WO2022237675A1 - 信息发送的方法和装置 - Google Patents

信息发送的方法和装置 Download PDF

Info

Publication number
WO2022237675A1
WO2022237675A1 PCT/CN2022/091408 CN2022091408W WO2022237675A1 WO 2022237675 A1 WO2022237675 A1 WO 2022237675A1 CN 2022091408 W CN2022091408 W CN 2022091408W WO 2022237675 A1 WO2022237675 A1 WO 2022237675A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit sequence
bit
parameter
terminal device
transmission
Prior art date
Application number
PCT/CN2022/091408
Other languages
English (en)
French (fr)
Inventor
陆绍中
郭志恒
余雅威
余健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022237675A1 publication Critical patent/WO2022237675A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications, and, more specifically, to a method and device for sending information.
  • TBoMS transport block over multi-slot
  • the small data packets on multiple time slots are aggregated into one large data packet, and the aggregation is jointly transmitted on multiple time slots subsequent packets.
  • a repeated resource mapping mechanism that is, a redundancy version (redundantversion, RV) cyclic mechanism, can be reused, and the RV is used to indicate the coded bits carried in a transmission opportunity in the cyclic buffer.
  • RV redundancy version
  • a transport block only includes data packets on one time slot when using the repeated resource mapping mechanism
  • the transport block size transport block size when using TBoMS technology on the same number of time slots , TBS
  • TBS time slots when using the repeated resource mapping mechanism. Therefore, when performing TBoMS resource mapping, it is likely that information bits cannot be completely mapped to time-frequency resources, resulting in degradation of demodulation performance.
  • the present application provides a method and device for information transmission, so that when information is transmitted, information bits can be completely mapped to time-frequency resources, thereby improving demodulation performance.
  • a method for sending information including: a network device determines a first parameter from a set of values of the first parameter, and the set of values of the first parameter is based on the coding rate of the first bit sequence Or the modulation and coding method is determined, the first bit sequence is a coded bit sequence, and the first parameter is the number of transmission opportunities or time units used to carry the first bit sequence; the network device sends the first bit sequence to the terminal device Instructions for the parameter.
  • the terminal device does not expect to receive a value other than the value set of the first parameter from the network device.
  • the information bits in the coded bit sequence can be completely carried by one or more transmission opportunities.
  • the network device determines the value set of the first parameter through the coding rate, determines the first parameter from the value set of the first parameter, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the first parameter, it can The information bits are completely mapped to the time-frequency resource for transmission, and the demodulation performance is improved.
  • the product of the coding rate and the value of the first parameter is less than or equal to N, where N is a positive integer.
  • the set of values of the first parameter is:
  • the set of values of the first parameter is a subset of ⁇ 1, 2, 3, ... N k ⁇ , k is less than or equal to the first threshold , and k is a positive integer.
  • the set of values of the first parameter is ⁇ 1, 2, 3, ... N k ⁇ , where k is less than or equal to the reciprocal of the coding rate , and k is a positive integer.
  • the set of values of the first parameter is a subset of ⁇ 1, 2, 3, ... N k ⁇ , k is less than or equal to the encoding code The reciprocal of the rate, and k is a positive integer.
  • the second bit sequence is carried by N transmission opportunities, where the second bit sequence is the bit starting from the first bit in the first bit sequence sequence, the length of the second bit sequence is associated with the number of time slots included in the N transmission opportunities.
  • the information bits in the encoded bit sequence can be completely carried by one transmission opportunity.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • the network device when N is greater than 1, the network device sends first indication information to the terminal device, where the first indication information is used to indicate that the second bit sequence is transmitted by N Timing bears.
  • the information bits in the coded bit sequence can be completely carried by N transmission opportunities.
  • the network device determines the set of transmission opportunities that meet the condition that the product of the encoding rate and the number of transmission opportunities is less than or equal to 1 through the encoding rate, expands the upper limit of the set by M times, and determines the number of transmission opportunities from the set.
  • the network device sends the number of transmission opportunities to the terminal device and at the same time sends the indication information indicating N to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped to time-frequency resources for transmission, improving demodulation performance.
  • the product of the coding rate and the value of the first parameter is less than or equal to P, where P is a real number, and P ⁇ 1.
  • L is determined according to the frame structure, L>0.
  • the set of values of the first parameter is a subset of Indicates that P ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the second bit sequence is carried by one transmission opportunity, where the second bit sequence is the bit starting from the first bit in the first bit sequence sequence, the length of the second bit sequence is associated with the number of time slots included in one transmission opportunity.
  • the information bits in the encoded bit sequence can be completely carried by one transmission opportunity.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • the set of values of the first parameter is ⁇ 10 ⁇ , or ⁇ 8 ⁇ , or ⁇ 6 ⁇ , or ⁇ 4 ⁇ , or ⁇ 2 ⁇ , or ⁇ 36,38,40,42,44 ⁇ , or ⁇ 36 ⁇ , or ⁇ 36,38 ⁇ , or ⁇ 36,38,40 ⁇ , or ⁇ 36,38,40,42 ⁇ , or ⁇ 26, 28,30,32 ⁇ , or ⁇ 26,28,30 ⁇ , or ⁇ 26,28 ⁇ , or ⁇ 26 ⁇ , or ⁇ 22,24,26 ⁇ , or ⁇ 22,24 ⁇ , or ⁇ 22 ⁇ , or ⁇ 18,20 ⁇ , or ⁇ 18 ⁇ , or ⁇ 14,16 ⁇ , or ⁇ 14 ⁇ , or ⁇ 12 ⁇ .
  • the product of the coding rate and the value of the first parameter is greater than N and less than or equal to M, where M>N, and N is a positive integer.
  • M is N times.
  • the second bit sequence and the third bit sequence in the first bit sequence are respectively carried by at least one transmission opportunity, where the second bit sequence is the A bit sequence starting from the first bit in a bit sequence, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, the third bit sequence is the second bit sequence in the first bit sequence At least one bit sequence among bit sequences having different starting points of the bit sequences.
  • the network device when N is greater than 1, the network device sends second indication information to the terminal device, where the second indication information is used to indicate that the second bit sequence is transmitted by N Timing bears.
  • the set of values of the first parameter is A subset of , where, Indicates that M ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the information bits in the coded bit sequence can be encoded by multiple The transmission opportunity is fully bearer.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • the product of the coding rate and the value of the first parameter is greater than P and less than or equal to Q
  • P and Q are real numbers, P ⁇ 1, Q> p.
  • or Q is equal to
  • the times P and L are determined according to the frame structure, and L>0.
  • the second bit sequence and the third bit sequence in the first bit sequence are respectively carried by at least one transmission opportunity, where the second bit sequence is the A bit sequence starting from the first bit in a bit sequence, the length of the second bit sequence is associated with the number of time slots included in one transmission opportunity, and the third bit sequence is the second bit sequence in the first bit sequence At least one bit sequence among bit sequences having different starting points of the bit sequences.
  • the set of values of the first parameter is A subset of , where, Indicates that P ⁇ k+1 is rounded down, Indicates that Q ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the information bits in the coded bit sequence can be encoded by multiple The transmission opportunity is fully bearer.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • the number of time slots included in the transmission opportunity carrying the second bit sequence is greater than the number of time slots included in the transmission opportunity carrying the fourth bit sequence, wherein the second bit sequence The sequence is a bit sequence starting from the first bit in the first bit sequence, and the fourth bit sequence is at least one bit in the bit sequence starting from other bits than the first bit in the first bit sequence sequence.
  • the method further includes: the network device determining the coding rate according to the modulation and coding scheme MCS.
  • the method further includes: the network device sending third indication information to the terminal device, where the third indication information is used to instruct the terminal device to use the first bit After the sequence is mapped to K transmission opportunities, the first bit sequence is mapped to B transmission opportunities, where K is the value of the first parameter, and B is a positive integer.
  • a method for sending information including: a terminal device receives a first parameter from a network device, and the terminal device maps the first bit sequence to K transmission opportunities according to the first parameter, where K is the The value of the first parameter, K is a positive integer, wherein, when the product of the coding rate of the first bit sequence and K is less than or equal to the first threshold value, the terminal device will use The bit sequence starting from the y kth bit is mapped to the kth transmission opportunity, wherein the position y k corresponds to the kth transmission opportunity, 1 ⁇ k ⁇ K, k is an integer, and the first bit The sequence includes the bit sequence, and the length of the bit sequence is associated with the number of time slots included in one transmission opportunity.
  • the information bits in the coded bit sequence can be completely carried by one or more transmission opportunities.
  • the network device determines the value set of the first parameter through the coding rate, determines the first parameter from the value set of the first parameter, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the first parameter, it can The information bits are completely mapped to the time-frequency resource for transmission, and the demodulation performance is improved.
  • the last bit of the bit sequence mapped to the kth transmission opportunity is the xkth bit in the first bit sequence, and is mapped to the k+1th bit
  • the starting point of the bit sequence of the first transmission opportunity is the y k+ 1th bit in the first bit sequence, where, or, or, in, express yes rounded down, express yes Rounded up, express yes Rounding up, Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, k is greater than or equal to 0, and k is an integer.
  • the first parameter is determined based on a coding rate or a modulation and coding mode of a first bit sequence, where the first bit sequence is an encoded bit sequence, and the The first parameter is the number of transmission opportunities or time units used to carry the first bit sequence.
  • the first threshold value is P times any of the following values: 0.9, 0.948, 0.95, 1, 1.2, Alternatively, the first threshold value is P times any of the following values: 0.9, 0.948, 0.95, 1.
  • the terminal device maps the second bit sequence to K transmission opportunities, the second bit sequence is a bit sequence starting from the first bit in the first bit sequence, and the length of the second bit sequence is associated with the number of time slots included in the K transmission opportunities.
  • a method for sending information including: a network device generating first indication information; the network device sending the first parameter indication information and the first indication information to the terminal device, the first parameter being used for The number of transmission opportunities or time units carrying the first bit sequence, the first indication information is used to indicate that the second bit sequence is carried by N transmission opportunities, the first bit sequence is an encoded bit sequence, and the second bit sequence
  • the sequence is the bit sequence starting from the first bit in the first bit sequence, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, N is a positive integer, and N is less than or equal to the first bit sequence The numeric value of the parameter.
  • the network device when the information bits cannot be completely carried by the time-frequency resource of a transmission opportunity, the network device sends indication information to the terminal device, which is used to indicate the number of transmission opportunities for the terminal device to carry the information bits, and the terminal device
  • the resource mapping is performed according to the number of transmission opportunities, so that the information bits can be completely mapped to the time-frequency resources for transmission, and the demodulation performance is improved.
  • N is greater than or equal to a product of the coding rate and the first parameter.
  • the first indication information is also used to indicate that a fifth bit sequence is carried by N transmission opportunities, and the fifth bit sequence is the first bit sequence in the first bit sequence At least one bit sequence in the bit sequence whose starting point is other than one bit.
  • the method further includes: the network device sending third indication information to the terminal device, where the third indication information is used to instruct the terminal device to use the first bit After the sequence is mapped to K transmission opportunities, the first bit sequence is mapped to B transmission opportunities, where K is the value of the first parameter, and B is a positive integer.
  • a method for sending information including: a terminal device receives indication information and first indication information of a first parameter from a network device, where the first parameter is a transmission opportunity for carrying the first bit sequence or the number of time units, the first indication information is used to indicate that the second bit sequence is carried by N transmission opportunities, the first bit sequence is an encoded bit sequence, and the second bit sequence is the first bit sequence in the first bit sequence
  • the first bit is the bit sequence of the starting point, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, N is a positive integer, and N is less than or equal to the value of the first parameter;
  • the terminal device according to the The first parameter and the first indication information map the first bit sequence to K transmission opportunities, K is a value of the first parameter, and K is a positive integer.
  • the network device when the information bits cannot be completely carried by the time-frequency resource of a transmission opportunity, the network device sends indication information to the terminal device, which is used to indicate the number of transmission opportunities for the terminal device to carry the information bits, and the terminal device
  • the resource mapping is performed according to the number of transmission opportunities, so that the information bits can be completely mapped to the time-frequency resources for transmission, and the demodulation performance is improved.
  • the last bit of the bit sequence mapped to the kth transmission opportunity is the xkth bit in the first bit sequence, and is mapped to the k+1th bit
  • the starting point of the bit sequence of the first transmission opportunity is the y k+ 1th bit in the first bit sequence, where, or, or,
  • Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, k is greater than or equal to 0, and k is an integer.
  • the above scheme reduces the steps of finding the position of the last bit mapped to the last transmission opportunity or time slot in the first bit sequence when performing resource mapping, simplifies the calculation in the mapping process, and saves overhead.
  • the terminal device maps the first bit sequence to K transmission opportunities according to the first indication information, including: the terminal device maps the second bit sequence to For N transmission opportunities, the third bit sequence is mapped to one transmission opportunity, and the third bit sequence is at least one of the bit sequences in the first bit sequence starting from other bits other than the first bit in the first bit sequence A bit sequence, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, and the length of the third bit sequence is associated with the number of time slots included in one transmission opportunity.
  • the terminal device maps the first bit sequence to K transmission opportunities according to the first indication information, including: the coding rate of the first bit sequence and K
  • the terminal device maps the second bit sequence and the third bit sequence to N transmission opportunities respectively
  • the third bit sequence is the At least one bit sequence in the bit sequence whose starting point is other than the first bit in the bit sequence
  • the lengths of the second bit sequence and the third bit sequence are associated with the number of time slots included in the N transmission opportunities.
  • the terminal device maps the first bit sequence to the first resource according to the first indication information, including: the coding rate of the first bit sequence and K
  • the terminal device maps the second bit sequence to the K transmission opportunities.
  • the second threshold value is any one of the following: 0.9, 0.948, 0.95, 1.
  • a method for sending information including: a terminal device receives fourth indication information and fifth indication information from a network device, where the fourth indication information indicates that the first resource is used to bear the transmission block TBoMS across multiple timeslots
  • the fifth indication information indicates that the first resource is used to bear a sounding reference signal (sounding reference signal, SRS); the terminal device transmits the SRS with the network device according to the first resource.
  • SRS sounding reference signal
  • the fourth indication information is also used to indicate that the second resource is used to bear the TBoMS
  • the method further includes: the terminal device, according to the second resource and the network The device transmits the TBoMS; or, the terminal device transmits the TBoMS with the network device according to the third resource, where the third resource is a resource in the second resource except resources in the same time slot as the first resource; Or, the terminal device transmits the TBoMS with the network device according to the fourth resource, where the fourth resource is a resource in the second resource with a time sequence before the first resource; or, the terminal device does not transmit the TBoMS.
  • a method for sending information including: a terminal device receives indication information of a first parameter from a network device; the terminal device maps the first bit sequence to K transmission opportunities according to the first parameter , K is the value of the first parameter, and K is a positive integer, wherein the last bit of the bit sequence mapped to the kth transmission opportunity is the x kth bit in the first bit sequence, and is mapped to the k+th bit sequence
  • the starting point of the bit sequence of 1 transmission opportunity is the y k+ 1th bit in the first bit sequence, where, or, or, in, express yes rounded down, express yes Rounded up, express yes Rounding up, Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, 0 ⁇ k ⁇ K, and k is an integer.
  • a method for sending information including: a network device determines a first parameter from a set of first parameter values, and the set of first parameter values is ⁇ 1, 2, 3, ... N A subset of k ⁇ , or, the set of values of the first parameter is ⁇ 1, 2, 3, ... N k ⁇ , and the first parameter is the transmission opportunity or transmission time used to carry the first bit sequence
  • the number of units, the first bit sequence is an encoded bit sequence
  • the network device sends the indication information of the first parameter to the terminal device.
  • a device for resource mapping including: a transceiver module configured to determine a first parameter from a set of values of the first parameter, and the set of values of the first parameter is based on the set of values of the first bit sequence The encoding code rate or modulation encoding method is determined, the first bit sequence is an encoded bit sequence, and the first parameter is the number of transmission opportunities or time units used to carry the first bit sequence; the transceiver module is also used for Send the indication information of the first parameter to the terminal device.
  • the information bits in the coded bit sequence can be completely carried by one or more transmission opportunities.
  • the network device determines the value set of the first parameter through the coding rate, determines the first parameter from the value set of the first parameter, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the first parameter, it can The information bits are completely mapped to the time-frequency resource for transmission, and the demodulation performance is improved.
  • the product of the coding rate and the value of the first parameter is less than or equal to N, where N is a positive integer.
  • the set of values of the first parameter is ⁇ 1, 2, 3, ... N k ⁇ , where k is less than or equal to the reciprocal of the coding rate , and k is a positive integer.
  • the second bit sequence is carried by N transmission opportunities, where the second bit sequence is the bit starting from the first bit in the first bit sequence sequence, the length of the second bit sequence is associated with the number of time slots included in the N transmission opportunities.
  • the network device when N is greater than 1, the network device sends first indication information to the terminal device, where the first indication information is used to indicate that the second bit sequence is transmitted by N Timing bears.
  • the product of the coding rate and the value of the first parameter is less than or equal to P, where P is a real number, and P ⁇ 1.
  • L is determined according to the frame structure, L>0.
  • the set of values of the first parameter is a subset of Indicates that P ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the second bit sequence is carried by one transmission opportunity, where the second bit sequence is the bit starting from the first bit in the first bit sequence sequence, the length of the second bit sequence is associated with the number of time slots included in one transmission opportunity.
  • the product of the coding rate and the value of the first parameter is greater than N and less than or equal to M, where M>N, and N is a positive integer.
  • M is N times.
  • the second bit sequence and the third bit sequence in the first bit sequence are respectively carried by at least one transmission opportunity, where the second bit sequence is the first bit sequence A bit sequence starting from the first bit in a bit sequence, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, the third bit sequence is the second bit sequence in the first bit sequence At least one bit sequence among bit sequences having different starting points of the bit sequences.
  • the network device when N is greater than 1, the network device sends second indication information to the terminal device, where the second indication information is used to indicate that the second bit sequence is transmitted by N Timing bears.
  • the set of values of the first parameter is A subset of , where, Indicates that M ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the product of the coding rate and the value of the first parameter is greater than P and less than or equal to Q
  • P and Q are real numbers, P ⁇ 1, Q> p.
  • or Q is equal to
  • the times P and L are determined according to the frame structure, and L>0.
  • the second bit sequence and the third bit sequence in the first bit sequence are respectively carried by at least one transmission opportunity, where the second bit sequence is the first bit sequence A bit sequence starting from the first bit in a bit sequence, the length of the second bit sequence is associated with the number of time slots included in one transmission opportunity, and the third bit sequence is the second bit sequence in the first bit sequence At least one bit sequence among bit sequences having different starting points of the bit sequences.
  • the set of values of the first parameter is A subset of , where, Indicates that P ⁇ k+1 is rounded down, Indicates that Q ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the number of time slots included in the transmission opportunity carrying the second bit sequence is greater than the number of time slots included in the transmission opportunity carrying the fourth bit sequence, wherein the second bit sequence The sequence is a bit sequence starting from the first bit in the first bit sequence, and the fourth bit sequence is at least one bit in the bit sequence starting from other bits than the first bit in the first bit sequence sequence.
  • the apparatus further includes: a processing module, configured to determine the coding rate according to the modulation and coding scheme MCS.
  • the transceiver module is further configured to send third indication information to the terminal device, where the third indication information is used to instruct the terminal device to use the first bit sequence After being mapped to K transmission opportunities, the first bit sequence is mapped to B transmission opportunities, where K is the value of the first parameter, and B is a positive integer.
  • an apparatus for resource mapping including: a transceiver module, configured to receive a first parameter from a network device, and a processing module, configured to map the first bit sequence to K transmissions according to the first parameter timing, K is the value of the first parameter, and K is a positive integer, wherein, when the product of the coding rate of the first bit sequence and K is less than or equal to the first threshold value, the terminal device will The bit sequence whose starting point is position i in the bit sequence is mapped to the i-th transmission opportunity, where the position i corresponds to the i-th transmission opportunity, 1 ⁇ i ⁇ K, i is an integer, and the first bit sequence includes the bit sequence, the length of the bit sequence is associated with the number of time slots included in one transmission opportunity.
  • the information bits in the coded bit sequence can be completely carried by one or more transmission opportunities.
  • the network device determines the value set of the first parameter through the coding rate, determines the first parameter from the value set of the first parameter, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the first parameter, it can The information bits are completely mapped to the time-frequency resource for transmission, and the demodulation performance is improved.
  • the last bit of the bit sequence mapped to the kth transmission opportunity is the xkth bit in the first bit sequence, and is mapped to the k+1th bit
  • the starting point of the bit sequence of the first transmission opportunity is the y k+ 1th bit in the first bit sequence, where, or, or, in, express yes rounded down, express yes Rounded up, express yes Rounding up, Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, k is greater than or equal to 0, and k is an integer.
  • the first parameter is determined based on the coding rate or modulation and coding mode of the first bit sequence, the first bit sequence is an encoded bit sequence, and the The first parameter is the number of transmission occasions or time units used to carry the first bit sequence.
  • the first threshold value is P times any of the following values: 0.9, 0.948, 0.95, 1, 1.2, Alternatively, the first threshold value is P times any of the following values: 0.9, 0.948, 0.95, 1.
  • the terminal device maps the second bit sequence to K transmission opportunities, the second bit sequence is a bit sequence starting from the first bit in the first bit sequence, and the length of the second bit sequence is associated with the number of time slots included in the K transmission opportunities.
  • an apparatus for resource mapping including: a processing module, configured to generate first indication information; a transceiver module, configured to send indication information of a first parameter and the first indication information to a terminal device, the first indication information
  • a parameter is the number of transmission opportunities or time units used to carry the first bit sequence
  • the first indication information is used to indicate that the second bit sequence is carried by N transmission opportunities
  • the first bit sequence is an encoded bit sequence
  • the second bit sequence is the bit sequence starting from the first bit in the first bit sequence
  • the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities
  • N is a positive integer
  • N is less than or equal to the numeric value of the first argument.
  • the network device when the information bits cannot be completely carried by the time-frequency resource of a transmission opportunity, the network device sends indication information to the terminal device, which is used to indicate the number of transmission opportunities for the terminal device to carry the information bits, and the terminal device
  • the resource mapping is performed according to the number of transmission opportunities, so that the information bits can be completely mapped to the time-frequency resources for transmission, and the demodulation performance is improved.
  • N is greater than or equal to a product of the coding rate and the first parameter.
  • the first indication information is also used to indicate that a fifth bit sequence is carried by N transmission opportunities, and the fifth bit sequence is the At least one bit sequence in the bit sequence starting from other bits than the first bit in the first bit sequence.
  • the apparatus further includes: the transceiver module, configured to send third indication information to the terminal device, where the third indication information is used to instruct the terminal device to send the After the first bit sequence is mapped to K transmission opportunities, the first bit sequence is mapped to B transmission opportunities, where K is the value of the first parameter, and B is a positive integer.
  • a device for resource mapping including: a transceiver module configured to receive indication information and first indication information of a first parameter from a network device, the first parameter being used to carry the first bit The number of transmission opportunities or time units of the sequence, the first indication information is used to indicate that the second bit sequence is carried by N transmission opportunities, the first bit sequence is an encoded bit sequence, and the second bit sequence is the first A bit sequence starting from the first bit in the first bit sequence in the bit sequence, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, N is a positive integer, and N is less than or equal to the The value of the first parameter; a processing module, configured to map the first bit sequence to K transmission opportunities according to the indication information of the first parameter and the first indication information, K is the value of the first parameter, and K is positive integer.
  • the network device when the information bits cannot be completely carried by the time-frequency resource of a transmission opportunity, the network device sends indication information to the terminal device, which is used to indicate the number of transmission opportunities for the terminal device to carry the information bits, and the terminal device
  • the resource mapping is performed according to the number of transmission opportunities, so that the information bits can be completely mapped to the time-frequency resources for transmission, and the demodulation performance is improved.
  • the last bit of the bit sequence mapped to the kth transmission opportunity is the xkth bit in the first bit sequence, and is mapped to the kth bit sequence
  • the starting point of the bit sequence of +1 transmission opportunity is the y k+ 1th bit in the first bit sequence, where, or, or, in, express yes rounded down, express yes Rounded up, express yes Rounding up, Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, k is greater than or equal to 0, and k is an integer.
  • the processing module is specifically configured to map the second bit sequence to N transmission opportunities, map the third bit sequence to one transmission opportunity, and map the second bit sequence to N transmission opportunities.
  • the three-bit sequence is at least one bit sequence in the first bit sequence starting from other bits other than the first bit in the first bit sequence, and the length of the second bit sequence and N transmission opportunities include associated with the number of time slots, and the length of the third bit sequence is associated with the number of time slots included in one transmission opportunity.
  • the processing module is specifically configured to, when the product of the coding rate of the first bit sequence and K is less than or equal to the second threshold value, the terminal
  • the device maps the second bit sequence and the third bit sequence to N transmission opportunities respectively, and the third bit sequence starts from other bits in the first bit sequence other than the first bit in the first bit sequence
  • the lengths of the second bit sequence and the third bit sequence are associated with the number of time slots included in the N transmission opportunities.
  • the processing module when the product of the coding rate of the first bit sequence and K is greater than a second threshold value, the processing module is specifically configured to, the second Bit sequences are mapped to the K transmission opportunities.
  • the second threshold value is any one of the following: 0.9, 0.948, 0.95, 1.
  • a device for resource mapping including: a transceiver module, configured to receive fourth indication information and fifth indication information from a network device, the fourth indication information indicating that the first resource is used to carry The slot transmission block TBoMS, the fifth indication information indicates that the first resource is used to bear the sounding reference signal SRS; the transceiver module is also used to transmit the SRS with the network device according to the first resource.
  • the fourth indication information is further used to indicate that the second resource is used to carry the TBoMS
  • the transceiver module is further configured to The network device transmits the TBoMS; or, the transceiver module is further configured to transmit the TBoMS with the network device according to the third resource, where the third resource is the second resource that is in the same time slot as the first resource resources other than resources; or, the transceiver module is further configured to transmit the TBoMS with the network device according to the fourth resource, where the fourth resource is a resource in the second resource whose time sequence is before the first resource; or, the The transceiver module is also used for not transmitting the TBoMS.
  • an information sending device including: a transceiver module, configured to receive indication information of a first parameter from a network device; a processing module, configured to convert the first bit sequence according to the first parameter Mapped to K transmission opportunities, K is the value of the first parameter, K is a positive integer, where the last bit of the bit sequence mapped to the kth transmission opportunity is the x kth bit in the first bit sequence , the starting point of the bit sequence mapped to the k+1th transmission opportunity is the y k+ 1th bit in the first bit sequence, where, or, or, in, express yes rounded down, express yes Rounded up, express yes Rounding up, Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, 0 ⁇ k ⁇ K, and k is an integer.
  • an information sending device including: a transceiver module, configured to determine a first parameter from a set of first parameter values, where the set of first parameter values is ⁇ 1, 2, 3 , a subset of ... N k ⁇ , or, the set of values of the first parameter is ⁇ 1, 2, 3, ... N k ⁇ , and the first parameter is the transmission used to carry the first bit sequence
  • the timing or the number of transmission time units, the first bit sequence is an encoded bit sequence; the transceiver module is also used to send the indication information of the first parameter to the terminal device.
  • a fifteenth aspect provides a communication device, which is characterized by comprising: a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, so that the The communication device executes the communication method or embodiment described in any one of the first aspect to the sixth aspect.
  • a computer-readable storage medium wherein instructions are stored in the computer-readable storage medium, and when the computer instructions are run on a computer, the computer is made to execute the first to sixth aspects.
  • a chip which is characterized by comprising: a memory for storing a computer program; a processor for reading and executing the computer program stored in the memory, when the computer program is executed , the processor executes the communication method or embodiment described in any one of the first aspect to the sixth aspect.
  • a sixteenth aspect provides a computer program product, characterized in that the computer program product includes computer program code, and when the computer program code runs on the computer, the computer executes any one of the first to sixth aspects.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • Figure 2 shows a schematic diagram of a multi-slot transport block.
  • Fig. 3 shows a schematic flow chart of signal processing.
  • FIG. 4 shows a schematic diagram of transmission opportunities.
  • Fig. 5 shows a schematic diagram of TBoMS resource mapping based on redundancy version cycle.
  • Fig. 6 shows a schematic diagram of a redundancy version circulation mechanism.
  • FIG. 7 shows a schematic diagram of a method 200 for sending information according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a method 300 for sending information according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a method 400 for sending information according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a method 500 for sending information according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a first possible implementation of a method 500 for sending information according to the embodiment of the present application.
  • FIG. 12 shows a schematic diagram of a second possible implementation manner of a method 500 for sending information according to the embodiment of the present application.
  • FIG. 13 shows a schematic diagram of a possible implementation manner 3 or 5 of a method 500 for sending information according to the embodiment of the present application.
  • FIG. 14 shows a schematic diagram of a fourth possible implementation manner of a method 500 for sending information according to the embodiment of the present application.
  • FIG. 15 shows a schematic diagram of possible implementation manners 6 or 7 of the method 500 for sending information according to the embodiment of the present application.
  • FIG. 16 shows a schematic diagram of the eighth or ninth possible implementation manner of the method 500 for sending information according to the embodiment of the present application.
  • FIG. 17 shows a schematic diagram of a method 600 for sending information according to an embodiment of the present application.
  • FIG. 18 shows a schematic diagram of a method 700 for sending information according to an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of a communication device for sending information provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of an information sending device 20 provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency Division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), universal mobile telecommunications system (universal mobile telecommunications system, UMTS), etc.
  • 5G fifth generation
  • new radio new radio
  • NR new radio
  • long term evolution long term evolution
  • LTE frequency Division duplex frequency division duplex, FDD
  • LTE time division duplex time division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • the technical solution of the embodiment of the present application can also be applied to: device to device (device to device, D2D) communication, machine to machine (machine to machine, M2M) communication, machine type communication (machine type communication, MTC), and Communication in connected car systems.
  • device to device device to device
  • machine to machine machine to machine
  • M2M machine to machine
  • MTC machine type communication
  • MTC Machine type communication
  • FIG. 1 To facilitate understanding of the embodiment of the present application, a communication system applicable to the embodiment of the present application is first described with reference to FIG. 1 .
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device,
  • the wireless communication system 100 may further include at least one terminal device, such as the terminal device 121 shown in FIG. 1 .
  • Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • the network device when the network device communicates with the terminal device, the network device may manage one or more cells, and there may be an integer number of terminal devices in one cell.
  • the network device 111 and the terminal device 121 form a single-cell communication system, and the cell is denoted as cell #1 without loss of generality.
  • the network device 111 may be a network device in cell #1, or in other words, the network device 111 may serve a terminal device (such as the terminal device 121) in cell #1.
  • a cell may be understood as an area within the wireless signal coverage of the network device.
  • the sending end device mentioned in the embodiment of the present application may be a terminal device, and the receiving end device may be a network device.
  • the sending end device is the terminal device 121
  • the receiving end device is the network device 111 .
  • FIG. 1 is only an exemplary illustration, and the present application is not limited thereto.
  • the embodiments of the present application may also be applied to any communication scenario where data (or data blocks) need to be sent repeatedly.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as, NR, a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • terminal equipment in the wireless communication system may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • user equipment user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • a format of a slot may include several orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the format of a slot may include 14 OFDM symbols, or, the format of a slot may include 12 OFDM symbols; or, the format of a slot may include 7 OFDM symbols. All OFDM symbols in a slot can be used for uplink transmission; all of them can be used for downlink transmission; some can be used for downlink transmission, some can be used for uplink transmission, and some flexible time domain symbols can be flexibly configured for uplink or downlink transmission). It should be understood that the above examples are for illustrative purposes only, and should not constitute any limitation to the present application.
  • the number of OFDM symbols included in the slot and the slot used for uplink transmission and/or downlink transmission are not limited to the above examples.
  • the time domain symbols may be OFDM symbols, and the time domain symbols may be replaced by OFDM symbols.
  • Transport block over multi-slot (TBoMS)
  • NR wireless communication systems Compared with LTE and long term evolution advanced (LTE-A) wireless communication systems, NR wireless communication systems deploy higher frequency bands to obtain larger communication bandwidths. However, the high frequency band will cause greater path loss and penetration loss, making the coverage performance of NR far inferior to that of LTE and LTE-A.
  • TB#1 to TB#4 are aggregated into one large TB.
  • This technology aggregates the small data packets on each time slot into one large data packet, and transmits the aggregated data packets on multiple time slots together, and reduces the cyclic redundancy code (cyclic redundancy) by reducing the number of TB splits. code, CRC) overhead, by increasing the transport block size (transport block size, TBS), thereby increasing the coding gain, and by reducing frequency resources, increasing the power spectral density and improving coverage performance.
  • CRC cyclic redundancy code
  • a transmission opportunity consists of multiple consecutive time-domain symbols.
  • the time domain resources shown in FIG. 4 include a downlink (downlink, DL) time slot (slot), a special (special, S) time slot, and an uplink (uplink, UP) time slot.
  • the DL slot includes 14 DL symbols
  • the UL slot includes 14 UL symbols
  • the S slot includes 6 DL symbols, 2 invalid (invalid) symbols, and 6 UL symbols.
  • the frame structure of the time-domain resource in FIG. 4 is asymmetrical, so the number of uplink time-domain symbols included in each transmission opportunity may be different. When the frame structure of the time-domain resource is symmetrical, the number of uplink time-domain symbols included in each transmission opportunity is the same.
  • a transmission opportunity may include one or more time slots, or may also include one time slot and several time domain symbols, or may also include multiple time slots and several time domain symbols.
  • a method to enhance coverage performance is to repeatedly send data blocks. For example, the terminal device repeatedly sends the PUSCH, and the network device performs combination detection on the repeatedly sent data blocks. In this manner, channel estimation performance and data demodulation performance can be improved, thereby improving cell coverage.
  • the current NR protocol supports a maximum of 16 repeated transmissions of the PUSCH, and supports a maximum of 8 repeated transmissions of the PUCCH.
  • the current NR protocol supports repeated transmission of type A for PUCCH, and supports repeated transmission of type A and type B for PUSCH.
  • Repeated transmission of type A refers to: N repeated transmissions need to schedule N consecutive slots, configure the starting position and total length of the time domain symbols that need to be occupied in one slot for one repeated transmission, and satisfy once in N slots The slot whose start position and total length of the time-domain symbols occupied by the repeated transmission is the same as the configured start position and total length can actually be used for one repeated transmission.
  • N is an integer greater than or equal to 1.
  • Repeated transmission of type B indicates: N repeated transmissions, according to the initial time-domain symbol position S of the first repeated transmission, according to the number of time-domain symbols L that need to be occupied by each repetition, in multiple consecutive time-domain symbols to resend. That is, starting from the Sth time-domain symbol of the first scheduled slot, the subsequent N*L time-domain symbols (which may extend to other slots) are used for N repeated transmissions.
  • the repeated transmission method of type A is recorded as repetition type A (repetition type A)
  • the repeated transmission method of type B is recorded as repetition type B (repetition type B).
  • Channel coding By introducing redundancy and parity bits into the information bit string, after the signal reaches the receiving end, the receiving end can check each other according to the received multiple bits (including information bits and parity bits). The relationship can better restore the information bit string.
  • NR can currently support low density parity check code (low density parity check code, LDPC) channel coding. For example, for a 100-bit information bit string, it becomes a 500-bit coded bit string through 1/5 code rate LDPC encoding, and 400-bit redundancy is introduced. The length of the information bit string and the coded bit string The ratio of is equal to 1/5 of the code rate. To distinguish, the coded bit string is recorded as coded bit string.
  • LDPC low density parity check code
  • Rate matching After the information bit string is transmitted through channel coding to obtain a longer coded bit string, not all the coded bit strings are sent directly. Generally, the terminal device can determine how many bits can be sent according to the number of available resource elements (resource elements, RE) and the modulation order configured by the network device to the terminal, and then select from the encoded bit string (the current protocol specifies Four starting points are selected, which are approximately evenly distributed in the coded bit string, and are marked as RV0, RV1, RV2, and RV3 respectively).
  • resource elements resource elements
  • QPSK quadrature phase shift keying
  • PRB physical resource block
  • rate matching includes bit selection and bit interleaving.
  • Bit selection refers to selecting coded bits from the circular buffer according to the starting point specified by the RV, and the selected code length is determined by the size of the time-frequency resource to be mapped.
  • Bit interleaving is to perform row-column interleaving on selected bits, so the granularity of bit interleaving is consistent with the granularity of bit selection, which can be collectively referred to as the granularity of rate matching.
  • the length of the selected coded bits is the time-frequency resource on a TO (regardless of code block division), which can also be understood as the rate-matched Granularity is a TO.
  • the following takes repetition type A as an example to introduce the current scheme of multiplexing the RV cycle mechanism to the resource mapping of TBoMS.
  • the RV indicated by downlink control information (DCI) for scheduling a physical uplink shared channel (physical uplink shared channel, PUSCH) is rv id .
  • DCI downlink control information
  • PUSCH physical uplink shared channel
  • TDRA time domain resource allocation
  • the RV used for the nth transmission opportunity of PUSCH is shown in Table 1. Wherein, one transmission opportunity is defined as one time slot.
  • the RV update granularity is a transmission opportunity, that is, the used RV must be updated at each transmission opportunity, and the update order is determined by the RV sequence.
  • the RV sequence defaults to ⁇ 0,2,3,1 ⁇ , that is, the RV follows ⁇ 0, 2, 3, 1 ⁇ are updated in sequence, and the starting point of the cycle is determined by the rv id indicated by the DCI that schedules the PUSCH.
  • the RVs are updated according to the order indicated by the repK-RV.
  • the RV of the nth actual repetition of PUSCH is shown in Table 1. Among them, the actual repetition is obtained after the nominal repetition is divided by the time slot boundary and invalid symbols, and the nominal repetition is directly configured by the base station, such as start and length indicator value (SLIV), repetition number K and other parameters.
  • the RV is used to indicate the encoded bits carried by a transmission opportunity in the circular buffer.
  • the data encoded by low density parity check (LDPC) is stored in the circular buffer, which is called coded bits; the RV starting point is determined according to the rv id for each transmission, which is denoted as k 0 ; from the circular
  • the coded bits are sequentially selected at k 0 in the cache, and mapped to the time-frequency resources of a transmission opportunity until the time-frequency resources are exhausted.
  • LDPC low density parity check
  • the basic graph (basic grappy, BG) used by LDPC coding is related, as shown in Table 2, where N cb represents the coded bit length, and Z C represents the expansion factor of LDPC coding.
  • the ring represents a circular cache, which stores the encoded bit string sequence obtained after channel coding of information bits, and the positions of RV0 to RV3 are determined according to Table 2;
  • (b) in Figure 5 it is the resource mapping result of TDRA based on repetition type A, and the coded bits are sequentially mapped to time-frequency resources of 4 transmission opportunities in the order of RV sequence ⁇ 0, 2, 3, 1 ⁇ .
  • a TB only includes data packets on one time slot
  • a TBoMS is the aggregation result of data packets on multiple time slots.
  • the TBS of TBoMS is much larger than the repeated TBS, and it is easy to have the problem that the information bits cannot be completely transmitted, resulting in the degradation of demodulation performance.
  • the circle represents a circular buffer, which is used to store the coded bit string sequence obtained after the information bits undergo channel coding, and the blank part in the circle is the coded check bit, The shaded part in the circle is the coded information bit.
  • RV0, 1, 2, 3 are the position points of approximately 4 equal parts of the coded bit sequence.
  • PUSCH#0 can only carry part of the information bits, and other PUSCHs carry parity bits, when the number of bits that PUSCH#0 can carry is less than the length of the information bits in the circular buffer, time domain resources (PUSCH#0 to PUSCH# 3) Complete information bits cannot be carried, resulting in degradation of demodulation performance.
  • FIG. 7 is a schematic interaction diagram of the method 200 of the present application.
  • the network device determines a first parameter from a set of values of the first parameter, the set of values of the first parameter is determined according to the coding rate or modulation and coding mode of the first bit sequence, and the first
  • the bit sequence is an encoded bit sequence, and the first parameter is the number of transmission opportunities or time units used to carry the first bit sequence.
  • the value set of the first parameter here has many possible situations in specific implementation.
  • the value set of the first parameter is a subset of ⁇ 1, 2, 3, ... N k ⁇ , k is less than or equal to the reciprocal of the encoding rate, and k is a positive integer, N is a positive integer.
  • the product of the coding rate R and the number of transmission opportunities K is less than or equal to N, where N is a positive integer.
  • N info N RE ⁇ Q ⁇ R ⁇ K
  • N TO N RE ⁇ Q ⁇
  • the information bits can be completely carried by the time-frequency resources of one transmission opportunity.
  • N info N RE ⁇ Q ⁇ R ⁇ ⁇ ⁇ K
  • N TO N RE ⁇ Q ⁇ ⁇ ⁇ M
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate that the second bit sequence is carried by N transmission opportunities, wherein the second bit sequence
  • the sequence is a bit sequence starting from the first bit in the circular buffer in the first bit sequence, and the length of the second bit sequence is associated with the number of time slots included in the N transmission opportunities.
  • the value set of the first parameter is a subset of Indicates that P ⁇ k is rounded down, k is less than or equal to the reciprocal of the encoding rate, and k is a positive integer, P ⁇ 1.
  • the product of the coding rate R and the number of transmission opportunities K is less than or equal to P, or L is determined according to the frame structure.
  • the second bit sequence is carried by one transmission opportunity, wherein the second bit sequence is a bit sequence starting from the first bit in the circular buffer in the first bit sequence, and the second bit sequence The length of the sequence is associated with the number of slots included in one transmission occasion.
  • the value set of the first parameter is A subset of , where, Indicates that M ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer, N is a positive integer, and M>N.
  • the product of the coding rate R and the number of transmission opportunities K is greater than N and less than or equal to M, and M can be 22 of N /17 times.
  • the second bit sequence and the third bit sequence in the first bit sequence are respectively carried by at least one transmission opportunity, wherein the second bit sequence is the first bit sequence in the circular buffer in the first bit sequence A bit sequence with one bit as the starting point, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, and the third bit sequence is the second bit sequence in the first bit sequence At least one bit sequence among bit sequences with different start points.
  • Possibility four the set of values of the first parameter is in, Indicates that P ⁇ k+1 is rounded down, Indicates that Q ⁇ k is rounded down, k is less than or equal to the reciprocal of the encoding rate, and k is a positive integer, P ⁇ 1, Q>P.
  • the product of the coding rate R and the number of transmission opportunities K is greater than P and less than or equal to Q, and Q can be 22 of P /17 times, or L is determined according to the frame structure.
  • the second bit sequence and the third bit sequence in the first bit sequence are respectively carried by at least one transmission opportunity, wherein the second bit sequence is the first bit in the circular buffer in the first bit sequence.
  • the bit sequence of the starting point, the length of the second bit sequence is associated with the number of time slots included in one transmission opportunity, and the third bit sequence is a bit different from the starting point of the second bit sequence in the first bit sequence At least one sequence of bits in the sequence.
  • the network device sends the indication information of the first parameter to the terminal device.
  • the terminal device receives the indication information of the first parameter from the network device.
  • the terminal device maps the first bit sequence to K transmission opportunities according to the first parameter, where K is a value of the first parameter, and K is a positive integer.
  • the terminal device maps the bit sequence whose starting point is position i in the circular buffer to the ith transmission opportunity , wherein, the position i corresponds to the ith transmission opportunity, 1 ⁇ i ⁇ K, i is an integer, the first bit sequence includes the bit sequence, and the length of the bit sequence and a transmission opportunity include associated with the number of time slots.
  • the terminal device can realize that the product of the coding rate of the first bit sequence and K is less than or equal to the first threshold value, and the terminal device performs resource mapping as in the method in S203; And when the product of the coding rate of the first bit sequence and K is greater than the first threshold value, the terminal device maps the second bit sequence to K transmission opportunities, and the second bit sequence is the first bit sequence A bit sequence starting from the first bit in the circular buffer, the length of the second bit sequence is associated with the number of time slots included in the K transmission opportunities, for details, refer to the possible implementation of the method 500 in the embodiment of the present application one and two.
  • the first threshold value is P times any of the following values: 0.9, 0.948, 0.95, 1, 1.2, Alternatively, the first threshold value is P times any of the following values: 0.9, 0.948, 0.95, 1.
  • L is determined according to the frame structure, and L is greater than 0.
  • this application when the network device executes S201, this application does not limit the resource mapping method executed by the terminal device, and S203 executed by the terminal device can be replaced by various existing resource mapping methods;
  • S203 this application does not limit the method for determining the number of transmission opportunities performed by the corresponding network device, and S201 performed by the network device can be replaced by various existing methods for determining the number of transmission opportunities.
  • the network device determines the value set of the first parameter through the coding rate, determines the first parameter from the value set of the first parameter, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the first parameter, it can The information bits are completely mapped to the time-frequency resource for transmission, and the demodulation performance is improved.
  • Method 200 also includes:
  • the transmission opportunity carrying the second bit sequence is greater than the number of time slots included in the transmission opportunity carrying the fourth bit sequence, wherein the second bit sequence is a bit sequence starting from the first bit in the circular buffer in the first bit sequence,
  • the fourth bit sequence is at least one bit sequence in the first bit sequence starting from a bit other than the first bit in the circular buffer.
  • the information bits are mapped to the transmission opportunity that includes more time slots , can further improve the success rate of completely mapping information bits to video resources for transmission, and improve demodulation performance.
  • the network device sends third indication information to the terminal device, where the third indication information is used to instruct the terminal device to map the first bit sequence to K transmission opportunities, and then map the first bit sequence to the The first bit sequence is mapped to B transmission opportunities, where K is the value of the first parameter, and B is a positive integer.
  • K is the value of the first parameter
  • B is a positive integer.
  • the last bit of the bit sequence mapped to the kth transmission opportunity is the xkth bit in the circular buffer, and the starting point of the bit sequence mapped to the k +1th transmission opportunity is the yth bit in the circular buffer k+1 bits, where, or, or, in, express yes rounded down, express yes Rounded up, express yes Rounding up, Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, k is greater than or equal to 0, and k is an integer.
  • A is a positive integer
  • x k is an integer
  • k is greater than or equal to 0
  • k is an integer.
  • the step of finding the position of the last bit mapped to the last transmission opportunity or time slot in the circular buffer is reduced, which simplifies the calculation in the mapping process and saves overhead.
  • the network device determines the coding rate according to a modulation and coding scheme (modulation and coding scheme, MCS).
  • MCS modulation and coding scheme
  • MCS modulation and coding scheme
  • FIG. 8 is a schematic interaction diagram of the method 300 of the present application.
  • the network device generates first indication information.
  • the network device sends the indication information of the first parameter and the first indication information to the terminal device.
  • the terminal device receives the indication information of the first parameter and the first indication information from the network device.
  • the first parameter is the number of transmission opportunities or time units used to carry the first bit sequence
  • the first indication information is used to indicate that the second bit sequence is carried by N transmission opportunities
  • the first A bit sequence is an encoded bit sequence
  • the second bit sequence is a bit sequence starting from the first bit in the circular buffer in the first bit sequence
  • the length of the second bit sequence is the same as N
  • the number of time slots included in the transmission opportunity is associated, N is a positive integer, and N is less than or equal to the value of the first parameter.
  • N is greater than or equal to the product of the coding rate and the first parameter.
  • the first indication information is also used to indicate that the fifth bit sequence is carried by N transmission opportunities, and the fifth bit sequence is other than the first bit in the circular buffer in the first bit sequence At least one bit sequence in the bit sequence starting with bit.
  • the second bit sequence in the circular buffer is carried by N transmission opportunities, and the bit sequences of other starting points are carried by one transmission opportunity.
  • N transmission opportunities For details, refer to the possible implementation of method 500 in the embodiment of the present application.
  • all bit sequences in the circular buffer are carried by N transmission opportunities, for details, refer to possible implementation manner five in the method 500 in the embodiment of the present application.
  • the terminal device maps the first bit sequence to K transmission opportunities according to the first parameter and the first indication information, where K is a value of the first parameter, and K is a positive integer.
  • the terminal device maps the second bit sequence to N transmission opportunities, maps the third bit sequence to one transmission opportunity, and the third bit sequence is all At least one bit sequence in the first bit sequence starting from other bits other than the first bit in the circular buffer, the length of the second bit sequence is associated with the number of time slots included in the N transmission opportunities, The length of the third bit sequence is associated with the number of time slots included in one transmission opportunity.
  • the terminal device converts the second bit sequence and the first Three bit sequences are respectively mapped to N transmission opportunities, the third bit sequence is at least one bit sequence in the first bit sequence starting from other bits other than the first bit in the circular buffer, so The lengths of the second bit sequence and the third bit sequence are associated with the number of time slots included in the N transmission opportunities.
  • the terminal device maps the second bit sequence to the K transmission opportunities.
  • the second threshold value is any one of the following: 0.9, 0.948, 0.95, 1.
  • the network device when the information bits cannot be fully carried by the time-frequency resources of one transmission opportunity, the network device sends indication information to the terminal device, which is used to indicate the number of transmission opportunities for the terminal device to carry the information bits, and the terminal device according to the network Resource mapping is performed on the number of transmission opportunities indicated by the device, so that information bits can be completely mapped to time-frequency resources for transmission, and demodulation performance is improved.
  • Method 300 also includes:
  • the network device sends third indication information to the terminal device, where the third indication information is used to instruct the terminal device to map the first bit sequence to K transmission opportunities, and then map the first bit sequence to the The first bit sequence is mapped to B transmission opportunities, where K is the value of the first parameter, and B is a positive integer.
  • the last bit of the bit sequence mapped to the kth transmission opportunity is the xkth bit in the circular buffer, and the starting point of the bit sequence mapped to the k +1th transmission opportunity is the yth bit in the circular buffer k+1 bits, where, or, or, in, express yes rounded down, express yes Rounded up, express yes Rounding up, Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, k is greater than or equal to 0, and k is an integer.
  • FIG. 9 is a schematic interaction diagram of the method 400 of the present application.
  • the terminal device receives fourth indication information and fifth indication information from the network device.
  • the network device sends the fourth indication information and fifth indication information to the terminal device.
  • the fourth indication information indicates that the first resource is used to bear Across the multi-slot transmission block TBoMS
  • the fifth indication information indicates that the first resource is used to bear a sounding reference signal (sounding reference signal, SRS).
  • the fourth indication information and the fifth indication information may be transmitted separately or together.
  • the two indication information indicate that the first resource transmits different signals, and it may be understood that the first resource is a conflicting resource.
  • the first resource here may be several OFDM symbols in one time slot, or may be several time slots, which is not limited in this application.
  • the terminal device transmits the SRS with the network device according to the first resource.
  • the terminal device preferentially sends SRS on the conflicting resource.
  • S402a or S402b or S402c or S402d below, and several possible implementations are described below in conjunction with (b), (c), (d), and (e) in Figure 9 Describe in detail.
  • the terminal device transmits the SRS with the network device according to the first resource, and transmits the TBoMS with the network device according to the second resource.
  • the fifth indication information indicates The last 4 OFDM symbols of the second time slot are used to transmit SRS.
  • the SRS occupies the last 4 symbols of the second time slot in the three time slots. OFDM symbols, the resources indicated by the fourth indication information except the 4 OFDM symbols are still used to transmit TBoMS.
  • the terminal device transmits the SRS with the network device according to the first resource, and transmits the TBoMS with the network device according to the third resource, where the third resource is a resource in the second resource except resources in the same time slot as the first resource resource.
  • the fifth indication information indicates The last 4 OFDM symbols of the second time slot are used to transmit SRS.
  • the terminal device executes S402, as shown in (c) in FIG. 9, the SRS occupies the last 4 symbols of the second time slot in the three time slots.
  • OFDM symbols, the first 10 OFDM symbols in the second time slot are regarded as illegal symbols, and TBoMS is not transmitted, and the resources indicated by the fourth indication information except the second time slot are still used to transmit TBoMS.
  • the first 10 OFDM symbols in the second time slot can also be used to transmit other signals.
  • the terminal device transmits the SRS to the network device according to the first resource, and the terminal device transmits the TBoMS to the network device according to the fourth resource, where the fourth resource is a resource in the second resource whose time sequence is earlier than the first resource.
  • the fifth indication information indicates The last 4 OFDM symbols of the second time slot are used to transmit SRS.
  • the SRS occupies the last 4 symbols of the second time slot in the three time slots. OFDM symbols, the OFDM symbols whose timing sequence is after the 4 OFDM symbols are regarded as illegal symbols (that is, the third time slot in (d) in Figure 9), and TBoMS is not transmitted, except for the third time slot indicated by the fourth indication information. resources outside the last 4 OFDM symbols of the first time slot and the second time slot are still used for transmitting TBoMS.
  • the third time slot can also be used for transmitting other signals.
  • the terminal device transmits the SRS with the network device according to the first resource, and the terminal device does not transmit the TBoMS.
  • the fifth indication information indicates The last 4 OFDM symbols of the second time slot are used to transmit SRS.
  • the terminal device executes S402 as shown in (e) in FIG. 9 , the SRS occupies the last 4 symbols of the second time slot in the three time slots.
  • TBoMS is not transmitted for resources other than the 4 OFDM symbols indicated by the fourth indication information.
  • resources other than the 4 OFDM symbols indicated by the fourth indication information may also be used to transmit other signals.
  • FIG. 10 is a schematic interaction diagram of a method 500 of the present application.
  • nine possible implementations of the information sending method according to the embodiment of the present application are introduced by taking the consistent time domain resource allocated to each time slot and the non-consistent time domain resource allocated to each time slot as examples.
  • the network device determines resource mapping parameters for uplink transmission.
  • the network device determines the resource mapping parameter according to the BG, modulation and coding scheme (modulation and coding scheme, MCS) table and MCS index, and the resource mapping parameter includes the number of time slots K, RV indication information rv id and RV sequence indication information repK -RV.
  • modulation and coding scheme modulation and coding scheme, MCS
  • a transmission opportunity is defined as a time slot, so in the possible implementations taking the repetition of Type A as an example, for example, in possible implementation one, the "time slot" involved
  • the number of slots is the "number of transmission opportunities" in the MCS table.
  • each MCS table involves the MCS index, modulation order Q, target code rate, spectral efficiency, transmission opportunity number set A, and transmission opportunity number set B. It should be noted that the MCS table of the PDSCH is common to both uplink and downlink.
  • the corresponding transmission opportunity number set can be selected from the MCS table (Table 3 to Table 7 in this application) according to the MCS index indication A, and then determine the number K of time slots in the set A of transmission opportunity numbers.
  • the MCS table is the MCS index table 1 of PDSCH, that is, table 3, and the MCS index is 3, then the network device determines that the transmission opportunity number set A is ⁇ 1, 2, 3, 4 ⁇ , and the above-mentioned time slot number K is The value should be one of ⁇ 1,2,3,4 ⁇ .
  • K included in the transmission opportunity number set A in possible implementation manner 1 satisfies the first condition: R ⁇ K ⁇ 1.
  • R is constant, K that satisfies the condition can be determined according to the first condition.
  • FIG. 11 shows a schematic diagram of a first possible implementation of the method for sending information in the embodiment of the present application.
  • LDPC BG1 as an example
  • LDPC BG2 as an example, respectively showing schematic diagrams of resource mapping when the first condition is met.
  • the circle represents the circular cache, which stores the coded bit string sequence obtained after the information bits are channel coded
  • the blank part in the circle is the coded check bit
  • the The shaded part is the encoded information bits.
  • the code rate of the BG1 mother code is 1/3, that is, the information bits account for about 1/3 of the coded bits.
  • the coded bit string sequence starting from RV0 can be completely carried by PUSCH#0.
  • the circle represents a circular buffer, which stores the coded bit string sequence obtained after the information bits are channel coded, the blank part in the circle is the coded check bit, and the The shaded part is the encoded information bits.
  • the code rate of the BG2 mother code is 1/5, that is, the information bits account for about 1/5 of the coded bits.
  • the coded bit string sequence starting from RV0 can be completely carried by PUSCH#0.
  • the network device sends a resource mapping parameter to the terminal device.
  • the terminal device receives the resource mapping parameter from the network device, and the resource mapping parameter includes the number K of time slots.
  • the network device may send the resource mapping parameter through high-layer signaling or DCI.
  • the terminal device maps the encoded bits to time-frequency resources for uplink transmission according to the resource mapping parameters.
  • the terminal device uses the first resource mapping mechanism for resource mapping.
  • R ⁇ K ⁇ the terminal device uses the second resource mapping mechanism to perform resource mapping.
  • FIG. 11 shows a schematic diagram when the terminal device uses the first resource mapping mechanism.
  • the first resource mapping mechanism that is, the RV cycle mechanism, uses the RV indication information rv id as the starting point of the RV cycle, the RV sequence indication information repK-RV is the RV cycle sequence, and the RV update granularity is a transmission opportunity.
  • FIG. 11 shows a schematic diagram when the terminal device uses the second resource mapping mechanism.
  • the second resource mapping mechanism performs rate matching at the granularity of all transmission opportunities, in other words, the second resource mapping mechanism performs rate matching at the granularity of the entire TBoMS.
  • the granularity of bit interleaving in the second resource mapping mechanism is all transmission opportunities or the entire TBoMS.
  • the terminal device sends an uplink signal to the network device on the time-frequency resource for uplink transmission; correspondingly, the network device receives the uplink signal from the terminal device on the time-frequency resource for uplink transmission.
  • this application when the network device executes S501, this application does not limit the resource mapping method executed by the terminal device, and S503 executed by the terminal device can be replaced by various existing resource mapping methods. Method; when the terminal device executes S503, this application does not limit the method for determining the number of transmission opportunities performed by the corresponding network device, and S501 performed by the network device can be replaced by various existing methods for determining the number of transmission opportunities.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • the network device determines resource mapping parameters for uplink transmission.
  • the network device determines the resource mapping parameter according to the BG, modulation and coding scheme (modulation and coding scheme, MCS) table and MCS index, and the resource mapping parameter includes the number of time slots K, RV indication information rv id and RV sequence indication information repK -RV.
  • modulation and coding scheme modulation and coding scheme, MCS
  • a transmission opportunity is defined as a time slot, so in the first possible implementation, the "number of time slots” involved is the “number of transmission opportunities" in the MCS table. ".
  • the corresponding transmission opportunity number set B can be selected from the MCS table (Table 3 to Table 7 in this application) according to the MCS index indication, and then The number of time slots K is determined in the transmission opportunity number set B, and at the same time, the RV indication information rvi id and the RV sequence indication information repK-RV are restricted, so that RV0 and RV1 must be mapped to time-frequency resources of at least one transmission opportunity.
  • R is the coding rate.
  • the code rate of the mother code is 1/3, that is, the information bits account for about 1/3 of the coded bits, and the information bits between RV0 and RV1 account for about coded information bit string.
  • information bits are between RV0 and RV1, and RV1 also includes a part of information bits.
  • FIG. 12 shows a schematic diagram of a second possible implementation of the method for sending information according to the embodiment of the present application.
  • the circle represents the circular buffer, which stores the coded bit string sequence obtained after the information bits are channel coded.
  • the blank part in the circle is the coded parity bit, and the shaded part in the circle is the encoded information bits.
  • S502 to S504 are similar to the first possible implementation manner, and will not be repeated here.
  • this application when the network device executes S501, this application does not limit the resource mapping method executed by the terminal device, and S503 executed by the terminal device can be replaced by various existing resource mapping methods. Method; when the terminal device executes S503, this application does not limit the method for determining the number of transmission opportunities performed by the corresponding network device, and S501 performed by the network device can be replaced by various existing methods for determining the number of transmission opportunities.
  • the information bits in the coded bit sequence can be Multiple transmission opportunities are fully bearer.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • S501 includes all relevant content of the determined transmission time slot number set A in S501 in possible implementation mode 1, and on this basis, according to the number M of transmission opportunities included in the time-frequency resource corresponding to the length of the selected bit, the The upper limit of the transmission opportunity number set A is expanded by M times to form the transmission opportunity number set A-M, and the time slot number K is determined within the range of the transmission opportunity number set A-M.
  • the length of the selected coding bit is the size of the time-frequency resource to be mapped, for example, the time-frequency resource to be mapped
  • the resources are time-frequency resources on M TOs, then the length of selected bits is the time-frequency resources on M TOs, the granularity of rate matching is M TOs, that is, the RV update granularity is M transmission opportunities.
  • M TOs the granularity of rate matching
  • M transmission opportunities the third possible implementation mainly discusses the case where M is greater than 1.
  • the resource mapping parameter sent by the network device to the terminal device in S501 includes first indication information in addition to the number of time slots K, and the first indication information is used to indicate that the size of the time-frequency resource to be mapped is M transmission Opportunity, or, the first indication information is used to indicate that the length of the selection bit is M transmission opportunities resources, or, the first indication information is used to indicate that the RV update granularity is M transmission opportunities.
  • rate matching is performed at the granularity of M transmission opportunities when performing resource mapping, in other words.
  • FIG. 13 shows a schematic diagram of a third possible implementation manner of the method for sending information in the embodiment of the present application.
  • the ring represents a circular cache, which stores the coded bit string sequence obtained after the information bits are channel coded, the blank part in the ring is the coded check bit, and the The shaded part is the encoded information bits.
  • the code rate of the BG1 mother code is 1/3, that is, the information bits account for about 1/3 of the coded bits.
  • the coded bit string sequence starting from RV0 can be completely carried by PUSCH#0 and PUSCH#1, the coded bit string sequence starting from RV1 can be carried by PUSCH#6 and PUSCH#7, and the coded bit string sequence starting from RV2
  • the bit string can be carried by PUSCH#2 and PUSCH#3
  • the coded bit string starting from RV3 can be carried by PUSCH#4 and PUSCH#5.
  • the network device sends a resource mapping parameter to the terminal device.
  • the terminal device receives the resource mapping parameter from the network device, where the resource mapping parameter includes the number of time slots K and first indication information.
  • the network device may send the resource mapping parameter through high-layer signaling or DCI.
  • the terminal device maps the encoded bits to time-frequency resources for uplink transmission according to the resource mapping parameters.
  • the terminal device uses the fourth resource mapping mechanism to perform resource mapping.
  • R ⁇ K ⁇ M ⁇ the terminal device uses the second resource mapping mechanism to perform resource mapping.
  • can be the set one of the.
  • FIG. 13 shows A schematic diagram is shown when the terminal device uses the fourth resource mapping mechanism.
  • the fourth resource mapping mechanism uses the RV indication information rvid as the starting point of the RV cycle, the RV sequence indication information repK-RV as the RV cycle sequence, and the RV update granularity as 2 transmission opportunities.
  • the coded bits are fetched from the corresponding position in the buffer and mapped to the time-frequency resource at the corresponding transmission opportunity.
  • the difference between the fourth resource mapping mechanism and the first resource mapping mechanism is that the RV update granularity of the fourth resource mapping mechanism is M transmission opportunities, that is, the RV is updated every M transmission opportunities.
  • the difference between the fourth resource mapping mechanism and the first resource mapping mechanism is that the rate matching granularity of the fourth resource mapping mechanism is M transmission opportunities, and the bit interleaving granularity is also M transmission opportunities.
  • S504 is similar to the first possible implementation manner, and details are not repeated here.
  • the information bits in the coded bit sequence can be completely carried by N transmission opportunities.
  • the network device determines the set of transmission opportunities that meet the condition that the product of the encoding rate and the number of transmission opportunities is less than or equal to 1 through the encoding rate, expands the upper limit of the set by M times, and determines the number of transmission opportunities from the set.
  • the network device sends the number of transmission opportunities to the terminal device and at the same time sends the indication information indicating N to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped to time-frequency resources for transmission, improving demodulation performance.
  • the network device determines resource mapping parameters for uplink transmission.
  • the network device determines the resource mapping parameters according to the coding rate R, the number of time slots K, and the fourth condition.
  • the fourth condition is R ⁇ K ⁇ N ⁇ K.
  • the resource mapping parameters include the number of time slots K and the second indication information.
  • the second The indication information is used to indicate that the update granularity of RV0 is N, that is, RV0 is updated every N transmission opportunities.
  • the number of time slots K is predetermined by the network device, for example, the number of time slots K may be comprehensively determined according to coverage performance, service type, quality of service (quality of service, QoS) and other factors.
  • the second indication information only indicates that the update granularity of RV0 is N, so in the fourth possible implementation manner, the update granularity of RV2, RV3, and RV1 is still one transmission opportunity.
  • this possible implementation mode 4 constrains that the information bits can be completely carried by the time-frequency resources of N transmission opportunities, that is, N info ⁇ N TO , to solve the problem.
  • N info ⁇ N TO it can be obtained that R ⁇ K ⁇ N
  • the fourth condition is R ⁇ K ⁇ N ⁇ K.
  • FIG. 14 shows a schematic diagram of a fourth possible implementation manner of the method for sending information according to the embodiment of the present application.
  • the ring represents a circular cache, which stores the coded bit string sequence obtained after the information bits are channel coded, the blank part in the ring is the coded check bit, and the The shaded part is the encoded information bits.
  • the code rate of the BG1 mother code is 1/3, that is, the information bits account for about 1/3 of the coded bits.
  • the coded bit string sequence starting from RV0 can be completely carried by PUSCH#0 and PUSCH#1, and the coded bit string sequence starting from RV1, RV2, and RV3 can be carried by PUSCH#4, PUSCH#2, and PUSCH#3 respectively. bearer.
  • the network device sends a resource mapping parameter to the terminal device.
  • the terminal device receives the resource mapping parameter from the network device, where the resource mapping parameter includes the number of time slots K and second indication information.
  • the network device may send the resource mapping parameter through high-layer signaling or DCI.
  • the terminal device maps the encoded bits to time-frequency resources for uplink transmission according to the resource mapping parameters.
  • the terminal device determines to use the third resource mapping mechanism according to the second indication information.
  • FIG. 14 shows A schematic diagram is shown when the terminal device uses the fourth resource mapping mechanism.
  • the third resource mapping mechanism uses the RV indication information rv id as the starting point of the RV cycle, and the RV sequence indication information repK-RV is the RV cycle order, and takes out the coded bits from the corresponding position in the circular buffer and maps them to the time-frequency at the corresponding transmission opportunity resource.
  • the update granularity of RV0 is 2 transmission opportunities
  • the update granularity of RV1, RV2, and RV3 is 1 transmission opportunity.
  • the third resource mapping mechanism is that the RV0 update granularity is N transmission opportunities, that is, the RV0 is updated every N transmission opportunities.
  • S504 is similar to the first possible implementation manner, and details are not repeated here.
  • the network device when the information bits cannot be fully carried by the time-frequency resources of one transmission opportunity, the network device sends indication information to the terminal device, which is used to indicate the number of transmission opportunities for the terminal device to carry the information bits, and the terminal device according to the network Resource mapping is performed on the number of transmission opportunities indicated by the device, so that information bits can be completely mapped to time-frequency resources for transmission, and demodulation performance is improved.
  • the network device determines the resource mapping parameters according to the coding rate R, the number of time slots K, and the fifth condition.
  • the fifth condition is R ⁇ K ⁇ M ⁇ K.
  • the resource mapping parameters include the number of time slots K and the first indication information.
  • the first The indication information is used to indicate that the update granularity of the RV is N, that is, the RV is updated every N transmission opportunities.
  • the number of time slots K is predetermined by the network device, for example, the number of time slots K may be comprehensively determined according to coverage performance, service type, quality of service (quality of service, QoS) and other factors.
  • this possible implementation mode 4 constrains that the information bits can be completely carried by the time-frequency resources of M transmission opportunities, that is, N info ⁇ N TO , to solve the problem.
  • the derivation process of the fifth condition is similar to that of the fourth condition, and will not be repeated here.
  • FIG. 13 shows a schematic diagram of the fifth possible implementation manner of the method for sending information according to the embodiment of the present application.
  • the circle represents the circular buffer, which stores the coded bit string sequence obtained after the information bits are channel coded
  • the blank part in the circle is the coded check bit
  • the The shaded part is the encoded information bits.
  • the code rate of the BG1 mother code is 1/3, that is, the information bits account for about 1/3 of the coded bits.
  • the coded bit string sequence starting from RV0 can be completely carried by PUSCH#0 and PUSCH#1, the coded bit string sequence starting from RV1 can be carried by PUSCH#6 and PUSCH#7, and the coded bit string sequence starting from RV2
  • the bit string can be carried by PUSCH#2 and PUSCH#3
  • the coded bit string starting from RV3 can be carried by PUSCH#4 and PUSCH#5.
  • the network device sends a resource mapping parameter to the terminal device.
  • the terminal device receives the resource mapping parameter from the network device, where the resource mapping parameter includes the number of time slots K and first indication information.
  • the network device may send the resource mapping parameter through high-layer signaling or DCI.
  • the terminal device maps the encoded bits to time-frequency resources for uplink transmission according to the resource mapping parameters.
  • S504 is similar to the first possible implementation manner, and details are not repeated here.
  • the network device when the information bits cannot be fully carried by the time-frequency resources of one transmission opportunity, the network device sends indication information to the terminal device, which is used to indicate the number of transmission opportunities for the terminal device to carry the information bits, and the terminal device according to the network Resource mapping is performed on the number of transmission opportunities indicated by the device, so that information bits can be completely mapped to time-frequency resources for transmission, and demodulation performance is improved.
  • time domain resources allocated to each time slot may be inconsistent and symmetrical as an example, and with reference to FIG. 15 , a sixth possible implementation manner is introduced.
  • FIG. 15 shows a schematic diagram of the sixth possible implementation manner of the method for sending information according to the embodiment of the present application.
  • Figure 15 is an example of a DDDSU with a symmetrical frame structure.
  • D in Figure 15 is a DL time slot
  • U is an UL time slot
  • S is an S time slot.
  • one transmission opportunity consists of multiple continuous uplink time domain resources, and each transmission opportunity includes the same number of time slots.
  • the network device determines resource mapping parameters for uplink transmission.
  • the network device determines the resource mapping parameter according to the BG, modulation and coding scheme (modulation and coding scheme, MCS) table and MCS index, and the resource mapping parameter includes the number of transmission opportunities K, RV indication information rvid and RV sequence indication information repK- RV.
  • modulation and coding scheme modulation and coding scheme, MCS
  • the corresponding transmission opportunity number set can be selected from the MCS table (Table 3 to Table 7 in this application) according to the MCS index indication A, and then determine the transmission opportunity number K in the transmission opportunity number set A.
  • K included in the transmission opportunity number set A in possible implementation manner 6 satisfies the first condition: R ⁇ K ⁇ 1.
  • the network device sends the resource mapping parameter to the terminal device.
  • the terminal device receives the resource mapping parameter from the network device, and the resource mapping parameter includes the number K of transmission opportunities.
  • the network device may send the resource mapping parameter through high-layer signaling or DCI.
  • the terminal device maps the encoded bits to time-frequency resources for uplink transmission according to the resource mapping parameters.
  • the terminal device uses the first resource mapping mechanism for resource mapping.
  • R ⁇ K ⁇ the terminal device uses the second resource mapping mechanism to perform resource mapping.
  • FIG. 15 shows a schematic diagram when the terminal device uses the first resource mapping mechanism.
  • the first resource mapping mechanism that is, the RV cycle mechanism, uses the RV indication information rv id as the starting point of the RV cycle, the RV sequence indication information repK-RV is the RV cycle sequence, and the RV update granularity is a transmission opportunity.
  • (c) in FIG. 15 shows a schematic diagram when the terminal device uses the second resource mapping mechanism.
  • the second resource mapping mechanism performs rate matching at the granularity of all transmission opportunities, in other words, the second resource mapping mechanism performs rate matching at the granularity of the entire TBoMS.
  • the granularity of bit interleaving in the second resource mapping mechanism is all transmission opportunities or the entire TBoMS.
  • the terminal device sends an uplink signal to the network device on the time-frequency resource for uplink transmission; correspondingly, the network device receives the uplink signal from the terminal device on the time-frequency resource for uplink transmission.
  • this application when the network device executes S501, this application does not limit the resource mapping method executed by the terminal device, and S503 executed by the terminal device can be replaced by various existing resource mapping methods. Method; when the terminal device executes S503, this application does not limit the method for determining the number of transmission opportunities performed by the corresponding network device, and S501 performed by the network device can be replaced by various existing methods for determining the number of transmission opportunities.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • FIG. 15 shows a schematic diagram of the seventh possible implementation manner of the method for sending information according to the embodiment of the present application.
  • Figure 15 is an example of a DDDSU with a symmetrical frame structure.
  • D in Figure 15 is a DL time slot
  • U is an UL time slot
  • S is an S time slot.
  • each transmission opportunity includes the same number of slots.
  • the network device determines resource mapping parameters for uplink transmission.
  • the network device determines the resource mapping parameter according to the BG, modulation and coding scheme (modulation and coding scheme, MCS) table and MCS index, and the resource mapping parameter includes the number of transmission opportunities K, RV indication information rvid and RV sequence indication information repK- RV.
  • modulation and coding scheme modulation and coding scheme, MCS
  • the corresponding transmission opportunity number set B can be selected from the MCS table (Table 3 to Table 7 in this application) according to the MCS index indication, and then The number of transmission opportunities K is determined in the set B of transmission opportunities, and at the same time, the RV indicator information rvid and the RV sequence indicator information repK-RV are restricted, so that RV0 and RV1 must be mapped to time-frequency resources of at least one transmission opportunity.
  • R is the coding rate.
  • S502 to S504 are similar to the sixth possible implementation manner, and will not be repeated here.
  • the information bits in the coded bit sequence can be Multiple transmission opportunities are fully bearer.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • the eighth possible implementation mode is introduced below.
  • FIG. 16 shows a schematic diagram of the eighth possible implementation manner of the information sending method according to the embodiment of the present application.
  • Figure 16 takes DDDSUDDSUU with an asymmetric frame structure as an example.
  • D in Figure 16 is the DL time slot
  • U is the UL time slot
  • S is the S time slot.
  • one transmission opportunity is composed of multiple continuous uplink time domain resources, and each transmission opportunity includes a different number of time slots.
  • the network device determines the resource mapping parameter according to the BG, modulation and coding scheme (modulation and coding scheme, MCS) table and MCS index, and the resource mapping parameter includes the number of transmission opportunities K, RV indication information rvid and RV sequence indication information repK- RV.
  • modulation and coding scheme modulation and coding scheme, MCS
  • the corresponding transmission opportunity number set can be selected from the MCS table (Table 3 to Table 7 in this application) according to the MCS index indication A. Further, it is necessary to expand the upper limit of the number of transmission opportunities in the set A of the number of transmission opportunities by P times to obtain the set AP of the number of transmission opportunities. At the same time, it is required that RV0 must be mapped to a long transmission opportunity.
  • P can be or "Long transmission opportunity” can be understood as a transmission opportunity that includes more time slots in a TBoMS transmission opportunity, for example, the transmission opportunity corresponding to "SUU" in (a) in FIG. 16 .
  • K included in the transmission opportunity number set AP in possible implementation manner eight satisfies the sixth condition: R ⁇ K ⁇ P.
  • the number of TOs included in a TBoMS transmission is an even number K
  • the number of information bits included in the "SU" time slot is The number of information bits included in the "SUU" time slot is in, L depends on the frame structure.
  • the network device sends a resource mapping parameter to the terminal device.
  • the terminal device receives the resource mapping parameter from the network device, and the resource mapping parameter includes the number K of time slots.
  • the network device may send the resource mapping parameter through high-layer signaling or DCI.
  • the terminal device maps the encoded bits to time-frequency resources for uplink transmission according to the resource mapping parameters.
  • the terminal device uses the first resource mapping mechanism for resource mapping.
  • R ⁇ K ⁇ P ⁇ the terminal device uses the second resource mapping mechanism to perform resource mapping.
  • P can be or Exemplarily, when LDPC encoding uses BG1, ⁇ can be the set One of, when LDPC encoding uses BG2, ⁇ can be the set one of the.
  • FIG. 16 shows a schematic diagram when the terminal device uses the first resource mapping mechanism.
  • the first resource mapping mechanism that is, the RV cycle mechanism, uses the RV indication information rv id as the starting point of the RV cycle, the RV sequence indication information repK-RV is the RV cycle sequence, and the RV update granularity is a transmission opportunity.
  • (c) in FIG. 16 shows a schematic diagram when the terminal device uses the second resource mapping mechanism.
  • the second resource mapping mechanism performs rate matching at the granularity of all transmission opportunities, in other words, the second resource mapping mechanism performs rate matching at the granularity of the entire TBoMS.
  • the granularity of bit interleaving in the second resource mapping mechanism is all transmission opportunities or the entire TBoMS.
  • the terminal device sends an uplink signal to the network device on the time-frequency resource for uplink transmission; correspondingly, the network device receives the uplink signal from the terminal device on the time-frequency resource for uplink transmission.
  • this application when the network device executes S501, this application does not limit the resource mapping method executed by the terminal device, and S503 executed by the terminal device can be replaced by various existing resource mapping methods. Method; when the terminal device executes S503, this application does not limit the method for determining the number of transmission opportunities performed by the corresponding network device, and S501 performed by the network device can be replaced by various existing methods for determining the number of transmission opportunities.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • the network device determines resource mapping parameters for uplink transmission.
  • the network device determines the resource mapping parameter according to the BG, modulation and coding scheme (modulation and coding scheme, MCS) table and MCS index, and the resource mapping parameter includes the number of time slots K, RV indication information rvid and RV sequence indication information repK- RV.
  • modulation and coding scheme modulation and coding scheme, MCS
  • the corresponding transmission opportunity number set B can be selected from the MCS table (Table 3 to Table 7 in this application) according to the MCS index indication, and further Therefore, it is necessary to expand the upper limit of the number of transmission opportunities in the number of transmission opportunities set B by P times to obtain the number of transmission opportunities B-P, and then determine the number of time slots K in the set B-P of transmission opportunities.
  • the constraint RV indication information rvid and The RV sequence indicates information repK-RV, so that RV0 is mapped to the time-frequency resource of the long transmission opportunity.
  • the K included in the transmission opportunity number set B in the second possible implementation satisfies the second condition: where P can be or Among them, R is the coding rate.
  • S502 to S504 are similar to the eighth possible implementation manner, and will not be repeated here.
  • this application when the network device executes S501, this application does not limit the resource mapping method executed by the terminal device, and S503 executed by the terminal device can be replaced by various existing resource mapping methods. Method; when the terminal device executes S503, this application does not limit the method for determining the number of transmission opportunities performed by the corresponding network device, and S501 performed by the network device can be replaced by various existing methods for determining the number of transmission opportunities.
  • the network device determines the set of transmission opportunities that meet the conditions through the encoding code rate, determines the number of transmission opportunities from the set, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the number of transmission opportunities, the information bits can be completely mapped Transmission is performed on time-frequency resources to improve demodulation performance.
  • the information sending method 600 of this application will be described in detail below with reference to FIG. 17 . There are many ways to implement the method 600, and three possible ways will be described in detail below.
  • each TO reads the starting position of the coded bits from the circular buffer at an integer multiple of Z c as the granularity, where Z c represents the expansion factor of LDPC (LDPC lifting size), that is, the LDPC code is to output coded bits at a granularity of integer multiples of Zc.
  • Z c represents the expansion factor of LDPC (LDPC lifting size)
  • y k represents the position in the circular buffer of the first bit mapped to the kth transmission opportunity
  • x k represents the last bit mapped to the kth transmission opportunity
  • Positions in the circular buffer, x k 0,1,2,... N cb -1, where N cb represents the number of coded bits in the circular buffer, express yes Round down.
  • y k represents the position in the circular buffer of the first bit mapped to the kth transmission opportunity
  • x k represents the last bit mapped to the kth transmission opportunity
  • Positions in the circular buffer, x k 0,1,2,... N cb -1, where N cb represents the number of coded bits in the circular buffer, express yes rounding.
  • information sending method 600 of the present application may be implemented alone, or may be implemented in combination with other embodiments of the information sending method of the present application.
  • the information sending method 700 of this application will be described in detail below with reference to FIG. 18 .
  • the network device sends the TBoMS repeated transmission times to the terminal device, and correspondingly, the terminal device receives the TBoMS repeated transmission times from the network device.
  • the terminal device performs resource mapping according to the number of repeated transmissions of the TBoMS, and the resource mapping method is consistent with the above.
  • the number of TBoMS repeated transmissions is S, and S may be equal to 1, 2, 3, 4... S does not necessarily need to be equal to K.
  • Fig. 19 is a schematic block diagram of a communication device for resource mapping provided by an embodiment of the present application.
  • the communication device 10 may include a transceiver module 11 and a processing module 12 .
  • the transceiver module 11 can be used for receiving information sent by other devices, and can also be used for sending information to other devices. For example, receiving the fourth indication information or sending the indication information of the first parameter.
  • the processing module 12 may be used for performing content processing of the device, for example, mapping the first bit sequence to K transmission opportunities according to the first parameter.
  • the communication device 10 may correspond to the network device in the foregoing method embodiments.
  • the communication device 10 may correspond to the network device in any one of the methods 200 to 700 according to the embodiment of the present application, and the communication device 10 may include a device for performing the operations performed by the network device in the corresponding method. module, and each unit in the communication device 10 is to implement the operations performed by the network device in the corresponding method.
  • the transceiving module 11 is used to execute step S202, and the processing module 12 is used to instruct step S201.
  • the transceiver module 11 is used to execute step S302, and the processing module 12 is used to instruct step S301.
  • the transceiver module 11 is configured to execute steps S401 and S402.
  • the transceiver module 11 is used to execute steps S502 and S504, and the processing module 12 is used to instruct step S501.
  • the transceiver module 11 is configured to execute step S701.
  • the transceiver module 11 is configured to determine the first parameter from a set of values of the first parameter, where the set of values of the first parameter is based on the encoding code of the first bit sequence Rate or modulation coding method, the first bit sequence is a coded bit sequence, and the first parameter is the number of transmission opportunities or time units used to carry the first bit sequence; the transceiver module 11 is also used to send The terminal device sends the indication information of the first parameter.
  • the information bits in the coded bit sequence can be completely carried by one or more transmission opportunities.
  • the network device determines the value set of the first parameter through the coding rate, determines the first parameter from the value set of the first parameter, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the first parameter, it can The information bits are completely mapped to the time-frequency resource for transmission, and the demodulation performance is improved.
  • the product of the coding rate and the value of the first parameter is less than or equal to N, where N is a positive integer.
  • the value set of the first parameter is ⁇ 1, 2, 3, ... N ⁇ k ⁇ , k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the second bit sequence is carried by N transmission opportunities, wherein the second bit sequence is a bit sequence starting from the first bit in the circular buffer in the first bit sequence, and the length of the second bit sequence is the same as N associated with the number of slots included in each transmission opportunity.
  • the network device when N is greater than 1, the network device sends first indication information to the terminal device, where the first indication information is used to indicate that the second bit sequence is carried by N transmission opportunities.
  • the product of the coding rate and the value of the first parameter is less than or equal to P, and P ⁇ 1.
  • L is determined according to the frame structure, L>0.
  • the set of values of the first parameter is Indicates that P ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the second bit sequence is carried by one transmission opportunity, wherein the second bit sequence is a bit sequence starting from the first bit in the circular buffer in the first bit sequence, and the length of the second bit sequence is the same as 1 associated with the number of slots included in each transmission opportunity.
  • the product of the coding rate and the value of the first parameter is greater than N and less than or equal to M, where M>N, and N is a positive integer.
  • M is N times.
  • the second bit sequence and the third bit sequence in the first bit sequence are respectively carried by at least one transmission opportunity, wherein the second bit sequence is the first bit sequence in the first bit sequence starting from the first bit in the circular buffer
  • the length of the second bit sequence is associated with the number of time slots included in the N transmission opportunities
  • the third bit sequence is at least one of the bit sequences in the first bit sequence that are different from the starting point of the second bit sequence sequence of bits.
  • the network device when N is greater than 1, the network device sends second indication information to the terminal device, where the second indication information is used to indicate that the second bit sequence is carried by N transmission opportunities.
  • the set of values of the first parameter is in, Indicates that M ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the product of the coding rate and the value of the first parameter is greater than P and less than or equal to Q, where P ⁇ 1 and Q>P.
  • the second bit sequence and the third bit sequence in the first bit sequence are respectively carried by at least one transmission opportunity, wherein the second bit sequence is the first bit sequence in the first bit sequence starting from the first bit in the circular buffer bit sequence, the length of the second bit sequence is associated with the number of time slots included in one transmission opportunity, and the third bit sequence is at least one of the bit sequences in the first bit sequence different from the starting point of the second bit sequence sequence of bits.
  • the set of values of the first parameter is in, Indicates that P ⁇ k+1 is rounded down, Indicates that Q ⁇ k is rounded down, k is less than or equal to the reciprocal of the coding rate, and k is a positive integer.
  • the number of time slots included in the transmission opportunity carrying the second bit sequence is greater than the number of time slots included in the transmission opportunity carrying the fourth bit sequence, wherein the second bit sequence is the first bit sequence in the circular buffer in the first bit sequence A bit sequence starting from a bit, the fourth bit sequence is at least one bit sequence in the first bit sequence starting from a bit other than the first bit in the circular buffer.
  • the device further includes: a processing module, configured to determine the coding rate according to the modulation and coding scheme MCS.
  • the transceiving module 11 is further configured to send third indication information to the terminal device, the third indication information is used to instruct the terminal equipment to map the first bit sequence to K transmission opportunities, and then the first bit sequence The sequence is mapped to B transmission opportunities, where K is the value of the first parameter, and B is a positive integer.
  • the processing module 12 is configured to generate first indication information; the transceiver module 11 is configured to send the indication information of the first parameter and the first indication information to the terminal device, the first indication information
  • a parameter is the number of transmission opportunities or time units used to carry the first bit sequence, the first indication information is used to indicate that the second bit sequence is carried by N transmission opportunities, and the first bit sequence is an encoded bit sequence , the second bit sequence is the bit sequence starting from the first bit in the circular buffer in the first bit sequence, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, and N is positive Integer, N less than or equal to the numeric value of the first parameter.
  • the network device when the information bits cannot be completely carried by the time-frequency resource of a transmission opportunity, the network device sends indication information to the terminal device, which is used to indicate the number of transmission opportunities for the terminal device to carry the information bits, and the terminal device
  • the resource mapping is performed according to the number of transmission opportunities, so that the information bits can be completely mapped to the time-frequency resources for transmission, and the demodulation performance is improved.
  • N is greater than or equal to the product of the coding rate and the first parameter.
  • the first indication information is also used to indicate that the fifth bit sequence is carried by N transmission opportunities, and the fifth bit sequence is the bit starting from other bits in the first bit sequence except the first bit in the circular buffer At least one sequence of bits in the sequence.
  • the apparatus further includes: the transceiving module 11, configured to send third indication information to the terminal equipment, where the third indication information is used to instruct the terminal equipment to map the first bit sequence to K transmission opportunities, and to The first bit sequence is mapped to B transmission opportunities, where K is the value of the first parameter, and B is a positive integer.
  • the communication device 10 may correspond to the terminal device in the foregoing method embodiments.
  • the communication device 10 may correspond to the terminal device in any one of the methods 200 to 700 according to the embodiment of the present application, and the communication device 10 may include a device for performing the operations performed by the terminal device in the corresponding method module, and each unit in the communication device 10 is to implement the operations performed by the terminal device in the corresponding method.
  • the transceiver module 11 is configured to execute step S202
  • the processing module 12 is configured to execute step S203.
  • the transceiver module 11 is configured to execute step S302
  • the processing module 12 is configured to execute step S303.
  • the transceiver module 11 is configured to perform steps S401 and S402
  • the transceiving module 11 is configured to execute steps S502 and S504, and the processing module 12 is configured to execute step S503.
  • the transceiver module 11 is configured to execute step S701
  • the processing module 12 is configured to execute step S702.
  • the transceiver module 11 is configured to receive a first parameter from the network device, and the processing module 12 is configured to map the first bit sequence to K transmission opportunities according to the first parameter , K is the value of the first parameter, K is a positive integer, wherein, when the product of the coding rate of the first bit sequence and K is less than or equal to the first threshold value, the terminal device will start in the circular buffer is the bit sequence at position i mapped to the ith transmission opportunity, where the position i corresponds to the ith transmission opportunity, 1 ⁇ i ⁇ K, i is an integer, the first bit sequence includes the bit sequence, the bit The length of the sequence is associated with the number of slots included in one transmission opportunity.
  • the information bits in the coded bit sequence can be completely carried by one or more transmission opportunities.
  • the network device determines the value set of the first parameter through the coding rate, determines the first parameter from the value set of the first parameter, and sends it to the terminal device.
  • the terminal device performs resource mapping according to the first parameter, it can The information bits are completely mapped to the time-frequency resource for transmission, and the demodulation performance is improved.
  • the last bit of the bit sequence mapped to the kth transmission opportunity is the x kth bit in the circular buffer
  • the starting point of the bit sequence mapped to the k+1th transmission opportunity is the y k+ th bit in the circular buffer 1 bit, where, or, or, in, express yes rounded down, express yes Rounded up, express yes Rounding up
  • Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, k is greater than or equal to 0, and k is an integer.
  • the first parameter is determined based on the encoding code rate or modulation and encoding mode of the first bit sequence, the first bit sequence is an encoded bit sequence, and the first parameter is the transmission code used to carry the first bit sequence The number of occasions or time units.
  • the first threshold value is P times any of the following values: 0.9, 0.948, 0.95, 1, 1.2, Alternatively, the first threshold value is P times any of the following values: 0.9, 0.948, 0.95, 1.
  • L is determined according to the frame structure, and L is greater than 0.
  • the terminal device maps the second bit sequence to K transmission opportunities, and the second bit sequence is the first bit sequence In the bit sequence starting from the first bit in the circular buffer, the length of the second bit sequence is associated with the number of time slots included in the K transmission opportunities.
  • the transceiver module 11 is configured to receive indication information and first indication information of a first parameter from a network device, where the first parameter is a The number of transmission opportunities or time units, the first indication information is used to indicate that the second bit sequence is carried by N transmission opportunities, the first bit sequence is an encoded bit sequence, and the second bit sequence is the first bit sequence The bit sequence starting from the first bit in the circular buffer, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, N is a positive integer, and N is less than or equal to the value of the first parameter
  • the processing module 12 is configured to map the first bit sequence to K transmission opportunities according to the indication information of the first parameter and the first indication information, where K is the value of the first parameter, and K is a positive integer.
  • the network device when the information bits cannot be completely carried by the time-frequency resource of a transmission opportunity, the network device sends indication information to the terminal device, which is used to indicate the number of transmission opportunities for the terminal device to carry the information bits, and the terminal device
  • the resource mapping is performed according to the number of transmission opportunities, so that the information bits can be completely mapped to the time-frequency resources for transmission, and the demodulation performance is improved.
  • the last bit of the bit sequence mapped to the kth transmission opportunity is the x kth bit in the circular buffer
  • the starting point of the bit sequence mapped to the k+1th transmission opportunity is the y k+ th bit in the circular buffer 1 bit, where, or, or, in, express yes rounded down, express yes Rounded up, express yes Rounding up
  • Z c is equal to A times the low density parity check LDPC factor, A is a positive integer, x k is an integer, k is greater than or equal to 0, and k is an integer.
  • the processing module 12 is specifically configured to map the second bit sequence to N transmission opportunities, map the third bit sequence to one transmission opportunity, and the third bit sequence is the first bit sequence in the circular buffer in the first bit sequence. At least one bit sequence in the bit sequence whose starting point is other than one bit, the length of the second bit sequence is associated with the number of time slots included in N transmission opportunities, the length of the third bit sequence is related to the number of time slots included in one transmission opportunity associated with the number of time slots.
  • the processing module 12 is specifically configured to, when the product of the coding rate of the first bit sequence and K is less than or equal to the second threshold value, the terminal device respectively maps the second bit sequence and the third bit sequence For N transmission opportunities, the third bit sequence is at least one bit sequence in the first bit sequence starting from other bits other than the first bit in the circular buffer, the second bit sequence and the first bit sequence The length of the three-bit sequence is associated with the number of time slots included in the N transmission opportunities.
  • the processing module is specifically configured to map the second bit sequence to the K transmission opportunities.
  • the second threshold value is any one of the following: 0.9, 0.948, 0.95, 1.
  • the transceiver module 11 is configured to receive fourth indication information and fifth indication information from the network device, where the fourth indication information indicates that the first resource is used to bear the cross-multi-slot transmission Block TBoMS, the fifth indication information indicates that the first resource is used to carry a Sounding Reference Signal SRS; the transceiver module 11 is further configured to transmit the SRS with the network device according to the first resource.
  • the fourth indication information is also used to indicate that the second resource is used to bear the TBoMS, and the transceiver module 11 is also used to transmit the TBoMS with the network device according to the second resource; or, the transceiver module 11 is also used to When transmitting the TBoMS with the network device according to the third resource, the third resource is a resource in the second resource except the resource in the same time slot as the first resource; or, the transceiver module 11 also uses When transmitting the TBoMS with the network device according to the fourth resource, the fourth resource is a resource in the second resource whose time sequence is before the first resource; or, the transceiver module 11 is also configured not to transmit the TBoMS.
  • FIG. 20 is a schematic diagram of an apparatus 20 for resource mapping provided by an embodiment of the present application.
  • the apparatus 20 may be a network device, or may be a chip or a chip system on the network device.
  • the device 20 may be a terminal device, including various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of The terminal, mobile station, terminal, user equipment, soft terminal, etc. may also be a chip or a chip system on the terminal equipment.
  • the device 20 may include a processor 21 (ie, an example of a processing module) and a memory 22 .
  • the memory 22 is used to store instructions
  • the processor 21 is used to execute the instructions stored in the memory 22, so that the device 20 implements the execution of the equipment in the above-mentioned various possible designs in the corresponding methods as shown in Fig. 4 to Fig. 9 step.
  • the device 20 may also include an input port 23 (ie, an example of a transceiver module) and an output port 24 (ie, another example of a transceiver module).
  • the processor 21 , the memory 22 , the input port 23 and the output port 24 can communicate with each other through internal connection paths, and transmit control and/or data signals.
  • the memory 22 is used to store a computer program, and the processor 21 can be used to call and run the computer program from the memory 22, to control the input port 23 to receive signals, and to control the output port 24 to send signals, so as to complete the terminal equipment or Steps of the radio access network device or UE or base station.
  • the memory 22 can be integrated in the processor 21 or can be set separately from the processor 21 .
  • the input port 23 is a receiver
  • the output port 24 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 23 is an input interface
  • the output port 24 is an output interface
  • the functions of the input port 23 and the output port 34 may be realized by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 21 may be realized by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer to implement the device provided in the embodiment of the present application.
  • the program codes to realize the functions of the processor 21 , the input port 23 and the output port 24 are stored in the memory 22 , and the general processor realizes the functions of the processor 21 , the input port 23 and the output port 24 by executing the codes in the memory 22 .
  • each module or unit in the apparatus 20 can be used to execute each action or process performed by the device (for example, terminal device) performing random access in the above method, and here, in order to avoid redundant description, its detailed description is omitted.
  • the processor may be a central processing unit (CPU, central processing unit), and the processor may also be other general-purpose processors, digital signal processors (DSP, digital signal processor), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, and the like.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the network device or the terminal device in the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method performed by the network device or the terminal device in the above method embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the network device or the terminal device in the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method performed by the network device or the terminal device in the above method embodiments.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. If the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息发送的方法和装置,该信息发送的方法通过网络设备从第一参数的取值的集合中确定第一参数,即用于承载所述第一比特序列的传输时机或时间单元的数量,随后网络设备向终端设备发送第一参数,终端设备根据该第一参数将第一比特序列映射至K个传输时机,其中,第一比特序列为编码后比特序列,K为终端设备接收的第一参数的数值。第一参数集合中的第一参数可以使得编码后比特序列中的信息比特能够被一个或多个传输时机完全承载,终端设备根据该第一参数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。

Description

信息发送的方法和装置
本申请要求于2021年5月11日提交中国国家知识产权局、申请号为202110513676.0、发明名称为“信息发送的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及一种信息发送的方法和装置。
背景技术
为了提升覆盖性能,通过跨多时隙传输块(transport block over multi-slot,TBoMS)技术,将多个时隙上的小数据包聚合成一个大数据包,并在多个时隙上共同传输聚合后的数据包。进一步地,为了实现TBoMS的资源映射,可以复用重复的资源映射机制,即冗余版本(redundantversion,RV)循环机制,通过RV来指示循环缓存中一个传输时机携带的编码比特。由于在使用重复的资源映射机制时,一个传输块(transport block,TB)只包括一个时隙上的数据包,因此在相同数量的时隙上,使用TBoMS技术时的传输块大小(transport block size,TBS)要远大于使用重复的资源映射机制时的TBS。从而,在进行TBoMS的资源映射时,很可能出现信息比特不能完整地映射到时频资源的情况,从而导致解调性能下降。
发明内容
本申请提供一种信息发送的方法和装置,使得在进行信息发送时,信息比特能够完整地映射到时频资源,提高解调性能。
第一方面,提供了一种信息发送的方法,包括:网络设备从第一参数的取值的集合中确定第一参数,该第一参数的取值的集合根据第一比特序列的编码码率或调制编码方式确定,该第一比特序列为编码后的比特序列,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量;该网络设备向终端设备发送该第一参数的指示信息。
需要说明的是,本申请中提及的“传输时机”可以替换为“时间单元”,为了方便说明,本申请中以“传输时机”为例进行说明,但对此并不做限定。
应理解,在上述方案的情况下,终端设备不期望接收来自网络设备的第一参数的取值的集合之外的值。
上述方案,承载编码后比特序列的传输时机的数量(下面称为第一参数)满足一定条件时,可以使得编码后比特序列中的信息比特能够被一个或多个传输时机完全承载。网络设备通过编码码率确定出第一参数的取值的集合,从第一参数的取值的集合中确定第一参数,发送给终端设备,终端设备根据该第一参数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
结合第一方面,在第一方面的某些实现方式中,该编码码率和该第一参数的数值的乘积小于或等于N,N为正整数。
结合第一方面,在第一方面的某些实现方式中,所述第一参数的取值的集合为:
{1,2},或{1,2,4},或{1,2,4,8},或{1,2,4,8,16},或{1,2,4,8,16,32},或{1,2,4,6},或{1,2,4,6,8},或{1,2,4,6,8,10},或{1,2,4,6,8,10,12},或{1,2,4,6,8,10,12,14},或{1,2,4,6,8,10,12,14,16},或{1,2,4,6,8,10,12,14,16,18},或{1,2,4,6,8,10,12,14,16,18,20},或{1,2,4,6,8,10,12,14,16,18,20,22},或{1,2,4,6,8,10,12,14,16,18,20,22,24},或{1,2,4,6,8,10,12,14,16,18,20,22,24,26},或{1,2,4,6,8,10,12,14,16,18,20,22,24,26,28},或{1,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30},或{1,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32},或{1,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34}。
结合第一方面,在第一方面的某些实现方式中,该第一参数的取值的集合为{1,2,3,……N·k}的子集,k小于或等于第一阈值,且k为正整数。
结合第一方面,在第一方面的某些实现方式中,该第一参数的取值的集合为{1,2,3,……N·k},k小于或等于该编码码率的倒数,且k为正整数。
结合第一方面,在第一方面的某些实现方式中,该第一参数的取值的集合为{1,2,3,……N·k}的子集,k小于或等于该编码码率的倒数,且k为正整数。
结合第一方面,在第一方面的某些实现方式中,第二比特序列由N个传输时机承载,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联。
上述方案,编码码率与传输时机数的乘积小于或等于1时,可以使得编码后比特序列中的信息比特能够被一个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
结合第一方面,在第一方面的某些实现方式中,N大于1时,该网络设备向该终端设备发送第一指示信息,该第一指示信息用于指示第二比特序列由N个传输时机承载。
上述方案,编码码率与传输时机数的乘积小于或等于N(N为大于1的正整数),时,可以使得编码后比特序列中的信息比特能够被N个传输时机完全承载。网络设备通过编码码率确定出满足编码码率与传输时机数的乘积小于或等于1这一条件的传输时机数的集合,将该集合的上限扩大M倍,从该集合中确定传输时机数,网络设备将传输时机数发送给终端设备的同时向终端设备发送指示N的指示信息,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
结合第一方面,在第一方面的某些实现方式中,该编码码率和该第一参数的数值的乘积小于或等于P,P是实数,P≥1。
应理解,本申请中的P和Q都是实数。
结合第一方面,在第一方面的某些实现方式中,
Figure PCTCN2022091408-appb-000001
Figure PCTCN2022091408-appb-000002
L是根据帧结构确定的,L>0。
结合第一方面,在第一方面的某些实现方式中,该第一参数的取值的集合为
Figure PCTCN2022091408-appb-000003
的子集,
Figure PCTCN2022091408-appb-000004
表示对P·k向下取整,k小于或等于该编码码率的倒数,且k为正整数。
结合第一方面,在第一方面的某些实现方式中,第二比特序列由1个传输时机承载,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与1个传输时机包括的时隙数关联。
上述方案,编码码率与传输时机数的乘积小于或等于1时,可以使得编码后比特序列中的信息比特能够被一个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
结合第一方面,在第一方面的某些实现方式中,所述第一参数的取值的集合为{10},或{8},或{6},或{4},或{2},或{36,38,40,42,44},或{36},或{36,38},或{36,38,40},或{36,38,40,42},或{26,28,30,32},或{26,28,30},或{26,28},或{26},或{22,24,26},或{22,24},或{22},或{18,20},或{18},或{14,16},或{14},或{12}。
结合第一方面,在第一方面的某些实现方式中,该编码码率和该第一参数的数值的乘积大于N,且小于或等于M,M>N,N为正整数。
结合第一方面,在第一方面的某些实现方式中,M为N的
Figure PCTCN2022091408-appb-000005
倍。
结合第一方面,在第一方面的某些实现方式中,该第一比特序列中的第二比特序列和第三比特序列分别由至少一个传输时机承载,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,该第三比特序列为该第一比特序列中与该第二比特序列起点不同的比特序列中的至少一个比特序列。
结合第一方面,在第一方面的某些实现方式中,N大于1时,该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示第二比特序列由N个传输时机承载。
结合第一方面,在第一方面的某些实现方式中,该第一参数的取值的集合为
Figure PCTCN2022091408-appb-000006
的子集,其中,
Figure PCTCN2022091408-appb-000007
表示对M·k向下取整,k小于或等于该编码码率的倒数,且k为正整数。
上述方案,编码码率与传输时机数的乘积大于1且小于或等于22/17,并且约束RV0和RV1分别映射到不同的传输时机时,可以使得编码后比特序列中的信息比特能够被多个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
结合第一方面,在第一方面的某些实现方式中,该编码码率和该第一参数的数值的乘积大于P,且小于或等于Q,P和Q是实数,P≥1,Q>P。
结合第一方面,在第一方面的某些实现方式中,
Figure PCTCN2022091408-appb-000008
Figure PCTCN2022091408-appb-000009
Q等于
Figure PCTCN2022091408-appb-000010
倍的P,L是根据帧结构确定的,L>0。
结合第一方面,在第一方面的某些实现方式中,该第一比特序列中的第二比特序列和 第三比特序列分别由至少一个传输时机承载,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与1个传输时机包括的时隙数关联,该第三比特序列为该第一比特序列中与该第二比特序列起点不同的比特序列中的至少一个比特序列。
结合第一方面,在第一方面的某些实现方式中,该第一参数的取值的集合为
Figure PCTCN2022091408-appb-000011
的子集,其中,
Figure PCTCN2022091408-appb-000012
表示对P·k+1向下取整,
Figure PCTCN2022091408-appb-000013
表示对Q·k向下取整,k小于或等于该编码码率的倒数,且k为正整数。
上述方案,编码码率与传输时机数的乘积大于1且小于或等于22/17,并且约束RV0和RV1分别映射到不同的传输时机时,可以使得编码后比特序列中的信息比特能够被多个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
结合第一方面,在第一方面的某些实现方式中,承载第二比特序列的传输时机包括的时隙数大于承载第四比特序列的传输时机包括的时隙数,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第四比特序列为该第一比特序列中以第一个比特外的其他比特为起点的比特序列中的至少一个比特序列。
上述方案,在每个时隙分配的时域资源可以不同,且每个传输时机包括的时隙数不同时,将信息比特映射到包括的时隙数更多的传输时机上,可以进一步提高将信息比特完整地映射到视频资源上进行传输的成功率,提高解调性能。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备根据调制和编码方案MCS确定该编码码率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备将该第一比特序列映射至K个传输时机后,将该第一比特序列映射到B个传输时机上,其中,K为该第一参数的数值,B为正整数。
第二方面,提供了一种信息发送的方法,包括:终端设备接收来自网络设备的第一参数,该终端设备根据该第一参数将该第一比特序列映射至K个传输时机,K为该第一参数的数值,K为正整数,其中,当该第一比特序列的编码码率和K的乘积小于或等于第一门限值时,该终端设备将在所述第一比特序列中以第y k个比特为起点的比特序列映射至第k个传输时机,其中,所述位置y k与所述第k个传输时机对应,1≤k≤K,k为整数,所述第一比特序列包括所述比特序列,该比特序列的长度与一个传输时机包括的时隙数关联。
上述方案,承载编码后比特序列的传输时机的数量(下面称为第一参数)满足一定条件时,可以使得编码后比特序列中的信息比特能够被一个或多个传输时机完全承载。网络设备通过编码码率确定出第一参数的取值的集合,从第一参数的取值的集合中确定第一参数,发送给终端设备,终端设备根据该第一参数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
结合第二方面,在第二方面的某些实现方式中,映射至第k个传输时机的比特序列的最后一个比特为该第一比特序列中的第x k个比特,映射至第k+1个传输时机的比特序列 的起点为该第一比特序列中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000014
或者,
Figure PCTCN2022091408-appb-000015
或者,
Figure PCTCN2022091408-appb-000016
其中,
Figure PCTCN2022091408-appb-000017
表示对
Figure PCTCN2022091408-appb-000018
向下取整,
Figure PCTCN2022091408-appb-000019
表示对
Figure PCTCN2022091408-appb-000020
向上取整,
Figure PCTCN2022091408-appb-000021
表示对
Figure PCTCN2022091408-appb-000022
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,k大于等于0,且k为整数。
上述方案,终端侧在进行资源映射时,减少了查找映射至上一个传输时机或时隙的最后一个比特在第一比特序列中的位置的步骤,简化了映射过程中的计算,节省了开销。
结合第二方面,在第二方面的某些实现方式中,该第一参数是基于第一比特序列的编码码率或调制编码方式确定的,该第一比特序列为编码后的比特序列,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量,。
结合第二方面,在第二方面的某些实现方式中,该第一门限值为以下任意一个数值的P倍:0.9、
Figure PCTCN2022091408-appb-000023
0.948、0.95、1、1.2、
Figure PCTCN2022091408-appb-000024
或者,该第一门限值为以下任意一个数值的P倍:0.9、
Figure PCTCN2022091408-appb-000025
0.948、0.95、1。
结合第二方面,在第二方面的某些实现方式中,
Figure PCTCN2022091408-appb-000026
Figure PCTCN2022091408-appb-000027
或1,其中,L是根据帧结构确定的,L大于0。
结合第二方面,在第二方面的某些实现方式中,当该第一比特序列的编码码率和K的乘积大于该第一门限值时,该终端设备将第二比特序列映射至K个传输时机,该第二比特序列为第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与K个传输时机包括的时隙数关联。
上述方案,在进行重复的资源映射时,对TBoMS进行部分重复传输,在提高传输可靠性和准确性的基础上,能够缩短TBoMS重复传输的时延。
第三方面,提供了一种信息发送的方法,包括:网络设备生成第一指示信息;该网络设备向终端设备发送第一参数的指示信息和该第一指示信息,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量,该第一指示信息用于指示第二比特序列由N个传输时机承载,该第一比特序列为编码后的比特序列,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,N为正整数,N小于或等于该第一参数的数值。
上述方案,在信息比特无法被一个传输时机的时频资源完整承载时,网络设备向终端设备发送指示信息,用于指示终端设备用于承载信息比特的传输时机的数量,终端设备根据网络设备指示的传输时机的数量进行资源映射,能够使得信息比特能够完整地映射到时频资源上进行传输,提高解调性能。
结合第三方面,在第三方面的某些实现方式中,N大于或等于该编码码率和该第一参数的乘积。
结合第三方面,在第三方面的某些实现方式中,该第一指示信息还用于指示第五比特序列由N个传输时机承载,该第五比特序列为该第一比特序列中以第一个比特外的其他比特为起点的比特序列中的至少一个比特序列。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备将该第一比特序列映射至K个传输时机后,将该第一比特序列映射到B个传输时机上,其中,K为该第一参数的数值,B为正整数。
上述方案,在进行重复的资源映射时,对TBoMS进行部分重复传输,在提高传输可靠性和准确性的基础上,能够缩短TBoMS重复传输的时延。
第四方面,提供了一种信息发送的方法,包括:终端设备接收来自网络设备的第一参数的指示信息和第一指示信息,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量,该第一指示信息用于指示第二比特序列由N个传输时机承载,该第一比特序列为编码后的比特序列,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,N为正整数,N小于或等于该第一参数的数值;该终端设备根据该第一参数和该第一指示信息将该第一比特序列映射至K个传输时机,K为该第一参数的数值,K为正整数。
上述方案,在信息比特无法被一个传输时机的时频资源完整承载时,网络设备向终端设备发送指示信息,用于指示终端设备用于承载信息比特的传输时机的数量,终端设备根据网络设备指示的传输时机的数量进行资源映射,能够使得信息比特能够完整地映射到时频资源上进行传输,提高解调性能。
结合第四方面,在第四方面的某些实现方式中,映射至第k个传输时机的比特序列的最后一个比特为该第一比特序列中的第x k个比特,映射至第k+1个传输时机的比特序列的起点为该第一比特序列中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000028
或者,
Figure PCTCN2022091408-appb-000029
或者,
Figure PCTCN2022091408-appb-000030
其中,
Figure PCTCN2022091408-appb-000031
表示对
Figure PCTCN2022091408-appb-000032
向下取整,
Figure PCTCN2022091408-appb-000033
表示对
Figure PCTCN2022091408-appb-000034
向上取整,
Figure PCTCN2022091408-appb-000035
表示对
Figure PCTCN2022091408-appb-000036
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,k大于等于0,且k为整数。
上述方案,在进行资源映射时,减少了查找映射至上一个传输时机或时隙的最后一个比特在第一比特序列中的位置的步骤,简化了映射过程中的计算,节省了开销。
结合第四方面,在第四方面的某些实现方式中,该终端设备根据该第一指示信息将第一比特序列映射至K个传输时机,包括:该终端设备将该第二比特序列映射至N个传输时机,第三比特序列映射至一个传输时机,该第三比特序列为该第一比特序列中以该第一比特序列中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,该第三比特序列的长度与一个传输时机 包括的时隙数关联。
结合第四方面,在第四方面的某些实现方式中,该终端设备根据该第一指示信息将第一比特序列映射至K个传输时机,包括:该第一比特序列的编码码率和K的乘积小于或等于第二门限值时,该终端设备将该第二比特序列和该第三比特序列分别映射至N个传输时机,该第三比特序列为该第一比特序列中以该第一比特序列中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列,该第二比特序列和该第三比特序列的长度与N个传输时机包括的时隙数关联。
结合第四方面,在第四方面的某些实现方式中,该终端设备根据该第一指示信息将第一比特序列映射至第一资源,包括:该第一比特序列的编码码率和K的乘积大于第二门限值时,该终端设备将该第二比特序列映射至该K个传输时机。
上述方案,在进行重复的资源映射时,对TBoMS进行部分重复传输,在提高传输可靠性和准确性的基础上,能够缩短TBoMS重复传输的时延。
结合第四方面,在第四方面的某些实现方式中,该第二门限值为以下任意一个:0.9、
Figure PCTCN2022091408-appb-000037
0.948、0.95、1。
第五方面,提供了一种信息发送的方法,包括:终端设备接收来自网络设备的第四指示信息和第五指示信息,该第四指示信息指示第一资源用于承载跨多时隙传输块TBoMS,该第五指示信息指示该第一资源用于承载探测参考信号(soundingreferencesignal,SRS);该终端设备根据该第一资源与该网络设备传输该SRS。
上述方案,当传输TBoMS PUSCH与SRS的资源冲突时,即TBoMS PUSCH与SRS占用相同的资源时,在该资源上优先传输SRS,减少了TBoMS PUSCH与SRS的资源的冲突。
结合第五方面,在第五方面的某些实现方式中,该第四指示信息还用于指示第二资源用于承载该TBoMS,该方法还包括:该终端设备根据该第二资源与该网络设备传输该TBoMS;或者,该终端设备根据该第三资源与该网络设备传输该TBoMS,该第三资源为该第二资源中除与该第一资源在同一个时隙的资源以外的资源;或者,该终端设备根据该第四资源与该网络设备传输该TBoMS,该第四资源为该第二资源中时序在该第一资源之前的资源;或者,该终端设备不传输该TBoMS。
第六方面,提供了一种信息发送的的方法,包括:终端设备接收来自网络设备的第一参数的指示信息;该终端设备根据该第一参数将该第一比特序列映射至K个传输时机,K为该第一参数的数值,K为正整数,其中,映射至第k个传输时机的比特序列的最后一个比特为该第一比特序列中的第x k个比特,映射至第k+1个传输时机的比特序列的起点为该第一比特序列中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000038
或者,
Figure PCTCN2022091408-appb-000039
或者,
Figure PCTCN2022091408-appb-000040
其中,
Figure PCTCN2022091408-appb-000041
表示对
Figure PCTCN2022091408-appb-000042
向下取整,
Figure PCTCN2022091408-appb-000043
表示对
Figure PCTCN2022091408-appb-000044
向上取整,
Figure PCTCN2022091408-appb-000045
表示对
Figure PCTCN2022091408-appb-000046
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,0≤k≤K,且k为整数。
第七方面,提供了一种信息发送的方法,包括:网络设备从第一参数取值的集合中确定第一参数,该第一参数取值的集合为{1,2,3,……N·k}的子集,或者,该第一参数取值的集合为{1,2,3,……N·k},该第一参数为用于承载第一比特序列的传输时机或传输时间单元的数量,该第一比特序列为编码后的比特序列;所述网络设备向终端设备发送所述第一参数的指示信息。
第八方面,提供了一种资源映射的装置,包括:收发模块,用于从第一参数的取值的集合中确定第一参数,该第一参数的取值的集合根据第一比特序列的编码码率或调制编码方式确定,该第一比特序列为编码后的比特序列,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量;该收发模块,还用于向终端设备发送该第一参数的指示信息。
上述方案,承载编码后比特序列的传输时机的数量(下面称为第一参数)满足一定条件时,可以使得编码后比特序列中的信息比特能够被一个或多个传输时机完全承载。网络设备通过编码码率确定出第一参数的取值的集合,从第一参数的取值的集合中确定第一参数,发送给终端设备,终端设备根据该第一参数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
结合第八方面,在第八方面的某些实现方式中,该编码码率和该第一参数的数值的乘积小于或等于N,N为正整数。
结合第八方面,在第八方面的某些实现方式中,该第一参数的取值的集合为{1,2,3,……N·k},k小于或等于该编码码率的倒数,且k为正整数。
结合第八方面,在第八方面的某些实现方式中,第二比特序列由N个传输时机承载,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联。
结合第八方面,在第八方面的某些实现方式中,N大于1时,该网络设备向该终端设备发送第一指示信息,该第一指示信息用于指示第二比特序列由N个传输时机承载。
结合第八方面,在第八方面的某些实现方式中,该编码码率和该第一参数的数值的乘积小于或等于P,P是实数,P≥1。
结合第八方面,在第八方面的某些实现方式中,
Figure PCTCN2022091408-appb-000047
Figure PCTCN2022091408-appb-000048
L是根据帧结构确定的,L>0。
结合第八方面,在第八方面的某些实现方式中,该第一参数的取值的集合为
Figure PCTCN2022091408-appb-000049
的子集,
Figure PCTCN2022091408-appb-000050
表示对P·k向下取整,k小于或等于该编码码率的倒数,且k为正整数。
结合第八方面,在第八方面的某些实现方式中,第二比特序列由1个传输时机承载,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与1个传输时机包括的时隙数关联。
结合第八方面,在第八方面的某些实现方式中,该编码码率和该第一参数的数值的乘积大于N,且小于或等于M,M>N,N为正整数。
结合第八方面,在第八方面的某些实现方式中,M为N的
Figure PCTCN2022091408-appb-000051
倍。
结合第八方面,在第八方面的某些实现方式中,该第一比特序列中的第二比特序列和第三比特序列分别由至少一个传输时机承载,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,该第三比特序列为该第一比特序列中与该第二比特序列起点不同的比特序列中的至少一个比特序列。
结合第八方面,在第八方面的某些实现方式中,N大于1时,该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示第二比特序列由N个传输时机承载。
结合第八方面,在第八方面的某些实现方式中,该第一参数的取值的集合为
Figure PCTCN2022091408-appb-000052
的子集,其中,
Figure PCTCN2022091408-appb-000053
表示对M·k向下取整,k小于或等于该编码码率的倒数,且k为正整数。
结合第八方面,在第八方面的某些实现方式中,该编码码率和该第一参数的数值的乘积大于P,且小于或等于Q,P和Q是实数,P≥1,Q>P。
结合第八方面,在第八方面的某些实现方式中,
Figure PCTCN2022091408-appb-000054
Figure PCTCN2022091408-appb-000055
Q等于
Figure PCTCN2022091408-appb-000056
倍的P,L是根据帧结构确定的,L>0。
结合第八方面,在第八方面的某些实现方式中,该第一比特序列中的第二比特序列和第三比特序列分别由至少一个传输时机承载,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与1个传输时机包括的时隙数关联,该第三比特序列为该第一比特序列中与该第二比特序列起点不同的比特序列中的至少一个比特序列。
结合第八方面,在第八方面的某些实现方式中,该第一参数的取值的集合为
Figure PCTCN2022091408-appb-000057
的子集,其中,
Figure PCTCN2022091408-appb-000058
表示对P·k+1向下取整,
Figure PCTCN2022091408-appb-000059
表示对Q·k向下取整,k小于或等于该编码码率的倒数,且k为正整数。
结合第八方面,在第八方面的某些实现方式中,承载第二比特序列的传输时机包括的时隙数大于承载第四比特序列的传输时机包括的时隙数,其中,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第四比特序列为该第一比特序列中以第一个比特外的其他比特为起点的比特序列中的至少一个比特序列。
结合第八方面,在第八方面的某些实现方式中,该装置还包括:处理模块,用于根据调制和编码方案MCS确定该编码码率。
结合第八方面,在第八方面的某些实现方式中,该收发模块,还用于向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备将该第一比特序列映射至K个传输时机后,将该第一比特序列映射到B个传输时机上,其中,K为该第一参数的数值,B为正整数。
第八方面,提供了一种资源映射的装置,包括:收发模块,用于接收来自网络设备的第一参数,处理模块,用于根据该第一参数将该第一比特序列映射至K个传输时机,K为该第一参数的数值,K为正整数,其中,当该第一比特序列的编码码率和K的乘积小于或等于第一门限值时,该终端设备将在该第一比特序列中起点为位置i的比特序列映射至第i个传输时机,其中,该位置i与该第i个传输时机对应,1≤i≤K,i为整数,该第一比特 序列包括该比特序列,该比特序列的长度与一个传输时机包括的时隙数关联。
上述方案,承载编码后比特序列的传输时机的数量(下面称为第一参数)满足一定条件时,可以使得编码后比特序列中的信息比特能够被一个或多个传输时机完全承载。网络设备通过编码码率确定出第一参数的取值的集合,从第一参数的取值的集合中确定第一参数,发送给终端设备,终端设备根据该第一参数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
结合第九方面,在第九方面的某些实现方式中,映射至第k个传输时机的比特序列的最后一个比特为该第一比特序列中的第x k个比特,映射至第k+1个传输时机的比特序列的起点为该第一比特序列中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000060
或者,
Figure PCTCN2022091408-appb-000061
或者,
Figure PCTCN2022091408-appb-000062
其中,
Figure PCTCN2022091408-appb-000063
表示对
Figure PCTCN2022091408-appb-000064
向下取整,
Figure PCTCN2022091408-appb-000065
表示对
Figure PCTCN2022091408-appb-000066
向上取整,
Figure PCTCN2022091408-appb-000067
表示对
Figure PCTCN2022091408-appb-000068
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,k大于等于0,且k为整数。
结合第九方面,在第九方面的某些实现方式中,该第一参数是基于第一比特序列的编码码率或调制编码方式确定的,该第一比特序列为编码后的比特序列,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量。
结合第九方面,在第九方面的某些实现方式中,该第一门限值为以下任意一个数值的P倍:0.9、
Figure PCTCN2022091408-appb-000069
0.948、0.95、1、1.2、
Figure PCTCN2022091408-appb-000070
或者,该第一门限值为以下任意一个数值的P倍:0.9、
Figure PCTCN2022091408-appb-000071
0.948、0.95、1。
结合第九方面,在第九方面的某些实现方式中,
Figure PCTCN2022091408-appb-000072
Figure PCTCN2022091408-appb-000073
或1,其中,L是根据帧结构确定的,L大于0。
结合第九方面,在第九方面的某些实现方式中,当该第一比特序列的编码码率和K的乘积大于该第一门限值时,该终端设备将第二比特序列映射至K个传输时机,该第二比特序列为第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与K个传输时机包括的时隙数关联。
第十方面,提供了一种资源映射的装置,包括:处理模块,用于生成第一指示信息;收发模块,用于向终端设备发送第一参数的指示信息和该第一指示信息,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量,该第一指示信息用于指示第二比特序列由N个传输时机承载,该第一比特序列为编码后的比特序列,该第二比特序列为该第一比特序列中以第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,N为正整数,N小于或等于该第一参数的数值。
上述方案,在信息比特无法被一个传输时机的时频资源完整承载时,网络设备向终端设备发送指示信息,用于指示终端设备用于承载信息比特的传输时机的数量,终端设备根 据网络设备指示的传输时机的数量进行资源映射,能够使得信息比特能够完整地映射到时频资源上进行传输,提高解调性能。
结合第十方面,在第十方面的某些实现方式中,N大于或等于该编码码率和该第一参数的乘积。
结合第十方面,在第十方面的某些实现方式中,该第一指示信息还用于指示第五比特序列由N个传输时机承载,该第五比特序列为该第一比特序列中以该第一比特序列中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列。
结合第十方面,在第十方面的某些实现方式中,该装置还包括:该收发模块,用于向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备将该第一比特序列映射至K个传输时机后,将该第一比特序列映射到B个传输时机上,其中,K为该第一参数的数值,B为正整数。
第十一方面,提供了一种资源映射的装置,包括:收发模块,用于接收来自网络设备的第一参数的指示信息和第一指示信息,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量,该第一指示信息用于指示第二比特序列由N个传输时机承载,该第一比特序列为编码后的比特序列,该第二比特序列为该第一比特序列中以该第一比特序列中的第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,N为正整数,N小于或等于该第一参数的数值;处理模块,用于根据该第一参数的指示信息和该第一指示信息将该第一比特序列映射至K个传输时机,K为该第一参数的数值,K为正整数。
上述方案,在信息比特无法被一个传输时机的时频资源完整承载时,网络设备向终端设备发送指示信息,用于指示终端设备用于承载信息比特的传输时机的数量,终端设备根据网络设备指示的传输时机的数量进行资源映射,能够使得信息比特能够完整地映射到时频资源上进行传输,提高解调性能。
结合第十一方面,在第十一方面的某些实现方式中,映射至第k个传输时机的比特序列的最后一个比特为该第一比特序列中的第x k个比特,映射至第k+1个传输时机的比特序列的起点为该第一比特序列中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000074
或者,
Figure PCTCN2022091408-appb-000075
或者,
Figure PCTCN2022091408-appb-000076
其中,
Figure PCTCN2022091408-appb-000077
表示对
Figure PCTCN2022091408-appb-000078
向下取整,
Figure PCTCN2022091408-appb-000079
表示对
Figure PCTCN2022091408-appb-000080
向上取整,
Figure PCTCN2022091408-appb-000081
表示对
Figure PCTCN2022091408-appb-000082
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,k大于等于0,且k为整数。
结合第十一方面,在第十一方面的某些实现方式中,该处理模块具体用于,将该第二比特序列映射至N个传输时机,第三比特序列映射至一个传输时机,该第三比特序列为该第一比特序列中以该第一比特序列中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,该第三比特序列的长度与一个传输时机包括的时隙数关联。
结合第十一方面,在第十一方面的某些实现方式中,该处理模块具体用于,该第一比特序列的编码码率和K的乘积小于或等于第二门限值时,该终端设备将该第二比特序列和该第三比特序列分别映射至N个传输时机,该第三比特序列为该第一比特序列中以该第一比特序列中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列,该第二比特序列和该第三比特序列的长度与N个传输时机包括的时隙数关联。
结合第十一方面,在第十一方面的某些实现方式中,该第一比特序列的编码码率和K的乘积大于第二门限值时,该处理模块具体用于,将该第二比特序列映射至该K个传输时机。
结合第十一方面,在第十一方面的某些实现方式中,该第二门限值为以下任意一个:0.9、
Figure PCTCN2022091408-appb-000083
0.948、0.95、1。
第十二方面,提供了一种资源映射的装置,包括:收发模块,用于接收来自网络设备的第四指示信息和第五指示信息,该第四指示信息指示第一资源用于承载跨多时隙传输块TBoMS,该第五指示信息指示该第一资源用于承载探测参考信号SRS;该收发模块,还用于根据该第一资源与该网络设备传输该SRS。
上述方案,当传输TBoMS PUSCH与SRS的资源冲突时,即TBoMS PUSCH与SRS占用相同的资源时,在该资源上优先传输SRS,减少了TBoMS PUSCH与SRS的资源的冲突。
结合第十二方面,在第十二方面的某些实现方式中,该第四指示信息还用于指示第二资源用于承载该TBoMS,该收发模块,还用于根据该第二资源与该网络设备传输该TBoMS;或者,该收发模块,还用于根据该第三资源与该网络设备传输该TBoMS,该第三资源为该第二资源中除与该第一资源在同一个时隙的资源以外的资源;或者,该收发模块,还用于根据该第四资源与该网络设备传输该TBoMS,该第四资源为该第二资源中时序在该第一资源之前的资源;或者,该收发模块,还用于不传输该TBoMS。
第十三方面,提供了一种信息发送的的装置,包括:收发模块,用于接收来自网络设备的第一参数的指示信息;处理模块,用于根据该第一参数将该第一比特序列映射至K个传输时机,K为该第一参数的数值,K为正整数,其中,映射至第k个传输时机的比特序列的最后一个比特为该第一比特序列中的第x k个比特,映射至第k+1个传输时机的比特序列的起点为该第一比特序列中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000084
或者,
Figure PCTCN2022091408-appb-000085
或者,
Figure PCTCN2022091408-appb-000086
其中,
Figure PCTCN2022091408-appb-000087
表示对
Figure PCTCN2022091408-appb-000088
向下取整,
Figure PCTCN2022091408-appb-000089
表示对
Figure PCTCN2022091408-appb-000090
向上取整,
Figure PCTCN2022091408-appb-000091
表示对
Figure PCTCN2022091408-appb-000092
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,0≤k≤K,且k为整数。
第十四方面,提供了一种信息发送的装置,包括:收发模块,用于从第一参数取值的集合中确定第一参数,该第一参数取值的集合为{1,2,3,……N·k}的子集,或者,该第一 参数取值的集合为{1,2,3,……N·k},该第一参数为用于承载第一比特序列的传输时机或传输时间单元的数量,该第一比特序列为编码后的比特序列;该收发模块,还用于向终端设备发送该第一参数的指示信息。
第十五方面,提供了一种通信装置,其特征在于,包括:处理器和存储器;该存储器,用于存储计算机程序;该处理器,用于执行该存储器中存储的计算机程序,以使得该通信装置执行第一方面至第六方面中任一项方面所述的通信方法或实施例。
第十六方面,提供了一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有指令,当该计算机指令在计算机上运行时,使得该计算机执行第一方面至第六方面中任一项方面所述的通信方法或实施例。
第十七方面,提供了一种芯片,其特征在于,包括:存储器,用于存储计算机程序;处理器,用于读取并执行该存储器中存储的该计算机程序,当该计算机程序被执行时,该处理器执行第一方面至第六方面中任一项方面所述的通信方法或实施例。
第十六方面,提供了一种计算机程序产品,其特征在于,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行第一方面至第六方面中任一项方面所述的通信方法或实施例。
附图说明
图1是适用于本申请实施例的无线通信系统100的一示意图。
图2示出了多时隙传输块的示意图。
图3示出了信号处理的流程示意图。
图4示出了传输时机的示意图。
图5示出了基于冗余版本循环的TBoMS资源映射的示意图。
图6示出了冗余版本循环机制的示意图。
图7示出了本申请实施例的信息发送的方法200的示意图。
图8示出了本申请实施例的信息发送的方法300的示意图。
图9示出了本申请实施例的信息发送的方法400的示意图。
图10示出了本申请实施例的信息发送的方法500的示意图。
图11示出了本申请实施例信息发送的方法500的可能的实现方式一的示意图。
图12示出了本申请实施例信息发送的方法500的可能的实现方式二的示意图。
图13示出了本申请实施例信息发送的方法500的可能的实现方式三或五的示意图。
图14示出了本申请实施例信息发送的方法500的可能的实现方式四的示意图。
图15示出了本申请实施例信息发送的方法500的可能的实现方式六或七的示意图。
图16示出了本申请实施例信息发送的方法500的可能的实现方式八或九的示意图。
图17示出了本申请实施例的信息发送的方法600的示意图。
图18示出了本申请实施例的信息发送的方法700的示意图。
图19是本申请实施例提供的用于信息发送的通信装置的示意性框图。
图20为本申请实施例提供的信息发送的装置20的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)等。此外,本申请实施例的技术方案还可以应用于侧链路通信。例如,本申请实施例的技术方案还可以应用于:设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车联网系统中的通信。
为便于理解本申请实施例,首先结合图1说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。如1图所示,该无线通信系统100可以包括至少一个网络设备,
如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
其中,网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备111和终端设备121组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备111可以是小区#1中的网络设备,或者说,网络设备111可以为小区#1中的终端设备(例如终端设备121)服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
本申请实施例中提到的发送端设备可以为终端设备,接收端设备可以为网络设备。例如,发送端设备为终端设备121,接收端设备为网络设备111。
应理解,上述图1仅是示例性说明,本申请并未限定于此。例如,本申请实施例还可以应用于需要重复发送数据(或者说数据块)的任何通信场景。
还应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control, RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,下面首先结合本申请中涉及的几个术语进行简单介绍。
1、时隙(slot)
一种slot的格式可以为包含若干个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。例如,一个slot的格式可以包括14个OFDM符号,或者,一种slot的格式可以为包含12个OFDM符号;或者,一种slot的格式为包含7个OFDM符号。一个slot中的OFDM符号可以全用于上行传输;可以全用于下行传输;也可以一部分用于下行传输,一部分用于上行传输,一部分灵活时域符号(可以灵活的配置为用于上行或者下行传输)。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。出于系统前向兼容性考虑,slot包含的OFDM符号的数目以及slot用于上行传输和/或下行传输不限于以上示例。本申请中,时域符号可以为OFDM符号,即时域符号可以替换为OFDM符号。
2、跨多时隙传输块(transport block over multi-slot,TBoMS)
与LTE和长期演进高级(long term evolution advanced,LTE-A)无线通信系统相比,NR无线通信系统部署的频段更高,以获取更大的通信带宽。然而,高频段会导致更大的路径损耗和穿透损耗,使得NR的覆盖性能远不如LTE和LTE-A。
为了提升NR的覆盖性能,提出跨多时隙传输块技术。示例性地,如图2所示,将TB#1至TB#4聚合成一个大的TB。该技术将每个时隙上的小数据包聚合成一个大数据包,并在多个时隙上共同传输聚合后的数据包,通过减少TB切分次数,从而减少循环冗余码(cyclic redundancy code,CRC)的开销,通过增加传输块大小(transport block size,TBS),从而提高编码增益,并通过降低频率资源,提高功率谱密度,提升覆盖性能。
3、传输时机(transmission occasion,TO)
一个传输时机由多个连续的时域符号组成。作为一个示例,如图4所示的时域资源中包括下行(downlink,DL)时隙(slot),特殊(special,S)时隙,上行(uplink,UP) 时隙。DL时隙中包括14个DL符号(symbol),UL时隙中包括14个UL符号,S时隙中包括6个DL符号,2个无效(invalid)符号,6个UL符号。图4中的时域资源的帧结构不对称,因此每个传输时机包括的上行时域符号数可能不同,当时域资源的帧结构对称时,每个传输时机包括的上行时域符号数相同。一个传输时机可以包括一个或多个时隙,或者,也可以包括一个时隙和几个时域符号,或者,也可以包括多个时隙和几个时域符号。
4、类型A(type A)和类型B(type B)的重复发送
如前所述,在一些场景下,如一些深覆盖场景,如小区边沿,或者地下室等,无线信号传播的路径损耗非常严重。为了改善上行传输性能,一种增强覆盖性能的方法是重复发送数据块。例如,终端设备重复发送PUSCH,网络设备对重复发送的数据块进行合并检测。通过该方式可以提升信道估计性能,提升数据解调性能,从而提升小区覆盖能力。
以当前的NR协议为例,在当前的NR协议中支持对PUSCH最大16次的重复发送,支持对PUCCH最大8次的重复发送。当前NR协议对PUCCH支持type A的重复发送,对PUSCH支持type A和type B的重复发送。
(1)type A的重复发送
type A的重复发送,指的是:N次重复需要调度连续的N个slot,配置一次重复发送在一个slot中需要占用的时域符号的起始位置和总长度,N个slot中,满足一次重复发送占据的时域符号的起始位置和总长度与配置的起始位置和总长度相同的slot,可以实际用于一次重复发送。其中,N为大于或等于1的整数。
(2)type B的重复发送
type B的重复发送,指示是:N次重复发送,依据第1次重复发送的起始时域符号位置S,按照每次重复需要占据的时域符号数目L,在连续的多个时域符号上进行重复发送。即从调度的第一个slot的第S个时域符号开始,后续的N*L个时域符号(可能会到延伸到其他的slot上)均用于N次重复发送。
应理解,关于type A和type B的重复发送的具体描述可以参考现有的协议,其对本申请实施例的保护范围不造成限定。
下文为方便描述,将type A的重复发送方式记为重复type A(repetition typeA),将type B的重复发送方式记为重复type B(repetition type B)。
5、冗余版本(redundancy version,RV)
信息比特串在通过物理天线发出去之前,一般会经历一些信号处理过程,如图3所示。
信道编码:通过对信息比特串中引入冗余和校验比特,使得信号在到达接收端之后,接收端能够依据收到的多个比特(包括信息比特和校验比特)彼此之间的校验关系,能够较好的恢复出信息比特串。对于数据信道而言,目前NR可以支持低密度奇偶校验码(low density parity check code,LDPC)的信道编码。例如,对于100比特(bit)的信息比特串,通过1/5编码码率的LDPC编码,变成了500bit的编码后比特串,引入了400bit的冗余,信息比特串和编码后比特串长度的比值等于编码码率1/5。为区分,将编码后的比特串记为编码后比特串。
速率匹配:信息比特串传输经过信道编码得到较长的编码后比特串之后,并不是直接将所有的编码后比特串都发出去。一般地,终端设备可以按照网络设备指示给终端配置的可用的资源元素(resource element,RE)个数及调制阶数来确定能够发送多少比特,进而 从编码后比特串中进行选择(当前协议规定了4个起点,近似均匀的分布在编码后比特串中,分别标记为RV0,RV1,RV2,RV3)。
例如,当前1个资源块(resource block,RB)中的可用RE数目=12*12=144,采用正交相移键控(quadrature phase shift keying,QPSK)调制,则1个物理资源块(physical resource block,PRB)中能够承载144*2=288bit。因此,需要从500比特的编码后比特串中选择出288比特,作为选择出的比特串,然后对该选择出的比特串进行调制和资源映射等处理。此时,对应的编码码率=信息比特串/选择出的比特串长度=100/288。
更具体地,速率匹配包括比特选择和比特交织。比特选择是指根据RV指定的起点从循环缓存中选择编码比特,选择的编码长度由被映射的时频资源大小决定的。比特交织是将选择出的比特进行行列交织,所以比特交织粒度与比特选择粒度一致,可以统称为速率匹配的粒度。
示例性的,如果被映射的时频资源是一个TO包括的时隙,那么选择的编码比特的长度就是一个TO上的时频资源(不考虑码块分割),也可以理解为,速率匹配的粒度是一个TO。具体地,如果不考虑码块分割,选择的编码比特的长度就是被映射的时频资源大小,可以用公式表示为:N TO=N RE·Q·ν,其中,N TO为一个传输时机的时频资源可以承载的比特数,Q为调制阶数,ν为层数。
6、将RV循环机制复用到TBoMS的资源映射
下面以重复type A为例,介绍目前将RV循环机制复用到TBoMS的资源映射的方案。
假设调度物理上行共享信道(physical uplink shared channel,PUSCH)的下行控制信息(downlink control information,DCI)指示的RV为rv id。对于基于重复类型A的时域资源分配(time domain resouce allocation,TDRA)的TBoMS,PUSCH的第n个传输时机使用的RV如表1所示。其中,一个传输时机定义为一个时隙。应理解,RV更新粒度为一个传输时机,即每一个传输时机都要更新使用的RV,更新顺序由RV序列决定,RV序列默认为{0,2,3,1},即RV按照{0,2,3,1}顺序进行循环更新,循环的起点由调度PUSCH的DCI指示的rv id确定。另外,如果高层信令配置了RV序列指示信息repK-RV,则按照repK-RV指示的顺序更新RV。对于基于重复类型B的TDRA的TBoMS,PUSCH的第n次实际重复使用的RV如表1所示。其中,实际重复是名义重复被时隙边界、无效符号切分后得到的,名义重复是基站直接配置的,例如起点和长度指示值(start and length indicator value,SLIV),重复次数K等参数。
表1 重复的资源映射机制
Figure PCTCN2022091408-appb-000093
RV用于指示循环缓存中一个传输时机携带的编码比特。详细地说,经过低密度奇偶校验(low density parity check,LDPC)编码后的数据保存在循环缓存中,称作编码比特;每次传输根据rv id确定RV起点,记作k 0;从循环缓存的k 0处依次选取编码比特,映射至 一次传输时机的时频资源上,直到时频资源用完为止。其中,RV起点共有4个,分别用rv id=0,rv id=1,rv id=2和rv id=3指示,并分别记作RV0,RV1,RV2和RV3,每个RV起点k 0与LDPC编码使用的基图(basic grapy,BG)有关,如表2所示,其中N cb表示编码比特长度,Z C表示LDPC编码的扩展因子。
表2 RV起点位置k 0
Figure PCTCN2022091408-appb-000094
示例性的,图5给出调度PUSCH的DCI指示rv id=0、跨4个时隙的TBoMS的资源映射结果。如图5中的(a)所示,圆环表示循环缓存,存储信息比特经过信道编码之后得到的编码后比特串序列,RV0至RV3的位置根据表2确定;如图5中的(b)所示,为基于重复类型A的TDRA的资源映射结果,按照RV序列{0,2,3,1}的顺序将编码比特依次映射至4次传输时机的时频资源。
重复的资源映射机制,即RV循环机制,一个TB只包括一个时隙上的数据包,而一个TBoMS是多个时隙上数据包的聚合结果。在相同数量的时隙上,TBoMS的TBS要远大于重复的TBS,很容易出现信息比特无法完整发送的问题,从而导致解调性能降低。
示例性地,如图6所示,圆环表示循环缓存,该循环缓存用于存储信息比特经过信道编码之后得到的编码后比特串序列,圆环中的空白部分为编码后的校验比特,圆环中的阴影部分为编码后的信息比特。RV0,1,2,3为该编码后比特序列的近似4等分的位置点,当采用RV循环{0,2,3,1}的方式进行发送时,即不同时隙传输的比特从不同RV起点进行选择(选择出一定长度的比特序列)进行映射和发送。需要说明的是,本申请中的循环缓存存储的编码后比特串序列为“第一比特序列”,本申请中提及的“循环缓存”本质上是指“第一比特序列”,例如,“循环缓存中的第一个比特”本质上是再说“第一比特序列中的第一个比特”。
以图6为例,PUSCH#0内的资源假设能承载100比特,则从编码后比特序列中从RV0的位置开始选择连续的100比特进行发送;PUSCH#1内的资源假设能够承载100比特,则从编码后的比特序列中从RV2的位置开始选择连续的100比特进行发送;PUSCH#2内的资源假设能承载100比特,则从编码后比特序列中从RV3的位置开始选择连续的100比特进行发送;PUSCH#3内的资源假设能够承载100比特,则从编码后的比特序列中从RV1的位置开始选择连续的100比特进行发送。
由于PUSHC#0只能携带部分信息比特,其它PUSCH携带校验比特,当PUSCH#0能够承载的比特数小于循环缓存中信息比特的长度时,就会导致时域资源(PUSCH#0至PUSCH#3)无法承载完整的信息比特,导致解调性能下降。
理论分析如下,假设TBoMS的资源映射机制为基于重复Type A的TDRA,编码码率 为R,调制阶次为Q,层数为v,一个传输时机上分配给PUSCH的RE数量为N RE,时隙数为K,可得信息比特数为N info=N RE·Q·R·ν·K,一个传输时机的时频资源可以承载的比特数为N TO=N RE·Q·ν。如果等效码率R·K>1,则信息比特无法被一个传输时机的时频资源完整承载,导致解调性能下降。
下面结合图7,对本申请实施例的信息发送的方法200进行详细说明。图7是本申请的方法200的示意性交互图。
S201,网络设备从第一参数的取值的集合中确定第一参数,所述第一参数的取值的集合是根据第一比特序列的编码码率或调制编码方式确定的,所述第一比特序列为编码后的比特序列,所述第一参数为用于承载所述第一比特序列的传输时机或时间单元的数量。
应理解,编码码率与第一参数的取值的集合存在对应关系,第一参数的取值的集合中包括至少一个第一参数的数值。
这里的第一参数的取值的集合在具体的实现中有多种可能的情况。
可能的情况一,第一参数的取值的集合为{1,2,3,……N·k}的子集,k小于或等于所述编码码率的倒数,且k为正整数,N为正整数。
应理解,该情况下,传输时机数K的取值属于第一参数的取值的集合时,编码码率R和传输时机数K的乘积小于或等于N,N为正整数。
当N=1时,由于信息比特数为N info=N RE·Q·R·ν·K,一个传输时机的时频资源可以承载的比特数为N TO=N RE·Q·ν,则当满足编码码率R和传输时机数K的乘积小于等于1时,N info≤N TO,那么信息比特能够被一个传输时机的时频资源完全承载,具体参见本申请实施例的信息发送的方法500中可能的实现方式一。
当N大于1时,信息比特数为N info=N RE·Q·R·ν·K,M个传输时机的时频资源可以承载的比特数为N TO=N RE·Q·ν·M,则当满足编码码率R和传输时机数K的乘积小于等于N时,N info≤N TO,那么信息比特能够被M个传输时机的时频资源完全承载,具体参见本申请实施例的信息发送的方法500中可能的实现方式三。
另外,当N大于1时,所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示第二比特序列由N个传输时机承载,其中,所述第二比特序列为所述第一比特序列中以循环缓存中第一个比特为起点的比特序列,所述第二比特序列的长度与N个传输时机包括的时隙数关联。
可能的情况二,第一参数的取值的集合为
Figure PCTCN2022091408-appb-000095
的子集,
Figure PCTCN2022091408-appb-000096
表示对P·k向下取整,k小于或等于所述编码码率的倒数,且k为正整数,P≥1。
应理解,该情况下,传输时机数K的取值属于第一参数的取值的集合时,编码码率R和传输时机数K的乘积小于或等于P,
Figure PCTCN2022091408-appb-000097
Figure PCTCN2022091408-appb-000098
L是根据帧结构确定的。当每个时隙分配的时频资源不同,且每个传输时机包括的时频资源相同时,P=1,具体参见本申请实施例的信息发送的方法500中可能的实现方式六;当每个时隙分配的时频资源不同,且每个传输时机包括的时频资源不同时,具体参见本申请实施例的信息发送的方法500中可能的实现方式八。
该情况下,第二比特序列由1个传输时机承载,其中,所述第二比特序列为所述第一比特序列中以循环缓存中第一个比特为起点的比特序列,所述第二比特序列的长度与1个传输时机包括的时隙数关联。
可能的情况三,第一参数的取值的集合为
Figure PCTCN2022091408-appb-000099
的子集,其中,
Figure PCTCN2022091408-appb-000100
表示对M·k向下取整,k小于或等于所述编码码率的倒数,且k为正整数,N为正整数,M>N。
应理解,该情况下,传输时机数K的取值属于第一参数的取值的集合时,编码码率R和传输时机数K的乘积大于N,小于或等于M,M可以是N的22/17倍。该情况下,所述第一比特序列中的第二比特序列和第三比特序列分别由至少一个传输时机承载,其中,所述第二比特序列为所述第一比特序列中以循环缓存中第一个比特为起点的比特序列,所述第二比特序列的长度与N个传输时机包括的时隙数关联,所述第三比特序列为所述第一比特序列中与所述第二比特序列起点不同的比特序列中的至少一个比特序列。以N=1为例对于该方式的详细说明具体参见本申请实施例的信息发送的方法500中可能的实现方式二。
可能的情况四,第一参数的取值的集合为
Figure PCTCN2022091408-appb-000101
其中,
Figure PCTCN2022091408-appb-000102
表示对P·k+1向下取整,
Figure PCTCN2022091408-appb-000103
表示对Q·k向下取整,k小于或等于所述编码码率的倒数,且k为正整数,P≥1,Q>P。
应理解,该情况下,传输时机数K的取值属于第一参数的取值的集合时,编码码率R和传输时机数K的乘积大于P,小于或等于Q,Q可以是P的22/17倍,
Figure PCTCN2022091408-appb-000104
Figure PCTCN2022091408-appb-000105
L是根据帧结构确定的。当每个时隙分配的时频资源不同,且每个传输时机包括的时频资源相同时,P=1,具体参见本申请实施例的信息发送的方法500中可能的实现方式七;当每个时隙分配的时频资源不同,且每个传输时机包括的时频资源不同时,具体参见本申请实施例的信息发送的方法500中可能的实现方式八。
所述第一比特序列中的第二比特序列和第三比特序列分别由至少一个传输时机承载,其中,所述第二比特序列为所述第一比特序列中以循环缓存中第一个比特为起点的比特序列,所述第二比特序列的长度与1个传输时机包括的时隙数关联,所述第三比特序列为所述第一比特序列中与所述第二比特序列起点不同的比特序列中的至少一个比特序列。
S202,所述网络设备向终端设备发送所述第一参数的指示信息。相应地,终端设备接收来自网络设备的第一参数的指示信息。
S203,终端设备根据第一参数将第一比特序列映射至K个传输时机,K为所述第一参数的数值,K为正整数。
其中,当所述第一比特序列的编码码率和K的乘积小于或等于第一门限值时,所述终端设备将在循环缓存中起点为位置i的比特序列映射至第i个传输时机,其中,所述位置i与所述第i个传输时机对应,1≤i≤K,i为整数,所述第一比特序列包括所述比特序列,所述比特序列的长度与一个传输时机包括的时隙数关联。
应理解,对于本申请中的终端设备而言,终端设备可以通过第一比特序列的编码码率和K的乘积小于或等于第一门限值,终端设备执行如S203中的方法进行资源映射;而当第一比特序列的编码码率和K的乘积大于第一门限值时,所述终端设备将第二比特序列映射至K个传输时机,所述第二比特序列为第一比特序列中以循环缓存中的第一个比特为起点的比特序列,所述第二比特序列的长度与K个传输时机包括的时隙数关联,具体参考本申请实施例的方法500中的可能的实现方式一和二。
示例性地,所述第一门限值为以下任意一个数值的P倍:0.9、
Figure PCTCN2022091408-appb-000106
0.948、0.95、1、1.2、
Figure PCTCN2022091408-appb-000107
或者,所述第一门限值为以下任意一个数值的P倍:0.9、
Figure PCTCN2022091408-appb-000108
0.948、0.95、1。
其中,
Figure PCTCN2022091408-appb-000109
Figure PCTCN2022091408-appb-000110
或1,其中,L是根据帧结构确定的,L大于0。
需要说明的是,方法200中,当网络设备执行S201时,本申请对于终端设备执行的资源映射的方法不做限定,终端设备执行的S203可以替换为现有的各种资源映射的方法;当终端设备执行S203时,本申请对应网络设备执行的确定传输时机数的方法不做限定,网络设备执行的S201可以替换为现有的各种确定传输时机数的方法。
本申请实施例,承载编码后比特序列的传输时机的数量(下面称为第一参数)满足一定条件时,可以使得编码后比特序列中的信息比特能够被一个或多个传输时机完全承载。网络设备通过编码码率确定出第一参数的取值的集合,从第一参数的取值的集合中确定第一参数,发送给终端设备,终端设备根据该第一参数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
方法200还包括:
可选地,对于S201中可能的情况二和可能的情况四,当每个时隙分配的时频资源不同,且每个传输时机包括的时频资源不同时,承载第二比特序列的传输时机包括的时隙数大于承载第四比特序列的传输时机包括的时隙数,其中,所述第二比特序列为所述第一比特序列中以循环缓存中第一个比特为起点的比特序列,所述第四比特序列为所述第一比特序列中以循环缓存中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列。
进一步地,本申请实施例,在每个时隙分配的时域资源可以不同,且每个传输时机包括的时隙数不同时,将信息比特映射到包括的时隙数更多的传输时机上,可以进一步提高将信息比特完整地映射到视频资源上进行传输的成功率,提高解调性能。
可选地,所述网络设备向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备将所述第一比特序列映射至K个传输时机后,将所述第一比特序列映射到B个传输时机上,其中,K为所述第一参数的数值,B为正整数。具体可参见本申请实施例方法700。
进一步地,本申请实施例,在进行重复的资源映射时,对TBoMS进行部分重复传输,在提高传输可靠性和准确性的基础上,能够缩短TBoMS重复传输的时延。
可选地,映射至第k个传输时机的比特序列的最后一个比特为循环缓存中的第x k个比特,映射至第k+1个传输时机的比特序列的起点为循环缓存中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000111
或者,
Figure PCTCN2022091408-appb-000112
或者,
Figure PCTCN2022091408-appb-000113
其中,
Figure PCTCN2022091408-appb-000114
表示对
Figure PCTCN2022091408-appb-000115
向下取整,
Figure PCTCN2022091408-appb-000116
表示对
Figure PCTCN2022091408-appb-000117
向上取整,
Figure PCTCN2022091408-appb-000118
表示对
Figure PCTCN2022091408-appb-000119
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,k大于等于0,且k为整数。具体可参见本申请实施例方法600。
进一步地,本申请实施例,终端侧在进行资源映射时,减少了查找映射至上一个传输 时机或时隙的最后一个比特在循环缓存中的位置的步骤,简化了映射过程中的计算,节省了开销。
可选地,所述网络设备根据调制和编码方案(modulation and coding scheme,MCS)确定所述编码码率。具体参见可参见本申请实施例方法500部分根据MCS表确定传输时机数集合A或传输时机数集合B的方式。需要说明的是,方法200中的第一参数的取值的集合可以理解为方法500中的传输时机数集合A或传输时机数集合B的子集。
下面结合图8,对本申请实施例的信息发送的方法300进行详细说明。图8是本申请的方法300的示意性交互图。
S301,网络设备生成第一指示信息。
S302,网络设备向终端设备发送第一参数的指示信息和第一指示信息,相应地,终端设备接收来自网络设备的第一参数的指示信息和第一指示信息。
应理解,所述第一参数为用于承载所述第一比特序列的传输时机或时间单元的数量,所述第一指示信息用于指示第二比特序列由N个传输时机承载,所述第一比特序列为编码后的比特序列,所述第二比特序列为所述第一比特序列中以循环缓存中的第一个比特为起点的比特序列,所述第二比特序列的长度与N个传输时机包括的时隙数关联,N为正整数,N小于或等于所述第一参数的数值。
进一步地,N大于或等于所述编码码率和所述第一参数的乘积。
可选地,所述第一指示信息还用于指示第五比特序列由N个传输时机承载,所述第五比特序列为所述第一比特序列中以循环缓存中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列。
具体地,可能的情况一,循环缓存中的第二比特序列由N个传输时机承载,其他起点的比特序列由1个传输时机承载,具体参见本申请实施例的方法500中的可能的实现方式四;可能的情况二,循环缓存中的所有比特序列都由N个传输时机承载,具体参见本申请实施例的方法500中的可能的实现方式五。
S303,终端设备根据所述第一参数和所述第一指示信息将所述第一比特序列映射至K个传输时机,K为所述第一参数的数值,K为正整数。
具体地,与S302中可能的情况一相对应时,所述终端设备将所述第二比特序列映射至N个传输时机,第三比特序列映射至一个传输时机,所述第三比特序列为所述第一比特序列中以循环缓存中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列,所述第二比特序列的长度与N个传输时机包括的时隙数关联,所述第三比特序列的长度与一个传输时机包括的时隙数关联。与S302中可能的情况二相对应时,所述第一比特序列的编码码率和K的乘积小于或等于第二门限值时,所述终端设备将所述第二比特序列和所述第三比特序列分别映射至N个传输时机,所述第三比特序列为所述第一比特序列中以循环缓存中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列,所述第二比特序列和所述第三比特序列的长度与N个传输时机包括的时隙数关联。另外,所述第一比特序列的编码码率和K的乘积大于第二门限值时,所述终端设备将所述第二比特序列映射至所述K个传输时机。
示例性地,所述第二门限值为以下任意一个:0.9、
Figure PCTCN2022091408-appb-000120
0.948、0.95、1。
本申请实施例,在信息比特无法被一个传输时机的时频资源完整承载时,网络设备向终端设备发送指示信息,用于指示终端设备用于承载信息比特的传输时机的数量,终端设备根据网络设备指示的传输时机的数量进行资源映射,能够使得信息比特能够完整地映射到时频资源上进行传输,提高解调性能。
方法300还包括:
可选地,所述网络设备向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备将所述第一比特序列映射至K个传输时机后,将所述第一比特序列映射到B个传输时机上,其中,K为所述第一参数的数值,B为正整数。
本申请实施例,在进行重复的资源映射时,对TBoMS进行部分重复传输,在提高传输可靠性和准确性的基础上,能够缩短TBoMS重复传输的时延。
可选地,映射至第k个传输时机的比特序列的最后一个比特为循环缓存中的第x k个比特,映射至第k+1个传输时机的比特序列的起点为循环缓存中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000121
或者,
Figure PCTCN2022091408-appb-000122
或者,
Figure PCTCN2022091408-appb-000123
其中,
Figure PCTCN2022091408-appb-000124
表示对
Figure PCTCN2022091408-appb-000125
向下取整,
Figure PCTCN2022091408-appb-000126
表示对
Figure PCTCN2022091408-appb-000127
向上取整,
Figure PCTCN2022091408-appb-000128
表示对
Figure PCTCN2022091408-appb-000129
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,k大于等于0,且k为整数。
本申请实施例,终端侧在进行资源映射时,减少了查找映射至上一个传输时机或时隙的最后一个比特在循环缓存中的位置的步骤,简化了映射过程中的计算,节省了开销。
下面结合图9,对本申请实施例的信息发送的方法400进行详细说明。图9中的(a)是本申请的方法400的示意性交互图。
S401,终端设备接收来自网络设备的第四指示信息和第五指示信息,相应地,网络设备向终端设备发送第四指示信息和第五指示信息,该第四指示信息指示第一资源用于承载跨多时隙传输块TBoMS,该第五指示信息指示所述第一资源用于承载探测参考信号(soundingreferencesignal,SRS)。
应理解,第四指示信息和第五指示信息可以是分开传输的,也可以是一起传输的。
应理解,两个指示信息指示第一资源传输不同的信号,可以理解为第一资源为冲突资源。
示例性地,这里的第一资源可以是一个时隙中的若干个OFDM符号,也可以是若干个时隙,本申请对此并不做限定。
S402,终端设备根据所述第一资源与网络设备传输SRS。
应理解,当传输TBoMS的资源与传输SRS的资源冲突时,终端设备优先在该冲突资源上发送SRS。S402具体的实现方式可能有多种,例如下文的S402a或S402b或S402c或S402d,下面结合图9中的(b)、(c)、(d)、(e)分别对几种可能的实现方式进行详细说明。
S402a,终端设备根据第一资源与网络设备传输SRS,根据第二资源与网络设备传输TBoMS。
示例性地,当第四指示信息指示第一个时隙(即S时隙)的后四个OFDM符号以及后面两个时隙(均为UL时隙)用于传输TBoMS,第五指示信息指示第二时隙的后4个OFDM符号用于传输SRS,当终端设备执行S402时,如图9中的(b)所示,SRS占用了三个时隙中的第二个时隙的最后4个OFDM符号,第四指示信息指示的除该4个OFDM符号外的资源仍用于传输TBoMS。
S402b,终端设备根据第一资源与网络设备传输SRS,根据第三资源与网络设备传输TBoMS,第三资源为所述第二资源中除与所述第一资源在同一个时隙的资源以外的资源。
示例性地,当第四指示信息指示第一个时隙(即S时隙)的后四个OFDM符号以及后面两个时隙(均为UL时隙)用于传输TBoMS,第五指示信息指示第二时隙的后4个OFDM符号用于传输SRS,当终端设备执行S402时,如图9中的(c)所示,SRS占用了三个时隙中的第二个时隙的最后4个OFDM符号,第二时隙的前10个OFDM符号作为非法符号,不传输TBoMS,第四指示信息指示的除该第二个时隙外的资源仍用于传输TBoMS。可选地,第二个时隙中的前10个OFDM符号也可以用于传输其他信号。
S402c,终端设备根据第一资源与网络设备传输SRS,终端设备根据第四资源与网络设备传输TBoMS,第四资源为第二资源中时序在所述第一资源之前的资源。
示例性地,当第四指示信息指示第一个时隙(即S时隙)的后四个OFDM符号以及后面两个时隙(均为UL时隙)用于传输TBoMS,第五指示信息指示第二时隙的后4个OFDM符号用于传输SRS,当终端设备执行S402时,如图9中的(d)所示,SRS占用了三个时隙中的第二个时隙的最后4个OFDM符号,时序在该4个OFDM符号以后的OFDM符号作为非法符号(即图9中的(d)中的第三个时隙),不传输TBoMS,第四指示信息指示的除该第三个时隙、第二个时隙的最后4个OFDM符号外的资源仍用于传输TBoMS。可选地,第三个时隙也可以用于传输其他信号。
S402d,终端设备根据第一资源与网络设备传输SRS,终端设备不传输TBoMS。
示例性地,当第四指示信息指示第一个时隙(即S时隙)的后四个OFDM符号以及后面两个时隙(均为UL时隙)用于传输TBoMS,第五指示信息指示第二时隙的后4个OFDM符号用于传输SRS,当终端设备执行S402时,如图9中的(e)所示,SRS占用了三个时隙中的第二个时隙的最后4个OFDM符号,第四指示信息指示的除该4个OFDM符号之外的资源,不传输TBoMS。可选地,第四指示信息指示的除该4个OFDM符号之外的资源也可以用于传输其他信号。
本申请实施例,当传输TBoMS PUSCH与SRS的资源冲突时,即TBoMS PUSCH与SRS占用相同的资源时,在该资源上优先传输SRS,减少了TBoMS PUSCH与SRS的资源的冲突;其中S402a中的实现方式花费的代价和开销最小。
下面结合图10,对本申请实施例的信息发送的方法500进行详细说明。图10是本申请的方法500的示意性交互图。结合图10,分别以每个时隙分配的时域资源一致和每个时隙分配的时域资源可以不一致为例,介绍本申请实施例的信息发送的方法的9种可能的实现方式。
下面以每个时隙分配的时域资源一致为例,结合图11,介绍可能的实现方式一。
S501,网络设备确定上行传输的资源映射参数。
网络设备根据BG、调制和编码方案(modulation and coding scheme,MCS)表和MCS 索引确定所述资源映射参数,所述资源映射参数包括时隙数K,RV指示信息rv id和RV序列指示信息repK-RV。
应理解,本申请中,对于重复Type A的情况,一个传输时机定义为一个时隙,因此以重复Type A为例的可能的实现方式中,例如可能的实现方式一中,所涉及的“时隙数”即为MCS表中的“传输时机数”。
MCS表如下表3至表7所示,每个MCS表中均涉及MCS索引、调制阶数Q、目标码率、谱效率和传输时机数集合A以及传输时机数集合B。需要说明的是,PDSCH的MCS表是上下行通用的。
在对信息比特进行LDPC编码时采用如表2所示的LDPC BG1或LDPC BG2时,可以根据MCS索引指示,从MCS表(本申请中的表3至表7)中选择对应的传输时机数集合A,随后在该传输时机数集合A中确定出时隙数K。
示例性的,MCS表为PDSCH的MCS索引表1,即表3,MCS索引为3,则网络设备确定传输时机数集合A为{1,2,3,4},则上述时隙数K的取值应当是{1,2,3,4}中的一个。
应理解,可能的实现方式一中的传输时机数集合A中包括的K满足第一条件:R·K≤1。其中,R为编码码率。由于信息比特数为N info=N RE·Q·R·ν·K,一个传输时机的时频资源可以承载的比特数为N TO=N RE·Q·ν,则当满足第一条件时,N info≤N TO,那么信息比特能够被一个传输时机的时频资源完全承载。当R一定时,根据第一条件可以确定出满足条件的K。
图11示出了本申请实施例信息发送的方法的可能的实现方式一的示意图。其中,图11中的(a)以LDPC BG1为例,图11中的(b)以LDPC BG2为例,分别示出了满足第一条件时的资源映射的示意图。如图11中的(a)所示,圆环表示循环缓存,存储信息比特经过信道编码之后得到的编码后比特串序列,圆环中的空白部分为编码后的校验比特,圆环中的阴影部分为编码后的信息比特。BG1母码码率为1/3,即信息比特约占编码比特的1/3。以RV0为起点的编码后比特串序列可以被PUSCH#0完全承载。如图11中的(b)所示,圆环表示循环缓存,存储信息比特经过信道编码之后得到的编码后比特串序列,圆环中的空白部分为编码后的校验比特,圆环中的阴影部分为编码后的信息比特。BG2母码码率为1/5,即信息比特约占编码比特的1/5。以RV0为起点的编码后比特串序列可以被PUSCH#0完全承载。
S502,网络设备向终端设备发送资源映射参数,相应地,终端设备接收来自网络设备的资源映射参数,该资源映射参数中包括时隙数K。
可选地,网络设备可以通过高层信令或者DCI发送资源映射参数。
S503,终端设备根据资源映射参数将编码比特映射到上行传输的时频资源。
终端设备根据已知的编码码率R和网络设备发送的时隙数K的乘积小于第一切换门限μ时,即R·K≤μ时,终端设备使用第一资源映射机制进行资源映射。当R·K≥μ时,终端设备使用第二资源映射机制进行资源映射。示例性地,当LDPC编码使用BG1时,μ可以是集合
Figure PCTCN2022091408-appb-000130
中的一个,当LDPC编码使用BG2时,μ可以是集合
Figure PCTCN2022091408-appb-000131
中的一个。
图11中的(c)示出了终端设备使用第一资源映射机制时的示意图。第一资源映射机 制,即RV循环机制,以所述RV指示信息rv id为RV循环起点,所述RV序列指示信息repK-RV为RV循环顺序,RV更新粒度为一次传输时机,从循环缓存中对应位置将编码比特取出并映射至对应的传输时机上的时频资源。例如,如图11中的(c)所示,以rvid=0为起点,将RV0、RV1、RV2、RV3分别映射到一个传输时机上。
图11中的(d)示出了终端设备使用第二资源映射机制时的示意图。第二资源映射机制,即连续资源映射机制,从循环缓存中的第一个编码比特开始将编码比特取出,映射到K个传输时机的时频资源上,RV不进行更新。例如,如图11中的(d)所示,以rv id=0为起点,将RV0映射到一个TBoMS的传输时机上。
需要说明的是,该第二资源映射机制以所有传输时机为粒度进行速率匹配,换句话说,该第二资源映射机制是以整个TBoMS为粒度进行速率匹配。同样,第二资源映射机制比特交织的粒度也是所有传输时机或整个TBoMS。
S504,终端设备在上行传输的时频资源上向网络设备发送上行信号;相应地,网络设备在上行传输的时频资源上接收来自终端设备的上行信号。
需要说明的是,可能的实现方式一中,当网络设备执行S501时,本申请对于终端设备执行的资源映射的方法不做限定,终端设备执行的S503可以替换为现有的各种资源映射的方法;当终端设备执行S503时,本申请对应网络设备执行的确定传输时机数的方法不做限定,网络设备执行的S501可以替换为现有的各种确定传输时机数的方法。
本申请实施例,编码码率与传输时机数的乘积小于或等于1时,可以使得编码后比特序列中的信息比特能够被一个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
下面以每个时隙分配的时域资源一致为例,结合图12,介绍可能的实现方式二。
S501,网络设备确定上行传输的资源映射参数。
网络设备根据BG、调制和编码方案(modulation and coding scheme,MCS)表和MCS索引确定所述资源映射参数,所述资源映射参数包括时隙数K,RV指示信息rv id和RV序列指示信息repK-RV。
应理解,本申请中,对于重复Type A的情况,一个传输时机定义为一个时隙,因此该可能的实现方式一中,所涉及的“时隙数”即为MCS表中的“传输时机数”。
在对信息比特进行LDPC编码时采用如表2所示的LDPC BG1时,可以根据MCS索引指示,从MCS表(本申请中的表3至表7)中选择对应的传输时机数集合B,随后在该传输时机数集合B中确定出时隙数K,同时,约束RV指示信息rv id和RV序列指示信息repK-RV,使得RV0和RV1必须分别映射到至少一个传输时机的时频资源上。
示例性的,MCS表为表4,即PDSCH的MCS索引表2,MCS索引为5,则网络设备根据MCS索引确定时隙数集合B为{3},则所述时隙数K=3,同时RV指示信息rv id=1或3,且不配置repK-RV,即默认为{0,2,3,1}。应理解,“约束RV指示信息rv id和RV序列指示信息repK-RV,使得RV0和RV1必须分别映射到至少一个传输时机的时频资源上”在该示例中可以理解为,如果能够映射的时域资源中只有三个传输时机,那么rv id=1时,RV1、RV0、RV2可以分别映射到一个传输时机上,rv id=3时,RV3、RV1、RV0可 以分别映射到一个传输时机上。
应理解,可能的实现方式二中的传输时机数集合B中包括的K满足第二条件:
Figure PCTCN2022091408-appb-000132
其中,R为编码码率。在对信息比特进行LDPC编码时采用如表2所示的LDPC BG1时,母码码率为1/3,即信息比特约占编码比特的1/3,RV0至RV1之间的信息比特约占编码后信息比特串的
Figure PCTCN2022091408-appb-000133
那么在循环缓存中,RV0与RV1之间均为信息比特,RV1中也包括一部分信息比特。信息比特数为N info=N RE·Q·R·ν·K,循环缓存中的编码比特数为3×N info,则RV0与RV1之间的信息比特数为
Figure PCTCN2022091408-appb-000134
一个传输时机的时频资源可以承载的比特数为N TO=N RE·Q·ν,则当满足第二条件时,N info≥N TO,且,
Figure PCTCN2022091408-appb-000135
那么即可使得RV0至RV1之间的信息比特被一个传输时机上的时频资源完全承载。
图12示出了本申请实施例信息发送的方法的可能的实现方式二的示意图。如图12所示,圆环表示循环缓存,存储信息比特经过信道编码之后得到的编码后比特串序列,圆环中的空白部分为编码后的校验比特,圆环中的阴影部分为编码后的信息比特。
S502至S504与可能的实现方式一类似,在此不多赘述。
需要说明的是,可能的实现方式二中,当网络设备执行S501时,本申请对于终端设备执行的资源映射的方法不做限定,终端设备执行的S503可以替换为现有的各种资源映射的方法;当终端设备执行S503时,本申请对应网络设备执行的确定传输时机数的方法不做限定,网络设备执行的S501可以替换为现有的各种确定传输时机数的方法。
本申请实施例,编码码率与传输时机数的乘积大于1且小于或等于22/17,并且约束RV0和RV1分别映射到不同的传输时机时,可以使得编码后比特序列中的信息比特能够被多个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
下面以每个时隙分配的时域资源一致为例,结合图13,介绍可能的实现方式三。
S501包括可能的实现方式一中S501中的确定传输时隙数集合A的所有相关内容,并在此基础上,并根据选择比特的长度对应的时频资源包括的传输时机的个数M,将传输时机数集合A的上限扩大M倍,构成传输时机数集合A-M,在传输时机数集合A-M范围内确定时隙数K。应理解,结合本申请前述对“冗余版本”、“速率匹配”、“比特选择”的相关说明可知,选择的编码比特的长度就是被映射的时频资源的大小,例如被映射的时频资源是M个TO上的时频资源,那么选择比特的长度就是M个TO上的时频资源,速率匹配的粒度即为M个TO,也即RV更新粒度为M个传输时机。可能的实现方式三主要讨论M大于1的情况。
另外,S501中的网络设备向终端设备发送的资源映射参数中除了时隙数K外,还包括第一指示信息,该第一指示信息用于指示被映射的时频资源的大小为M个传输时机,或者,该第一指示信息用于指示选择比特的长度为M个传输时机上的资源,或者,第一指示信息用于指示RV更新粒度为M个传输时机。
需要说明的是,该可能的实现方式三在进行资源映射时是以M个传输时机为粒度进 行速率匹配,换句话说。
示例性的,MCS表为PDSCH的MCS索引表1,即表3,MCS索引为3,M=2,时隙数集合A为{1,2,3,4},则时隙数集合A-M为{1,2,..,8},所述时隙数K的取值应当是{1,2,..,8}中的一种。
应理解,可能的实现方式三中的传输时机数集合A-M中包括的K满足第三条件:R·K≤M,其中,R为编码码率。由于信息比特数为N info=N RE·Q·R·ν·K,M个传输时机的时频资源可以承载的比特数为N TO=N RE·Q·ν·M,则当满足第三条件时,N info≤N TO,那么信息比特能够被M个传输时机的时频资源完全承载。
在可能的实现方式三中,图13示出了本申请实施例信息发送的方法的可能的实现方式三的示意图。其中,图13中的(a)以LDPC BG1、M=2为例示出了满足第三条件时的资源映射的示意图。如图13中的(a)所示,圆环表示循环缓存,存储信息比特经过信道编码之后得到的编码后比特串序列,圆环中的空白部分为编码后的校验比特,圆环中的阴影部分为编码后的信息比特。BG1母码码率为1/3,即信息比特约占编码比特的1/3。以RV0为起点的编码后比特串序列可以被PUSCH#0和PUSCH#1完全承载,以RV1为起点的编码后比特串可以被PUSCH#6和PUSCH#7承载,以RV2为起点的编码后比特串可以被PUSCH#2和PUSCH#3承载,以RV3为起点的编码后比特串可以被PUSCH#4和PUSCH#5承载。
S502,网络设备向终端设备发送资源映射参数,相应地,终端设备接收来自网络设备的资源映射参数,该资源映射参数中包括时隙数K和第一指示信息。
可选地,网络设备可以通过高层信令或者DCI发送资源映射参数。
S503,终端设备根据资源映射参数将编码比特映射到上行传输的时频资源。
当终端设备接收到的资源映射参数中包括上述第一指示信息,终端设备根据已知的编码码率R和网络设备发送的时隙数K的乘积小于第二切换门限时,即R·K≤M·μ时,终端设备使用第四资源映射机制进行资源映射。当R·K≥M·μ时,终端设备使用第二资源映射机制进行资源映射。示例性地,当LDPC编码使用BG1时,μ可以是集合
Figure PCTCN2022091408-appb-000136
Figure PCTCN2022091408-appb-000137
中的一个。
示例性地,假设第一指示信息指示M=2,RV指示信息rv id=0,RV序列为{0,2,3,1},时隙数K=8,图13中的(b)示出了终端设备使用第四资源映射机制时的示意图。如图13中的(b)所示,第四资源映射机制,以RV指示信息rvid为RV循环起点,RV序列指示信息repK-RV为RV循环顺序,RV更新粒度为2次传输时机,从循环缓存中对应位置将编码比特取出并映射至对应的传输时机上的时频资源。应理解,第四资源映射机制与第一资源映射机制的不同点在于,第四资源映射机制的RV更新粒度为M次传输时机,即每M个传输时机更新一次RV。换句话说,第四资源映射机制与第一资源映射机制的不同点在于,第四资源映射机制的速率匹配粒度为M次传输时机,比特交织的粒度也为M次传输时机。
终端设备使用第二资源映射机制的情况参考可能的实现方式一中的说明。
S504与可能的实现方式一中类似,在此不多赘述。
需要说明的是,可能的实现方式三中,当网络设备执行S501时,本申请对于终端设 备执行的资源映射的方法不做限定,终端设备执行的S503可以替换为现有的各种资源映射的方法;当终端设备执行S503时,本申请对应网络设备执行的确定传输时机数的方法不做限定,网络设备执行的S501可以替换为现有的各种确定传输时机数的方法。
本申请实施例,编码码率与传输时机数的乘积小于或等于N(N为大于1的正整数),时,可以使得编码后比特序列中的信息比特能够被N个传输时机完全承载。网络设备通过编码码率确定出满足编码码率与传输时机数的乘积小于或等于1这一条件的传输时机数的集合,将该集合的上限扩大M倍,从该集合中确定传输时机数,网络设备将传输时机数发送给终端设备的同时向终端设备发送指示N的指示信息,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
下面以每个时隙分配的时域资源一致为例,结合图14,介绍可能的实现方式四。
S501,网络设备确定上行传输的资源映射参数。
网络设备根据编码码率R,时隙数K,和第四条件确定资源映射参数,第四条件为R·K≤N≤K,资源映射参数包括时隙数K和第二指示信息,第二指示信息用于指示RV0的更新粒度为N,即RV0每N个传输时机更新一次。
应理解,时隙数K是网络设备预先确定的,例如可以是根据覆盖性能、业务类型、服务质量(quality of service,QoS)等因素综合确定时隙数K。
应理解,第二指示信息仅指示RV0的更新粒度为N,因此在该可能的实现方式四中,RV2、RV3、RV1的更新粒度仍为一个传输时机。
应理解,为了解决一个传输时机的时频资源无法承载完整的信息比特的问题,该可能的实现方式四通过约束信息比特可以被N个传输时机的时频资源完全承载,即N info≤N TO,来解决该问题。信息比特数为N info=N RE·Q·R·ν·K,N个传输时机的时频资源可以承载的比特数为N TO=N RE·Q·ν·N,要满足N info≤N TO,可得R·K≤N,又因为承载RV0的传输时机的数量N一定小于承载编码比特的传输时机的数量K,因此第四条件为R·K≤N≤K。
示例性的,假设R=379/1024,K=4,满足第四条件时,
Figure PCTCN2022091408-appb-000138
则N=2,3,4。
可选地,当rv id=0时,可以使得RV0尽可能地映射至上行传输的时频资源,因此该可能的实现方式四中,优选在资源映射参数中向终端设备指示rvid=0。
图14示出了本申请实施例信息发送的方法的可能的实现方式四的示意图。其中,图14中的(a)以LDPC BG1、N=2为例示出了满足第四条件时的资源映射的示意图。如图14中的(a)所示,圆环表示循环缓存,存储信息比特经过信道编码之后得到的编码后比特串序列,圆环中的空白部分为编码后的校验比特,圆环中的阴影部分为编码后的信息比特。BG1母码码率为1/3,即信息比特约占编码比特的1/3。以RV0为起点的编码后比特串序列可以被PUSCH#0和PUSCH#1完全承载,以RV1、RV2、RV3为起点的编码后比特串序列分别可以被PUSCH#4、PUSCH#2、PUSCH#3承载。
S502,网络设备向终端设备发送资源映射参数,相应地,终端设备接收来自网络设备的资源映射参数,该资源映射参数中包括时隙数K和第二指示信息。
可选地,网络设备可以通过高层信令或者DCI发送资源映射参数。
S503,终端设备根据资源映射参数将编码比特映射到上行传输的时频资源。
当终端设备接收到的资源映射参数中包括上述第二指示信息,终端设备根据该第二指 示信息确定使用第三资源映射机制。
示例性地,假设第二指示信息指示N=2,RV指示信息rv id=0,RV序列为{0,2,3,1},时隙数K=8,图14中的(b)示出了终端设备使用第四资源映射机制时的示意图。第三资源映射机制,以RV指示信息rv id为RV循环起点,RV序列指示信息repK-RV为RV循环顺序,从循环缓存中对应位置将编码比特取出并映射至对应的传输时机上的时频资源。其中,RV0更新粒度为2次传输时机,RV1、RV2、RV3更新粒度为1次传输时机,换句话说,RV0更新至RV2需要两个传输时机,其它RV更新仅需要一个传输时机。应理解,第三资源映射机制与第一资源映射机制的唯一不同点在于RV0更新粒度为N次传输时机,即每N个传输时机更新一次RV0。
S504与可能的实现方式一中类似,在此不多赘述。
本申请实施例,在信息比特无法被一个传输时机的时频资源完整承载时,网络设备向终端设备发送指示信息,用于指示终端设备用于承载信息比特的传输时机的数量,终端设备根据网络设备指示的传输时机的数量进行资源映射,能够使得信息比特能够完整地映射到时频资源上进行传输,提高解调性能。
下面以每个时隙分配的时域资源一致为例,结合图13,介绍可能的实现方式五。
网络设备根据编码码率R,时隙数K,和第五条件确定资源映射参数,第五条件为R·K≤M≤K,资源映射参数包括时隙数K和第一指示信息,第一指示信息用于指示RV的更新粒度为N,即每N个传输时机更新一次RV。
应理解,时隙数K是网络设备预先确定的,例如可以是根据覆盖性能、业务类型、服务质量(quality of service,QoS)等因素综合确定时隙数K。
应理解,为了解决一个传输时机的时频资源无法承载完整的信息比特的问题,该可能的实现方式四通过约束信息比特可以被M个传输时机的时频资源完全承载,即N info≤N TO,来解决该问题。第五条件与第四条件的推导过程类似,在此不多赘述。
可选地,当rvid=0时,可以使得RV0尽可能地映射至上行传输的时频资源,因此该可能的实现方式四中,优选在资源映射参数中向终端设备指示rvid=0。
在可能的实现方式五中,图13示出了本申请实施例信息发送的方法的可能的实现方式五的示意图。其中,图13中的(a)以LDPC BG1、M=2为例示出了满足第五条件时的资源映射的示意图。如图13中的(a)所示,圆环表示循环缓存,存储信息比特经过信道编码之后得到的编码后比特串序列,圆环中的空白部分为编码后的校验比特,圆环中的阴影部分为编码后的信息比特。BG1母码码率为1/3,即信息比特约占编码比特的1/3。以RV0为起点的编码后比特串序列可以被PUSCH#0和PUSCH#1完全承载,以RV1为起点的编码后比特串可以被PUSCH#6和PUSCH#7承载,以RV2为起点的编码后比特串可以被PUSCH#2和PUSCH#3承载,以RV3为起点的编码后比特串可以被PUSCH#4和PUSCH#5承载。
S502,网络设备向终端设备发送资源映射参数,相应地,终端设备接收来自网络设备的资源映射参数,该资源映射参数中包括时隙数K和第一指示信息。
可选地,网络设备可以通过高层信令或者DCI发送资源映射参数。
S503,终端设备根据资源映射参数将编码比特映射到上行传输的时频资源。
具体实现方式参见可能的实现方式三中的S503,在此不多赘述。
S504与可能的实现方式一中类似,在此不多赘述。
本申请实施例,在信息比特无法被一个传输时机的时频资源完整承载时,网络设备向终端设备发送指示信息,用于指示终端设备用于承载信息比特的传输时机的数量,终端设备根据网络设备指示的传输时机的数量进行资源映射,能够使得信息比特能够完整地映射到时频资源上进行传输,提高解调性能。
下面以每个时隙分配的时域资源可以不一致、对称的帧结构为例,结合图15,介绍可能的实现方式六。
在可能的实现方式六中,图15示出了本申请实施例信息发送的方法的可能的实现方式六的示意图。应理解,图15是以对称帧结构的DDDSU为例,图15中的D为DL时隙,U为UL时隙,S为S时隙,具体参见本申请中对于传输时机的说明和对应的图4。如图15中的(a)所示,一个传输时机由多个连续上行时域资源组成,每个传输时机包括相同的时隙数。
S501,网络设备确定上行传输的资源映射参数。
网络设备根据BG、调制和编码方案(modulation and coding scheme,MCS)表和MCS索引确定所述资源映射参数,所述资源映射参数包括传输时机数K,RV指示信息rvid和RV序列指示信息repK-RV。
在对信息比特进行LDPC编码时采用如表2所示的LDPC BG1或LDPC BG2时,可以根据MCS索引指示,从MCS表(本申请中的表3至表7)中选择对应的传输时机数集合A,随后在该传输时机数集合A中确定出传输时机数K。
应理解,可能的实现方式六中的传输时机数集合A中包括的K满足第一条件:R·K≤1。
S502,网络设备向终端设备发送资源映射参数,相应地,终端设备接收来自网络设备的资源映射参数,该资源映射参数中包括传输时机数K。
可选地,网络设备可以通过高层信令或者DCI发送资源映射参数。
S503,终端设备根据资源映射参数将编码比特映射到上行传输的时频资源。
终端设备根据已知的编码码率R和网络设备发送的时隙数K的乘积小于第一切换门限μ时,即R·K≤μ时,终端设备使用第一资源映射机制进行资源映射。当R·K≥μ时,终端设备使用第二资源映射机制进行资源映射。示例性地,当LDPC编码使用BG1时,μ可以是集合
Figure PCTCN2022091408-appb-000139
中的一个,当LDPC编码使用BG2时,μ可以是集合
Figure PCTCN2022091408-appb-000140
中的一个。
图15中的(b)示出了终端设备使用第一资源映射机制时的示意图。第一资源映射机制,即RV循环机制,以所述RV指示信息rv id为RV循环起点,所述RV序列指示信息repK-RV为RV循环顺序,RV更新粒度为一次传输时机,从循环缓存中对应位置将编码比特取出并映射至对应的传输时机上的时频资源。例如,如图15中的(b)所示,以rv id=0为起点,将RV0、RV1、RV2、RV3分别映射到一个传输时机上。
图15中的(c)示出了终端设备使用第二资源映射机制时的示意图。第二资源映射机制,即连续资源映射机制,从循环缓存中的第一个编码比特开始将编码比特取出,映射到K个传输时机的时频资源上,RV不进行更新。例如,如图15中的(c)所示,以rv id=0 为起点,将RV0映射到一个TBoMS的传输时机上。
需要说明的是,该第二资源映射机制以所有传输时机为粒度进行速率匹配,换句话说,该第二资源映射机制是以整个TBoMS为粒度进行速率匹配。同样,第二资源映射机制比特交织的粒度也是所有传输时机或整个TBoMS。
S504,终端设备在上行传输的时频资源上向网络设备发送上行信号;相应地,网络设备在上行传输的时频资源上接收来自终端设备的上行信号。
需要说明的是,可能的实现方式六中,当网络设备执行S501时,本申请对于终端设备执行的资源映射的方法不做限定,终端设备执行的S503可以替换为现有的各种资源映射的方法;当终端设备执行S503时,本申请对应网络设备执行的确定传输时机数的方法不做限定,网络设备执行的S501可以替换为现有的各种确定传输时机数的方法。
本申请实施例,编码码率与传输时机数的乘积小于或等于1时,可以使得编码后比特序列中的信息比特能够被一个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
下面以每个时隙分配的时域资源可以不一致、对称的帧结构为例,结合图15,介绍可能的实现方式七。
在可能的实现方式七中,图15示出了本申请实施例信息发送的方法的可能的实现方式七的示意图。应理解,图15是以对称帧结构的DDDSU为例,图15中的D为DL时隙,U为UL时隙,S为S时隙,具体参见本申请中对于传输时机的说明和对应的图4。如图15中的(a)所示,每个传输时机包括相同的时隙数。
S501,网络设备确定上行传输的资源映射参数。
网络设备根据BG、调制和编码方案(modulation and coding scheme,MCS)表和MCS索引确定所述资源映射参数,所述资源映射参数包括传输时机数K,RV指示信息rvid和RV序列指示信息repK-RV。
在对信息比特进行LDPC编码时采用如表2所示的LDPC BG1时,可以根据MCS索引指示,从MCS表(本申请中的表3至表7)中选择对应的传输时机数集合B,随后在该传输时机数集合B中确定出传输时机数K,同时,约束RV指示信息rvid和RV序列指示信息repK-RV,使得RV0和RV1必须分别映射到至少一个传输时机的时频资源上。
应理解,可能的实现方式二中的传输时机数集合B中包括的K满足第二条件:
Figure PCTCN2022091408-appb-000141
其中,R为编码码率。
S502至S504与可能的实现方式六类似,在此不多赘述。
需要说明的是,可能的实现方式七中,当网络设备执行S501时,本申请对于终端设备执行的资源映射的方法不做限定,终端设备执行的S503可以替换为现有的各种资源映射的方法;当终端设备执行S503时,本申请对应网络设备执行的确定传输时机数的方法不做限定,网络设备执行的S501可以替换为现有的各种确定传输时机数的方法。
本申请实施例,编码码率与传输时机数的乘积大于1且小于或等于22/17,并且约束RV0和RV1分别映射到不同的传输时机时,可以使得编码后比特序列中的信息比特能够 被多个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
下面以每个时隙分配的时域资源可以不一致、非对称帧结构为例,结合图16,介绍可能的实现方式八。
在可能的实现方式八中,图16示出了本申请实施例信息发送的方法的可能的实现方式八的示意图。应理解,图16是以非对称帧结构的DDDSUDDSUU为例,图16中的D为DL时隙,U为UL时隙,S为S时隙,具体参见本申请中对于传输时机的说明和对应的图4。如图16中的(a)所示,一个传输时机由多个连续上行时域资源组成,每个传输时机包括的时隙数不相同。
网络设备根据BG、调制和编码方案(modulation and coding scheme,MCS)表和MCS索引确定所述资源映射参数,所述资源映射参数包括传输时机数K,RV指示信息rvid和RV序列指示信息repK-RV。
在对信息比特进行LDPC编码时采用如表2所示的LDPC BG1或LDPC BG2时,可以根据MCS索引指示,从MCS表(本申请中的表3至表7)中选择对应的传输时机数集合A,进一步地,需要将传输时机数集合A中的传输时机数的上限扩大P倍,得到传输时机数集合A-P,同时要求RV0必须映射至长传输时机。其中,P可以是
Figure PCTCN2022091408-appb-000142
Figure PCTCN2022091408-appb-000143
“长传输时机”可以理解为一个TBoMS的传输时机中包括的时隙数更多的传输时机,例如图16中的(a)中“SUU”对应的传输时机。
示例性地,根据MCS索引和MCS表确定出的传输时机数集合A为{1,2,3,4,5},L=2时,
Figure PCTCN2022091408-appb-000144
则传输时机数集合A-P为{1,2,3,4,6},则传输时机K的取值应当是{1,2,3,4,5,6}中的一种。应理解,传输时机数集合A-P的上限6是根据对
Figure PCTCN2022091408-appb-000145
的结果向下取整得到的。
应理解,可能的实现方式八中的传输时机数集合A-P中包括的K满足第六条件:R·K≤P。假设一个TBoMS传输包括的TO个数是偶数K的情况下,对于LDPC编码使用表2所示的BG1和BG2时,“SU”时隙包括的信息比特数为
Figure PCTCN2022091408-appb-000146
“SUU”时隙包括的信息比特数为
Figure PCTCN2022091408-appb-000147
其中,
Figure PCTCN2022091408-appb-000148
L取决于帧结构。以图16中的(a)为例,后半个周期U的个数(“DDSUU”时隙中有2个U时隙)和前半个周期U的个数(“DDDSU”时隙中有1一个U时隙)的比值,即L=2。从而要使得一个长传输时机能够完全承载信息比特N info=N info1+N info2,需要满足:
Figure PCTCN2022091408-appb-000149
Figure PCTCN2022091408-appb-000150
Figure PCTCN2022091408-appb-000151
因此,
Figure PCTCN2022091408-appb-000152
或者,
Figure PCTCN2022091408-appb-000153
S502,网络设备向终端设备发送资源映射参数,相应地,终端设备接收来自网络设备的资源映射参数,该资源映射参数中包括时隙数K。
可选地,网络设备可以通过高层信令或者DCI发送资源映射参数。
S503,终端设备根据资源映射参数将编码比特映射到上行传输的时频资源。
终端设备根据已知的编码码率R和网络设备发送的时隙数K的乘积小于第三切换门限Pμ时,即R·K≤Pμ时,终端设备使用第一资源映射机制进行资源映射。当R·K≥Pμ时,终端设备使用第二资源映射机制进行资源映射。其中,P可以是
Figure PCTCN2022091408-appb-000154
Figure PCTCN2022091408-appb-000155
示例性地,当LDPC编码使用BG1时,μ可以是集合
Figure PCTCN2022091408-appb-000156
中的一个,当LDPC编码使用BG2时,μ可以是集合
Figure PCTCN2022091408-appb-000157
中的一个。
图16中的(b)示出了终端设备使用第一资源映射机制时的示意图。第一资源映射机制,即RV循环机制,以所述RV指示信息rv id为RV循环起点,所述RV序列指示信息repK-RV为RV循环顺序,RV更新粒度为一次传输时机,从循环缓存中对应位置将编码比特取出并映射至对应的传输时机上的时频资源。例如,如图16中的(b)所示,以rvid=1为起点,将RV0、RV1、RV2、RV3分别映射到一个传输时机上,且RV0映射到长传输时机上。
图16中的(c)示出了终端设备使用第二资源映射机制时的示意图。第二资源映射机制,即连续资源映射机制,从循环缓存中的第一个编码比特开始将编码比特取出,映射到K个传输时机的时频资源上,RV不进行更新。例如,如图16中的(c)所示,以rvid=0为起点,将RV0映射到一个TBoMS的传输时机上。
需要说明的是,该第二资源映射机制以所有传输时机为粒度进行速率匹配,换句话说,该第二资源映射机制是以整个TBoMS为粒度进行速率匹配。同样,第二资源映射机制比特交织的粒度也是所有传输时机或整个TBoMS。
S504,终端设备在上行传输的时频资源上向网络设备发送上行信号;相应地,网络设备在上行传输的时频资源上接收来自终端设备的上行信号。
需要说明的是,可能的实现方式八中,当网络设备执行S501时,本申请对于终端设备执行的资源映射的方法不做限定,终端设备执行的S503可以替换为现有的各种资源映射的方法;当终端设备执行S503时,本申请对应网络设备执行的确定传输时机数的方法不做限定,网络设备执行的S501可以替换为现有的各种确定传输时机数的方法。
本申请实施例,编码码率与传输时机数的乘积小于或等于P(P≥1)时,可以使得编码后比特序列中的信息比特能够被一个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
下面以每个时隙分配的时域资源可以不一致、非对称帧结构为例,结合图16,介绍可能的实现方式九。
S501,网络设备确定上行传输的资源映射参数。
网络设备根据BG、调制和编码方案(modulation and coding scheme,MCS)表和MCS索引确定所述资源映射参数,所述资源映射参数包括时隙数K,RV指示信息rvid和RV序列指示信息repK-RV。
在对信息比特进行LDPC编码时采用如表2所示的LDPC BG1时,可以根据MCS索引指示,从MCS表(本申请中的表3至表7)中选择对应的传输时机数集合B,进一步地,需要将传输时机数集合B中传输时机数的上限扩大P倍,得到传输时机数集合B-P,随后在该传输时机数集合B-P中确定出时隙数K,同时,约束RV指示信息rvid和RV序列指示信息repK-RV,使得RV0映射到长传输时机的时频资源上。
应理解,可能的实现方式二中的传输时机数集合B中包括的K满足第二条件:
Figure PCTCN2022091408-appb-000158
其中,P可以是
Figure PCTCN2022091408-appb-000159
Figure PCTCN2022091408-appb-000160
其中,R为编码码率。
S502至S504与可能的实现方式八中类似,在此不多赘述。
需要说明的是,可能的实现方式九中,当网络设备执行S501时,本申请对于终端设备执行的资源映射的方法不做限定,终端设备执行的S503可以替换为现有的各种资源映射的方法;当终端设备执行S503时,本申请对应网络设备执行的确定传输时机数的方法不做限定,网络设备执行的S501可以替换为现有的各种确定传输时机数的方法。
本申请实施例,编码码率与传输时机数的乘积大于P且小于或等于22/17倍的P(P≥1),并且约束RV0和RV1分别映射到不同的传输时机时,可以使得编码后比特序列中的信息比特能够被多个传输时机完全承载。网络设备通过编码码率确定出满足条件的传输时机数的集合,从该集合中确定传输时机数,发送给终端设备,终端设备根据该传输时机数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
下面结合图17,对本申请的信息发送的方法600进行详细说明。方法600的具体实现有多种方式,下面对3种可能的方式进行详细说明。
终端设备在进行连续资源映射时,每个TO从循环缓存器读取编码比特的起始位置以Z c的整数倍为粒度,其中Z c表示LDPC的扩展因子(LDPC lifting size),即LDPC编码是按照Zc的整数倍为粒度输出编码比特。
方式一,如图17中的(a)所示,y k表示映射至第k个传输时机的第一个比特在循环缓存中的位置,x k表示映射至第k个传输时机的最后一个比特在循环缓存中的位置,x k=0,1,2,……N cb-1,其中N cb表示循环缓存中编码比特的数量,
Figure PCTCN2022091408-appb-000161
表示对
Figure PCTCN2022091408-appb-000162
向下取整。
Figure PCTCN2022091408-appb-000163
方式二,如图17中的(b)所示,y k表示映射至第k个传输时机的第一个比特在循环缓存中的位置,x k表示映射至第k个传输时机的最后一个比特在循环缓存中的位置,x k=0,1,2,……N cb-1,其中N cb表示循环缓存中编码比特的数量,
Figure PCTCN2022091408-appb-000164
表示对
Figure PCTCN2022091408-appb-000165
向上取整。
Figure PCTCN2022091408-appb-000166
方式三,如图17中的(c)所示,y k表示映射至第k个传输时机的第一个比特在循环缓存中的位置,x k表示映射至第k个传输时机的最后一个比特在循环缓存中的位置,x k=0,1,2,……N cb-1,其中N cb表示循环缓存中编码比特的数量,
Figure PCTCN2022091408-appb-000167
表示对
Figure PCTCN2022091408-appb-000168
四舍五入。
Figure PCTCN2022091408-appb-000169
作为一个示例,Z c=10,k=0时,第一次进行LDPC编码后得到的编码比特包括50个比特,而映射至TO#0的编码比特只有45个,即x k=44。那么按照方式一,映射至TO#1的比特序列的第一比特位置为y k+1=40;按照方式二,y k+1=50;按照方式三,y k+1=40。
作为一个示例,Z c=10,k=0时,第一次进行LDPC编码后得到的编码比特包括50个比特,而映射至TO#0的编码比特只有48个,即x k=48。那么按照方式一,y k+1=40;按照方式二,y k+1=50;按照方式三,y k+1=50。
本申请实施例,终端侧在进行资源映射时,减少了查找映射至上一个传输时机或时隙的最后一个比特在循环缓存中的位置的步骤,简化了映射过程中的计算,节省了开销。
应理解的是,本申请的信息发送的方法600可以单独实施,也可以与本申请信息发送的方法的其他实施例结合实施。
下面结合图18,对本申请的信息发送的方法700进行详细说明。
如图18中的(a)所示,S701,网络设备向终端设备发送TBoMS重复传输次数,相应地,终端设备接收来自网络设备的TBoMS重复传输次数。
S702,终端设备根据TBoMS重复传输次数进行资源映射,资源映射方法与上述一致。
需要说明的是,假设传输一个TBoMS需要K个传输时机,TBoMS重复传输次数为S,S可以等于1,2,3,4……S不一定需要等于K。
示例性的,如图18中的(b)所示,传输一个TBoMS需要4个传输时机,TBoMS重复传输次数为2,可以理解为只对RV0和RV2进行重复传输。
本申请实施例,在进行重复的资源映射时,对TBoMS进行部分重复传输,在提高传输可靠性和准确性的基础上,能够缩短TBoMS重复传输的时延。
表3 PDSCH的MCS索引表1
Figure PCTCN2022091408-appb-000170
Figure PCTCN2022091408-appb-000171
表4 PDSCH的MCS索引表2
Figure PCTCN2022091408-appb-000172
表5 PDSCH的MCS索引表3
Figure PCTCN2022091408-appb-000173
表6 PUSCH的MCS索引表1
Figure PCTCN2022091408-appb-000174
表7 PUSCH的MCS索引表2
Figure PCTCN2022091408-appb-000175
以上,结合图7至图18详细说明了本申请实施例提供的方法。以下,结合图19至图20详细说明本申请实施例提供的装置。
图19是本申请实施例提供的用于资源映射的通信装置的示意性框图。如图19所示,该通信装置10可以包括收发模块11和处理模块12。
其中,收发模块11可以用于接收其他装置发送的信息,还可以用于向其他装置发送信息。比如,接收第四指示信息或发送第一参数的指示信息。处理模块12可以用于进行装置的内容处理,比如,根据第一参数将第一比特序列映射至K个传输时机。
在一种可能的设计中,该通信装置10可对应于上述方法实施例中的网络设备。
具体地,该通信装置10可对应于根据本申请实施例的方法200至方法700中任一方法中的网络设备,该通信装置10可以包括用于执行相应方法中由网络设备所执行的操作的模块,并且,该通信装置10中的各单元分别为了实现相应方法中由网络设备所执行的操作。
示例性的,在该通信装置10对应于方法200中的网络设备时,收发模块11用于执行步骤S202,处理模块12用于指示步骤S201。
示例性的,在该通信装置10对应于方法300中的网络设备时,收发模块11用于执行步骤S302,处理模块12用于指示步骤S301。
示例性的,在该通信装置10对应于方法400中的网络设备时,收发模块11用于执行步骤S401、S402。
示例性的,在该通信装置10对应于方法500中的网络设备时,收发模块11用于执行步骤S502、S504,处理模块12用于指示步骤S501。
示例性的,在该通信装置10对应于方法700中的网络设备时,收发模块11用于执行步骤S701。
具体地,在一种可能的实施例中,收发模块11,用于从第一参数的取值的集合中确定第一参数,该第一参数的取值的集合根据第一比特序列的编码码率或调制编码方式确定,该第一比特序列为编码后的比特序列,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量;该收发模块11,还用于向终端设备发送该第一参数的指示信息。
上述方案,承载编码后比特序列的传输时机的数量(下面称为第一参数)满足一定条件时,可以使得编码后比特序列中的信息比特能够被一个或多个传输时机完全承载。网络设备通过编码码率确定出第一参数的取值的集合,从第一参数的取值的集合中确定第一参数,发送给终端设备,终端设备根据该第一参数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
其中,该编码码率和该第一参数的数值的乘积小于或等于N,N为正整数。
其中,该第一参数的取值的集合为{1,2,3,……N·k},k小于或等于该编码码率的倒数,且k为正整数。
其中,第二比特序列由N个传输时机承载,其中,该第二比特序列为该第一比特序列中以循环缓存中第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联。
其中,N大于1时,该网络设备向该终端设备发送第一指示信息,该第一指示信息用于指示第二比特序列由N个传输时机承载。
其中,该编码码率和该第一参数的数值的乘积小于或等于P,P≥1。
其中,
Figure PCTCN2022091408-appb-000176
Figure PCTCN2022091408-appb-000177
L是根据帧结构确定的,L>0。
其中,该第一参数的取值的集合为
Figure PCTCN2022091408-appb-000178
表示对P·k向下取整,k小于或等于该编码码率的倒数,且k为正整数。
其中,第二比特序列由1个传输时机承载,其中,该第二比特序列为该第一比特序列中以循环缓存中第一个比特为起点的比特序列,该第二比特序列的长度与1个传输时机包括的时隙数关联。
其中,该编码码率和该第一参数的数值的乘积大于N,且小于或等于M,M>N,N为正整数。
其中,M为N的
Figure PCTCN2022091408-appb-000179
倍。
其中,该第一比特序列中的第二比特序列和第三比特序列分别由至少一个传输时机承载,其中,该第二比特序列为该第一比特序列中以循环缓存中第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,该第三比特序列为该第一比特序列中与该第二比特序列起点不同的比特序列中的至少一个比特序列。
其中,N大于1时,该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示第二比特序列由N个传输时机承载。
其中,该第一参数的取值的集合为
Figure PCTCN2022091408-appb-000180
其中,
Figure PCTCN2022091408-appb-000181
表示对M·k向下取整,k小于或等于该编码码率的倒数,且k为正整数。
其中,该编码码率和该第一参数的数值的乘积大于P,且小于或等于Q,P≥1,Q>P。
其中,
Figure PCTCN2022091408-appb-000182
Figure PCTCN2022091408-appb-000183
Q等于
Figure PCTCN2022091408-appb-000184
倍的P,L是根据帧结构确定的,L>0。
其中,该第一比特序列中的第二比特序列和第三比特序列分别由至少一个传输时机承载,其中,该第二比特序列为该第一比特序列中以循环缓存中第一个比特为起点的比特序列,该第二比特序列的长度与1个传输时机包括的时隙数关联,该第三比特序列为该第一比特序列中与该第二比特序列起点不同的比特序列中的至少一个比特序列。
其中,该第一参数的取值的集合为
Figure PCTCN2022091408-appb-000185
其中,
Figure PCTCN2022091408-appb-000186
表示对P·k+1向下取整,
Figure PCTCN2022091408-appb-000187
表示对Q·k向下取整,k小于或等于该编码码率的倒数,且k为正整数。
其中,承载第二比特序列的传输时机包括的时隙数大于承载第四比特序列的传输时机包括的时隙数,其中,该第二比特序列为该第一比特序列中以循环缓存中第一个比特为起点的比特序列,该第四比特序列为该第一比特序列中以循环缓存中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列。
其中,该装置还包括:处理模块,用于根据调制和编码方案MCS确定该编码码率。
其中,该收发模块11,还用于向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备将该第一比特序列映射至K个传输时机后,将该第一比特序列映射到B个传输时机上,其中,K为该第一参数的数值,B为正整数。
具体地,在另一种可能的实施例中,处理模块12,用于生成第一指示信息;收发模块11,用于向终端设备发送第一参数的指示信息和该第一指示信息,该第一参数为用于 承载该第一比特序列的传输时机或时间单元的数量,该第一指示信息用于指示第二比特序列由N个传输时机承载,该第一比特序列为编码后的比特序列,该第二比特序列为该第一比特序列中以循环缓存中的第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,N为正整数,N小于或等于该第一参数的数值。
上述方案,在信息比特无法被一个传输时机的时频资源完整承载时,网络设备向终端设备发送指示信息,用于指示终端设备用于承载信息比特的传输时机的数量,终端设备根据网络设备指示的传输时机的数量进行资源映射,能够使得信息比特能够完整地映射到时频资源上进行传输,提高解调性能。
其中,N大于或等于该编码码率和该第一参数的乘积。
其中,该第一指示信息还用于指示第五比特序列由N个传输时机承载,该第五比特序列为该第一比特序列中以循环缓存中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列。
其中,该装置还包括:该收发模块11,用于向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备将该第一比特序列映射至K个传输时机后,将该第一比特序列映射到B个传输时机上,其中,K为该第一参数的数值,B为正整数。
在一种可能的设计中,该通信装置10可对应于上述方法实施例中的终端设备。
具体地,该通信装置10可对应于根据本申请实施例的方法200至方法700中任一方法中的终端设备,该通信装置10可以包括用于执行相应方法中由终端设备所执行的操作的模块,并且,该通信装置10中的各单元分别为了实现相应方法中由终端设备所执行的操作。
示例性的,在该通信装置10对应于方法200中的终端设备时,收发模块11用于执行步骤S202,处理模块12用于执行步骤S203。
示例性的,在该通信装置10对应于方法300中的终端设备时,收发模块11用于执行步骤S302,处理模块12用于执行步骤S303。
示例性的,在该通信装置10对应于方法400中的终端设备时,收发模块11用于执行步骤S401、S402
示例性的,在该通信装置10对应于方法500中的终端设备时,收发模块11用于执行步骤S502、S504,处理模块12用于执行步骤S503。
示例性的,在该通信装置10对应于方法700中的终端设备时,收发模块11用于执行步骤S701,处理模块12用于执行步骤S702。
具体地,在一种可能的实施例中,收发模块11,用于接收来自网络设备的第一参数,处理模块12,用于根据该第一参数将该第一比特序列映射至K个传输时机,K为该第一参数的数值,K为正整数,其中,当该第一比特序列的编码码率和K的乘积小于或等于第一门限值时,该终端设备将在循环缓存中起点为位置i的比特序列映射至第i个传输时机,其中,该位置i与该第i个传输时机对应,1≤i≤K,i为整数,该第一比特序列包括该比特序列,该比特序列的长度与一个传输时机包括的时隙数关联。
上述方案,承载编码后比特序列的传输时机的数量(下面称为第一参数)满足一定条件时,可以使得编码后比特序列中的信息比特能够被一个或多个传输时机完全承载。网络设备通过编码码率确定出第一参数的取值的集合,从第一参数的取值的集合中确定第一参 数,发送给终端设备,终端设备根据该第一参数进行资源映射时,能够使得信息比特完整地映射到时频资源上进行传输,提高解调性能。
其中,映射至第k个传输时机的比特序列的最后一个比特为循环缓存中的第x k个比特,映射至第k+1个传输时机的比特序列的起点为循环缓存中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000188
或者,
Figure PCTCN2022091408-appb-000189
或者,
Figure PCTCN2022091408-appb-000190
其中,
Figure PCTCN2022091408-appb-000191
表示对
Figure PCTCN2022091408-appb-000192
向下取整,
Figure PCTCN2022091408-appb-000193
表示对
Figure PCTCN2022091408-appb-000194
向上取整,
Figure PCTCN2022091408-appb-000195
表示对
Figure PCTCN2022091408-appb-000196
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,k大于等于0,且k为整数。
其中,该第一参数是基于第一比特序列的编码码率或调制编码方式确定的,该第一比特序列为编码后的比特序列,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量。
其中,该第一门限值为以下任意一个数值的P倍:0.9、
Figure PCTCN2022091408-appb-000197
0.948、0.95、1、1.2、
Figure PCTCN2022091408-appb-000198
或者,该第一门限值为以下任意一个数值的P倍:0.9、
Figure PCTCN2022091408-appb-000199
0.948、0.95、1。
其中,
Figure PCTCN2022091408-appb-000200
Figure PCTCN2022091408-appb-000201
或1,其中,L是根据帧结构确定的,L大于0。
其中,当该第一比特序列的编码码率和K的乘积大于该第一门限值时,该终端设备将第二比特序列映射至K个传输时机,该第二比特序列为第一比特序列中以循环缓存中的第一个比特为起点的比特序列,该第二比特序列的长度与K个传输时机包括的时隙数关联。
具体地,在另一种可能的实施例中,收发模块11,用于接收来自网络设备的第一参数的指示信息和第一指示信息,该第一参数为用于承载该第一比特序列的传输时机或时间单元的数量,该第一指示信息用于指示第二比特序列由N个传输时机承载,该第一比特序列为编码后的比特序列,该第二比特序列为该第一比特序列中以循环缓存中的第一个比特为起点的比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,N为正整数,N小于或等于该第一参数的数值;处理模块12,用于根据该第一参数的指示信息和该第一指示信息将该第一比特序列映射至K个传输时机,K为该第一参数的数值,K为正整数。
上述方案,在信息比特无法被一个传输时机的时频资源完整承载时,网络设备向终端设备发送指示信息,用于指示终端设备用于承载信息比特的传输时机的数量,终端设备根据网络设备指示的传输时机的数量进行资源映射,能够使得信息比特能够完整地映射到时频资源上进行传输,提高解调性能。
其中,映射至第k个传输时机的比特序列的最后一个比特为循环缓存中的第x k个比特,映射至第k+1个传输时机的比特序列的起点为循环缓存中的第y k+1个比特,其中,
Figure PCTCN2022091408-appb-000202
或者,
Figure PCTCN2022091408-appb-000203
或者,
Figure PCTCN2022091408-appb-000204
其 中,
Figure PCTCN2022091408-appb-000205
表示对
Figure PCTCN2022091408-appb-000206
向下取整,
Figure PCTCN2022091408-appb-000207
表示对
Figure PCTCN2022091408-appb-000208
向上取整,
Figure PCTCN2022091408-appb-000209
表示对
Figure PCTCN2022091408-appb-000210
四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,k大于等于0,且k为整数。
其中,该处理模块12具体用于,将该第二比特序列映射至N个传输时机,第三比特序列映射至一个传输时机,该第三比特序列为该第一比特序列中以循环缓存中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列,该第二比特序列的长度与N个传输时机包括的时隙数关联,该第三比特序列的长度与一个传输时机包括的时隙数关联。
其中,该处理模块12具体用于,该第一比特序列的编码码率和K的乘积小于或等于第二门限值时,该终端设备将该第二比特序列和该第三比特序列分别映射至N个传输时机,该第三比特序列为该第一比特序列中以循环缓存中第一个比特外的其他比特为起点的比特序列中的至少一个比特序列,该第二比特序列和该第三比特序列的长度与N个传输时机包括的时隙数关联。
其中,该第一比特序列的编码码率和K的乘积大于第二门限值时,该处理模块具体用于,将该第二比特序列映射至该K个传输时机。
其中,该第二门限值为以下任意一个:0.9、
Figure PCTCN2022091408-appb-000211
0.948、0.95、1。
具体地,在另一种可能的实施例中,收发模块11,用于接收来自网络设备的第四指示信息和第五指示信息,该第四指示信息指示第一资源用于承载跨多时隙传输块TBoMS,该第五指示信息指示该第一资源用于承载探测参考信号SRS;该收发模块11,还用于根据该第一资源与该网络设备传输该SRS。
上述方案,当传输TBoMS PUSCH与SRS的资源冲突时,即TBoMS PUSCH与SRS占用相同的资源时,在该资源上优先传输SRS,减少了TBoMS PUSCH与SRS的资源的冲突。
其中,该第四指示信息还用于指示第二资源用于承载该TBoMS,该收发模块11,还用于根据该第二资源与该网络设备传输该TBoMS;或者,该收发模块11,还用于根据该第三资源与该网络设备传输该TBoMS,该第三资源为该第二资源中除与该第一资源在同一个时隙的资源以外的资源;或者,该收发模块11,还用于根据该第四资源与该网络设备传输该TBoMS,该第四资源为该第二资源中时序在该第一资源之前的资源;或者,该收发模块11,还用于不传输该TBoMS。
图20为本申请实施例提供的资源映射的装置20的示意图。
在一种可能的设计中,该装置20可以为网络设备,也可以为位于网络设备上的芯片或芯片系统等。
在一种可能的设计中,该装置20可以为终端设备,包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端,移动台,终端,用户设备,软终端等等,也可以为位于终端设备上的芯片或芯片系统等。
该装置20可以包括处理器21(即,处理模块的一例)和存储器22。该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以使该装置20实现如图4 至图9中对应的方法中上述各种可能的设计中的设备执行的步骤。
进一步地,该装置20还可以包括输入口23(即,收发模块的一例)和输出口24(即,收发模块的另一例)。进一步地,该处理器21、存储器22、输入口23和输出口24可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储器22中调用并运行该计算机程序,以控制输入口23接收信号,控制输出口24发送信号,完成上述方法中终端设备或无线接入网设备或UE或基站的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该报文传输的装置20为通信设备,该输入口23为接收器,该输出口24为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置20为芯片或电路,该输入口23为输入接口,该输出口24为输出接口。
作为一种实现方式,输入口23和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的设备。即将实现处理器21、输入口23和输出口24功能的程序代码存储在存储器22中,通用处理器通过执行存储器22中的代码来实现处理器21、输入口23和输出口24的功能。
其中,装置20中各模块或单元可以用于执行上述方法中进行随机接入的设备(例如,终端设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
应理解,本申请实施例中,该处理器可以为中央处理单元(CPU,central processing unit),该处理器还可以是其他通用处理器、数字信号处理器(DSP,digital signal processor)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由网络设备或终端设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备或终端设备执行的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由网络设备或终端设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备或终端设备执行的方法。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM, EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (25)

  1. 一种信息发送的方法,其特征在于,包括:
    网络设备从第一参数的取值的集合中确定第一参数,所述第一参数的取值的集合是根据第一比特序列的编码码率或调制编码方式确定的,所述第一比特序列为编码后的比特序列,所述第一参数为用于承载所述第一比特序列的传输时机或时间单元的数量;
    所述网络设备向终端设备发送所述第一参数的指示信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一参数的取值的集合为{1,2,3,……N·k}的子集,k小于或等于所述编码码率的倒数,且k为正整数,N为正整数。
  3. 根据权利要求2所述的方法,其特征在于,
    N大于1时,所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示第二比特序列由N个传输时机承载,其中,所述第二比特序列为所述第一比特序列中以第一个比特为起点的比特序列,所述第二比特序列的长度与N个传输时机包括的时隙数关联。
  4. 根据权利要求1所述的方法,其特征在于,
    所述第一参数的取值的集合为
    Figure PCTCN2022091408-appb-100001
    的子集,
    Figure PCTCN2022091408-appb-100002
    表示对P·k向下取整,k小于或等于所述编码码率的倒数,且k为正整数,P是实数,P≥1。
  5. 根据权利要求4所述的方法,其特征在于
    第二比特序列由1个传输时机承载,其中,所述第二比特序列为所述第一比特序列中以第一个比特为起点的比特序列,所述第二比特序列的长度与1个传输时机包括的时隙数关联。
  6. 根据权利要求1所述的方法,其特征在于,
    所述第一参数的取值的集合为
    Figure PCTCN2022091408-appb-100003
    的子集,其中,
    Figure PCTCN2022091408-appb-100004
    表示对M·k向下取整,k小于或等于所述编码码率的倒数,且k为正整数,N为正整数,M>N。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一比特序列中的第二比特序列和第三比特序列分别由至少一个传输时机承载,其中,所述第二比特序列为所述第一比特序列中以第一个比特为起点的比特序列,所述第二比特序列的长度与N个传输时机包括的时隙数关联,所述第三比特序列为所述第一比特序列中与所述第二比特序列起点不同的比特序列中的至少一个比特序列。
  8. 根据权利要求1所述的方法,其特征在于,
    所述第一参数的取值的集合为
    Figure PCTCN2022091408-appb-100005
    的子集,其中,
    Figure PCTCN2022091408-appb-100006
    表示对P·k+1向下取整,
    Figure PCTCN2022091408-appb-100007
    表示对Q·k向下取整,k小于或等于所述编码码率的倒数,且k为正整数,P和Q是实数,P≥1,Q>P。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一比特序列中的第二比特序列和第三比特序列分别由至少一个传输时机承载,其中,所述第二比特序列为所述第一比特序列中以循环缓存中第一个比特为起点的比特序列,所述第二比特序列的长度与1个传输时机包括的时隙数关联,所述第三比特序列为所 述第一比特序列中与所述第二比特序列起点不同的比特序列中的至少一个比特序列。
  10. 根据权利要求4、5、8、9中任一项所述的方法,其特征在于,
    承载第二比特序列的传输时机包括的时隙数大于承载第四比特序列的传输时机包括的时隙数,其中,所述第二比特序列为所述第一比特序列中以第一个比特为起点的比特序列,所述第四比特序列为所述第一比特序列中以第一个比特外的其他比特为起点的比特序列中的至少一个比特序列。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备将所述第一比特序列映射至K个传输时机后,将所述第一比特序列映射到B个传输时机上,其中,K为所述第一参数的数值,B为正整数。
  12. 一种信息发送的方法,其特征在于,包括:
    终端设备接收来自网络设备的第一参数的指示信息,
    所述终端设备根据所述第一参数将所述第一比特序列映射至K个传输时机,K为所述第一参数的数值,K为正整数,
    其中,当所述第一比特序列的编码码率和K的乘积小于或等于第一门限值时,所述终端设备将在所述第一比特序列中以第y k个比特为起点的比特序列映射至第k个传输时机,其中,所述位置y k与所述第k个传输时机对应,1≤k≤K,k为整数,所述第一比特序列包括所述比特序列,所述比特序列的长度与一个传输时机包括的时隙数关联。
  13. 根据权利要求12所述的方法,其特征在于,包括:
    映射至第k个传输时机的比特序列的最后一个比特为所述第一比特序列中的第x k个比特,
    映射至第k+1个传输时机的比特序列的起点为所述第一比特序列中的第y k+1个比特,
    其中,
    Figure PCTCN2022091408-appb-100008
    或者,
    Figure PCTCN2022091408-appb-100009
    或者,
    Figure PCTCN2022091408-appb-100010
    其中,
    Figure PCTCN2022091408-appb-100011
    表示对
    Figure PCTCN2022091408-appb-100012
    向下取整,
    Figure PCTCN2022091408-appb-100013
    表示对
    Figure PCTCN2022091408-appb-100014
    向上取整,
    Figure PCTCN2022091408-appb-100015
    表示对
    Figure PCTCN2022091408-appb-100016
    四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,0≤k≤K,且k为整数。
  14. 根据权利要求12所述的方法,其特征在于,
    所述第一参数是基于第一比特序列的编码码率或调制编码方式确定的,所述第一比特序列为编码后的比特序列,所述第一参数为用于承载所述第一比特序列的传输时机或时间单元的数量。
  15. 根据权利要求12所述的方法,其特征在于,
    所述第一门限值为以下任意一个数值的P倍:0.9、
    Figure PCTCN2022091408-appb-100017
    0.948、0.95、1、1.2、
    Figure PCTCN2022091408-appb-100018
    Figure PCTCN2022091408-appb-100019
    或者,所述第一门限值为以下任意一个数值的P倍:0.9、
    Figure PCTCN2022091408-appb-100020
    0.948、0.95、1。
  16. 根据权利要求15所述的方法,其特征在于,
    Figure PCTCN2022091408-appb-100021
    Figure PCTCN2022091408-appb-100022
    或1,其中,L是根据帧结构确定的,L大于0。
  17. 根据权利要求12所述的方法,其特征在于,
    当所述第一比特序列的编码码率和K的乘积大于所述第一门限值时,所述终端设备将第二比特序列映射至K个传输时机,所述第二比特序列为第一比特序列中以第一个比特为起点的比特序列,所述第二比特序列的长度与K个传输时机包括的时隙数关联。
  18. 一种信息发送的的方法,其特征在于,包括:
    终端设备接收来自网络设备的第一参数的指示信息;
    所述终端设备根据所述第一参数将所述第一比特序列映射至K个传输时机,K为所述第一参数的数值,K为正整数,
    其中,映射至第k个传输时机的比特序列的最后一个比特为所述第一比特序列中的第x k个比特,
    映射至第k+1个传输时机的比特序列的起点为所述第一比特序列中的第y k+1个比特,
    其中,
    Figure PCTCN2022091408-appb-100023
    或者,
    Figure PCTCN2022091408-appb-100024
    或者,
    Figure PCTCN2022091408-appb-100025
    其中,
    Figure PCTCN2022091408-appb-100026
    表示对
    Figure PCTCN2022091408-appb-100027
    向下取整,
    Figure PCTCN2022091408-appb-100028
    表示对
    Figure PCTCN2022091408-appb-100029
    向上取整,
    Figure PCTCN2022091408-appb-100030
    表示对
    Figure PCTCN2022091408-appb-100031
    四舍五入,Z c等于A倍的低密度奇偶校验LDPC因子,A为正整数,x k为整数,0≤k≤K,且k为整数。
  19. 一种信息发送的方法,其特征在于,包括:
    终端设备接收来自网络设备的第四指示信息和第五指示信息,所述第四指示信息指示第一资源用于承载跨多时隙传输块TBoMS,所述第五指示信息指示所述第一资源用于承载探测参考信号SRS;
    所述终端设备根据所述第一资源与所述网络设备传输所述SRS。
  20. 根据权利要求19所述的方法,其特征在于,所述第四指示信息还用于指示第二资源用于承载所述TBoMS,
    所述方法还包括:
    所述终端设备根据所述第二资源与所述网络设备传输所述TBoMS;
    或者,所述终端设备根据所述第三资源与所述网络设备传输所述TBoMS,所述第三资源为所述第二资源中除与所述第一资源在同一个时隙的资源以外的资源;
    或者,所述终端设备根据所述第四资源与所述网络设备传输所述TBoMS,所述第四 资源为所述第二资源中时序在所述第一资源之前的资源;
    或者,所述终端设备不传输所述TBoMS。
  21. 一种信息发送的装置,其特征在于,包括:
    用于实现权利要求1至11中任一项所述方法的模块;或者,
    用于实现权利要求12至17中任一项所述方法的模块;或者,
    用于实现权利要求18所述方法的模块;或者,
    用于实现权利要求19或20所述方法的模块。
  22. 一种通信装置,其特征在于,包括:
    处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至11中任一项所述的通信方法,或者执行权利要求12至17中任一项所述的通信方法,或者执行权利要求18所述的通信方法,或者执行权利要求19或20所述的通信方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法,或者,执行如权利要求12至17中任一项所述的方法,或者,执行如权利要求18所述的方法,或者,执行如权利要求19或20所述的方法。
  24. 一种芯片,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于读取并执行所述存储器中存储的所述计算机程序,当所述计算机程序被执行时,所述处理器执行如权利要求1至11中任一项所述的方法,或者,执行如权利要求12至17中任一项所述的方法,或者,执行如权利要求18所述的方法,或者,执行如权利要求19或20所述的方法。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至11中任一项所述的方法,或者,执行如权利要求12至17中任一项所述的方法,或者,执行如权利要求18所述的方法,或者,执行如权利要求19或20所述的方法。
PCT/CN2022/091408 2021-05-11 2022-05-07 信息发送的方法和装置 WO2022237675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110513676.0A CN115334663A (zh) 2021-05-11 2021-05-11 信息发送的方法和装置
CN202110513676.0 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022237675A1 true WO2022237675A1 (zh) 2022-11-17

Family

ID=83912649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091408 WO2022237675A1 (zh) 2021-05-11 2022-05-07 信息发送的方法和装置

Country Status (2)

Country Link
CN (1) CN115334663A (zh)
WO (1) WO2022237675A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190297642A1 (en) * 2018-03-20 2019-09-26 Qualcomm Incorporated Methods and apparatuses for utilization of full length of transmission opportunity
CN110536458A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 重复传输方法、装置、网络设备和计算机可读存储介质
WO2020065617A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Signalling for repetition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190297642A1 (en) * 2018-03-20 2019-09-26 Qualcomm Incorporated Methods and apparatuses for utilization of full length of transmission opportunity
CN110536458A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 重复传输方法、装置、网络设备和计算机可读存储介质
WO2020065617A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Signalling for repetition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2104242, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010696 *
MODERATOR (NOKIA, NOKIA SHANGHAI BELL): "Final FL summary of TB processing over multi-slot PUSCH (AI 8.8.1.2)", 3GPP DRAFT; R1-2104102, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 20 April 2021 (2021-04-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051996665 *

Also Published As

Publication number Publication date
CN115334663A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US10785010B2 (en) Wireless communications method and apparatus
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
WO2019233339A1 (zh) 传输信息的方法和通信设备
US20210168846A1 (en) Information transmission method and apparatus
AU2018440564A1 (en) Method for transmitting configuration information and terminal device
US11438921B2 (en) Uplink control information sending and receiving method and apparatus
KR102543108B1 (ko) 서비스를 전송하기 위한 방법, 이동국 및 네트워크 기기
WO2020221021A1 (zh) 通信方法和通信装置
WO2020221321A1 (zh) 通信方法以及通信装置
WO2018082043A1 (zh) 通信方法、终端和网络设备
WO2019214660A1 (zh) 通信方法和通信装置
KR20200018820A (ko) 동일한 사이즈 코드 블록에 대한 전송 블록 사이즈 결정
WO2019047819A1 (zh) 发送上行控制信道的方法和装置
WO2021030980A1 (zh) 一种通信方法、通信装置和系统
WO2020220253A1 (zh) 一种信息传输方法和通信设备
US20230136113A1 (en) Methods and apparatus for indicating common transmission configuration indicator (tci) state
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
WO2018228596A1 (zh) 一种数据处理方法及数据处理装置
WO2019084877A1 (zh) 用于配置资源的方法、终端设备和网络设备
WO2019137299A1 (zh) 通信的方法和通信设备
WO2018201919A1 (zh) 一种数据传输的方法和装置
CN111886894A (zh) 一种资源确定方法、指示方法及装置
WO2020199767A1 (zh) 通信方法、通信装置和系统
US20240196386A1 (en) Communication processing method and apparatus for carrier switching
WO2022237675A1 (zh) 信息发送的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806641

Country of ref document: EP

Kind code of ref document: A1