elements, A, B and C, to illustrate the optional items of the project.
  • the project includes at least one of the following: A, B, ..., and X"
  • the items that can be applied to the project can also be obtained according to the above rules.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship.
  • A/B means: A or B.
  • a corresponds to B means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行传输的方法和通信装置,该方法在只配置上行时间单元的跳频图案的情况下,引入新的规则,将上行时间单元的跳频图案的N个起始频率资源的位置映射至SBFD的上行子带内,以获取对应的SBFD时间单元的跳频图案的N个起始频率资源。该方法不仅可以保证在SBFD时间单元的跳频不会超出上行子带范围,同时相比针对SBFD时间单元和上行时间单元直接配置两套跳频图案,降低了信令开销。

Description

上行传输的方法和通信装置
本申请要求于2022年9月30日提交中国专利局、申请号为202211214269.0、申请名称为“上行传输的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,更具体地,涉及一种上行传输的方法和通信装置。
背景技术
随着第五代移动通信技术新无线(new radio,NR)的快速发展,出现了多种多样的通信需求,为满足新兴业务的需求,提出了子带全双工(subband non-overlapping full duplex,SBFD)的方案来提升时分双工(time division duplex,TDD)系统的上行覆盖。子带全双工是指在TDD系统中,网络设备通过上行传输和下行传输采用不同子带实现在一个时隙或一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上既能接收又能发送。
当终端设备在多个SBFD时隙上跳频发送第一信号时,由于SBFD时隙的上行子带的频率范围小于上行时隙的部分带宽(bandwidth part,BWP)的范围,按照现有的上行时隙对应的跳频图案在SBFD时隙上跳频发送第一信号时,可能会导致终端设备在SBFD时隙上跳出上行子带的范围。一种可能的解决方法是配置两套独立的跳频图案,其中一组跳频图案为SBFD时隙对应的跳频图案,另一组跳频图案为上行时隙对应的跳频图案。这种方法虽然实现简单,但是会增加信令开销。
发明内容
本申请实施例提供一种上行传输的方法和通信装置,可以保证在SBFD时隙的跳频不会超出上行子带范围,同时降低了信令开销。
第一方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备接收来自网络设备的第一信令,第一信令指示终端设备在第一时间单元集合上采用跳频方式发送第一信号,第一信号承载在第一物理上行共享信道PUSCH或第一物理上行控制信道PUCCH上,第一时间单元集合包括至少两个SBFD时间单元;终端设备根据第一跳频图案确定第二跳频图案,其中,第一跳频图案指示在至少两个上行时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,第二跳频图案指示的起始频率资源的位置位于至少两个SBFD时间单元的上行子带中,N为大于或等于2的整数;终端设备根据第二跳频图案在至少两个SBFD时间单元上发送第一信号。
上述技术方案中,在只配置第一跳频图案的情况下,终端设备可以基于第一跳频图案的确定SBFD时间单元的第二跳频图案,使得第二跳频图案指示的N个起始频率资源的位置位于SBFD时间单元的上行子带内。该方法不仅可以保证在SBFD时间单元的跳频不会超出上行子带范围,同时相比针对SBFD时间单元和上行时间单元直接配置两套跳频图案,降低了信令开销。
第二方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该方法可以包括:网络设备向终端设备发送第一信令,第一信令指示终端设备在第一时间单元集合上采用跳频方式发送第一信号,第一信号承载在第一物理上行共享信道PUSCH或第一物理上行控制信道PUCCH上,第一时间单元集合包括至少两个SBFD时间单元;网络设备根据第一跳频图案确定 第二跳频图案,其中,第一跳频图案指示在至少两个上行时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,第二跳频图案指示的起始频率资源的位置位于至少两个SBFD时间单元的上行子带中,N为大于或等于2的整数;网络设备根据第二跳频图案在至少两个SBFD时间单元上接收来自终端设备的第一信号。
关于第二方面的有益效果参见第一方面中的描述,这里不再赘述。
在第一方面和第二方面的某些实现方式中,第二跳频图案的N个起始频率中的第j个起始频率资源的索引RB′start,j是基于确定的,其中,RBstart,j为第一跳频图案的N个起始频率资源中的第j个起始频率资源的索引,为SBFD时间单元的上行子带的频率资源的个数,j=1,2,…,N。
在第一方面和第二方面的某些实现方式中,第二跳频图案的N个起始频率中的第j个起始频率资源的索引RB′start,j满足以下公式:其中,为SBFD时间单元的上行子带的起始频率资源的索引。
上述技术方案中,由于的取值范围大于或等于0,以及小于因此RB′start,j可以始终位于SBFD的上行子带上。
在第一方面和第二方面的某些实现方式中,第二跳频图案的N个起始频率中的第j个起始频率资源的索引RB′start,j是基于第一缩放参数α和RBstart,j确定的,其中,RBstart,j为第一跳频图案的N个起始频率中的第j个起始频率资源的索引,α大于0且小于1,j=1,2,…,N。
在第一方面和第二方面的某些实现方式中,第二跳频图案的N个跳频起始频中的第j个起始频率资源索引RB′start,j满足以下公式:其中,为SBFD时间单元的上行子带的起始频率资源的索引,[]表示向上取整运算,或向下取整运算,或四舍五入取整运算。
第三方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备接收来自网络设备的第一信令,第一信令指示终端设备在第一时间单元集合上跳频发送第一信号,第一信号承载在第一物理上行共享信道PUSCH或第一物理上行控制信道PUCCH上,第一时间单元集合包括至少两个SBFD时间单元;终端设备确定第二跳频图案,其中,第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,第二跳频图案指示的起始频率资源的位置位于至少两个SBFD时间单元的上行子带中,N为大于或等于2的整数;终端设备根据第二跳频图案在至少两个SBFD时间单元上向网络设备发送第一信号。
上述技术方案中,终端设备直接根据上行子带的位置给出一个固定位置的第二跳频图案,可以保证在SBFD时间单元的跳频不会超出上行子带范围,同时相比针对SBFD时间单元和上行时间单元直接配置两套跳频图案,降低了信令开销。
第四方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该方法可以包括:网络设备向终端设备发送第一信令,第一信令指示终端设备在第一时间单元集合上跳频发送第一信号,第一信号承载在第一物理上行共享信道PUSCH或第一物理上行控制信道PUCCH上,第一时间单元集合包括至少两个SBFD时间单元;网络设备确定第二跳频图案,其中,第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,第二跳频图案指示的起始频率资源的位置位于至少两个SBFD时间单元的上行子带中,N为大于或等于2的整数;网络设备根据第二跳频图案在至少两个SBFD时间单元上接收来自终端设备的第一信号。
关于第四方面的有益效果参见第三方面中的描述,这里不再赘述。
在第三方面和第四方面的某些实现方式中,N=2,当第一信号承载在第一PUSCH时,第二跳频图案中的一个跳频起始频率的索引为为SBFD时间单元的上行子带的起始频率资源的索引,第二跳频图案中的另一个跳频起始频率资源的索引为其中,为SBFD时间单元的上行子带的频率资源的个数,LRBs为上行子带中分配给一个PUSCH的频率资源的个数。
在第三方面和第四方面的某些实现方式中,N=2,当第一信号承载在第一PUCCH时,第二跳频图案中的一个跳频起始频率的索引为SBFD时间单元的上行子带的起始频率资源的索引加上第一偏移值,第二跳频图案中的另一个跳频起始频率的索引为SBFD时间单元的上行子带的结束频率资源的索引减去第一偏移值,第一偏移值是基于以下参数中的至少一个参数确定的:频率资源的偏置值初始循环移位索引集合中初始循环移位索引的总数NCS,PUCCH资源索引rPUCCH
在第三方面和第四方面的某些实现方式中,当时,第一偏移值为时,第一偏移值为
第五方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备接收来自网络设备的第一信令,第一信令指示终端设备在第一时间单元集合上接收第一信号,第一信令包括第一信息和第二信息,第一信息指示第一频率资源集合的起始频率资源的位置和第一频率资源集合包括的频率资源的个数,第二信息指示第一频率资源集合中的起始频率资源和第二频率资源集合中的起始频率资源的间隔,第一信号承载在第一物理下行共享信道PDSCH上,第一时间单元集合包括第一时间单元,第一时间单元为包括至少两个下行子带的SBFD时间单元;终端设备根据第一信息确定第一频率资源集合;终端设备根据第一信息和第二信息确定第二频率资源集合,第二频率资源集合包括的频率资源的个数与第一频率资源集合包括的频率资源的个数相同或第二频率资源集合包括的频率资源的个数是预定义或网络设备配置的;终端设备在第一时间单元的第一频率资源集合和第二频率资源集合上接收来自网络设备的第一信号。
与现有的资源分配类型1相比,上述技术方案通过在第一信令中增加第二信息指示两个频率资源集合之间的间隔,即可实现在SBFD时间单元的两个不连续下行子带内实现的PDSCH频率资源分配,从而提高SBFD时间单元的频率资源利用率。且该方法与资源分配类型0相比,不会出现保护带宽至少需要占用1个RBG的情况,可以使用更多的频率资源。
在第五方面的某些实现方式中,第一时间单元集合还包括第二时间单元,第二时间单元为下行时间单元,该方法还包括:终端设备在第二时间单元的第一频率资源集合和第二频率资源集合上接收第一信号。
在第五方面的某些实现方式中,第一时间单元集合还包括第二时间单元,第二时间单元为下行时间单元,该方法还包括:终端设备确定第三频率资源集合,其中,第三频率资源集合的起始频率资源为第一频率资源集合和第二频率资源集合中频率资源的索引最小的频率资源,第三频率资源集合的结束频率资源为第一频率资源集合和第二频率资源集合中频率资源的索引最大的频率资源;终端设备在第二时间单元的第三频率资源集合上接收来自网络设备的第一信号,第三频率资源集合为一段连续的频率资源。
第六方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该方法可以包括:网络设备向终端设备发送第一信令,第一信令指示终端设备在第一时间单元集合上接收第一信号,第一信令包括第一信息和第二信息,第一信息指示第一频率资源集合的起始频率资源的位置和第一频率资源集合包括的频率资源的个数,第二信息指示第一频率资源集合中的起始频率资源和第二频率资源集合中的起始频率资源的间隔,第一信号承载在第一物理下行共享信道PDSCH 上,第一时间单元集合包括第一时间单元,第一时间单元为包括至少两个下行子带的SBFD时间单元;网络设备在第一时间单元的第一频率资源集合和第二频率资源集合上向终端设备发送第一信号,其中,第二频率资源集合包括的频率资源的个数与第一频率资源集合包括的频率资源的个数相同或第二频率资源集合包括的频率资源的个数是预定义或网络设备配置的。
关于第六方面的有益效果参见第五方面的描述,这里不再赘述。
在第六方面的某些实现方式中,第一时间单元集合还包括第二时间单元,第二时间单元为下行时间单元,该方法还包括:网络设备在第二时间单元的第一频率资源集合和第二频率资源集合上向终端设备发送第一信号。
在第六方面的某些实现方式中,第一时间单元集合还包括第二时间单元,第二时间单元为下行时间单元,该方法还包括:网络设备确定第三频率资源集合,其中,第三频率资源集合的起始频率资源为第一频率资源集合和第二频率资源集合中频率资源的索引最小的频率资源,第三频率资源集合的结束频率资源为第一频率资源集合和第二频率资源集合中频率资源的索引最大的频率资源;网络设备在第二时间单元的第三频率资源集合上向终端设备发送第一信号,第三频率资源集合为一段连续的频率资源。
第七方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备接收来自网络设备的第一信令,第一信令指示终端设备在第一时间单元集合上接收第一信号;终端设备确定第一时间单元集合;当第一时间单元集合中包括第一时间单元时,第一时间单元为包括至少两个下行子带的SBFD时间单元,第一信令包括第一信息和第二信息,第一信息指示第一频率资源集合的起始频率资源的位置和所述第一频率资源集合包括的频率资源的个数,第二信息指示第一频率资源集合的起始频率资源和第二频率资源集合的起始频率资源的间隔,终端设备根据所述第一信息确定第一频率资源集合,终端设备根据第一信息和第二信息确定第二频率资源集合,第二频率资源集合包括的频率资源的个数与第一频率资源集合包括的频率资源的个数相同或第二频率资源集合包括的频率资源的个数是预定义或网络设备配置的,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号;当第一时间单元集合中不包括第一时间单元时,则第一信令包括第四信息,第四信息指示第四频率资源集合的起始频率资源的位置和第四频率资源集合包括的频率资源的个数,终端设备根据第四信息确定第四频率资源集合,终端设备在第一时间单元集合的第四频率资源集合上发送第一信号。
可以理解,该场景中终端设备针对不同的时间单元类型对第一信令进行解读,当第一时间单元集合中只包括下行时间单元,则终端设备认为第一信令按照现有技术进行配置,当第一时间单元集合中只包括至少两个下行子带的SBFD时间单元,则终端设备认为第一信令按照本申请给出的方式进行解读,第一信令中包括第一信令和第二信令,这样,即可实现在SBFD时间单元的两个不连续下行子带内实现的PDSCH频率资源分配,从而提高SBFD时间单元的频率资源利用率。
第八方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该方法可以包括:网络设备向终端设备发送第一信令,第一信令指示终端设备在第一时间单元集合上接收第一信号,当第一时间单元集合中包括第一时间单元时,第一时间单元为包括至少两个下行子带的SBFD时间单元,第一信令包括第一信息和第二信息,第一信息指示第一频率资源集合的起始频率资源的位置和第一频率资源集合包括的频率资源的个数,第二信息指示第一频率资源集合的起始频率资源和第二频率资源集合的起始频率资源的间隔,网络设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上向终端设备发送第一信号,第二频率资源集合包括的频率资源的个数与第一频率资源集合包括的频率资源的个数相同或第二频率资源集合包括的频率资源的个数是预定义或网络设备配置的;当第一时间单元集合中不包括第一时间单元时,则第一信令包括第四信息,第四信息指示第四频率资源集合的起始频率资源的位置和第四频率资源集合包括的频率资源的个数,网络设备在第一时间单元集合的第四频率资源集合上发送第一信号。
关于第八方面的有益效果参见第七方面的描述,这里不再赘述。
第九方面,提供一种通信装置,该装置用于执行上述第一方面或第三方面或第五方面或第七方面提供的方法。具体地,该装置可以包括用于执行第一方面或第三方面或第五方面或第七方面以及第一方面或第三方面或第五方面或第七方面中任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为终端设备。当该装置为终端设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于终端设备中的芯片、芯片系统或电路。当该装置为用于终端设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第十方面,提供一种通信装置,该装置用于执行上述第二方面或第四方面或第六方面或第八方面提供的方法。具体地,该装置可以包括用于执行第二方面或第四方面或第六方面或第八方面以及第二方面或第四方面或第六方面或第八方面中任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为网络设备。当该装置为网络设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于网络设备中的芯片、芯片系统或电路。当该装置为用于终端设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第十一方面,提供一种通信装置,该装置包括:包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信装置执行第一方面或第三方面或第五方面以及第一方面或第三方面或第五方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置为终端设备。
在另一种实现方式中,该装置为用于终端设备中的芯片、芯片系统或电路。
第十二方面,提供一种通信装置,该装置包括:包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信装置执行第二方面或第四方面或第六方面或第八方面以及第二方面或第四方面或第六方面或第八方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置为网络设备。
在另一种实现方式中,该装置为用于网络设备中的芯片、芯片系统或电路。
第十三方面,提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十四方面,提供一种计算机可读存储介质,该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第八方面中任一方面以及第一方面至第八方面中任一种可能实现方式中的方法。
第十五方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第八方面中任一方面以及第一方面至第八方面中任一种可能实现方式中的方法。
第十六方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面至第八方面中任一方面以及第一方面至第八方面中任一种可能实现方式 中的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面至第八方面中任一方面以及第一方面至第八方面中任一种可能实现方式中的方法。
第十七方面,提供一种通信系统,该通信系统包括第十一方面以及第十二方面所示的通信装置。
附图说明
图1是本申请实施例提供的一种通信系统的示意图。
图2是子带全双工的时频示意图。
图3是为SBFD时隙和上行时隙配置两套独立的跳频图案的示意图。
图4是本申请提出的一种上行传输的方法的示意性流程图。
图5是本申请提出的一种下行传输的方法的示意性流程图。
图6是本申请提供的通信装置200的示意性框图。
图7为本申请提供的通信装置300的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如,第五代(5th generation,5G),新无线(new radio,NR),长期演进(long term evolution,LTE),物联网(internet of things,IoT),无线保真(wireless-fidelity,WiFi),第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的无线通信,或未来可能出现的其他无线通信等。
图1是本申请实施例提供的一种通信系统示意图。该通信系统100中包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120和/或终端设备130。该网络设备110与终端设备120/130可通过无线链路通信,进而交互信息。可以理解的是,网络设备和终端设备也可以被称为通信设备。
网络设备是一种具有无线收发功能的网络侧设备。网络设备可以是无线接入网(radio access network,RAN)中为终端设备提供无线通信功能的装置,称为RAN设备。例如,该网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、3GPP后续演进的基站、发送接收点(transmission reception point,TRP)、WiFi系统中的接入节点、无线中继节点、无线回传节点等。在采用不同的无线接入技术(radio access technology,RAT)的通信系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为eNB或eNodeB,5G系统或NR系统中可以称为gNB,本申请对基站的具体名称不作限定。网络设备可以包含一个或多个共站址或非共站址的发送接收点。再如,网络设备可以包括一个或多个集中式单元(central unit,CU)、一个或多个分布式单元(distributed unit,DU)、或一个或多个CU和一个或多个DU。示例性地,CU的功能可以由一个实体或者不同的实体来实现。例如,CU的功能进行进一步切分,即将控制面和用户面分离并通过不同实体来实现,分别为控制面CU实体(即CU-CP实体)和用户面CU实体(即CU-UP实体),CU-CP实体和CU-UP实体可以与DU相耦合,共同完成接入网设备的功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。这样可以通过多个网络功能实体来实现无线接入网设备的部分功能。这些网路功能实体可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。网络设备还可以包括有源天线单元(active antenna unit,简称AAU)。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入 网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。又如,车到一切(vehicle to everything,V2X)技术中,接入网设备可以为路侧单元(road side unit,RSU)。通信系统中的多个接入网设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。本申请实施例中,用于实现网络设备功能的装置可以是网络设备本身,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或可实现接入网设备功能的组合器件、部件,该装置可以被安装在网络设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
终端设备是一种具有无线收发功能的用户侧设备,可以是固定设备,移动设备、手持设备(例如手机)、可穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。终端设备用于连接人,物,机器等,可广泛用于各种场景,例如:蜂窝通信、设备到设备(device-to-device,D2D)通信、V2X通信中的、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)通信、物联网、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景。示例性的,终端设备可以是蜂窝通信中的手持终端,D2D中的通信设备,MTC中的物联设备,智能交通和智慧城市中的监控摄像头,或,无人机上的通信设备等。终端设备有时可称为用户设备(user equipment,UE)、用户终端、用户装置、用户单元、用户站、终端、接入终端、接入站、UE站、远方站、移动设备或无线通信设备等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或可实现终端设备功能的组合器件、部件,该装置可以被安装在终端设备中。
为便于理解本申请实施例,首先对本申请中涉及的概念及相关流程进行介绍。
1、符号(symbol):时域符号的简称,也可以称为OFDM符号。需要说明的是,时域符号还可以与其他多址方式结合命名,本申请实施例不做限定。针对不同的子载波间隔,时域符号长度可以不同。
应理解,一个时隙(slot)内的符号可能包括3种类型,下行符号,上行符号和灵活符号。上行符号只能用于上行传输,下行符号只能用于下行传输。灵活符号没用确定的传输方向,可以根据控制信令的指示用于进行上行传输或者下行传输。一个时隙的符号可以全是下行符号,或者全是上行符号,或者全是灵活符号,也可以是几种符号的混合。
2、时间单元:时间单元可以为时隙,或者符号,或者子帧,或者半帧,或者帧,或者迷你子帧,或者迷你时隙,或者传输时机(transimission occasion,TO),或时隙间跳频、时隙内跳频、重复间跳频、时隙组间跳频等每一跳所在的时隙、符号、时隙集合或符号集合,本申请对此不做限定。
3、子带:子带为一个载波中的部分频带,即,频域上的一个或多个连续的物理资源块(physical resource block,PRB)。本申请中,子带也可以理解为频率资源。
4、SBFD:在SBFD方案中,一个载波或一个部分带宽(bandwidth part,BWP)被分为多个不重叠的子带,不同子带的传输方向可以不同,即一个载波上包括不重叠的第一子带和第二子带,第一子带和第二子带的传输方向不同。需要说明的是,第一子带和第二子带是指传输方向不同的两种类型子带,并不表示一个载波中只包含两个子带。举例来说,一个载波包括子带#1和子带#2,其中,子带#1和子带#2的传输方向不相同。或者,一个载波包括子带#1、子带#2和子带#3,其中,子带#1和子带#3的传输方向相同,子带#1与子带#2的传输方向不相同。
5、SBFD时间单元:SBFD时间单元上的频率资源包括上行频率资源和下行频率资源,其中,上行频率资源用于上行传输,下行频率资源用于下行传输。
图2是一种典型的SBFD方案的时频划分的示意图。其中横轴代表时域,纵轴代表频域,图2中用左斜杠填充的两个长方块分别代表一组用于下行传输的时频资源,用竖杠填充的长方块代表一组用于上行传输的时频资源,这三块时频资源所占时域范围中的时域资源称为SBFD时间单元。
6、非SBFD时间单元:非SBFD时间单元中包含的所有符号中的每一个符号对应的频率资源只用于下行传输或只用于上行传输。作为示例,非SBFD时间单元中的符号全部为下行符号,或者,非全双工时间单元中的符号全部为上行符号,或者,非全双工时间单元中的符号部分为下行符号以及部分 为上行符号,或者,非全双工时间单元中的符号部分为下行符号,部分为上行符号以及部分为灵活符号,或者,非全双工时间单元中的符号部分为下行符号以及部分为灵活符号,或者,非全双工时间单元中的符号部分为上行符号以及部分为灵活符号。示例的,图2中右斜杠填充的长方块代表一组用于上行传输的时频资源,其所占时域范围内的时隙称为上行时间单元,这些时间单元上的所有频率资源的传输方向都为上行,这些时间单元可以称为非SBFD时隙。
7、时间单元类型:包括上行时间单元,下行时间单元和SBFD时间单元。其中,上行时间单元对应的频率资源只用于上行传输;下行时间单元对应的频率资源只用于下行传输;SBFD时间单元对应的频率资源包括上行频率资源和下行频率资源,其中,上行频率资源用于上行传输,下行频率资源用于下行传输。
8、多时隙(Multi-slot)PUSCH包括:PUSCH重复类型A(PUSCH repetition type A)、PUSCH重复类型B(PUSCH repetition type B)、跨时隙传输块处理PUSCH(transport block processing over multiple slots,TBoMS PUSCH)。Multi-slot PUCCH包括:PUCCH重复(PUCCH repetition)。
9、PUSCH频率资源分配:包括上行资源分配类型0(uplink resource allocation type 0)和上行资源分配类型1(uplink resource allocation type 1)。下面对两种频率资源分配类型进行具体描述。
(1)上行资源分配类型0
UE的一个上行BWP中共包括个资源块组(resouce block group,RBG),其中RBG是一个连续的虚拟资源块(virtual resouce block,VRB)的集合。下行控制信息(downlink control information,DCI)中的频域资源赋值(frequency domain resource assignment)字段包括指示分配给UE的资源块组(resouce block group,RBG)的比特图,比特图的大小bits中的每个比特对应UE的BWP中的一个RBG,这样BWP中的每个RBG都是可寻址的。RBG位图的顺序如下:比特图的最高有效位(most significant bit,MSB),到最低有效位(least significant bit,LSB)依次映射至BWP的RBG 0到RBG(NRBG-1)。如果比特图中对应的比特值为1,则为UE分配该bit对应的RBG,否则不为UE分配该bit对应的RBG。
(2)上行资源分配类型1
根据DCI中的频域资源赋值向被调度的UE指示在激活BWP内连续分配的非交织VRB集合,其中,该激活BWP的大小为个物理资源块(physical resouce block,PRB)。DCI中的频域资源赋值字段包括资源指示值(resource indication value,RIV),RIV由起始VRB的索引RBstart和连续分配的VRB长度LRBs组成,定义如下:


else
其中,表示向下取整。
应理解,上述定义针对DCI format 0_0和0_1有效,不包括公共搜索空间中解码DCI格式(format)0_0,在这种情况下,应使用初始上行(uplink,UL)BWP的大小。
需要说明的是,下行PDSCH的频率资源分配与上行PUSCH的频率资源分配类似,具体可以参见协议TS 38.212和TS 38.214中的描述,这里不再赘述。
10、PUSCH跳频
除了PUSCH repetition type B之外的PUSCH支持的PUSCH跳频包括两种模式:时隙内跳频和时隙间跳频。
1)时隙内跳频。时隙内跳频可以应用于单时隙和多时隙的PUSCH传输。其中,多时隙PUSCH传输包括PUSCH重复类型A和跨时隙传输块处理PUSCH。
时隙内跳频图案如下式所示:
其中,i=0和i=1分别指示在一个时隙中的第一跳和第二跳,RBstart指示上行BWP内的起始资源块(resource block,RB)的索引,RBoffset指示两次跳频的跳频间隔,跳频间隔以RB为单位。第一跳的符号数为第二跳的符号数为其中为一个时隙内PUSCH传输占用的符号数。示例的,终端设备在多个上行时隙上按照该跳频图案跳频发送上行信号,则终端设备根据该跳频图案在第一个时隙上分配给PUSCH的前个符号的第一频率资源集合上发送上行信号,第一频率资源集合的起始资源的索引为RBstart,在第一个时隙上分配给PUSCH的剩余的个符号的第二频率资源集合上发送上行信号,第二频率资源集合的起始资源的索引为终端设备根据该跳频图案在第二个时隙上分配给PUSCH的前个符号的第一频率资源集合上发送上行信号,第一频率资源集合的起始资源的索引为RBstart,在第二个时隙上分配给PUSCH的剩余的个符号的第二频率资源集合上发送上行信号,第二频率资源集合的起始资源的索引为依次类推,不再赘述。
2)时隙间跳频。时隙间跳频仅应用于多时隙PUSCH传输。时隙间跳频图案如下式所示:
其中,为当前时隙在一个系统帧(system radio frame)中的时隙索引,所述当前时隙是多时隙PUSCH传输所占用的时隙,RBstart指示上行BWP内的起始RB的索引,RBoffset指示两次跳频的跳频间隔,跳频间隔以RB为单位。
PUSCH repetition type B支持的PUSCH跳频包括两种模式:重复间跳频和时隙间跳频。
1)重复间跳频。重复间跳频的跳频图案如下式所示:
其中,RBstart指示上行BWP内的起始RB的索引,RBoffset指示两次跳频的跳频间隔,跳频间隔以RB为单位。n表示第n次名义重复(nominal repetition)中的实际重复(actual repetition)。
2)时隙间跳频。时隙间跳频与PUSCH repetition type A和TBoMS PUSCH的时隙间跳频一致,这里不再赘述。
需要说明的是,PDCCH不支持跳频。
11、PUSCH频率跳频参数指示(即RBstart和RBoffset的确定方法)
(1)PUSCH是DCI调度的
该方式下,RBstart是由DCI中的频域资源赋值(Frequency domain resource assignment)字段指示,以DCI format 0_1为例,该字段的长度为:
a)如果使用上行资源分配类型0,即RRC信令resourceAllocation配置为“resourceAllocationType0”,该字段长度为NRBGbits。
b)如果使用上行资源分配类型1,即RRC信令resourceAllocation配置为“resourceAllocationType1”,该字段长度为其中,的含义相同,都表示一个BWP中包含的RB的个数,表示向上取整。
c)如果使用动态的资源配置,即RRC信令resourceAllocation配置为“dynamicSwtich”,该字段长度为其中MSB用于指示使用上行资源配置类型0还是上行资源类型配置1,其中,该比特值‘0’指示上行资源配置类型0,‘1’指示上行资源配置 类型1,反之亦可。
其中,对于上行资源分配类型1,给出的频率资源分配如下所述:
对于频率跳频:NUL_hopMSB bits用于指示跳频间隔RBoffset;其中,如果RRC参数frequencyHoppingOffsetLists仅包括两个跳频间隔值,则NUL_hop=1;如果包括四个跳频间隔值,则NUL_hop=2;剩余用于指示PUSCH的RIV;
对于非频率跳频:用于指示RIV。
(2)PUSCH是RAR UL grant调度的
该方式下仅支持上行资源分配类型1。RBstart和RBoffset由RAR UL grant中的频域资源分配字段(PUSCH frequency resource allocation)指示,其中RAR UL grant信息内容如表2所示,具体流程如下:
如果或者对于共享频谱信道接入则截断频域资源分配字段(PUSCH frequency resource allocation)至并解释为DCI format 0_0中的频域资源赋值(Frequency domain resource assignment)字段。否则,频域资源分配字段(PUSCH frequency resource allocation)后面插入NUL_hopbits,其中,如果频率跳频标志(frquency hopping flag)为‘0’,即关闭频率跳频,则NUL_hop=0,如果频率跳频标志(frquency hopping flag)为‘1’,即开启频率跳频,则NUL_hop=1。然后,在插入的NUL_hop bits之后再插入比特值为‘0’的或者对于共享频谱信道接入插入比特值为‘0’的
12、PUCCH跳频
(1)随机接入时
如果并且UE根据RRC信令pucch-ResourceCommon配置了PUCCH资源(PUCCH resource),且RRC信令BWP-UplinkCommon没有配置useInterlacePUCCH-PUSCH,则UE确定PUCCH在第一个跳频的起始PRB的索引为在第二个跳频的起始PRB的索引为其中,NRB表示在第三代合作伙伴计划(3rd generation partnership project,3GPP)定义的频率范围FR2-2下,由RRC信令pucch-ResourceCommon配置的PUCCH的RB个数;在其它频率范围下,例如FR1和FR2-1,NRB=1。为频率资源的偏置值,NCS为初始循环移位索引集合中初始循环移位索引的总数,初始循环移位索引集合如表1所示,rPUCCH为PUCCH resource(资源)索引,PUCCH resource指示了PUCCH的多套跳频参数,一个PUCCH resource索引对应一套参数。
表1

如果并且UE根据RRC信令pucch-ResourceCommon配置了PUCCH资源,且RRC信令BWP-UplinkCommon没有配置useInterlacePUCCH-PUSCH,则UE确定PUCCH在第二个跳频的起始PRB索引为在第二个跳频的起始PRB的索引为
(2)随机接入后
UE通过interslotFrequencyHopping配置是否对不同时隙中的PUCCH传输重复进行跳频。
如果UE被配置为PUCCH重复执行时隙间跳频,并且未提供UE PUCCH-DMRS-Bundling=‘enabled’,即未使能解调参考信号(demodulation reference signal,DMRS)捆绑功能(或联合信道估计(joint channel estimation)功能),则UE每时隙执行一次跳频,UE在偶数号的时隙中传输的PUCCH从第一PRB开始,由startingPRB指示,UE在奇数号的时隙中传输的PUCCH从第二PRB开始,由secondHopPRB指示。PUCCH传输的第一次重复所在的时隙的编号为0,并对后续时隙依次计数,直到UE在第时隙发送PUCCH为止,其中无论UE是否在时隙上传输PUCCH,该时隙都会被纳入计数。此时,UE不期望被配置为PUCCH时隙内跳频。
如果UE被配置为PUCCH重复执行时隙间跳频,并且为UE提供PUCCH-DMRS-Bundling=‘enabled’,即使能DMRS捆绑功能(或JCE功能),则UE在每个连续时隙的间隔之间执行跳频,这些时隙从指示给UE的时隙开始,且UE将在这个指示的时隙传输PUCCH的第一次重复,其中,如果提供PUCCH-Frequencyhop-Interval,则是PUCCH-Frequencyhop-Interval的值;否则,为PUCCH-TimeDomainWindowLength的值。UE在间隔内传输PUCCH,直到UE在个时隙中传输PUCCH,其中第一个间隔编号为0,后续间隔依次计数;无论UE是否在时隙中传输PUCCH,每个间隔都会纳入计数。UE在偶数号的间隔中传输的PUCCH从第一PRB开始,由startingPRB指示,UE在奇数号的间隔中传输的PUCCH从第二PRB开始,由secondHopPRB指示。此时,UE不期望被配置为PUCCH时隙内跳频。
如果UE未配置为PUCCH重复执行时隙间跳频,并且UE配置为PUCCH重复执行时隙内跳频,则在每个时隙内,第一PRB和第二PRB之间的跳频图案相同。其中,startingPRB和secondHopPRB在RRC信令PUCCH-Resouce中配置。
示例的,当终端设备在多个SBFD时隙上跳频发送第一信号时,由于SBFD时隙的上行子带的频率范围小于上行时隙的BWP的范围,按照现有的上行时隙对应的跳频图案进行PUSCH跳频,可能会导致终端设备在SBFD时隙上跳出上行子带的范围。
一种解决方法是配置两套独立的跳频图案(即两组跳频起始位置RBstart和跳频间隔RBoffset),其中一组指示PUSCH在SBFD时隙上的跳频图案,另一组指示PUSCH在上行时隙上的跳频图案。示例的,该方法中,图3中的X时隙(即SBFD时隙)按照仅用于X时隙的跳频图案在X时隙上确定PUSCH资源并在确定的PUSCH上发送上行信息,图3中的U时隙按照仅用于U时隙的跳频图案在U时隙上确定PUSCH资源并在确定的PUSCH发送上行信息。同理,第一信号承载在PUCCH上,一种解决方法是配置两套startingPRB和secondHopPRB分别作为PUCCH在SBFD时隙上的跳频图案和PUCCH在上行时隙上的跳频图案。这种方法虽然实现简单,但是会增加信令开销。
有鉴于此,本申请提出一种上行传输的方法,能够有效解决上述技术问题。下面对本申请提出的方法进行详细描述。
如图4所示,图4是本申请提出的一种上行传输的方法的示意性流程图。该方法包括以下步骤。
S410,网络设备向终端设备发送第一信令。第一信令指示终端设备在第一时间单元集合上跳频发送第一信号,第一信号承载在第一PUSCH或第一PUCCH上,第一时间单元集合包括SBFD时间单元。对应的,终端设备接收来自网络设备的第一信令。
可选地,第一时间单元集合中可以只包括SBFD时间单元,或,第一时间单元集合可以包括上行时间单元和SBFD时间单元。本申请对第一时间单元集合中的SBFD时间单元和上行时间单元的个数不做限定。即第一时间单元集合可以包括L上行时间单元和M个SBFD时间单元,L为自然数,M为正整数。
可选的,第一信号为PUSCH,该PUSCH可以为单时隙PUSCH,也可以为多时隙PUSCH。示例的,单时隙PUSCH包括,PUSCH,Msg 3 PUSCH和Msg A PUSCH等,多时隙PUSCH包括,PUSCH repetition type A,PUSCH repetition type B,TBoMS PUSCH,Msg3 PUSCH repetition,MsgA PUSCH repetition等。
可选的,第一信号为PUCCH,该PUCCH可以为单时隙PUCCH和多时隙PUCCH(即PUCCH重复)。
S420,终端设备根据第一跳频图案确定第二跳频图案。其中,第一跳频图案指示在至少两个上行时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,第二跳频图案指示的起始频率资源的位置位于SBFD时间单元的上行子带中,N为大于或等于2的整数。
示例的,该实施例中的频率资源可以理解为RB。其中,频域上12个子载波组成一个RB。
示例的,该实施例中频率资源的位置可以通过频率资源的索引来指示。
其中,第一跳频图案指示在至少两个上行时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,可以理解为,第一跳频图案指示在第m上行时间单元的第n频率资源上发送第一信号,第m上行时间单元为至少两个上行时间单元中的一个上行时间单元,第n频率资源的起始位置为N个不同起始频率资源的位置中的一个起始频率资源的位置,其中,根据第一跳频图案和上行时间单元的索引,可以从N个不同起始频率资源的位置中唯一确定一个起始频率资源的位置。示例的,以时隙间跳频为例,N=2,第一跳频图案为:
该图案中各参数的含义参见前文中的描述,这里不再赘述。
同理,第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置也可以有类似的理解,这里不再展开叙述。应理解,如果第一信号承载在PUSCH上,则第一跳频图案和第二跳频图案为PUSCH的跳频图案。如果第一信号承载在PUCCH上,则第一跳频图案和第二跳频图案为PUCCH的跳频图案。
还应理解,第一跳频图案是基于发送第一信号的跳频模式确定的,第一跳频图案和第二跳频图案的跳频模式相同。示例的,该跳频模式可以为时隙内跳频,或时隙间跳频,或重复间跳频,或时隙组间跳频。示例的,当N=2时,第一信号承载在PUSCH上,第一跳频图案可以参见上文中PUSH跳频在不同跳频模式下对应的跳频图案的描述。
还应理解,在不同的跳频模式下,该实施例中对时间单元的定义是不同的。具体的,对于时隙间跳频,时间单元为时隙;对于时隙组间跳频:时间单元为时隙集合;对于时隙内跳频,时间单元为每一跳包括的符号或符号集合;对于重复间跳频,时间单元为每一次名义重复所在的符号集合。
可选地,第一信号的跳频模式是预定义,或通过第一信令指示的。
下面给出终端设备确定第二跳频图案的几种可能的实现方式。
方式一:求模运算(即求余运算)方式
终端设备根据确定第二跳频图案,其中,RBstart,j为第一跳频图案的N个起始频率资源中的第j(1≤j≤N)个起始频率资源的索引,为SBFD时间单元的上行子带的频率资源的个数。
在一种实现方式中,根据方式一确定的第二跳频图案如下所示,RB′start,j为第二跳频图案的N个起始频率资源中的第j个起始频率资源的索引,该RB′start,j满足以下公式:
其中,为SBFD时间单元的上行子带的起始频率资源的索引。可以看出,该方式中由于的取值范围大于或等于0,以及小于因此RB′start,j始终位于SBFD的上行子带上。
方式二:缩放运算方式
终端设备根据第一缩放参数α和RBstart,j确定第二跳频图案,其中,RBstart,j为第一跳频图案的N个起始频率中的第j个起始频率资源的索引,α大于0且小于1。
在一种实现方式中,根据方式二确定的第二跳频图案如下所示,其中,RB′start,j为第二跳频图案的N个起始频率资源中的第j(1≤j≤N)个起始频率资源的索引,该RB′start,j满足以下公式:
其中,[]可以为向上取整,或向下取整,或者四舍五入取整,为SBFD时间单元的上行子带的起始频率资源的索引。
示例的,其中,为网络设备为终端设备分配的BWP中包含的RB的个数,上行子带包含于该BWP中,为SBFD时间单元的上行子带的频率资源的个数。
示例的,α由网络设备通过SIB1或者RRC半静态配置,0<α<1。
示例的,由网络设备通过SIB1半静态或者RRC半静态指示终端设备在候选值表中选取一个α。例如,候选值表可以为{0.1,0.2,0.3,…,0.9}。
应理解,方式一和方式二可以用于确定PUSCH的第二跳频图案,以及初始接入时的PUCCH和初始接入之后的PUCCH的第二跳频图案。
方式三:固定位置方式
可以理解,上述方式一和方式二可以看做是终端设备基于第一跳频图案确定第二跳频图案。而方式三直接定义了第二跳频图案的N个起始频率资源的位置。下面以N=2为例,给出PUSCH跳频和PUCCH跳频对应的第二跳频图案。
在一种实现方式中,当第一信号承载在第一PUSCH时,第二跳频图案中的一个跳频起始频率的索引为为SBFD时间单元的上行子带的起始频率资源的索引,第二跳频图案中的另一个跳频起始频率资源的索引为其中,为SBFD时间单元的上行子带的频率资源的个数,LRBs为分配给一个PUSCH的频率资源的个数。
示例的,跳频模式为时隙内跳频为例,则第二跳频图案可以为:
或,
或,
其中,gap和offset的取值是预定义的或预配置的,本申请对此不做限定。
在另一种实现方式中,当第一信号承载在第一PUCCH时,对于初始接时的PUCCH,第二跳频图 案中的一个跳频起始频率的索引为SBFD时间单元的上行子带的起始频率资源的索引加上第一偏移值,第二跳频图案中的另一个跳频起始频率的索引为SBFD时间单元的上行子带的结束频率资源的索引减去第一偏移值,第一偏移值是基于以下参数中的至少一个参数确定的:频率资源的偏置值初始循环移位索引集合中初始循环移位索引的总数NCS,PUCCH资源索引rPUCCH
应理解,这里的频率资源的偏置值初始循环移位索引集合中初始循环移位索引的总数NCS是网络设备指示的。示例的,新定义一张表2,表2可以看做是将表1中的替换为并将表1中的最后一行中的替换为后得到的表,网络设备指示表2中的一个索引值,终端设备根据该索引值在表2中确定一个和NCS,其中,为SBFD时间单元的上行子带的频率资源的个数。
表2
示例的,在该实现方式中,当时,第一偏移值为时,第一偏移值为其中,表示向下取整。
具体的,当时,第二跳频图案中的一个跳频起始频率的索引为第二跳频图案中的另一个跳频起始频率的索引为时,第二跳频图案中的一个跳频起始频率的索引为第二跳频图案中的另一个跳频起始频率的索引为
在又一种实现方式中,当第一信号承载在第一PUCCH时,当时,第二跳频图案中的一个跳频起始频率的索引为第二跳频图案中的另一个跳频起始频率的索引为时,第二跳频图案中的一个跳频起始频率的索引为第二跳频图案中的另一 个跳频起始频率的索引为其中,NRB为表示在3GPP定义的频率范围FR2-2下,由RRC信令pucch-ResourceCommon配置的PUCCH的RB个数,NRB为大于1的整数。在其它频率范围下,例如FR1和FR2-1,NRB=1。
S430,网络设备根据第一跳频图案确定第二跳频图案。
应理解,网络设备和终端设备使用相同的方式确定相同的第二跳频图案,以保证网络设备可以在频域资源上正确接收终端设备发送的第一信号。
S440,终端设备根据第二跳频图案在第一时间单元集合的SBFD时间单元上向网络设备发送第一信号。对应的,网络设备根据第二跳频图案在第一时间单元集合的SBFD时间单元上接收第一信号。
可选地,如果第一时间单元集合中还包括上行时间单元,则终端设备根据第一跳频图案在第一时间单元集合的上行时间单元上向网络设备发送第一信号。对应的,网络设备根据第一跳频图案在第一时间单元集合的上行时间单元上接收第一信号。
应理解,当第一时间单元集合中包括P种类型的SBFD时间单元,这P种类型的SBFD时间单元的上行子带的位置不相同,P为大于1的整数,则终端设备可以基于P种类型的SBFD时间单元确定P个第二跳频图案,P种类型的SBFD时间单元与P个第二跳频图案一一对应。
可以看出,上述方案中,并没有直接配置第二跳频图案用于SBFD时间单元的跳频发送,而是根据已有的上行时间单元的跳频图案(即第一跳频图案),引入新的规则,将第一跳频图案的N个起始频率资源映射至SBFD的上行子带内,以获取对应的第二跳频图案的N个起始频率资源,实现在SBFD时间单元和上行时间单元上跳频发送第一信号。该方法不仅可以保证SBFD时隙的跳频不会超出上行子带范围,同时相比现有技术中配置两套跳频图案降低了信令开销。
另外,在SBFD时间单元上对于{DUD}这种频域子带划分方式(参见图2中的SBFD时隙的子带划分方式),下行资源分配类型0可以实现非连续的PDSCH频率资源分配,但只能实现RBG粒度的频率资源分配,这样保护带宽(Guard band)至少需要占用1个RBG,导致资源浪费严重;下行资源分配类型1可以实现RB粒度的频率资源分配,但频率资源分配必须是连续的,导致难以在SBFD时间单元上两个不连续的下行子带上分别指示PDSCH频率资源,同样导致资源浪费严重。
有鉴于此,本申请提出一种下行传输的方法,能够有效的解决上述技术问题。下面对本申请提出的方法进行详细描述。
如图5所示,图5是本申请提出的一种下行传输的方法的示意性流程图。该方法包括以下步骤。
S510,网络设备向终端设备发送第一信令。第一信令指示终端设备在第一时间单元集合上接收第一信号,第一信令包括第一信息和第二信息,第一信息指示第一频率资源集合的起始频率资源的位置和第一频率资源集合包括的频率资源的个数LRBs,第二信息指示第一频率资源集合中的起始频率资源和第二频率资源集合中的起始频率资源的间隔RBoffset,第一信号承载在第一PDSCH上,第一时间单元集合包括第一时间单元,第一时间单元为包括至少两个下行子带的SBFD时间单元。
应理解,至少两个下行子带中任意两个子带分别位于SBFD时间单元的上行子带和/或保护带的两边。
示例的,该实施例中起始频率资源的位置可以通过起始频率资源的索引来指示。
示例的,该实施例中的频率资源可以理解为RB,则RBoffset即为两个频率资源集合的起始RB的间隔。
可选地,第一信令为DCI。DCI中的频域资源赋值(Frequency domain resource assignment)字段指示第一信息和第二信息。
可选地,第二信息可以指示多个RBoffset候选值中的一个值或该一个值对应的索引。
可选地,多个RBoffset候选值可以由网络设备通过RRC信令或其他信令进行配置,本申请对此不做具体限定。示例的,网络设备可以在RRC信令的PDSCH-Config中添加字段frequencyOffset,指示2x个RBoffset候选值,其中x为正整数。例如,x=1,frequencyOffset配置2个RBoffset候选值,x=2,frequencyOffset配置4个RBoffset候选值。
那么,在一种可能的实现方式中,第一信令DCI中频域资源赋值字段共 该字段的最高xbit为第二信息,指示RRC信令配置的2x个RBoffset候选值中需要使用的RBoffset的索引,该字段的剩余bit为第一信息,指示RIV。具体的,frequencyOffset配置的2个RBoffset候选值(即x=1),则频域资源赋值字段的最高1bit(即第二信息)指示2个RBoffset候选值中需要使用的RBoffset的索引,该字段的剩余bit为第一信息,指示RIV;示例的,frequencyOffset配置4个RBoffset候选值(即x=2),则频域资源赋值字段的最高2bit(即第二信息)指示4个RBoffset候选值中需要使用的RBoffset的索引,该字段的剩余bit为第一信息,指示RIV。
可选地,第二信息还可以配置为第一频率资源集合中的结束频率资源和第二频率资源集合中的结束频率资源的间隔,或第一频率资源集合中的起始频率资源和第二频率资源集合中的结束频率资源的间隔,或第一频率资源集合中的结束率资源和第二频率资源集合中的起始频率资源的间隔,本申请对此不做限定。
S520,终端设备根据第一信息确定第一频率资源集合,以及,终端设备根据第一信息和第二信息确定第二频率资源集合。其中,第一频率资源集合和第二频率资源集合中的频率资源都是连续的。
其中,第二频率资源集合的起始频率资源的索引为RBstart+RBoffset,RBstart为第一信息指示的第一频率资源集合的起始频率资源的索引。第二频率资源集合包括的频率资源的个数(即第二频率资源集合的长度)与第一频率资源集合包括的频率资源的个数LRBs(即第一频率资源集合的长度)相同,或,第二频率资源集合包括的频率资源的个数预定义或预配置的。
示例的,第二频率资源集合的长度=第一频率资源集合的长度×α,其中,α=第二频率资源集合所在的下行子带的包含的频域资源的个数/第一频率资源集合所在的下行子带包含的频域资源的个数。其中,α的计算方式可以是预定义的,也可以是网络设备指示的。
示例的,α为网络设备指示的一个值。
示例的,网络设备配置一个α的候选值集合,终端设备在候选值集合中选取一个值。或网络设备在预设的候选值集合中选取一个值,发送给终端设备。或网络设备在预设的候选值集合中选取一个值作为α的取值,将这个值在候选值集合中的索引发送给终端设备,终端设备根据接收到的索引从候选值集合中选择出对应的值作为α的取值。例如,α的候选值集合为{0.1,0.2,…1,2,3…}。
S530,网络设备在第一时间单元的第一频率资源集合和第二频率资源集合上向终端设备发送第一信号。对应的,终端设备在第一时间单元的第一频率资源集合和第二频率资源集合上接收来自网络设备的第一信号。
可以看出,与现有的资源分配类型1相比,上述技术方案通过在第一信令中增加第二信息指示,即可实现在SBFD时间单元的两个不相邻的下行子带内实现RB粒度的PDSCH频率资源分配,从而提高SBFD的资源利用率。且该方法与资源分配类型0相比,不会出现保护带宽至少需要占用1个RBG的情况,可以使用更多的频率资源。
应理解,现有技术中通过RRC信令中的resourceAllocation指示PDSCH频率资源分配类型,即指示终端设备使用资源分配类型0、资源分配类型1,还是使用动态的资源分配类型确定下行BWP上的PDSCH的频率资源。因此,图5中提出的资源分配方式也可以看做是一种新的资源分配类型,为便于描述,本申请中将这种资源分配类型称为资源分配类型2。
可以理解,在第一时间单元集合中只包括一种时间单元类型的情况下(即第一时间单元中只包括下行时间单元,或第一时间单元集合中只包括SBFD时间单元),网络设备可以根据第一时间单元集合中包括的时间单元的时间单元类型确定第一信令是否包括第二信息,同理,终端设备也会根据确定的第一时间单元集合中的时间单元的时间单元类型确定如何读取第一信令。同时,网络设备还需要通过另一个信令指示PDSCH频率资源分配类型,该资源分配类型可以是如资源分配类型0、1这样的非动态资源配置类型,也可以是动态的资源分配类型,为便于描述,本申请中将另一个信令称为第二信令。示例的,第一信令为DCI,第二信令可以为RRC信令。
示例的,第一时间单元集合中可以包括多个时间单元,也可以只包括一个时间单元。
应理解,网络设备确定是否配置第二信息与终端设备确定第一信令是否包含第二信息的判断标准是相同的,为便于描述,这里仅从终端设备的角度去描述在不同场景下对第一信令的解读。
下面具体描述在不同场景下终端设备对第一信令的解读方式,以及确定接收第一信号的频率资源的方法。应理解,下面场景描述中的SBFD时间单元为包括至少两个下行子带的SBFD时间单元。
场景一
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用资源分配类型2进行PDSCH频率资源分配。
②终端设备根据第二信令确定第一信令中包括第一信息和第二信息,并根据第一信令确定第一频率资源集合和第二频率资源集合。
也就是说,该场景下,终端设备不需要关注第一时间单元集合中的时间单元的时间单元类型,无论第一时间单元集合中只包括SBFD时间单元,或,第一时间单元集合中只包括下行时间单元,当终端设备接收到第二信令时,终端设备认为第一信令中包括第二信息。
关于第一信息和第二信息以及终端设备根据第一信息和第二信息确定第一频率资源集合和第二频率资源集合的描述,可以参见S510和S520中的描述,这里不再赘述。其他场景中涉及这些描述时不再一一赘述。
③终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号。
场景二
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用第一动态资源分配类型进行PDSCH频率资源分配。
应理解,第一动态资源分配类型表示第一信令会包含一个第三信息,第三信息指示资源分配类型0或资源分配类型2,也就是说,该场景下,可以动态的指示使用资源分配类型0或资源分配类型2。
示例的,第一信令为DCI,第一信令中包括频域资源赋值字段,共其中,最高1bit(即第三信息的一例)指示使用现有技术中的资源分配类型0还是使用本申请提出的资源分配类型2。示例的,当最高1bit为‘0’,则使用现有技术中的频率资源分配类型0,当最高1bit为‘1’,则资源分配类型2,反之亦可。后面场景中涉及动态资源分配时,第一信令中的第三信息都可以为频域资源赋值字段的最高1bit,分别用于指示不同的资源分配类型。后面不再一一赘述。
②终端设备根据第二信令确定第一信令中包括第三信息,第三信息指示资源分配类型0或资源分配类型2。
当第三信息指示资源分配类型0时,终端设备对第一信令的理解与现有技术相同,参见前文描述。
当第三信息指示资源分配类型2时,终端设备确定第一信令中还包括第一信息和第二信息,并根据第一信令确定第一频率资源集合和第二频率资源集合。也就是说,当第三信息指示资源分配类型2时,终端设备不需要关注第一时间单元集合中的时间单元的时间单元类型,无论第一时间单元集合中只包括SBFD时间单元,或,第一时间单元集合中只包括下行时间单元,终端设备认为第一信令中还包括第一信息和第二信息。之后,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号。
场景三
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用第二动态资源分配类型进行PDSCH频率资源分配。
应理解,第二动态资源分配类型表示第一信令会包含一个第三信息,第三信息指示资源分配类型1或资源分配类型2,也就是说,该场景下,可以动态的指示使用资源分配类型1或资源分配类型2。
②终端设备根据第二信令确定第一信令中包括第三信息,第三信息指示资源分配类型1或资源分配类型2。
当第三信息指示资源分配类型1时,终端设备对第一信令的理解与现有技术相同,参见前文描述。
当第三信息指示资源分配类型2时,终端设备确定第一信令中还包括第一信息和第二信息,并根据第一信令确定第一频率资源集合和第二频率资源集合。也就是说,当第三信息指示资源分配类型2时,终端设备不需要关注第一时间单元集合中的时间单元的时间单元类型,无论第一时间单元集合中只包括SBFD时间单元,或,第一时间单元集合中只包括下行时间单元,终端设备认为第一信令中还 包括第一信息和第二信息。之后,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号。
场景四
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用资源分配类型1进行PDSCH频率资源分配。
②终端设备确定第一时间单元集合。
当第一时间单元集合中只包含下行时间单元,终端设备确定第一信令中包括第一信息,不包括第二信息,即终端设备对第一信令的理解与现有技术相同,参见前文描述。
当第一时间单元集合中只包含SBFD时间单元,终端设备确定第一信令中包括第一信息和第二信息。之后,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号。
可以理解,该场景中终端设备针对不同的时间单元类型对第一信令进行解读,当第一时间单元集合中只包括下行时间单元,则终端设备认为第一信令按照现有技术进行配置,当第一时间单元集合中只包括SBFD时间单元,则终端设备对第一信令按照本申请给出的新的资源分配类型2的方式进行解读。
场景五
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用第三动态资源分配类型进行PDSCH频率资源分配。
应理解,第三动态资源分配类型表示第一信令会包含一个第三信息,第三信息指示资源分配类型0或资源分配类型1,也就是说,该场景下,可以动态的指示使用资源分配类型0或资源分配类型1。
②终端设备根据第二信令确定第一信令中包括第三信息,第三信息指示资源分配类型0或资源分配类型1。
当第三信息指示资源分配类型0时,终端设备对第一信令的理解与现有技术相同,参见前文描述。
当第三信息指示资源分配类型1时,终端设备确定第一时间时间单元集合,针对不同的时间单元类型对第一信令进行解读并接收第一信号,对第一信令的解读与场景四中的描述相同,这里不再赘述。
场景六
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用资源分配类型3进行PDSCH频率资源分配。
②终端设备根据第二信令确定第一信令中包括第一信息和第二信息,并根据第一信令确定第一频率资源集合和第二频率资源集合。
也就是说,该场景下,终端设备不需要关注第一时间单元集合中的时间单元的时间单元类型,无论第一时间单元集合中只包括SBFD时间单元,或,第一时间单元集合中只包括下行时间单元,当终端设备接收到第二信令时,终端设备认为第一信令中包括第一信息和第二信息。
当第一时间单元集合中只包括SBFD时间单元时,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号。
当第一时间单元集合中只包括下行时间单元时,终端设备在第一时间单元集合的第三频率资源集合上接收第一信号,其中,第三频率资源集合的起始频率资源为第一频率资源集合和第二频率资源集合中频率资源的索引最小的频率资源,第三频率资源集合的结束频率资源为第一频率资源集合和第二频率资源集合中频率资源的索引最大的频率资源。应理解,第三频率资源集合中的频率资源都是连续的。
场景七
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用第四动态资源分配类型进行PDSCH频率资源分配。
应理解,第四动态资源分配类型表示第一信令会包含一个第三信息,第三信息指示资源分配类型0或资源分配类型3,也就是说,该场景下,可以动态的指示使用资源分配类型0或资源分配类型3。
②终端设备根据第二信令确定第一信令中包括第三信息,第三信息指示资源分配类型0或资源分配类型3。
当第三信息指示资源分配类型0时,终端设备对第一信令的理解与现有技术相同,参见前文描述。
当第三信息指示资源分配类型3时,与场景六的描述相同,终端设备根据第二信令确定第一信令中包括第一信息和第二信息,并根据第一信令确定第一频率资源集合和第二频率资源集合。之后,当第一时间单元集合中只包括SBFD时间单元时,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号,当第一时间单元集合中只包括下行时间单元时,终端设备在第一时间单元集合的第三频率资源集合上接收第一信号。
场景八
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用第五动态资源分配类型进行PDSCH频率资源分配。
应理解,第五动态资源分配类型表示第一信令会包含一个第三信息,第三信息指示资源分配类型1或资源分配类型3,也就是说,该场景下,可以动态的指示使用资源分配类型1或资源分配类型3。
②终端设备根据第二信令确定第一信令中包括第三信息,第三信息指示资源分配类型1或资源分配类型3。
当第三信息指示资源分配类型1时,终端设备对第一信令的理解与现有技术相同,参见前文描述。
当第三信息指示资源分配类型3时,与场景六的描述相同,终端设备根据第二信令确定第一信令中包括第一信息和第二信息,并根据第一信令确定第一频率资源集合和第二频率资源集合。之后,当第一时间单元集合中只包括SBFD时间单元时,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号,当第一时间单元集合中只包括下行时间单元时,终端设备在第一时间单元集合的第三频率资源集合上接收第一信号。
场景九
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用第六动态资源分配类型进行PDSCH频率资源分配。
应理解,第六动态资源分配类型表示第一信令会包含一个第三信息,第三信息指示资源分配类型2或资源分配类型3,也就是说,该场景下,可以动态的指示使用资源分配类型2或资源分配类型3。
②终端设备根据第二信令确定第一信令中包括第三信息,第三信息指示资源分配类型2或资源分配类型3。
当第三信息指示资源分配类型2时,与场景1的描述相同,终端设备确定第一信令中包括第一信息和第二信息,并根据第一信令确定第一频率资源集合和第二频率资源集合。也就是说,该场景下,终端设备不需要关注第一时间单元集合中的时间单元的时间单元类型,无论第一时间单元集合中只包括SBFD时间单元,或,第一时间单元集合中只包括下行时间单元,当终端设备接收到第二信令时,终端设备认为第一信令中还包括第一信息和第二信息。之后,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号。
当第三信息指示资源分配类型3时,与场景六的描述相同,终端设备根据第二信令确定第一信令中包括第一信息和第二信息,并根据第一信令确定第一频率资源集合和第二频率资源集合。之后,当第一时间单元集合中只包括SBFD时间单元时,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号,当第一时间单元集合中只包括下行时间单元时,终端设备在第一时间单元集合的第三频率资源集合上接收第一信号。
场景十
①终端设备接收来自网络设备的第二信令,第二信令用于指示终端设备使用第七动态资源分配类型进行PDSCH频率资源分配。
应理解,第七动态资源分配类型表示第一信令会包含一个第三信息,第三信息指示资源分配类型1或资源分配类型3,也就是说,该场景下,可以动态的指示使用资源分配类型1或资源分配类型3。
②终端设备根据第二信令确定第一信令中包括第三信息,第三信息指示资源分配类型1或资源分配类型3。
当第三信息指示资源分配类型1时,与场景四的描述相同。具体的,当第一时间单元集合中只包含下行时间单元,终端设备确定第一信令中包括第一信息,不包括第二信息,即终端设备按照现有技术解读第一信令并发送第一信号。当第一时间单元集合中只包含SBFD时间单元,根据第二信令确定第一信令中包括第一信息和第二信息。之后,终端设备在第一时间单元集合的第一频率资源集合和第 二频率资源集合上接收第一信号。
当第三信息指示资源分配类型3时,与场景六的描述相同,终端设备根据第二信令确定第一信令中包括第一信息和第二信息,并根据第一信令确定第一频率资源集合和第二频率资源集合。之后,当第一时间单元集合中只包括SBFD时间单元时,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合上接收第一信号,当第一时间单元集合中只包括下行时间单元时,终端设备在第一时间单元集合的第三频率资源集合上接收第一信号。
应理解,当第一时间单元集合只包含只有一个下行子带的SBFD时间单元时,那么,在上述场景中,终端设备解读第一信令的方式以及确定发送第一信号的频率资源集合的方法可以参考第一时间单元集合中只包含下行时间单元对应的描述。这里不再一一赘述。但是需要说明的是,对于只包含只有一个下行子带的SBFD时间单元来说,在涉及确定第三频率资源集合的场景中,如果第一频率资源集合和第二频率资源集合都位于该SBFD时间单元的下行子带,则第三频率资源集合的确定方法与下行时间单元一致,即第三频率资源集合为起始频率资源为第一频率资源集合和第二频率资源集合中频率资源的索引最小的频率资源,第三频率资源集合的结束频率资源为第一频率资源集合和第二频率资源集合中频率资源的索引最大的频率资源,第三频率资源集合中的频率资源都是连续的。如果第一频率资源集合和第二频率资源集合中有一个频率资源集合不位于该SBFD时间单元的下行子带,则第三频率资源集合为第一频率资源集合和第二频率资源集合中位于该SBFD时间单元的下行子带的那个频率资源集合。
应理解,上述场景是针对第一时间单元集合中只有一种时间单元类型进行描述的,那么,在第一时间单元集合中包括两种时间单元类型时(即第一时间单元中只包括下行时间单元和SBFD时间单元时),终端设备如何解读第一信令的方式以及确定发送第一信号的频率资源集合,下面举例进行描述。
在一种可能的实现方式中,当第一时间单元集合中包括下行时间单元和只有一个下行子带的SBFD时间单元时,网络设备可以不用为终端设备配置第二信息,网络设备可以通过第二信令为终端设备指示一个资源分配类型,例如,资源分配类型0或1,因此,终端设备可以按照第二信令指示的现有的资源配置方式解读第一信令,终端设备认为第一信令中包括第一信息(即RIV),不包括第二信息。之后,终端设备在第一信令指示的频率资源集合上发送第一信号。
在一种可能的实现方式中,当第一时间单元集合中包括下行时间单元和只有一个下行子带的SBFD时间单元时,网络设备可以为终端设备配置第二信息,网络设备可以通过第二信令为终端设备指示一个资源分配类型,例如,资源分配类型2,因此,终端设备认为第一信令中包括第一信息和第二信息。之后,终端设备在第一时间单元集合的下行时间单元的第三频率资源集合上发送第一信号,以及,终端设备在第一时间单元集合的只有一个下行子带的SBFD时间单元的第四频率资源集合上发送第一信号。需要说明的是,如果第一频率资源集合和第二频率资源集合都位于SBFD时间单元的下行子带中,第四频率资源即为第三频率资源集合,如果第一频率资源集合和第二频率资源集合中有一个频率资源集合不位于该SBFD时间单元的下行子带,则第四频率资源集合为第一频率资源集合和第二频率资源集合中位于该SBFD时间单元的下行子带的那个频率资源集合。
在另一种可能的实现方式中,当第一时间单元集合中包括下行时间单元和包括至少两个下行子带的SBFD时间单元时,网络设备可以为终端设备配置第二信息,网络设备可以通过第二信令为终端设备指示一个资源分配类型,例如,该资源分配类型为第一动态资源分配类型,第一动态资源分配类型指示第一信令会包含一个第三信息,例如第三信息指示资源分配类型2,这时,终端设备确定第一信令中还包括第一信息和第二信息,之后,终端设备在第一时间单元集合上基于第一频率资源集合和第二频率资源集合接收第一信号。示例的,网络设备为终端设备配置第二信息的场景可以参见上文描述的场景一、二、三、六、七、八、九、十。
在又一种可能的实现方式中,当第一时间单元集合中包括下行时间单元、包括至少两个下行子带的SBFD时间单元和包括一个子带的SBFD时间单元时,网络设备可以为终端设备配置第二信息。示例的,在一种场景中,网络设备可以通过第二信令为终端设备指示一个资源分配类型,例如,资源分配类型2,因此,终端设备认为第一信令中包括第一信息和第二信息。之后,终端设备在第一时间单元集合的包括至少两个下行子带的SBFD时间单元的第一频率资源集合和第二频率资源集合上发送第一信号,终端设备在第一时间单元集合的下行时间单元的第三频率资源集合上发送第一信号,以及,终 端设备在第一时间单元集合的只有一个下行子带的SBFD时间单元的第四频率资源集合上发送第一信号。需要说明的是,如果第一频率资源集合和第二频率资源集合都位于SBFD时间单元的下行子带中,第四频率资源即为第三频率资源集合,如果第一频率资源集合和第二频率资源集合中有一个频率资源集合不位于该SBFD时间单元的下行子带,则第四频率资源集合为第一频率资源集合和第二频率资源集合中位于该SBFD时间单元的下行子带的那个频率资源集合。
可选地,这种实现方式中,终端设备在第一时间单元集合的第一频率资源集合和第二频率资源集合接收第一信号。
可选地,终端设备在第一时间单元集合的SBFD时间单元的第一频率资源集合和第二频率资源集合接收第一信号,并在第一时间单元集合的下行时间单元的第三频率资源集合上接收第一信号,第三频率资源的描述参见上文描述,这里不再赘述。
应理解,本申请中的符号“×”表示乘法运算,符号“/”表示除法运算。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
还应理解,在上述一些实施例中,主要以现有的网络架构中的设备为例进行了示例性说明,应理解,对于设备的具体形式本申请实施例不作限定。例如,在未来可以实现同样功能的设备都适用于本申请实施例。
可以理解的是,上述各个方法实施例中,由设备(如上述如终端设备、网络设备等)实现的方法和操作,也可以由设备的部件(例如芯片或者电路)实现。
以上,结合图1至图5详细说明了本申请实施例提供的方法。上述方法主要从终端设备和网络设备之间交互的角度进行了介绍。可以理解的是,终端设备和网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图6和图7详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。本申请实施例可以根据上述方法示例对终端设备或网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
以上对本申请提供的数据传输的方法进行了详细说明,下面介绍本申请提供的通信装置。在一种可能的实现方式中,该装置用于实现上述方法实施例中的接收端设备对应的步骤或流程。在另一种可能的实现方式中,该装置用于实现上述方法实施例中的发送端设备对应的步骤或流程。
图6是本申请实施例提供的通信装置200的示意性框图。如图6所示,该装置200可以包括通信单元210和处理单元220。通信单元210可以与外部进行通信,处理单元220用于进行数据处理。通信单元210还可以称为通信接口或收发单元。
在一种可能的设计中,该装置200可实现对应于上文方法实施例中的发送端设备执行的步骤或者流程,其中,处理单元220用于执行上文方法实施例中发送端设备的处理相关的操作,通信单元210用于执行上文方法实施例中发送端设备的发送相关的操作。
在又一种可能的设计中,该装置200可实现对应于上文方法实施例中的接收端设备执行的步骤或者流程,其中,通信单元210用于执行上文方法实施例中接收端设备的接收相关的操作,处理单元220用于执行上文方法实施例中接收端设备的处理相关的操作。
应理解,这里的装置200以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置200可以具体为上述实施例中的发送端设备,可以用于执行上述方法实施例中与发送端设备对应的各个流程和/或步骤,或者,装置200可以具体为上述实施例中的接收端设备,可以用于执行上述方法实施例中与接收端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置200具有实现上述方法中发送端设备所执行的相应步骤的功能,或者,上述各个方案的装置200具有实现上述方法中接收端设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如通信单元可以由收发机替代(例如,通信单元中的发送单元可以由发送机替代,通信单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述通信单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图6中的装置可以是前述实施例中的AP或STA,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,通信单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图7为本申请实施例提供的通信装置300的示意性框图。该装置300包括处理器310和收发器320。其中,处理器310和收发器320通过内部连接通路互相通信,该处理器310用于执行指令,以控制该收发器320发送信号和/或接收信号。
可选地,该装置300还可以包括存储器330,该存储器330与处理器310、收发器320通过内部连接通路互相通信。该存储器330用于存储指令,该处理器310可以执行该存储器330中存储的指令。在一种可能的实现方式中,装置300用于实现上述方法实施例中的发送端设备对应的各个流程和步骤。在另一种可能的实现方式中,装置300用于实现上述方法实施例中的接收端设备对应的各个流程和步骤。
应理解,装置300可以具体为上述实施例中的发送端设备或接收端设备,也可以是芯片或者芯片系统。对应的,该收发器320可以是该芯片的收发电路,在此不做限定。具体地,该装置300可以用于执行上述方法实施例中与发送端设备或接收端设备对应的各个步骤和/或流程。可选地,该存储器330可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器310可以用于执行存储器中存储的指令,并且当该处理器310执行存储器中存储的指令时,该处理器310用于执行上述与发送端设备或接收端设备对应的方法实施例的各个步骤和/或流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由终端设备或网络设备执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由终端设备或网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由终端设备或网络设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括存储器。
此外,本申请还提供一种通信系统,包括本申请实施例中的终端设备和网络设备。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
还应理解,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信息和第二信息并不表示信息量大小、内容、优先级或者重要程度等的不同。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一项(个)”或其类似表达,是指一项(个)或多项(个),即这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c。
还应理解,本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种上行传输的方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信令,所述第一信令指示所述终端设备在第一时间单元集合上采用跳频方式发送第一信号,所述第一信号承载在第一物理上行共享信道PUSCH或第一物理上行控制信道PUCCH上,所述第一时间单元集合包括至少两个SBFD时间单元;
    所述终端设备根据第一跳频图案确定第二跳频图案,其中,所述第一跳频图案指示在至少两个上行时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,所述第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,所述第二跳频图案指示的起始频率资源的位置位于所述至少两个SBFD时间单元的上行子带中,N为大于或等于2的整数;
    所述终端设备根据所述第二跳频图案在所述至少两个SBFD时间单元上发送所述第一信号。
  2. 一种上行传输的方法,其特征在于,包括:
    网络设备向终端设备发送第一信令,所述第一信令指示所述终端设备在第一时间单元集合上采用跳频方式发送第一信号,所述第一信号承载在第一物理上行共享信道PUSCH或第一物理上行控制信道PUCCH上,所述第一时间单元集合包括至少两个SBFD时间单元;
    所述网络设备根据第一跳频图案确定第二跳频图案,其中,所述第一跳频图案指示在至少两个上行时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,所述第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,所述第二跳频图案指示的起始频率资源的位置位于所述至少两个SBFD时间单元的上行子带中,N为大于或等于2的整数;
    所述网络设备根据所述第二跳频图案在所述至少两个SBFD时间单元上接收来自所述终端设备的所述第一信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二跳频图案的N个起始频率中的第j个起始频率资源的索引RB′start,j是基于确定的,其中,RBstart,j为所述第一跳频图案的N个起始频率资源中的第j个起始频率资源的索引,为所述SBFD时间单元的上行子带的频率资源的个数,j=1,2,…,N。
  4. 根据权利要求3所述的方法,其特征在于,所述第二跳频图案的N个起始频率中的第j个起始频率资源的索引RB′start,j满足以下公式:
    其中,为所述SBFD时间单元的上行子带的起始频率资源的索引。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第二跳频图案的N个起始频率中的第j个起始频率资源的索引RB′start,j是基于第一缩放参数α和RBstart,j确定的,其中,RBstart,j为所述第一跳频图案的N个起始频率中的第j个起始频率资源的索引,所述α大于0且小于1,j=1,2,…,N。
  6. 根据权利要求5所述的方法,其特征在于,所述第二跳频图案的N个跳频起始频中的第j个起始频率资源索引RB′start,j满足以下公式:
    其中,为所述SBFD时间单元的上行子带的起始频率资源的索引,[]表示向上取整运算,或向下取整运算,或四舍五入取整运算。
  7. 一种下行传输的方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信令,所述第一信令指示所述终端设备在第一时间单元集合上接收第一信号,所述第一信令包括第一信息和第二信息,所述第一信息指示第一频率资源集合的起始频率资源的位置和所述第一频率资源集合包括的频率资源的个数,所述第二信息指示所述第一频率资源集合中的起始频率资源和第二频率资源集合中的起始频率资源的间隔,所述第一信号承载在第一物 理下行共享信道PDSCH上,所述第一时间单元集合包括第一时间单元,所述第一时间单元为包括至少两个下行子带的SBFD时间单元;
    所述终端设备根据所述第一信息确定所述第一频率资源集合;
    所述终端设备根据所述第一信息和所述第二信息确定所述第二频率资源集合,所述第二频率资源集合包括的频率资源的个数与所述第一频率资源集合包括的频率资源的个数相同或所述第二频率资源集合包括的频率资源的个数是预定义或所述网络设备配置的;
    所述终端设备在所述第一时间单元的所述第一频率资源集合和所述第二频率资源集合上接收来自所述网络设备的所述第一信号。
  8. 根据权利要求7所述的方法,其特征在于,所述第一时间单元集合还包括第二时间单元,所述第二时间单元为下行时间单元,所述方法还包括:
    所述终端设备在所述第二时间单元的所述第一频率资源集合和所述第二频率资源集合上接收所述第一信号。
  9. 根据权利要求7所述的方法,其特征在于,所述第一时间单元集合还包括第二时间单元,所述第二时间单元为下行时间单元,所述方法还包括:
    所述终端设备确定第三频率资源集合,其中,所述第三频率资源集合的起始频率资源为所述第一频率资源集合和所述第二频率资源集合中频率资源的索引最小的频率资源,所述第三频率资源集合的结束频率资源为所述第一频率资源集合和所述第二频率资源集合中频率资源的索引最大的频率资源,所述第三频率资源集合为一段连续的频率资源;
    所述终端设备在所述第二时间单元的所述第三频率资源集合上接收来自所述网络设备的所述第一信号。
  10. 一种下行传输的方法,其特征在于,包括:
    网络设备向终端设备发送第一信令,所述第一信令指示所述终端设备在第一时间单元集合上接收第一信号,所述第一信令包括第一信息和第二信息,所述第一信息指示第一频率资源集合的起始频率资源的位置和所述第一频率资源集合包括的频率资源的个数,所述第二信息指示所述第一频率资源集合中的起始频率资源和第二频率资源集合中的起始频率资源的间隔,所述第一信号承载在第一物理下行共享信道PDSCH上,所述第一时间单元集合包括第一时间单元,所述第一时间单元为包括至少两个下行子带的SBFD时间单元;
    所述网络设备在所述第一时间单元的所述第一频率资源集合和所述第二频率资源集合上向所述终端设备发送所述第一信号,其中,所述第二频率资源集合包括的频率资源的个数与所述第一频率资源集合包括的频率资源的个数相同或所述第二频率资源集合包括的频率资源的个数是预定义或所述网络设备配置的。
  11. 根据权利要求10所述的方法,其特征在于,所述第一时间单元集合还包括第二时间单元,所述第二时间单元为下行时间单元,所述方法还包括:
    所述网络设备在所述第二时间单元的所述第一频率资源集合和所述第二频率资源集合上向所述终端设备发送所述第一信号。
  12. 根据权利要求10所述的方法,其特征在于,所述第一时间单元集合还包括第二时间单元,所述第二时间单元为下行时间单元,所述方法还包括:
    所述网络设备确定第三频率资源集合,其中,所述第三频率资源集合的起始频率资源为所述第一频率资源集合和所述第二频率资源集合中频率资源的索引最小的频率资源,所述第三频率资源集合的结束频率资源为所述第一频率资源集合和所述第二频率资源集合中频率资源的索引最大的频率资源,所述第三频率资源集合为一段连续的频率资源;
    所述网络设备在所述第二时间单元的所述第三频率资源集合上向所述终端设备发送所述第一信号。
  13. 一种下行传输的方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信令,所述第一信令指示所述终端设备在第一时间单元集合上接收第一信号;
    所述终端设备确定所述第一时间单元集合;
    当所述第一时间单元集合中包括第一时间单元时,所述第一时间单元为包括至少两个下行子带的 SBFD时间单元,所述第一信令包括第一信息和第二信息,所述第一信息指示第一频率资源集合的起始频率资源的位置和所述第一频率资源集合包括的频率资源的个数,所述第二信息指示所述第一频率资源集合的起始频率资源和第二频率资源集合的起始频率资源的间隔,
    所述终端设备根据所述第一信息确定所述第一频率资源集合,所述终端设备根据所述第一信息和所述第二信息确定所述第二频率资源集合,所述第二频率资源集合包括的频率资源的个数与所述第一频率资源集合包括的频率资源的个数相同或所述第二频率资源集合包括的频率资源的个数是预定义或所述网络设备配置的,
    所述终端设备在所述第一时间单元集合的所述第一频率资源集合和所述第二频率资源集合上接收所述第一信号;
    当所述第一时间单元集合中不包括所述第一时间单元时,则所述第一信令包括第四信息,所述第四信息指示第四频率资源集合的起始频率资源的位置和所述第四频率资源集合包括的频率资源的个数,
    所述终端设备根据所述第四信息确定所述第四频率资源集合,
    所述终端设备在所述第一时间单元集合的所述第四频率资源集合上发送所述第一信号。
  14. 一种下行传输的方法,其特征在于,包括:
    网络设备向终端设备发送第一信令,所述第一信令指示所述终端设备在第一时间单元集合上接收第一信号,
    当所述第一时间单元集合中包括第一时间单元时,所述第一时间单元为包括至少两个下行子带的SBFD时间单元,所述第一信令包括第一信息和第二信息,所述第一信息指示第一频率资源集合的起始频率资源的位置和所述第一频率资源集合包括的频率资源的个数,所述第二信息指示所述第一频率资源集合的起始频率资源和第二频率资源集合的起始频率资源的间隔,
    所述网络设备在所述第一时间单元集合的所述第一频率资源集合和所述第二频率资源集合上向所述终端设备发送所述第一信号,所述第二频率资源集合包括的频率资源的个数与所述第一频率资源集合包括的频率资源的个数相同或所述第二频率资源集合包括的频率资源的个数是预定义或所述网络设备配置的;
    当所述第一时间单元集合中不包括所述第一时间单元时,所述第一信令包括第四信息,所述第四信息指示第四频率资源集合的起始频率资源的位置和所述第四频率资源集合包括的频率资源的个数,
    所述网络设备在所述第一时间单元集合的所述第四频率资源集合上发送所述第一信号。
  15. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第一信令,所述第一信令指示终端设备在第一时间单元集合上采用跳频方式发送第一信号,所述第一信号承载在第一物理上行共享信道PUSCH或第一物理上行控制信道PUCCH上,所述第一时间单元集合包括至少两个SBFD时间单元;
    处理单元,还用于根据第一跳频图案确定第二跳频图案,其中,所述第一跳频图案指示在至少两个上行时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,所述第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,所述第二跳频图案指示的起始频率资源的位置位于所述至少两个SBFD时间单元的上行子带中,N为大于或等于2的整数;
    所述通信单元,还用于根据所述第二跳频图案在所述至少两个SBFD时间单元上发送所述第一信号。
  16. 一种通信装置,其特征在于,包括:
    通信单元,用于向终端设备发送第一信令,所述第一信令指示所述终端设备在第一时间单元集合上采用跳频方式发送第一信号,所述第一信号承载在第一物理上行共享信道PUSCH或第一物理上行控制信道PUCCH上,所述第一时间单元集合包括至少两个SBFD时间单元;
    处理单元,用于根据第一跳频图案确定第二跳频图案,其中,所述第一跳频图案指示在至少两个上行时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,所述第二跳频图案指示在至少两个SBFD时间单元上采用跳频方式发送第一信号的N个不同起始频率资源的位置,所述第二跳频图案指示的起始频率资源的位置位于所述至少两个SBFD时间单元的上行子带中,N为大于或等于2的整数;
    所述通信单元,还用于根据所述第二跳频图案在所述至少两个SBFD时间单元上接收来自所述终端设备的所述第一信号。
  17. 根据权利要求15或16所述的装置,其特征在于,所述第二跳频图案的N个起始频率中的第j个起始频率资源的索引RB′start,j是基于确定的,其中,RBstart,j为所述第一跳频图案的N个起始频率资源中的第j个起始频率资源的索引,为所述SBFD时间单元的上行子带的频率资源的个数,j=1,2,…,N。
  18. 根据权利要求17所述的装置,其特征在于,所述第二跳频图案的N个起始频率中的第j个起始频率资源的索引RB′start,j满足以下公式:
    其中,为所述SBFD时间单元的上行子带的起始频率资源的索引。
  19. 根据权利要求15或16所述的装置,其特征在于,所述第二跳频图案的N个起始频率中的第j个起始频率资源的索引RB′start,j是基于第一缩放参数α和RBstart,j确定的,其中,RBstart,j为所述第一跳频图案的N个起始频率中的第j个起始频率资源的索引,所述α大于0且小于1,j=1,2,…,N。
  20. 根据权利要求19所述的装置,其特征在于,所述第二跳频图案的N个跳频起始频中的第j个起始频率资源索引RB′start,j满足以下公式:
    其中,为所述SBFD时间单元的上行子带的起始频率资源的索引,[]表示向上取整运算,或向下取整运算,或四舍五入取整运算。
  21. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第一信令,所述第一信令指示终端设备在第一时间单元集合上接收第一信号,所述第一信令包括第一信息和第二信息,所述第一信息指示第一频率资源集合的起始频率资源的位置和所述第一频率资源集合包括的频率资源的个数,所述第二信息指示所述第一频率资源集合中的起始频率资源和第二频率资源集合中的起始频率资源的间隔,所述第一信号承载在第一物理下行共享信道PDSCH上,所述第一时间单元集合包括第一时间单元,所述第一时间单元为包括至少两个下行子带的SBFD时间单元;
    处理单元,用于根据所述第一信息确定所述第一频率资源集合;
    所述处理单元,还用于根据所述第一信息和所述第二信息确定所述第二频率资源集合,所述第二频率资源集合包括的频率资源的个数与所述第一频率资源集合包括的频率资源的个数相同或所述第二频率资源集合包括的频率资源的个数是预定义或所述网络设备配置的;
    所述通信单元,还用于在所述第一时间单元的所述第一频率资源集合和所述第二频率资源集合上接收来自所述网络设备的所述第一信号。
  22. 根据权利要求21所述的装置,其特征在于,所述第一时间单元集合还包括第二时间单元,所述第二时间单元为下行时间单元,
    所述通信单元,还用于在所述第二时间单元的所述第一频率资源集合和所述第二频率资源集合上接收所述第一信号。
  23. 根据权利要求21所述的装置,其特征在于,所述第一时间单元集合还包括第二时间单元,所述第二时间单元为下行时间单元,
    所述处理单元,还用于确定第三频率资源集合,其中,所述第三频率资源集合的起始频率资源为所述第一频率资源集合和所述第二频率资源集合中频率资源的索引最小的频率资源,所述第三频率资源集合的结束频率资源为所述第一频率资源集合和所述第二频率资源集合中频率资源的索引最大的频率资源,所述第三频率资源集合为一段连续的频率资源;
    所述通信单元,还用于在所述第二时间单元的所述第三频率资源集合上接收来自所述网络设备的所述第一信号。
  24. 一种通信装置,其特征在于,包括:
    通信单元,用于向终端设备发送第一信令,所述第一信令指示所述终端设备在第一时间单元集合 上接收第一信号,所述第一信令包括第一信息和第二信息,所述第一信息指示第一频率资源集合的起始频率资源的位置和所述第一频率资源集合包括的频率资源的个数,所述第二信息指示所述第一频率资源集合中的起始频率资源和第二频率资源集合中的起始频率资源的间隔,所述第一信号承载在第一物理下行共享信道PDSCH上,所述第一时间单元集合包括第一时间单元,所述第一时间单元为包括至少两个下行子带的SBFD时间单元;
    所述通信单元,还用于在所述第一时间单元的所述第一频率资源集合和所述第二频率资源集合上向所述终端设备发送所述第一信号,其中,所述第二频率资源集合包括的频率资源的个数与所述第一频率资源集合包括的频率资源的个数相同或所述第二频率资源集合包括的频率资源的个数是预定义或所述网络设备配置的。
  25. 根据权利要求24所述的装置,其特征在于,所述第一时间单元集合还包括第二时间单元,所述第二时间单元为下行时间单元,
    所述通信单元,还用于在所述第二时间单元的所述第一频率资源集合和所述第二频率资源集合上向所述终端设备发送所述第一信号。
  26. 根据权利要求24所述的装置,其特征在于,所述第一时间单元集合还包括第二时间单元,所述第二时间单元为下行时间单元,所述装置还包括:
    处理单元,用于确定第三频率资源集合,其中,所述第三频率资源集合的起始频率资源为所述第一频率资源集合和所述第二频率资源集合中频率资源的索引最小的频率资源,所述第三频率资源集合的结束频率资源为所述第一频率资源集合和所述第二频率资源集合中频率资源的索引最大的频率资源,所述第三频率资源集合为一段连续的频率资源;
    所述通信单元,还用于在所述第二时间单元的所述第三频率资源集合上向所述终端设备发送所述第一信号。
  27. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第一信令,所述第一信令指示终端设备在第一时间单元集合上接收第一信号;
    处理单元,用于确定所述第一时间单元集合;
    当所述第一时间单元集合中包括第一时间单元时,所述第一时间单元为包括至少两个下行子带的SBFD时间单元,所述第一信令包括第一信息和第二信息,所述第一信息指示第一频率资源集合的起始频率资源的位置和所述第一频率资源集合包括的频率资源的个数,所述第二信息指示所述第一频率资源集合的起始频率资源和第二频率资源集合的起始频率资源的间隔,
    所述处理单元,还用于根据所述第一信息确定所述第一频率资源集合,所述终端设备根据所述第一信息和所述第二信息确定所述第二频率资源集合,所述第二频率资源集合包括的频率资源的个数与所述第一频率资源集合包括的频率资源的个数相同或所述第二频率资源集合包括的频率资源的个数是预定义或所述网络设备配置的,
    所述通信单元,还用于在所述第一时间单元集合的所述第一频率资源集合和所述第二频率资源集合上接收所述第一信号;
    当所述第一时间单元集合中不包括所述第一时间单元时,则所述第一信令包括第四信息,所述第四信息指示第四频率资源集合的起始频率资源的位置和所述第四频率资源集合包括的频率资源的个数,
    所述处理单元,还用于根据所述第四信息确定所述第四频率资源集合,
    所述通信单元,还用于在所述第一时间单元集合的所述第四频率资源集合上发送所述第一信号。
  28. 一种通信装置,其特征在于,包括:
    通信单元,用于向终端设备发送第一信令,所述第一信令指示所述终端设备在第一时间单元集合上接收第一信号,
    当所述第一时间单元集合中包括第一时间单元时,所述第一时间单元为包括至少两个下行子带的SBFD时间单元,所述第一信令包括第一信息和第二信息,所述第一信息指示第一频率资源集合的起始频率资源的位置和所述第一频率资源集合包括的频率资源的个数,所述第二信息指示所述第一频率资源集合的起始频率资源和第二频率资源集合的起始频率资源的间隔,
    所述通信单元,还用于在所述第一时间单元集合的所述第一频率资源集合和所述第二频率资源集 合上向所述终端设备发送所述第一信号,所述第二频率资源集合包括的频率资源的个数与所述第一频率资源集合包括的频率资源的个数相同或所述第二频率资源集合包括的频率资源的个数是预定义或所述网络设备配置的;
    当所述第一时间单元集合中不包括所述第一时间单元时,所述第一信令包括第四信息,所述第四信息指示第四频率资源集合的起始频率资源的位置和所述第四频率资源集合包括的频率资源的个数,
    所述通信单元,还用于在所述第一时间单元集合的所述第四频率资源集合上发送所述第一信号。
  29. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器和至少一个存储器,所述至少一个存储器用于存储计算机程序或指令,所述至少一个处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1、3至6中任一项所述的方法被执行,或者,使得权利要求2至6中任一项所述的方法被执行,或者,使得权利要求7至9中任一项所述的方法被执行,或者,使得权利要求10至12中任一项所述的方法被执行,或者,使得权利要求13所述的方法被执行,或者,使得权利要求14所述的方法被执行。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1、3至6中任一项所述的方法被执行,或者,如权利要求2至6中任一项所述的方法被执行,或者,如权利要求7至9中任一项所述的方法被执行,或者,如权利要求10至12中任一项所述的方法被执行,或者,如权利要求13所述的方法被执行,或者,如权利要求14所述的方法被执行。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,如权利要求1、3至6中任一项所述的方法被执行,或者,如权利要求2至6中任一项所述的方法被执行,或者,如权利要求7至9中任一项所述的方法被执行,或者,如权利要求10至12中任一项所述的方法被执行,或者,如权利要求13所述的方法被执行,或者,如权利要求14所述的方法被执行。
PCT/CN2023/121827 2022-09-30 2023-09-27 上行传输的方法和通信装置 WO2024067656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211214269.0A CN117812729A (zh) 2022-09-30 2022-09-30 上行传输的方法和通信装置
CN202211214269.0 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067656A1 true WO2024067656A1 (zh) 2024-04-04

Family

ID=90425483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121827 WO2024067656A1 (zh) 2022-09-30 2023-09-27 上行传输的方法和通信装置

Country Status (2)

Country Link
CN (1) CN117812729A (zh)
WO (1) WO2024067656A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113395714A (zh) * 2020-03-12 2021-09-14 中国电信股份有限公司 跳频的方法和系统、终端和基站
US20220052882A1 (en) * 2020-08-13 2022-02-17 Qualcomm Incorporated Methods and apparatus for sounding reference signal enhancements for subband full-duplex
CN114667685A (zh) * 2019-12-06 2022-06-24 华为技术有限公司 通信方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114667685A (zh) * 2019-12-06 2022-06-24 华为技术有限公司 通信方法和装置
CN113395714A (zh) * 2020-03-12 2021-09-14 中国电信股份有限公司 跳频的方法和系统、终端和基站
US20220052882A1 (en) * 2020-08-13 2022-02-17 Qualcomm Incorporated Methods and apparatus for sounding reference signal enhancements for subband full-duplex

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Sub-band non-overlapping full duplex", 3GPP DRAFT; R1-2207462, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052275398 *

Also Published As

Publication number Publication date
CN117812729A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US20170347268A1 (en) Resource Allocation Design for Low Cost Machine-Type Communication UE
EP3833129B1 (en) Method for transmitting configuration information and terminal device
JP7390507B2 (ja) データ伝送方法、装置及び読み取り可能な記憶媒体
US20210160852A1 (en) Resource configuration method and terminal device
KR20180132689A (ko) 다중 bssid 네트워크에 대한 랜덤 액세스 리소스 유닛 할당
KR102579976B1 (ko) 고효율 무선 근거리 통신망에서 업링크 다중 사용자 매체 액세스를 개시하기 위한 장치, 방법 및 컴퓨터 판독가능 매체
EP2787755B1 (en) Transmission method and system for achieving data and voice service coexistence and communication device
WO2020025042A1 (zh) 资源配置的方法和终端设备
WO2020200035A1 (zh) 传输上行控制信息的方法及装置
US11924839B2 (en) Data transmission method and apparatus
WO2022027308A1 (en) Enhanced configured grants
CN113630878A (zh) 一种信息传输的方法、装置及系统
TWI632820B (zh) 在無線區域網路中用於多使用者排程之方法、設備及電腦可讀取媒體
GB2511866A (en) Method and apparatus for providing access in a communication system
WO2024067656A1 (zh) 上行传输的方法和通信装置
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2022027294A1 (en) Mobile devices and methods for implementing enhanced configured grants
WO2024094091A1 (zh) 子带配置的方法和通信装置
WO2024067499A1 (zh) 通信方法及通信装置
WO2024067617A1 (zh) 资源配置的方法及装置
WO2023207774A1 (zh) 一种通信方法及装置
WO2023134678A1 (zh) 通信方法和通信装置
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
WO2023164948A1 (zh) 一种无线通信方法及终端设备
WO2023065365A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870883

Country of ref document: EP

Kind code of ref document: A1