WO2024067499A1 - 通信方法及通信装置 - Google Patents

通信方法及通信装置 Download PDF

Info

Publication number
WO2024067499A1
WO2024067499A1 PCT/CN2023/121151 CN2023121151W WO2024067499A1 WO 2024067499 A1 WO2024067499 A1 WO 2024067499A1 CN 2023121151 W CN2023121151 W CN 2023121151W WO 2024067499 A1 WO2024067499 A1 WO 2024067499A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
resources
terminal device
resource
Prior art date
Application number
PCT/CN2023/121151
Other languages
English (en)
French (fr)
Inventor
刘云峰
郭志恒
宋兴华
谢信乾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067499A1 publication Critical patent/WO2024067499A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and a communication device.
  • the downlink (DL) usually occupies the main time domain resources, which causes an imbalance in coverage between the DL and uplink (UL).
  • DL downlink
  • UL subband uplink subband
  • DL subband downlink subband
  • the terminal device when the terminal device has no UL data to transmit, this part of the resources will be idle, which will cause a certain degree of resource waste. If the UL data is relatively small and cannot occupy all the UL subbands, part of the resources in the UL subband will also be wasted. In addition, if the network device has a lot of DL data to transmit at this time, there may be a situation where no resources are available or the resources are insufficient. Therefore, the current mode of rigidly dividing the frequency domain range of the DL subband and the UL subband will reduce the resource utilization of the SBFD system and reduce the response rate of the communication system.
  • the embodiments of the present application provide a communication method and a communication device, which can improve resource utilization and improve the response rate of a communication system.
  • a communication method including: a terminal device receives first indication information from a network device, the first indication information indicating a first time-frequency resource on a first time unit; the terminal device determines the first time-frequency resource based on the first indication information, the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission, the first time-frequency resource belongs to a second time-frequency resource on the first time unit, and the second time-frequency resource is a resource that the terminal device is configured to use for uplink transmission; the terminal device receives downlink information from the network device on a third time-frequency resource on the first time unit, the third time-frequency resource being a resource in the second time-frequency resource excluding the first time-frequency resource.
  • the network device can send a first indication message to the terminal device, and the first indication message can indicate that part of the resources (i.e., the first time-frequency resources) in the resources (i.e., the second time-frequency resources) configured for uplink transmission by the terminal device cannot be used for downlink transmission.
  • the terminal device can continue to use the first time-frequency resources for uplink transmission, and the terminal device can use the resources in the second time-frequency resources other than the first time-frequency resources (i.e., the third time-frequency resources) for downlink transmission.
  • the secondary allocation of uplink resources can be achieved, making the use of resources more flexible and reasonable, and the allocation of resources more closely matches the actual business needs, avoiding the problem of idle resources wasted due to the terminal device having no data to send, and improving the problem of insufficient downlink transmission resources, thereby improving resource utilization and improving the response rate of the communication system.
  • the first time-frequency resource belongs to the second time-frequency resource, and the first time-frequency resource may be equal to the second time-frequency resource, that is, the first time-frequency resource and the second time-frequency resource are exactly the same.
  • the third time-frequency resource is an empty set.
  • the first time-frequency resource belongs to the second time-frequency resource, and the first time-frequency resource may be a nonvoid proper subset of the second time-frequency resource.
  • the first time-frequency resource in the second time-frequency resource cannot be used for downlink transmission, and the resources in the second time-frequency resource other than the first time-frequency resource (i.e., the third time-frequency resource) can be used for downlink transmission.
  • the first time-frequency resource belongs to the second time-frequency resource, and the first time-frequency resource can be an empty set (the empty set is a subset of any set), that is, the first time-frequency resource does not include any resources.
  • the empty set is a subset of any set
  • all resources in the second time-frequency resource can be used for downlink transmission (at this time, the third time-frequency resource is equal to the second time-frequency resource).
  • the network device sends first indication information to the terminal device for indicating a first time-frequency resource, where the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission.
  • the terminal device can use this part of the resources (ie, the first time-frequency resource) for uplink transmission, such as sending PUSCH and/or PUCCH.
  • the second time-frequency resource here can be a continuous resource forming a whole block structure on the spectrum, or it can be a distributed resource (ie, non-continuous resource) composed of multiple independent resource blocks, and this application does not limit this.
  • the first time-frequency resource and the second time-frequency resource are both resources on the first time unit, that is, the first time-frequency resource and the second time-frequency resource have the same starting position in the time domain, the same ending position in the time domain, the same time domain range, and different bandwidths.
  • the first time unit here can be one or more symbols, or one or more time slots, but is not limited thereto, and can be a period of any length.
  • the UL subband is used for uplink transmission and the DL subband is used for downlink transmission;
  • the entire CC is used for uplink transmission, that is, all subbands are used for uplink transmission;
  • the entire CC is used for downlink transmission, that is, all subbands are used for downlink transmission.
  • FIG5 includes time-frequency resources corresponding to 5 time slots (slots) including time slot #1 to time slot #5, wherein the time-frequency resources corresponding to time slot #1 are configured to only perform downlink data transmission (DL-only), which can be understood as the third time unit, and the time-frequency resources corresponding to time slot #5 are configured to only perform uplink data transmission (UL-only), which can be understood as the second time unit, and time slot #2, time slot #3 and time slot #4 are all SBFD time slots, and the resources on the DL subbands corresponding to these three time slots can perform DL transmission, and the resources on the UL subbands corresponding to these three time slots can perform UL transmission, which can be understood as the first time unit.
  • DL-only downlink data transmission
  • UL-only uplink data transmission
  • time slot #2, time slot #3 and time slot #4 are all SBFD time slots
  • the first indication information in the present application indicates the first time-frequency resource, which may be an explicit indication or an implicit indication, or a direct indication or an indirect indication, and the present application does not limit this.
  • the first indication information may include the identification (ID), number, index (index) of the first time-frequency resource, time domain information of the first time-frequency resource (such as the time domain starting position, the time domain ending position, the time domain center position, and duration), frequency domain information of the first time-frequency resource (such as the frequency domain starting position, the frequency domain ending position, the frequency domain center position, bandwidth, and the number of resource blocks (RB)), and any other information that can help the terminal device determine the first time-frequency resource.
  • ID identification
  • index index
  • time domain information of the first time-frequency resource such as the time domain starting position, the time domain ending position, the time domain center position, and duration
  • frequency domain information of the first time-frequency resource such as the frequency domain starting position, the frequency domain ending position, the frequency domain center position, bandwidth, and the number of resource blocks (RB)
  • RB resource blocks
  • the first indication information may be carried in downlink control information (DCI).
  • DCI downlink control information
  • the first indication information may include a field consisting of one or more bits.
  • the field may be an existing field in the DCI or a newly added field. This application does not limit this.
  • the first indication information may include a rate matching indication field (Rate matching indicator) in the DCI.
  • Rate matching indicator rate matching indication field
  • the first time-frequency resource is one of N resources on the first time unit, the N resources have different sizes and include the second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and N is an integer greater than or equal to 2.
  • Pre-configuring N resources of different sizes for the terminal device can facilitate the network device to indicate.
  • the first indication information only needs to include a small amount of information such as the identifier or index of the first time-frequency resource, which can help the terminal device determine which of the first time-frequency resources it is, thereby saving signaling overhead.
  • These N resources include N-1 fourth time-frequency resources, and the proportion of the N-1 fourth time-frequency resources to the second time-frequency resources is different. Therefore, the network device can determine which of the N resources the first time-frequency resource is based on actual business needs, and indicate it to the terminal device conveniently and efficiently.
  • the frequency domain range of the second time-frequency resource is an uplink sub-band, that is, the second time-frequency resource occupies 100% bandwidth of the uplink sub-band.
  • At least one resource among the N resources is configured through a rate matching pattern.
  • the terminal device is pre-configured with two rate matching pattern groups, and two resources among the N resources are respectively located in the two rate matching pattern groups.
  • the terminal device is pre-configured with N rate matching pattern groups, and the N resources are respectively included in the N rate matching pattern groups.
  • the terminal device is configured with N resources, the N resources include a second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and one of the fourth time-frequency resources is The time-frequency resource is an empty set.
  • the terminal device can be configured with N-1 rate matching pattern groups, and the N-1 resources except the fourth time-frequency resource which is an empty set can be included in the N-1 rate matching pattern groups one by one.
  • the first time-frequency resource can be indicated with the help of the rate matching indication field, and the first time-frequency resource can be any one of the N resources.
  • the value of N can be 3, 4, 5 or 6, etc.
  • the method before the terminal device receives the first indication information from the network device, the method further includes: the terminal device receiving configuration information of the N resources from the network device.
  • the network device may configure the N resources to the terminal device in a semi-static configuration manner. For example, the network device may send configuration information of the N resources to the terminal device, and the configuration information may be carried in a radio resource control (RRC) message. After receiving the configuration information, the terminal device configures the N resources according to the configuration information.
  • RRC radio resource control
  • the first time-frequency resource may include a symbol where a valid RO is located and/or N gap symbols before the symbol.
  • the first indication information includes a rate matching indication field and/or a rate matching part field.
  • the first indication information is carried in the DCI and may include an existing field or a newly added field in the DCI.
  • a communication method including: a network device sends first indication information to a terminal device, the first indication information indicates a first time-frequency resource on a first time unit, the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission, the first time-frequency resource belongs to a second time-frequency resource on the first time unit, the second time-frequency resource is a resource configured by the terminal device for uplink transmission; the network device sends downlink information to the terminal device on a third time-frequency resource on the first time unit, the third time-frequency resource being a resource in the second time-frequency resource excluding the first time-frequency resource.
  • the first time-frequency resource is one of N resources on the first time unit, the N resources have different sizes and include the second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and N is an integer greater than or equal to 2.
  • the frequency domain range of the second time-frequency resource is an uplink sub-band.
  • At least one resource among the N resources is configured through a rate matching pattern.
  • the terminal device is pre-configured with two rate matching pattern groups, and two resources among the N resources are respectively located in the two rate matching pattern groups.
  • the terminal device is pre-configured with N rate matching pattern groups, and the N resources are respectively located in the N rate matching pattern groups.
  • a terminal device comprising a receiving unit for receiving first indication information from a network device, wherein the first indication information indicates a first time-frequency resource on a first time unit; a determining unit for determining the first time-frequency resource based on the first indication information, wherein the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission, and the first time-frequency resource belongs to a second time-frequency resource on the first time unit, and the second time-frequency resource is a resource that the terminal device is configured to use for uplink transmission; the receiving unit is further used to receive downlink information from the network device on a third time-frequency resource on the first time unit, and the third time-frequency resource is a resource in the second time-frequency resource excluding the first time-frequency resource.
  • the first time-frequency resource is one of N resources on the first time unit, the N resources have different sizes and include the second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and N is an integer greater than or equal to 2.
  • the frequency domain range of the second time-frequency resource is an uplink sub-band.
  • At least one resource among the N resources is configured through a rate matching pattern.
  • the terminal device is pre-configured with two rate matching pattern groups, and two resources among the N resources are respectively located in the two rate matching pattern groups.
  • the terminal device is pre-configured with N rate matching pattern groups, and the N resources are respectively included in the N rate matching pattern groups.
  • a network device comprising: a sending unit, configured to send first indication information to a terminal device, the first indication information indicating a first time-frequency resource on a first time unit, the first time-frequency resource being a resource that the terminal device cannot use for downlink transmission, the first time-frequency resource belonging to a second time-frequency resource on the first time unit, and the second time-frequency resource
  • the resource is a resource configured by the terminal device for uplink transmission; the sending unit is also used to send downlink information to the terminal device on the third time-frequency resource on the first time unit, and the third time-frequency resource is the resource of the second time-frequency resource excluding the first time-frequency resource.
  • the first time-frequency resource is one of N resources on the first time unit, the N resources have different sizes and include the second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and N is an integer greater than or equal to 2.
  • the frequency domain range of the second time-frequency resource is an uplink sub-band.
  • At least one resource among the N resources is configured through a rate matching pattern.
  • the terminal device is pre-configured with two rate matching pattern groups, and two resources among the N resources are respectively located in the two rate matching pattern groups.
  • the terminal device is pre-configured with N rate matching pattern groups, and the N resources are respectively included in the N rate matching pattern groups.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a terminal device, or a chip set in a terminal device.
  • the communication device includes: a processor, a memory, and a transceiver;
  • the transceiver is used to receive and send messages
  • the memory is used to store instructions
  • the processor is used to execute instructions stored in the memory.
  • the communication device executes the method executed by any one of the implementation modes in the first aspect mentioned above.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a network device, or a chip disposed in a network device.
  • the communication device includes: a processor, a memory, and a transceiver;
  • the transceiver is used to receive and send messages
  • the memory is used to store instructions
  • the processor is used to execute instructions stored in the memory.
  • the communication device executes the method executed by any one of the implementation modes in the aforementioned second aspect.
  • a terminal device comprising at least one processor, wherein the at least one processor is used to couple with a memory, read and execute instructions in the memory, so as to implement the method executed by any one of the implementation modes in the aforementioned first aspect.
  • the terminal device also includes the memory.
  • a network device comprising at least one processor, wherein the at least one processor is used to couple with a memory, read and execute instructions in the memory, so as to implement the method executed by any one of the implementation modes in the second aspect.
  • the terminal device also includes the memory.
  • a computer program product comprising: a computer program code, which, when executed on a computer, enables the computer to execute a method executed in any one of the implementations of the first or second aspect.
  • the above-mentioned computer program code can be stored in whole or in part on the first storage medium, wherein the first storage medium can be packaged together with the processor or separately packaged with the processor, and this application does not make any specific limitation on this.
  • a computer-readable medium stores a program code, and when the computer program code runs on a computer, the computer executes the method executed by any one of the implementation modes in the first aspect or the second aspect.
  • a chip system comprising a processor for calling and running a computer program from a memory, so that a communication device equipped with the chip system executes a method executed by a computer in any one of the implementation modes of the first or second aspect above.
  • a communication system which includes at least one of the terminal device provided in the third aspect or the seventh aspect, and the network device provided in the fourth aspect or the eighth aspect.
  • a communication method including: a network device sends a first indication information, a terminal device receives the first indication information, the first indication information indicates a first time-frequency resource on a first time unit; the terminal device determines the first time-frequency resource according to the first indication information, the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission, The first time-frequency resource belongs to the second time-frequency resource on the first time unit, and the second time-frequency resource is the resource configured by the terminal device for uplink transmission; the network device sends downlink information on the third time-frequency resource on the first time unit, and the terminal device receives downlink information on the third time-frequency resource on the first time unit, and the third time-frequency resource is the resource in the second time-frequency resource excluding the first time-frequency resource.
  • FIG1 shows a schematic diagram of a communication system applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of an example of TDD system resource configuration provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of an example of SBFD system resource configuration provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an example of SFFD system resource configuration provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another example of SBFD system resource configuration provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another example of SBFD system resource configuration provided in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of an example of a communication method provided in the present application.
  • FIG8 is a schematic diagram of an example of configuring rate matching pattern resources provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an example of indicating rate matching pattern resources provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of an example of indicating the first time-frequency resource through rate matching provided in the present application.
  • FIG11 is a schematic diagram of an example of downlink transmission using a third time-frequency resource.
  • FIG12 is a schematic diagram of another example of indicating the first time-frequency resource through rate matching provided in the present application.
  • FIG13 is a schematic diagram of another example of downlink transmission using a third time-frequency resource.
  • FIG14 is a schematic diagram of another example of indicating the first time-frequency resource through rate matching provided in the present application.
  • FIG15 is a schematic diagram of another example of downlink transmission using the third time-frequency resource.
  • Figure 16 is a schematic diagram of indicating the first time-frequency resource through a bitmap provided in an embodiment of the present application.
  • FIG17 is a schematic diagram of a valid RO and its first N gap symbols.
  • FIG18 is a schematic block diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 19 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • Figure 20 is a schematic block diagram of a network device provided in an embodiment of the present application.
  • Figure 21 is a schematic diagram of the structure of the network device provided in an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • FDD time division duplex
  • SBFD subband full duplex
  • SFFD single frequency full duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio access technology
  • 6G sixth generation
  • FIG1 shows a schematic diagram of a communication system applicable to the embodiments of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 and the terminal device 130 shown in FIG1.
  • the network device 110 may communicate with the terminal device 120 and the terminal device 130 via a wireless link.
  • Each communication device, such as the network device 110, the terminal device 120 or the terminal device 130 may be configured with multiple antennas, and the multiple antennas may include at least one transmitting antenna for sending signals and at least one receiving antenna for receiving signals.
  • each communication device also additionally includes a transmitter chain and a receiver chain, and those skilled in the art will understand that they may both include
  • the network device 110 includes multiple components related to signal transmission and reception (such as a processor, a modulator, a multiplexer, a demodulator, a demultiplexer or an antenna, etc.). Therefore, the network device 110 and the terminal device 120 and the terminal device 130 can communicate through the multi-antenna technology.
  • the network equipment in the wireless communication system can be any equipment with wireless transceiver function.
  • the equipment includes but is not limited to: evolved NodeB (eNB or eNodeB), radio network controller (RNC), NodeB (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home NodeB, HNB), baseband unit (BBU), wireless fidelity (wireless
  • the invention may be an access point (AP), a wireless relay node, a wireless backhaul node, a transmission point (TP) or a transmission and reception point (TRP) in a wireless fidelity (WIFI) system, and may also be a gNB in a 5G, such as NR, system, or a transmission point (TRP or TP), one or a group of (including multiple antenna panels) antenna panels of a base station in a 5G system, or may also be a network node constituting a gNB or a transmission point, such as
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB
  • the DU implements some functions of the gNB, for example, the CU implements the functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers
  • the DU implements the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device can be a CU node, a DU node, or a device including a CU node and a DU node.
  • CU can be divided into network equipment in the access network (radio access network, RAN), and CU can also be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • terminal device in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control (industrial control), a wireless terminal in self-driving, a wireless terminal in remote medical, a wireless terminal in smart grid (smart grid), a wireless terminal in transportation safety (transportation safety), a wireless terminal in smart city (smart city), a wireless terminal in smart home (smart home), etc.
  • the embodiment of the present application does not limit the application scenario.
  • the 5G New Radio (NR) wireless communication system is deployed in the medium and high frequency bands to achieve high data rates and low latency by using large bandwidth.
  • TDD time division duplexing
  • the downlink (DL) usually occupies the main time domain resources, which causes an imbalance in coverage between the DL and the uplink (UL).
  • Figure 2 is a schematic diagram of an example of resource configuration in a TDD system provided in an embodiment of the present application. As shown in Figure 2, the time domain resources occupied by DL are significantly more than those of UL.
  • FDD frequency division duplexing
  • FIG3 is a schematic diagram of an example of SBFD system resource configuration provided in an embodiment of the present application
  • FIG4 is a schematic diagram of an example of SFFD system resource configuration provided in an embodiment of the present application.
  • the frequency domain resources on a time slot include uplink resources and downlink resources.
  • the SBFD system divides a component carrier (CC) into multiple subbands, and the multiple subbands include at least one uplink subband (UL subband) and at least one downlink subband (DL subband), which are used to transmit uplink signals and downlink signals, respectively.
  • each CC may include three subbands, the subband located in the middle position in the frequency domain is the uplink subband (UL subband), and the upper and lower two subbands are downlink subbands (DL subbands).
  • UL subband uplink subband
  • DL subbands downlink subbands
  • the uplink and downlink use different frequency domain resources (subbands), and in the SFFD system, the uplink and downlink use the same frequency domain resources.
  • the technical solution provided in the embodiment of the present application mainly relates to the SBFD system.
  • Half-duplex of terminal equipment means that the terminal equipment can only receive or send on one symbol, but not receive or send at the same time. Under this scheme, the uplink transmission resources available to the terminal equipment are increased, which can effectively improve the UL coverage and reduce the UL delay compared with the traditional TDD system.
  • the network device 110 can have at least one SBFD cell, and the terminal device 120 and the terminal device 130 are both located in the SBFD cell.
  • the terminal device 120 and the terminal device 130 can both be half-duplex mode terminal devices.
  • the terminal device 120 can send data to the network device 110 via UL, and the terminal device 130 can receive data from the network device 110 via DL.
  • the direction (type) of a symbol in the traditional TDD system, can be configured as uplink, downlink, or flexible.
  • the direction of a symbol is configured for the entire CC.
  • the transmission directions of different subbands can be different, that is, some subbands are uplink and some subbands are downlink.
  • the symbol direction on subband 1 is configured as downlink
  • the symbol direction on subband 2 is configured as uplink.
  • the terminal device can send an uplink signal on the symbol of subband 2.
  • the SBFD system includes a UL subband and a DL subband.
  • the UL subband is usually only used for uplink data transmission, and the DL subband is usually only used for downlink data transmission.
  • the network device allocates resources for the Type 1 physical downlink shared channel (PDSCH), it can avoid unavailable resources by reserving resources so that the time-frequency resources occupied by the DL transmission do not overlap with the UL subband.
  • FIG5 is a schematic diagram of another example of SBFD system resource configuration provided in an embodiment of the present application. As shown in FIG5, DL transmission needs to avoid the time-frequency resources where the UL subband is located.
  • FIG5 includes time-frequency resources corresponding to five time slots including time slot #1 to time slot #5, wherein the time-frequency resources corresponding to time slot #1 are configured to be capable of only downlink data transmission (DL-only), the time-frequency resources corresponding to time slot #5 are configured to be capable of only uplink data transmission (UL-only), and time slot #2, time slot #3, and time slot #4 are all SBFD time slots, and the resources on the DL subbands corresponding to these three time slots can be used for DL transmission, and the resources on the UL subbands corresponding to these three time slots can be used for UL transmission.
  • the time-frequency resources where the UL subband is located should be avoided.
  • the transmission of DL data should not occupy the resources on the UL subbands corresponding to time slots #2, time slot #3, and time slot #4 (i.e., the UL subband resources indicated by the oblique lines in FIG5), even if the above resources are not used for UL transmission (i.e., they are in an idle state).
  • an embodiment of the present application provides a communication method, through which uplink resources can be reasonably secondary allocated, so that part of the resources on the UL subband can be used for DL transmission, that is, DL scheduling can use the resources on the UL subband, thereby avoiding resource waste, improving resource utilization, and improving the response rate of the communication system.
  • FIG6 is a schematic diagram of another example of SBFD system resource configuration provided by an embodiment of the present application.
  • DL transmission can use the time-frequency resources where the UL subband is located (the resource type of the time-frequency resources is usually configured as uplink, and some resources may also be configured as flexible), and only needs to avoid the time-frequency resources where the UL transmission is located, that is, the UL resources not used for UL transmission can be used for DL transmission.
  • all the resources on the UL subband corresponding to time slot #2 in FIG6 can be used for DL transmission, and part of the resources on the UL subband corresponding to time slot #3 can be used for DL transmission.
  • the frequency domain range available for DL transmission increases, which is beneficial to improving the spectrum efficiency of the network, and is beneficial to improving the response rate of the system, making the allocation and use of resources more reasonable.
  • the network device in the embodiment may be the network device 110 in FIG. 1
  • the terminal device may be the terminal device 120 or the terminal device 130 in FIG. 1 .
  • FIG7 is a schematic flow chart of a communication method 700 provided in the present application.
  • the communication method 700 provided in an embodiment of the present application is described below in conjunction with FIG7.
  • the method 700 includes:
  • Step 710 The network device sends first indication information to the terminal device, where the first indication information indicates a first time-frequency resource on a first time unit.
  • the terminal device receives first indication information from the network device.
  • Step 720 the terminal device determines the first time-frequency resource according to the first indication information, the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission, the first time-frequency resource belongs to the second time-frequency resource on the first time unit, the second time-frequency resource is a resource that the terminal device is configured to use for uplink transmission, such as the resource on the UL subband mentioned above.
  • Step 730 The network device sends downlink information to the terminal device on the third time-frequency resource, where the third time-frequency resource is the resource of the second time-frequency resource minus the first time-frequency resource.
  • the third time-frequency resource is the complement of the first time-frequency resource in the second time-frequency resource.
  • the terminal device receives downlink information from the network device on the third time-frequency resource.
  • the terminal equipment and network equipment in the embodiments of the present application may be communication equipment in the aforementioned SBFD system, or may be communication equipment in the SFFD system, TDD system, FDD system, or communication equipment in any other system, and the present application does not limit this.
  • the network equipment in the embodiments of the present application may be a terminal equipment in half-duplex mode, or may be a terminal equipment in full-duplex mode, and the present application does not limit this.
  • the network device may pre-configure a second time-frequency resource for the terminal device to meet the communication requirements of the terminal device and the network device.
  • the second time-frequency resource may be a resource configured for uplink transmission, and the terminal device may send uplink data to the network device on the second time-frequency resource.
  • the terminal device may send a physical uplink shared channel (PUSCH) and/or a physical uplink control channel (PUCCH) to the network device on the second time-frequency resource.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the second time-frequency resources are resources that the terminal device is configured to use for uplink transmission. In some cases, part or all of the second time-frequency resources can also be used for downlink transmission. For example, the second time-frequency resources can also be used to transmit PDSCH and/or physical downlink control channel (PDCCH). Therefore, the network device needs to give further instructions to the terminal device, informing the terminal device which resources in the second time-frequency resources cannot be used for downlink transmission. These resources are the first time-frequency resources.
  • the terminal device can use the third time-frequency resources for downlink transmission.
  • the network device sends a first indication information for indicating a first time-frequency resource to the terminal device, and the terminal device can determine the first time-frequency resource according to the first indication information.
  • the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission, and the first time-frequency resource belongs to the second time-frequency resource, that is, the first time-frequency resource can be a subset of the second time-frequency resource.
  • the first indication information in the embodiment of the present application indicates the resources in the second time-frequency resource that cannot be used for downlink transmission.
  • the terminal device can further determine that the resources in the second time-frequency resource other than the first time-frequency resource (that is, the first time-frequency resource is located in the complement of the second time-frequency resource, that is, the third time-frequency resource) can be used for downlink transmission, and the terminal device can receive downlink information from the network device on the third time-frequency resource.
  • the first time-frequency resource belongs to the second time-frequency resource, and the first time-frequency resource may be equal to the second time-frequency resource, that is, the first time-frequency resource and the second time-frequency resource are exactly the same.
  • the third time-frequency resource is an empty set.
  • the first time-frequency resource belongs to the second time-frequency resource, and the first time-frequency resource may be a nonvoid proper subset of the second time-frequency resource.
  • the first time-frequency resource in the second time-frequency resource cannot be used for downlink transmission, while the resources in the second time-frequency resource except the first time-frequency resource (i.e., the third time-frequency resource) can be used for downlink transmission.
  • the first time-frequency resource belongs to the second time-frequency resource, and the first time-frequency resource can be an empty set (the empty set is a subset of any set), that is, the first time-frequency resource does not include any resources.
  • the empty set is a subset of any set
  • all resources in the second time-frequency resource can be used for downlink transmission (at this time, the third time-frequency resource is equal to the second time-frequency resource).
  • the second time-frequency resource is ⁇ resource #1, resource #2, resource #3 ⁇ .
  • the first time-frequency resource is also ⁇ resource #1, resource #2, resource #3 ⁇ .
  • the terminal device cannot use the above resource #1, resource #2, resource #3 for downlink transmission.
  • the first time-frequency resource is ⁇ resource #1, resource #2 ⁇ .
  • the terminal device cannot use the above resource #1, resource #2, resource #3 for downlink transmission.
  • the terminal device cannot use the above resource #1 and resource #2 for downlink transmission, but can use resource #3 for downlink transmission.
  • the first time-frequency resource is an empty set ⁇ . At this time, under the instruction of the first indication information, the terminal device can use resource #1, resource #2 and resource #3 for downlink transmission.
  • the network device sends first indication information to the terminal device for indicating a first time-frequency resource, where the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission.
  • the terminal device can use this part of the resources (ie, the first time-frequency resource) for uplink transmission, such as sending PUSCH and/or PUCCH.
  • the terminal device can further determine that the first time-frequency resource can be used for uplink transmission. That is to say, for the second time-frequency resource that is itself configured for uplink transmission, for the first time-frequency resource further indicated by the first indication information, the terminal device determines that it can continue to be used for uplink transmission, and the resources in the second time-frequency resource other than the first time-frequency resource (i.e., the third time-frequency resource that is not indicated) can be used for downlink transmission.
  • the second time-frequency resource here can be a continuous resource forming a whole block structure on the spectrum, or it can be a distributed resource (ie, non-continuous resource) composed of multiple independent resource blocks, and this application does not limit this.
  • the first time-frequency resource and the second time-frequency resource are both resources on the first time unit, that is, the first time-frequency resource and the second time-frequency resource have the same starting position in the time domain, the same ending position in the time domain, the same time domain range, and different bandwidths.
  • the first time unit here can be one or more symbols, or one or more time slots, but is not limited thereto, and can be a period of any length.
  • the UL subband is used for uplink transmission and the DL subband is used for downlink transmission;
  • the entire CC is used for uplink transmission, that is, all subbands are used for uplink transmission;
  • the entire CC is used for downlink transmission, that is, all subbands are used for downlink transmission.
  • FIG5 includes time-frequency resources corresponding to 5 time slots (slots) including time slot #1 to time slot #5, wherein the time-frequency resources corresponding to time slot #1 are configured to only perform downlink data transmission (DL-only), which can be understood as the third time unit, and the time-frequency resources corresponding to time slot #5 are configured to only perform uplink data transmission (UL-only), which can be understood as the second time unit, and time slot #2, time slot #3 and time slot #4 are all SBFD time slots, and the resources on the DL subbands corresponding to these three time slots can perform DL transmission, and the resources on the UL subbands corresponding to these three time slots can perform UL transmission, which can be understood as the first time unit.
  • DL-only downlink data transmission
  • UL-only uplink data transmission
  • time slot #2, time slot #3 and time slot #4 are all SBFD time slots
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource to be described later are all resources on the first time unit. That is to say, the starting position of the time domain of the above four time-frequency resources is the same, the ending position of the time domain is also the same, and the time domain range of the four is the same (overlapping). In more cases, the above four time-frequency resources are distinguished by bandwidth.
  • the first indication information in the present application indicates the first time-frequency resource, which may be an explicit indication or an implicit indication, or a direct indication or an indirect indication, and the present application does not limit this.
  • the first indication information may include the identification (ID), number, index (index) of the first time-frequency resource, time domain information of the first time-frequency resource (such as the time domain starting position, the time domain ending position, the time domain center position, and duration), frequency domain information of the first time-frequency resource (such as the frequency domain starting position, the frequency domain ending position, the frequency domain center position, bandwidth, and the number of resource blocks (RB)), and any other information that can help the terminal device determine the first time-frequency resource.
  • ID identification
  • index index
  • time domain information of the first time-frequency resource such as the time domain starting position, the time domain ending position, the time domain center position, and duration
  • frequency domain information of the first time-frequency resource such as the frequency domain starting position, the frequency domain ending position, the frequency domain center position, bandwidth, and the number of resource blocks (RB)
  • RB resource blocks
  • the first indication information may be carried in downlink control information (DCI).
  • DCI downlink control information
  • the first indication information may include a field consisting of one or more bits.
  • the field may be an existing field in the DCI or a newly added field. This application does not limit this.
  • the first indication information may include a rate matching indication field (Rate matching indicator) in the DCI.
  • Rate matching indicator rate matching indication field
  • the network device can send a first indication message to the terminal device, and the first indication message can indicate that part of the resources (i.e., the first time-frequency resources) configured for uplink transmission by the terminal device (i.e., the second time-frequency resources) cannot be used for downlink transmission.
  • the terminal device can continue to use the first time-frequency resources for uplink transmission, and the terminal device can use the resources in the second time-frequency resources other than the first time-frequency resources (i.e., the third time-frequency resources) for downlink transmission.
  • the secondary allocation of uplink resources can be achieved, making the use of resources more flexible and reasonable, and the allocation of resources more closely matched with actual business needs, thus avoiding the problem of idle resources wasted due to the terminal device having no data to send, and improving the problem of insufficient downlink transmission resources, thereby improving resource utilization and improving the response speed of the communication system. Rate.
  • the communication method provided by the embodiment of the present application is introduced by taking the content shown in FIG6 as an example.
  • the network device can send a first indication information to the terminal device, and the first indication information indicates that the first time-frequency resource in the resource on the UL sub-band corresponding to time slot #3 (i.e., the first time unit) (i.e., the second time-frequency resource, the resource defined by the dotted box in FIG6) cannot be used for downlink transmission, and the bandwidth of the second time-frequency resource here can account for 100% of the bandwidth of the UL sub-band, and the bandwidth of the first time-frequency resource can account for 50% of the bandwidth of the UL sub-band.
  • time slot #3 i.e., the first time unit
  • the bandwidth of the second time-frequency resource here can account for 100% of the bandwidth of the UL sub-band
  • the bandwidth of the first time-frequency resource can account for 50% of the bandwidth of the UL sub-band.
  • the terminal device can use the resources other than the first time-frequency resource in the second time-frequency resource (i.e., the third time-frequency resource, accounting for the other 50% bandwidth of the UL sub-band) for downlink transmission (DL transmission), and can use the first time-frequency resource for uplink transmission (UL transmission).
  • the rigid division of the time-frequency range of the UL sub-band and the DL sub-band is avoided, so that part of the resources on the UL sub-band can be used for DL transmission, thereby avoiding resource waste and improving the response rate of the communication system.
  • the first time-frequency resource is one of N resources on the first time unit, for example, the N resources are resources pre-configured by the network device for the terminal device, the N resources are of different sizes and include the second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and N is an integer greater than or equal to 2.
  • the value of N can be 3, 4 or 5.
  • Pre-configuring N resources of different sizes for the terminal device can facilitate the network device to indicate.
  • the first indication information only needs to include a small amount of information such as the identifier or index of the first time-frequency resource, which can help the terminal device determine which of the first time-frequency resources it is, thereby saving signaling overhead.
  • These N resources include N-1 fourth time-frequency resources, and the proportion of the N-1 fourth time-frequency resources to the second time-frequency resources is different. Therefore, the network device can determine which of the N resources the first time-frequency resource is based on actual business needs, and indicate it to the terminal device conveniently and efficiently.
  • the N resources are resources on the same time unit and have different sizes, so the starting position of the time domain of the N resources here is the same, and the ending position of the time domain is also the same, that is, the time domain range of the N resources is the same, but the bandwidth is different.
  • the value of N can be 2, and there is only one fourth time-frequency resource at this time.
  • the ratio of the size of the only fourth time-frequency resource to the second time-frequency resource (the ratio is also the bandwidth ratio) can be defined by the network device according to the actual situation.
  • the size of the fourth time-frequency resource is 50% of the size of the second time-frequency resource (that is, the bandwidth of the fourth time-frequency resource accounts for 50% of the bandwidth of the second time-frequency resource).
  • the first indication information can indicate the second time-frequency resource (at this time, the first time-frequency resource is the second time-frequency resource, and the third time-frequency resource accounts for 0% of the second time-frequency resource).
  • the first indication information can indicate the fourth time-frequency resource (at this time, the first time-frequency resource is equal to the fourth time-frequency resource, and the third time-frequency resource accounts for 50% of the second time-frequency resource). That is to say, at this time, the network device can use 0% or 50% of the second time-frequency resource for downlink transmission.
  • the value of N can be 3, in which case there are two fourth time-frequency resources, and the proportions of the second time-frequency resources occupied by these two fourth time-frequency resources are different.
  • the size of the fourth time-frequency resource 1 is 50% of the size of the second time-frequency resource.
  • the size of the fourth time-frequency resource 2 is 0% of the size of the second time-frequency resource (that is, the fourth time-frequency resource 2 does not include any resources at this time and is an empty set).
  • the first indication information can indicate the fourth time-frequency resource 2 (that is, the first time-frequency resource is the fourth time-frequency resource 2 at this time, and the third time-frequency resource accounts for 100% of the second time-frequency resource).
  • the first indication information can indicate the fourth time-frequency resource 1 (that is, the first time-frequency resource is the fourth time-frequency resource 1 at this time, and the third time-frequency resource accounts for 50% of the second time-frequency resource). If downlink transmission is not required at this time, or no additional resources are needed for downlink transmission, the first indication information can indicate the second time-frequency resource (that is, the first time-frequency resource is the second time-frequency resource at this time, and the third time-frequency resource accounts for 0% of the second time-frequency resource). That is to say, at this time, the network device can use 0%, 50% or 100% of the second time-frequency resources for downlink transmission.
  • the aforementioned step 730 can be omitted.
  • the value of N can be 3, in which case there are two fourth time-frequency resources, and the proportions of the second time-frequency resources occupied by these two fourth time-frequency resources are different.
  • the size of the fourth time-frequency resource 1 is 30% of the size of the second time-frequency resource.
  • the size of the fourth time-frequency resource 2 is 60% of the size of the second time-frequency resource.
  • the network device can indicate any one of the three resources according to actual business needs.
  • the network device can use 70%, 40% or 0% of the second time-frequency resource for downlink transmission.
  • the value of N may be 4, in which case there are three fourth time-frequency resources, and the three fourth time-frequency resources occupy the second time-frequency
  • the proportion of resources is different.
  • the size of the fourth time-frequency resource 1 is 25% of the size of the second time-frequency resource.
  • the size of the fourth time-frequency resource 2 is 50% of the size of the second time-frequency resource, and the size of the fourth time-frequency resource 3 is 75% of the size of the second time-frequency resource.
  • the network device can use 75%, 50%, 25% or 0% of the second time-frequency resource for downlink transmission.
  • the system or protocol can define the value of N according to actual conditions.
  • the larger the value of N the more flexible and diverse the instructions of the network equipment, and the greater the selectivity, so that the size of the third time-frequency resource is more closely matched with the actual downlink transmission requirements, which is conducive to saving resources and improving resource utilization, thereby improving the spectrum utilization efficiency of the entire cell.
  • protocol in the embodiments of the present application may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems (such as 6G), and the present application does not limit this.
  • the method 700 further includes:
  • Step 740 The network device sends the configuration information of the N resources to the terminal device.
  • the terminal device receives configuration information of the N resources from the network device.
  • the network device may configure the N resources to the terminal device in a semi-static configuration manner. For example, the network device may send configuration information of the N resources to the terminal device, and the configuration information may be carried in a radio resource control (RRC) message. After receiving the configuration information, the terminal device configures the N resources according to the configuration information.
  • RRC radio resource control
  • the second time-frequency resource may be a time-frequency resource on the UL subband in the aforementioned SBFD system.
  • the second time-frequency resource is a UL subband. That is, the bandwidth of the second time-frequency resource accounts for 100% of the bandwidth of the UL subband.
  • the first time unit may be one or more time slots (or symbols) on the UL subband.
  • the terminal device may assume that all time-frequency resources on the UL subband are second time-frequency resources. At this time, part of the second time-frequency resources may be used for downlink transmission according to the periodic indication of the network device.
  • the first indication information indicates the first time-frequency resource in conjunction with the accompanying drawings.
  • at least one of the N resources is configured through a rate matching pattern (RateMatchPattern), or in other words, at least one of the N resources can be a rate matching pattern resource.
  • a certain resource is a rate matching pattern resource, which is equivalent to the resource being configured through a rate matching pattern.
  • the first time-frequency resource can be indicated with the help of the rate matching indication field in the DCI field. For the sake of ease of understanding, this article first introduces the relevant content of rate matching.
  • the network device can semi-statically configure (for example, through RRC signaling) multiple rate matching pattern resources and up to two (for example, 0, 1 or 2) rate matching pattern groups (RateMatchPatternGroup).
  • Each rate matching pattern group includes several (for example, 1 to 8) rate matching pattern resources. Of course, there may also be several rate matching pattern resources that are not included in any rate matching pattern group.
  • Each rate matching pattern resource has a rate matching pattern identifier (RateMatchPatternId), and each rate matching pattern group may include one or more rate matching pattern resources corresponding to the rate matching pattern identifier.
  • a rate matching pattern group includes a certain rate matching pattern resource, which is equivalent to the rate matching pattern group including the identifier of the rate matching pattern resource.
  • Fig. 8 is a schematic diagram of an example of configuring rate matching pattern resources provided by an embodiment of the present application.
  • the network device can configure 8 rate matching pattern resources (each block in Fig. 8 represents a rate matching pattern resource) and two rate matching pattern groups (i.e., group 1 (group1) and group 2 (group2) in Fig. 8) for the terminal device, each rate matching pattern group contains two rate matching pattern resources, and 4 rate matching pattern resources are not included in any group.
  • FIG9 is a schematic diagram of an example of indicating rate matching pattern resources provided by an embodiment of the present application.
  • a DCI in format 1-1 can be used to indicate to a terminal device which or which rate matching pattern resources need to be reserved for the terminal device.
  • the reserved resources e.g., the indicated first time-frequency resources
  • the resource can be used for uplink transmission.
  • the terminal device can use the resources that do not need to be reserved (e.g., the third time-frequency resources) for downlink transmission.
  • the network device can indicate which resources of the terminal device need to be reserved (i.e., cannot be used for downlink transmission) through the rate matching indication field in the DCI, and the terminal device determines that the rate matching pattern resources included in the rate matching pattern group indicated by the rate matching indication field, as well as the rate matching pattern resources not included in the two rate matching pattern groups group 1 (group1) and group 2 (group2) need to be reserved. According to the current protocol regulations, the terminal device must reserve the rate matching pattern resources that are not included in the rate matching pattern group by default.
  • the network device when the value of the rate matching indication field is 00 or does not contain any value (the field is 0 bits in this case), the network device does not indicate any resources in group 1 (group1) and group 2 (group2). At this time, according to the protocol, the terminal device defaults to the 4 resources outside the group that need to be reserved.
  • the value of the rate matching indication field 10
  • the network device indicates to the terminal device that two resources in group 1 and 4 resources outside the group need to be reserved.
  • the value of the rate matching indication field is 01
  • the network device indicates to the terminal device that two resources in group 2 and 4 resources outside the group need to be reserved.
  • the network device When the value of the rate matching indication field is 11, the network device indicates to the terminal device that two resources in group 1 and two resources in group 2, as well as 4 resources outside the group need to be reserved.
  • the black squares in Figure 9 indicate that the resource needs to be reserved, and the hollow squares indicate that the resource does not need to be reserved.
  • the indication of the aforementioned first time-frequency resource can be achieved in a rate matching manner. That is to say, in an embodiment of the present application, at least one of the aforementioned N resources can be a rate matching pattern resource, for example, part of them is configured as a rate matching pattern resource, or the N resources are all configured as rate matching pattern resources, and the present application does not limit this. In other words, at least one of the aforementioned N resources can be configured through a rate matching pattern, for example, part of them is configured through a rate matching pattern, or the N resources are all configured through a rate matching pattern, and the present application does not limit this.
  • the first indication information may include a rate matching indication field, that is, the network device can indicate the first time-frequency resource with the help of the rate matching indication field.
  • the rate matching indication field may be a field consisting of one or more bits of 0 or 1.
  • the rate matching indication field may be a field consisting of 2, 3 or 4 bits of 0 or 1.
  • the specific length of the rate matching indication field may be defined according to actual needs, and this application does not limit this.
  • FIG10 is a schematic diagram of an example of indicating the first time-frequency resource by rate matching provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of an example of downlink transmission through a third time-frequency resource.
  • the terminal device is pre-configured with two rate matching pattern groups, and two resources of the aforementioned N resources are respectively located in the two rate matching pattern groups, that is, one resource of the aforementioned N resources is included in one of the rate matching pattern groups, and another resource of the N resources is included in another rate matching pattern group.
  • the terminal device is pre-configured with 3 resources (i.e., the value of N is 3), including a second time-frequency resource and two fourth time-frequency resources, and the proportions (bandwidths) of the second time-frequency resources occupied by these two fourth time-frequency resources are different.
  • the bandwidth of the fourth time-frequency resource 1 is 50% of the bandwidth of the second time-frequency resource (50% is an example, and the specific value can be redefined according to actual needs).
  • the bandwidth of the fourth time-frequency resource 2 is 0% of the bandwidth of the second time-frequency resource (i.e., the fourth time-frequency resource 2 does not include any resources at this time, it is an empty set, and the fourth time-frequency resource 2 is not shown in Figure 10).
  • the second time-frequency resource is a UL sub-band, that is, it occupies 100% of the bandwidth of the UL sub-band.
  • the first time unit can be used to characterize the location of the time-frequency resource reserved for the UL sub-band.
  • the fourth time-frequency resource has the same time domain range as the second time-frequency resource, that is, the bandwidth of the fourth time-frequency resource 1 occupies 50% of the bandwidth of the UL sub-band.
  • the fourth time-frequency resource 2 is an empty set, and the configuration information is empty or does not need to be configured.
  • its resource configuration information can be empty or does not need to be configured, and will not be repeated later.
  • the terminal device is also configured with two rate matching pattern groups (i.e., group 1 and group 2), the second time-frequency resource and the fourth time-frequency resource 1 are both rate matching pattern resources, the second time-frequency resource is included in group 1, and the fourth time-frequency resource 1 is included in group 2. Therefore, the first time-frequency resource can be indicated by the rate matching indication field in the DCI, and the first time-frequency resource can be any one of the above three resources.
  • the network device sends a first indication message to the terminal device, and the first indication message includes a rate matching indication field, and the rate matching indication field can be 00 or the field is 0 bits.
  • the terminal device determines that the first time-frequency resource indicated by the network device is the fourth time-frequency resource 2 (that is, the fourth time-frequency resource 2 among N resources is indicated) according to the first indication message.
  • the terminal device determines that the third time-frequency resource occupies 100% bandwidth of the second time-frequency resource (that is, the UL subband), and at this time, 100% bandwidth of the UL subband can be used for DL transmission.
  • the frequency domain range available for DL transmission increases, which is conducive to improving the spectrum efficiency of the network.
  • the network device sends a first indication message to the terminal device, and the first indication message includes a rate matching indication field, and the rate matching indication field can be 01.
  • the terminal device determines that the first time-frequency resource indicated by the network device is the fourth time-frequency resource 1 in group 2 (that is, the fourth time-frequency resource 1 among N resources is indicated) according to the first indication message, so the terminal device does not perform DL transmission on the fourth time-frequency resource 1.
  • the terminal device can send on the fourth time-frequency resource 1. Uplink information.
  • the terminal device further determines that the third time-frequency resource occupies 50% of the bandwidth of the second time-frequency resource (ie, the UL subband), and at this time, 50% of the bandwidth of the UL subband can be used for DL transmission.
  • the frequency domain range available for DL transmission is increased, which is conducive to improving the spectrum efficiency of the network.
  • the network device sends a first indication message to the terminal device, and the first indication message includes a rate matching indication field, and the rate matching indication field can be 10 or 11.
  • the terminal device determines that the first time-frequency resource indicated by the network device is the second time-frequency resource in group 1 (that is, the second time-frequency resource among N resources is indicated) according to the first indication message, so the terminal device does not perform DL transmission on the second time-frequency resource, that is, at this time, all of the second time-frequency resources are not used for DL transmission, and the terminal device can use all of the second time-frequency resources for UL transmission.
  • the third time-frequency resource occupies 0% bandwidth of the UL subband.
  • the terminal device determines that the first time-frequency resource indicated by the network device is the second time-frequency resource in group 1 (that is, the second time-frequency resource among N resources is indicated) and the first time-frequency resource is the fourth time-frequency resource 1 in group 2 (that is, the fourth time-frequency resource 1 in N resources is indicated) according to the first indication information for reservation, and the reserved resources are the resources after the union of the first time-frequency resource and the second time-frequency resource in group 1. Therefore, the terminal device does not perform DL transmission on the second time-frequency resource, that is, at this time, all of the second time-frequency resources are not used for DL transmission, and the terminal device can use all of the second time-frequency resources for UL transmission.
  • the third time-frequency resource occupies 0% bandwidth of the UL sub-band.
  • the terminal device when the first indication information indicates multiple resources of N resource smart poles, the terminal device does not perform DL transmission on the resources corresponding to the union of the multiple resources, which will not be repeated later.
  • the network device may use 0%, 50% or 100% of the second time-frequency resources for DL transmission.
  • Fig. 12 is a schematic diagram of another example of indicating the first time-frequency resource by rate matching provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of another example of downlink transmission by using the third time-frequency resource.
  • the terminal device is pre-configured with three resources (i.e., the value of N is 3), including one second time-frequency resource and two fourth time-frequency resources, and the proportions of the two fourth time-frequency resources to the second time-frequency resource are different.
  • the bandwidth of the fourth time-frequency resource 1 is 30% of the bandwidth of the second time-frequency resource
  • the bandwidth of the fourth time-frequency resource 2 is 60% of the bandwidth of the second time-frequency resource (30% and 60% are examples, and the specific values can be redefined according to actual needs).
  • the second time-frequency resource is a UL sub-band, that is, the bandwidth of the second time-frequency resource accounts for 100% of the bandwidth of the UL sub-band, the bandwidth of the fourth time-frequency resource 1 accounts for 30% of the bandwidth of the UL sub-band, and the bandwidth of the fourth time-frequency resource 2 accounts for 60% of the bandwidth of the UL sub-band.
  • the terminal device is also configured with two rate matching pattern groups (i.e., group 1 and group 2).
  • the second time-frequency resource and the fourth time-frequency resource 1 and the fourth time-frequency resource 2 are all rate matching pattern resources.
  • the fourth time-frequency resource 1 is included in group 1
  • the fourth time-frequency resource 2 is included in group 2
  • the second time-frequency resource is not included in any group. Therefore, the first time-frequency resource can be indicated by the rate matching indication field in the DCI, and the first time-frequency resource can be any one of the above three resources.
  • the network device sends a first indication message to the terminal device, and the first indication message includes a rate matching indication field, and the rate matching indication field can be 10.
  • the terminal device determines that the first time-frequency resource indicated by the network device is the fourth time-frequency resource 1 in group 1 (that is, the fourth time-frequency resource 1 among N resources is indicated) according to the first indication message, so the terminal device does not perform DL transmission on the fourth time-frequency resource 1.
  • the terminal device can perform UL transmission on the fourth time-frequency resource 1.
  • the terminal device further determines that the third time-frequency resource occupies 70% of the bandwidth of the second time-frequency resource (that is, the UL subband), and at this time, 70% of the bandwidth of the UL subband can be used for DL transmission.
  • the network device sends a first indication message to the terminal device, and the first indication message includes a rate matching indication field, and the rate matching indication field can be 01 or 11.
  • the terminal device determines that the first time-frequency resource indicated by the network device is the fourth time-frequency resource 2 in group 2 (that is, the fourth time-frequency resource 2 among N resources is indicated) according to the first indication message, so the terminal device does not perform DL transmission on the fourth time-frequency resource 2.
  • the terminal device can perform UL transmission on the fourth time-frequency resource 2.
  • the terminal device further determines that the third time-frequency resource occupies 40% of the bandwidth of the second time-frequency resource (that is, the UL subband), and at this time, 40% of the bandwidth of the UL subband can be used for DL transmission.
  • the network device sends a first indication message to the terminal device, and the first indication message includes a rate matching indication field.
  • the rate matching indication field can be 00 or the field is 0 bits.
  • the terminal device determines that the first time-frequency resource indicated by the network device is a second time-frequency resource outside the group (that is, the second time-frequency resource among N resources is indicated) according to the first indication message. Therefore, the terminal device does not perform DL transmission on the second time-frequency resource. At this time, the terminal device can perform DL transmission on the second time-frequency resource.
  • the terminal device further determines that the third time-frequency resource occupies 0% bandwidth of the second time-frequency resource (ie, UL sub-band), and at this time uses 0% bandwidth of the UL sub-band for DL transmission.
  • the embodiment of the present application in order to be able to indicate the second time-frequency resource through the rate matching indication field (that is, to indicate that the first time-frequency resource is the second time-frequency resource), the embodiment of the present application can change (update) the current criterion.
  • the current criterion "Rate matching pattern resources not configured in the group, the terminal device must reserve by default” is modified to "Except for the resources on the UL subband, rate matching pattern resources not configured in the group, the terminal device must reserve by default, that is, when the first indication information indicates one or more resources in the fourth time-frequency resources, the second time-frequency resource is not reserved, and when the first indication information indicates that any of the fourth time-frequency resources is not reserved (that is, the first indication information is 00 or 0 bits), the second time-frequency resource is reserved.”
  • the network device may use 0%, 40% or 70% of the second time-frequency resources for downlink transmission.
  • FIG14 is a schematic diagram of another example of indicating the first time-frequency resource by rate matching provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of another example of downlink transmission through a third time-frequency resource.
  • the terminal device is pre-configured with N rate matching pattern groups, and the N resources are respectively located in the N rate matching pattern groups. That is, the aforementioned N resources are included in the N rate matching pattern groups one by one.
  • the terminal device is pre-configured with 4 resources (i.e., the value of N is 4), including 1 second time-frequency resource and 3 fourth time-frequency resources, and the proportions of the 3 fourth time-frequency resources to the second time-frequency resource are different.
  • the bandwidth of the fourth time-frequency resource 1 is 25% of the bandwidth of the second time-frequency resource
  • the bandwidth of the fourth time-frequency resource 2 is 50% of the bandwidth of the second time-frequency resource
  • the fourth time-frequency resource 3 is 75% of the bandwidth of the second time-frequency resource.
  • the time domain range of these 4 resources is the same, the second time-frequency resource is a UL sub-band, that is, the bandwidth of the second time-frequency resource accounts for 100% of the bandwidth of the UL sub-band, the bandwidth of the fourth time-frequency resource 1 accounts for 25% of the bandwidth of the UL sub-band, the bandwidth of the fourth time-frequency resource 2 accounts for 50% of the bandwidth of the UL sub-band, and the bandwidth of the fourth time-frequency resource 3 accounts for 75% of the bandwidth of the UL sub-band.
  • the terminal device is also configured with 4 rate matching pattern groups (i.e., group 1, group 2, group 3, and group 4).
  • the second time-frequency resource and the fourth time-frequency resource 1, the fourth time-frequency resource 2, and the fourth time-frequency resource 3 are all rate matching pattern resources.
  • the fourth time-frequency resource 1 is included in group 1, the fourth time-frequency resource 2 is included in group 2, the fourth time-frequency resource 3 is included in group 3, and the second time-frequency resource is included in group 4. Therefore, the first time-frequency resource can be indicated by the rate matching indication field in the DCI, and the first time-frequency resource can be any one of the above four resources.
  • the rate matching indication field can have N bits, and each bit position is 0 or 1 to indicate one of the resources.
  • the rate matching indication field includes 4 bits, corresponding to the above four resources.
  • the network device sends a first indication message to the terminal device, and the first indication message includes a rate matching indication field, and the rate matching indication field can be 1000.
  • the terminal device determines that the first time-frequency resource indicated by the network device is the fourth time-frequency resource 1 in group 1 (that is, the fourth time-frequency resource 1 among N resources is indicated) according to the first indication message, so the terminal device does not perform DL transmission on the fourth time-frequency resource 1.
  • the terminal device can perform UL transmission on the fourth time-frequency resource 1.
  • the terminal device further determines that the third time-frequency resource occupies 75% of the bandwidth of the second time-frequency resource (that is, the UL subband), and at this time, 75% of the bandwidth of the UL subband can be used for DL transmission.
  • the network device sends a first indication message to the terminal device, and the first indication message includes a rate matching indication field, and the rate matching indication field can be 0100 or 1100.
  • the terminal device determines that the first time-frequency resource indicated by the network device is the fourth time-frequency resource 2 in group 2 (that is, the fourth time-frequency resource 2 among N resources is indicated) according to the first indication message, so the terminal device does not perform DL transmission on the fourth time-frequency resource 2.
  • the terminal device can perform UL transmission on the fourth time-frequency resource 2.
  • the terminal device further determines that the third time-frequency resource occupies 50% of the bandwidth of the second time-frequency resource (that is, the UL subband), and at this time, 50% of the bandwidth of the UL subband can be used for DL transmission.
  • the network device sends the first indication information to the terminal device, and the first indication information includes a rate matching indication field, and the rate matching indication field can be 0010 or 0110 or 1010 or 1110.
  • the terminal device determines that the first time-frequency resource indicated by the network device is the fourth time-frequency resource 3 in group 3 (that is, the fourth time-frequency resource 3 among N resources is indicated) according to the first indication information, so the terminal device does not perform DL transmission on the fourth time-frequency resource 3.
  • the terminal device can perform UL transmission on the fourth time-frequency resource 3.
  • the terminal device further determines that the third time-frequency resource occupies 25% of the bandwidth of the second time-frequency resource (that is, the UL subband), and at this time, 25% of the bandwidth of the UL subband can be used for DL transmission.
  • the network device sends a first indication message to the terminal device, where the first indication message includes a rate matching indication field, and the rate matching indication field can be 0001 or 0011 or 0101 or 0111 or 1001 or 1011 or 1101 Or 1111, at this time, the terminal device determines that the network device indicates the second time-frequency resource in group 4 (that is, the second time-frequency resource in N resources is indicated) according to the first indication information, so the terminal device does not perform DL transmission on the second time-frequency resource. At this time, the terminal device can perform UL transmission on the second time-frequency resource. The terminal device further determines that the third time-frequency resource occupies 0% bandwidth of the second time-frequency resource (that is, UL subband), and at this time, 0% bandwidth of the UL subband is used for DL transmission.
  • the terminal device determines that the third time-frequency resource occupies 0% bandwidth of the second time-frequency resource (that is, UL subband), and at this time, 0% bandwidth of the UL subband is used for DL
  • the network device may use 0%, 25%, 50%, and 75% of the second time-frequency resources for DL transmission.
  • the terminal device is also configured with a fourth time-frequency resource 4, and the size of the fourth time-frequency resource 4 is 0% of the size of the second time-frequency resource (i.e., the fourth time-frequency resource 4 does not include any resources at this time and is an empty set).
  • the terminal device is pre-configured with 5 resources at this time (i.e., the value of N is 5).
  • the fourth time-frequency resource 4 can also be indicated by the rate matching indication field. For example, when the content of the rate matching indication field is 0000, or the field is 0 bits, the terminal device determines that the first time-frequency resource indicated by the network device is the fourth time-frequency resource 4 according to the first indication information.
  • the terminal device determines that the third time-frequency resource occupies 100% bandwidth of the second time-frequency resource (i.e., UL sub-band). At this time, 100% bandwidth of the UL sub-band can be used for DL transmission.
  • the network device may use 0%, 25%, 50%, 75% or 100% of the second time-frequency resources for DL transmission.
  • the terminal device is configured with N resources, which include a second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and one of the fourth time-frequency resources is an empty set.
  • the terminal device can be configured with N-1 rate matching pattern groups, and the N-1 resources except the fourth time-frequency resource which is an empty set can be included in the N-1 rate matching pattern groups one by one.
  • the first time-frequency resource can be indicated with the help of the rate matching indication field, and the first time-frequency resource can be any one of the N resources.
  • the value of N can be 3, 4, 5 or 6, etc.
  • the embodiments shown in the above-mentioned Figures 10 to 15 introduce a solution of configuring at least one of the N resources as a rate matching pattern resource, and then indicating the first time-frequency resource by means of the rate matching indication field in the DCI field.
  • the configuration and indication of the above-mentioned N resources can also be implemented in other ways, such as indicating through other fields, and this application does not limit this.
  • the first indication information includes an index value of the first time-frequency resource
  • the network device can determine which of the N pre-configured resources the first time-frequency resource is by indexing the index value into a value in a predefined table.
  • the terminal device is pre-configured with 5 resources (i.e., the value of N is 5), including 1 second time-frequency resource and 4 fourth time-frequency resources, and the bandwidth ratios of the second time-frequency resource (UL sub-band) occupied by these 4 fourth time-frequency resources are different.
  • the bandwidth of the second time-frequency resource accounts for 100% of the bandwidth of the UL sub-band
  • the bandwidth of the fourth time-frequency resource 1 accounts for 10% of the bandwidth of the UL sub-band
  • the bandwidth of the fourth time-frequency resource 2 accounts for 30% of the bandwidth of the UL sub-band
  • the bandwidth of the fourth time-frequency resource 3 accounts for 70% of the bandwidth of the UL sub-band
  • the bandwidth of the fourth time-frequency resource 4 accounts for 90% of the bandwidth of the UL sub-band.
  • the number of RBs M0 specifically included in each fourth time-frequency resource is N0*Portion rounded up or rounded down, wherein N0 is the number of RBs of the UL sub-band in an SBFD time slot, and Portion is the occupied bandwidth ratio.
  • the starting positions of the frequency domain ranges of the four fourth time-frequency resources may be the same as the starting position of the UL sub-band, or the center frequencies of the frequency domain ranges of the four fourth time-frequency resources may be the same as the center frequency of the UL sub-band.
  • a rate matching portion field may also be added to the DCI, which may have M bits (e.g., 2 bits) and is used to indicate the index value of the first time-frequency resource.
  • the index value can be used to determine which of the N resources the first time-frequency resource is.
  • Table 1 is a table showing the correspondence between the index value of the first time-frequency resource and the fourth time-frequency resource.
  • the terminal device can determine that the first time-frequency resource is the fourth time-frequency resource 1 (occupying 10% of the bandwidth of the UL sub-band) according to the index value, and the terminal device further determines that the third time-frequency resource occupies 90% of the bandwidth of the second time-frequency resource (ie, the UL sub-band). At this time, 90% of the bandwidth of the UL sub-band is used for DL transmission.
  • the terminal device can determine that the first time-frequency resource is the fourth time-frequency resource 2 (occupying 30% of the bandwidth of the UL sub-band) based on the index value.
  • the terminal device further determines that the third time-frequency resource occupies 70% of the bandwidth of the second time-frequency resource (ie, the UL sub-band). At this time, 70% of the bandwidth of the UL sub-band is used for DL transmission.
  • the terminal device can determine that the first time-frequency resource is the fourth time-frequency resource 3 (occupying 70% of the bandwidth of the UL sub-band) based on the index value.
  • the terminal device further determines that the third time-frequency resource occupies 30% of the bandwidth of the second time-frequency resource (ie, the UL sub-band). At this time, 30% of the bandwidth of the UL sub-band is used for DL transmission.
  • the terminal device can determine that the first time-frequency resource is the fourth time-frequency resource 4 (occupying 90% of the bandwidth of the UL sub-band) based on the index value.
  • the terminal device further determines that the third time-frequency resource occupies 10% of the bandwidth of the second time-frequency resource (ie, the UL sub-band). At this time, 10% of the bandwidth of the UL sub-band is used for DL transmission.
  • the embodiments shown in the aforementioned Figures 10 and 11 can be combined.
  • the network device can implement the indication of the reserved bandwidth of 0%, 50% or 100% of the UL sub-band, and by adding a new rate matching part field, the network device can implement the indication of the reserved bandwidth of 10%, 30%, 70%, 90% of the UL sub-band (the reserved bandwidth here is the bandwidth that cannot be used for DL transmission). Therefore, according to the communication method provided in the embodiment of the present application, a total of 3+2M types of reserved bandwidth indications can be implemented.
  • the embodiments shown in Figures 12 and 13 can be combined.
  • the network device can indicate the reserved bandwidth of 0%, 40% or 70% of the UL sub-band, and by adding a new rate matching part field, the network device can indicate the reserved bandwidth of 10%, 30%, 70%, and 90% of the UL sub-band (the reserved bandwidth here is the bandwidth that cannot be used for DL transmission). Therefore, according to the communication method provided in the embodiment of the present application, a total of 3+2M types of reserved bandwidth indications can be achieved.
  • the reserved bandwidth of the UL subband is indicated according to the rate matching indication field (three types of bandwidth indications can be implemented).
  • the reserved bandwidth of the UL subband is indicated according to the rate matching part field (2M types of bandwidth indications can be implemented).
  • the value of the rate matching part field is 10 for indication.
  • the second time-frequency resource (UL sub-band) of 30% bandwidth needs to be reserved, it is indicated by the value of the rate matching part field being 01.
  • the value of the rate matching indication field is 10 for indication.
  • M bits may be added to the rate matching indication field, and the newly added M bits are interpreted as the rate matching part field. In this case, no additional field needs to be added.
  • the indication of the first time-frequency resource may be achieved by adding the aforementioned rate matching indication field and/or rate matching partial field.
  • the first indication information further includes information on the number of RBs included in the first time-frequency resource.
  • the terminal device After receiving the first indication information, the terminal device determines the first time-frequency resource according to the number of RBs indicated by the first indication information and in combination with the preset rules of the system or protocol.
  • the preset rule may be the starting RB of the first time-frequency resource.
  • the RB with the smallest RB index of the second time-frequency resource (UL subband), or the end RB of the first time-frequency resource is the RB with the largest RB index of the second time-frequency resource (UL subband).
  • the terminal device determines the first time-frequency resource according to the first indication information and the preset rule, it can determine the third time-frequency resource through the first time-frequency resource, and receive downlink data sent from the network device on the third time-frequency resource.
  • a new field may be added in the DCI to indicate the number of RBs included in the first time-frequency resource.
  • the first indication information may indicate the first time-frequency resource in the form of a bitmap.
  • a bitmap is usually used to indicate the resource block group (RBG) where the PDSCH is located.
  • a bitmap can also be used to indicate the first time-frequency resource in the second time-frequency resource used for uplink transmission.
  • Figure 16 is a schematic diagram of indicating the first time-frequency resource through a bitmap provided by an embodiment of the present application.
  • the second time-frequency resource may include multiple RBGs, such as RBG#3, RBG#4, RBG#5, and RBG#6 in the figure, and the above four RBGs together constitute the second time-frequency resource in this application.
  • the network device indicates the terminal device in a bitmap manner.
  • the bitmap may be "1110".
  • the bit value of 1 indicates that the RBG corresponding to the bit is used for DL transmission, and the bit value of 0 indicates that the RBG corresponding to the bit is not used for DL transmission. That is, it indicates that the third time-frequency resource includes RBG#3, RBG#4, and RBG#5.
  • the first time-frequency resource composed of these three RBGs can be used for DL transmission, and RBG#6 with a bit value of 0 cannot be used for DL transmission.
  • the network device when the network device indicates PDSCH transmission by means of a bitmap, it can indicate both uplink resources and downlink resources.
  • FIG16 shows an SBFD time slot, which includes RBG#0 to RBG#9.
  • the bitmap indicated by the network device can be "1111110110", indicating that RBG#0 to RBG#2, RBG#3 to RBG#5, RBG#7, and RBG#8 are scheduled for DL transmission, wherein RBG#3 to RBG#5 were originally configured as UL RBGs and are now used for DL transmission.
  • the terminal device cannot receive downlink information on this part of the resources.
  • the embodiment of the present application makes changes to the above criteria (called new criteria).
  • new criteria When the corresponding bit value in the bitmap of the RBG configured as UL is "1", it can be used to transmit PDSCH. At this time, the terminal device will be able to receive downlink information on this part of the resources.
  • the indication information sent by the network device can be used to determine whether the above-mentioned RBG configured as UL is understood according to the old criteria or the new criteria, that is, to determine whether the terminal device can receive downlink information from the above-mentioned resources.
  • the indication here can be an explicit indication or an implicit indication, or a direct indication or an indirect indication, which is not limited in this application.
  • the indication information can be 1 bit carried in the DCI.
  • the implicit indication uses the new criteria to understand the above-mentioned RBG configured as UL. Otherwise, the old criteria are used to understand the above-mentioned RBG configured as UL.
  • the network device may instruct the terminal device through RRC signaling whether to understand the above-mentioned RBG configured as UL according to the old criteria or the new criteria.
  • the system or protocol may adopt the above new criteria by default to understand the above RBG configured as UL, that is, the terminal device can receive downlink information from the above resources.
  • the embodiments shown in the aforementioned Figures 7 to 16 provide a communication method, according to which part of the resources (i.e., the first time-frequency resources) configured as uplink transmissions can be used to transmit downlink information.
  • the resource type of the first time-frequency resources here can be, for example, uplink or flexible.
  • this may conflict with the current standard protocol. According to the current standard protocol, the use of resources whose transmission direction is pre-configured as uplink for downlink transmission is not supported. Table 2 shows the conflict handling criteria related to downlink transmissions in the current protocol standard.
  • Dynamic-D is a DL signal received by the terminal device indicated by DCI.
  • Dynamic-D includes PDSCH transmission indicated by DCI and channel-state information reference signal (CSI-RS) transmission.
  • PDSCH transmission indicated by DCI includes DCI indicating that the terminal device receives PDSCH in multiple time slots, or receives PDSCH in 1 time slot.
  • Semi-U is a time-frequency resource with a symbol format of uplink/transmission direction of uplink configured by the system's high-level signaling (such as TDD-UL-DL-ConfigCommon or TDD-UL-DL-ConfigDedicated).
  • SFI-U is a time-frequency resource with a symbol format of uplink/transmission direction of uplink configured by the slot format indicator (SFI) field information in DCI2-0.
  • valid RO is a valid random access channel occasion (RACH occasion, RO) resource.
  • the terminal device if the terminal device is not configured with TDD-UL-DL-ConfigurationCommon, then in the time slot where the current physical random access channel (PRACH) is located, there is no synchronization broadcast block (synchronization signal/PBCH, SSB) after the RO, and it is at least N gap symbols away from the previous most recent SSB, then the RO is valid;
  • PRACH physical random access channel
  • the RO in the PRACH slot is considered valid if: the RO is configured in a UL symbol or in the time slot where the current PRACH is located, there is no SSB after the RO, and it is at least N gap symbols away from the previous most recent SSB, and at least N gap symbols away from the previous last DL symbol.
  • FIG. 17 is a schematic diagram of a valid RO and its first N gap symbols. As shown in Figure 17, at this time, DL signals cannot be received on the valid RO resources and their first N gap symbols in time slot #2, time slot #3, and time slot #4. In addition, since the terminal device is a half-duplex mode terminal, the resources on the DL subband corresponding to the above resources cannot be used.
  • the embodiments of the present application may modify the rules.
  • the new standard may allow Dynamic-D to be transmitted on resources configured as Semi-U and SFI-U.
  • the PDSCH indicated by the DCI allows DL transmission when the UL subband time slot format is configured as semi-U/SFI-U.
  • valid RO resources and their first N gap symbols that are not used by the terminal device (UE) to send PRACH can be used to transmit DL signals.
  • valid RO resources and their first N gap symbols in time slot #2 and time slot #3 are allowed to be used to transmit DL signals.
  • the terminal device can send PRACH only in the UL-only time slot (i.e., time slot #5).
  • the RO resources may be configured only in the UL-only time slot.
  • the resource configuration of the SBFD system may also include flexible resources and downlink resources.
  • the SBFD system includes at least one UL sub-band, and some resources on the UL sub-band can be configured as flexible. That is to say, the aforementioned second time-frequency resources can also be configured as flexible resources.
  • the terminal device can reserve the indicated resources (i.e., the first time-frequency resources) and not use these resources for DL transmission, but use the resources in the second time-frequency resources other than the first time-frequency resources (i.e., the third time-frequency resources) for DL transmission.
  • the bandwidth to be reserved can be indicated by a scheme similar to that in the aforementioned FIG. 10 and FIG. 11, that is, by using a rate matching indication field.
  • the network device can only select from a few bandwidths. There is less room for choice, the flexibility of reserved bandwidth is limited, and the flexibility of indication is poor. It is easy for the resources actually used for DL transmission (i.e., the third time-frequency resources) to not match the actual demand, resulting in resource waste and low resource utilization, thereby reducing the network's spectrum utilization efficiency.
  • the present application also provides another communication method, which includes:
  • the network device sends first indication information to the terminal device, where the first indication information indicates a first time-frequency resource on a first time unit.
  • the terminal device receives the first indication information from the network device.
  • the terminal device determines a first time-frequency resource based on the first indication information, the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission, the first time-frequency resource is one of N resources on the first time unit, the N resources have different sizes and include a second time-frequency resource and N-1 fourth time-frequency resources, the second time-frequency resource is a flexible resource configured by the terminal device, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and N is an integer greater than or equal to 3.
  • the network device sends downlink information to the terminal device on the third time-frequency resource, which is the resource of the second time-frequency resource minus the first time-frequency resource.
  • the third time-frequency resource is the complement of the first time-frequency resource in the second time-frequency resource.
  • the network device has more options to reasonably indicate the bandwidth specifically reserved by the terminal device, so that a larger proportion of the third time-frequency resources can be used for DL transmission.
  • Resource reservation is more reasonable and accurate, which can improve the flexibility of indicating resource reservation.
  • the size of the third time-frequency resource is more closely matched with the actual DL transmission requirements, which is conducive to saving resources and improving resource utilization, thereby improving the spectrum utilization efficiency of the entire cell.
  • the communication method provided in the embodiment of the present application can reasonably re-allocate flexible resources, so that when the symbol type on the UL sub-band is flexible, the proportion of resources used for DL transmission in the UL sub-band is more flexible and more in line with actual transmission requirements.
  • the value of N may be 3, in which case the N resources are all non-empty resource sets.
  • the value of N may also be 4, 5, 6, or any larger value.
  • the second time-frequency resource is an uplink subband.
  • At least one resource among the N resources is configured through a rate matching pattern.
  • the terminal device is pre-configured with two rate matching pattern groups, and two resources among the N resources are respectively located in the two rate matching pattern groups.
  • the terminal device is pre-configured with N rate matching pattern groups, and the N resources are respectively included in the N rate matching pattern groups.
  • one of the N-1 fourth time-frequency resources is an empty set.
  • the terminal device can be configured with N-1 rate matching pattern groups, and the N-1 resources except the fourth time-frequency resource that is an empty set can be included in the N-1 rate matching pattern groups one by one.
  • the first resource can be indicated with the help of the rate matching indication field, and the first resource can be any one of the N resources.
  • the value of N can be 3, 4, 5 or 6, etc.
  • the first resource may include a symbol where a valid random access channel occasion (RACH occasion, RO) is located and/or N gap symbols before the symbol.
  • RACH occasion a valid random access channel occasion
  • the first indication information includes a rate matching indication field and/or a rate matching part field.
  • the first indication information is carried in the DCI and may include an existing field or a newly added field in the DCI.
  • the first indication information may include an identification (ID), number, index (index) of the first time-frequency resource, time domain information of the first time-frequency resource (e.g., time domain starting position, time domain ending position, time domain center position, duration), frequency domain information of the first time-frequency resource (e.g., frequency domain starting position, frequency domain ending position, frequency domain center position, bandwidth, number of resource blocks (RB)), and any other information that can help the terminal device determine the first time-frequency resource.
  • ID identification
  • index index
  • time domain information of the first time-frequency resource e.g., time domain starting position, time domain ending position, time domain center position, duration
  • frequency domain information of the first time-frequency resource e.g., frequency domain starting position, frequency domain ending position, frequency domain center position, bandwidth, number of resource blocks (RB)
  • RB resource blocks
  • first indication information indicates the first time-frequency resource in this embodiment can refer to the relevant description in the previous embodiment, for example, the relevant content of Figures 12-16 can be directly borrowed, and this embodiment will not be repeated here.
  • FIG18 is a schematic block diagram of a terminal device 1800 provided in an embodiment of the present application. As shown in FIG18 , the terminal device 1800 includes It includes: a receiving unit 1810 and a determining unit 1820.
  • the receiving unit 1810 is configured to receive first indication information from the network device 1800, where the first indication information indicates a first time-frequency resource on a first time unit;
  • the determining unit 1820 is configured to determine the first time-frequency resource according to the first indication information, where the first time-frequency resource is a resource that the terminal device 1800 cannot use for downlink transmission, and the first time-frequency resource belongs to a second time-frequency resource on the first time unit, and the second time-frequency resource is a resource that the terminal device is configured to use for uplink transmission;
  • the receiving unit 1810 is further configured to receive downlink information from the network device on a third time-frequency resource on the first time unit, where the third time-frequency resource is a resource of the second time-frequency resource excluding the first time-frequency resource.
  • the first time-frequency resource is one of N resources on the first time unit, the N resources have different sizes and include the second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and N is an integer greater than or equal to 2.
  • the second time-frequency resource is an uplink subband.
  • At least one resource among the N resources is configured through a rate matching pattern.
  • the terminal device is pre-configured with two rate matching pattern groups, and two resources among the N resources are respectively located in the two rate matching pattern groups.
  • the terminal device is pre-configured with N rate matching pattern groups, and the N resources are respectively included in the N rate matching pattern groups.
  • the terminal device is configured with N resources, the N resources include a second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and one of the fourth time-frequency resources is an empty set.
  • the terminal device can be configured with N-1 rate matching pattern groups, and the N-1 resources of the N resources, except for the fourth time-frequency resource which is an empty set, can be included in the N-1 rate matching pattern groups one by one.
  • the first time-frequency resource can be indicated with the help of the rate matching indication field, and the first time-frequency resource can be any one of the N resources.
  • the value of N can be 3, 4, 5 or 6, etc.
  • the receiving unit 1810 is further configured to receive configuration information of the N resources from the network device.
  • the first time-frequency resource may include a symbol where a valid RO is located and/or N gap symbols before the symbol.
  • the first indication information includes a rate matching indication field and/or a rate matching part field.
  • the first indication information is carried in the DCI and may include an existing field or a newly added field in the DCI.
  • the terminal device 1800 may be a terminal device 1900 in the following figure, wherein the function of the receiving unit 1810 may be implemented by a transceiver 1901 (i.e., a control circuit and an antenna together) of the terminal device 1900, and the function of the determining unit 1820 may be implemented by a processor 1902 of the terminal device 1900.
  • a transceiver 1901 i.e., a control circuit and an antenna together
  • a processor 1902 of the terminal device 1900.
  • the structure of the terminal device 1900 of an embodiment of the present application is described below in conjunction with FIG. 19.
  • FIG19 is a schematic diagram of the structure of a terminal device 1900 in an embodiment of the present application.
  • the terminal device 1900 can be applied to the system shown in FIG1 to perform the functions of the terminal device (UE) in the above method embodiment.
  • FIG19 only shows the main components of the terminal device.
  • the terminal device 1900 includes a processor 1902, a memory, a control circuit, an antenna, and an input-output device.
  • the processor 1902 is mainly used to process the communication protocol and the communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiment.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for conversion between baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna can also be called a transceiver 1901, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input-output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 1902 can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1902 performs baseband processing on the data to be sent and outputs the baseband signal to the RF circuit.
  • the RF circuit performs RF processing on the baseband signal and then sends the RF signal outward through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna and sends the RF signal to the RF circuit.
  • the signal is converted into a baseband signal and the baseband signal is output to a processor, which converts the baseband signal into data and processes the data.
  • FIG. 19 shows only one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiments of the present application.
  • the processor may include a baseband processor and a central processor, the baseband processor is mainly used to process the communication protocol and communication data, and the central processor is mainly used to control the entire terminal device, execute the software program, and process the data of the software program.
  • the processor in Figure 19 may integrate the functions of the baseband processor and the central processor.
  • the baseband processor and the central processor may also be independent processors interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network formats, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor may also be described as a baseband processing circuit or a baseband processing chip.
  • the central processor may also be described as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built into the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • Fig. 20 is a schematic block diagram of a network device 2000 provided in an embodiment of the present application. As shown in Fig. 20 , the network device 2000 includes: a sending unit 2010 .
  • a sending unit 2010 is configured to send first indication information to a terminal device, where the first indication information indicates a first time-frequency resource on a first time unit, where the first time-frequency resource is a resource that the terminal device cannot use for downlink transmission, and the first time-frequency resource belongs to a second time-frequency resource on the first time unit, where the second time-frequency resource is a resource configured by the terminal device for uplink transmission;
  • the sending unit 2010 is further used to send downlink information to the terminal device on a third time-frequency resource on the first time unit, and the third time-frequency resource is a resource in the second time-frequency resource excluding the first time-frequency resource.
  • the first time-frequency resource is one of N resources on the first time unit, the N resources have different sizes and include the second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and N is an integer greater than or equal to 2.
  • the second time-frequency resource is an uplink subband.
  • At least one resource among the N resources is configured through a rate matching pattern.
  • the terminal device is pre-configured with two rate matching pattern groups, and two resources among the N resources are respectively located in the two rate matching pattern groups.
  • the terminal device is pre-configured with N rate matching pattern groups, and the N resources are respectively included in the N rate matching pattern groups.
  • the terminal device is configured with N resources, the N resources include a second time-frequency resource and N-1 fourth time-frequency resources, the N-1 fourth time-frequency resources are all subsets of the second time-frequency resource, and one of the fourth time-frequency resources is an empty set.
  • the terminal device can be configured with N-1 rate matching pattern groups, and the N-1 resources of the N resources, except for the fourth time-frequency resource which is an empty set, can be included in the N-1 rate matching pattern groups one by one.
  • the first time-frequency resource can be indicated with the help of the rate matching indication field, and the first time-frequency resource can be any one of the N resources.
  • the value of N can be 3, 4, 5 or 6, etc.
  • the sending unit 2010 is further configured to send configuration information of the N resources to the terminal device.
  • the first indication information includes a rate matching indication field.
  • the first time-frequency resource may include a symbol where a valid RO is located and/or N gap symbols before the symbol.
  • the first indication information includes a rate matching indication field and/or a rate matching part field.
  • the first indication information is carried in the DCI and may include an existing field or a newly added field in the DCI.
  • the network device 2000 may correspond to the network device in the communication method 700 according to the embodiment of the present application, or a chip configured in the network device.
  • the network device 2000 may include a network device execution unit for executing the communication method 700 in FIG.
  • each unit in the network device 2000 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding process of the communication method 700 in FIG. 7 , and the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the method 700 , and will not be repeated here for the sake of brevity.
  • the network device 2000 may be a base station, a gNB or a TRP, a DU, a CU, a CU-CP (control plane) or a CU-UP (user plane), etc.
  • the sending unit 2010 may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the network device 2000 may also be a chip.
  • the sending unit 2010 may be an input/output circuit or an interface of the chip.
  • the network device 2000 may be an access network device, such as the base station 60 mentioned below, wherein the function of the sending unit 2010 may be implemented by the RRU 601 of the base station 60.
  • the structure of the network device of the embodiment of the present application is introduced below in conjunction with FIG. 21 .
  • FIG. 21 is a schematic diagram of the structure of a network device provided in an embodiment of the present application, such as a schematic diagram of the structure of a base station.
  • the base station 60 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiment.
  • the base station 60 may include one or more radio frequency units, such as a remote radio unit (RRU) 601 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 602.
  • RRU 601 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 6011 and a radio frequency unit 6012.
  • the RRU 601 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending the signaling message described in the above embodiment to the terminal device.
  • the BBU 602 part is mainly used for baseband processing, controlling the base station, etc.
  • the RRU 601 and the BBU 602 may be physically arranged together or physically separated, that is, a distributed base station.
  • the BBU 602 is the control center of the base station, which can also be called a processing unit, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, etc.
  • the BBU (processing unit) 602 can be used to control the base station to execute the operation process of the network device in the above method embodiment.
  • the BBU 602 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network with a single access indication (such as an LTE network), or may respectively support wireless access networks with different access standards (such as an LTE network, a 5G network, or other networks).
  • the BBU 602 also includes a memory 6021 and a processor 6022, and the memory 6021 is used to store necessary instructions and data.
  • the memory 6021 stores the correspondence between the codebook index and the precoding matrix in the above embodiment.
  • the processor 6022 is used to control the base station to perform necessary actions, such as controlling the base station to execute the operation flow of the network device in the above method embodiment.
  • the memory 6021 and the processor 6022 may serve one or more boards. That is, a memory and a processor may be separately set on each board. It is also possible that multiple boards share the same memory and processor. In addition, necessary circuits may be set on each board.
  • processors in the embodiments of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application-specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product comprising:
  • the computer program code when the computer program code is run on a computer, enables the computer to execute the method of the embodiment shown in FIG. 7 .
  • the present application also provides a computer-readable medium, which stores a program code.
  • the program code runs on a computer, the computer executes the method of the embodiment shown in Figure 7.
  • the present application also provides a system, which includes one or more terminal devices and one or more network devices mentioned above.
  • the above embodiments can be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above embodiments can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server or data center that contains one or more available media sets.
  • the available medium can be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid-state hard disk.
  • "indication” may include direct indication and indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain information (such as the "indication information" in the foregoing text) is called information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the index of the information to be indicated.
  • the information to be indicated can also be indirectly indicated by indicating other information, wherein there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while the other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be achieved by means of the arrangement order of each information agreed in advance (such as specified by the protocol), thereby reducing the indication overhead to a certain extent.
  • the “communication protocol” involved in the embodiments of the present application may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, and the present application does not limit this.
  • At least one means one or more, and “more than one” means two or more.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or can be Integrate into another system, or some features can be ignored, or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interface, device or unit, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及通信装置,所述方法包括:终端设备接收来自网络设备的第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源;所述终端设备根据所述第一指示信息确定所述第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置用于上行传输的资源;所述终端设备在所述第一时间单元上的第三时频资源上接收来自所述网络设备的下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。本申请提供的通信方法能够提高资源的利用率,并且能够改善通信系统的响应速率。

Description

通信方法及通信装置
本申请要求于2022年09月30日提交国家知识产权局、申请号为202211225617.4、申请名称为“通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
在时分双工(time division duplexing,TDD)系统中,通常是下行链路(downlink,DL)占据了主要的时域资源,这造成了DL和上行链路(uplink,UL)之间的覆盖不平衡。针对TDD系统中上行覆盖较差以及时延较大的问题,最新提出了子带全双工(subband fullduplex,SBFD)的技术方案。在SBFD方案中,一个时隙上的频域资源包括上行资源和下行资源。例如,SBFD系统将一个分量载波(component carrier,CC)分为多个子带,该多个子带中包括至少一个上行子带(UL子带)和至少一个下行子带(DL子带),分别用于传输上行信号和下行信号。
对于UL子带上的资源,当终端设备没有UL数据需要传输时,这部分资源将会被闲置,这将造成一定程度的资源浪费。而如果UL数据比较小,无法占用全部的UL子带时,UL子带中的一部分资源也会被浪费。此外,如果此时网络设备具有较多DL数据需要传输,可能又会出现无资源可用或者资源不足的情况。因此,当前对DL子带和UL子带的频域范围进行硬性划分的模式将会降低SBFD系统的资源利用率,并会降低通信系统的响应速率。
发明内容
本申请实施例提供一种通信方法及通信装置,能够提高资源的利用率,并且能够改善通信系统的响应速率。
第一方面,提供了一种通信方法,包括:终端设备接收来自网络设备的第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源;所述终端设备根据所述第一指示信息确定所述第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置用于上行传输的资源;所述终端设备在所述第一时间单元上的第三时频资源上接收来自所述网络设备的下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
根据本申请实施例提供的通信方法,网络设备能够向终端设备发送第一指示信息,该第一指示信息能够指示终端设备被配置用于上行传输的资源(即第二时频资源)中的部分资源(即第一时频资源)不能用于下行传输,此时终端设备能够继续使用第一时频资源来进行上行传输,而终端设备可以使用第二时频资源中除了第一时频资源以外的资源(即第三时频资源)来进行下行传输。进而能够实现对上行资源的二次分配,使得资源的使用更加灵活并且合理,资源的分配与实际的业务需求的更加匹配,避免了终端设备无数据可发送而造成资源闲置浪费的问题,也能够改善下行传输资源不够使用的问题,由此能够提高资源的利用率,并且能够改善通信系统的响应速率。
第一种情况下,第一时频资源属于第二时频资源,可以是第一时频资源等于第二时频资源,即第一时频资源和第二时频资源完全相同。此时,在第一指示信息的指示下,第二时频资源中的所有资源均不能被用来进行下行传输(第三时频资源为空集)。
第二种情况下,第一时频资源属于第二时频资源,可以是第一时频资源是第二时频资源的非空真子集(nonvoid proper subset),此时,在第一指示信息的指示下,第二时频资源中的第一时频资源不能被用来进行下行传输,而第二时频资源中除了第一时频资源以外的资源(即第三时频资源)能够被用来进行下行传输。
第三种情况下,第一时频资源属于第二时频资源,第一时频资源可以是空集(空集为任意集合的子集),即第一时频资源不包括任何资源,此时,在第一指示信息的指示下,第二时频资源中的所有资源均能够被用于下行传输(此时第三时频资源等于第二时频资源)。
可选地,网络设备向终端设备发送用于指示第一时频资源的第一指示信息,第一时频资源为终端设备不能用于下行传输的资源,一些情况下,终端设备能够使用这部分资源(即第一时频资源)来进行上行传输,例如发送PUSCH和/或PUCCH。
可选地,这里的第二时频资源可以是在图谱上形成一整块结构的连续性资源,也可以是由多个独立的资源块构成的分布式资源(即非连续性资源),本申请对此不做限定。
这里的第一时频资源、第二时频资源均为第一时间单元上的资源,即第一时频资源与第二时频资源的时域的起始位置相同,时域的结束位置也相同,二者的时域范围相同,带宽不同。例如,这里的第一时间单元可以是一个或者多个符号,也可以是一个或者多个时隙,但不限于此,可以是任意长度的一段时长。
可选地,对于SBFD系统,在第一时间单元,UL子带用于上行传输,DL子带用于下行传输;在第二时间单元,整个CC均用于上行传输,即所有子带均用于上行传输;在第三时间单元,整个CC均用于下行传输,即所有子带均用于下行传输。具体地,图5中共包括时隙#1~时隙#5在内的5个时隙(slot)对应的时频资源,其中,时隙#1对应的时频资源被配置成仅能进行下行数据传输(DL-only),可理解为第三时间单元,时隙#5对应的时频资源被配置成仅能进行上行数据传输(UL-only),可理解为第二时间单元,而时隙#2、时隙#3以及时隙#4均为SBFD时隙,在这三个时隙对应的DL子带上的资源能够进行DL传输,在这三个时隙对应的UL子带上的资源能够进行UL传输,可理解为第一时间单元。
可选地,本申请中的第一指示信息指示第一时频资源,可以是显示指示或者隐式指示,也可以是直接指示或者间接指示,本申请对此不作限定。
例如,第一指示信息可以包括第一时频资源的标识(identification,ID)、编号、索引(index)、第一时频资源的时域信息(例如时域起始位置、时域结束位置、时域中心位置、时长)、第一时频资源的频域信息(例如频域起始位置、频域结束位置、频域中心位置、带宽、资源块(resource block,RB)个数)等任意能够帮助终端设备确定出该第一时频资源的信息。
可选地,第一指示信息可以被携带于下行控制信息(downlink control information,DCI)中,第一指示信息可以包括一个或者多个比特(bit)组成的字段,该字段例如可以是DCI中的已有字段,也可以是新增字段,本申请对此不作限定。
例如,第一指示信息可以包括DCI中的速率匹配指示字段(Rate matching indicator)。
在一种可能的实现方式中,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
预先给终端设备配置N个大小各不相同的资源,能够方便网络设备进行指示,此时第一指示信息中仅需要包括第一时频资源的标识或者索引等少部分信息,就能够帮助终端设备确定出第一时频资源具体是其中的哪一个,从而有利于节约信令开销。这N个资源中包括N-1个第四时频资源,并且N-1个第四时频资源所占第二时频资源的比例各不相同,因此网络设备可以根据实际的业务需求确定第一时频资源为这N个资源中的哪一个,并且方便高效的指示给终端设备。
在一种可能的实现方式中,所述第二时频资源的频域范围为一个上行子带。即第二时频资源占上行子带的100%带宽。
在一种可能的实现方式中,所述N个资源中的至少一个资源通过速率匹配图样配置。
在一种可能的实现方式中,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
在一种可能的实现方式中,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别包含于所述N个速率匹配图样组内。
在一种可能的实现方式中,终端设备被配置有N个资源,该N个资源包括一个第二时频资源和N-1个第四时频资源,N-1个第四时频资源均为所述第二时频资源的子集,并且其中一个第四 时频资源为空集。此时终端设备可以被配置N-1个速率匹配图样组,N个资源中除了为空集的那个第四时频资源以外的N-1个资源,可以一一对应的被包含于N-1个速率匹配图样组内。此时可以借助于速率匹配指示字段来对第一时频资源进行指示,第一时频资源可以是这N个资源中的任意一个。例如,N的值可以为3,4,5或6等。
在一种可能的实现方式中,所述终端设备接收来自网络设备的第一指示信息之前,所述方法还包括:所述终端设备接收来自所述网络设备的所述N个资源的配置信息。
网络设备可以通过半静态配置的方式给终端设备配置该N个资源。例如网络设备可以向终端设备发送该N个资源的配置信息,该配置信息可以携带于无线资源控制(radio resource control,RRC)消息中,终端设备收到该配置信息以后,根据该配置信息配置该N个资源。
在一种可能的实现方式中,所述第一时频资源可以包括有效的RO所在的符号和/或该符号之前的Ngap个符号。
在一种可能的实现方式中,所述第一指示信息包括速率匹配指示字段和/或速率匹配部分字段。
在一种可能的实现方式中,所述第一指示信息被携带于DCI中,可以包括DCI中的已有字段或者新增字段。
第二方面,提供了一种通信方法包括:包括:网络设备向终端设备发送第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置的用于上行传输的资源;所述网络设备在所述第一时间单元上的第三时频资源上向所述终端设备发送下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
在一种可能的实现方式中,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
在一种可能的实现方式中,所述第二时频资源的频域范围为一个上行子带。
在一种可能的实现方式中,所述N个资源中的至少一个资源通过速率匹配图样配置。
在一种可能的实现方式中,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
在一种可能的实现方式中,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别位于所述N个速率匹配图样组内。
第三方面,提供了一种终端设备,包括接收单元,用于接收来自网络设备的第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源;确定单元,用于根据所述第一指示信息确定所述第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置用于上行传输的资源;所述接收单元,还用于在所述第一时间单元上的第三时频资源上接收来自所述网络设备的下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
在一种可能的实现方式中,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
在一种可能的实现方式中,所述第二时频资源的频域范围为一个上行子带。
在一种可能的实现方式中,所述N个资源中的至少一个资源通过速率匹配图样配置。
在一种可能的实现方式中,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
在一种可能的实现方式中,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别包含于所述N个速率匹配图样组内。
第四方面,提供了一种网络设备,包括:发送单元,用于向终端设备发送第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频 资源为所述终端设备被配置的用于上行传输的资源;所述发送单元,还用于在所述第一时间单元上的第三时频资源上向所述终端设备发送下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
在一种可能的实现方式中,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
在一种可能的实现方式中,所述第二时频资源的频域范围为一个上行子带。
在一种可能的实现方式中,所述N个资源中的至少一个资源通过速率匹配图样配置。
在一种可能的实现方式中,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
在一种可能的实现方式中,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别包含于所述N个速率匹配图样组内。
第五方面,本申请实施例提供一种通信装置。该通信装置可以为终端设备,或者为设置在终端设备中的芯片。该通信装置包括:处理器、存储器和收发器;
收发器用于进行消息的接收和发送;
存储器用于存储指令;
处理器用于执行存储器存储的指令,当处理器执行存储器存储的指令时,使通信装置执行前述第一方面中的任意一种实现方式所执行的方法。
第六方面,本申请实施例提供一种通信装置。该通信装置可以为网络设备,或者为设置在网络设备中的芯片。该通信装置包括:处理器、存储器和收发器;
收发器用于进行消息的接收和发送;
存储器用于存储指令;
处理器用于执行存储器存储的指令,当处理器执行存储器存储的指令时,使通信装置执行前述第二方面中的任意一种实现方式所执行的方法。
第七方面,提供了一种终端设备,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现前述第一方面中的任意一种实现方式所执行的方法。
可选地,终端设备还包括该存储器。
第八方面,提供了一种网络设备,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现第二方面中的任意一种实现方式所执行的方法。
可选地,终端设备还包括该存储器。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第二方面中的任意一种实现方式所执行的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请对此不作具体限定。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第二方面中的任意一种实现方式所执行的方法。
第十一方面,提供了一种芯片系统,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行使得计算机执行上述第一方面或第二方面中的任意一种实现方式所执行的方法。
第十二方面,提供了一种通信系统,该通信系统包括上述第三方面或第七方面提供的终端设备、第四方面或第八方面提供的网络设备中的至少一种。
第十三方面,提供了一种通信方法,包括:网络设备发送第一指示信息,终端设备接收来第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源;终端设备根据所述第一指示信息确定所述第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所 述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置用于上行传输的资源;网络设备在第一时间单元上的第三时频资源上发送下行信息,终端设备在所述第一时间单元上的第三时频资源上接收下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
附图说明
图1示出了适用于本申请实施例的通信系统的示意图。
图2是本申请实施例提供的TDD系统资源配置的一例的示意图。
图3是本申请实施例提供的SBFD系统资源配置的一例的示意图。
图4是本申请实施例提供的SFFD系统资源配置的一例的示意图。
图5是本申请实施例提供的SBFD系统资源配置的另一例的示意图。
图6是本申请实施例提供的SBFD系统资源配置的再一例的示意图。
图7是本申请提供的通信方法的一例的示意性流程图。
图8是本申请实施例提供的配置速率匹配图样资源的一例的示意图。
图9是本申请实施例提供的对速率匹配图样资源进行指示的一例的示意图。
图10是本申请提供的通过速率匹配来对第一时频资源进行指示的一例的示意图。
图11通过第三时频资源进行下行传输的一例的示意图。
图12是本申请提供的通过速率匹配来对第一时频资源进行指示的另一例的示意图。
图13通过第三时频资源进行下行传输的另一例的示意图。
图14是本申请提供的通过速率匹配来对第一时频资源进行指示的再一例的示意图。
图15通过第三时频资源进行下行传输的再一例的示意图。
图16是本申请实施例提供的通过位图来对第一时频资源进行指示的示意图。
图17是有效的RO及其前Ngap个符号的示意图。
图18是本申请实施例提供的终端设备的示意性框图。
图19是本申请实施例提供的终端设备的结构示意图。
图20是本申请实施例提供的网络设备的示意性框图。
图21是本申请实施例提供的网络设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、子带全双工(subband fullduplex,SBFD)系统、同频全双工(single frequency fullduplex,SFFD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统、新无线接入技术(new radio access technology,NR),及未来的通信系统(如第六代(6th generation,6G)通信系统)等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信系统的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120和终端设备130。网络设备110与终端设备120、终端设备130可通过无线链路通信。各通信设备,如网络设备110、终端设备120或终端设备130,可以配置多个天线,该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包 括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备110与终端设备120、终端设备130可通过多天线技术通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved NodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
应理解,上述内容仅仅为本申请所涉及的通信系统的一些示例,本申请提供的通信方法及通信装置所应用的通信系统可以包括但不限于上述通信系统。为便于理解本申请实施例,首先对本申请中涉及到的相关技术内容作简单说明。
5G新空口(New Radio,NR)无线通信系统部署在中高频段,通过使用大带宽来实现高数据速率和低延迟。在时分双工(time division duplexing,TDD)系统中,通常是下行链路(downlink,DL)占据了主要的时域资源,这造成了DL和上行链路(uplink,UL)之间的覆盖不平衡。图2是本申请实施例提供的TDD系统中资源配置的一例的示意图,如图2所示,DL所占的时域资源要明显多于UL,相比于频分双工(frequency division duplexing,FDD)系统,TDD系统上行的覆盖较差,时延较大。
针对TDD系统中上行覆盖及时延的问题,R18标准中提出了子带全双工(subband fullduplex,SBFD)及同频全双工(single frequency fullduplex,SFFD)的方案,图3是本申请实施例提供的SBFD系统资源配置的一例的示意图,图4是本申请实施例提供的SFFD系统资源配置的一例的示意图。如图3所示,在SBFD方案中,一个时隙上的频域资源包括上行资源和下行资源。例如,SBFD系统将一个分量载波(component carrier,CC)分为多个子带,该多个子带中包括至少一个上行子带(UL子带)和至少一个下行子带(DL子带),分别用于传输上行信号和下行信号。作为一种典型的SBFD方案,每个CC可以包括3个子带,在频域上位于中间位置的子带为上行子带(UL子带),上下2个子带为下行子带(DL子带)。如图4所示,在SFFD方案中,在整个 CC上可实现在一个符号(symbol)上的同时发送和接收。可以认为,在SBFD系统中,上行、下行采用不同的频域资源(子带),在SFFD系统中,上行、下行采用相同的频域资源。本申请实施例提供的技术方案主要涉及SBFD系统。
目前,在针对R18标准的会议讨论中,大多数参会者支持采用“网络设备侧子带全双工,终端设备侧半双工”的技术研究路线。终端设备半双工指的是终端设备在一个符号上只能接收或发送,不可同时接收或发送。在这种方案下,终端设备可用的上行传输资源增加,相对于传统的TDD系统可以有效提升UL的覆盖,降低UL的时延。
如图1所示,网络设备110可以具有至少一个SBFD小区,终端设备120与终端设备130均位于该SBFD小区内,终端设备120与终端设备130可以均为半双工模式的终端设备,某一时刻下,终端设备120可以通过UL向网络设备110发送数据,而终端设备130可以通过DL接收来自网络设备110的数据。
5G NR中,在传统的TDD系统中一个符号的方向(类型)可配置为上行、下行或灵活(flexible)。一个符号的方向是针对整个CC配置的。而在SBFD系统中,在一个符号上,不同的子带的传输方向可以不同,即有的子带为上行,有的子带为下行。此时,1个CC内的不同子带的符号方向存在差异。例如,在同一个符号上,子带1上的符号方向配置为下行,子带2上的符号方向配置为上行,终端设备可以在子带2的符号上发送上行信号。
SBFD系统包括UL子带和DL子带,UL子带通常仅用于上行数据传输,DL子带通常仅用于下行数据传输。在DL传输的过程中,网络设备在进行类型1(Type 1)的物理下行共享信道(physical downlink shared channel,PDSCH)的资源分配时,可以通过资源预留的方式避开不可用资源,使DL传输所占用的时频资源和UL子带不重叠。图5是本申请实施例提供的SBFD系统资源配置的另一例的示意图,如图5所示,DL传输需避开UL子带所在时频资源。
具体地,图5中共包括时隙#1~时隙#5在内的5个时隙(slot)对应的时频资源,其中,时隙#1对应的时频资源被配置成仅能进行下行数据传输(DL-only),时隙#5对应的时频资源被配置成仅能进行上行数据传输(UL-only),而时隙#2、时隙#3以及时隙#4均为SBFD时隙,在这三个时隙对应的DL子带上的资源能够进行DL传输,在这三个时隙对应的UL子带上的资源能够进行UL传输。在进行PDSCH的资源分配时,应当避开UL子带所在的时频资源,例如,DL数据的传输不应占用时隙#2、时隙#3以及时隙#4对应的UL子带上的资源(即图5中通过斜线表示的UL子带资源),即使此时上述资源并未用于UL传输(即处于空闲状态)。
结合前述分析可知,对于UL子带上的资源,当终端设备没有UL数据需要传输时,这部分资源将会被闲置,这将造成一定程度的资源浪费。而如果UL数据比较小,无法占用全部的UL子带时,UL子带中的一部分资源也会被浪费。此外,如果此时网络设备具有较多DL数据需要传输,可能又会出现无资源可用或者资源不足的情况。因此,当前对DL子带和UL子带的频域范围进行硬性划分的模式将会降低SBFD系统的资源利用率,并会降低通信系统的响应速率。
针对上述问题,本申请实施例提供了一种通信方法,通过该通信方法能够对上行资源进行合理的二次分配,使得UL子带上的部分资源能够被用来进行DL传输,即DL调度可以使用UL子带上的资源,由此能够避免资源浪费,提高资源的利用率,并且能够改善通信系统的响应速率。
图6是本申请实施例提供的SBFD系统资源配置的再一例的示意图,以图6为例,根据本申请实施例提供的通信方法,DL传输可以使用UL子带所在的时频资源(该时频资源的资源类型通常被配置为上行,其中部分资源还可能被配置成灵活),仅需避开UL传输所在的时频资源即可,即未用于UL传输的UL资源可以被用于DL传输。例如,图6中的时隙#2对应的UL子带上的资源的全部可以被用来进行DL传输,而时隙#3对应的UL子带上的部分资源可以被用来进行DL传输。此时,DL传输可用的频域范围增加,有利于提升网络的频谱效率,并且有利于提升系统的响应速率,使得资源的分配以及使用更加合理。
下面结合附图介绍本申请实施例提供的通信方法,实施例中的网络设备可以是图1中的网络设备110,终端设备可以是图1中的终端设备120或者终端设备130。
图7是本申请提供的通信方法700的示意性流程图。以下,结合图7阐述本申请实施例提供的通信方法700,该方法700包括:
步骤710,网络设备向终端设备发送第一指示信息,第一指示信息指示第一时间单元上的第一时频资源。
相应地,在步骤710中,终端设备接收来自网络设备的第一指示信息。
步骤720,终端设备根据第一指示信息确定第一时频资源,第一时频资源为终端设备不能用于下行传输的资源,第一时频资源属于第一时间单元上的第二时频资源,第二时频资源为终端设备被配置用于上行传输的资源,例如实在前述在UL子带上的资源。
步骤730,网络设备在第三时频资源上向终端设备发送下行信息,第三时频资源为第二时频资源中除去第一时频资源的资源。也就是说,第三时频资源为第一时频资源在第二时频资源中的补集。
相应地,在步骤730中,终端设备在第三时频资源上接收来自网络设备的下行信息。
本申请实施例中的终端设备和网络设备可以是属于前述SBFD系统中的通信设备,也可以是属于SFFD系统、TDD系统、FDD系统中的通信设备,或者是属于其他任意系统中的通信设备,本申请对此并不限定。本申请实施例中的网络设备可以是半双工模式的终端设备,还可以是全双工模式的终端设备,本申请对此并不限定。
进一步地,网络设备可以给终端设备预先配置第二时频资源,以满足终端设备与网络设备的通信需求。该第二时频资源可以是被配置用于上行传输的资源,终端设备可以在第二时频资源上向网络设备发送上行数据,例如终端设备可以在第二时频资源上向网络设备发送物理上行共享信道(physical uplink shared channel,PUSCH)和/或物理上行控制信道(physical uplink control channel,PUCCH)。
第二时频资源为终端设备被配置用于上行传输的资源,一些情况下,第二时频资源中的部分或者全部资源还能够被用来进行下行传输。例如,第二时频资源还能够被用来传输PDSCH和/或物理下行控制信道(physical downlink control channel,PDCCH)。因此,网络设备需要对终端设备作进一步的指示,告知终端设备第二时频资源中哪些资源不能够被用来进行下行传输,这部分资源即第一时频资源。而第二时频资源中除了第一时频资源以外的资源(即第三时频资源),根据系统或者协议的规定,或者通过网络设备和终端设备的约定,终端设备可以使用第三时频资源来进行下行传输。
网络设备向终端设备发送用于指示第一时频资源的第一指示信息,终端设备能够根据第一指示信息确定第一时频资源。第一时频资源为终端设备不能用于下行传输的资源,并且第一时频资源属于第二时频资源,即第一时频资源可以是第二时频资源的子集(subset)。也就是说,本申请实施例中的第一指示信息指示的是第二时频资源中不能用于下行传输的资源,除此之外,根据系统或者协议的规定,或者通过网络设备和终端设备的约定,终端设备可以进一步确定第二时频资源中除了第一时频资源以外的资源(即第一时频资源位于第二时频资源内的补集,也就是第三时频资源)能够被用来进行下行传输,终端设备能够在第三时频资源上接收来自网络设备的下行信息。
第一种情况下,第一时频资源属于第二时频资源,可以是第一时频资源等于第二时频资源,即第一时频资源和第二时频资源完全相同。此时,在第一指示信息的指示下,第二时频资源中的所有资源均不能被用来进行下行传输(第三时频资源为空集)。
第二种情况下,第一时频资源属于第二时频资源,可以是第一时频资源是第二时频资源的非空真子集(nonvoid proper subset),此时,在第一指示信息的指示下,第二时频资源中的第一时频资源不能被用来进行下行传输,而第二时频资源中除了第一时频资源以外的资源(即第三时频资源)能够被用来进行下行传输。
第三种情况下,第一时频资源属于第二时频资源,第一时频资源可以是空集(空集为任意集合的子集),即第一时频资源不包括任何资源,此时,在第一指示信息的指示下,第二时频资源中的所有资源均能够被用于下行传输(此时第三时频资源等于第二时频资源)。
例如,第二时频资源为{资源#1,资源#2,资源#3},在第一种情况下,第一时频资源也为{资源#1,资源#2,资源#3},此时,在第一指示信息的指示下,终端设备不能使用上述资源#1,资源#2,资源#3来进行下行传输。在第二种情况下,第一时频资源为{资源#1,资源#2},此时,在第 一指示信息的指示下,终端设备不能使用上述资源#1和资源#2来进行下行传输,而可以使用资源#3来进行下行传输。在第三种情况下,第一时频资源为空集{},此时,在第一指示信息的指示下,终端设备可以使用资源#1、资源#2和资源#3来进行下行传输。
可选地,网络设备向终端设备发送用于指示第一时频资源的第一指示信息,第一时频资源为终端设备不能用于下行传输的资源,一些情况下,终端设备能够使用这部分资源(即第一时频资源)来进行上行传输,例如发送PUSCH和/或PUCCH。
此时,根据系统或者协议的规定,或者通过网络设备和终端设备的约定,在接收到第一指示信息以后,终端设备可以进一步确定可以使用第一时频资源来进行上行传输。也就是说,对于本身被配置成用来上行传输的第二时频资源,对于其中被第一指示信息进一步指示到的第一时频资源,终端设备确定能够继续用来进行上行传输,而第二时频资源中除了第一时频资源以外的资源(即未被指示到的第三时频资源)能够被用来进行下行传输。
可选地,这里的第二时频资源可以是在图谱上形成一整块结构的连续性资源,也可以是由多个独立的资源块构成的分布式资源(即非连续性资源),本申请对此不做限定。
这里的第一时频资源、第二时频资源均为第一时间单元上的资源,即第一时频资源与第二时频资源的时域的起始位置相同,时域的结束位置也相同,二者的时域范围相同,带宽不同。例如,这里的第一时间单元可以是一个或者多个符号,也可以是一个或者多个时隙,但不限于此,可以是任意长度的一段时长。
可选地,对于SBFD系统,在第一时间单元,UL子带用于上行传输,DL子带用于下行传输;在第二时间单元,整个CC均用于上行传输,即所有子带均用于上行传输;在第三时间单元,整个CC均用于下行传输,即所有子带均用于下行传输。具体地,图5中共包括时隙#1~时隙#5在内的5个时隙(slot)对应的时频资源,其中,时隙#1对应的时频资源被配置成仅能进行下行数据传输(DL-only),可理解为第三时间单元,时隙#5对应的时频资源被配置成仅能进行上行数据传输(UL-only),可理解为第二时间单元,而时隙#2、时隙#3以及时隙#4均为SBFD时隙,在这三个时隙对应的DL子带上的资源能够进行DL传输,在这三个时隙对应的UL子带上的资源能够进行UL传输,可理解为第一时间单元。
在本申请的描述中,第一时频资源、第二时频资源、第三时频资源以及后文中将出现的第四时频资源均为第一时间单元上的资源。也就是说,上述四个时频资源的时域的起始位置相同,时域的结束位置也相同,四者的时域范围相同(重叠)。更多情况下,上述四个时频资源通过带宽加以区分。
可选地,本申请中的第一指示信息指示第一时频资源,可以是显示指示或者隐式指示,也可以是直接指示或者间接指示,本申请对此不作限定。
例如,第一指示信息可以包括第一时频资源的标识(identification,ID)、编号、索引(index)、第一时频资源的时域信息(例如时域起始位置、时域结束位置、时域中心位置、时长)、第一时频资源的频域信息(例如频域起始位置、频域结束位置、频域中心位置、带宽、资源块(resource block,RB)个数)等任意能够帮助终端设备确定出该第一时频资源的信息。
可选地,第一指示信息可以被携带于下行控制信息(downlink control information,DCI)中,第一指示信息可以包括一个或者多个比特(bit)组成的字段,该字段例如可以是DCI中的已有字段,也可以是新增字段,本申请对此不作限定。
例如,第一指示信息可以包括DCI中的速率匹配指示字段(Rate matching indicator),下文将对如何通过速率匹配指示字段来指示第一时频资源作进一步介绍。
根据本申请实施例提供的通信方法,网络设备能够向终端设备发送第一指示信息,该第一指示信息能够指示终端设备被配置用于上行传输的资源(即第二时频资源)中的部分资源(即第一时频资源)不能用于下行传输,此时终端设备能够继续使用第一时频资源来进行上行传输,而终端设备可以使用第二时频资源中除了第一时频资源以外的资源(即第三时频资源)来进行下行传输。进而能够实现对上行资源的二次分配,使得资源的使用更加灵活并且合理,资源的分配与实际的业务需求的更加匹配,避免了终端设备无数据可发送而造成资源闲置浪费的问题,也能够改善下行传输资源不够使用的问题,由此能够提高资源的利用率,并且能够改善通信系统的响应速 率。
以图6所示内容为例对本申请实施例提供的通信方法进行介绍。如图6所示,根据本申请实施例提供的通信方法,网络设备可以向终端设备发送第一指示信息,第一指示信息指示时隙#3(即第一时间单元)对应的UL子带上的资源(即第二时频资源,图6中虚线方框所限定出的资源)中的第一时频资源不能够被用来进行下行传输,这里的第二时频资源的带宽可以占UL子带的100%带宽,而第一时频资源的带宽可以占UL子带的50%带宽。此时终端设备可以使用第二时频资源中除了第一时频资源以外的资源(即第三时频资源,占UL子带另外的50%带宽)来进行下行传输(DL传输),并且可以使用第一时频资源进行上行传输(UL传输)。由此避免了UL子带和DL子带时频范围的硬性划分,使得UL子带上的部分资源能够被用来进行DL传输,由此能够避免资源浪费,提高通信系统的响应速率。
在一种可能的实现方式中,第一时频资源为第一时间单元上的N个资源中的一个,例如所述N个资源为网络设备为终端设备被预先配置好的资源,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。例如,N的值可以为3、4或者5。
预先给终端设备配置N个大小各不相同的资源,能够方便网络设备进行指示,此时第一指示信息中仅需要包括第一时频资源的标识或者索引等少部分信息,就能够帮助终端设备确定出第一时频资源具体是其中的哪一个,从而有利于节约信令开销。这N个资源中包括N-1个第四时频资源,并且N-1个第四时频资源所占第二时频资源的比例各不相同,因此网络设备可以根据实际的业务需求确定第一时频资源为这N个资源中的哪一个,并且方便高效的指示给终端设备。
在这里,N个资源为同一个时间单元上的资源并且大小不同,因此这里的N个资源的时域的起始位置相同,时域的结束位置也相同,即N个资源的时域范围相同,但是带宽不同。
可选地,N的值可以为2,此时仅具有一个第四时频资源,唯一的一个第四时频资源的大小所占第二时频资源的比例(该比例也即带宽比例)可以由网络设备根据实际情况进行定义,例如,第四时频资源的大小为第二时频资源的大小的50%(即第四时频资源的带宽占第二时频资源的带宽的50%)。此时,如果没有数据需要进行下行传输,则第一指示信息可以指示第二时频资源(此时第一时频资源为第二时频资源,第三时频资源占第二时频资源的0%)。如果此时有数据需要进行下行传输,则第一指示信息可以指示第四时频资源(此时第一时频资源等于第四时频资源,第三时频资源占第二时频资源的50%)。也就是说,此时网络设备可以使用0%或者50%的第二时频资源来进行下行传输。
可选地,N的值可以为3,此时具有两个第四时频资源,这两个第四时频资源所占第二时频资源的比例各不相同。例如,第四时频资源①的大小为第二时频资源的大小的50%。第四时频资源②的大小为第二时频资源的大小的0%(即此时第四时频资源②不包括任何资源,为空集)。此时,如果下行传输所需要的资源较多,则第一指示信息可以指示第四时频资源②(即此时第一时频资源为第四时频资源②,第三时频资源占第二时频资源的100%)。如果此时下行传输所需要的资源较少,则第一指示信息可以指示第四时频资源①(即此时第一时频资源为第四时频资源①,第三时频资源占第二时频资源的50%)。如果此时不需要进行下行传输,或者无需使用额外的资源来进行下行传输,则第一指示信息可以指示第二时频资源(即此时第一时频资源为第二时频资源,第三时频资源占第二时频资源的0%)。也就是说,此时网络设备可以使用0%、50%或者100%的第二时频资源来进行下行传输。
值得一提的是,当第一指示信息指示第二时频资源时,此时由于第三时频资源为空集,不包括任何资源,因此前述的步骤730可以省略。
可选地,N的值可以为3,此时具有两个第四时频资源,这两个第四时频资源所占第二时频资源的比例各不相同。例如,第四时频资源①的大小为第二时频资源的大小的30%。第四时频资源②的大小为第二时频资源的大小的60%。此时网络设备可以根据实际的业务需求对这3个资源中的任一个进行指示。此时当第一指示信息分别指示上述第四时频资源①、第四时频资源②以及第二时频资源时,网络设备可以使用70%、40%或者0%的第二时频资源来进行下行传输。
可选地,N的值可以为4,此时具有3个第四时频资源,这3个第四时频资源所占第二时频 资源的比例并且各不相同。例如,第四时频资源①的大小为第二时频资源的大小的25%。第四时频资源②的大小为第二时频资源的大小的50%,第四时频资源③的大小为第二时频资源的大小的75%。此时当第一指示信息分别指示上述第四时频资源①、第四时频资源②、第四时频资源③以及第二时频资源时,网络设备可以使用75%、50%、25%或者0%的第二时频资源来进行下行传输。
系统或者协议可以根据实际情况对N的值进行定义,N的值越大,网络设备的指示越灵活多样,选择性越大,使得第三时频资源的大小与实际的下行传输需求的匹配度越高,从而有利于节约资源,提高资源的利用率,从而能够提高整个小区的频谱使用效率。
应理解,本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统(例如6G)中的相关协议,本申请对此不做限定。
可选地,如图7所示,在步骤710之前,方法700还包括:
步骤740,网络设备向终端设备发送该N个资源的配置信息。
相应地,在步骤740中,终端设备接收来自网络设备的该N个资源的配置信息。
网络设备可以通过半静态配置的方式给终端设备配置该N个资源。例如网络设备可以向终端设备发送该N个资源的配置信息,该配置信息可以携带于无线资源控制(radio resource control,RRC)消息中,终端设备收到该配置信息以后,根据该配置信息配置该N个资源。
参见图6,在本申请实施例中,第二时频资源可是前述SBFD系统中UL子带上的时频资源。例如第二时频资源为一个UL子带。即第二时频资源的带宽占UL子带的带宽的100%。此时第一时间单元可以是UL子带上的一个或者多个时隙(或符号)。
可选地,对于位于SBFD系统中的终端设备,终端设备可以默认UL子带上的时频资源均为第二时频资源。此时可以根据网络设备的周期性指示,来使用第二时频资源中的部分资源进行下行传输。
下面结合附图对第一指示信息如何对第一时频资源进行指示作进一步介绍。在本申请实施例中,该N个资源中的至少一个资源通过速率匹配图样(RateMatchPattern)配置,或者说,该N个资源中的至少一个可以为速率匹配图样资源。在本申请的表述中,某一个资源为速率匹配图样资源,等效于该资源通过速率匹配图样配置。此时可以借助于DCI字段中的速率匹配指示字段来对第一时频资源进行指示。为了方便理解,本文首先对速率匹配的相关内容进行介绍。
网络设备可以通过半静态配置(例如可以通过RRC信令配置)多个速率匹配图样资源以及最多两个(例如0、1或2个)速率匹配图样组(RateMatchPatternGroup)。每个速率匹配图样组包括若干个(例如1~8个)速率匹配图样资源,当然,也可能有若干个速率匹配图样资源没有被包含于任何一个速率匹配图样组内。每个速率匹配图样资源具有一个速率匹配图样标识(RateMatchPatternId),每个速率匹配图样组可以包括1个或者多个速率匹配图样标识所对应的速率匹配图样资源。在本申请的表述中,速率匹配图样组包括某一个速率匹配图样资源,与该速率匹配图样组包括该速率匹配图样资源的标识是等效的。
图8是本申请实施例提供的配置速率匹配图样资源的一例的示意图。如图8所示,网络设备可以为终端设备配置8个速率匹配图样资源(图8中每个方块表示一个速率匹配图样资源)和两个速率匹配图样组(即图8中的组1(group1)和组2(group2)),每个速率匹配图样组内包含有两个速率匹配图样资源,4个速率匹配图样资源未被包含于任何一个组内。
图9是本申请实施例提供的对速率匹配图样资源进行指示的一例的示意图。如图9所示,可以通过格式为1-1的DCI来指示终端设备哪些或者哪个速率匹配图样资源对于终端设备需要预留,在本申请实施例中,被预留的资源(例如被指示到的第一时频资源)终端设备不能用来进行下行传输。一些情况下,可以使用该资源进行上行传输。而不需要预留的资源(例如第三时频资源),终端设备能够用来进行下行传输。
如图9所示,网络设备可以通过DCI中的速率匹配指示字段来指示终端设备哪些资源需要预留(即不能用来进行下行传输),终端设备把速率匹配指示字段指示的速率匹配图样组中包含的速率匹配图样资源,以及两个速率匹配图样组组1(group1)和组2(group2)中都没包括的速率匹配图样资源均确定需要预留。根据当前的协议规定,未被包含于速率匹配图样组内的速率匹配图样资源,终端设备默认一定预留。
如图9所示,当速率匹配指示字段的值为00或者不包含任何数值(此时字段为0比特)时,网络设备不对组1(group1)和组2(group2)内的任何资源进行指示,此时根据协议规定,终端设备默认位于组外的4个资源需要预留。当速率匹配指示字段的值为10时,网络设备指示终端设备组1内的两个资源,以及位于组外的4个资源需要预留。当速率匹配指示字段的值为01时,网络设备指示终端设备组2内的两个资源,以及位于组外的4个资源需要预留。当速率匹配指示字段的值为11时,网络设备指示终端设备组1内的两个资源和组2内的两个资源,以及位于组外的4个资源需要预留。图9中的黑色方格表示该资源需要预留,空心方框表示该资源不需要预留。
结合上述内容可知,按照速率匹配的方式可以实现对前述第一时频资源的指示。也就是说,在本申请实施例中,前述的N个资源中的至少一个可以为速率匹配图样资源,例如其中的部分被配置为速率匹配图样资源,或者该N个资源均被配置成速率匹配图样资源,本申请对此不做限定。或者说,前述的N个资源中的至少一个可以通过速率匹配图样进行配置,例如其中的部分通过速率匹配图样进行配置,或者该N个资源均通过速率匹配图样进行配置,本申请对此不做限定。此时第一指示信息可以包括速率匹配指示字段,即网络设备可以借助于速率匹配指示字段来对第一时频资源进行指示。
可选地,速率匹配指示字段可以为1个或者多个比特0或1构成的字段。例如,速率匹配指示字段可以为2个、3个或者4个比特的0或1构成的字段。速率匹配指示字段的具体长度可以根据实际需求进行定义,本申请对此不做限定。
图10是本申请实施例提供的通过速率匹配来对第一时频资源进行指示的一例的示意图。图11通过第三时频资源进行下行传输的一例的示意图。在本申请实施例中,终端设备被预先配置有两个速率匹配图样组,前述N个资源中的两个资源分别位于所述两个速率匹配图样组内,即前述N个资源中的一个资源被包含于其中一个速率匹配图样组内,该N个资源中的另一个资源被包含于另一个速率匹配图样组内。
具体地,如图10、图11所示,在本申请实施例中,终端设备被预先配置有3个资源(即N的值为3),包括一个第二时频资源和两个第四时频资源,这两个第四时频资源所占第二时频资源的比例(带宽)各不相同。第四时频资源①的带宽为第二时频资源的带宽的50%(50%为示例,具体数值可以根据实际需求重新定义)。第四时频资源②的带宽为第二时频资源的带宽的0%(即此时第四时频资源②不包括任何资源,为空集,第四时频资源②在图10中未显示)。第二时频资源为一个UL子带,即占UL子带的带宽的100%,此时第一时间单元能够用来表征UL子带预留的时频资源所在的位置。第四时频资源与第二时频资源的时域范围相同,即第四时频资源①的带宽占UL子带的带宽的50%。
可以理解的是,第四时频资源②为空集,配置信息为空或者不需要配置。在本申请的表述中,对于为空集的资源,例如这里的第四时频资源②,其资源配置信息可以为空或者不需要进行配置,后续不再赘述。
终端设备还被配置有两个速率匹配图样组(即组1和组2),第二时频资源和第四时频资源①均为速率匹配图样资源,第二时频资源被包含于组1内,第四时频资源①被包含于组2内。因此可以通过DCI中的速率匹配指示字段来对第一时频资源进行指示,第一时频资源可以为上述3个资源中的任意一个。
如图10、图11中的(a)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为00或者该字段为0比特,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为第四时频资源②(即N个资源中的第四时频资源②被指示),此时由于第四时频资源②(占UL子带的0%带宽)为不包括任何资源在内的空集,终端设备确定第三时频资源占第二时频资源(即UL子带)的100%带宽,此时可以使用UL子带的100%带宽来进行DL传输。DL传输可用的频域范围增加,有利于提升网络的频谱效率。
如图10、图11中的(b)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为01,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为组2内的第四时频资源①(即N个资源中的第四时频资源①被指示),因此终端设备不在第四时频资源①上进行DL传输,此时终端设备可以在第四时频资源①上发送 上行信息。终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的50%带宽,此时可以使用UL子带的50%带宽来进行DL传输。DL传输可用的频域范围增加,有利于提升网络的频谱效率。
如图10、图11中的(c)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为10或11,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为组1内的第二时频资源(即N个资源中的第二时频资源被指示),因此终端设备不在第二时频资源上进行DL传输,即此时第二时频资源的全部均不用于DL传输,终端设备可以使用第二时频资源的全部来进行UL传输。此时第三时频资源占UL子带的0%带宽。
可以理解的是,速率匹配指示字段为11时,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为组1内的第二时频资源(即N个资源中的第二时频资源被指示)和第一时频资源为组2内的第四时频资源①(即N个资源中的第四时频资源①被指示)进行预留,预留的资源取并集后的资源为第一时频资源为组1内的第二时频资源,因此终端设备不在第二时频资源上进行DL传输,即此时第二时频资源的全部均不用于DL传输,终端设备可以使用第二时频资源的全部来进行UL传输。此时第三时频资源占UL子带的0%带宽。本申请中,第一指示信息指示N个资源智能杆的多个资源时,终端设备在所述多个资源的并集对应的资源上不进行DL传输,后续不再赘述。
综上所述,对于图10和图11所示的实施例,网络设备可以使用0%、50%或者100%的第二时频资源来进行DL传输。
图12是本申请实施例提供的通过速率匹配来对第一时频资源进行指示的另一例的示意图。图13通过第三时频资源进行下行传输的另一例的示意图。
如图12、图13所示,在本申请实施例中,终端设备被预先配置有3个资源(即N的值为3),包括一个第二时频资源和两个第四时频资源,这两个第四时频资源所占第二时频资源的比例各不相同。第四时频资源①的带宽为第二时频资源的带宽的30%,第四时频资源②的带宽为第二时频资源的带宽的60%(30%、60%均为示例,具体数值可以根据实际需求重新定义)。第二时频资源为一个UL子带,即第二时频资源的带宽占UL子带的带宽的100%,第四时频资源①的带宽占UL子带的带宽的30%,第四时频资源②的带宽占UL子带的带宽的60%。
终端设备还被配置有两个速率匹配图样组(即组1和组2),第二时频资源和第四时频资源①、第四时频资源②均为速率匹配图样资源,第四时频资源①被包含于组1内,第四时频资源②被包含于组2内,第二时频资源未被包含于任何的组内。因此可以通过DCI中的速率匹配指示字段来对第一时频资源进行指示,第一时频资源可以为上述3个资源中的任意一个。
如图13中的(a)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为10,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为组1内的第四时频资源①(即N个资源中的第四时频资源①被指示),因此终端设备不在第四时频资源①上进行DL传输,此时终端设备可以在第四时频资源①进行UL传输。终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的70%带宽,此时可以使用UL子带的70%带宽来进行DL传输。
如图13中的(b)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为01或者11,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为组2内的第四时频资源②(即N个资源中的第四时频资源②被指示),因此终端设备不在第四时频资源②上进行DL传输,此时终端设备可以在第四时频资源②上进行UL传输。终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的40%带宽,此时可以使用UL子带的40%带宽来进行DL传输。
如图13中的(c)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为00或者该字段为0比特,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为组外的第二时频资源(即N个资源中的第二时频资源被指示),因此终端设备不在第二时频资源上进行DL传输,此时终端设备可以在第二时频资源 上进行UL传输。终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的0%带宽,此时使用UL子带的0%带宽来进行DL传输。
值得一提的是,在本申请实施例中,为了能够通过速率匹配指示字段来对第二时频资源进行指示(即指示第一时频资源为第二时频资源),本申请实施例可以对当前的准则进行更改(更新)。将当前的准则“未配置在组内的速率匹配图样资源,终端设备默认一定预留”,修改为“除了UL子带上的资源,未配置在组内的速率匹配图样资源,终端设备默认一定预留,即第一指示信息指示第四时频资源中的一个或多个资源时,第二时频资源不进行预留,第一指示信息指示第四时频资源中的任一个均不进行预留时(即第一指示信息为00或者0比特),第二时频资源进行预留”。
综上所述,对于图12和图13所示的实施例,网络设备可以使用0%、40%或者70%的第二时频资源来进行下行传输。
图14是本申请实施例提供的通过速率匹配来对第一时频资源进行指示的再一例的示意图。图15通过第三时频资源进行下行传输的再一例的示意图。在本申请实施例中,终端设备被预先配置有N个速率匹配图样组,N个资源分别位于N个速率匹配图样组内。即前述的N个资源被一一对应的包含于N个速率匹配图样组内。
如图14、图15所示,在本申请实施例中,终端设备被预先配置有4个资源(即N的值为4),包括1个第二时频资源和3个第四时频资源,这3个第四时频资源所占第二时频资源的比例各不相同。第四时频资源①的带宽为第二时频资源的带宽的25%,第四时频资源②的带宽为第二时频资源的带宽的50%、第四时频资源③为第二时频资源的带宽的75%。这4个资源的时域范围相同,第二时频资源为一个UL子带,即第二时频资源的带宽占UL子带的带宽的100%,第四时频资源①的带宽占UL子带的带宽的25%,第四时频资源②的带宽占UL子带的带宽的50%,第四时频资源③的带宽占UL子带的带宽的75%。
终端设备还被配置有4个速率匹配图样组(即组1、组2、组3和组4),第二时频资源和第四时频资源①、第四时频资源②、第四时频资源③均为速率匹配图样资源,第四时频资源①被包含于组1内,第四时频资源②被包含于组2内,第四时频资源③被包含于组3内,第二时频资源被包含于组4内。因此可以通过DCI中的速率匹配指示字段来对第一时频资源进行指示,第一时频资源可以为上述4个资源中的任意一个。此时速率匹配指示字段可以具有N个比特,每个比特位上是0或1用于指示其中一个资源,例如速率匹配指示字段包括4个比特,对应前述4个资源。
如图15中的(a)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为1000,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为组1内的第四时频资源①(即N个资源中的第四时频资源①被指示),因此终端设备不在第四时频资源①上进行DL传输,此时终端设备可以在第四时频资源①上进行UL传输。终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的75%带宽,此时可以使用UL子带的75%带宽来进行DL传输。
如图15中的(b)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为0100或1100,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为组2内的第四时频资源②(即N个资源中的第四时频资源②被指示),因此终端设备不在第四时频资源②上进行DL传输,此时终端设备可以在第四时频资源②上进行UL传输。终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的50%带宽,此时可以使用UL子带的50%带宽来进行DL传输。
如图15中的(c)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为0010或0110或1010或1110,此时终端设备根据第一指示信息确定网络设备指示的第一时频资源为组3内的第四时频资源③(即N个资源中的第四时频资源③被指示),因此终端设备不在第四时频资源③上进行DL传输,此时终端设备可以在第四时频资源③上进行UL传输。终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的25%带宽,此时可以使用UL子带的25%带宽来进行DL传输。
如图15中的(d)部分所示,网络设备向终端设备发送第一指示信息,该第一指示信息包括速率匹配指示字段,速率匹配指示字段可以为0001或0011或0101或0111或1001或1011或1101 或1111,此时终端设备根据第一指示信息确定网络设备指示的为组4内的第二时频资源(即N个资源中的第二时频资源被指示),因此终端设备不在第二时频资源上进行DL传输,此时终端设备可以在第二时频资源上进行UL传输。终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的0%带宽,此时使用UL子带的0%带宽来进行DL传输。
综上所述,对于图14和图15所示的实施例,网络设备可以使用0%、25%、50%、75%的第二时频资源来进行DL传输。
进一步地,在图14和图15所示实施例的基础上,终端设备还被配置有第四时频资源④,第四时频资源④的大小为第二时频资源的大小的0%(即此时第四时频资源④不包括任何资源,为空集)。也就是说,此时终端设备被预先配置有5个资源(即N的值为5)。此时第四时频资源④也可以通过速率匹配指示字段来进行指示。例如,当速率匹配指示字段的内容为0000,或者该字段为0比特时,终端设备根据第一指示信息确定网络设备指示的第一时频资源为第四时频资源④,此时由于第四时频资源④(占UL子带的0%带宽)为不包括任何资源在内的空集,终端设备确定第三时频资源占第二时频资源(即UL子带)的100%带宽,此时可以使用UL子带的100%带宽来进行DL传输。
也就是说,此时,网络设备可以使用0%、25%、50%、75%或者100%的第二时频资源来进行DL传输。
综上所述,终端设备被配置有N个资源,该N个资源包括一个第二时频资源和N-1个第四时频资源,N-1个第四时频资源均为所述第二时频资源的子集,并且其中一个第四时频资源为空集。此时终端设备可以被配置N-1个速率匹配图样组,N个资源中除了为空集的那个第四时频资源以外的N-1个资源,可以一一对应的被包含于N-1个速率匹配图样组内。此时可以借助于速率匹配指示字段来对第一时频资源进行指示,第一时频资源可以是这N个资源中的任意一个。例如,N的值可以为3,4,5或6等。
前述图10-图15所示的实施例介绍了通过将N个资源中的至少一个配置成速率匹配图样资源,之后借助于DCI字段中的速率匹配指示字段来对第一时频资源进行指示的方案。在其他实现方式中,前述N个资源的配置以及指示也可以通过其他方式实现,例如通过其他字段来进行指示,本申请对此不做限定。
在一种可能的实现方式中,第一指示信息包括第一时频资源的索引值,网络设备可以通过将该索引值索引到一个预定义的表格中的一个值从而确定第一时频资源为预先配置的N个资源中的哪一个。
具体地,在本申请实施例中,终端设备被预先配置有5个资源(即N的值为5),包括1个第二时频资源和4个第四时频资源,这4个第四时频资源所占第二时频资源(UL子带)的带宽比例各不相同。其中,第二时频资源的带宽占UL子带的带宽的100%,第四时频资源①的带宽占UL子带的带宽的10%,第四时频资源②的带宽占UL子带的带宽的30%,第四时频资源③的带宽占UL子带的带宽的70%,第四时频资源④的带宽占UL子带的带宽的90%。在配置的过程中,每个第四时频资源具体所包括的RB数M0为N0*Portion向上取整或向下取整,其中,N0为UL子带在一个SBFD时隙的RB个数,Portion为所占的带宽比例。这4个第四时频资源的频域范围的起始位置可以和UL子带的起始位置相同,或者这4个第四时频资源的频域范围的中心频率可以和UL子带的中心频率相同。
DCI中还可以新增速率匹配部分(Rate matching portion)字段,该字段可以具有M个比特(例如2个比特),该字段用于指示第一时频资源的索引值,通过索引值能确定第一时频资源为该N个资源中的哪一个。表1为第一时频资源的索引值与第四时频资源的对应关系表。
表1

其中,当第一时频资源的索引值为00时,终端设备能够根据该索引值确定第一时频资源为第四时频资源①(占UL子带的带宽的10%),终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的90%带宽,此时使用UL子带的90%带宽来进行DL传输。
当第一时频资源的索引值为01时,终端设备能够根据该索引值确定第一时频资源为第四时频资源②(占UL子带的带宽的30%),终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的70%带宽,此时使用UL子带的70%带宽来进行DL传输。
当第一时频资源的索引值为10时,终端设备能够根据该索引值确定第一时频资源为第四时频资源③(占UL子带的带宽的70%),终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的30%带宽,此时使用UL子带的30%带宽来进行DL传输。
当第一时频资源的索引值为11时,终端设备能够根据该索引值确定第一时频资源为第四时频资源④(占UL子带的带宽的90%),终端设备进一步确定第三时频资源占第二时频资源(即UL子带)的10%带宽,此时使用UL子带的10%带宽来进行DL传输。
在本申请示例中,可以新增速率匹配部分字段,该字段可以具有M个比特,能够进行2M种预留指示,因此可以预先配置2M个第四时频资源,例如,M=2,因此可以预先给终端设备配置2M=4个第四时频资源。
一些情况下,本申请不同的实施例能够相互结合,例如,在本实施例的基础上,可以结合前述图10和图11所示的实施例。如图10和图11所示,借助于速率匹配指示字段,网络设备可以实现对0%、50%或者100%的UL子带的预留带宽的指示,而通过新增速率匹配部分字段,网络设备可以实现对10%、30%、70%、90%的UL子带的预留带宽的指示(这里预留的带宽即无法用于DL传输的带宽)。因此,根据本申请实施例提供的通信方法,共能够实现3+2M种预留带宽的指示。
一些情况下,本申请不同的实施例能够相互结合,例如,在本实施例的基础上,可以结合前述图12和图13所示的实施例。如图12和图13所示,借助于速率匹配指示字段,网络设备可以实现对0%、40%或者70%的UL子带的预留带宽的指示,而通过新增速率匹配部分字段,网络设备可以实现对10%、30%、70%、90%的UL子带的预留带宽的指示(这里预留的带宽即无法用于DL传输的带宽)。因此,根据本申请实施例提供的通信方法,共能够实现3+2M种预留带宽的指示。
可选地,若DCI中的速率匹配部分字段为0比特,则按照速率匹配指示字段对UL子带的预留带宽进行指示(可实现3种带宽指示)。
可选地,若DCI中的速率匹配部分字段不是0比特,则按照速率匹配部分字段对UL子带的预留带宽进行指示(可实现2M种带宽指示)。
例如,当70%带宽的第二时频资源(UL子带)需要预留,则此时通过速率匹配部分字段的值为10来进行指示。
再例如,当30%带宽的第二时频资源(UL子带)需要预留,则此时通过速率匹配部分字段的值为01来进行指示。
再例如,当100%带宽的第二时频资源(UL子带)需要预留,则此时通过速率匹配指示字段的值为10来进行指示。
可选地,可以在速率匹配指示字段上增加M个比特,新增的M个比特按照速率匹配部分字段进行理解。此时不需要新增额外的字段。
可选地,对于1-0格式的DCI,可以通过新增前述的速率匹配指示字段和/或速率匹配部分字段来实现对第一时频资源的指示。
在一种可能的实现方式中,第一指示信息还包括第一时频资源所包括的RB个数的信息。
终端设备在接收到该第一指示信息以后,根据该第一指示信息所指示的RB个数,并且结合系统或者协议的预设规则来确定第一时频资源。例如,该预设规则可以为第一时频资源的起始RB 为第二时频资源(UL子带)的RB索引最小的RB,或者,第一时频资源的结束RB为第二时频资源(UL子带)的RB索引最大的RB。终端设备根据该第一指示信息和预设的规则确定出第一时频资源以后,可以通过该第一时频资源确定第三时频资源,并且在第三时频资源上接收来自网络设备发送的下行数据。
可选地,可以通过在DCI中新增字段以指示第一时频资源的所包括的RB个数。
在一种可能的实现方式中,第一指示信息可以通过位图(bitmap)的方式来对第一时频资源进行指示。
对于1-0和1-1格式DCI指示的类型0(Type 0)的PDSCH传输,通常采用bitmap的方式指示PDSCH所在的资源块组(resource block group,RBG)。在该基础之上,还可以采用bitmap来对用于上行传输的第二时频资源中的第一时频资源进行指示。
图16是本申请实施例提供的通过位图来对第一时频资源进行指示的示意图。如图16所示,第二时频资源可以包括多个RBG,例如包括图中的RBG#3、RBG#4、RBG#5、RBG#6,上述4个RBG共同构成了本申请中的第二时频资源。网络设备采用位图的方式对终端设备进行指示,例如该位图可以是“1110”,比特值为1表示该比特对应的RBG用于DL传输,比特值为0的表示该比特对应的RBG不用于DL传输。即指示第三时频资源包括其中的RBG#3、RBG#4、RBG#5,此时这3个RBG构成的第一时频资源能用于DL传输,而比特值为0的RBG#6不能够被用于DL传输。
进一步地,网络设备在通过位图的方式指示PDSCH传输时,可以同时对上行资源和下行资源进行指示。例如,图16示出了1个SBFD时隙,其包括RBG#0~RBG#9,对于这个SBFD时隙的指示,网络设备指示的位图可以是“1111110110”,表示调度其中的RBG#0~RBG#2、RBG#3~RBG#5、RBG#7、RBG#8来进行DL传输,其中RBG#3~RBG#5原本被配置为UL的RBG,现在被用来进行DL传输。
对于当前的准则(称作旧准则),当在进行类型0(Type 0)的PDSCH传输时,上述被配置为UL的RBG(即RBG#3~RBG#6)将无法被用来传输PDSCH,此时终端设备无法在这部分资源上接收到下行信息。
本申请实施例对上述准则进行更改(称作新准则),当被配置为UL的RBG在位图中对应的比特位数值为“1”时,将能够被用来传输PDSCH,此时终端设备将能够在这部分资源上接收到下行信息。
可选地,可以通过网络设备发送的指示信息来确定按照旧准则还是新准则来理解上述被配置为UL的RBG,即确定终端设备从上述资源上是否能够接收到下行信息。这里的指示可以是显示指示或者隐式指示,也可以是直接指示或者间接指示,本申请对此不作限定。例如,该指示信息可以是携带于DCI中的1个比特。再例如,若1-1格式的DCI中包括了前述的速率匹配指示字段和/或速率匹配部分字段来实现对第一时频资源的指示,则隐式指示使用新准则来理解上述被配置为UL的RBG。否则,使用旧准则来理解上述被配置为UL的RBG。
可选地,网络设备可以通过RRC信令来指示终端设备按照旧准则还是新准则来理解上述被配置为UL的RBG。
可选地,系统或者协议可以默认采用上述新准则来理解上述被配置为UL的RBG,即终端设备能够从上述资源上接收到下行信息。
前述图7-图16所示的实施例提供了一种通信方法,根据该通信方法,被配置成上行传输的资源(即第二时频资源)中的部分资源(即第一时频资源)能够被用来传输下行信息。这里的第一时频资源的资源类型例如可以是上行或者灵活。然而,这可能与当前的标准协议产生冲突。根据当前的标准协议,并不支持使用传输方向被预先配置成上行的资源来进行下行传输。表2示出了当前协议标准与下行传输有关的冲突处理准则。
表2

其中,Dynamic-D为DCI指示终端设备接收的DL信号。例如,Dynamic-D包括DCI指示的PDSCH传输和信道状态信息参考信号(channel-state information reference signal,CSI-RS)传输。DCI指示的PDSCH传输包括DCI指示终端设备在多个时隙中接收PDSCH,或者在1个时隙接收PDSCH。Semi-U为通过系统的高层信令配置(如TDD-UL-DL-ConfigCommon或TDD-UL-DL-ConfigDedicated)的符号格式为上行/传输方向为上行的时频资源。SFI-U为通过DCI2-0中的时隙格式指示(slot format indicator,SFI)字段信息指示而配置的符号格式为上行/传输方向为上行的时频资源。valid RO为有效的随机接入时机(random access channel occasion,RACH occasion,RO)资源。
其中,对于valid RO的定义如下:
-对于FDD系统,所有RO都是有效的;
-对于TDD系统,如果终端设备未配置TDD-UL-DL-ConfigurationCommon,则在当前物理随机接入信道(physical random access channel,PRACH)所在时隙(slot),RO后面没有同步广播块(synchronization signal/PBCH,SSB),且与前面最近的SSB至少间隔Ngap个符号,则该RO是有效的;
-对于TDD,如果终端设备配置了TDD-UL-DL-ConfigurationCommon,如果:RO被配置在UL符号中或者在当前PRACH所在时隙,RO后面没有SSB,且与前面最近的SSB至少间隔Ngap个符号,且与前面最后的DL符号至少间隔Ngap个符号,则认为在PRACH时隙中的RO是有效的。
根据当前的冲突处理准则,对于表2中的实例1和实例2,不支持Dynamic-D在资源被配置成Semi-U和SFI-U的资源上进行传输(信号将被丢弃(Drop))。对于表2中的实例3,不支持Dynamic-D在有效的RO资源及其前Ngap个符号上进行传输(无论Dynamic-D是否和UL子带频域有交集)。图17是有效的RO及其前Ngap个符号的示意图。如图17所示,此时时隙#2、时隙#3、时隙#4中的有效的RO资源及其前Ngap个符号上无法接收DL信号。此外,由于终端设备是半双工模式的终端,上述资源对应的DL子带上的资源也无法被使用。
针对上述问题,本申请实施例可以对规则进行修改,例如新的标准可以允许Dynamic-D在资源被配置成Semi-U和SFI-U的资源上进行传输。例如,DCI指示的PDSCH允许在UL子带时隙格式被配置为semi-U/SFI-U时进行DL传输。
如图17所示,对于未被终端设备(UE)用于发送PRACH的有效的RO资源及其前Ngap个符号,能够用来传输DL信号。例如,对于时隙#2、时隙#3内的有效的RO资源及其前Ngap个符号允许被用来传输DL信号。
可选地,对于SBFD时隙中有效的RO资源及其前Ngap个符号,可以根据其具体的使用场景确定是否允许被用来传输DL信号。
例如,对于初始接入,RRC重建等场景,SBFD时隙中有效的RO资源及其前Ngap个符号不允许被用来传输DL信号。对于初始接入,RRC重建以外的场景,SBFD时隙中有效的RO资源及其前Ngap个符号允许被用来传输DL信号。此时,终端设备可以仅在UL-only时隙(即时隙#5)上来发送PRACH。
作为一种可能的实现方式,可以将RO资源仅配置于UL-only时隙内。
在一种可选的方式中,SBFD系统的资源配置还可以是包括灵活资源和下行资源,例如,SBFD系统包括至少一个UL子带,UL子带上的部分资源可以被配置为灵活(flexible),也就是说,前述的第二时频资源还可以是被配置成灵活的资源,根据网络设备的指示,终端设备能够对其中被指示到的资源(即第一时频资源)进行预留,不使用这部分资源进行DL传输,而使用第二时频资源中除了第一时频资源以外的资源(即第三时频资源)进行DL传输。
相关技术中,可以通过类似前述图10和图11中那样的方案,即通过速率匹配指示字段来来对需要预留的带宽进行指示。然而,针对该技术,网络设备仅能够在少数的几种带宽中进行选择, 选择的余地较小,预留带宽的灵活性受限,指示的灵活性较差,容易出现实际用于DL传输的资源(即第三时频资源)与实际需求不匹配而导致的资源浪费和资源利用率低等问题,由此降低了网络的频谱使用效率。
因此,本申请还提供了另一种通信方法,该方法包括:
网络设备向终端设备发送第一指示信息,第一指示信息指示第一时间单元上的第一时频资源。相应地,终端设备接收来自网络设备的第一指示信息。
终端设备根据第一指示信息确定第一时频资源,第一时频资源为终端设备不能用于下行传输的资源,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括第二时频资源和N-1个第四时频资源,所述第二时频资源为终端设备被配置为灵活的资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于3的整数。
网络设备在第三时频资源上向终端设备发送下行信息,第三时频资源为第二时频资源中除去第一时频资源的资源。也就是说,第三时频资源为第一时频资源在第二时频资源中的补集。
根据本申请实施例提供的通信方法,网络设备有更多种选择能够对终端设备具体预留的带宽进行合理的指示,使得更多比例的第三时频资源能够被用来进行DL传输。资源预留更加合理准确,能够提高资源预留的指示灵活性,第三时频资源的大小与实际的DL传输需求的匹配度更高,有利于节约资源,提高资源的利用率,从而能够提高整个小区的频谱使用效率。本申请实施例提供的通信方法能够对灵活资源进行合理的二次分配,使得UL子带上的符号类型为灵活时,实现UL子带用于DL传输的资源比例更灵活,与实际的传输需求更加贴合。
可选地,N的值可以为3,此时该N个资源均为非空资源集。此外,N的值也可以为4、5或6等任意更大的数值。
在一种可能的实现方式中,所述第二时频资源为一个上行子带。
在一种可能的实现方式中,所述N个资源中的至少一个资源通过速率匹配图样配置。
在一种可能的实现方式中,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
在一种可能的实现方式中,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别包含于所述N个速率匹配图样组内。
在一种可能的实现方式中,N-1个第四时频资源中的一个第四时频资源为空集。此时终端设备可以被配置N-1个速率匹配图样组,N个资源中除了为空集的那个第四时频资源以外的N-1个资源,可以一一对应的被包含于N-1个速率匹配图样组内。此时可以借助于速率匹配指示字段来对第一资源进行指示,第一资源可以是这N个资源中的任意一个。例如,N的值可以为3,4,5或6等。
在一种可能的实现方式中,所述第一资源可以包括有效的随机接入时机(random access channel occasion,RACH occasion,RO)所在的符号和/或该符号之前的Ngap个符号。
在一种可能的实现方式中,所述第一指示信息包括速率匹配指示字段和/或速率匹配部分字段。
在一种可能的实现方式中,所述第一指示信息被携带于DCI中,可以包括DCI中的已有字段或者新增字段。
在一种可能的实现方式中,第一指示信息可以包括第一时频资源的标识(identification,ID)、编号、索引(index)、第一时频资源的时域信息(例如时域起始位置、时域结束位置、时域中心位置、时长)、第一时频资源的频域信息(例如频域起始位置、频域结束位置、频域中心位置、带宽、资源块(resource block,RB)个数)等任意能够帮助终端设备确定出该第一时频资源的信息。
应理解,本实施例中对第一指示信息如何对第一时频资源进行指示可以参见前述实施例中的相关表述,例如与图12-图16的相关内容可以直接借用,本实施例在此不再赘述。
上文结合图1至图17详细描述了本申请实施例的通信方法,下面结合图18至图21,详细描述本申请实施例的装置。应理解,图18至图21所示的装置能够实现图7所示的方法流程中的一个或者多个的步骤。为避免重复,在此不再详细赘述。
图18是本申请实施例提供的终端设备1800的示意性框图。如图18所示,终端设备1800包 括:接收单元1810和确定单元1820。
接收单元1810,用于接收来自网络设备1800的第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源;
确定单元1820,用于根据所述第一指示信息确定所述第一时频资源,所述第一时频资源为所述终端设备1800不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置用于上行传输的资源;
所述接收单元1810,还用于在所述第一时间单元上的第三时频资源上接收来自所述网络设备的下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
在一种可能的实现方式中,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
在一种可能的实现方式中,所述第二时频资源为一个上行子带。
在一种可能的实现方式中,所述N个资源中的至少一个资源通过速率匹配图样配置。
在一种可能的实现方式中,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
在一种可能的实现方式中,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别包含于所述N个速率匹配图样组内。
在一种可能的实现方式中,终端设备被配置有N个资源,该N个资源包括一个第二时频资源和N-1个第四时频资源,N-1个第四时频资源均为所述第二时频资源的子集,并且其中一个第四时频资源为空集。此时终端设备可以被配置N-1个速率匹配图样组,N个资源中除了为空集的那个第四时频资源以外的N-1个资源,可以一一对应的被包含于N-1个速率匹配图样组内。此时可以借助于速率匹配指示字段来对第一时频资源进行指示,第一时频资源可以是这N个资源中的任意一个。例如,N的值可以为3,4,5或6等。
在一种可能的实现方式中,所述接收单元1810还用于接收来自所述网络设备的所述N个资源的配置信息。
在一种可能的实现方式中,所述第一时频资源可以包括有效的RO所在的符号和/或该符号之前的Ngap个符号。
在一种可能的实现方式中,所述第一指示信息包括速率匹配指示字段和/或速率匹配部分字段。
在一种可能的实现方式中,所述第一指示信息被携带于DCI中,可以包括DCI中的已有字段或者新增字段。
在一种可能的实现方式中,上述终端设备1800可以为下图中的终端设备1900,其中接收单元1810的功能可以通过终端设备1900的收发器1901(即控制电路与天线一起)实现,确定单元1820的功能可以通过终端设备1900的处理器1902实现。下文结合图19介绍本申请实施例的终端设备1900的结构。
图19是本申请实施例的一种终端设备1900的结构示意图。该终端设备1900可适用于图1所示出的系统中,执行上述方法实施例中终端设备(UE)的功能。为了便于说明,图19仅示出了终端设备的主要部件。如图19所示,终端设备1900包括处理器1902、存储器、控制电路、天线以及输入输出装置。处理器1902主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器1901,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器1902可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1902对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频 信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图19仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图19中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
图20是本申请实施例提供的网络设备2000的示意性框图。如图20所示,网络设备2000包括:发送单元2010。
发送单元2010,用于向终端设备发送第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置的用于上行传输的资源;
所述发送单元2010,还用于在所述第一时间单元上的第三时频资源上向所述终端设备发送下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
在一种可能的实现方式中,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
在一种可能的实现方式中,所述第二时频资源为一个上行子带。
在一种可能的实现方式中,所述N个资源中的至少一个资源通过速率匹配图样配置。
在一种可能的实现方式中,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
在一种可能的实现方式中,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别包含于所述N个速率匹配图样组内。
在一种可能的实现方式中,终端设备被配置有N个资源,该N个资源包括一个第二时频资源和N-1个第四时频资源,N-1个第四时频资源均为所述第二时频资源的子集,并且其中一个第四时频资源为空集。此时终端设备可以被配置N-1个速率匹配图样组,N个资源中除了为空集的那个第四时频资源以外的N-1个资源,可以一一对应的被包含于N-1个速率匹配图样组内。此时可以借助于速率匹配指示字段来对第一时频资源进行指示,第一时频资源可以是这N个资源中的任意一个。例如,N的值可以为3,4,5或6等。
在一种可能的实现方式中,所述发送单元2010还用于向所述终端设备发送所述N个资源的配置信息。
在一种可能的实现方式中,所述第一指示信息包括速率匹配指示字段。
在一种可能的实现方式中,所述第一时频资源可以包括有效的RO所在的符号和/或该符号之前的Ngap个符号。
在一种可能的实现方式中,所述第一指示信息包括速率匹配指示字段和/或速率匹配部分字段。
在一种可能的实现方式中,所述第一指示信息被携带于DCI中,可以包括DCI中的已有字段或者新增字段。
具体地,该网络设备2000可对应于根据本申请实施例的通信方法700中的网络设备,或配置于该网络设备中的芯片。该网络设备2000可以包括用于执行图7中通信方法700的网络设备执行 的方法的单元。并且,该网络设备2000中的各单元和上述其他操作和/或功能分别为了实现图7中通信方法700的相应流程,各单元执行上述相应步骤的具体过程在方法700中已经详细说明,为了简洁,在此不再赘述。
在一种可能的实现方式中,上述网络设备2000可以为基站,gNB或TRP,DU,CU,CU-CP(control plane)或CU-UP(user plane)等,所述发送单元2010可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述网络设备2000还可以为芯片。发送单元2010可以为芯片的输入/输出电路或者接口。
在一种可能的实现方式中,上述网络设备2000可以为接入网设备,例如下文中的基站60,其中发送单元2010的功能可以通过基站60的RRU 601实现。下文结合图21介绍本申请实施例的网络设备的结构。
图21是本申请实施例提供的网络设备的结构示意图,如可以为基站的结构示意图。如图21所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站60可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)601和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)602。所述RRU 601可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线6011和射频单元6012。所述RRU 601部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 602部分主要用于进行基带处理,对基站进行控制等。所述RRU 601与BBU 602可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 602为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)602可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,所述BBU 602可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 602还包括存储器6021和处理器6022,所述存储器6021用于存储必要的指令和数据。例如存储器6021存储上述实施例中的码本索引与预编码矩阵的对应关系。所述处理器6022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器6021和处理器6022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,在本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括: 计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图7所示实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图7所示实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备、一个或多个网络设备。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
为了便于理解,下文中对本申请介绍方案的过程中涉及的名词进行说明。
在本申请实施例中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如前文中的“指示信息”)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
在本申请实施例中,“第一”、“第二”、“第三”以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的资源等。
本申请实施例中涉及的“通信协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以 集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源;
    所述终端设备根据所述第一指示信息确定所述第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置用于上行传输的资源;
    所述终端设备在所述第一时间单元上的第三时频资源上接收来自所述网络设备的下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
  3. 根据权利要求2所述的方法,其特征在于,所述第二时频资源的频域范围为一个上行子带。
  4. 根据权利要求2或3所述的方法,其特征在于,所述N个资源中的至少一个资源通过速率匹配图样配置。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
  6. 根据权利要求4所述的方法,其特征在于,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别包含于所述N个速率匹配图样组内。
  7. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置的用于上行传输的资源;
    所述网络设备在所述第一时间单元上的第三时频资源上向所述终端设备发送下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
  9. 根据权利要求8所述的方法,其特征在于,所述第二时频资源的频域范围为一个上行子带。
  10. 根据权利要求8或9所述的方法,其特征在于,所述N个资源中的至少一个资源通过速率匹配图样配置。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
  12. 根据权利要求10所述的方法,其特征在于,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别位于所述N个速率匹配图样组内。
  13. 一种终端设备,其特征在于,包括:
    接收单元,用于接收来自网络设备的第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源;
    确定单元,用于根据所述第一指示信息确定所述第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置用于上行传输的资源;
    所述接收单元,还用于在所述第一时间单元上的第三时频资源上接收来自所述网络设备的下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
  14. 根据权利要求13所述的终端设备,其特征在于,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四 时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
  15. 根据权利要求14所述的终端设备,其特征在于,所述第二时频资源的频域范围为一个上行子带。
  16. 根据权利要求14或15所述的终端设备,其特征在于,所述N个资源中的至少一个资源通过速率匹配图样配置。
  17. 根据权利要求16所述的终端设备,其特征在于,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
  18. 根据权利要求16所述的终端设备,其特征在于,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别包含于所述N个速率匹配图样组内。
  19. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送第一指示信息,所述第一指示信息指示第一时间单元上的第一时频资源,所述第一时频资源为所述终端设备不能用于下行传输的资源,所述第一时频资源属于所述第一时间单元上的第二时频资源,所述第二时频资源为所述终端设备被配置的用于上行传输的资源;
    所述发送单元,还用于在所述第一时间单元上的第三时频资源上向所述终端设备发送下行信息,所述第三时频资源为所述第二时频资源中除去所述第一时频资源的资源。
  20. 根据权利要求19所述的网络设备,其特征在于,所述第一时频资源为所述第一时间单元上的N个资源中的一个,所述N个资源的大小各不相同并且包括所述第二时频资源和N-1个第四时频资源,所述N-1个第四时频资源均为所述第二时频资源的子集,N为大于或者等于2的整数。
  21. 根据权利要求20所述的网络设备,其特征在于,所述第二时频资源的频域范围为一个上行子带。
  22. 根据权利要求20或21所述的网络设备,其特征在于,所述N个资源中的至少一个资源通过速率匹配图样配置。
  23. 根据权利要求22所述的网络设备,其特征在于,所述终端设备被预先配置有两个速率匹配图样组,所述N个资源中的两个资源分别位于所述两个速率匹配图样组内。
  24. 根据权利要求22所述的网络设备,其特征在于,所述终端设备被预先配置有N个速率匹配图样组,所述N个资源分别包含于所述N个速率匹配图样组内。
  25. 一种终端设备,其特征在于,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权利要求1至6中任一项所述的方法。
  26. 一种网络设备,其特征在于,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权利要求7至12中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至12中任意一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行如权利要求1至12中任意一项所述的方法。
  29. 一种芯片系统,其特征在于,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行如权利要求1至12中任意一项所述的方法。
  30. 一种通信系统,其特征在于,包括如权利要求25所述的终端设备和/或如权利要求26所述的网络设备。
PCT/CN2023/121151 2022-09-30 2023-09-25 通信方法及通信装置 WO2024067499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211225617.4A CN117812737A (zh) 2022-09-30 2022-09-30 通信方法及通信装置
CN202211225617.4 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067499A1 true WO2024067499A1 (zh) 2024-04-04

Family

ID=90428622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121151 WO2024067499A1 (zh) 2022-09-30 2023-09-25 通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN117812737A (zh)
WO (1) WO2024067499A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601382A (zh) * 2019-02-20 2020-08-28 华为技术有限公司 一种数据传输方法及通信装置
US20210345375A1 (en) * 2020-05-01 2021-11-04 Qualcomm Incorporated Time-interleaving of code block groups in full-duplex mode
US20210345374A1 (en) * 2020-05-01 2021-11-04 Qualcomm Incorporated Modulation and coding scheme (mcs) adaptation in full-duplex mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601382A (zh) * 2019-02-20 2020-08-28 华为技术有限公司 一种数据传输方法及通信装置
US20210345375A1 (en) * 2020-05-01 2021-11-04 Qualcomm Incorporated Time-interleaving of code block groups in full-duplex mode
US20210345374A1 (en) * 2020-05-01 2021-11-04 Qualcomm Incorporated Modulation and coding scheme (mcs) adaptation in full-duplex mode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Subband non-overlapping full duplex for NR duplex evolution", 3GPP DRAFT; R1-2203904, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153242 *
SPREADTRUM COMMUNICATIONS: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2203328, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052152923 *

Also Published As

Publication number Publication date
CN117812737A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2018228561A1 (zh) 资源分配的方法、网络设备和终端设备
US20200068610A1 (en) Resource scheduling method, network device, and communications device
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
EP3800955A1 (en) Wireless communication method and apparatus
EP3740008B1 (en) Method for determining location of control channel, and device and processor-readable storage medium
CN106851744A (zh) 无线通信的方法和装置
US11265903B2 (en) Uplink transmission method and apparatus
WO2018202163A1 (zh) 一种资源指示方法及装置
WO2020221321A1 (zh) 通信方法以及通信装置
CN114071745A (zh) 一种无线接入的方法以及装置
US11381288B2 (en) Communication method, network device, and terminal device
CN112218375A (zh) 确定资源分配的方法和装置
CN109996339B (zh) 一种通信方法及装置
WO2018202168A1 (zh) 信息传输方法及装置
WO2020114453A1 (zh) Srs传输的方法、接入网设备和终端设备
WO2019137299A1 (zh) 通信的方法和通信设备
CN115023914A (zh) 信息处理方法及设备
WO2024067499A1 (zh) 通信方法及通信装置
CN115208533A (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
CN112564873A (zh) 参考信号传输方法及通信装置
WO2024067656A1 (zh) 上行传输的方法和通信装置
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2023065365A1 (zh) 无线通信方法、终端设备和网络设备
WO2023051201A1 (zh) 通信方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870729

Country of ref document: EP

Kind code of ref document: A1