WO2023051201A1 - 通信方法与装置 - Google Patents

通信方法与装置 Download PDF

Info

Publication number
WO2023051201A1
WO2023051201A1 PCT/CN2022/117462 CN2022117462W WO2023051201A1 WO 2023051201 A1 WO2023051201 A1 WO 2023051201A1 CN 2022117462 W CN2022117462 W CN 2022117462W WO 2023051201 A1 WO2023051201 A1 WO 2023051201A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
terminal device
dmrs
time window
physical uplink
Prior art date
Application number
PCT/CN2022/117462
Other languages
English (en)
French (fr)
Inventor
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051201A1 publication Critical patent/WO2023051201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the communication field, and more specifically, to a parameter indicating method and device.
  • each repetition only uses its own demodulation reference signal (DMRS) for channel estimation.
  • DMRS demodulation reference signal
  • a possible implementation is to perform channel estimation jointly with multiple repeated DMRSs, and this implementation needs to ensure that the phases between these repetitions are continuous or the average transmission power is constant.
  • the performance of the base station receiving signals will also deteriorate. interference. Therefore, how to improve the performance of signal transmission becomes an urgent problem to be solved when the channel quality of multiple time units in which joint channel estimation is performed changes rapidly.
  • the present application provides a communication method and device.
  • the terminal equipment obtains the number of DMRS groups in a time unit, so as to flexibly determine the number of time units contained in a time window according to the number, that is, to flexibly determine whether to maintain phase continuity or
  • the number of time units in which the average transmit power is constant can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of poor uplink transmission performance or increased interference to other transmissions.
  • determining the number of time units included in a time window according to the number can also improve the performance gain of joint channel estimation relative to channel estimation in each time unit as much as possible.
  • a communication method including: a terminal device acquires the number of DMRS groups contained in a time unit, and the DMRS group is a DMRS group of a physical uplink channel; the terminal device obtains the number of DMRS groups contained in the time unit according to The quantity determines the quantity of the time unit included in the time window, in which the phase is continuous or the average transmission power is constant; the terminal device transmits the physical uplink channel in the time window.
  • phase continuity or the constant average transmit power in the time window means that the phase of the physical uplink channel is continuous or the average transmit power is constant in the time window, or that the physical uplink channel and the DM- The phase of the RS is continuous or the average transmission power is constant.
  • the existing technology does not consider the number of DMRS groups contained in a time unit when determining the number of time units contained in a time window.
  • the above scheme determines the number of time units contained in a time window When taking the number of DMRS groups contained in a time unit into consideration, it is more flexible to determine the number of time units contained in a time window, which can improve the performance of signal transmission in the case of rapid channel quality changes and reduce Uplink transmission performance deteriorates or increases interference to other transmissions.
  • the terminal device determines the number of time units included in the time window according to the number of DMRS groups included in the time unit, including:
  • the terminal device determines the number of time units included in the time window according to the mapping relationship between the number of DMRS groups included in the time unit and the number of time units included in the time window.
  • protocol preset or base station configuration mapping relationship can be shown in Table 1:
  • the mapping relationship between the number of DMRS groups included in the time unit and the number of time units included in the time window is contained in the DMRS groups included in the time unit In the one-to-one mapping or many-to-one mapping relationship between the multiple candidate values of the number and the multiple candidate values of the time unit included in the time window.
  • the terminal device determines the number of time units included in the time window according to the number of DMRS groups included in the time unit, including: the terminal device determines the number of time units included in the time window according to the first number and the number of DMRS groups included in the time unit determine the number of time units included in the time window, and the first number is used to determine the number of demodulation reference signal DMRS groups of the physical uplink channel in the time window.
  • the terminal device acquires the number of DMRS groups used to determine the physical uplink channel in the time window, so that it can flexibly determine the number of time units included in a time window according to the number and the number of DMRS included in the time unit, That is, flexibly determine the number of time units to keep the phase continuous or the average transmission power constant, which can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of poor uplink transmission performance or increased interference to other transmissions .
  • determining the number of time units included in a time window according to the number and the number of DMRS included in the time unit can also maximize the performance gain of joint channel estimation relative to channel estimation in each time unit.
  • the first number is preset, or the first number is received by the terminal device from the network device.
  • the time unit includes one of the following: one physical uplink channel repetition, one or more time slots, one or more orthogonal frequency division multiplexing OFDM symbol.
  • the physical uplink channel may be a physical uplink shared channel (physical uplink shared channel, PUSCH) or a physical uplink control channel (physical uplink control channel, PUCCH).
  • a PUSCH repetition can be a PUSCH nominal repetition (nominal repetition) or a PUSCH actual repetition (actual repetition) or a PUSCH actual repetition (actual repetition) without canceling the transmission.
  • the number of DMRS groups included in the time window is greater than or equal to the first number.
  • the number of time units included in the time window is in, express yes Rounded up, N is the first number, k is the number of DMRS groups included in the time unit, and k is a positive integer. k may be the number of nominal DMRS groups included in one time unit or the number of actual DMRS groups included in one time unit.
  • the terminal device determines the number of time units included in the time window according to the first number and the number of DMRS groups included in the time unit, including: the terminal The device determines the number of time units included in the time window according to the first number, the number of DMRS groups included in the time unit, and first information, where the first information indicates M, where M is a positive integer, and the time window includes The number of time units is less than or equal to M.
  • the number of time units contained in the time window is M, or, in the case of M ⁇ k ⁇ N , the number of time units included in the time window is
  • k is the number of DMRS groups included in the time unit
  • k is a positive integer
  • N is the first number.
  • the number of time units included in the time window is further limited.
  • the maximum value of the number makes it more flexible to determine the number of time units contained in a time window, which can improve the performance of signal transmission when the channel quality changes rapidly, reduce the degradation of uplink transmission performance or increase interference to other transmissions The problem.
  • the acquiring the first quantity by the terminal device includes: the terminal device determining the first quantity according to a mapping relationship between the second information and the first quantity, and the second quantity
  • the information includes at least one of the following parameters: the repetition type of the physical uplink channel, the mapping type of the physical uplink channel, the number of symbols of the physical uplink channel in one time unit, the single/double symbol of the DMRS of the physical uplink channel, The DMRS additional location parameters of the physical uplink channel, and the format of the physical uplink channel.
  • the mapping relationship between the second information and the first quantity includes a plurality of candidate values of the second information and a plurality of candidate values of the first quantity One-to-one mapping or many-to-one mapping.
  • the second information may contain dynamic configuration information
  • the mapping relationship between the second information and the first quantity is configured in the RRC signaling
  • the first quantity is determined according to the second information and the mapping relationship obtained through the dynamic configuration, avoiding In order to dynamically issue the first number, the overhead of physical layer signaling is reduced, and the spectrum utilization efficiency is improved.
  • this method can also obtain the effect of dynamically configuring the first number.
  • a communication method including: a network device notifies a terminal device of the number of DMRS groups contained in a time unit, so that the terminal device determines the number of time units contained in a time window, the The phase is continuous or the average sending power is constant in the time window; the network device receives the physical uplink channel from the terminal device.
  • the network device indicates to the terminal device the number of DMRS groups included in the time unit, so that the terminal device can flexibly determine the number of time units included in a time window according to the number, that is, flexibly determine the phase to be maintained
  • the number of time units with continuous or constant transmission power can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of degraded uplink transmission performance or increased interference to other transmissions.
  • determining the number of time units included in a time window according to the number can also improve the performance gain of joint channel estimation relative to channel estimation in each time unit as much as possible.
  • the time unit includes one of the following: one physical uplink channel repetition, one or more time slots, one or more orthogonal frequency division multiplexing OFDM symbols.
  • the method further includes: the network device sending the number of DMRS groups included in the time unit and the number of DMRS groups included in the time window to the terminal device The mapping relationship of the number of time units.
  • the network device sends a first number to the terminal device, where the first number is a demodulation reference signal used to determine a physical uplink channel within a time window Number of DMRS groups.
  • the network device indicates to the terminal device the number of DMRS groups used to determine the physical uplink channel in the time window, so that the terminal device can flexibly determine the number of DMRS groups in a time window according to the number and the number of DMRS contained in the time unit.
  • the number of time units included that is, to flexibly determine the number of time units to keep the phase continuous or the average transmission power constant, can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the deterioration of uplink transmission performance or Increases the problem of interference with other transmissions.
  • determining the number of time units included in a time window according to the number and the number of DMRS included in the time unit can also maximize the performance gain of joint channel estimation relative to channel estimation in each time unit.
  • the time unit includes one of the following: one physical uplink channel repetition, one or more time slots, one or more orthogonal frequency division multiplexing OFDM symbol.
  • the number of DMRS groups included in the time window is greater than or equal to the first number.
  • the method further includes: the network device sending first information to the terminal device, the first information indicating M, where M is a positive integer, and the time window includes The number of time units is less than or equal to M.
  • the terminal device by indicating the first information to the terminal device, so that the terminal device takes the first information into consideration when determining the number of time units contained in the time window, and further limits the maximum value of the number of time units contained in the time window , which makes it more flexible to determine the number of time units included in a time window, improves the performance of signal transmission when the channel quality changes rapidly, and reduces the problem of degraded uplink transmission performance or increased interference to other transmissions.
  • the method further includes: the network device sending second information to the terminal device, where the second information includes at least one of the following parameters: the physical uplink channel Repeat type, mapping type of the physical uplink channel, number of symbols of the physical uplink channel in a time unit, single/double symbol of the DMRS of the physical uplink channel, DMRS additional location parameters of the physical uplink channel, physical uplink channel format, there is a mapping relationship between the second information and the first quantity.
  • the second information includes at least one of the following parameters: the physical uplink channel Repeat type, mapping type of the physical uplink channel, number of symbols of the physical uplink channel in a time unit, single/double symbol of the DMRS of the physical uplink channel, DMRS additional location parameters of the physical uplink channel, physical uplink channel format, there is a mapping relationship between the second information and the first quantity.
  • the method further includes: the network device sending a mapping relationship between the second information and the first quantity to the terminal device.
  • the mapping relationship between the second information and the first quantity includes the mapping between the multiple candidate values of the second information and the multiple candidate values of the first quantity One-to-one mapping or many-to-one mapping.
  • the second information may contain dynamic configuration information
  • the mapping relationship between the second information and the first quantity is configured in the RRC signaling
  • the first quantity is determined according to the second information obtained through dynamic configuration and the mapping relationship, avoiding In order to dynamically issue the first number, the overhead of physical layer signaling is reduced, and the spectrum utilization efficiency is improved.
  • this method can also obtain the effect of dynamically configuring the first number.
  • a communication method including: the terminal device determines the second number according to the mapping relationship between the second information and the second number, the second number is used to determine the number of time units in the time window, the time The phase in the window is continuous or the average transmission power is constant, and the second information includes at least one of the following parameters: the physical uplink channel repetition type, the physical uplink channel mapping type, the number of symbols of the physical uplink channel in a time unit Number, DMRS single/double symbol of the physical uplink channel, DMRS additional position parameter of the physical uplink channel, format of the physical uplink channel, the physical uplink channel is the physical uplink channel transmitted by the terminal equipment; the terminal equipment according to the The second number determines the number of time units included in the time window; the terminal device transmits the physical uplink channel within the time window.
  • the network device indicates at least two candidate values of the number of time units to the terminal device, and the number of time units is associated with multiple candidate values affecting DMRS transmission parameters, and the terminal device uses the current physical uplink channel according to the association relationship
  • the transmission parameters affecting DMRS determine the number of time units contained in the time window, so that network devices can more flexibly indicate the time units that need to keep the phase continuous or the average transmission power unchanged, and can be improved when the channel quality changes rapidly
  • the performance of signal transmission reduces the problem of poor uplink transmission performance or increased interference to other transmissions.
  • the time unit includes one of the following: one physical uplink channel repetition, one or more time slots, one or more orthogonal frequency division multiplexing OFDM symbol.
  • the mapping relationship between the second information and the second quantity includes a plurality of candidate values of the second information and a plurality of candidate values of the second quantity One-to-one mapping or many-to-one mapping.
  • a communication method including: the network device sends a second number to the terminal device, the second number is used to determine the number of time units in a time window, and the phase is continuous or the average transmission power in the time window is not There is a mapping relationship between the second number and the second information, and the second information includes at least one of the following parameters: the physical uplink channel repetition type, the physical uplink channel mapping type, the physical uplink channel within a time unit The number of symbols, the single/double symbol of the DMRS of the physical uplink channel, the additional position parameter of the DMRS of the physical uplink channel, the format of the physical uplink channel, the physical uplink channel is the physical uplink channel transmitted by the terminal equipment; the network The device receives the physical uplink channel from the terminal device.
  • the network device indicates at least two candidate values of the number of time units to the terminal device, and the number of time units is associated with multiple candidate values affecting DMRS transmission parameters, and the terminal device uses the current physical uplink channel according to the association relationship
  • the transmission parameters affecting DMRS determine the number of time units contained in the time window, so that network devices can more flexibly indicate the time units that need to keep the phase continuous or the average transmission power unchanged, and can be improved when the channel quality changes rapidly
  • the performance of signal transmission reduces the problem of poor uplink transmission performance or increased interference to other transmissions.
  • the time unit includes one of the following: one physical uplink channel repetition, one or more time slots, one or more orthogonal frequency division multiplexing OFDM symbol.
  • the mapping relationship between the second information and the second quantity includes a plurality of candidate values of the second information and a plurality of candidate values of the second quantity One-to-one mapping or many-to-one mapping.
  • a communication device including: an acquisition module, configured to acquire the number of DMRS groups contained in a time unit; a processing module, configured to determine the time window according to the number of DMRS groups contained in the time unit The number of time units, the phase is continuous or the average transmission power is constant in the time window; the transceiver module is used to transmit the physical uplink channel in the time window.
  • the terminal device obtains the number of DMRS groups in the time unit, so that it can flexibly determine the number of time units contained in a time window according to the number, that is, flexibly determine the time unit to keep the phase continuous or the transmission power unchanged
  • the number can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of poor uplink transmission performance or increased interference to other transmissions.
  • determining the number of time units included in a time window according to the number can also improve the performance gain of joint channel estimation relative to channel estimation in each time unit as much as possible.
  • the processing module is specifically configured to map according to the number of DMRS groups included in the time unit and the number of time units included in the time window relationship, determine the number of the time units included in the time window.
  • the mapping relationship between the number of DMRS groups included in the time unit and the number of the time units included in the time window is included in the time unit In a one-to-one or many-to-one mapping relationship between the multiple candidate values of the number of DMRS groups included and the multiple candidate values of the number of time units included in the time window.
  • the processing module is configured to determine the time unit included in the time window according to the first number and the number of DMRS groups included in the time unit
  • the first number is the number of demodulation reference signal DMRS groups used to determine the physical uplink channel in the time window.
  • the terminal device acquires the number of DMRS groups used to determine the physical uplink channel in the time window, so that it can flexibly determine the number of time units included in a time window according to the number and the number of DMRS included in the time unit, That is, flexibly determine the number of time units to keep the phase continuous or the transmission power constant, which can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of degraded uplink transmission performance or increased interference to other transmissions.
  • determining the number of time units included in a time window according to the number and the number of DMRS included in the time unit can also maximize the performance gain of joint channel estimation relative to channel estimation in each time unit.
  • the first number is preset, or the first number is received by the terminal device from the network device.
  • the time unit includes one of the following: one physical uplink channel repetition, one or more time slots, one or more orthogonal frequency division multiplexing OFDM symbol.
  • the physical uplink channel may be a physical uplink shared channel (physical uplink shared channel, PUSCH) or a physical uplink control channel (physical uplink control channel, PUCCH).
  • a PUSCH repetition can be a PUSCH nominal repetition (nominal repetition) or a PUSCH actual repetition (aal repetition) or a PUSCH actual repetition (actual repetition) without canceling the transmission.
  • the number of DMRS groups included in the time window is greater than or equal to the first number.
  • the number of time units included in the time window is in, express yes Rounded up, N is the first number, k is the number of DMRS groups included in the time unit, and k is a positive integer. k may be the number of nominal DMRS groups included in one time unit or the number of actual DMRS groups included in one time unit.
  • the number of time units included in the time window by taking the first information into consideration when determining the number of time units included in the time window, and further limiting the maximum value of the number of time units included in the time window, it is possible to further reduce the frequency of keeping the phase continuous or the transmission power constant.
  • the number of time units can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of degraded uplink transmission performance or increased interference to other transmissions.
  • the processing module is specifically configured to determine the number of DMRS groups included in the time window according to the first number, the number of DMRS groups included in the time unit, and first information.
  • the number of time units, the first information indicates M, where M is a positive integer, and the number of time units included in the time window is less than or equal to M.
  • the number of time units included in the time window is M, or, in the case of M ⁇ k ⁇ N , the number of time units included in the time window is
  • k is the number of DMRS groups included in the time unit
  • k is a positive integer
  • N is the first number.
  • the second information may contain dynamic configuration information
  • the mapping relationship between the second information and the first quantity is configured in the RRC signaling
  • the first quantity is determined according to the second information obtained through dynamic configuration and the mapping relationship, avoiding In order to dynamically issue the first number, the overhead of physical layer signaling is reduced, and the spectrum utilization efficiency is improved.
  • this method can also obtain the effect of dynamically configuring the first number.
  • the processing module is specifically configured to determine the first quantity according to the mapping relationship between the second information and the first quantity, where the second information includes the following parameters: At least one item: the repetition type of the physical uplink channel, the mapping type of the physical uplink channel, the number of symbols of the physical uplink channel in one time unit, the single/double symbol of the DMRS of the physical uplink channel, the DMRS of the physical uplink channel Additional location parameters and the format of the physical uplink channel.
  • the mapping relationship between the second information and the first quantity includes a plurality of candidate values of the second information and a plurality of candidate values of the first quantity One-to-one mapping or many-to-one mapping.
  • a communication device including: a transceiver module, configured to notify a terminal device of the number of DMRS groups contained in a time unit, so that the terminal device can determine the number of time units contained in a time window , the phase is continuous or the average transmission power is constant in the time window; the transceiver module is also used to receive the physical uplink channel from the terminal device.
  • the network device indicates to the terminal device the number of DMRS groups in the time unit, so that the terminal device can flexibly determine the number of time units contained in a time window according to the number, that is, to flexibly determine that the phase should be kept continuous
  • the number of time units with constant transmit power can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of degraded uplink transmission performance or increased interference to other transmissions.
  • determining the number of time units included in a time window according to the number can also improve the performance gain of joint channel estimation relative to channel estimation in each time unit as much as possible.
  • the time unit includes one of the following: one physical uplink channel repetition, one or more time slots, one or more orthogonal frequency division multiplexing OFDM symbol.
  • the transceiver module is configured to send a first number to the terminal device, the first number is used to determine the physical uplink shared channel physical The number of demodulation reference signal DMRS groups of the uplink channel.
  • the network device indicates to the terminal device the number of DMRS groups used to determine the physical uplink channel in the time window, so that the terminal device can flexibly determine the number of DMRS groups in a time window according to the number and the number of DMRS contained in the time unit.
  • the number of time units included that is, to flexibly determine the number of time units to keep the phase continuous or the transmission power constant, can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the deterioration or increase of uplink transmission performance.
  • the problem of interference with other transmissions can also maximize the performance gain of joint channel estimation relative to channel estimation in each time unit.
  • the transceiver module is further configured to send the number of DMRS groups included in the time unit and the number of DMRS groups included in the time window to the terminal device.
  • the number of DMRS groups included in the time window is greater than or equal to the first number.
  • the transceiver module is further configured to send first information to the terminal device, the first information indicating M, where M is a positive integer, and the time window contained The number of time units is less than or equal to M.
  • the terminal device by indicating the first information to the terminal device, so that the terminal device takes the first information into consideration when determining the number of time units contained in the time window, and further limits the maximum value of the number of time units contained in the time window , can further reduce the number of time units that keep the phase continuous or transmit power constant, improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of degraded uplink transmission performance or increased interference to other transmissions.
  • the transceiver module is further configured to send second information to the terminal device, where the second information includes at least one of the following parameters: the physical uplink channel repetition type, the mapping type of the physical uplink channel, the number of symbols of the physical uplink channel in a time unit, the single/double symbol of the DMRS of the physical uplink channel, the additional position parameter of the DMRS of the physical uplink channel, the number of symbols of the physical uplink channel format, there is a mapping relationship between the second information and the first quantity.
  • the transceiving module is further configured to send the mapping relationship between the second information and the first quantity to the terminal device.
  • the mapping relationship between the second information and the first quantity includes a plurality of candidate values of the second information and a plurality of candidate values of the first quantity One-to-one mapping or many-to-one mapping.
  • the second information is the information that needs to be configured originally, and the second information can include the information of the dynamic configuration
  • the mapping relationship between the second information and the first quantity is configured in the RRC signaling, and the information obtained according to the dynamic configuration
  • the second information and the mapping relationship determine the first quantity, which avoids the dynamic delivery of the first quantity, reduces the overhead of physical layer signaling, and improves spectrum utilization efficiency.
  • this method can also get the effect of dynamically configuring the first quantity.
  • a communication method including: the terminal device determines the second number according to the mapping relationship between the second information and the second number, the second number is used to determine the number of time units in the time window, and the time The phase in the window is continuous or the average transmission power is constant, and the second information includes at least one of the following parameters: the physical uplink channel repetition type, the physical uplink channel mapping type, the number of symbols of the physical uplink channel in a time unit Number, DMRS single/double symbol of the physical uplink channel, DMRS additional position parameter of the physical uplink channel, format of the physical uplink channel, the physical uplink channel is the physical uplink channel transmitted by the terminal equipment; the terminal equipment according to the The second number determines the number of time units included in the time window; the terminal device transmits the physical uplink channel within the time window.
  • the network device indicates at least two candidate values of the number of time units to the terminal device, and the number of time units is associated with multiple candidate values affecting DMRS transmission parameters, and the terminal device uses the current physical uplink channel according to the association relationship
  • the transmission parameters affecting DMRS determine the number of time units contained in the time window, so that network devices can more flexibly indicate the time units that need to keep the phase continuous or the average transmission power unchanged, and can be improved when the channel quality changes rapidly
  • the performance of signal transmission reduces the problem of poor uplink transmission performance or increased interference to other transmissions.
  • the time unit includes one of the following: one physical uplink channel repetition, one or more time slots, one or more orthogonal frequency division multiplexing OFDM symbol.
  • the mapping relationship between the second information and the second quantity includes a plurality of candidate values of the second information and a plurality of candidate values of the second quantity One-to-one mapping or many-to-one mapping.
  • a communication method including: the network device sends a second number to the terminal device, the second number is used to determine the number of time units in a time window, and the phase continuity or average transmission power in the time window is not There is a mapping relationship between the second number and the second information, and the second information includes at least one of the following parameters: the physical uplink channel repetition type, the physical uplink channel mapping type, the physical uplink channel within a time unit The number of symbols, the single/double symbol of the DMRS of the physical uplink channel, the additional position parameter of the DMRS of the physical uplink channel, the format of the physical uplink channel, the physical uplink channel is the physical uplink channel transmitted by the terminal equipment; the network The device receives the physical uplink channel from the terminal device.
  • the network device indicates at least two candidate values of the number of time units to the terminal device, and the number of time units is associated with multiple candidate values affecting DMRS transmission parameters, and the terminal device uses the current physical uplink channel according to the association relationship
  • the transmission parameters affecting DMRS determine the number of time units contained in the time window, so that network devices can more flexibly indicate the time units that need to keep the phase continuous or the average transmission power unchanged, and can be improved when the channel quality changes rapidly
  • the performance of signal transmission reduces the problem of poor uplink transmission performance or increased interference to other transmissions.
  • the time unit includes one of the following: one physical uplink channel repetition, one or more time slots, one or more orthogonal frequency division multiplexing OFDM symbol.
  • the mapping relationship between the second information and the second quantity includes a plurality of candidate values of the second information and a plurality of candidate values of the second quantity One-to-one mapping or many-to-one mapping.
  • a communication device including: a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, so that the communication device executes the first The communication method described in any one of the aspects from the fourth aspect to the fourth aspect.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program is run on a computer, the computer is made to perform any of the following aspects from the first aspect to the fourth aspect.
  • a chip system including: a processor, configured to call and run a computer program from a memory, so that a communication device installed with the chip system executes any one of the first to fourth aspects of claims.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • Fig. 2 shows a schematic diagram of two repetition types of PUSCH and transmission blocks across multiple slots.
  • Fig. 3 shows a schematic diagram of an example of positions of four DMRS groups in the PUSCH.
  • Fig. 4 shows a schematic block diagram of modules related to the embodiment of the present application.
  • FIG. 5 is a schematic interaction diagram of the method 100 of the present application.
  • FIG. 6 is a schematic interaction diagram of the method 200 of the present application.
  • Fig. 7 shows a schematic block diagram of an example of determining time units included in a time window according to the method 200 of the present application.
  • Fig. 8 shows a schematic block diagram of still another example of determining the time unit included in the time window according to the method 200 of the present application.
  • Fig. 9 shows a schematic block diagram of still another example of determining the time unit included in the time window according to the method 200 of the present application.
  • FIG. 10 is a schematic interaction diagram of the method 300 of the present application.
  • Fig. 11 shows a schematic block diagram of an example of determining time units included in a time window according to the method 300 of the present application.
  • Fig. 12 shows a schematic block diagram of still another example of determining the time unit included in the time window according to the method 300 of the present application.
  • Fig. 13 shows a schematic block diagram of still another example of determining the time unit included in the time window according to the method 300 of the present application.
  • FIG. 14 is a schematic interaction diagram of the method 400 of the present application.
  • Fig. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a communication device 20 provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system (for example, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD)), etc.
  • LTE long term evolution
  • the technical solutions of the embodiments of the present application may also be applied to side link communication.
  • the technical solution of the embodiment of the present application can also be applied to: device to device (device to device, D2D) communication, machine to machine (machine to machine, M2M) communication, machine type communication (machine type communication, MTC), and Communication in connected car systems.
  • FIG. 1 To facilitate understanding of the embodiment of the present application, a communication system applicable to the embodiment of the present application is first described with reference to FIG. 1 .
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device,
  • the wireless communication system 100 may further include at least one terminal device, such as the terminal device 121 shown in FIG. 1 .
  • Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • the network device when the network device communicates with the terminal device, the network device may manage one or more cells, and there may be an integer number of terminal devices in one cell.
  • the network device 111 and the terminal device 121 form a single-cell communication system, and the cell is denoted as cell #1 without loss of generality.
  • the network device 111 may be a network device in cell #1, or in other words, the network device 111 may serve a terminal device (such as the terminal device 121) in cell #1.
  • a cell may be understood as an area within the wireless signal coverage of the network device.
  • the sending end device mentioned in the embodiment of the present application may be a terminal device, and the receiving end device may be a network device.
  • the sending end device is the terminal device 121
  • the receiving end device is the network device 111 .
  • FIG. 1 is only an exemplary illustration, and the present application is not limited thereto.
  • the embodiments of the present application may also be applied to any communication scenario where data (or data blocks) need to be sent repeatedly.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB) Node B (node B, NB), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (baseband unit , BBU), wireless fidelity (wireless fidelity, WIFI) system in the access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc.
  • 5G such as, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antennas of the base station in the 5G system
  • the panel may also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizes the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, medium access control (medium access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually be mapped to the information of the PHY layer, or transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in the access network (radio access network, RAN), and the CU can also be divided into network devices in the core network (core network, CN), which is not limited in this application.
  • terminal equipment in the wireless communication system may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • user equipment user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • the demodulation reference signal is a reference signal for data demodulation.
  • the demodulation reference signal may be a demodulation reference signal (demodulation reference signal, DMRS) in the LTE protocol or the NR protocol, or may be other reference signals defined in future protocols for realizing the same function.
  • DMRS can be carried in the physical shared channel and sent together with the data block signal for channel estimation of the non-fading stationary channel, and then complete the demodulation of the data block signal carried in the physical shared channel .
  • the physical downlink shared channel (physical downlink share channel, PDSCH) is sent together with the downlink data block
  • the physical uplink shared channel physical uplink shared channel (physical uplink share channel, PUSCH) is sent together with the uplink data block.
  • the demodulation reference signal may include a demodulation reference signal sent through a physical uplink shared channel.
  • the DMRS can be carried in the physical control channel and sent together with the control signal, so as to perform channel estimation on the fading channel, and then complete the demodulation of the control signal carried in the physical shared channel. For example, it is sent together with the downlink control signal in a physical downlink control channel (physical downlink control channel, PDCCH), or sent together with the uplink control signal in a physical uplink control channel (physical uplink control channel, PUCCH).
  • the demodulation reference signal may include a demodulation reference signal sent through a physical uplink control channel.
  • the demodulation reference signal may include a preloaded demodulation reference signal and an additional demodulation reference signal.
  • a preload demodulation reference signal is generally configured, occupying one symbol or multiple symbols in the time domain, and if multiple symbols are occupied, the multiple symbols are continuous in the time domain.
  • Additional (additional) demodulation reference signal For one transmission of one data block, whether to configure the additional demodulation reference signal is determined according to the length of one transmission of one data block. If the additional demodulation reference signal is configured, the demodulation reference signal generated by the same sequence after the frontloading of the demodulation reference signal at the transmitting end is the additional demodulation reference signal.
  • the additional demodulation reference signal may be one or more symbols after the symbol occupied by the preloaded demodulation reference signal, and the last symbol occupied by the preloaded demodulation reference signal is the same as the symbol occupied by the additional demodulation reference signal. The first symbol is not consecutive.
  • the additional demodulation reference signal can configure resources through higher layer signaling, such as RRC signaling. Additional demodulation reference signal is an optional demodulation reference signal.
  • one PUSCH repetition or one PUCCH repetition may contain one or more sets of DMRS.
  • DMRS group designed in this application when single-symbol DMRS is used, a group of DMRS is DMRS carried on one symbol; when double-symbol DMRS is used, a group of DMRS is DMRS carried on two consecutive symbols.
  • PUSCH Physical uplink shared channel
  • new radio new radio, NR
  • 3 PUSCH scheduling methods see protocol 38.214 6.1 for details).
  • Mode 1 using an uplink grant in downlink control information (DCI) to dynamically schedule the PUSCH.
  • DCI downlink control information
  • the UE performs a PUSCH transmission once receiving an uplink scheduling.
  • Configured grant Type 1 It is semi-persistently configured by the high-level IE configuredGrantConfig including rrc-ConfiguredUplinkGrant, and does not need to receive the uplink grant in DCI.
  • the upper layer configures some semi-persistent resources. If the UE has uplink data to send, it can use these resources to send PUSCH. If there is no uplink data to send, it will not send it.
  • Method 3 Configured grant Type 2: First receive the high-level IE configuredGrantConfig that does not include rrc-ConfiguredUplinkGrant, and then effectively activate the semi-persistent scheduling of the uplink grant in the DCI.
  • some semi-persistent resources are configured by the upper layer, and then activated and deactivated by physical layer signaling.
  • the behavior during activation is similar to that of the second PUSCH transmission. When not activated or deactivated, these resources cannot be used. .
  • a PUSCH may contain multiple repetitions, and each repetition transmits the same transport block (TB), and its redundancy versions may be the same or different.
  • a repetition carries a transport block cyclic redundancy check (TB CRC), and the rate matching unit is also a repetition.
  • PUSCH has two repetition types, repetition type A and repetition type B. Based on the repetition type A, the introduction of a new repetition type, that is, the transport block over multi-slot (TBoMS) PUSCH transmission, is under discussion.
  • Repeat type A (repeat type A of earlier protocol versions and enhanced repeat type A):
  • each black box is a time slot
  • each gray rectangle is repeated in each time slot.
  • repetition type A there are nominal repetition and actual repetition. For example, if there are k repeated cancellations among the K repeated transmissions (1 ⁇ k ⁇ K), then the nominal repeated is still K, while the actual repeated is K-k.
  • TDD time-division duplexing
  • K repetitions of a PUSCH transmission are nominal repetitions, that is to say, a PUSCH transmission corresponds to K slots, regardless of whether each slot in the K slots can really Used to send PUSCH repetitions.
  • the enhanced repetition type A will be introduced.
  • enhanced repetition type A the concept of available slot is introduced.
  • K effective time slots are determined based on radio resource control (radio resource control, RRC) configuration and scheduling DCI;
  • RRC radio resource control
  • K effective time slots are determined based on RRC configuration and activated DCI.
  • the added repetition type A also has a difference between nominal repetition and actual repetition.
  • the first category is determined based on RRC configuration
  • the second category is determined based on dynamic indications, that is, caused by physical layer indications. For example, the determination of CI effective time slots only considers RRC signaling and does not consider This PUSCH schedules other physical layer indications other than DCI.
  • each transmission corresponds to consecutive L symbols, and the symbols corresponding to K transmissions are continuous.
  • TDD mode for the transmission of PUSCH repetition type B, some symbols are considered as invalid symbols.
  • repetition type A when any symbol in an actual repeated resource of repetition type B is a downlink symbol, or the PUSCH time-frequency resource overlaps with the resource indicated by CI, or overlaps with the high-priority PUSCH/PUCCH, this The second PUSCH repetition cancels sending.
  • the specific operation and repetition type A are not repeated here.
  • Transport block over multi-slot (TBoMS):
  • NR wireless communication systems Compared with LTE and long term evolution advanced (LTE-A) wireless communication systems, NR wireless communication systems deploy higher frequency bands to obtain larger communication bandwidths. However, the high frequency band will cause greater path loss and penetration loss, making the coverage performance of NR far inferior to that of LTE and LTE-A.
  • a transmission block technology across multiple slots is proposed.
  • TB#1 to TB#4 are aggregated into one large TB.
  • This technology aggregates the small data packets on each time slot into one large data packet, and transmits the aggregated data packets on multiple time slots together, and reduces the cyclic redundancy code (cyclic redundancy) by reducing the number of TB splits. code, CRC) overhead, by increasing the transport block size (transport block size, TBS), thereby increasing the coding gain, and by reducing frequency resources, increasing the power spectral density and improving coverage performance.
  • CRC cyclic redundancy code
  • mappingtype Two mapping types of PUSCH (mappingtype)
  • PUSCH has two mapping types, mapping type A and mapping type B.
  • mapping type A the starting symbol S of PUSCH must be the first symbol of a slot, and the number of consecutive symbols L starts counting from symbol S; in mapping type B, the starting symbol S of PUSCH can be any symbol of a slot , the number L of consecutive symbols starts counting from symbol S.
  • the PUSCH mapping type can be Type A or Type B; for PUSCH repetition type B, the PUSCH mapping type can be Type B.
  • the notification of the mapping type and the dynamically scheduled PUSCH are indicated in the DCI; the PUSCH configuration permission Type1 is configured by high-layer parameters; the configuration permission Type2 PUSCH is supported in the activated DCI.
  • the high layer parameter maxLength indicates whether the DMRS of the PUSCH is a single symbol or a double symbol; dmrs-AdditionalPosition (values can be pos0, pos1, pos2 and pos3) indicates the position of the DMRS.
  • the positions of the first DMRS in the single-symbol DMRS and the double-symbol DMRS are given below by Table 2 and Table 3 respectively Among them, l d is the number of continuous symbols of PUSCH, and l 0 is the position of the first DMRS symbol of PUSCH.
  • maxLength and dmrs-AdditionalPosition are high-level communications.
  • the dynamically scheduled PUSCH is indicated in the DCI; the PUSCH configured with permission Type 1 is configured by high layer parameters; the PUSCH configured with permission Type 2 is supported in the activated DCI.
  • the position of the DMRS in the repetition is introduced when the DMRS is single symbol or double symbol, and the PUSCH is mapping type A or mapping type B respectively.
  • gray rectangles represent replicates, and gray shaded rectangles represent DMRS in replicates.
  • the PUCCH has five formats, as shown in Table 4, corresponding to different symbol lengths (each PUCCH repeats the corresponding symbol length).
  • the number of repeated symbols in format 1/3/4 can range from 4 to 14.
  • the DM-RS position of PUCCH format 1 is shown in Table 5. With the number of symbols, the number of DMRS The number can also be different.
  • the number of DM-RSs in PUCCH format 3/4 is specifically shown in Table 6:
  • the uplink transmission of the UE mainly includes 2 chips, a baseband integrated circuit (BBIC) and a radio frequency integrated circuit (RFIC).
  • BBIC generates a normalized baseband signal, calculates the gain and sends it to RFIC, and RFIC implements the gain sent by the gain calculation module through two-stage adjustment in the digital domain and the analog domain.
  • Analog domain gain adjustment or switching will cause uplink transmission phase jump.
  • the digital domain gain adjustment module will not cause the uplink transmission phase to jump.
  • the digital domain gain adjustment module is not suitable for large adjustments, because too large digital domain power will cause saturation of the digital-to-analog converter (DAC), and too small digital domain power will reduce DAC efficiency. It should be ensured that the digital domain power entering the DAC is relatively stable around a value.
  • the adjustment of the uplink transmit power will cause the adjustment of the analog domain gain, and the switch of the uplink analog domain will cause the switch of the analog domain gain module. Therefore, the adjustment of the uplink transmission power or the uplink switch will cause the jump of the uplink transmission phase.
  • each black box is a time unit (for example, it can be a PUSCH repetition, or a PUCCH repetition, or one or more time slots, or one or more orthogonal frequency Division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol), the gray rectangle is DMRS.
  • each time unit only uses its own DMRS for channel estimation.
  • uplink coverage needs to be enhanced, and one direction of uplink enhancement is to improve the quality of channel estimation.
  • time window involved in this application is not limited to the joint channel estimation time window, it is only used as an example of a name, and any physical uplink channel transmission time with continuous phase/same power can be understood as the time window of this application Time Window.
  • the current agreement agrees to introduce the concept of joint channel estimation time window, and the physical uplink channel transmission within a time window needs to ensure phase continuity and constant average power.
  • the base station may be configured with high-density DMRS, then within one repetition, there are multiple groups of DMRS to keep the phase continuous or the transmission power unchanged, and perform joint channel estimation between different repetitions The performance gain may not be significant.
  • FIG. 5 is a schematic interaction diagram of the method 100 of the present application.
  • the terminal device acquires the number of DMRS groups included in the time unit.
  • the terminal device may determine the number of DMRS groups included in the time unit according to the physical uplink channel configuration received from the network device.
  • the network device may also directly send the number of DMRS groups included in the time unit to the terminal device.
  • the time unit here may be any of the following: one physical uplink channel repetition, one or more time slots, and one or more OFDM symbols.
  • the physical uplink channel is PUSCH
  • this time unit can be used to transmit one TB, and only one transport block cyclic redundancy check code (transport block cyclic redundancy check code) is carried on this time unit check, TB CRC), such as TBoMS;
  • transport block cyclic redundancy check code transport block cyclic redundancy check code
  • TB CRC transport block cyclic redundancy check code
  • the OFDM symbols here can be OFDM symbols, or discrete Fourier transform extended orthogonal frequency division multiplexing (discrete fourier transform spread OFDM, DFT-S-OFDM) symbols.
  • the terminal device determines the number of time units included in the time window according to the number of DMRS groups included in the time unit, and the phase is continuous or the average transmission power in the time window is constant.
  • the number of time units included in the time window here can be one or more.
  • the number of time units included in a time window is one, then within a time unit, its phase is continuous, and its The average transmit power is also constant, so there is no need to keep the phase continuity or the average transmit power constant between each time unit involved in the transmission of the physical uplink channel, and the phase continuity or the average transmit power in the time window can be achieved;
  • the terminal device here determines that the number of time units contained in the time window is multiple, then the phase continuity or the average transmission power between multiple time units in a time window needs to be kept constant, so that the phase continuity within the time window can be achieved Or the average transmit power remains unchanged.
  • the terminal device determines the number of time units included in the time window according to the mapping relationship between the number of DMRS groups included in the time unit and the number of time units included in the time window.
  • mapping relationship here may be pre-configured on the terminal device, for example, it may be stipulated by a protocol, or it may also be received by the terminal device from the network device.
  • the number of DMRS groups included in a time unit here may be understood as the number of DMRS groups included in each time unit in the physical uplink channel sent by the terminal device in S103.
  • the terminal device may obtain multiple candidate values of the number of DMRS groups contained in the time unit, and the multiple candidate values include the DMRS groups contained in each time unit in the physical uplink channel sent by the terminal device in S103 , and there is a one-to-one or many-to-one mapping relationship between the multiple candidate values of the number of DMRS groups contained in the time unit and the multiple candidate values of the number of time units contained in the time window, and the terminal device is in The mapping relationship between the number of DMRS groups included in each time unit in the physical uplink channel sent in S103 and the number of time units included in each time window in the physical uplink channel in S103 includes the DMRS groups included in the above time units In the one-to-one mapping or many-to-one mapping relationship between the multiple candidate values of the number and the multiple candidate values of the number of time units included in the time window.
  • the terminal device transmits the physical uplink channel within the time window, and correspondingly, the network device receives the physical uplink channel within the time window.
  • the terminal device acquires the number of DMRS groups included in the time unit, so that it can flexibly determine the number of time units included in a time window according to the number, that is, it can flexibly determine whether to keep the phase continuous or to keep the transmission power low.
  • the variable number of time units can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of poor uplink transmission performance or increased interference to other transmissions.
  • determining the number of time units included in a time window according to the number can also improve the performance gain of joint channel estimation relative to channel estimation in each time unit as much as possible.
  • the base station may be configured with high-density DMRS.
  • a time unit includes 3 or 4 DMRS groups, then the quality of channel estimation in one time unit is already high, and the performance of joint channel estimation in multiple such time units
  • the benefit may not be large, but when determining the number of time units included in the time window through the method of the embodiment of the present application, taking into account the number of DMRS groups in one time unit, the number of DMRS groups included in each time unit can be compared More, that is, when the quality of channel estimation performed by the time unit itself is high, better channel estimation performance can also be obtained by performing joint channel estimation on fewer time units; at the same time, fewer time units need to maintain the average transmission power When the channel changes quickly, the performance of the received signal deteriorates or the interference to other transmissions caused by keeping the transmit power constant is less, so that the power control performance can be improved. To sum up, the embodiment of the present application can obtain a reasonable compromise between channel estimation performance and power control performance for the technical problem to be solved.
  • method 100 also includes:
  • Step 1 the terminal device acquires a first number, the first number is the number of DMRS groups used to determine the physical uplink channel in a time window, and the phase is continuous or the average transmission power is constant in the time window.
  • the first number may be preset by the protocol, or the first number may also be received by the terminal device from the network device, that is, step 1 may also be: the terminal device receives the first number from the network device, and the corresponding Specifically, the network device sends the first quantity to the terminal device.
  • the physical uplink channel here can be understood as a physical uplink channel to be sent by the subsequent terminal device to the network device.
  • the PUSCH we usually refer to includes the data part of the PUSCH and the PUSCH DMRS. Sometimes, we simplify the data part of the PUSCH to PUSCH, that is, the transmission of the PUSCH includes the transmission of the PUSCH and the DMRS of the PUSCH. It should also be understood that the PUCCH we usually refer to includes the control signal part of the PUCCH and the DMRS of the PUCCH. Sometimes, we simplify the control signal part of the PUCCH to the PUCCH, that is, the transmission of the PUCCH includes the transmission of the PUCCH and the DMRS of the PUCCH.
  • Step 2 the terminal device determines the number of time units included in the time window according to the first number and the number of DMRS groups included in the time unit.
  • the number of DMRS groups included in the time unit here may be obtained by the terminal device from the physical uplink channel configuration information, and the physical uplink channel configuration information may be received by the terminal device from the network device.
  • the terminal device determines the number of time units included in the time window, a condition needs to be satisfied, that is, the number of DMRS groups included in the time window is greater than or equal to the first number.
  • the number of time units contained in the time window is in, express yes Rounded up, N is the first number, k is the number of DMRS groups included in the time unit, and k is a positive integer.
  • step S204 in the method 200 For details, refer to the description corresponding to step S204 in the method 200 .
  • the terminal device obtains the number of DMRS groups used to determine the physical uplink channel in the time window, so that it can flexibly determine the number of time units included in a time window according to the number and the number of DMRS included in the time unit.
  • Quantity that is, to flexibly determine the number of time units to keep the phase continuous or the average transmission power constant, which can improve the performance of signal transmission when the channel quality changes rapidly, reduce the deterioration of uplink transmission performance or increase interference to other transmissions The problem.
  • determining the number of time units included in a time window according to the number and the number of DMRS included in the time unit can also maximize the performance gain of joint channel estimation relative to channel estimation in each time unit.
  • the terminal device determines the number of time units included in the time window according to the first number, the number of DMRS groups included in the time unit, and first information, where the first information indicates M, where M is a positive integer, and the time included in the time window The number of units is less than or equal to M.
  • M is used to indicate the upper limit of the number of time units included in the time window.
  • the first information here may be received by the terminal device from the network device, so the method 100 may further include: the terminal device receives the first information from the network device, and correspondingly, the network device sends the first information to the terminal device .
  • the number of time units included in the time window is M, or, in the case of M ⁇ k ⁇ N, the number of time units included in the time window is
  • k is the number of DMRS groups included in the time unit
  • k is a positive integer
  • N is the first number.
  • step S305 in the method 300 For details, refer to the description corresponding to step S305 in the method 300 .
  • the maximum value of the number of time units contained in a time window is further limited, so that the time contained in a time window can be determined.
  • the number of units is more flexible, which can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of poor uplink transmission performance or increased interference to other transmissions.
  • the terminal device determines the first quantity according to the mapping relationship between the second information and the first quantity.
  • the second information includes at least one of the following parameters: PUSCH repetition type (repetition type), PUSCH mapping type ( mapping type), the number of symbols of PUSCH in a time unit (the length indicated in startSymbolAndLength, or the length indicated in startSymbolAndLength, or the length indicated in startSymbolAndLength multiplied by the number of slots corresponding to a repetition in TBoMS, or the length indicated in startSymbolAndLength length multiplied by the number of slots corresponding to one repetition in TBoMS), single/double symbol (maxLength) of DMRS of PUSCH, additional position parameter of DMRS of PUSCH (dmrs-additional position);
  • the second information includes At least one of the following parameters: the number of symbols of PUCCH in one time unit (PUCCH length), the format of PUCCH (PUCCH length), the format of PUCCH (PUCCH length), the
  • the second information here may be received by the terminal device from the network device, so the method 100 may further include: the terminal device receives the second information from the network device, and correspondingly, the network device sends the second information to the terminal device .
  • the second information here may also be obtained by the terminal device based on information received from the network device, for example, when the physical uplink channel is PUSCH, the terminal device configures and/or schedules the PUSCH from the network device according to the PUSCH received from the network device When the physical uplink channel is the PUCCH, the terminal device obtains the second information from the network device according to the PUCCH configuration received from the network device and/or the DCI for scheduling the PDSCH corresponding to the PUCCH.
  • the parameters included in the second information can be understood as transmission parameters that affect the DMRS in the physical uplink channel sent by the subsequent terminal device to the network device, for example, parameters that affect the number of DMRS groups included in one time unit, wherein, The number of symbols of the physical uplink channel in one time unit may be understood as the number of time domain symbols of the physical uplink channel in one or more slots.
  • the candidate values are in one-to-one correspondence, or there may be a many-to-one mapping relationship between the multiple candidate values of the second information and the first multiple candidate values.
  • the mapping relationship between the second information and the first quantity is included in a one-to-one mapping or a many-to-one mapping relationship between multiple candidate values of the second information and multiple candidate values of the first quantity.
  • the terminal device determines the first quantity according to the mapping relationship between the second information and the first quantity, it can be understood as one of multiple candidate values of the second information corresponding to the physical uplink channel sent by the terminal device to the network device subsequently.
  • the candidate value and the mapping relationship between the candidate value and the first number of candidate values determine the first number of candidate values.
  • the second information is the information that needs to be configured to realize the physical uplink channel transmission in the prior art
  • the second information can include dynamic configuration information
  • the second information and the first quantity are configured in the RRC signaling
  • the mapping relationship, the first number is determined according to the second information obtained by dynamic configuration and the mapping relationship, avoiding the dynamic delivery of the first number, reducing the overhead of physical layer signaling, and improving spectrum utilization efficiency.
  • the second information Contains dynamic configuration information, so this method can also obtain the effect of the first number of dynamic configurations.
  • FIG. 6 is a schematic interaction diagram of the method 200 of the present application.
  • the network device sends PUSCH configuration to the terminal device.
  • the terminal device may determine that the number of DMRSs included in one time unit is k according to the PUSCH configuration received in S201, where k is a positive integer.
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate a joint channel estimation time window, and the first indication information indicates N DMRS/group, where N is a positive integer.
  • the DMRS and the DMRS group refer to the introduction of the DMRS above for details, and will not be repeated here.
  • the embodiment of the present application takes a single-symbol DMRS as an example for illustration.
  • the DMRS in the embodiment of the present application can be replaced by a DMRS group.
  • the network device indicates N DMRSs to the terminal device by sending the number N to the terminal device, and indicates the time window to the terminal device in the form of N DMRSs.
  • the network device indicates N DMRSs to the terminal device by sending the number N to the terminal device, and indicates to the terminal device that the number of DMRSs included in a time window cannot be less than N in the form of N DMRSs.
  • S201 and S202 do not have a strict time sequence, and the step numbers in the method 200 do not limit their execution sequence, and S201 and S202 may be indicated by different signaling, or may be indicated by the same signaling.
  • the network device sends DCI for scheduling the PUSCH to the terminal device.
  • step S203 is performed, and the network device schedules PUSCH through the uplink grant in DCI; if method 2 is adopted, step S203 is not performed; if Mode 3 is adopted, the DCI in S203 is replaced with the activated DCI, and the network device activates the uplink grant in the DCI for semi-persistent scheduling.
  • the terminal device determines a joint channel estimation time window according to the information received in S201, S202 (and S203).
  • the time window here can be understood as one or more time units that keep the phase continuous/power the same, where the time unit can be any of the following: a physical uplink shared channel PUSCH repetition, one or more time slots, one or more Orthogonal frequency division multiplexing OFDM symbols.
  • the terminal device determines the number of time units included in the joint channel estimation time window according to the number k of DMRSs included in a time unit acquired in S201 and the number N of DMRSs indicated by the network device in S202.
  • the number of time units contained in the joint channel estimation time window in, express yes Rounded up.
  • PUSCH is transmitted in 4 time units as an example, where each black box represents a time unit, and each gray rectangle represents a DMRS.
  • a time window includes 2 time units, and a time window includes 2 DMRSs.
  • a time window includes 1 time unit, and a time window includes 2 DMRSs.
  • a time window includes 1 time unit, and a time window includes 3 DMRSs.
  • a time window includes 1 time unit, and a time window includes 4 DMRSs.
  • a time window includes 3 time units, and a time window includes 3 DMRSs.
  • a time window includes 2 time units, and a time window includes 4 DMRSs.
  • a time window includes 1 time unit, and a time window includes 3 DMRSs.
  • a time window includes 1 time unit, and a time window includes 4 DMRSs.
  • the number of time units contained in the joint channel estimation time window in, express yes Round down, max() means to take a larger value.
  • each black box represents a time unit
  • each gray rectangle represents a DMRS.
  • a time window includes 2 time units, and a time window includes 2 DMRSs.
  • a time window includes 1 time unit, and a time window includes 2 DMRSs.
  • a time window includes 1 time unit, and a time window includes 3 DMRSs.
  • a time window includes 1 time unit, and a time window includes 4 DMRSs.
  • the terminal device sends a PUSCH to the terminal device according to the determined joint channel estimation time window.
  • the number of DMRSs in one time unit involved in the embodiment of the present application is the nominal number of DMRSs. It should be understood that some situations may affect the actual number of DMRSs in a time unit in a specific implementation, making the actual number less than the nominal number, for example, DMRSs and configured control channel resources overlap in time-frequency resources , or the common reference signals of the DMRS and the LTE system overlap in time, then the DMRS in one time unit will be moved backward, or the number will be reduced.
  • the time unit in this embodiment of the present application is one PUSCH repetition
  • the number of DMRSs in one repetition is the number of DMRSs included in the nominal repetition.
  • the determined time window for joint channel estimation that is, the PUSCH transmission time with continuous phase/same power is also taken as a unit of nominal repetition duration, that is, an integer number of nominal repetitions. In this way, the actual implementation is simpler, without considering the actual transmission when the PUSCH transmission is affected by other factors.
  • the base station may be configured with high-density DMRS.
  • a time unit includes 3 or 4 DMRS groups, then the quality of channel estimation in one time unit is already high, and the performance of joint channel estimation in multiple such time units
  • the benefit may not be large, but when determining the number of time units included in the time window through the method of the embodiment of the present application, taking into account the number of DMRS groups in one time unit, the number of DMRS groups included in each time unit can be compared More, that is, when the quality of channel estimation performed by the time unit itself is high, better channel estimation performance can also be obtained by performing joint channel estimation on fewer time units; at the same time, fewer time units need to maintain the average transmission power When the channel changes quickly, the performance of the received signal deteriorates or the interference to other transmissions caused by keeping the transmit power constant is less, so that the power control performance can be improved. To sum up, the embodiment of the present application can obtain a reasonable compromise between channel estimation performance and power control performance for the technical problem to be solved.
  • the network device sends the number of DMRS groups used to determine the PUSCH within the time window to the terminal device, and the terminal device determines the number of time units included in a time window according to the number and the number of DMRS included in the time unit , that is, to flexibly determine the number of time units to keep the phase continuous or the transmission power constant, which can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of poor uplink transmission performance or increased interference to other transmissions .
  • determining the number of time units included in a time window according to the number and the number of DMRS included in the time unit can also maximize the performance gain of joint channel estimation relative to channel estimation in each time unit.
  • FIG. 10 is a schematic interaction diagram of the method 300 of the present application.
  • the network device sends a PUSCH configuration to the terminal device.
  • the terminal device may determine, according to the PUSCH configuration received in S201, that the number of DMRSs included in one time unit is k, where k is a positive integer.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate a joint channel estimation time window, and the first indication information indicates M time units.
  • the time unit may be any one of the following: one Physical Uplink Shared Channel PUSCH repetition, one or more time slots, one or more Orthogonal Frequency Division Multiplexing OFDM symbols.
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate the joint channel estimation application threshold, and the third indication information indicates N/group of DMRSs.
  • the DMRS and the DMRS group refer to the introduction of the DMRS above for details, and will not be repeated here.
  • the embodiment of the present application takes a single-symbol DMRS as an example for illustration.
  • the DMRS in the embodiment of the present application can be replaced by a DMRS group.
  • the joint channel estimation application threshold here can be understood as a threshold value used to limit the number of DMRSs included in a time unit, and the "joint channel estimation application threshold" is only an example of the name of the threshold. This is not limited. It should be understood that the network device indicates N DMRSs to the terminal device by sending the number N to the terminal device, and the N DMRSs are used as joint channel estimation application thresholds. Alternatively, the network device indicates N DMRSs to the terminal device by sending the number N to the terminal device, and indicates to the terminal device that the number of DMRSs included in a time window cannot be less than N in the form of N DMRSs.
  • S301-S303 does not have a strict time sequence, and the step numbers in the method 300 do not limit their execution order.
  • S301-S303 may be indicated by different signaling, or may be indicated by the same signaling.
  • the network device sends DCI for scheduling the PUSCH to the terminal device.
  • step S304 is performed, and the network device schedules PUSCH through the uplink grant in DCI; if method 2 is adopted, step S304 is not performed; if Mode 3 is adopted, the DCI in S304 is replaced with the activated DCI, and the network device activates the uplink grant semi-persistent scheduling in the DCI.
  • the terminal device determines a joint channel estimation time window according to the information received in S301-304 (and S305).
  • the time window here can be understood as one or more time units that keep the phase continuous/power the same.
  • the terminal device determines the joint channel estimation time according to the number k of DMRSs included in a time unit obtained in S301, the number M of time units indicated by the network device in S302, and the joint channel estimation application threshold N indicated in S303 The number of time units to include in the window.
  • a time window contains M time units, that is, a time window contains 2 time units, and a time The window contains 2 DMRS.
  • a time window includes 2 time units, and a time window includes 4 DMRSs.
  • one time window includes one time unit, and one time window includes three DMRSs.
  • one time window includes 1 time unit, and one time window includes 4 DMRSs.
  • one time window includes 2 time units, and one time window includes 2 DMRSs.
  • one time window includes one time unit, and one time window includes two DMRSs.
  • one time window includes one time unit, and one time window includes three DMRSs.
  • one time window includes 1 time unit, and one time window includes 4 DMRSs.
  • a time window contains M time units, that is, a time window contains 3 time units, and a time The window contains 3 DMRS.
  • one time window includes 2 time units, and one time window includes 4 DMRSs.
  • one time window includes one time unit, and one time window includes three DMRSs.
  • one time window includes 1 time unit, and one time window includes 4 DMRSs.
  • the terminal device sends the PUSCH to the terminal device according to the determined joint channel estimation time window.
  • the number of DMRSs in one time unit involved in the embodiment of the present application is the nominal number of DMRSs. It should be understood that some situations may affect the actual number of DMRSs in a time unit in a specific implementation, making the actual number less than the nominal number, for example, DMRSs and configured control channel resources overlap in time-frequency resources , or the common reference signals of the DMRS and the LTE system overlap in time, then the DMRS in one time unit will be moved backward, or the number will be reduced.
  • the time unit in this embodiment of the present application is one PUSCH repetition
  • the number of DMRSs in one repetition is the number of DMRSs included in the nominal repetition.
  • the determined time window for joint channel estimation that is, the PUSCH transmission time with continuous phase/same power is also taken as a unit of nominal repetition duration, that is, an integer number of nominal repetitions. In this way, the actual implementation is simpler, without considering the actual transmission when the PUSCH transmission is affected by other factors.
  • the joint channel estimation application threshold may also be preset by the protocol, that is, step S303 may not be performed.
  • the network device indicates to the terminal device the number of DMRS groups used to determine the PUSCH within the time window in the form of the number of DMRS, and indicates to the terminal device the time unit included in the time window in the form of the number of time units
  • the maximum value of the number of time units, the number of time units contained in a time window is determined according to the number of DMRS contained in the time unit, the number of DMRS indicated by the network device, and the number of time units, so that the terminal device can flexibly determine the time
  • the number of time units included in the window can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of degraded uplink transmission performance or increased interference to other transmissions.
  • determining the number of time units included in a time window according to the number and the number of DMRS included in the time unit can also maximize the performance gain of joint channel estimation relative to channel estimation in each time unit.
  • FIG. 14 is a schematic interaction diagram of the method 400 of the present application.
  • the method 400 may be implemented in four different manners.
  • the network device sends the PUSCH configuration to the terminal device.
  • the terminal device may determine, according to the PUSCH configuration received in S401, the transmission parameters affecting DMRS transmission used by the terminal device to transmit the PUSCH, where the transmission parameters affecting DMRS transmission may be one or more of the following: repetition type (repetition type ), the mapping type (mapping type), the number of continuous symbols of PUSCH, the single/double symbol of DMRS of PUSCH, and the parameter dmrs-AdditionalPosition.
  • the network device sends fourth indication information to the terminal device, where the fourth indication information is used to indicate multiple joint channel estimation time windows, and the fourth indication information indicates at least two numbers of time units.
  • the fourth indication information indicates the number of 2 time units (that is, M1 and M2) as an example for illustration.
  • the fourth indication information can also indicate other quantities greater than 2, This application does not limit this.
  • the network device indicates M1 and M2 time units to the terminal device by sending the quantities M1 and M2 to the terminal device, and indicates the time window to the terminal device in the form of M1 and M2 time units.
  • the network device indicates M1 and M2 time units to the terminal device by sending the quantities M1 and M2 to the terminal device, and indicates to the terminal device the number of time units included in a time window in the form of M1 and M2 time units.
  • At least two quantities of the above time units are associated with one or more of multiple transmission parameters affecting DMRS transmission: repetition type (repetition type), mapping type (mapping type), number of persistent symbols of PUSCH, PUSCH DMRS single/double symbol, parameter dmrs-AdditionalPosition.
  • the multiple transmission parameters affecting DMRS transmission involved in S402 include the transmission parameters affecting DMRS transmission used by the terminal device in S401 and S403 when transmitting the PUSCH.
  • the multiple transmission parameters affecting DMRS transmission in S402 generally refer to multiple possible types of the transmission parameters, while the transmission parameters affecting DMRS transmission used by the terminal device in S401 and S403 when transmitting PUSCH refer specifically to the terminal Transmission parameters affecting DMRS transmission to be used when the device sends the PUSCH in S405.
  • S401 and S402 do not have a strict time sequence, and the step numbers in method 400 do not limit their execution order, and S401 and S402 may be indicated by different signaling, or may be indicated by the same signaling.
  • the network device sends the DCI for scheduling the PUSCH to the terminal device.
  • step S403 is performed, and the network device schedules PUSCH through the uplink grant in DCI; if method 2 is adopted, step S403 is not performed; if Mode 3 is adopted, the DCI in S403 is replaced with the activated DCI, and the network device activates the uplink grant semi-persistent scheduling in the DCI.
  • the terminal device may determine the transmission parameters affecting DMRS transmission used by the terminal device when transmitting the PUSCH according to the PUSCH configuration sent by the network device and the DCI for scheduling PUSCH, where the transmission parameters affecting DMRS transmission may be one or more of the following: Repetition type (repetition type), mapping type (mapping type), number of continuous symbols of PUSCH, single/double symbol of DMRS of PUSCH, parameter dmrs-AdditionalPosition.
  • the terminal device may determine the transmission parameters affecting DMRS transmission used by the terminal device when transmitting PUSCH according to the DCI sent by the network device to schedule PUSCH, where the transmission parameters affecting DMRS transmission may be one or more of the following: repeat type (repetition type), mapping type (mapping type), number of continuous symbols l d of PUSCH, single/double symbol of DMRS of PUSCH, parameter dmrs-AdditionalPosition.
  • the terminal device determines a joint channel estimation time window according to the information received in S401, S402 (and S403).
  • the time window here can be understood as one or more time units that keep the phase continuous/power the same, where the time unit can be any of the following: a physical uplink shared channel PUSCH repetition, one or more time slots, one or more Orthogonal frequency division multiplexing OFDM symbols.
  • the terminal device determines the joint channel estimation time window according to the number according to the corresponding relationship between the transmission parameters affecting DMRS transmission used by the terminal device when transmitting the PUSCH and one of the at least two numbers of time units, that is, the time window Include several time units.
  • the terminal device sends the PUSCH to the terminal device according to the determined joint channel estimation time window.
  • the following combines several possible examples to further introduce how the at least two numbers of the above time units in S402 are associated with one or more of the multiple transmission parameters that affect DMRS transmission, and how the terminal device transmits the PUSCH in S404 according to the
  • the used transmission parameters affecting DMRS transmission correspond to one of the at least two numbers of time units, and determine the joint channel estimation time window according to the number of time units.
  • Example 1 the association relationship in S402 is: when the repetition type used by the terminal device when transmitting PUSCH is Repetition typeA, the terminal device determines in S404 that the time window includes M1 time units; when the repetition type used by the terminal device when transmitting PUSCH is repetition typeB , in S404, the terminal device determines that the time window includes M2 time units.
  • the association relationship in S402 is: when the terminal device uses single-symbol DMRS when transmitting PUSCH, the terminal device determines in S404 that the time window includes M1 time units; when the terminal device uses double-symbol DMRS when transmitting PUSCH, the terminal device determines in S404 The time window includes M2 time units.
  • Example 3 the association relationship in S402 is: when the mapping type used by the terminal device to transmit PUSCH is Mapping typeA, the terminal device determines in S404 that the time window includes M1 time units; when the mapping type used by the terminal device to transmit PUSCH is mapping typeB , in S404, the terminal device determines that the time window includes M2 time units.
  • the association relationship in S402 is: when the number of continuous symbols l d of the PUSCH used by the terminal equipment to transmit the PUSCH satisfies condition 1, the terminal equipment determines in S404 that the time window includes M1 time units; the terminal equipment uses when transmitting the PUSCH When the number of persistent symbols l d of the PUSCH satisfies condition 2, the terminal device determines in S404 that the time window includes M2 time units; wherein, condition 1 may be l d ⁇ 7, and condition 2 is l d >7.
  • Example 6 the association relationship in S402 is: when the terminal device transmits PUSCH using single-symbol DMRS, the terminal device determines in S404 that the time window includes M1 time units; when the terminal device transmits PUSCH using double-symbol DMRS, mapping type A, S404 The terminal device determines that the time window includes M2 time units; when the terminal device uses double-symbol DMRS and mapping type B when transmitting the PUSCH, the terminal device determines that the time window includes M3 time units in S404.
  • Example 7 the association relationship in S402 is: when the terminal device transmits PUSCH, use Repetition typeA, l d satisfies condition 1, in S404, the terminal device determines that the time window includes M1 time units; when the terminal device transmits PUSCH, use Repetition typeA, l d When condition 2 is satisfied , the terminal device in S404 determines that the time window includes M2 time units; when the terminal device transmits the PUSCH, Repetition typeB is used, and when condition 3 is met, the terminal device determines that the time window includes M3 time units in S404; the terminal device transmits Repetition type B is used during PUSCH, and when condition 4 is met, the terminal device determines in S404 that the time window includes M4 time units.
  • Example 8 can be expressed in combination with Table 1 and Table 2.
  • At least two numbers of time units (such as M1, M2, M3) in the embodiment of the present application may be equal to 1. In this case, at least two numbers of time units represent different time units No joint channel estimation is performed.
  • the embodiment of the present application may also indicate at least two numbers of time units in some scenarios, and not indicate at least two numbers of time units in other scenarios. In this case, it means not indicating at least two numbers of time units. A number of scenarios do not perform joint channel estimation between different repetitions.
  • the time unit in this embodiment of the present application is one PUSCH repetition
  • the number of DMRSs in one repetition is the number of DMRSs included in the nominal repetition.
  • the determined time window for joint channel estimation that is, the PUSCH transmission time with continuous phase/same power is also taken as a unit of nominal repetition duration, that is, an integer number of nominal repetitions. In this way, the actual implementation is simpler, without considering the actual transmission when the PUSCH transmission is affected by other factors.
  • the network device indicates at least two candidate values of the number of time units to the terminal device, and the number of time units is associated with multiple candidate values affecting DMRS transmission parameters, and the terminal device uses the
  • the transmission parameters affecting DMRS determine the number of time units contained in the time window, so that the network device can more flexibly indicate the number of time units to keep the phase continuous or the average transmission power constant, and can be used in the case of rapid channel quality changes Improve the performance of signal transmission and reduce the problem of poor uplink transmission performance or increased interference to other transmissions.
  • the terminal device determines the number N of DMRSs according to the association relationship, it further determines the time window according to method 200 to include The number of time units.
  • the network device sends multiple candidate values used to determine the number of DMRS groups of PUSCH within the time window to the terminal device, and the terminal uses the association relationship between the multiple candidate values and multiple candidate values affecting DMRS transmission parameters , combined with the transmission parameters affecting DMRS used by the current PUSCH, it is possible to flexibly determine the number of time units contained in the time window, that is, to flexibly determine the number of time units to keep the phase continuous or the average transmission power unchanged, and the channel quality changes In the faster case, the performance of signal transmission can be improved, and the problem of poor uplink transmission performance or increased interference to other transmissions can be reduced. In addition, determining the number of time units included in a time window according to the number and the number of DMRS included in the time unit can also maximize the performance gain of joint channel estimation relative to channel estimation in each time unit.
  • the network device sends M to the terminal device time units, see step S303 for details.
  • the terminal device determines the joint channel estimation application threshold according to the association relationship, it further determines the number of time units included in the time window according to method 300.
  • the network device sends multiple candidate values for determining the maximum number of DMRS groups of PUSCH in the time window and the number of time units contained in the time window to the terminal device, and the terminal uses the multiple candidate values and
  • the association relationship of multiple candidate values affecting the transmission parameters of DMRS, combined with the transmission parameters affecting DMRS used by the current PUSCH, can flexibly determine the number of time units contained in the time window, that is, flexibly determine whether to maintain phase continuity or average transmission
  • the number of time units with constant power can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of poor uplink transmission performance or increased interference to other transmissions.
  • determining the number of time units included in a time window according to the number and the number of DMRS included in the time unit can also maximize the performance gain of joint channel estimation relative to channel estimation in each time unit.
  • the network device sends the PUSCH configuration to the terminal device.
  • the terminal device can determine the number K of DMRSs included in one time unit according to the PUSCH configuration.
  • the network device indicates multiple joint channel estimation time windows to the terminal device. Specifically, the network device sends at least two candidate values of the number of time units contained in the time window to the terminal device; correspondingly, the terminal device receives from the network device The at least two candidate values.
  • the above at least two candidate values are associated with multiple candidate values of the number of DMRS groups included in one time unit, and the association or mapping relationship may be one-to-one or one-to-many.
  • the candidate value M1 is associated with the DMRS quantity K1
  • the candidate value M2 is associated with the DMRS quantity K2.
  • the number of DMRS groups included in one time unit in S402 includes the number K of DMRSs included in one time unit determined by the terminal device in S401, and also includes the number K included in one time unit of the PUSCH sent by the terminal device in S405.
  • the number K of DMRS includes the number K of DMRSs included in one time unit determined by the terminal device in S401, and also includes the number K included in one time unit of the PUSCH sent by the terminal device in S405. The number K of DMRS.
  • S401 and S402 do not have a strict time sequence, and the step numbers in method 400 do not limit their execution order, and S401 and S402 may be indicated by different signaling, or may be indicated by the same signaling.
  • the network device sends the DCI for scheduling the PUSCH to the terminal device.
  • step S403 is performed, and the network device schedules PUSCH through the uplink grant in DCI; if method 2 is adopted, step S403 is not performed; if Mode 3 is adopted, the DCI in S403 is replaced with the activated DCI, and the network device activates the uplink grant semi-persistent scheduling in the DCI.
  • the terminal device determines a joint channel estimation time window according to the information received in S401 and S402.
  • the terminal device is configured within a time unit
  • the number of DMRS groups included determines the number of time units in a time window in the PUSCH sent by the terminal device in S405.
  • the terminal device sends the PUSCH to the terminal device according to the determined joint channel estimation time window.
  • the terminal device obtains the number of DMRS groups included in the time unit, so that it can flexibly determine the number of time units included in a time window according to the number, that is, flexibly determine whether to maintain phase continuity or average transmission power
  • the number of constant time units can improve the performance of signal transmission when the channel quality changes rapidly, and reduce the problem of degraded uplink transmission performance or increased interference to other transmissions.
  • determining the number of time units included in a time window according to the number can also improve the performance gain of joint channel estimation relative to channel estimation in each time unit as much as possible.
  • Fig. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 10 may include a transceiver module 11 and a processing module 12 .
  • the transceiver module 11 can be used for receiving information sent by other devices, and can also be used for sending information to other devices. For example, receiving the first number or sending PUSCH.
  • the processing module 12 may be used to perform content processing of the device, eg, determine the number of time units included in the time window.
  • the communication device 10 may correspond to the terminal device in the foregoing method embodiments.
  • the communication device 10 may correspond to a terminal device or UE in any one of the methods 100 to 400 according to the embodiment of the present application, and the communication device 10 may include a method for performing the corresponding method executed by the terminal device. operation modules, and each unit in the communication device 10 is to implement the operations performed by the terminal device in the corresponding method.
  • the transceiver module 11 is used to perform step S103, and the processing module 12 is used to perform S101 and S102.
  • the transceiving module 11 is used to perform steps S201-S203, S205, and the processing module 12 is used to perform S204.
  • the transceiving module 11 is configured to execute steps S301-S304, S306, and the processing module 12 is configured to execute S305.
  • the transceiving module 11 is configured to execute steps S401-S403, S405, and the processing module 12 is configured to execute S404.
  • the communication device 10 may correspond to the network device in the foregoing method embodiments.
  • the communication device 10 may correspond to the network device in any one of the methods 100 to 400 according to the embodiment of the present application, and the communication device 10 may include a device for performing the operations performed by the network device in the corresponding method. module, and each unit in the communication device 10 is to implement the operations performed by the network device in the corresponding method.
  • the transceiver module 11 is configured to execute step S103.
  • the transceiver module 11 is configured to execute steps S201-S203, S205, and the processing module 12 is configured to execute step S205.
  • the transceiver module 11 is configured to perform steps S301-S304, S306.
  • the transceiver module 11 is configured to execute steps S401-S403, S405.
  • FIG. 16 is a schematic diagram of a communication device 20 provided by an embodiment of the present application.
  • the apparatus 20 may be a network device, or may be a chip or a chip system on the network device.
  • the device 20 may be a terminal device including various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of A terminal, mobile station, terminal, user equipment, soft terminal, etc. may also be a chip or a chip system on a terminal device.
  • the device 20 may include a processor 21 (ie, an example of a processing module) and a memory 22 .
  • the memory 22 is used to store instructions
  • the processor 21 is used to execute the instructions stored in the memory 22, so that the device 20 realizes the execution of the equipment in the above-mentioned various possible designs in the corresponding methods as shown in Fig. 5 to Fig. 14 step.
  • the device 20 may also include an input port 23 (ie, an example of a transceiver module) and an output port 24 (ie, another example of a transceiver module).
  • the processor 21 , the memory 22 , the input port 23 and the output port 24 can communicate with each other through internal connection paths, and transmit control and/or data signals.
  • the memory 22 is used to store a computer program, and the processor 21 can be used to call and run the computer program from the memory 22, to control the input port 23 to receive signals, and to control the output port 24 to send signals, so as to complete the terminal equipment or Steps of the radio access network device or UE or base station.
  • the memory 22 can be integrated in the processor 21 or can be set separately from the processor 21 .
  • the input port 23 is a receiver
  • the output port 24 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 23 is an input interface
  • the output port 24 is an output interface
  • the functions of the input port 23 and the output port 34 may be realized by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 21 may be realized by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer to implement the device provided in the embodiment of the present application.
  • the program codes to realize the functions of the processor 21 , the input port 23 and the output port 24 are stored in the memory 22 , and the general processor realizes the functions of the processor 21 , the input port 23 and the output port 24 by executing the codes in the memory 22 .
  • each module or unit in the apparatus 20 can be used to execute each action or process performed by the device (for example, terminal device) performing random access in the above method, and here, in order to avoid redundant description, its detailed description is omitted.
  • the processor may be a central processing unit (CPU, central processing unit), and the processor may also be other general-purpose processors, digital signal processors (DSP, digital signal processor), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the network device or the terminal device in the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method performed by the network device or the terminal device in the above method embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the network device or the terminal device in the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method performed by the network device or the terminal device in the above method embodiments.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和装置,该方法包括:终端设备获取时间单元中包含的DMRS组的数量,该DMRS组为物理上行信道的DMRS组;该终端设备根据该时间单元中包含的DMRS组的数量确定时间窗包含的该时间单元的数量,该时间窗内相位连续或平均发送功率不变;该终端设备在该时间窗内传输所述物理上行信道。本申请提供的方法和装置,通过终端设备根据时间单元中包含的DMRS的数量灵活地确定要保持相位连续或平均发送功率不变的时间单元的数量,能够提升信号传输的性能。

Description

通信方法与装置
本申请要求于2021年9月30日提交中国国家知识产权局、申请号为202111159610.2、发明名称为“通信方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种参数指示方法与装置。
背景技术
目前,每个重复只用自己的解调参考信号(demodulation reference signal,DMRS)进行信道估计。为了增强上行覆盖,可以考虑提高信道估计的质量,具体可以考虑在时域上进行更长时间的滤波。一种可能的实现方式为联合多个重复的DMRS进行信道估计,该实现方式需要保证这些重复之间的相位连续或平均发送功率不变。而对于上述多个重复中的一个重复而言,为了保持平均发送功率不变,如果信道质量变差,基站接收信号的性能也会变差,如果信道质量变好,又会增加对其他传输的干扰。因此,在进行联合信道估计的多个时间单元的信道质量变化较快的情况下,如何提升信号传输的性能成为亟待解决的问题。
发明内容
本申请提供一种通信方法与装置,通过终端设备获取时间单元内DMRS组的数量,从而灵活地根据该数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或平均发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
第一方面,提供了一种通信方法,包括:终端设备获取时间单元中包含的DMRS组的数量,该DMRS组为物理上行信道的DMRS组;该终端设备根据该时间单元中包含的DMRS组的数量确定时间窗包含的该时间单元的数量,该时间窗内相位连续或平均发送功率不变;该终端设备在该时间窗内传输该物理上行信道。
应理解,时间窗内相位连续或平均发送功率不变,是指时间窗内该物理上行信道的相位连续或平均发送功率不变,或者时间窗内该物理上行信道和该物理上行信道的DM-RS的相位连续或平均发送功率不变。
现有技术在确定一个时间窗内包含的时间单元的数量时,不会考虑一个时间单元内包含的DMRS组的数量,相对于现有技术而言,上述方案确定时间窗包含的时间单元的数量时将一个时间单元内包含的DMRS组的数量考虑在内,使得确定一个时间窗中包含的 时间单元的数量时更为灵活,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该时间单元中包含的DMRS组的数量确定时间窗包含的该时间单元的数量,包括:
该终端设备根据该时间单元中包含的DMRS组的数量与该时间窗包含的该时间单元的数量的映射关系,确定该时间窗包含的该时间单元的数量。
例如协议预设或基站配置映射关系可以如表1所示:
表1
Figure PCTCN2022117462-appb-000001
结合第一方面,在第一方面的某些实现方式中,该时间单元中包含的DMRS组的数量与该时间窗内包含的该时间单元的数量映射关系包含于该时间单元中包含的DMRS组的数量的多个候选值与该时间窗包含的该时间单元的数量的多个候选值的一一映射或多对一的映射关系中。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该时间单元中包含的DMRS组的数量确定时间窗包含的该时间单元的数量,包括:该终端设备根据第一数量和该时间单元中包含的DMRS组的数量确定该时间窗包含的该时间单元的数量,该第一数量为用于确定时间窗内物理上行信道的解调参考信号DMRS组的数量。
上述方案,终端设备获取用于确定时间窗内物理上行信道的DMRS组的数量,从而能够灵活地根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或平均发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
结合第一方面,在第一方面的某些实现方式中,该第一数量是预设的,或者,该第一数量是该终端设备从该网络设备接收的。
结合第一方面,在第一方面的某些实现方式中,该时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。物理上行信道可以是物理上行共享信道(physical uplink shared channel,PUSCH)或者物理上行控制信道(physical uplink control channel,PUCCH)。一个PUSCH重复可以是一个PUSCH标称重复(nominal repetition)或者是一个PUSCH实际重复(actual repetition)或者是一个没有取消发送的PUSCH实际重复(actual repetition)。
结合第一方面,在第一方面的某些实现方式中,该时间窗中包含的DMRS组的数量大于或等于该第一数量。
结合第一方面,在第一方面的某些实现方式中,该时间窗中包含的该时间单元的数量 为
Figure PCTCN2022117462-appb-000002
其中,
Figure PCTCN2022117462-appb-000003
表示对
Figure PCTCN2022117462-appb-000004
向上取整,N为该第一数量,k为该时间单元中包含的DMRS组的数量,k为正整数。k可以是一个时间单元中包含的标称DMRS组的数量或者一个时间单元中包含的实际DMRS组的数量。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该第一数量和该时间单元中包含的DMRS组的数量确定该时间窗包含的时间单元的数量,包括:该终端设备根据该第一数量、该时间单元中包含的DMRS组的数量和第一信息确定该时间窗包含的该时间单元的数量,该第一信息指示M,M为正整数,该时间窗内包含的该时间单元的数量小于或等于M。
结合第一方面,在第一方面的某些实现方式中,在M·k<N的情况下,该时间窗内包含的该时间单元的数量为M,或者,在M·k≥N的情况下,该时间窗内包含的该时间单元的数量为
Figure PCTCN2022117462-appb-000005
其中,k为该时间单元中包含的DMRS组的数量,k为正整数,N为该第一数量。应理解,当M·k=N的情况下,
Figure PCTCN2022117462-appb-000006
所以这个实现方式等效为,在M·k<=N的情况下,该时间窗内包含的该时间单元的数量为M,或者,在M·k>N的情况下,该时间窗内包含的该时间单元的数量为
Figure PCTCN2022117462-appb-000007
其中,k为该时间单元中包含的DMRS组的数量,k为正整数,N为该第一数量。
上述方案,通过在根据第一数量和时间单元内包含的DMRS组的数量确定时间窗内包含的时间单元的数量的基础上将第一信息考虑在内,进一步限定时间窗内包含的时间单元的数量的最大值,使得确定一个时间窗中包含的时间单元的数量时更为灵活,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
结合第一方面,在第一方面的某些实现方式中,该终端设备获取第一数量,包括:该终端设备根据第二信息与该第一数量的映射关系确定该第一数量,该第二信息包括以下参数中的至少一项:该物理上行信道重复类型、该物理上行信道映射类型、该物理上行信道在一个时间单元内的符号个数、该物理上行信道的DMRS的单/双符号、该物理上行信道的DMRS附加位置参数、该物理上行信道的格式。
结合第一方面,在第一方面的某些实现方式中,该第二信息与该第一数量的映射关系包含于该第二信息的多个候选值与该第一数量的多个候选值的一一映射或多对一的映射关系中。
上述方案,因为第二信息中可以包含动态配置的信息,在RRC信令中配置好第二信息与第一数量的映射关系,根据动态配置获取的第二信息和映射关系确定第一数量,避免了动态下发第一数量,减少了物理层信令的开销,提高频谱利用效率,同时,因为第二信息包含动态配置的信息,所以这种方法也可以获取动态配置第一数量的效果。
第二方面,提供了一种通信方法,包括:网络设备向终端设备通知时间单元中包含的DMRS组的数量,以便于所述终端设备确定时间窗内包含的所述时间单元的数量,所述时间窗内相位连续或平均发送功率不变;该网络设备接收来自该终端设备的该物理上行信道。
上述方案,通过网络设备向终端设备指示时间单元内包括的DMRS组的数量,以便 于终端设备能够灵活地根据该数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
结合第二方面,在第二方面的某些实现方式中,所述时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备向所述终端设备发送所述时间单元中包含的DMRS组的数量与所述时间窗包含的所述时间单元的数量的映射关系。
结合第二方面,在第二方面的某些实现方式中,所述网络设备向所述终端设备发送第一数量,所述第一数量为用于确定时间窗内物理上行信道的解调参考信号DMRS组的数量。
上述方案,通过网络设备向终端设备指示用于确定时间窗内物理上行信道的DMRS组的数量,以便于终端设备能够灵活地根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或平均发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
结合第二方面,在第二方面的某些实现方式中,该时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
结合第二方面,在第二方面的某些实现方式中,该时间窗中包含的DMRS组的数量大于或等于该第一数量。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第一信息,该第一信息指示M,M为正整数,该时间窗内包含的该时间单元的数量小于或等于M。
上述方案,通过向终端设备指示第一信息,以便于终端设备在确定时间窗内包含的时间单元的数量时将第一信息考虑在内,进一步限定时间窗内包含的时间单元的数量的最大值,使得确定一个时间窗中包含的时间单元的数量时更为灵活,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第二信息,该第二信息包括以下参数中的至少一项:该物理上行信道重复类型、该物理上行信道映射类型、该物理上行信道在一个时间单元内的符号个数、该物理上行信道的DMRS的单/双符号、该物理上行信道的DMRS附加位置参数、该物理上行信道的格式,该第二信息与该第一数量存在映射关系。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第二信息与所述第一数量的映射关系。
结合第二方面,在第二方面的某些实现方式中,该第二信息与该第一数量的映射关系 包含于该第二信息的多个候选值与该第一数量的多个候选值的一一映射或多对一的映射关系中。
上述方案,因为第二信息可以包含动态配置的信息,在RRC信令中配置好第二信息与第一数量的映射关系,根据动态配置获取的第二信息和和映射关系确定第一数量,避免了动态下发第一数量,减少了物理层信令的开销,提高频谱利用效率,同时,因为第二信息包含动态配置的信息,所以这种方法也可以获取动态配置第一数量的效果。
第三方面,提供了一种通信方法,包括:终端设备根据第二信息与第二数量的映射关系确定该第二数量,该第二数量为用于确定时间窗内时间单元的数量,该时间窗内相位连续或平均发送功率不变,该第二信息包括以下参数中的至少一项:该物理上行信道重复类型、该物理上行信道映射类型、该物理上行信道在一个时间单元内的符号个数、该物理上行信道的DMRS的单/双符号、该物理上行信道的DMRS附加位置参数、该物理上行信道的格式,该物理上行信道为该终端设备传输的物理上行信道;该终端设备根据该第二数量确定时间窗内包含的时间单元的数量;该终端设备在该时间窗内传输该物理上行信道。
上述方案,网络设备向终端设备指示时间单元的数量的至少2个候选值,且时间单元的数量与影响DMRS的传输参数的多个候选值关联,终端设备根据该关联关系和当前物理上行信道使用的影响DMRS的传输参数确定时间窗内包含的时间单元的数量,从而网络设备能够更灵活地指示需要保持相位连续或平均发送功率不变的时间单元,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
结合第三方面,在第三方面的某些实现方式中,该时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
结合第三方面,在第三方面的某些实现方式中,该第二信息与该第二数量的映射关系包含于该第二信息的多个候选值与该第二数量的多个候选值的一一映射或多对一的映射关系中。
第四方面,提供了一种通信方法,包括:网络设备向终端设备发送第二数量,该第二数量为用于确定时间窗内时间单元的数量,该时间窗内相位连续或平均发送功率不变,该第二数量与第二信息存在映射关系,该第二信息包括以下参数中的至少一项:该物理上行信道重复类型、该物理上行信道映射类型、该物理上行信道在一个时间单元内的符号个数、该物理上行信道的DMRS的单/双符号、该物理上行信道的DMRS附加位置参数、该物理上行信道的格式,该物理上行信道为该终端设备传输的物理上行信道;该网络设备接收来自该终端设备的该物理上行信道。
上述方案,网络设备向终端设备指示时间单元的数量的至少2个候选值,且时间单元的数量与影响DMRS的传输参数的多个候选值关联,终端设备根据该关联关系和当前物理上行信道使用的影响DMRS的传输参数确定时间窗内包含的时间单元的数量,从而网络设备能够更灵活地指示需要保持相位连续或平均发送功率不变的时间单元,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
结合第四方面,在第四方面的某些实现方式中,该时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
结合第四方面,在第四方面的某些实现方式中,该第二信息与该第二数量的映射关系包含于该第二信息的多个候选值与该第二数量的多个候选值的一一映射或多对一的映射关系中。
第五方面,提供了一种通信装置,包括:获取模块,用于获取时间单元中包含的DMRS组的数量;处理模块,用于根据所述时间单元中包含的DMRS组的数量确定时间窗包含的所述时间单元的数量,所述时间窗内相位连续或平均发送功率不变;收发模块,用于在所述时间窗内传输所述物理上行信道。
上述方案,终端设备获取时间单元内DMRS组的数量,从而能够灵活地根据该数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
结合第五方面,在第五方面的某些实现方式中,所述处理模块,具体用于根据所述时间单元中包含的DMRS组的数量与所述时间窗包含的所述时间单元的数量映射关系,确定所述时间窗包含的所述时间单元的数量。
结合第五方面,在第五方面的某些实现方式中,所述时间单元中包含的DMRS组的数量与所述时间窗内包含的所述时间单元的数量映射关系包含于所述时间单元中包含的DMRS组的数量的多个候选值与所述时间窗包含的所述时间单元的数量的多个候选值的一一映射或多对一的映射关系中。
结合第五方面,在第五方面的某些实现方式中,所述处理模块,用于根据第一数量和所述时间单元中包含的DMRS组的数量确定所述时间窗包含的所述时间单元的数量,所述第一数量为用于确定时间窗内物理上行信道的解调参考信号DMRS组的数量。
上述方案,终端设备获取用于确定时间窗内物理上行信道的DMRS组的数量,从而能够灵活地根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
结合第五方面,在第五方面的某些实现方式中,该第一数量是预设的,或者,该第一数量是该终端设备从该网络设备接收的。
结合第五方面,在第五方面的某些实现方式中,该时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。物理上行信道可以是物理上行共享信道(physical uplink shared channel,PUSCH)或者物理上行控制信道(physical uplink control channel,PUCCH)。一个PUSCH重复可以是一个PUSCH标称重复(nominal repetition)或者是一个PUSCH实际重复(aal repetition)或者是一个没有取消发送的PUSCH实际重复(actual repetition)。
结合第五方面,在第五方面的某些实现方式中,该时间窗中包含的DMRS组的数量 大于或等于该第一数量。
结合第五方面,在第五方面的某些实现方式中,该时间窗中包含的该时间单元的数量为
Figure PCTCN2022117462-appb-000008
其中,
Figure PCTCN2022117462-appb-000009
表示对
Figure PCTCN2022117462-appb-000010
向上取整,N为该第一数量,k为该时间单元中包含的DMRS组的数量,k为正整数。k可以是一个时间单元中包含的标称DMRS组的数量或者一个时间单元中包含的实际DMRS组的数量。
上述方案,通过在确定时间窗内包含的时间单元的数量时将第一信息考虑在内,进一步限定时间窗内包含的时间单元的数量的最大值,可以进一步减少保持相位连续或发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
结合第五方面,在第五方面的某些实现方式中,该处理模块,具体用于根据该第一数量、该时间单元中包含的DMRS组的数量和第一信息确定该时间窗包含的该时间单元的数量,该第一信息指示M,M为正整数,该时间窗内包含的该时间单元的数量小于或等于M。
结合第五方面,在第五方面的某些实现方式中,在M·k<N的情况下,该时间窗内包含的该时间单元的数量为M,或者,在M·k≥N的情况下,该时间窗内包含的该时间单元的数量为
Figure PCTCN2022117462-appb-000011
其中,k为该时间单元中包含的DMRS组的数量,k为正整数,N为该第一数量。应理解,当M·k=N的情况下,
Figure PCTCN2022117462-appb-000012
所以这个实现方式等效为,在M·k<=N的情况下,该时间窗内包含的该时间单元的数量为M,或者,在M·k>N的情况下,该时间窗内包含的该时间单元的数量为
Figure PCTCN2022117462-appb-000013
其中,k为该时间单元中包含的DMRS组的数量,k为正整数,N为该第一数量。
上述方案,因为第二信息可以包含动态配置的信息,在RRC信令中配置好第二信息与第一数量的映射关系,根据动态配置获取的第二信息和和映射关系确定第一数量,避免了动态下发第一数量,减少了物理层信令的开销,提高频谱利用效率,同时,因为第二信息包含动态配置的信息,所以这种方法也可以获取动态配置第一数量的效果。
结合第五方面,在第五方面的某些实现方式中,该处理模块,具体用于根据第二信息与该第一数量的映射关系确定该第一数量,该第二信息包括以下参数中的至少一项:该物理上行信道重复类型、该物理上行信道映射类型、该物理上行信道在一个时间单元内的符号个数、该物理上行信道的DMRS的单/双符号、该物理上行信道的DMRS附加位置参数、该物理上行信道的格式。
结合第五方面,在第五方面的某些实现方式中,该第二信息与该第一数量的映射关系包含于该第二信息的多个候选值与该第一数量的多个候选值的一一映射或多对一的映射关系中。
第六方面,提供了一种通信装置,包括:收发模块,用于向终端设备通知时间单元中包含的DMRS组的数量,以便于所述终端设备确定时间窗内包含的所述时间单元的数量,所述时间窗内相位连续或平均发送功率不变;该收发模块,还用于接收来自该终端设备的该物理上行信道。
上述方案,通过网络设备向终端设备指示时间单元内的DMRS组的数量,以便于终端设备能够灵活地根据该数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
结合第六方面,在第六方面的某些实现方式中,该时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
结合第六方面,在第六方面的某些实现方式中,所述收发模块,用于向所述终端设备发送第一数量,所述第一数量为用于确定时间窗内物理上行共享信道物理上行信道的解调参考信号DMRS组的数量。
上述方案,通过网络设备向终端设备指示用于确定时间窗内物理上行信道的DMRS组的数量,以便于终端设备能够灵活地根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
结合第六方面,在第六方面的某些实现方式中,所述收发模块,还用于向所述终端设备发送所述时间单元中包含的DMRS组的数量与所述时间窗包含的所述时间单元的数量的映射关系。
结合第六方面,在第六方面的某些实现方式中,该时间窗中包含的DMRS组的数量大于或等于该第一数量。
结合第六方面,在第六方面的某些实现方式中,该收发模块,还用于向该终端设备发送第一信息,该第一信息指示M,M为正整数,该时间窗内包含的该时间单元的数量小于或等于M。
上述方案,通过向终端设备指示第一信息,以便于终端设备在确定时间窗内包含的时间单元的数量时将第一信息考虑在内,进一步限定时间窗内包含的时间单元的数量的最大值,可以进一步减少保持相位连续或发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
结合第六方面,在第六方面的某些实现方式中,该收发模块,还用于向该终端设备发送第二信息,该第二信息包括以下参数中的至少一项:该物理上行信道重复类型、该物理上行信道映射类型、该物理上行信道在一个时间单元内的符号个数、该物理上行信道的DMRS的单/双符号、该物理上行信道的DMRS附加位置参数、该物理上行信道的格式,该第二信息与该第一数量存在映射关系。
结合第六方面,在第六方面的某些实现方式中,所述收发模块,还用于向所述终端设备发送第二信息与所述第一数量的映射关系。
结合第六方面,在第六方面的某些实现方式中,该第二信息与该第一数量的映射关系 包含于该第二信息的多个候选值与该第一数量的多个候选值的一一映射或多对一的映射关系中。
上述方案,因为第二信息是本来就需要配置的信息,且第二信息中可以包含动态配置的信息,在RRC信令中配置好第二信息与第一数量的映射关系,根据动态配置获取的第二信息和和映射关系确定第一数量,避免了动态下发第一数量,减少了物理层信令的开销,提高频谱利用效率,同时,因为第二信息包含动态配置的信息,所以这种方法也可以获取动态配置第一数量的效果。
第七方面,提供了一种通信方法,包括:终端设备根据第二信息与第二数量的映射关系确定该第二数量,该第二数量为用于确定时间窗内时间单元的数量,该时间窗内相位连续或平均发送功率不变,该第二信息包括以下参数中的至少一项:该物理上行信道重复类型、该物理上行信道映射类型、该物理上行信道在一个时间单元内的符号个数、该物理上行信道的DMRS的单/双符号、该物理上行信道的DMRS附加位置参数、该物理上行信道的格式,该物理上行信道为该终端设备传输的物理上行信道;该终端设备根据该第二数量确定时间窗内包含的时间单元的数量;该终端设备在该时间窗内传输该物理上行信道。
上述方案,网络设备向终端设备指示时间单元的数量的至少2个候选值,且时间单元的数量与影响DMRS的传输参数的多个候选值关联,终端设备根据该关联关系和当前物理上行信道使用的影响DMRS的传输参数确定时间窗内包含的时间单元的数量,从而网络设备能够更灵活地指示需要保持相位连续或平均发送功率不变的时间单元,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
结合第七方面,在第七方面的某些实现方式中,该时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
结合第七方面,在第七方面的某些实现方式中,该第二信息与该第二数量的映射关系包含于该第二信息的多个候选值与该第二数量的多个候选值的一一映射或多对一的映射关系中。
第八方面,提供了一种通信方法,包括:网络设备向终端设备发送第二数量,该第二数量为用于确定时间窗内时间单元的数量,该时间窗内相位连续或平均发送功率不变,该第二数量与第二信息存在映射关系,该第二信息包括以下参数中的至少一项:该物理上行信道重复类型、该物理上行信道映射类型、该物理上行信道在一个时间单元内的符号个数、该物理上行信道的DMRS的单/双符号、该物理上行信道的DMRS附加位置参数、该物理上行信道的格式,该物理上行信道为该终端设备传输的物理上行信道;该网络设备接收来自该终端设备的该物理上行信道。
上述方案,网络设备向终端设备指示时间单元的数量的至少2个候选值,且时间单元的数量与影响DMRS的传输参数的多个候选值关联,终端设备根据该关联关系和当前物理上行信道使用的影响DMRS的传输参数确定时间窗内包含的时间单元的数量,从而网络设备能够更灵活地指示需要保持相位连续或平均发送功率不变的时间单元,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
结合第八方面,在第八方面的某些实现方式中,该时间单元包括以下中的一项:一个 物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
结合第八方面,在第八方面的某些实现方式中,该第二信息与该第二数量的映射关系包含于该第二信息的多个候选值与该第二数量的多个候选值的一一映射或多对一的映射关系中。
第九方面,提供了一种通信装置,包括:处理器和存储器;该存储器,用于存储计算机程序;该处理器,用于执行该存储器中存储的计算机程序,以使得该通信装置执行第一方面至第四方面中任一方面所述的通信方法。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行如第一方面至第四方面中任一方面所述的通信方法。
第十一方面,提供了一种芯片系统,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统地通信设备执行如权利要求第一方面至第四方面中任一方面所述的通信方法。
附图说明
图1是适用于本申请实施例的无线通信系统100的一示意图。
图2示出了PUSCH的两种重复类型和跨多时隙传输块的示意图。
图3示出了四种DMRS组在PUSCH中的位置的示例的示意图。
图4示出了本申请实施例相关的模块的示意性框图。
图5是本申请的方法100的示意性交互图。
图6是本申请的方法200的示意性交互图。
图7示出了根据本申请的方法200确定时间窗包含的时间单元的一例的示意性框图。
图8示出了根据本申请的方法200确定时间窗包含的时间单元的再一例的示意性框图。
图9示出了根据本申请的方法200确定时间窗包含的时间单元的又一例的示意性框图。
图10是本申请的方法300的示意性交互图。
图11示出了根据本申请的方法300确定时间窗包含的时间单元的一例的示意性框图。
图12示出了根据本申请的方法300确定时间窗包含的时间单元的再一例的示意性框图。
图13示出了根据本申请的方法300确定时间窗包含的时间单元的又一例的示意性框图。
图14是本申请的方法400的示意性交互图。
图15是本申请实施例提供的用于通信装置的示意性框图。
图16为本申请实施例提供的通信装置20的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统(例如,LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division  duplex,TDD))等。此外,本申请实施例的技术方案还可以应用于侧链路通信。例如,本申请实施例的技术方案还可以应用于:设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车联网系统中的通信。
为便于理解本申请实施例,首先结合图1说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。如1图所示,该无线通信系统100可以包括至少一个网络设备,
如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
其中,网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备111和终端设备121组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备111可以是小区#1中的网络设备,或者说,网络设备111可以为小区#1中的终端设备(例如终端设备121)服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
本申请实施例中提到的发送端设备可以为终端设备,接收端设备可以为网络设备。例如,发送端设备为终端设备121,接收端设备为网络设备111。
应理解,上述图1仅是示例性说明,本申请并未限定于此。例如,本申请实施例还可以应用于需要重复发送数据(或者说数据块)的任何通信场景。
还应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)节点B(node B,NB)、家庭基站(例如,home evolved node B,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会映射成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也 可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,下面首先结合本申请中涉及的几个术语进行简单介绍。
一、解调参考信号
解调参考信号为用于进行数据解调的参考信号。解调参考信号可以为LTE协议或NR协议中的解调参考信号(demodulation reference signal,DMRS),或者也可以为未来协议中定义的其他用于实现相同功能的参考信号。在LTE或NR协议中,DMRS可以承载在物理共享信道中与数据块信号一起发送,以用于对非衰落的平稳信道进行信道估计,进而完成对物理共享信道中承载的数据块信号进行解调。如,在物理下行共享信道(physical downlink share channel,PDSCH)中与下行数据块一起发送,或者,在物理上行共享信道(physical uplink share channel,PUSCH)中与上行数据块一起发送。在本申请实施例中,解调参考信号可包括通过物理上行共享信道发送的解调参考信号。DMRS可以承载在物理控制信道中与控制信号一起发送,以用于对衰落信道进行信道估计,进而完成对物理共享信道中承载的控制信号进行解调。如,在物理下行控制信道(physical downlink controlchannel,PDCCH)中与下行控制信号一起发送,或者,在物理上行控制信道(physical uplink controlchannel,PUCCH)中与上行控制信号一起发送。在本申请实施例中,解调参考信号可包括通过物理上行控制信道发送的解调参考信号。
解调参考信号可包括前载解调参考信号和附加解调参考信号。
其中,对于一个数据块的一次传输,一般均会配置前载解调参考信号,在时域上占用一个符号或多个符号,若占用多个符号,则该多个符号在时域上连续。
附加(additional)解调参考信号:对于一个数据块的一次传输,附加解调参考信号的配置与否根据一个数据块一次传输的长度确定。若配置附加解调参考信号,则发送端在前载解调参考信号之后采用相同的序列生成的解调参考信号为附加解调参考信号。附加解调参考信号可以是前载解调参考信号所占用的符号之后的一个或多个符号,且前载解调参考信号占用的符号中的末个与附加解调参考信号占用的符号中的首个符号不连续。附加解调参考信号可以通过高层信令,例如RRC信令,配置资源。附加解调参考信号是一种可选的解调参考信号。
需要说明的是,一个PUSCH重复或者一个PUCCH重复中可能包含一组或多组DMRS。对于本申请设计的DMRS组,当使用单符号DMRS时,一组DMRS就是承载在一个符号上的DMRS;当使用双符号DMRS时,一组DMRS就是承载在连着两个符号上的DMRS。
二、物理上行共享信道(physical uplink shared channel,PUSCH)的3种调度方式:
新无线(new radio,NR)中,有3种PUSCH调度方式(详细可以参见协议38.214 6.1)。
方式一,用一个下行控制信息(downlink control information,DCI)中的上行许可动态调度PUSCH。
该方式的PUSCH调度,UE接收到一次上行调度,就进行一次PUSCH传输。
方式二,配置许可(Configured grant)Type1:由包含rrc-ConfiguredUplinkGrant的高层IE configuredGrantConfig半持续配置,不需要接收DCI中的上行许可。
该方式的PUSCH调度,高层配置了一些半持续资源,UE如果有上行数据需要发送,就可以使用这些资源进行PUSCH发送,如果没有上行数据需要发送,就不发送。
方式三,配置许可(Configured grant)Type2:先接收不包含rrc-ConfiguredUplinkGrant的高层IE configuredGrantConfig,再由有效激活DCI中的上行许可半持续调度。
该方式的PUSCH调度,高层配置了一些半持续资源,然后由物理层信令激活和去激活,激活时的行为和第二种PUSCH传输类似,没有激活或去激活时,这些资源是不能使用的。
三、PUSCH的重复类型:
一次PUSCH可以包含多个重复(repetition),每个重复都传输相同的传输块(transport block,TB),其冗余版本可以相同或不同。一个重复中承载一个传输块循环冗余校验码(transport block cyclic redundancy check,TB CRC),另外速率匹配的单位也是一个重复。PUSCH有两种重复类型,重复类型A和重复类型B。目前基于重复类型A,正在讨论引入一种新的重复类型,即多时隙传输块(transport block over multi-slot,TBoMS)PUSCH传输。
1、重复类型A(早期协议版本的重复类型A和增强的重复类型A):
(1)早期协议版本的重复类型A:
重复类型A中,假设有K次传输,则K次传输机会对应连续的K个slot,每个slot中传输一个PUSCH的重复repetition,在每个slot内的起始符号和持续时间相同。示例性的,如图2中的(a)所示,每个黑色框为一个时隙,每个灰色长方形在每个时隙中的重复的持续时间。
应理解,在重复类型A的传输过程中,存在标称重复和实际重复。例如,K次重复中有k次重复取消发送(1≤k<K),那么标称重复仍为K次,而实际重复为K-k次。
时分复用(time-division duplexing,TDD)模式下时,重复类型A的传输中,如果一次PUSCH重复的资源中的任一个符号是下行符号,或者PUSCH时频资源和取消指示(cancellation indication,CI)指示取消的资源有重叠,或者和高优先级的PUSCH/PUCCH重叠,此次PUSCH重复取消发送。
某些情况下,可能存在来不及取消的情况。例如一个PUSCH重复开始发送了,才解析出CI,发现有资源重叠,那么只能取消之后的部分发送。
(2)增强的重复类型A:
由上可知,在早期协议版本的重复类型A中,一次PUSCH传输的K次重复是标称重复,也就是说一次PUSCH传输对应K个slot,无论这K个slot中的每个slot是否可以真正用来发送PUSCH重复。
在后续的标准版本中,会引入增强的重复类型A。在增强的重复类型A中,引入了有 效时隙(available slot)的概念。首先,对于动态调度的重复类型A的PUSCH传输,基于无线资源控制(radio resource control,RRC)配置和调度DCI确定K个有效时隙;对于CG type1的重复类型A的PUSCH传输,基于RRC配置确定K个有效时隙;对于CG type2的重复类型A的PUSCH传输,基于RRC配置和激活DCI确定K个有效时隙。
应理解,与早期的重复类型A类似,增加的重复类型A也存在标称重复和实际重复的区别。
上文中提到,一些原因会导致一次PUSCH发送的某个重复取消。这些原因可以分为两类,第一类是根据RRC配置确定的,第二类是根据动态指示确定的,即物理层指示导致的,例如CI有效时隙的确定只考虑RRC信令,不考虑此次PUSCH调度DCI以外的其它物理层指示。
2、重复类型B
重复类型B的传输中,如图2中的(b)所示,假设有K次传输,则每次传输对应连续的L个符号,K次传输对应的符号是连续的。
应理解,在重复类型B的传输过程中,存在标称重复和实际重复。例如,K次重复中有k次重复取消发送(1≤k<K),那么标称重复仍为K次,而实际重复为K-k次。
TDD模式下时,对于PUSCH重复类型B的传输,有些符号被认为是无效符号。
对于PUSCH重复type B,当确定了PUSCH重复type B传输的K个标称传输的每个传输的无效符号后,剩下的符号被认为是潜在的有效符号。如果一个标称重复中的潜在有效符号大于0时,标称重复包含一个或多个实际重复,每个实际重复包含一个slot内的一组连续的潜在有效符号(也就是遇到slot边界或无效符号时,重复会被分类成两个实际重复)。除了L=1,否则单符号的实际重复不会发送。
如重复类型A,当重复类型B的一个实际重复的资源中的任一个符号是下行符号,或者PUSCH时频资源和CI指示取消的资源有重叠,或者和高优先级的PUSCH/PUCCH重叠,此次PUSCH重复取消发送。具体操作和重复类型A,这里不做赘述。
四、跨多时隙传输块(transport block over multi-slot,TBoMS):
与LTE和长期演进高级(long term evolution advanced,LTE-A)无线通信系统相比,NR无线通信系统部署的频段更高,以获取更大的通信带宽。然而,高频段会导致更大的路径损耗和穿透损耗,使得NR的覆盖性能远不如LTE和LTE-A。
为了提升NR的覆盖性能,提出跨多时隙传输块技术。示例性地,如图2中的(c)所示,将TB#1至TB#4聚合成一个大的TB。该技术将每个时隙上的小数据包聚合成一个大数据包,并在多个时隙上共同传输聚合后的数据包,通过减少TB切分次数,从而减少循环冗余码(cyclic redundancy code,CRC)的开销,通过增加传输块大小(transport block size,TBS),从而提高编码增益,并通过降低频率资源,提高功率谱密度,提升覆盖性能。
五、PUSCH的两种映射类型(mappingtype)
PUSCH有两种映射类型,映射类型A和映射类型B。
映射类型A中,PUSCH的起始符号S一定是一个slot的首符号,连续符号的个数L从符号S开始计数;映射类型B中,PUSCH的起始符号S可以是一个slot的任何一个符号,连续符号的个数L从符号S开始计数。
对于PUSCH重复类型A,PUSCH映射类型可以为Type A或者Type B;对于PUSCH重复类型B,PUSCH映射类型可以为Type B。
在目前的NR协议中,映射类型的通知,动态调度的PUSCH是在DCI中指示的;配置许可Type1的PUSCH是高层参数配置的;配置许可Type2的PUSCH是激活DCI中支持的。
六、PUSCH中的DMRS
高层参数maxLength指示PUSCH的DMRS是单符号还是双符号;dmrs-AdditionalPosition(取值可以为pos0、pos1、pos2和pos3)指示DMRS的位置。
下面通过表2和表3分别给出单符号DMRS和双符号DMRS中第一个DMRS的位置
Figure PCTCN2022117462-appb-000014
其中l d是PUSCH的持续符号个数,l 0是PUSCH的第一个DMRS符号的位置。
PUSCH mapping type A,
Figure PCTCN2022117462-appb-000015
和l 0的参考点是前载解调参考信号(front-loaded DMRS)的首个符号位置)可以被配置为被调度的PUSCH(或者PDSCH)的第3个符号或第4个符号,即l 0=2或3;PUSCH mapping type B,
Figure PCTCN2022117462-appb-000016
和l 0的参考点是PUSCH传输的首个符号,即l 0=0。
在目前的NR协议中,3种PUSCH调度方式下,maxLength和dmrs-AdditionalPosition都是高层通信。而PUSCH持续符号个数l d,动态调度的PUSCH是在DCI中指示的;配置许可Type1的PUSCH是高层参数配置的;配置许可Type2的PUSCH是激活DCI中支持的。
表2
Figure PCTCN2022117462-appb-000017
表3
Figure PCTCN2022117462-appb-000018
Figure PCTCN2022117462-appb-000019
下面以表2和表3中的4中DMRS的位置为例,结合图3,介绍DMRS分别为单符号或双符号、PUSCH分别为映射类型A或映射类型B时,DMRS在重复中的位置。图3中,灰色长方形表示重复,灰色阴影长方形表示重复中的DMRS。
示例一,PUSCH的DMRD为单符号,l d=10,PUSCH的映射类型为映射类型A,dmrs-AdditionalPosition=pos3,DMRS在2次重复中的位置如图3中的(a)所示。
示例二,PUSCH的DMRD为双符号,l d=10,PUSCH的映射类型为映射类型B,dmrs-AdditionalPosition=pos3,DMRS在2次重复中的位置如图3中的(b)所示。
示例三,PUSCH的DMRD为双符号,l d=10,PUSCH的映射类型为映射类型A,dmrs-AdditionalPosition=pos3,DMRS在2次重复中的位置如图3中的(c)所示。
示例四,PUSCH的DMRD为双符号,l d=10,PUSCH的映射类型为映射类型B,dmrs-AdditionalPosition=pos3,DMRS在2次重复中的位置如图3中的(d)所示。
由表2、表3、图2可见,当dmrs-AdditionalPosition取值为pos0时,一个PUSCH的重复中有一组DMRS;dmrs-AdditionalPosition取值为pos1、pos2或pos3时,一个PUSCH的重复中可能有多组DMRS。高速场景下,信道变化速度快,为了更好的进行信道估计和频偏估计,可以通过增大DMRS的密度,即在一个PUSCH重复中发送多组DMRS来实现。
五、PUCCH的两种格式(format)
PUCCH有五种格式,具体如表4所示,对应不同的符号长度(每个PUCCH重复对应的符号长度)。
表4
Figure PCTCN2022117462-appb-000020
六、PUCCH中的DMRS
PUCCH的五种格式中,格式1/3/4的每个重复的符号数可以从4到14,PUCCH格式1的DM-RS位置具体如表5所示,随着符号数不同,DMRS的个数也可以不同,PUCCH格式3/4的DM-RS个数具体如表6所示:
表5
Figure PCTCN2022117462-appb-000021
表6
Figure PCTCN2022117462-appb-000022
七、上行发送的相位变化:
上行发送中和本申请实施例相关的模块如图4所示。UE的上行发送主要包括2颗芯片,基带集成电路(baseband integrated circuit,BBIC)和射频集成电路(radio frequency integrated circuit,RFIC)。BBIC生成归一化基带信号,并计算增益发给RFIC,RFIC通过数字域和模拟域两级调整来实现增益计算模块送来的增益。
模拟域增益调整或者开关会引起上行发送相位跳变。数字域增益调整模块不会引起上行发送相位跳变。但是,数字域增益调整模块不宜做大幅度的调整,因为过大的数字域功率会引起数模转换器(digital to analog converter,DAC)饱和,过小的数字域功率会降低DAC效率。应保证进DAC的数字域功率相对稳定在一个值附近。
上行发送功率的调整会造成模拟域增益的调整,上行模拟域的开关会造成模拟域增益模块的开关。所以上行发送功率的调整或者上行的开关都会引起上行发送相位的跳变。
八、联合信道估计:
以图2中的在(a)为例,每个黑色框是一个时间单元(例如,可以是一个PUSCH重 复、或者一个PUCCH重复、或者一个或多个时隙、或者一个或多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号),灰色长方形是DMRS。目前,每个时间单元只用自己的DMRS进行信道估计。在近期标准讨论中,正在讨论上行覆盖需要增强,上行增强的一个方向是提高信道估计的质量。为了提高信道估计的质量,可以考虑在时域上进行更长时间的滤波,例如联合多个重复上的DMRS进行信道估计。应理解,如果需要进行多个时间单元的联合信道估计,需要保证这些时间单元之间的发送相位/平均功率不发生改变。
需要说明的是,本申请涉及的时间窗并不限定是联合信道估计时间窗,仅仅是作为一种名称的示例,任何保持相位连续/功率相同的物理上行信道传输时间都可以理解为本申请的时间窗。
目前协议中同意引入联合信道估计时间窗的概念,一个时间窗内的物理上行信道传输需要保证相位连续/平均功率不变。
如果要保持相位连续或发送功率不变,就需要保证时间窗内的物理上行信道发送功率不变。如果信道变差且发送功率不变,那么发送功率偏小,基站接收信号的性能变差;如果信道变好且发送功率不变,那么发送功率偏大,增大对其他传输的干扰。所以信道变化较快时,功率不变可能存在一定问题。以图2中的在(a)为例,图中的K=4,且这4个时隙为一个时间窗,那么这4个时隙的相位是连续的,每个时隙的平均发送功率是不变的。
而且在信道(质量)变化较快时,基站可能配置了高密度的DMRS,那么在一个重复内,本身就有多组DMRS保持相位连续或发送功率不变,在不同重复之间做联合信道估计的性能收益可能不大。
下面结合图5至图14,对本申请提供的通信方法进行介绍。
下面结合图5,对本申请实施例的信息发送的方法100进行详细说明。图5是本申请的方法100的示意性交互图。
S101,终端设备获取时间单元中包含的DMRS组的数量。
示例性地,终端设备可以根据从网络设备接收的物理上行信道配置确定时间单元中包含的DMRS组的数量。或者,网络设备也可以直接向终端设备发送时间单元中包含的DMRS组的数量。
应理解,这里的时间单元可以是以下任意一项:一个物理上行信道重复、一个或多个时隙、一个或多个OFDM符号。其中,当物理上行信道为PUSCH时,时间单元为多个时隙时,该时间单元可以用于传输一个TB,在该时间单元上只承载一个传输块循环冗余校验码(transport block cyclic redundancy check,TB CRC),例如TBoMS;当时间单元为一个或多个OFDM符号时,这里的OFDM符号可以是OFDM符号,也可以是离散傅里叶变换扩展正交频分复用(discrete fourier transform spread OFDM,DFT-S-OFDM)符号。
S102,终端设备根据时间单元中包含的DMRS组的数量确定时间窗包含的时间单元的数量,时间窗内相位连续或平均发送功率不变。
应理解,这里的时间窗包含的时间单元的数量可以是一个或多个,当一个时间窗包括的时间单元的数量为一个时,那么在一个时间单元内,它的相位是连续的,它的平均发送功率也是不变的,那么传输物理上行信道时涉及的每个时间单元之间并不需要保持相位连续或平均发送功率不变,即可实现时间窗内相位连续或平均发送功率不变;当这里的终端 设备确定时间窗包含的时间单元的数量为多个时,那么一个时间窗内的多个时间单元之间需要保持相位连续或平均发送功率不变,才可以实现时间窗内相位连续或平均发送功率不变。
示例性地,终端设备根据时间单元中包含的DMRS组的数量与时间窗包含的时间单元的数量的映射关系,确定时间窗包含的时间单元的数量。
这里的映射关系可以是预配置在终端设备的,例如可以是协议规定的,或者,也可以是终端设备从网络设备接收的。
应理解,这里的时间单元中包含的DMRS组的数量可以理解为该终端设备在S103中发送的物理上行信道中每个时间单元包含的DMRS组的数量。
还应理解,终端设备可以获取时间单元中包含的DMRS组的数量的多个候选值,该多个候选值中包括该终端设备在S103中发送的物理上行信道中每个时间单元包含的DMRS组的数量,而该时间单元中包含的DMRS组的数量的多个候选值与时间窗包含的时间单元的数量的多个候选值存在一一映射或多对一的映射关系,而该终端设备在S103中发送的物理上行信道中每个时间单元包含的DMRS组的数量与S103中物理上行信道中每个时间窗包含的额时间单元的数量的映射关系包含在上述时间单元中包含的DMRS组的数量的多个候选值与时间窗包含的时间单元的数量的多个候选值的一一映射或多对一的映射关系中。
S103,终端设备在时间窗内传输物理上行信道,相应地,网络设备在时间窗接收该物理上行信道。
本申请实施例,终端设备获取时间单元内包含的DMRS组的数量,从而能够灵活地根据该数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
应理解,一般而言,联合多个时间单元上的DMRS组进行联合信道估计相对于单个时间单元只用自身的DMRS组进行信道估计可以获得较大的联合信号估计性能收益。然而,基站可能配置了高密度的DMRS,例如一个时间单元内包括3个或4个DMRS组,那么一个时间单元进行信道估计的质量已经较高,多个这样的时间单元进行联合信道估计的性能收益可能不大,而通过本申请实施例的方法确定时间窗包含的时间单元的数量时,将一个时间单元内DMRS组的数量考虑在内,可以在每个时间单元内包含的DMRS组数量较多,即时间单元自身进行信道估计的质量较高的情况下,对较少的时间单元进行联合信道估计,也可以获得较好的信道估计性能;同时,较少的时间单元需要保持平均发送功率不变,那么在信道变化较快时,为了保持发送功率不变而导致的接收信号的性能变差或者增加对其他传输的干扰的情况也较少,从而可以实现功控性能上的提升。综上所述,本申请实施例可以针对要解决的技术问题获取信道估计性能和功控性能间的合理折中。
可选地,方法100还包括:
步骤1,终端设备获取第一数量,第一数量为用于确定时间窗内物理上行信道的DMRS组的数量,该时间窗内相位连续或平均发送功率不变。
应理解,该第一数量可以是协议预设的,或者,该第一数量也可以是终端设备从网络设备接收的,即步骤1也可以为:终端设备接收来自网络设备的第一数量,相应地,网络设备向终端设备发送第一数量。这里的物理上行信道可以理解为后续终端设备要向网络设备发送的物理上行信道。
还应理解,通常我们所说的PUSCH包括PUSCH的数据部分和PUSCH DMRS,有时候,我们将PUSCH的数据部分简化为PUSCH,即PUSCH的传输包含PUSCH和PUSCH的DMRS的传输。还应理解,通常我们所说的PUCCH包括PUCCH的控制信号部分和PUCCH DMRS,有时候,我们将PUCCH的控制信号部分简化为PUCCH,即PUCCH的传输包含PUCCH和PUCCH的DMRS的传输。
步骤2,终端设备根据第一数量和时间单元中包含的DMRS组的数量确定时间窗包含的时间单元的数量。
还应理解,这里的时间单元中包含的DMRS组的数量可以是终端设备从物理上行信道配置信息中获取的,而物理上行信道配置信息可以是终端设备从网络设备接收的。
下面分别以三种可能的实现方式为例,详细介绍步骤2。
第一种可能的实现方式:
终端设备在确定时间窗包含的时间单元的数量时,需要满足一个条件,即时间窗中包含的DMRS组的数量大于或等于该第一数量。
示例性地,时间窗中包含的时间单元的数量为
Figure PCTCN2022117462-appb-000023
其中,
Figure PCTCN2022117462-appb-000024
表示对
Figure PCTCN2022117462-appb-000025
向上取整,N为第一数量,k为时间单元中包含的DMRS组的数量,k为正整数。
具体可以参见方法200中的步骤S204对应的描述。
本申请实施例,终端设备获取用于确定时间窗内物理上行信道的DMRS组的数量,从而能够灵活地根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或平均发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
第二种可能的实现方式:
终端设备根据第一数量、时间单元中包含的DMRS组的数量和第一信息确定时间窗包含的时间单元的数量,该第一信息指示M,M为正整数,该时间窗内包含的该时间单元的数量小于或等于M。
应理解,这里的M用于指示时间窗包含的时间单元的数量的上限。
示例性地,这里的第一信息可以是终端设备从网络设备接收的,因此方法100还可以包括:终端设备接收来自网络设备的第一信息,相应地,网络设备向终端设备发送该第一信息。
示例性地,在M·k<N的情况下,时间窗内包含的时间单元的数量为M,或者,在M·k≥N的情况下,时间窗内包含的时间单元的数量为
Figure PCTCN2022117462-appb-000026
其中,k为时间单元中包含的 DMRS组的数量,k为正整数,N为第一数量。
具体可以参见方法300中的步骤S305对应的描述。
本申请实施例,通过在确定时间窗内包含的时间单元的数量时将第一信息考虑在内,进一步限定时间窗内包含的时间单元的数量的最大值,使得确定一个时间窗中包含的时间单元的数量时更为灵活,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
第三种可能的实现方式:
终端设备根据第二信息与第一数量的映射关系确定第一数量,当物理上行信道为PUSCH时,第二信息包括以下参数中的至少一项:PUSCH重复类型(repetition type)、PUSCH映射类型(mapping type)、PUSCH在一个时间单元内的符号个数(startSymbolAndLength中指示的length,或者startSymbolAndLength中指示的length,或者startSymbolAndLength中指示的length乘以TBoMS中一个重复对应的slot数,或者startSymbolAndLength中指示的length乘以TBoMS中一个重复对应的slot数)、PUSCH的DMRS的单/双符号(maxLength)、PUSCH的DMRS附加位置参数(dmrs-additional position);当物理上行信道为PUCCH时,第二信息包括以下参数中的至少一项:PUCCH在一个时间单元内的符号个数(PUCCH length)、PUCCH的格式(PUCCH format)、PUCCH的DMRS附加位置参数(additionalDMRS);
示例性地,这里的第二信息可以是终端设备从网络设备接收的,因此方法100还可以包括:终端设备接收来自网络设备的第二信息,相应地,网络设备向终端设备发送该第二信息。或者这里的第二信息也可以是终端设备根据从网络设备接收的信息获取的,例如,当物理上行信道为PUSCH时,终端设备从网络设备根据其从网络设备接收的PUSCH配置和/或调度PUSCH的DCI获取该第二信息;当物理上行信道为PUCCH时,终端设备从网络设备根据其从网络设备接收的PUCCH配置和/或调度PUCCH对应的PDSCH的DCI获取该第二信息。
应理解,该第二信息包括的参数可以理解为影响后续终端设备向网络设备发送的物理上行信道中的DMRS的传输参数,例如,影响一个时间单元中包含的DMRS组的数量的参数,其中,物理上行信道在一个时间单元内的符号个数可以理解为物理上行信道在一个或多个slot中的时域符号的个数。
还应理解,终端设备获取的第二信息可以存在多个候选值,终端设备获取的第一数量也可以存在多个候选值,而第二信息的多个候选值可以与第一数量的多个候选值一一对应,或者,第二信息的多个候选值也可以与第一数量的多个候选值存在多对一的映射关系。第二信息与第一数量的映射关系包含于第二信息的多个候选值与第一数量的多个候选值的一一映射或多对一的映射关系中。终端设备在根据第二信息和第一数量的映射关系确定第一数量,可以理解为终端设备根据后续终端设备向网络设备发送的物理上行信道对应的第二信息的多个候选值中的其中一个候选值,以及该候选值与第一数量的一个候选值的映射关系,确定了第一数量的候选值。
具体可以参见方法400中第二种可能的实现方式和第三种可能的实现方式对应的描述。
本申请实施例,因为第二信息是现有技术中实现物理上行信道传输需要配置的信息, 且第二信息中可以包含动态配置的信息,在RRC信令中配置好第二信息与第一数量的映射关系,根据动态配置获取的第二信息和和映射关系确定第一数量,避免了动态下发第一数量,减少了物理层信令的开销,提高频谱利用效率,同时,因为第二信息包含动态配置的信息,所以这种方法也可以获取动态配置第一数量的效果。
下面结合图6,对本申请实施例的信息发送的方法200进行详细说明。图6是本申请的方法200的示意性交互图。
S201,网络设备向终端设备发送PUSCH配置。
示例性地,终端设备可以根据S201中接收的PUSCH配置确定一个时间单元中包含的DMRS的个数为k,k为正整数。根据目前的协议,一个PUSCH重复可能包含1/2/3/4个DMRS,即k=1/2/3/4,但本申请实施例对此并不做限定。
S202,网络设备向终端设备发送第一指示信息,该第一指示信息用于指示联合信道估计时间窗,第一指示信息中指示N个/组DMRS,N为正整数。
其中,DMRS和DMRS组详见上文关于DMRS的介绍部分,在此不多赘述。本申请实施例以单符号DMRS为例进行说明,在具体实现中,本申请实施例中的DMRS都可以替换为DMRS组。
应理解,网络设备通过向终端设备发送数量N,向终端设备指示N个DMRS,以N个DMRS的形式向终端设备指示时间窗。或者,网络设备通过向终端设备发送数量N,向终端设备指示N个DMRS,以N个DMRS的形式向终端设备指示一个时间窗中包含的DMRS的数量不能小于N。
需要说明的是,S201和S202没有严格的时间顺序,方法200中的步骤编号并不对其执行顺序造成限定,且S201和S202可以用不同的信令指示,也可以用同一信令指示。
可选地,S203,网络设备向终端设备发送调度PUSCH的DCI。
应理解,如上文提及的PUSCH的3种调度方式所述,如果采用方式一,则执行步骤S203,网络设备通过DCI中的上行许可调度PUSCH;如果采用方式二,则不执行步骤S203;如果采用方式三,则将S203中的DCI替换成激活DCI,网络设备通过激活DCI中的上行许可半持续调度。
S204,终端设备根据S201、S202(和S203)接收到的信息确定联合信道估计时间窗。
这里的时间窗可以理解为保持相位连续/功率相同的一个或多个时间单元,其中,该时间单元可以是以下任意一个:一个物理上行共享信道PUSCH重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
具体地,终端设备根据S201中获取的一个时间单元包含的DMRS的个数k和网络设备在S202中指示的DMRS的数量N确定联合信道估计时间窗中包含的时间单元的数量。
作为一个示例,联合信道估计时间窗中包含的时间单元的数量=
Figure PCTCN2022117462-appb-000027
其中,
Figure PCTCN2022117462-appb-000028
表示对
Figure PCTCN2022117462-appb-000029
向上取整。
下面分别结合图7和图8,以k=1/2/3/4,N=2,以及k=1/2/3/4,N=3为例,对终端设备如何确定时间窗包含的时间单元的数量进行介绍。
图7中,以k=1/2/3/4,N=2,PUSCH通过4个时间单元进行传输为例,其中,每一 个黑色框表示一个时间单元,每一个灰色长方形表示DMRS。
如图7中的(a)所示,k=1,
Figure PCTCN2022117462-appb-000030
一个时间窗包含2个时间单元,一个时间窗包含2个DMRS。
如图7中的(b)所示,k=2,
Figure PCTCN2022117462-appb-000031
一个时间窗包含1个时间单元,一个时间窗包含2个DMRS。
如图7中的(c)所示,k=3,
Figure PCTCN2022117462-appb-000032
一个时间窗包含1个时间单元,一个时间窗包含3个DMRS。
如图7中的(d)所示,k=4,
Figure PCTCN2022117462-appb-000033
一个时间窗包含1个时间单元,一个时间窗包含4个DMRS。
图8中,以k=1/2/3/4,N=3,PUSCH通过4个时间单元进行传输为例,其中,每一个黑色框表示一个时间单元,每一个灰色长方形表示DMRS。
如图8中的(a)所示,k=1,
Figure PCTCN2022117462-appb-000034
一个时间窗包含3个时间单元,一个时间窗包含3个DMRS。
如图8中的(b)所示,k=2,
Figure PCTCN2022117462-appb-000035
一个时间窗包含2个时间单元,一个时间窗包含4个DMRS。
如图8中的(c)所示,k=3,
Figure PCTCN2022117462-appb-000036
一个时间窗包含1个时间单元,一个时间窗包含3个DMRS。
如图8中的(d)所示,k=4,
Figure PCTCN2022117462-appb-000037
一个时间窗包含1个时间单元,一个时间窗包含4个DMRS。
作为另一个示例,联合信道估计时间窗中包含的时间单元的数量=
Figure PCTCN2022117462-appb-000038
其中,
Figure PCTCN2022117462-appb-000039
表示对
Figure PCTCN2022117462-appb-000040
向下取整,max()表示取较大值。
下面分别结合图9,以k=1/2/3/4,N=2为例,对终端设备如何确定时间窗包含的时间单元的数量进行介绍。
如图9所示,以k=1/2/3/4,N=2,PUSCH通过4个时间单元进行传输为例,其中,每一个黑色框表示一个时间单元,每一个灰色长方形表示DMRS。
如图9中的(a)所示,k=1,
Figure PCTCN2022117462-appb-000041
一个时间窗包含2个时间单元,一个时间窗包含2个DMRS。
如图9中的(b)所示,k=2,
Figure PCTCN2022117462-appb-000042
一个时间窗包含1个时间单元,一个时间窗包含2个DMRS。
如图9中的(c)所示,k=3,
Figure PCTCN2022117462-appb-000043
一个时间窗包含1个时间单元,一个时间窗包含3个DMRS。
如图9中的(d)所示,k=4,
Figure PCTCN2022117462-appb-000044
一个时间窗包含1个时间单元,一个时间窗包含4个DMRS。
S205,终端设备根据确定的联合信道估计时间窗,向终端设备发送PUSCH。
需要说明的是,本申请实施例涉及的一个时间单元内的DMRS个数是DMRS的标称数量。应理解,在具体实现中可能会出现某些情况对一个时间单元内的DMRS的实际数量造成影响,使得其实际数量小于标称数量,例如DMRS和配置的控制信道资源在时频资源上有重叠,或者DMRS和LTE系统的公共参考信号在时间上有重叠,那么一个时间单元内的DMRS会后移,或者数量变少。
还需要说明的是,当本申请实施例中的时间单元为一个PUSCH重复时,一个重复内的DMRS个数就是标称重复中包含的DMRS个数。同样的,确定的联合信道估计时间窗,即保持相位连续/功率相同的PUSCH传输时间是也以标称重复的时长为单位的,也就是整数个标称重复。这样在具体实现中更加简单,不用考虑PUSCH传输受到其他影响时的实际传输。
应理解,一般而言,联合多个时间单元上的DMRS组进行联合信道估计相对于单个时间单元只用自身的DMRS组进行信道估计可以获得较大的联合信号估计性能收益。然而,基站可能配置了高密度的DMRS,例如一个时间单元内包括3个或4个DMRS组,那么一个时间单元进行信道估计的质量已经较高,多个这样的时间单元进行联合信道估计的性能收益可能不大,而通过本申请实施例的方法确定时间窗包含的时间单元的数量时,将一个时间单元内DMRS组的数量考虑在内,可以在每个时间单元内包含的DMRS组数量较多,即时间单元自身进行信道估计的质量较高的情况下,对较少的时间单元进行联合信道估计,也可以获得较好的信道估计性能;同时,较少的时间单元需要保持平均发送功率不变,那么在信道变化较快时,为了保持发送功率不变而导致的接收信号的性能变差或者增加对其他传输的干扰的情况也较少,从而可以实现功控性能上的提升。综上所述,本申请实施例可以针对要解决的技术问题获取信道估计性能和功控性能间的合理折中。
本申请实施例,网络设备向终端设备发送用于确定时间窗内PUSCH的DMRS组的数量,终端设备根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
下面结合图10,对本申请实施例的信息发送的方法300进行详细说明。图10是本申请的方法300的示意性交互图。
S301,网络设备向终端设备发送PUSCH配置。
示例性地,终端设备可以根据S201中接收的PUSCH配置确定一个时间单元中包含 的DMRS的个数为k,k为正整数。根据目前的协议,一个PUSCH重复可能包含1/2/3/4个DMRS,即k=1/2/3/4,但本申请实施例对此并不做限定。
S302,网络设备向终端设备发送第二指示信息,第二指示信息用于指示联合信道估计时间窗,第一指示信息中指示M个时间单元。
其中,该时间单元可以是以下任意一个:一个物理上行共享信道PUSCH重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
S303,网络设备向终端设备发送第三指示信息,第三指示信息用于指示联合信道估计应用门限,第三指示信息指示N个/组DMRS。
其中,DMRS和DMRS组详见上文关于DMRS的介绍部分,在此不多赘述。本申请实施例以单符号DMRS为例进行说明,在具体实现中,本申请实施例中的DMRS都可以替换为DMRS组。
其中,这里的联合信道估计应用门限可以理解为用于限制一个时间单元中包括的DMRS个数的门限值,“联合信道估计应用门限”仅为该门限的名称的一种示例,本申请对此并不做限定。应理解,网络设备通过向终端设备发送数量N,向终端设备指示N个DMRS,以N个DMRS的形式作为联合信道估计应用门限。或者,网络设备通过向终端设备发送数量N,向终端设备指示N个DMRS,以N个DMRS的形式向终端设备指示一个时间窗中包含的DMRS的数量不能小于N。
需要说明的是,S301-S303没有严格的时间顺序,方法300中的步骤编号并不对其执行顺序造成限定,S301-S303可以用不同的信令指示,也可以用同一信令指示。
可选地,S304,网络设备向终端设备发送调度PUSCH的DCI。
应理解,如上文提及的PUSCH的3种调度方式所述,如果采用方式一,则执行步骤S304,网络设备通过DCI中的上行许可调度PUSCH;如果采用方式二,则不执行步骤S304;如果采用方式三,则将S304中的DCI替换成激活DCI,网络设备通过激活DCI中的上行许可半持续调度。
S305,终端设备根据S301-304(和S305)接收到的信息确定联合信道估计时间窗。
这里的时间窗可以理解为保持相位连续/功率相同的一个或多个时间单元。
具体地,终端设备根据S301中获取的一个时间单元包含的DMRS的个数k、网络设备在S302中指示的时间单元的个数M和S303中指示的联合信道估计应用门限N确定联合信道估计时间窗中包含的时间单元的数量。
作为一个示例,(1)如果M·k<N,则确定联合信道估计时间窗包括M个时间单元;(2)如果M·k≥N,则确定联合信道估计时间窗包括
Figure PCTCN2022117462-appb-000045
个时间单元。
下面分别结合图11和图12,以k=1/2/3/4,M=2,N=3,以及k=1/2/3/4,M=2,N=1为例,对终端设备如何确定时间窗包含的时间单元的数量进行介绍。
图11中,以k=1/2/3/4,M=2,N=3,PUSCH通过4个时间单元进行传输为例,其中,每一个黑色框表示一个时间单元,每一个灰色长方形表示DMRS。
如图11中的(a)所示,k=1,M=2,N=3,M·k<N,一个时间窗包含M个时间单元,即一个时间窗包含2个时间单元,一个时间窗包含2个DMRS。
如图11中的(b)所示,k=2,M=2,N=3,M·k>N,一个时间窗包含2个时间单 元,一个时间窗包含4个DMRS。
如图11中的(c)所示,k=3,M=2,N=3,M·k>N,一个时间窗包含1个时间单元,一个时间窗包含3个DMRS。
如图11中的(d)所示,k=4,M=2,N=3,M·k>N,一个时间窗包含1个时间单元,一个时间窗包含4个DMRS。
图12中,以k=1/2/3/4,M=2,N=2,PUSCH通过4个时间单元进行传输为例,其中,每一个黑色框表示一个时间单元,每一个灰色长方形表示DMRS。
如图12中的(a)所示,k=1,M=2,N=2,M·k=N,一个时间窗包含2个时间单元,一个时间窗包含2个DMRS。
如图12中的(b)所示,k=2,M=2,N=2,M·k>N,一个时间窗包含1个时间单元,一个时间窗包含2个DMRS。
如图12中的(c)所示,k=3,M=2,N=2,M·k>N,一个时间窗包含1个时间单元,一个时间窗包含3个DMRS。
如图12中的(d)所示,k=4,M=2,N=2,M·k>N,一个时间窗包含1个时间单元,一个时间窗包含4个DMRS。
作为另一个示例,(1)如果M·k≤N,则确定联合信道估计时间窗包括M个时间单元;(2)如果M·k>N,则确定联合信道估计时间窗包括
Figure PCTCN2022117462-appb-000046
个时间单元。
下面分别结合图13,以k=1/2/3/4,M=3,N=3为例,对终端设备如何确定时间窗包含的时间单元的数量进行介绍。
如图13中的(a)所示,k=1,M=3,N=3,M·k=N,一个时间窗包含M个时间单元,即一个时间窗包含3个时间单元,一个时间窗包含3个DMRS。
如图13中的(b)所示,k=2,M=3,N=3,M·k>N,一个时间窗包含2个时间单元,一个时间窗包含4个DMRS。
如图13中的(c)所示,k=3,M=3,N=3,M·k>N,一个时间窗包含1个时间单元,一个时间窗包含3个DMRS。
如图13中的(d)所示,k=4,M=3,N=3,M·k>N,一个时间窗包含1个时间单元,一个时间窗包含4个DMRS。
S306,终端设备根据确定的联合信道估计时间窗,向终端设备发送PUSCH。
需要说明的是,本申请实施例涉及的一个时间单元内的DMRS个数是DMRS的标称数量。应理解,在具体实现中可能会出现某些情况对一个时间单元内的DMRS的实际数量造成影响,使得其实际数量小于标称数量,例如DMRS和配置的控制信道资源在时频资源上有重叠,或者DMRS和LTE系统的公共参考信号在时间上有重叠,那么一个时间单元内的DMRS会后移,或者数量变少。
还需要说明的是,当本申请实施例中的时间单元为一个PUSCH重复时,一个重复内的DMRS个数就是标称重复中包含的DMRS个数。同样的,确定的联合信道估计时间窗,即保持相位连续/功率相同的PUSCH传输时间是也以标称重复的时长为单位的,也就是整数个标称重复。这样在具体实现中更加简单,不用考虑PUSCH传输受到其他影响时的实际传输。
可选地,方法300中,联合信道估计应用门限也可以是协议预设的,即,也可以不执行步骤S303。
应理解,
本申请实施例,网络设备以DMRS的数量的形式向终端设备指示用于确定时间窗内PUSCH的DMRS组的数量,以时间单元的个数的形式向终端设备指示时间窗内包含的该时间单元的数量的最大值,根据时间单元中包含的DMRS的数量、网络设备指示的DMRS的数量和时间单元的个数来确定一个时间窗中包含的时间单元的数量,从而终端设备能够灵活地确定时间窗中包括的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
下面结合图14,对本申请实施例的信息发送的方法400进行详细说明。图14是本申请的方法400的示意性交互图。
应理解,根据S402中第四指示信息指示的内容不同,方法400可以用4种不同的实现方式。
第一种可能的实现方式:
S401,网络设备向终端设备发送PUSCH配置。
示例性地,终端设备可以根据S401中接收的PUSCH配置确定终端设备传输PUSCH时使用的影响DMRS传输的传输参数,这里的影响DMRS传输的传输参数可以是以下一个或多个:重复类型(repetition type)、映射类型(mapping type)、PUSCH的持续符号个数、PUSCH的DMRS的单/双符号、参数dmrs-AdditionalPosition。
S402,网络设备向终端设备发送第四指示信息,该第四指示信息用于指示多个联合信道估计时间窗,第四指示信息中指示时间单元的至少两个数量。在本申请实施例中,均以第四指示信息指示2个时间单元的个数(即M1和M2)为例进行说明,在具体实现中第四指示信息还可以指示其他大于2个的数量,本申请对此并不做限定。
应理解,上述时间单元的至少两个数量可以相同也可以不同。网络设备通过向终端设备发送数量M1和M2,向终端设备指示M1和M2个时间单元,以M1和M2个时间单元的形式向终端设备指示时间窗。或者,网络设备通过向终端设备发送数量M1和M2,向终端设备指示M1和M2个时间单元,以M1和M2个时间单元的形式向终端设备指示一个时间窗中包含的时间单元的数量。
具体地,上述时间单元的至少两个数量关联于影响DMRS传输的多个传输参数中的一个或多个:重复类型(repetition type)、映射类型(mapping type)、PUSCH的持续符号个数、PUSCH的DMRS的单/双符号、参数dmrs-AdditionalPosition。
应理解,S402中的涉及的影响DMRS传输的多个传输参数包括S401和S403中的终端设备传输PUSCH时使用的影响DMRS传输的传输参数。换句话说,S402中的影响DMRS传输的多个传输参数泛指该传输参数的多种可能的类型,而S401和S403中的终端设备传输PUSCH时使用的影响DMRS传输的传输参数特指该终端设备在S405中发送PUSCH时要使用的影响DMRS传输的传输参数。
需要说明的是,S401和S402没有严格的时间顺序,方法400中的步骤编号并不对其 执行顺序造成限定,且S401和S402可以用不同的信令指示,也可以用同一信令指示。
可选地,S403,网络设备向终端设备发送调度PUSCH的DCI。
应理解,如上文提及的PUSCH的3种调度方式所述,如果采用方式一,则执行步骤S403,网络设备通过DCI中的上行许可调度PUSCH;如果采用方式二,则不执行步骤S403;如果采用方式三,则将S403中的DCI替换成激活DCI,网络设备通过激活DCI中的上行许可半持续调度。
示例性地,终端设备可以根据网络设备发送的PUSCH配置和调度PUSCH的DCI确定终端设备传输PUSCH时使用的影响DMRS传输的传输参数,这里的影响DMRS传输的传输参数可以是以下一个或多个:重复类型(repetition type)、映射类型(mapping type)、PUSCH的持续符号个数、PUSCH的DMRS的单/双符号、参数dmrs-AdditionalPosition。
或者,示例性地,终端设备可以根据网络设备发送的调度PUSCH的DCI确定终端设备传输PUSCH时使用的影响DMRS传输的传输参数,这里的影响DMRS传输的传输参数可以是以下一个或多个:重复类型(repetition type)、映射类型(mapping type)、PUSCH的持续符号个数l d、PUSCH的DMRS的单/双符号、参数dmrs-AdditionalPosition。
S404,终端设备根据S401、S402(和S403)接收到的信息确定联合信道估计时间窗。
这里的时间窗可以理解为保持相位连续/功率相同的一个或多个时间单元,其中,该时间单元可以是以下任意一个:一个物理上行共享信道PUSCH重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
具体地,终端设备根据终端设备传输PUSCH时使用的影响DMRS传输的传输参数与时间单元的至少两个数量中的其中一个数量的对应关系,根据该数量确定联合信道估计时间窗,即该时间窗中包括几个时间单元。
S405,终端设备根据确定的联合信道估计时间窗,向终端设备发送PUSCH。
下面结合几个可能的示例,进一步介绍S402中上述时间单元的至少两个数量如何与影响DMRS传输的多个传输参数中的一个或多个关联,以及S404中终端设备如何根据终端设备传输PUSCH时使用的影响DMRS传输的传输参数与时间单元的至少两个数量中的其中一个数量的对应关系,并根据该时间单元的数量确定联合信道估计时间窗。
示例1,S402中的关联关系为:终端设备传输PUSCH时使用的重复类型为Repetition typeA时,S404中终端设备确定时间窗包括M1个时间单元;终端设备传输PUSCH时使用的重复类型为repetition typeB时,S404中终端设备确定时间窗包括M2个时间单元。
示例2,S402中的关联关系为:终端设备传输PUSCH时使用单符号DMRS时,S404中终端设备确定时间窗包括M1个时间单元;终端设备传输PUSCH时使用双符号DMRS时,S404中终端设备确定时间窗包括M2个时间单元。
示例3,S402中的关联关系为:终端设备传输PUSCH时使用的映射类型为Mapping typeA时,S404中终端设备确定时间窗包括M1个时间单元;终端设备传输PUSCH时使用的映射类型为mapping typeB时,S404中终端设备确定时间窗包括M2个时间单元。
示例4,S402中的关联关系为:终端设备传输PUSCH时使用的dmrs-AdditionalPosition=pos0时,S404中终端设备确定时间窗包括M1个时间单元;终端设备传输PUSCH时使用的dmrs-AdditionalPosition=pos1时,S404中终端设备确定时间窗包括M2个时间单元;终端设备传输PUSCH时使用的dmrs-AdditionalPosition=pos2/3时, S404中终端设备确定时间窗包括M3个时间单元。
示例5,S402中的关联关系为:终端设备传输PUSCH时使用的PUSCH的持续符号个数l d满足条件1时,S404中终端设备确定时间窗包括M1个时间单元;终端设备传输PUSCH时使用的PUSCH的持续符号个数l d满足条件2时,S404中终端设备确定时间窗包括M2个时间单元;其中,条件1可以为l d≤7,条件2是l d>7。
示例6,S402中的关联关系为:终端设备传输PUSCH时使用单符号DMRS时,S404中终端设备确定时间窗包括M1个时间单元;终端设备传输PUSCH时使用双符号DMRS,mapping type A时,S404中终端设备确定时间窗包括M2个时间单元;终端设备传输PUSCH时使用双符号DMRS,mapping type B时,S404中终端设备确定时间窗包括M3个时间单元。
示例7,S402中的关联关系为:终端设备传输PUSCH时使用Repetition typeA,l d满足条件1时,S404中终端设备确定时间窗包括M1个时间单元;终端设备传输PUSCH时使用Repetition typeA,l d满足条件2时,S404中终端设备确定时间窗包括M2个时间单元;终端设备传输PUSCH时使用Repetition typeB,l d满足条件3时,S404中终端设备确定时间窗包括M3个时间单元;终端设备传输PUSCH时使用Repetition typeB,l d满足条件4时,S404中终端设备确定时间窗包括M4个时间单元。
示例8,(1)S402中的关联关系为:终端设备传输PUSCH时使用dmrs-AdditionalPosition=pos0或pos1;或者使用单符号DMRS,mapping type A,dmrs-AdditionalPosition=pos2或pos3,l d≤7;或者使用单符号DMRS,mapping type B,dmrs-AdditionalPosition=pos2或pos3,l d≤4时,S404中终端设备确定时间窗包括M1个时间单元;
(2)S402中的关联关系为:终端设备传输PUSCH时使用dmrs-AdditionalPosition=pos2或pos3且l d≥8时,S404中终端设备确定时间窗包括M2个时间单元;
(3)S402中的关联关系为:终端设备传输PUSCH时使用单符号DMRS,dmrs-AdditionalPosition=pos2或pos3,l d≥5时,S404中终端设备确定时间窗包括M3个时间单元。
应理解,示例8中的关联关系可以与表1和表2结合起来表示,例如终端设备传输PUSCH时使用dmrs-AdditionalPosition=pos2或pos3且l d≥8时可以对应为表1中的第10行、第4列至第16行、第4列,和第10行、第5列至第16行、第5列。
需要说明的是,本申请实施例中的时间单元的至少两个数量(例如M1、M2、M3)可以等于1,在这种情况下,时间单元的至少两个数量表示不同的时间单元之间不进行联合信道估计。或者,本申请实施例也可以在一些场景下指示时间单元的至少两个数量,在另一些场景下不指示时间单元的至少两个数量,在这种情况下,表示不指示时间单元的至少两个数量的场景不做不同重复间的联合信道估计。
还需要说明的是,当本申请实施例中的时间单元为一个PUSCH重复时,一个重复内的DMRS个数就是标称重复中包含的DMRS个数。同样的,确定的联合信道估计时间窗,即保持相位连续/功率相同的PUSCH传输时间是也以标称重复的时长为单位的,也就是整数个标称重复。这样在具体实现中更加简单,不用考虑PUSCH传输受到其他影响时的实际传输。
本申请实施例,网络设备向终端设备指示时间单元的数量的至少2个候选值,且时间单元的数量与影响DMRS的传输参数的多个候选值关联,终端设备根据该关联关系和当前PUSCH使用的影响DMRS的传输参数确定时间窗内包含的时间单元的数量,从而网络设备能够更灵活地指示保持相位连续或平均发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。
第二种可能的实现方式:
相对于第一种可能的实现方式,区别在于:
将第一种可能的实现方式中的时间单元的至少两个数量替换为DMRS的至少两个数量,S404中,终端设备根据关联关系确定出DMRS的数量N后,根据方法200进一步确定时间窗包含的时间单元的数量。
本申请实施例,网络设备向终端设备发送用于确定时间窗内PUSCH的DMRS组的数量的多个候选值,终端根据该多个候选值与影响DMRS的传输参数的多个候选值的关联关系,结合当前PUSCH使用的影响DMRS的传输参数,能够灵活地确定时间窗内包含的时间单元的数量,即灵活地确定要保持相位连续或平均发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
第三种可能的实现方式:
相对于第一种可能的实现方式,区别在于:
将第一种可能的实现方式中的时间单元的至少两个数量替换为至少两个联合信道估计应用门限(参见方法300用N个DMRS的形式指示),增加步骤:网络设备向终端设备发送M个时间单元,具体参见步骤S303,S404中,终端设备根据关联关系确定出联合信道估计应用门限后,根据方法300进一步确定时间窗包含的时间单元的数量。
本申请实施例,网络设备向终端设备发送用于确定时间窗内PUSCH的DMRS组的数量和时间窗内包含的时间单元的数量的最大值的多个候选值,终端根据该多个候选值与影响DMRS的传输参数的多个候选值的关联关系,结合当前PUSCH使用的影响DMRS的传输参数,能够灵活地确定时间窗内包含的时间单元的数量,即灵活地确定要保持相位连续或平均发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量和时间单元中包含的DMRS的数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
第四种可能的实现方式:
S401,网络设备向终端设备发送PUSCH配置。
终端设备可以根据PUSCH配置确定一个时间单元内包括的DMRS的个数K。
S402,网络设备向终端设备指示多个联合信道估计时间窗,具体地,网络设备向终端设备发送时间窗内包含的时间单元的数量的至少两个候选值;相应地,终端设备从网络设备接收该至少两个候选值。
应理解,上述时间单元的数量的至少两个候选值可以相同也可以不同。
具体地,上述至少两个候选值关联于一个时间单元内包含的DMRS组的数量的多个候选值,该关联关系或映射关系可以是一对一或者一对多的。
例如,候选值M1与DMRS数量K1关联,候选值M2与DMRS数量K2关联。
应理解,S402中的一个时间单元内包含的DMRS组的数量包括S401中终端设备确定的一个时间单元内包括的DMRS的个数K,也包括S405中终端设备发送的PUSCH中一个时间单元内包括的DMRS的个数K。
需要说明的是,S401和S402没有严格的时间顺序,方法400中的步骤编号并不对其执行顺序造成限定,且S401和S402可以用不同的信令指示,也可以用同一信令指示。
可选地,S403,网络设备向终端设备发送调度PUSCH的DCI。
应理解,如上文提及的PUSCH的3种调度方式所述,如果采用方式一,则执行步骤S403,网络设备通过DCI中的上行许可调度PUSCH;如果采用方式二,则不执行步骤S403;如果采用方式三,则将S403中的DCI替换成激活DCI,网络设备通过激活DCI中的上行许可半持续调度。
S404,终端设备根据S401、S402接收到的信息确定联合信道估计时间窗。
具体地,终端设备根据一个时间单元内包括的DMRS组的数量的多个候选值与时间窗内包含的时间单元的数量的多个候选值的映射关系,以及终端设备被配置的一个时间单元内包含的DMRS组的数量,确定终端设备在S405中发送的PUSCH中一个时间窗内时间单元的数量。
S405,终端设备根据确定的联合信道估计时间窗,向终端设备发送PUSCH。
本申请实施例,终端设备获取时间单元中包含的DMRS组的数量,从而能够灵活地根据该数量来确定一个时间窗中包含的时间单元的数量,即灵活地确定要保持相位连续或平均发送功率不变的时间单元的数量,在信道质量变化较快的情况下能够提升信号传输的性能,减少上行传输性能变差或增加对其他传输干扰的问题。另外,根据该数量来确定一个时间窗中包含的时间单元的数量,也能够尽可能地提高联合信道估计相对于每个时间单元做信道估计的性能收益。
以上,结合图5至图14详细说明了本申请实施例提供的方法。以下,结合图15至图16详细说明本申请实施例提供的装置。
图15是本申请实施例提供的用于通信通信装置的示意性框图。如图15所示,该通信装置10可以包括收发模块11和处理模块12。
其中,收发模块11可以用于接收其他装置发送的信息,还可以用于向其他装置发送信息。比如,接收第一数量或发送PUSCH。处理模块12可以用于进行装置的内容处理,比如,确定时间窗内包括的时间单元的数量。
在一种可能的设计中,该通信装置10可对应于上述方法实施例中的终端设备。
具体地,该通信装置10可对应于根据本申请实施例的方法100至方法400中任一方法中的终端设备或UE,该通信装置10可以包括用于执行相应方法中由终端设备所执行的操作的模块,并且,该通信装置10中的各单元分别为了实现相应方法中由终端设备所执行的操作。
示例性的,在该通信装置10对应于方法100中的终端设备时,收发模块11用于执行 步骤S103,处理模块12用于执行S101、S102。
示例性的,在该通信装置10对应于方法200中的终端设备时,收发模块11用于执行步骤S201-S203、S205,处理模块12用于执行S204。
示例性的,在该通信装置10对应于方法300中的终端设备时,收发模块11用于执行步骤S301-S304、S306,处理模块12用于执行S305。
示例性的,在该通信装置10对应于方法400中的终端设备时,收发模块11用于执行步骤S401-S403、S405,处理模块12用于执行S404。
在另一种可能的设计中,该通信装置10可对应于上述方法实施例中的网络设备。
具体地,该通信装置10可对应于根据本申请实施例的方法100至方法400中任一方法中的网络设备,该通信装置10可以包括用于执行相应方法中由网络设备所执行的操作的模块,并且,该通信装置10中的各单元分别为了实现相应方法中由网络设备所执行的操作。
示例性的,在该通信装置10对应于方法100中的网络设备时,收发模块11用于执行步骤S103。
示例性的,在该通信装置10对应于方法200中的网络设备时,收发模块11用于执行步骤S201-S203、S205,处理模块12用于执行步骤S205。
示例性的,在该通信装置10对应于方法300中的网络设备时,收发模块11用于执行步骤S301-S304、S306。
示例性的,在该通信装置10对应于方法400中的网络设备时,收发模块11用于执行步骤S401-S403、S405。
图16为本申请实施例提供的通信装置20的示意图。
在一种可能的设计中,该装置20可以为网络设备,也可以为位于网络设备上的芯片或芯片系统等。
在一种可能的设计中,该装置20可以为终端设备包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端,移动台,终端,用户设备,软终端等等,也可以为位于终端设备上的芯片或芯片系统等。
该装置20可以包括处理器21(即,处理模块的一例)和存储器22。该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以使该装置20实现如图5至图14中对应的方法中上述各种可能的设计中的设备执行的步骤。
进一步地,该装置20还可以包括输入口23(即,收发模块的一例)和输出口24(即,收发模块的另一例)。进一步地,该处理器21、存储器22、输入口23和输出口24可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储器22中调用并运行该计算机程序,以控制输入口23接收信号,控制输出口24发送信号,完成上述方法中终端设备或无线接入网设备或UE或基站的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该报文传输的装置20为通信设备,该输入口23为接收器,该输出口24为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置20为芯片或电路,该输入口23为输入接口,该输出口24为输出接口。
作为一种实现方式,输入口23和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的设备。即将实现处理器21、输入口23和输出口24功能的程序代码存储在存储器22中,通用处理器通过执行存储器22中的代码来实现处理器21、输入口23和输出口24的功能。
其中,装置20中各模块或单元可以用于执行上述方法中进行随机接入的设备(例如,终端设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
应理解,本申请实施例中,该处理器可以为中央处理单元(CPU,central processing unit),该处理器还可以是其他通用处理器、数字信号处理器(DSP,digital signal processor)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由网络设备或终端设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备或终端设备执行的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由网络设备或终端设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备或终端设备执行的方法。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令 或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机 存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种通信方法,其特征在于,包括:
    终端设备获取时间单元中包含的DMRS组的数量,所述DMRS组为物理上行信道的DMRS组;
    所述终端设备根据所述时间单元中包含的DMRS组的数量确定时间窗包含的所述时间单元的数量,所述时间窗内相位连续或平均发送功率不变;
    所述终端设备在所述时间窗内传输所述物理上行信道。
  2. 根据权利要求1所述的方法,其特征在于,所述时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述时间单元中包含的DMRS组的数量确定时间窗包含的所述时间单元的数量,包括:
    所述终端设备根据所述时间单元中包含的DMRS组的数量与所述时间窗包含的所述时间单元的数量的映射关系,确定所述时间窗包含的所述时间单元的数量。
  4. 根据权利要求3所述的方法,其特征在于,
    所述时间单元中包含的DMRS组的数量与所述时间窗内包含的所述时间单元的数量映射关系包含于所述时间单元中包含的DMRS组的数量的多个候选值与所述时间窗包含的所述时间单元的数量的多个候选值的一一映射或多对一的映射关系中。
  5. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述时间单元中包含的DMRS组的数量确定时间窗包含的所述时间单元的数量,包括:
    所述终端设备根据第一数量和所述时间单元中包含的DMRS组的数量确定所述时间窗包含的所述时间单元的数量,所述第一数量为用于确定时间窗内物理上行信道的解调参考信号DMRS组的数量。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一数量是预设的,或者,所述第一数量是所述终端设备从所述网络设备接收的。
  7. 根据权利要求5或6所述的方法,其特征在于,
    所述时间窗中包含的DMRS组的数量大于或等于所述第一数量。
  8. 根据权利要求7所述的方法,其特征在于,
    所述时间窗中包含的所述时间单元的数量为
    Figure PCTCN2022117462-appb-100001
    其中,
    Figure PCTCN2022117462-appb-100002
    表示对
    Figure PCTCN2022117462-appb-100003
    向上取整,N为所述第一数量,k为所述时间单元中包含的DMRS组的数量,k为正整数。
  9. 根据权利要求5或6所述的方法,其特征在于,所述终端设备根据第一数量和所述时间单元中包含的DMRS组的数量确定所述时间窗包含的时间单元的数量,包括:
    所述终端设备根据所述第一数量、所述时间单元中包含的DMRS组的数量和第一信息确定所述时间窗包含的所述时间单元的数量,所述第一信息指示M,M为正整数,所述时间窗内包含的所述时间单元的数量小于或等于M。
  10. 根据权利要求9所述的方法,其特征在于,
    在M·k<N的情况下,所述时间窗内包含的所述时间单元的数量为M,或者,
    在M·k≥N的情况下,所述时间窗内包含的所述时间单元的数量为
    Figure PCTCN2022117462-appb-100004
    其中,k为所述时间单元中包含的DMRS组的数量,k为正整数,N为所述第一数量。
  11. 根据权利要求5至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第二信息与所述第一数量的映射关系确定所述第一数量,所述第二信息包括以下参数中的至少一项:所述物理上行信道重复类型、所述物理上行信道映射类型、所述物理上行信道在一个时间单元内的符号个数、所述物理上行信道的DMRS的单/双符号、所述物理上行信道的DMRS附加位置参数、所述物理上行信道的格式。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第二信息与所述第一数量的映射关系包含于所述第二信息的多个候选值与所述第一数量的多个候选值的一一映射或多对一的映射关系中。
  13. 一种通信方法,其特征在于,包括:
    网络设备向终端设备通知时间单元中包含的DMRS组的数量,以便于所述终端设备确定时间窗内包含的所述时间单元的数量,所述时间窗内相位连续或平均发送功率不变,所述DMRS组为物理上行信道的DMRS组;
    所述网络设备接收来自所述终端设备的所述物理上行信道。
  14. 根据权利要求13所述的方法,其特征在于,所述时间单元包括以下中的一项:一个物理上行信道重复、一个或多个时隙、一个或多个正交频分复用OFDM符号。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送所述时间单元中包含的DMRS组的数量与所述时间窗包含的所述时间单元的数量的映射关系。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,
    所述网络设备向所述终端设备发送第一数量,所述第一数量为用于确定时间窗内物理上行共享信道物理上行信道的解调参考信号DMRS组的数量。
  17. 根据权利要求16所述的方法,其特征在于,
    所述时间窗中包含的DMRS组的数量大于或等于所述第一数量。
  18. 根据权利要求13至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一信息,所述第一信息指示M,M为正整数,所述时间窗内包含的所述时间单元的数量小于或等于M。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息包括以下参数中的至少一项:所述物理上行信道重复类型、所述物理上行信道映射类型、所述物理上行信道在一个时间单元内的符号个数、所述物理上行信道的DMRS的单/双符号、所述物理上行信道的DMRS附加位置参数、所述物理上行信道的格式,所述第二信息与所述第一数量存在映射关系。
  20. 根据权利要求13至19所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息与所述第一数量的映射关系。
  21. 根据权利要求19或20所述的方法,其特征在于,
    所述第二信息与所述第一数量的映射关系包含于所述第二信息的多个候选值与所述 第一数量的多个候选值的一一映射或多对一的映射关系中。
  22. 一种通信装置,其特征在于,包括:
    用于实现权利要求1至12中任一项所述方法的模块;或者,
    用于实现权利要求13至21中任一项所述方法的模块。
  23. 一种通信装置,其特征在于,包括:
    处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至12中任一项所述的通信方法,或执行权利要求13至21中任一项所述的通信方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至12中任一项所述通信方法,或执行如权利要求13至21中任一项所述的通信方法。
  25. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统地通信设备执行如权利要求1至12中任一项所述的通信方法,或执行如权利要求13至21中任一项所述的通信方法。
PCT/CN2022/117462 2021-09-30 2022-09-07 通信方法与装置 WO2023051201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111159610.2A CN115913828A (zh) 2021-09-30 2021-09-30 通信方法与装置
CN202111159610.2 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051201A1 true WO2023051201A1 (zh) 2023-04-06

Family

ID=85743026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117462 WO2023051201A1 (zh) 2021-09-30 2022-09-07 通信方法与装置

Country Status (2)

Country Link
CN (1) CN115913828A (zh)
WO (1) WO2023051201A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062815A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 调制解调参考信号的配置信息获取方法、配置方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062815A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 调制解调参考信号的配置信息获取方法、配置方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on Joint channel estimation for PUSCH", 3GPP DRAFT; R1-2102313, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177033 *
XIAOMI: "Joint channel estimation for PUSCH", 3GPP DRAFT; R1-2105577, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006408 *

Also Published As

Publication number Publication date
CN115913828A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
EP3735071B1 (en) Uplink control information transmission method and device
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
WO2020238992A1 (zh) 一种通信方法及装置
EP4145745A1 (en) Capability information reporting method and apparatus
WO2020051774A1 (zh) 通信方法、终端设备和网络设备
US11528731B2 (en) Communication method and communications apparatus
US20220312459A1 (en) Enhanced Configured Grants
WO2020062068A1 (zh) 无线通信方法、终端设备和网络设备
CN112997433B (zh) 用于harq传输的方法以及通信设备
EP3780782B1 (en) Method and apparatus for controlling uplink transmission power by terminal for dual connectivity in wireless communication system
WO2020073623A1 (zh) 一种资源配置方法及装置、通信设备
CN115918197A (zh) 多trp配置的授权传输
CN115104277B (zh) 用于无线通信中的多分量载波物理下行链路共享信道调度的方法和装置
WO2019137299A1 (zh) 通信的方法和通信设备
WO2023050081A1 (zh) 无线通信方法、终端设备和网络设备
WO2022074884A1 (ja) 端末、基地局及び通信方法
WO2023051201A1 (zh) 通信方法与装置
US20220304042A1 (en) Enhanced Configured Grants
CN113939019A (zh) 通信方法及通信设备
WO2022237675A1 (zh) 信息发送的方法和装置
WO2022088188A1 (zh) 通信的方法、装置
WO2022150993A1 (zh) 一种无线通信方法、装置、设备及存储介质
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2024067499A1 (zh) 通信方法及通信装置
WO2022001638A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874590

Country of ref document: EP

Kind code of ref document: A1