WO2019214660A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2019214660A1
WO2019214660A1 PCT/CN2019/086099 CN2019086099W WO2019214660A1 WO 2019214660 A1 WO2019214660 A1 WO 2019214660A1 CN 2019086099 W CN2019086099 W CN 2019086099W WO 2019214660 A1 WO2019214660 A1 WO 2019214660A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical uplink
uplink channel
channel
data
determination result
Prior art date
Application number
PCT/CN2019/086099
Other languages
English (en)
French (fr)
Inventor
李胜钰
官磊
李秉肇
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19800223.0A priority Critical patent/EP3787212A4/en
Publication of WO2019214660A1 publication Critical patent/WO2019214660A1/zh
Priority to US17/094,516 priority patent/US11528731B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change

Definitions

  • Embodiments of the present application relate to the field of communications, and more particularly, to a communication method and a communication device.
  • ultra-reliable/low latency communication has a demand for a transmission delay.
  • the data of the service may be transmitted based on the physical uplink channel of the scheduling-free mode.
  • the processing method for the above situation is that the communication system specifies to transmit a physical uplink channel based on the scheduling mode.
  • the communication system provides for transmitting a physical uplink channel based on the scheduling mode.
  • the present application provides a communication method and communication device capable of improving communication flexibility.
  • a communication method includes: determining, when a first physical uplink channel and a second physical uplink channel overlap in a time domain, the first determination result, whether the first data needs to be sent As a result of the determination, the first physical uplink channel includes a dynamically authorized physical uplink channel, and the second physical uplink channel includes a physical uplink channel configured with an authorization; according to the first determination result, the first physical uplink channel and the second uplink are The target physical uplink channel to be transmitted is determined in the physical channel.
  • the communication method of the present application by determining whether the channel to be transmitted is determined from the physical uplink channel based on the scheduling mode and the physical uplink channel of the scheduling-free mode according to whether the first data needs to be transmitted, the selected channel can be avoided.
  • the case where data is to be transmitted and it is possible to reliably ensure that the first data can be transmitted quickly and reliably, and the influence on other data transmission can be reduced, and thus, the flexibility of communication can be improved.
  • the first data includes ultra-high reliability low latency communication URLLC data.
  • the first data includes data in a high-level data stream arriving at the MAC layer that meets a preset QoS requirement.
  • the first data includes data on the first logical channel.
  • the first logical channel is used to send URLLC data.
  • the first logical channel is indicated by the network device by high layer signaling.
  • the first logical channel is predefined by a communication protocol.
  • the configuration authorization type 1 of the first logical channel allows the configured Grant Type 1 Allowed parameter to exist.
  • the value of the configured Grant Type 1 Allowed parameter of the first logical channel is 1.
  • the method further includes: stopping sending the non-target physical uplink channel.
  • the non-target physical uplink channel is one of the first physical uplink channel and the second physical uplink channel that is not determined as the target physical uplink channel.
  • stop sending a non-target physical uplink channel may be understood as if the logical channel priority LCP processing for the non-target physical uplink channel has not started at the medium access control MAC layer, or has not started for non-target physics. If the uplink channel performs the MAC layer packet data unit PDU group packet, or the corresponding MAC PDU group packet is not completed, the MAC layer stops or the terminal performs LCP processing or MAC group packet for the non-target physical uplink channel, that is, the MAC layer. The packet for the non-target physical uplink channel is not completed, and the physical PHY layer is not notified to send the non-target physical uplink channel.
  • stop sending the non-target physical uplink channel may be understood to be that if the PHY layer has received the MAC PDU for the non-target physical uplink channel of the MAC layer but has not performed the non-target physical uplink channel transmission, the PHY layer stops. , or silent, the non-target physical upstream channel is transmitted at the physical layer.
  • stop sending the non-target physical uplink channel may be understood as if the PHY layer has received the MAC PDU of the MAC layer for the non-target physical uplink channel and has started the transmission of the non-target physical uplink channel, then at the PHY layer. Terminate or interrupt the transmission of the non-target physical uplink channel.
  • determining, according to the first determination result, the target physical uplink channel that needs to be sent from the first physical uplink channel and the second uplink physical channel including: if the first determination result is no, The first physical uplink channel is determined to be the target physical uplink channel.
  • the physical uplink channel based on the scheduling mode it is possible to prevent the physical uplink channel based on the scheduling mode from being transmitted when the first data is not reached, so that the eMBB data can only be transmitted on the unscheduled physical uplink channel, but the unscheduled physical uplink channel It may not be possible to carry eMBB data, or even if it can be carried, the transmission spectrum efficiency is very low, which will greatly affect the eMBB data transmission.
  • the first determination result if the first determination result is yes, determining the second physical uplink channel as the target physical uplink channel, and transmitting the first data on the second physical uplink channel.
  • the first determination result if the first determination result is yes, determining the first physical uplink channel as the target physical uplink channel, and transmitting the first data on the first physical uplink channel.
  • determining, according to the first determination result, the target physical uplink channel that needs to be sent from the first physical uplink channel and the second uplink physical channel including: according to the first determination result and the second determination result, Determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel.
  • the second determination result includes a determination result of whether the LCP processing is performed on the first physical uplink channel in the MAC layer.
  • the second determination result includes a result of determining whether to perform grouping of the MAC PDU corresponding to the first physical uplink channel in the MAC layer.
  • the second determination result includes whether a determination result of the MAC PDU packet corresponding to the first physical uplink channel has been completed.
  • the second determination result includes a determination result whether the first physical uplink channel has been transmitted at the PHY layer.
  • the second determination result includes a determination result of whether a time interval between the time when the first determination result is obtained and a start time of the first physical uplink channel is less than a preset time threshold.
  • the time threshold is specified by a communication system or a communication protocol.
  • the time threshold is determined by the network device and indicated to the terminal device.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and the second determination result including: if the first determination result is yes, and If the second determination result is yes, the second physical uplink channel is used as the target physical uplink channel.
  • the UE finds that the first data is not put into the first physical channel bearer, so the second physical channel is processed at the MAC layer, and the first data is carried on the second physical channel. And sending a second physical channel at the PHY layer to ensure that the first data can be sent quickly and reliably.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and the second determination result including: if the first determination result is yes, And if the second determination result is no, the one of the first physical uplink channel or the second physical uplink channel is used as the target physical uplink channel.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and the second determination result including: according to the first determination result, the second Determining a result and a time domain length of the first physical uplink channel, determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel.
  • determining, according to the first determination result, the second determination result, and the time domain length of the first physical uplink channel, the target physical uplink channel from the first physical uplink channel and the second uplink physical channel including:
  • the first determination result is yes, the second determination result is no, and the time domain length of the first physical uplink channel is less than or equal to the first threshold, the first physical uplink channel is determined as the target physical uplink signal.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and the second determination result including: if the first determination result is yes, The second determination result is that the target physical uplink channel is determined from the first physical uplink channel and the second uplink physical channel according to the time domain length of the first physical uplink channel.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and the second determination result including: if the first determination result is yes, The second determination result is that the target physical uplink is determined from the first physical uplink channel and the second uplink physical channel according to the time domain length of the first physical uplink channel and the modulation and coding policy MCS of the first physical uplink channel. channel.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and the second determination result including: if the first determination result is yes, The second determination result is otherwise based on the time domain length of the first physical uplink channel, the first physical uplink channel MCS, and the first physical uplink channel transmission block size TBS, from the first physical uplink channel and the second uplink physical
  • the target physical uplink channel is determined in the channel.
  • determining, according to the first determination result, the target physical uplink channel that needs to be sent from the first physical uplink channel and the second uplink physical channel including: according to the first determination result and the first physical uplink The time domain length of the channel, the target physical uplink channel is determined from the first physical uplink channel and the second uplink physical channel.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and a time domain length of the first physical uplink channel including: if the If the result of the determination is yes, and the time domain length of the first physical uplink channel is less than or equal to the first threshold, the first physical uplink channel is determined as the target physical uplink signal.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and a time domain length of the first physical uplink channel including: if the If the result of the determination is yes, and the time domain length of the first physical uplink channel is greater than the first threshold, the second physical uplink channel is determined as the target physical uplink channel.
  • the first threshold is determined according to a time domain length of the second physical uplink channel.
  • the first threshold is the same as the value according to the time domain length of the second physical uplink channel.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and a time domain length of the first physical uplink channel including: according to the first a determination result, a time domain length of the first physical uplink channel, and a modulation and coding policy MCS of the first physical uplink channel, determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel.
  • the first physical uplink channel and the second uplink physical channel are obtained according to the first determination result, a time domain length of the first physical uplink channel, and a modulation and coding policy MCS of the first physical uplink channel.
  • Determining the target physical uplink channel including: if the first determination result is yes, the time domain length of the first physical uplink channel is less than or equal to the first threshold, and the spectrum efficiency SE corresponding to the MCS of the first physical uplink channel If the second threshold is less than or equal to, the first physical uplink channel is determined as the target physical uplink channel.
  • the first physical uplink channel and the second uplink physical channel are obtained according to the first determination result, a time domain length of the first physical uplink channel, and a modulation and coding policy MCS of the first physical uplink channel.
  • Determining the target physical uplink channel including: if the first determination result is yes, the time domain length of the first physical uplink channel is less than or equal to the first threshold, and the spectrum efficiency SE corresponding to the MCS of the first physical uplink channel If the second threshold is greater than the second threshold, the second physical uplink channel is determined as the target physical uplink channel.
  • determining, according to the first determination result, the target physical uplink channel from the first physical uplink channel and the second uplink physical channel including: according to the first determination result, and the first physical uplink channel
  • the modulation and coding policy MCS determines the target physical uplink channel from the first physical uplink channel and the second uplink physical channel.
  • determining, according to the first determination result and the modulation and coding policy MCS of the first physical uplink channel, the target physical uplink channel from the first physical uplink channel and the second uplink physical channel including: If the first determination result is yes, and the spectrum efficiency SE corresponding to the MCS of the first physical uplink channel is less than or equal to the second threshold, the first physical uplink channel is determined as the target physical uplink channel.
  • determining, according to the first determination result and the modulation and coding policy MCS of the first physical uplink channel, the target physical uplink channel from the first physical uplink channel and the second uplink physical channel including: If the first determination result is yes, and the spectrum efficiency SE corresponding to the MCS of the first physical uplink channel is greater than the second threshold, the second physical uplink channel is determined as the target physical uplink channel.
  • the second threshold is determined according to an SE corresponding to the MCS of the second physical uplink channel.
  • the second threshold is the same as the value of the SE corresponding to the MCS of the second physical uplink channel.
  • determining, according to the first determination result and the modulation and coding policy MCS of the first physical uplink channel, the target physical uplink channel from the first physical uplink channel and the second uplink physical channel including: If the first determination result is yes, and the index index of the MCS of the first physical uplink channel is less than or equal to the third threshold, the first physical uplink channel is determined as the target physical uplink channel.
  • determining, according to the first determination result and the modulation and coding policy MCS of the first physical uplink channel, the target physical uplink channel from the first physical uplink channel and the second uplink physical channel including: If the first determination result is yes, and the index of the MCS of the first physical uplink channel is greater than the third threshold, the second physical uplink channel is determined as the target physical uplink channel.
  • the third threshold is determined according to an index of an MCS of the second physical uplink channel.
  • the third threshold is the same as the value of the index of the MCS according to the second physical uplink channel.
  • determining, according to the first determination result, the target physical uplink channel from the first physical uplink channel and the second uplink physical channel including: according to the first determination result, and the first physical uplink channel a transport block size TBS, the target physical uplink channel being determined from the first physical uplink channel and the second uplink physical channel.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and the TBS of the first physical uplink channel including: if the first determining If yes, and the TBS of the first physical uplink channel is greater than or equal to the fourth threshold, the first physical uplink channel is determined as the target physical uplink channel.
  • determining the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and the TBS of the first physical uplink channel including: if the first determining If the result is YES, and the TBS of the first physical uplink channel is less than the fourth threshold, the second physical uplink channel is determined as the target physical uplink channel.
  • the fourth threshold is determined according to a TBS of the second physical uplink channel.
  • the fourth threshold is the same as the value of the TBS according to the second physical uplink channel.
  • the first determination result is no, determining, by the first physical uplink channel, that the maximum amount of data is smaller than the amount of data to be sent, determining the first physical uplink channel as the target physics. Upstream channel and stop transmitting non-target physical uplink channel.
  • the data to be sent is eMBB data.
  • a communication method including: when the first data arrives, if the first physical uplink channel and the second physical uplink channel overlap in the time domain, then at the medium access control MAC layer, based on the a second physical uplink channel, the first data is processed to generate a first data packet that needs to be sent by using the second physical uplink channel, where the first physical uplink channel includes a dynamically authorized physical uplink channel, and the second The physical uplink channel includes a physical uplink channel configured with an authorization; the first data packet is sent to the physical layer at the MAC layer, and the physical layer is instructed to send the first data packet by using the second physical uplink channel.
  • the first data includes ultra-high reliability low latency communication URLLC data
  • the first data includes data on a first logical channel.
  • the first data includes data in a high-level data stream arriving at the MAC layer that meets a preset QoS requirement.
  • the first logical channel is used to send URLLC data.
  • the first logical channel is indicated by the network device by high layer signaling.
  • the first logical channel is predefined by a communication protocol.
  • the configuration authorization type 1 of the first logical channel allows the configured Grant Type 1 Allowed parameter to exist.
  • the value of the configured Grant Type 1 Allowed parameter of the first logical channel is 1.
  • a third aspect provides a communication method, including: receiving, at a physical layer, a first data packet from a medium access control MAC layer, and determining, according to an indication of the MAC layer, sending on the second physical uplink channel Transmitting, by the physical layer, the sending of the first physical uplink channel and transmitting the second physical uplink channel, if the first physical uplink channel and the second physical uplink channel overlap in the time domain,
  • the first physical uplink channel includes a dynamically authorized physical uplink channel
  • the second physical uplink channel includes a physical uplink channel configured with an authorization.
  • the first data includes ultra-high reliability low latency communication URLLC data
  • the first data includes data on a first logical channel.
  • the first data includes data in a high-level data stream arriving at the MAC layer that meets a preset QoS requirement.
  • the first logical channel is used to send URLLC data.
  • the first logical channel is indicated by the network device by high layer signaling.
  • the first logical channel is predefined by a communication protocol.
  • the configuration authorization type 1 of the first logical channel allows the configured Grant Type 1 Allowed parameter to exist.
  • a fourth aspect provides a communication method, including: when a first data arrives, if a first physical uplink channel and a second physical uplink channel overlap in a time domain, at a medium access control MAC layer, based on a second physical uplink channel, the first data is processed to generate a first data packet that needs to be sent by using the second physical uplink channel, where the first physical uplink channel includes a dynamically authorized physical uplink channel, and the second The physical uplink channel includes a physical uplink channel configured with an authorization; the transmission of the first physical uplink channel is stopped at the physical layer, and the second physical uplink channel is transmitted.
  • the first data includes ultra-high reliability low latency communication URLLC data
  • the first data includes data in a high-level data stream that meets a preset QoS requirement.
  • the first data includes data on a first logical channel.
  • the first logical channel is used to send URLLC data.
  • the first logical channel is indicated by the network device by high layer signaling.
  • the first logical channel is predefined by a communication protocol.
  • the configuration authorization type 1 of the first logical channel allows the configured Grant Type 1 Allowed parameter to exist.
  • a communication method including: sequentially processing, by a medium access control MAC layer, a plurality of data in a sequence of arrivals to generate a data packet corresponding to each data, where the multiple data includes a first pass Data transmitted by the physical uplink channel and data to be transmitted through the second physical uplink channel, where the first physical uplink channel includes a dynamically authorized physical uplink channel, and the second physical uplink channel includes a physical uplink channel configured with an authorization;
  • the transmission of the first physical uplink channel is stopped at the physical layer, and the second physical uplink channel is transmitted.
  • the processing of data that needs to be transmitted through the physical uplink channel based on the scheduling-free mode is stopped at the MAC layer, thereby affecting
  • the physical uplink channel based on the scheduling mode and the physical uplink channel based on the scheduling-free mode overlap, each data is processed in the MAC layer according to the order of arrival, and The second physical uplink channel is sent preferentially at the physical layer (including stopping or interrupting the first physical uplink channel, and transmitting the second physical uplink channel), thereby ensuring fast and reliable transmission of URLLC data.
  • a communication apparatus comprising means for performing the steps of the communication method of any of the first to fifth aspects and the implementations thereof.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (e.g., a terminal device), and the communication chip can include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • the communication chip can include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a communication device comprising: a processor, a memory for storing a computer program, the processor for calling and running the computer program from a memory, such that the communication device performs the first aspect to A communication method in any of the fifth aspects and its implementations.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor or the memory may be separate from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a computer program product comprising: a computer program (which may also be referred to as a code, or an instruction), when the computer program is executed, causing the computer to perform the first aspect described above to A communication method in any of the fifth aspects and its implementations.
  • a computer readable medium storing a computer program (which may also be referred to as a code, or an instruction), when executed on a computer, causes the computer to perform the first aspect described above to A communication method in any of the fifth aspects and its implementations.
  • a computer program which may also be referred to as a code, or an instruction
  • a chip system comprising a memory and a processor for storing a computer program for calling and running the computer program from the memory, such that the communication device on which the chip system is mounted performs the above
  • the communication method in any of the first to fifth aspects and the respective implementations thereof.
  • the chip system may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • a communication system comprising: a terminal device and a network device, wherein the terminal device is configured to perform the communication method in the first aspect and its implementation manners; the network device is configured to receive the a target physical uplink channel determined by the terminal device from the first physical uplink channel and the second uplink physical channel, where the first physical uplink channel and the second physical uplink channel overlap in a time domain, the first physical uplink channel
  • the physical uplink channel includes a dynamic grant
  • the second physical uplink channel includes a physical uplink channel configured to be authorized.
  • a communication system including a terminal device and a network device, where the terminal device is configured to perform the communication method in any one of the foregoing second to fifth aspects and the implementation manners thereof; And the network device is configured to receive a second physical uplink channel that is sent by the terminal device, where the second physical uplink channel includes a physical uplink channel configured with an authorization, where the first physical uplink channel and the second physical uplink channel are Overlapped in the time domain, the first physical uplink channel includes a dynamically authorized physical uplink channel.
  • the communication method of the present application by determining whether the channel to be transmitted is determined from the physical uplink channel based on the scheduling mode and the physical uplink channel of the scheduling-free mode according to whether the first data needs to be transmitted, the selected channel can be avoided.
  • FIG. 1 is a schematic architectural diagram of a communication system of the present application.
  • FIG. 2 is a schematic flow chart of an example of a communication method of the present application.
  • FIG. 3 is a schematic diagram showing an example of a pattern of a physical uplink channel of the present application.
  • FIG. 4 is a schematic diagram of another example of a pattern of a physical uplink channel of the present application.
  • FIG. 5 is a schematic diagram showing still another example of the pattern of the physical uplink channel of the present application.
  • FIG. 6 is a schematic diagram showing still another example of the pattern of the physical uplink channel of the present application.
  • FIG. 7 is a schematic interaction diagram of another example of the communication method of the present application.
  • Fig. 8 is a schematic block diagram showing an example of a communication device of the present application.
  • FIG. 9 is a schematic block diagram of another example of the communication device of the present application.
  • Fig. 10 is a schematic block diagram showing an example of a terminal device of the present application.
  • FIG. 11 is a schematic block diagram of an example of a network device of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device may also be referred to as a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, Mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device can be a station in the WLAN (STAION, ST), which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • WLAN STAION, ST
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld device with wireless communication capabilities computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system, for example, a terminal device in a 5G network or Terminal equipment in the future evolution of the Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system, and the IoT is an important component of future information technology development, and its main technical feature is to pass the article through the communication technology. Connected to the network to realize an intelligent network of human-machine interconnection and physical interconnection.
  • IoT Internet of Things
  • the IOT technology can achieve massive connection, deep coverage, and terminal power saving through, for example, Narrow Band NB technology.
  • the NB includes only one resource block (Resource Bloc, RB), that is, the bandwidth of the NB is only 180 KB.
  • the terminal must be required to be discrete in access. According to the communication method of the embodiment of the present application, the congestion problem of the IOT technology massive terminal when accessing the network through the NB can be effectively solved.
  • the terminal device may further include sensors such as a smart printer, a train detector, a gas station, and the like, and the main functions include collecting data (partial terminal devices), receiving control information and downlink data of the network device, and transmitting electromagnetic waves to The network device transmits uplink data.
  • sensors such as a smart printer, a train detector, a gas station, and the like
  • the main functions include collecting data (partial terminal devices), receiving control information and downlink data of the network device, and transmitting electromagnetic waves to The network device transmits uplink data.
  • the network device may be an access network device or the like for communicating with the mobile device.
  • the network device may be an Access Point (AP) in the WLAN, in GSM or CDMA.
  • Base Transceiver Station (BTS) which can also be a base station (NodeB, NB) in WCDMA, or a gNB in a new Radio System (NR) system, or an evolved base station in LTE (Evolutional Node B, eNB or eNodeB), or a relay station or an access point, or an in-vehicle device, a wearable device, and an access network device in a future 5G network or an access network device in a future evolved PLMN network.
  • the access network device provides a service for the cell
  • the terminal device communicates with the access network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • a transmission resource for example, a frequency domain resource, or a spectrum resource
  • the cell It may be a cell corresponding to an access network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include: a metro cell and a micro cell ( Micro cell), Pico cell, Femto cell, etc.
  • Micro cell Micro cell
  • Pico cell Pico cell
  • Femto cell etc.
  • multiple carriers can work at the same frequency on the carrier in the LTE system or the 5G system.
  • the concept of the carrier and the cell can be considered to be equivalent.
  • CA carrier aggregation
  • the concept of the carrier and the cell can be considered to be equivalent, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • the core network device can be connected to multiple access network devices for controlling the access network device, and can distribute data received from the network side (for example, the Internet) to the access network device.
  • the network side for example, the Internet
  • the network device may include a base station (gNB), such as a macro station, a micro base station, an indoor hotspot, and a relay node, etc., and the function is to send radio waves to the terminal device, and implement downlink data transmission on the one hand, and another The aspect sends scheduling information to control uplink transmission, and receives radio waves sent by the terminal device to receive uplink data transmission.
  • gNB base station
  • the function is to send radio waves to the terminal device, and implement downlink data transmission on the one hand
  • the aspect sends scheduling information to control uplink transmission, and receives radio waves sent by the terminal device to receive uplink data transmission.
  • terminal device the access network device, and the core network device listed above are merely exemplary descriptions, and the application is not limited thereto.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method provided by the embodiment of the present application is not particularly limited as long as the program of the code of the method provided by the embodiment of the present application can be run by using the program according to the present application.
  • the method can be communicated.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a function module that can call a program and execute a program in the terminal device or the network device.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • multiple applications may be run at the application layer.
  • the application that performs the communication method of the embodiment of the present application is used to control the receiving device to complete the received data.
  • the application of the corresponding action can be a different application.
  • the system 100 includes an access network device 102, which may include one antenna or multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114.
  • access network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components associated with signal transmission and reception (eg, processor, modulator, complex) Consumer, demodulator, demultiplexer or antenna, etc.).
  • Access network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that the access network device 102 can communicate with any number of terminal devices similar to the terminal device 116 or the terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Information referred to as uplink 120 receives information from terminal device 116.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of the access network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the coverage area of the access network device 102.
  • the access network device can transmit signals to all of the terminal devices in its corresponding sector by single antenna or multi-antenna transmit diversity.
  • the transmit antenna of the access network device 102 can also utilize beamforming to improve the forward links 118 and 124. Signal to noise ratio.
  • the access network device 102 utilizes beamforming to selectively distribute the terminal devices 116 and 122 in the associated coverage area as compared to the manner in which the access network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity.
  • beamforming When transmitting a signal, mobile devices in neighboring cells are subject to less interference.
  • the access network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 can be a PLMN network, a device-to-device (D2D)
  • D2D device-to-device
  • FIG. 1 is only a simplified schematic diagram of the example, and the network may also include other access network devices, which are not shown in FIG.
  • the data or information may be carried by a time-frequency resource, where the time-frequency resource may include a resource in a time domain and a resource in a frequency domain.
  • the time-frequency resource may include one or more time domain units in the time domain, and the time-frequency resource may include a frequency domain unit in the frequency domain.
  • a time domain unit may be a symbol, or a mini-slot, or a slot, or a subframe, wherein the duration of one subframe in the time domain It may be 1 millisecond (ms), one time slot consists of 7 or 14 symbols, and one mini time slot may include at least one symbol (for example, 2 symbols or 7 symbols or 14 symbols, or 14 symbols or less Any number of symbols).
  • a frequency domain unit can be a Resource Block (RB), or a Resource Block Group (RBG), or a predefined Subband.
  • RB Resource Block
  • RBG Resource Block Group
  • data or “information” may be understood as a bit generated after the information block is encoded, or “data” or “information” may also be understood as a modulation symbol generated after the information block is encoded and modulated.
  • one information block may include at least one transport block (Transport Block TB), or "one information block may include at least one TB group (including at least one TB), or "one information block may include at least one coding block (Code) Block, CB), or, "A block of information may include at least one CB group (including at least one CB) and the like.
  • Transport Block TB Transport Block
  • one information block may include at least one TB group (including at least one TB)
  • one information block may include at least one coding block (Code) Block, CB)
  • a block of information may include at least one CB group (including at least one CB) and the like.
  • the communication method of the present application can be used for transmission of multiple types of services, for example, but not limited to: a. Ultra Reliable & Low Latency Communication (URLLC) business.
  • eMBB Enhanced Mobile Broadband
  • ITU-R International Telecommunications Union-Radio Communications Sector
  • eMBB services mainly require large speed, wide coverage, transmission delay and mobility.
  • the main requirements of the URLLC service are extremely high reliability, extremely low mobility, and transmission delay.
  • the wireless air interface requires 99.999% transmission reliability in 1 millisecond (ms).
  • each communication device for example, a network device or a terminal device in the communication system 100 may use a resource (for example, a frequency domain resource) to communicate based on a schedule-free transmission scheme, or may use a resource based on a scheduling manner (
  • the frequency domain resource is used for communication, and the embodiment of the present application is not particularly limited.
  • the scheduling mode and the scheduling-free mode are described below.
  • the transmission of data may be performed based on scheduling of the network device.
  • the time domain granularity of the scheduled data transmission may be, for example, a Transmission Time Interval (TTI), a Short Transmission Time Interval (sTTI), a time slot or a mini time slot. .
  • the specific scheduling procedure is that the base station sends a control channel, for example, a Physical Downlink Control Channel (PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH) or a physical downlink control channel for scheduling sTTI transmission.
  • a control channel for example, a Physical Downlink Control Channel (PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH) or a physical downlink control channel for scheduling sTTI transmission.
  • sTTI Physical Downlink Control Channel, sPDCCH the control channel may be configured to use a Downlink Control Information (DCI) format for scheduling a Physical Downlink Shared Channel (PDSCH) or a Physical Uplink Shared Channel.
  • DCI Downlink Control Information
  • Scheduling information of (Physical Uplink Shared Channel, PUSCH) the scheduling information includes control information such as resource allocation information, modulation and coding mode, and the like.
  • the terminal device detects the control channel, and performs downlink data channel reception or uplink data channel transmission according to the detected scheduling information carried in the control channel.
  • the scheduling information carried in the control channel may indicate downlink data channel reception or uplink data channel transmission with a TTI length of 1 ms or a TTI length of less than 1 ms.
  • the NR can directly indicate which symbols the scheduled data transmission occupies.
  • a schedule-free transmission scheme can be used.
  • the transmission of data may also be unscheduled.
  • Unscheduled transmission English can be expressed as Grant Free.
  • the schedule-free transmission here can be for uplink data transmission or downlink data transmission.
  • the unscheduled transmission can be understood as any meaning of the following meanings, or multiple meanings, or a combination of some of the various technical features or other similar meanings:
  • the unscheduled transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has an uplink data transmission requirement, select at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and use the selected transmission.
  • the resource sends uplink data; the network device detects uplink data sent by the terminal device on one or more of the pre-assigned multiple transmission resources.
  • the detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the unscheduled transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources, so that when the terminal device has an uplink data transmission requirement, at least one transmission resource is selected from a plurality of transmission resources pre-allocated by the network device, and the selected one is used.
  • the transmission resource sends uplink data.
  • the unscheduled transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when there is an uplink data transmission requirement, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unscheduled transmission may refer to a method for implementing uplink data transmission of the terminal device without dynamic scheduling of the network device, where the dynamic scheduling may refer to that the network device indicates the transmission resource by signaling for each uplink data transmission of the terminal device.
  • implementing uplink data transmission of the terminal device may be understood as allowing data of two or more terminal devices to perform uplink data transmission on the same time-frequency resource.
  • the transmission resource may be a transmission resource of one or more transmission time units after the time when the terminal device receives the signaling.
  • a transmission time unit can refer to a minimum time unit of one transmission, such as TTI or Slot.
  • the unscheduled transmission may refer to: the terminal device performs uplink data transmission without requiring network device scheduling.
  • the scheduling may be performed by the terminal device sending an uplink scheduling request to the network device, and after receiving the scheduling request, the network device sends an uplink grant to the terminal device, where the uplink grant indicates an uplink transmission resource allocated to the terminal device.
  • the unscheduled transmission may be a competitive transmission mode. Specifically, multiple terminals may simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance without performing scheduling by the base station.
  • the data may be included in service data or signaling data.
  • the blind detection can be understood as the detection of data that may arrive without predicting whether or not data has arrived.
  • the blind detection can also be understood as detection without explicit signaling indication.
  • the basic time unit of the unscheduled transmission may be one TTI (for example, including the above sTTI).
  • the unscheduled transmission may include downlink data channel reception or uplink data channel transmission with a TTI length of 1 ms or a TTI length of less than 1 ms.
  • Grant may also be referred to as “authorization”, and refers to control information transmitted by a network device (eg, gNB) or configured at a higher layer to indicate a PUSCH transmission feature.
  • a network device eg, gNB
  • gNB network device
  • the NR divides the uplink (UL) Grant into a Dynamic Grant and a Configured Grant.
  • Dynamic Grant refers to normal Grant-based (GB) PUSCH transmission. That is, the transmission of the Dynamic Grant may refer to the transmission based on the above scheduling method.
  • Configured Grant refers to the configuration based PUSCH transmission. That is, the transmission of the Configured Grant may refer to the transmission based on the above-described schedule-free mode.
  • the Configured Grant can include Semi-Persistent Scheduling (SPS).
  • SPS Semi-Persistent Scheduling
  • Type 2 configured grant the semi-persistent scheduling may also be referred to as a Type 2 configured grant.
  • the Configured Grant can include a Grant Free (GF) transmission in the NR, and the license-free transmission is also referred to as a Type 1 configured grant.
  • GF Grant Free
  • the PUSCH transmitted based on the scheduling manner is referred to as GB PUSCH.
  • the PUSCH transmitted based on the scheduling-free manner is referred to as GF PUSCH.
  • a terminal device for example, a Media Access Control (MAC) layer entity of the terminal device, may acquire a logical channel configuration parameter of the MAC layer by, for example, a high-level configuration.
  • MAC Media Access Control
  • MAC layer logical channels can be divided into two groups. At least one logical channel may be included in each logical channel group.
  • one logical channel group (referred to as logical channel group #1) can use GF PUSCH to carry data and transmission, or data transmitted using GF PUSCH can be carried in logical channel in logical channel group #1.
  • configuration parameters of each logical channel in the logical channel group #1 for example, a configured Grant Type 1 Allowed parameter may be configured to be present, thereby, the terminal device When it is determined that the configured Grant Type 1 Allowed parameter of a certain logical channel exists, it is determined that the logical channel can use the data transmitted by the GF PUSCH.
  • the parameter value of the configured Grant Type 1 Allowed parameter may be configured as a preset specified value #a (for example, “1", or “True”), so that the terminal device can determine a certain logical channel.
  • the parameter value of the configured Grant Type 1 Allowed parameter is the specified value #a (for example, 1 or True)
  • #a for example, 1 or True
  • logical channel group #2 another logical channel group (referred to as logical channel group #2) may not use GF PUSCH to carry data and transmission, or the data transmitted using GF PUSCH may not be carried in logical channel group #2. In the channel.
  • configuration parameters of each logical channel in logical channel group #2 may be configured to be unpresented, thereby, the terminal The device may determine that the logical channel cannot use the data transmitted by the GF PUSCH when it determines that the configured Grant Type 1 Allowed parameter of a logical channel does not exist.
  • the parameter value of the configured Grant Type 1 Allowed parameter may be configured as a preset specified value #b (for example, "0", or "False"), so that the terminal device can determine a certain logical channel.
  • #b for example, 0 or False
  • the parameter value of the configured Grant Type 1 Allowed parameter is the specified value #b (for example, 0 or False)
  • #b for example, 0 or False
  • the terminal device can determine whether each logical channel can use the data transmitted by the GF PUSCH, or the UE can determine whether each logical channel can correspond to the GF PUSCH.
  • the terminal device can determine the GF PUSCH according to the configuration of the network device.
  • the terminal device for example, the MAC layer entity of the terminal device, can determine the configuration parameters of the GF PUSCH by, for example, a high-level configuration.
  • the configuration parameters of the GF PUSCH may include, but are not limited to, the following parameters as well:
  • the size of the time domain resource occupied by the GF PUSCH for example, the number of time units (eg, symbols) occupied by the GF PUSCH;
  • the frequency domain resource occupied by the GF PUSCH for example, the size and frequency domain location of the frequency domain resource occupied by the GF PUSCH;
  • Modulation and Coding Scheme (MCS) used by the GF PUSCH for example, an index of the MCS used by the GF PUSCH, or a spectral efficiency corresponding to the MCS used by the GF PUSCH (Spectral Efficient, SE);
  • repetition number of GF PUSCH repetition number
  • Transport Block (TransportBlock, TB) size corresponding to the GF PUSCH, or the size of the basic unit for data exchange between the logical channel processed by the physical layer entity and the GF PUSCH.
  • the terminal device eg, the MAC layer entity of the terminal device
  • the terminal device can determine the time domain resources of each GF PUSCH and the configuration parameters of each GF PUSCH.
  • the terminal device may determine the GB PUSCH according to the scheduling of the network device, for example, the UL Grant sent by the network device.
  • the terminal device may receive the UL Grant in the slot n, and after analyzing the UL Grant, it is learned that the GB PUSCH scheduled by the UL Grant is transmitted on the slot n+2, and is based on slot-based transmission, occupying the entire 14 OFDM symbols.
  • the physical layer entity of the terminal device reports the UL Grant to the MAC layer entity, so that the MAC layer entity can determine the configuration parameter of the GB PUSCH based on the UL Grant.
  • the configuration parameters of the GB PUSCH may include, but are not limited to, the following parameters as well:
  • the time domain resource occupied by the GB PUSCH for example, the size of the time domain resource occupied by the GB PUSCH, for example, the number of time units (for example, symbols) occupied by the GB PUSCH, and the location of the time domain resource occupied by the GB PUSCH, for example, , the starting position of the time domain resource occupied by the GB PUSCH;
  • the frequency domain resource occupied by the GB PUSCH for example, the size and frequency domain location of the frequency domain resource occupied by the GB PUSCH;
  • the MCS used by the GB PUSCH for example, the index of the MCS used by the GB PUSCH, or the SE corresponding to the MCS used by the GB PUSCH;
  • the terminal device eg, the MAC layer entity of the terminal device
  • the terminal device can determine the time domain resources of each GB PUSCH and the configuration parameters of each GB PUSCH.
  • the present application mainly relates to a process of processing GF PUSCH and GB PUSCH overlapping in the time domain.
  • a certain GB PUSCH (denoted as: PUSCH #1) and a certain GF PUSCH (denoted as: PUSCH #2) may overlap in the time domain.
  • PUSCH #1 and PUSCH #2 overlap in the time domain may mean, for example, that PUSCH #1 and PUSCH #2 partially overlap in the time domain.
  • PUSCH #1 and PUSCH #2 overlap in the time domain may mean, for example, that PUSCH #1 and PUSCH #2 completely overlap in the time domain.
  • PUSCH #1 and PUSCH #2 overlap in the time domain may mean, for example, that at least one identical time domain unit is between PUSCH #1 and PUSCH #2.
  • the PUSCH #1 and the PUSCH #2 have at least one identical time slot.
  • the PUSCH #1 and the PUSCH #2 have at least one identical symbol.
  • the GB PUSCH and the GF PUSCH overlapping in the time domain may or may not overlap in the frequency domain, and the present application is not particularly limited.
  • the PUSCH #1 and the PUSCH #2 may overlap in the frequency domain, or the PUSCH #1 and the PUSCH #2 may not overlap in the frequency domain.
  • overlapping PUSCH #1 and PUSCH #2 in the frequency domain may mean that the time-frequency resource #2 and the time-frequency resource #1 completely overlap in the frequency domain.
  • the PUSCH #1 and the PUSCH #2 have at least one identical frequency domain unit.
  • the PUSCH #1 and the PUSCH #2 have at least one identical subcarrier.
  • the PUSCH #1 and the PUSCH #2 have at least one identical RB.
  • the PUSCH #1 and the PUSCH #2 have at least one identical RBG.
  • PUSCH #1 GB PUSCH, that is, an example of the first physical uplink channel
  • PUSCH #2 GF PUSCH, that is, an example of the second physical uplink channel
  • FIG. 2 is a schematic flowchart of an example of a processing procedure for the PUSCH #1 and PUSCH #2.
  • the UE may perform the determination #A, and determine the result of the determination #A (ie, the first determination result), and further, according to the result of the determination #A, In PUSCH #1 and PUSCH #2, the PUSCH to be transmitted is determined, or the PUSCH to be stopped is determined.
  • the determination #A may include any one of the following determinations.
  • the data #A (specifically, the type of the data #A) may be predefined by the communication system or the communication protocol, or may be determined by the network device and notified to the terminal device.
  • the data #A can be URLLC data.
  • the data #A may be data on logical channel #A (ie, an example of the first logical channel).
  • the logical channel #A may be predefined by the communication system or the communication protocol, or may be determined by the network device and notified to the terminal device.
  • the logical channel #A can be a logical channel for carrying URLLC data.
  • the logical channel #A may be a logical channel corresponding to the GF PUSCH, or the logical channel #A is a logical channel that can use GF PUSCH to carry data and transmission.
  • the logical channel #A may be a logical channel belonging to the logical channel group #1 described above.
  • the logical channel #A may be a logical channel in which the configured Grant Type 1 Allowed parameter exists.
  • the logical channel #A may be a logical channel with a value of 1 for the configured Grant Type 1 Allowed parameter.
  • the data #A may be data within a higher layer data stream having a predetermined QoS requirement arriving at the MAC layer.
  • the type of the service to which the data #A belongs may be a specified type of service, for example, a real-time communication type service, an early warning (for example, an early warning for a disaster such as an earthquake or a tsunami), and a vehicle. Networked services, etc.
  • whether the logical channel #A has data can be understood as whether there is data to be transmitted in the logical channel #A.
  • whether the logical channel #A has data can be understood as whether the data has started to be transmitted but not yet transmitted when there is data in the logical channel #A.
  • the UE may determine the PUSCH to be transmitted from the PUSCH #1 and the PUSCH #2 based on the result of the decision #A, or determine the PUSCH to be stopped.
  • the result of the decision #A includes two cases, that is, data #A needs to be transmitted, or logical channel #A has data (ie, case 1); data #A is not required to be transmitted, or logical channel# A does not have data (ie, case 2).
  • data #A is not required to be transmitted, or logical channel# A does not have data (ie, case 2).
  • the UE may determine PUSCH #1 as the PUSCH to be transmitted, and determine PUSCH #2 as the PUSCH that needs to stop transmitting.
  • stop transmitting PUSCH is understood to be silent (or cancel) transmission of the PUSCH if the PUSCH does not start transmission.
  • stop transmitting PUSCH can be understood as suspending or terminating the transmission of the PUSCH if the PUSCH has started to transmit.
  • stop transmitting PUSCH may be understood as if, if the media access control MAC layer has not started logical channel priority LCP processing for the PUSCH, or has not started to perform MAC layer packet data unit PDU group packet for the PUSCH, Or the MAC PDU group packet corresponding to the PUSCH is not completed, and the MAC layer stops or the terminal performs LCP processing or MAC group packet for the PUSCH, that is, the MAC layer does not complete the group packet for the PUSCH, and does not notify the physics.
  • the PHY layer sends the PUSCH;
  • stop transmitting PUSCH may be understood as if the PHY layer has received the MAC PDU for the PUSCH of the MAC layer but has not yet performed PUSCH transmission, the PHY layer stops, or silences, the PUSCH is transmitted at the physical layer.
  • stop transmitting PUSCH may be understood to be that if the PHY layer has received the MAC PDU for the PUSCH of the MAC layer and the transmission of the PUSCH has started, the transmission of the PUSCH is terminated or interrupted at the PHY layer.
  • the data carried on the PUSCH #1 may be the data originally planned to be transmitted (for example, eMBB data), or, in case 2, the bearer on the PUSCH #1
  • the data may be data scheduled by the UL Grant.
  • the terminal device can still determine the PUSCH #1 as the PUSCH to be transmitted, and stop transmitting the PUSCH #2.
  • GF PUSCH has low transmission efficiency for eMBB data. Therefore, even if PUSCH #1 cannot satisfy the resource requirement of eMBB data, the eMBB data can be transmitted using PUSCH #1, thereby improving the transmission efficiency of eMBB data.
  • the S230 can be performed in any of the following manners.
  • the UE may determine any one of the PUSCH #1 and the PUSCH #2 as the PUSCH to be transmitted, and determine the other PUSCH as the PUSCH that needs to stop transmitting.
  • the UE may determine PUSCH #2 as the PUSCH that needs to be transmitted, and determine PUSCH #1 as the PUSCH that needs to stop transmitting.
  • the UE may determine the PUSCH to be transmitted from the PUSCH #1 and the PUSCH #2 according to the configuration parameter #A of the PUSCH #1, or determine the PUSCH that needs to be stopped.
  • the configuration parameter #A may be at least one of the following parameters.
  • Parameter #1 The time domain length of PUSCH #1, for example, the number of symbols occupied by PUSCH #1.
  • the UE eg, the MAC layer entity of the UE
  • the threshold #1 ie, an example of the first threshold
  • the UE may determine to transmit PUSCH #1 and stop. Send PUSCH#2.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 may be pre-configured by the communication system or the communication protocol, or the threshold #1 may also be determined by the network device and notified to the terminal device.
  • the threshold #1 may be determined according to the time domain length of the PUSCH #2, for example, the number of symbols occupied by the PUSCH #2, for example, the value of the threshold #1 may be occupied by the PUSCH #2. The value of the number of symbols.
  • mode 2 can be implemented by comparing the number of symbols occupied by PUSCH #1 with the size of the number of symbols occupied by PUSCH #2.
  • the UE eg, the MAC layer entity of the UE
  • the UE may determine to transmit PUSCH #1 and stop transmitting PUSCH#. 2.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1. .
  • Parameter #2 MCS of PUSCH #1, for example, SE corresponding to the MCS of PUSCH #1.
  • the UE eg, the MAC layer entity of the UE
  • the UE may determine to transmit the PUSCH #1 and stop. Send PUSCH#2.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #2 may be pre-configured by the communication system or the communication protocol, or the threshold #2 may also be determined by the network device and notified to the terminal device.
  • the threshold #2 may be determined according to the MCS of the PUSCH #2, for example, the SE corresponding to the MCS of the PUSCH #2.
  • the value of the threshold #2 may be the MCS of the PUSCH #2.
  • the value of SE may be determined according to the MCS of the PUSCH #2, for example, the SE corresponding to the MCS of the PUSCH #2.
  • the mode 2 can be implemented by comparing the SE corresponding to the MCS of the PUSCH #1 with the size of the SE corresponding to the MCS of the PUSCH #2.
  • the UE may determine to transmit the PUSCH #1 and stop transmitting the PUSCH#. 2.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1. .
  • the manner of use of the MCS listed above is merely exemplary, and the application is not limited thereto.
  • the determination may be made based on the index of the MCS of PUSCH #1.
  • the UE eg, the MAC layer entity of the UE
  • the threshold #3 ie, an example of the third threshold
  • the UE may determine to transmit the PUSCH #1 and stop transmitting. PUSCH#2.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #3 may be determined based on the index of the MCS of the PUSCH #2, for example, the value of the threshold #3 may be the value of the index of the MCS of the PUSCH #2.
  • the UE may It is determined to transmit PUSCH #1 and stop transmitting PUSCH #2.
  • the UE may determine PUSCH #2 is transmitted and PUSCH #1 is stopped.
  • the UE may determine to transmit the PUSCH. #2, and stop sending PUSCH#1.
  • the UE may determine PUSCH #2 is transmitted and PUSCH #1 is stopped.
  • Parameter #3 TBS of PUSCH#1.
  • the UE eg, the MAC layer entity of the UE
  • the threshold #4 ie, an example of the fourth threshold
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #4 may be pre-configured by the communication system or the communication protocol, or the threshold #4 may also be determined by the network device and notified to the terminal device.
  • the threshold #4 may be determined according to the TBS of the PUSCH #2.
  • the value of the threshold #4 may be the value of the TBS of the PUSCH #2.
  • mode 2 can be implemented by comparing the TBS of PUSCH #1 with the size of the TBS of PUSCH #2.
  • the UE may determine to transmit PUSCH #1 and stop transmitting PUSCH #2.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • parameter #1, parameter #2, and parameter #3 may be used alone or in combination, and the present application is not determined.
  • the UE may determine to transmit the PUSCH #1 and stop transmitting the PUSCH #2.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCSCH of the PUSCH #1 is less than or Equal to the threshold #2
  • the TBS of the PUSCH #1 is greater than or equal to the threshold #4
  • the UE for example, the MAC layer entity of the UE determines that the number of symbols occupied by the PUSCH #1 is less than or equal to the threshold #1 (ie, an example of the first threshold), and the SE corresponding to the MCS of the PUSCH #1 If the TBS of the PUSCH #1 is smaller than the threshold #4, the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the UE determines that the number of symbols occupied by the PUSCH #1 is greater than the threshold #1 (ie, an example of the first threshold), and the SE corresponding to the MCS of the PUSCH #1 is greater than the threshold. #2, and the TBS of the PUSCH #1 is smaller than the threshold #4, the UE can determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the UE determines that the number of symbols occupied by the PUSCH #1 is greater than the threshold #1 (ie, an example of the first threshold), and the SE corresponding to the MCS of the PUSCH #1 is less than or Equal to the threshold #2, and the TBS of the PUSCH #1 is smaller than the threshold #4, the UE can determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the UE may determine to transmit PUSCH #2 and stop transmitting PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCS of the PUSCH #1 is less than or Equal to threshold #2
  • the TBS of the PUSCH #1 is greater than or equal to the threshold #4
  • Parameter #4 repetition number of PUSCH #1 (repetition number).
  • the UE eg, the MAC layer entity of the UE
  • the threshold #5 ie, an example of the fifth threshold
  • the UE may determine to transmit the PUSCH #1 and stop transmitting the PUSCH. #2.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #5 may be pre-configured by the communication system or the communication protocol, or the threshold #5 may also be determined by the network device and notified to the terminal device.
  • the threshold #5 may be determined according to the number of repetitions of the PUSCH #2.
  • the value of the threshold #5 may be the value of the number of repetitions of the PUSCH #2.
  • mode 2 can be implemented by comparing the number of repetitions of PUSCH #1 with the number of repetitions of PUSCH #2.
  • the UE may determine to transmit PUSCH #1 and stop transmitting PUSCH #2.
  • the UE may determine to transmit PUSCH #2 and stop transmitting PUSCH #1.
  • parameter #1, parameter #2, parameter #3, and parameter #4 may be used alone or in combination, and the present application is not determined.
  • the UE eg, the MAC layer entity of the UE determines that the number of symbols occupied by the PUSCH #1 is less than or equal to the threshold #1 (ie, an example of the first threshold), the SE corresponding to the MCSCH of the PUSCH #1 is less than or Equal to the threshold #2, and the TBS of the PUSCH #1 is greater than or equal to the threshold #4, and the number of repetitions of the PUSCH #1 is greater than or equal to the threshold #5, the UE may determine to transmit the PUSCH #1 and stop transmitting the PUSCH #2.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCSCH of the PUSCH #1 is less than or Equal to the threshold #2
  • the TBS of the PUSCH #1 is greater than or equal to the threshold #4
  • the number of repetitions of the PUSCH #1 is greater than or equal to the threshold #5
  • the UE may determine to transmit the PUSCH #1 and stop transmitting the PUSCH #2.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCSCH of the PUSCH #1 is smaller than Or equal to the threshold #2
  • the TBS of the PUSCH #1 is greater than or equal to the threshold #4
  • the number of repetitions of the PUSCH #1 is less than the threshold #5
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the UE determines that the number of symbols occupied by the PUSCH #1 is less than or equal to the threshold #1 (ie, an example of the first threshold), and the SE corresponding to the MCS of the PUSCH #1 If the TBS of the PUSCH #1 is smaller than the threshold #4, and the number of repetitions of the PUSCH #1 is greater than or equal to the threshold #5, the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the UE determines that the number of symbols occupied by the PUSCH #1 is less than or equal to the threshold #1 (ie, an example of the first threshold), and the SE corresponding to the MCS of the PUSCH #1 If the TBS of the PUSCH #1 is smaller than the threshold #4, and the number of repetitions of the PUSCH #1 is less than the threshold #5, the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCS of the PUSCH #1 is greater than the threshold.
  • the TBS of the PUSCH #1 is smaller than the threshold #4
  • the number of repetitions of the PUSCH #1 is greater than or equal to the threshold #5
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCS of the PUSCH #1 is greater than the threshold.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCS of the PUSCH #1 is greater than the threshold.
  • the TBS of the PUSCH #1 is greater than or equal to the threshold #4, and the number of repetitions of the PUSCH #1 is less than the threshold #5
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCS of the PUSCH #1 is greater than the threshold.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCS of the PUSCH #1 is less than or Equal to the threshold #2
  • the TBS of the PUSCH #1 is smaller than the threshold #4
  • the number of repetitions of the PUSCH #1 is greater than or equal to the threshold #5
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the UE determines that the number of symbols occupied by the PUSCH #1 is greater than the threshold #1 (ie, an example of the first threshold), and the SE corresponding to the MCS of the PUSCH #1 is less than or Equal to the threshold #2, and the TBS of the PUSCH #1 is smaller than the threshold #4, and the number of repetitions of the PUSCH #1 is less than the threshold #5, the UE can determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCS of the PUSCH #1 is less than or Equal to the threshold #2
  • the TBS of the PUSCH #1 is smaller than the threshold #4
  • the number of repetitions of the PUSCH #1 is less than the threshold #5
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCS of the PUSCH #1 is less than or Equal to the threshold #2
  • the TBS of the PUSCH #1 is greater than or equal to the threshold #4
  • the number of repetitions of the PUSCH #1 is less than the threshold #5
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #1 ie, an example of the first threshold
  • the SE corresponding to the MCS of the PUSCH #1 is less than or Equal to the threshold #2
  • the TBS of the PUSCH #1 is greater than or equal to the threshold #4
  • the number of repetitions of the PUSCH #1 is greater than or equal to the threshold #5
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • Parameter #5 Time interval between the time at which the result of decision #A is obtained (denoted as time #A) and the start time of PUSCH #1 (recorded as time #B).
  • the UE may determine to transmit PUSCH #1 and stop transmitting PUSCH #2.
  • threshold #6 ie, an example of a time threshold
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #6 may be pre-configured by the communication system or the communication protocol, or the threshold #6 may also be determined by the network device and notified to the terminal device.
  • the UE may perform the decision #B and determine the result of the decision #B (ie, the second determination result), and further, from the results of the decision #B, from the PUSCH #1 and the PUSCH #2, Determine the PUSCH that needs to be transmitted, or determine the PUSCH that needs to be stopped.
  • the determination #B may include any one of the following determinations.
  • the data #B may be eMBB data, or the data #B may be data or information for channel detection.
  • the type of the service to which the data #B belongs may be a specified service type, for example, a data download type service or the like.
  • whether PUSCH #1 has started to transmit can be understood as: “whether PUSCH #1 is being transmitted but not yet transmitted.
  • the UE may determine to transmit PUSCH #1 and stop transmitting PUSCH #2.
  • threshold #6 ie, an example of a time threshold
  • the UE may determine to transmit the PUSCH #2 and stop transmitting the PUSCH #1.
  • the threshold #6 may be pre-configured by the communication system or the communication protocol, or the threshold #6 may also be determined by the network device and notified to the terminal device.
  • the UE may determine the PUSCH to be transmitted from the PUSCH #1 and the PUSCH #2 based on the result of the decision #B, or determine the PUSCH to be stopped.
  • the UE may determine to transmit PUSCH #2 and stop transmitting PUSCH #1.
  • the UE may determine to transmit PUSCH #1 and stop transmitting PUSCH #2.
  • the UE may initially determine the PUSCH to be transmitted through the mode 3, and finally determine the PUSCH to be transmitted based on the mode 2.
  • the processing of mode 3 may be employed, and the result of the preliminary determination is the final result.
  • the result of the determination #B is NO, and the processing of the mode 2 can be further performed, and based on the processing result of the mode 2, the PUSCH to be transmitted is finally determined.
  • the data carried on the PUSCH #1 is not only the data originally scheduled to be transmitted (for example, eMBB data). In other words, in case 2, the data carried on the PUSCH #1 is not only the data scheduled by the UL Grant.
  • the data carried on the PUSCH #1 is the data #A (or the data in the logical channel #A).
  • FIG. 3 is a schematic diagram showing an example of a pattern of a physical uplink channel of the present application. As shown in FIG. 3, it is assumed that the GF PUSCH transmission occupies 2 symbols, the transmission period of the GF PUSCH is 7 OFDM symbols, and the spectrum efficiency of the MCS of the GF PUSCH is SE#1. In this case, the threshold #1 can be 2.
  • the UE receives the UL Grant in the slot n, and after analyzing the UL Grant, it is learned that the GB PUSCH of the UL Grant scheduling is transmitted on slot n+2, occupying symbols 0-13.
  • the PHY layer of the UE sends the UL Grant to the MAC layer to inform the transmission characteristics of the GB PUSCH, including the time domain location, the time domain length, the MCS, the TBS, and the like.
  • the UE needs to send URLLC data.
  • the URLLC data After the URLLC data arrives, it is too late to transmit on the GF PUSCH before the GB PUSCH, or even if the GF PUSCH is preceded by the GB PUSCH, but the URLLC data is not transmitted, the URLLC data needs to be on the GF PUSCH resource where the GB PUSCH overlaps. transmission.
  • the UE finds that the time domain of the GB PUSCH and the GF PUSCH resource overlap in the MAC layer, and accurately indicates that the GB PUSCH overlaps with two GF PUSCHs, and the MAC layer performs PUSCH deletion.
  • the MAC layer selects the GF PUSCH to carry the URLLC data.
  • the first GF PUSCH resource is selected for data bearer, and the silence is performed. GB PUSCH transmission.
  • the MAC layer performs the decision. Since the time domain length of the GB PUSCH is 14 symbols, which is greater than the threshold #1, the MAC layer selects the GF PUSCH for carrying. URLLC data. Thus, the MAC layer interrupts the GB PUSCH packet and starts the GF PUSCH packet.
  • the UE performs logical channel deletion and LCP processing according to the selected PUSCH feature at the MAC layer. After completing the MAC PDU group packet, the UE sends the grouped packet to the PHY layer, and tells the PHY layer that the selected PUSCH is GF PUSCH.
  • the PHY layer performs GF PUSCH transmission according to the MAC layer indication, including scrambling, coding, layer mapping, resource mapping, and conversion coding of the data packet sent by the MAC layer (if the TP is required for the high layer configuration), and completing the uplink information transmission.
  • the gNB end since the gNB end does not know whether the UE-side URLLC data arrives, it needs to perform signal reception on both the GB PUSCH and the GF PUSCH resources.
  • FIG. 4 is a schematic diagram of another example of a pattern of a physical upstream channel of the present application. As shown in FIG. 4, it is assumed that the GF PUSCH transmission occupies 2 symbols, the transmission period of the GF PUSCH is 7 OFDM symbols, and the spectrum efficiency of the MCS of the GF PUSCH is SE#1. In this case, the threshold #1 can be 2.
  • the UE receives the UL Grant in the slot n, and after analyzing the UL Grant, it is learned that the GB PUSCH of the UL Grant scheduling is transmitted on slot n+2, occupying symbols 0-13.
  • the PHY layer of the UE sends the UL Grant to the MAC layer to inform the transmission characteristics of the GB PUSCH, including the time domain location, the time domain length, the MCS, the TBS, and the like.
  • the URLLC data after the URLLC data arrives, it can be transmitted on the GF PUSCH before the GB PUSCH, and after all URLLC data transmission is completed, the UE selects the GB PUSCH for data bearer, and the silence 2 GF PUSCH transmission.
  • FIG. 5 is a schematic diagram showing still another example of the pattern of the physical uplink channel of the present application. As shown in FIG. 5, it is assumed that the GF PUSCH transmission occupies 7 symbols, the transmission period of the GF PUSCH is 14 OFDM symbols, and the spectrum efficiency of the MCS of the GF PUSCH is SE#1. In this case, the threshold #1 can be 7.
  • the UE receives the UL Grant in the slot n, and after analyzing the UL Grant, it is learned that the GB PUSCH of the UL Grant scheduling is transmitted on slot n+2, occupying symbols 0-7, and the MCS used by the GB PUSCH corresponds to The spectrum efficiency is SE#2.
  • the PHY layer of the UE sends the UL Grant to the MAC layer to inform the transmission characteristics of the GB PUSCH, including the time domain location, the time domain length, the MCS, the TBS, and the like.
  • the UE needs to send URLLC data.
  • the URLLC data After the URLLC data arrives, it is too late to transmit on the GF PUSCH before the GB PUSCH, or even if the GF PUSCH is preceded by the GB PUSCH, but the URLLC data is not transmitted, the URLLC data needs to be on the GF PUSCH resource where the GB PUSCH overlaps. transmission.
  • the UE finds that the time domain of the GB PUSCH and the GF PUSCH resource overlap in the MAC layer, and accurately indicates that the GB PUSCH overlaps with two GF PUSCHs, and the MAC layer performs PUSCH deletion.
  • the MAC layer since the time domain length of the GB PUSCH is 7 symbols, which is equal to the threshold #1, the MAC layer directly selects the GB PUSCH for carrying the URLLC data, or the MAC layer further determines the spectrum efficiency SE corresponding to the MCS of the GB PUSCH. If the #2 is greater than the second threshold SE#1, when the SE#2 corresponding to the MCS of the GB PUSCH is not greater than the SE#1 corresponding to the MCS of the GF PUSCH, the MAC layer selects the GB PUSCH for data bearer and silences the GF PUSCH.
  • the UE performs logical channel deletion and LCP processing according to the selected PUSCH feature at the MAC layer. After completing the MAC PDU group packet, the UE sends the grouped packet to the PHY layer, and tells the PHY layer that the selected PUSCH is GB PUSCH.
  • the PHY layer performs GB PUSCH transmission according to the MAC layer indication, including scrambling, coding, layer mapping, resource mapping, and conversion coding of the data packet sent by the MAC layer (if the high-level configuration needs to use TP), the uplink information transmission is completed.
  • the gNB end since the gNB end does not know whether the UE-side URLLC data arrives, it needs to perform signal reception on both the GB PUSCH and the GF PUSCH resources.
  • FIG. 6 is a schematic diagram showing still another example of the pattern of the physical uplink channel of the present application. As shown in FIG. 6, it is assumed that the GF PUSCH transmission occupies 2 symbols, the transmission period of the GF PUSCH is 7 OFDM symbols, and the spectrum efficiency of the MCS of the GF PUSCH is SE#1. In this case, the threshold #1 can be 2.
  • the UE receives the UL Grant in the slot n, and after analyzing the UL Grant, it is learned that the GB PUSCH of the UL Grant scheduling is transmitted on slot n+2, occupying symbols 0-13.
  • the PHY layer of the UE sends the UL Grant to the MAC layer to inform the transmission characteristics of the GB PUSCH, including the time domain location, the time domain length, the MCS, the TBS, and the like.
  • the UE starts to transmit the GB PUSCH, and at the third symbol of the time slot, the URLLC data arrives at the UE end. Since the MAC layer group packet is completed, the URLLC data cannot be added to the GB. The PUSCH transmission needs to be transmitted on the GF PUSCH.
  • the UE At the MAC layer, the UE only needs to process the GF PUSCH, and performs logical channel deletion and LCP processing according to the GF PUSCH feature. After completing the MAC PDU group packet, the group sends the good packet to the PHY layer, and tells the PHY layer that the selected PUSCH is GF PUSCH.
  • the UE finds that the most recent available GF PUSCH resource overlaps with a transmitting PU PUSCH time domain at the PHY layer, and the PHY layer interrupts the GB PUSCH transmission, and starts the GF PUSCH transmission, including scrambling and encoding the MAC layer-issued data packet. Modulation, layer mapping, resource mapping, and transcoding (if TP is required for high-level configuration), the uplink information transmission is completed.
  • the corresponding gNB end needs to receive the potential GF PUSCH even after starting the GB PUSCH reception.
  • one solution is to specify that the GB PUSCH priority is always greater than the GF PUSCH, and when the GB PUSCH overlaps with the GF PUSCH, the UE Select GB PUSCH for transmission.
  • GF PUSCH is often used for URLLC service transmission
  • GB PUSCH is often used for eMBB service transmission
  • GF PUSCH has higher priority than GB PUSCH.
  • gNB is intelligent, so the GB PUSCH of the eMBB is not scheduled to the time domain location of the GF PUSCH. Under normal circumstances, the GB PUSCH and the GF PUSCH should not overlap. If the gNB is scheduled in this way, that is, the GB PUSCH is scheduled in the GF PUSCH time domain location, it means that the GB PUSCH is also very important. For example, it is also used to carry the URLLC service. In this case, the GB PUSCH should be transmitted preferentially.
  • GF PUSCH is a UE autonomous behavior, not a data transmission under gNB control. Under normal circumstances, gNB controlled data transmission is more reliable and more efficient, so the priority is higher.
  • the conclusion of RAN2 does not fully consider the characteristics of URLLC data transmission, or physical layer GF resource configuration.
  • the GF PUSCH resource configuration period may be very short, and the minimum is 2 OFDM symbols, so that the GF PUSCH may be dense.
  • the UE when the UE configures the GF PUSCH resource, the UE has eMBB data coming, and the eMBB does not necessarily select the GF PUSCH to carry. Therefore, the UE must generate the SR request gNB scheduling PUSCH, that is, the GB PUSCH, to carry and transmit the eMBB data.
  • the gNB cannot be scheduled to shift the GB PUSCH and the GF PUSCH time domain. In this case, the case where the GB PUSCH overlaps with the GF PUSCH is inevitable. After the above case occurs, since the GB PUSCH is triggered by the eMBB data, the length of the time domain symbol may be large, and the maximum length requirement of the logical channel of the URLLC service for the PUSCH may not be satisfied, and the URLLC data cannot be carried. As a result, when the URLLC data arrives, it can be carried by the GF PUSCH.
  • the UE since the GB PUSCH priority is higher than the GF PUSCH, the UE always selects the GB PUSCH, causing the URLLC data to be delayed, or even delayed many times. Transmission, which is disadvantageous for low latency transmission time of URLLC data. Even if the time domain symbol length of the GB PUSCH is small, the URLLC data can be carried. However, since the transmitted MBB service data, the target block error rate Target BLER may be large, and the highly reliable transmission of the URLLC data cannot be guaranteed.
  • one solution is to specify that the priority of the GF PUSCH is higher than that of the GB PUSCH.
  • the main starting point is to protect the low latency and high reliability transmission of the URLLC service.
  • the above solution ignores an important problem, that is, although GF PUSCH is configured, it does not necessarily have data transmission. Only when the corresponding logical channel has data arrives, the UE will actually generate GF PUSCH. In this way, if there is no data arrival in the URLLC service, that is, no logical data is received on the logical channel of the GF PUSCH, the GF PUSCH is unfavorable, the eMBB data may not be transmitted on the GF PUSCH, and the logical channel corresponding to the eMBB service is often configured with the configured Grant Type 1 Allowed is false, so it cannot be transferred on GF PUSCH.
  • the eMBB service data is continuously delayed, which greatly affects the eMBB data transmission.
  • the GF PUSCH is a URLLC service
  • the TBS is small
  • the Target BLER is very low (that is, the MCS is small).
  • the bearer and the physics of the MAC layer are caused by the eMBB data. Layer transmission over-protection is not conducive to improving resource utilization efficiency. To take a step back, even if the URLLC service has data arrival, it may be that the UE wants to go through the GB process.
  • the gNB re-schedules the GB PUSCH for carrying the URLLC data. That is to say, GB PUSCH is originally for URLLC data, or GB PUSCH even for eMBB data, but transmission characteristics (including time domain length, MCS, etc.) can also be used to transmit URLLC data and guarantee low latency and high URLLC data. Reliable transmission, then the GB PUSCH is more controllable due to gNB scheduling, so the priority is still higher than GF PUSCH.
  • GF PUSCH is a UE spontaneous transmission, which may cause multiple UEs to use the same GF PUSCH resource to send data, so gNB needs to rely on more complex receiving algorithms (such as belief iteration algorithm) to distinguish UE, and GB PUSCH Since it is gNB scheduled, gNB can avoid the above problems.
  • the communication method of the present application it is possible to determine the channel to be transmitted from the physical uplink channel based on the scheduling mode and the physical uplink channel in the schedule-free mode according to whether or not the first data needs to be transmitted.
  • the selected channel has no data to be transmitted, and it can be reliably determined that the first data can be transmitted, whereby the flexibility of communication can be improved, and the reliability of transmission of the first data can be improved.
  • FIG. 7 is a schematic interaction diagram of another example of the communication method of the present application.
  • a MAC layer entity of a terminal device may receive a plurality of data from a higher layer entity, where the plurality of data may include data (recorded as data #1) and required to be transmitted through the GF PUSCH. Data transmitted by GB PUSCH (recorded as data #2).
  • the MAC layer entity of the terminal device may, for example, sequentially process the plurality of data (eg, LCP processing and MAC PDU group packets, etc.) according to the multiple data arrival order to generate a data packet corresponding to each data.
  • the plurality of data eg, LCP processing and MAC PDU group packets, etc.
  • the MAC layer entity may pass the completion After processing all the data transmitted by the GF PUSCH, the data that needs to be transmitted through the GB PUSCH is processed.
  • the MAC layer entity can complete the need After processing all the data transmitted by the GB PUSCH, the data that needs to be transmitted through the GF PUSCH is processed.
  • the MAC layer entity of the terminal device may send the generated multiple data packets to the physical layer entity, where the multiple data packets may include data packets that need to be sent through the GF PUSCH (recorded as data packet #1) And the packet that needs to be sent through GB PUSCH (recorded as packet #2).
  • the MAC layer entity of the terminal device can indicate to the physical layer entity the PUSCH to which each data packet needs to be carried.
  • the “indication” may be a direct indication.
  • the MAC layer entity of the terminal device may indicate the correspondence between each data packet and each PUSCH to the physical layer entity.
  • the “indication” may also be an indirect indication.
  • the MAC layer entity of the terminal device may indicate the correspondence between each data packet and each PUSCH by using a HARQ process ID. That is to say, the GB PUSCH and the GF PUSCH that the UE needs to process have different hybrid automatic repeat request (HARQ) identifiers (Indentifications, IDs), and the process can be implemented based on the scheduling of the gNBs. Then each HARQ entity has its own ID, and the data packet is sent to the PHY layer respectively. When the PHY layer receives the data packet from a certain HARQ entity, the ID is known, and the PUSCH is indirectly known.
  • HARQ hybrid automatic repeat request
  • the physical layer entity of the terminal device may preferentially transmit the data packet #1, or the physical layer entity of the terminal device may send the GF PUSCH and stop or silence the transmission of the GB PUSCH.
  • the terminal device can discard the packet #2.
  • the terminal device may store the packet #2 in the cache device. And, after the transmission of the GF PUSCH is completed, if the network device schedules the GB PUSCH again, and indicates the same HARQ process number, and indicates retransmission, the terminal device may send the data packet #2 through the newly scheduled GB PUSCH.
  • the processing of data that needs to be transmitted through the physical uplink channel based on the scheduling-free mode is stopped at the MAC layer, thereby affecting
  • the physical uplink channel based on the scheduling mode and the physical uplink channel based on the scheduling-free mode overlap, each data is processed in the MAC layer according to the order of arrival, and The second physical uplink channel is first transmitted at the physical layer, so that the first physical uplink channel can be immediately transmitted after the transmission of the second physical uplink channel is completed, thereby improving communication efficiency.
  • FIG. 8 is a schematic diagram of a communication device 10 according to an embodiment of the present disclosure.
  • the communication device 10 may be a terminal device, or may be a chip or a circuit, such as a chip that can be disposed on a terminal device. Or circuit.
  • the communication device 10 can include a processor 11 (ie, an example of a processing unit) and a memory 12.
  • the memory 12 is for storing instructions for executing the instructions stored by the memory 12 to cause the apparatus 20 to implement the steps performed by the terminal device (e.g., the UE #A described above) in the corresponding method of FIG.
  • the communication device 10 may further include an input port 13 (ie, an example of a communication unit) and an output port 14 (ie, another example of a communication unit).
  • the processor 11, memory 12, input port 13 and output port 14 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • the memory 12 is configured to store a computer program, and the processor 11 can be used to call and run the computer program from the memory 12 to control the input port 13 to receive signals, and control the output port 14 to send signals to complete the terminal device in the above method.
  • the memory 12 can be integrated in the processor 11 or can be provided separately from the processor 11.
  • the input port 13 is a receiver
  • the output port 14 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 13 is an input interface
  • the output port 14 is an output interface
  • the functions of the input port 13 and the output port 14 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 11 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the terminal device provided by the embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 11, the input port 13, and the output port 14 is stored in the memory 12, and the general purpose processor implements the functions of the processor 11, the input port 13, and the output port 14 by executing the code in the memory 12.
  • the processor 11 is configured to determine a first determination result when determining that the first physical uplink channel and the second physical uplink channel overlap in the time domain, where the first determination result includes whether the first need to be sent.
  • the first physical uplink channel includes a dynamically authorized physical uplink channel
  • the second physical uplink channel includes a physical uplink channel configured with an authorization
  • the first logical channel corresponds to the second physical uplink channel;
  • the target physical uplink channel to be transmitted is determined from the first physical uplink channel and the second uplink physical channel.
  • the output port 14 is configured to send the target physical uplink channel.
  • the processor 11 is configured to determine the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and the second determination result, where
  • the second determination result includes whether a determination result of performing logical channel prioritized LCP processing on the first physical uplink channel at the medium access control MAC layer is started; or
  • the second determination result includes whether a result of determining that the MAC layer packet data unit PDU corresponding to the first physical uplink channel is grouped at the MAC layer has been started; or
  • the second determination result includes whether the determination result of the MAC PDU group packet corresponding to the first physical uplink channel has been completed.
  • the second determination result includes a determination result of whether the first physical uplink channel has been transmitted at the physical layer.
  • the processor 11 is specifically configured to: if the first determination result is yes, and the second determination result is yes, use the second physical uplink channel as the target physical uplink channel; or
  • the one of the first physical uplink channel or the second physical uplink channel is used as the target physical uplink channel.
  • the processor 11 is configured to determine the target physical uplink channel from the first physical uplink channel and the second uplink physical channel according to the first determination result and a time domain length of the first physical uplink channel. .
  • the processor 11 is specifically configured to determine the first physical uplink channel as the target physics if the first determination result is yes, and the time domain length of the first physical uplink channel is less than or equal to the first threshold.
  • the first determination result is yes, and the time domain length of the first physical uplink channel is greater than the first threshold, determining the second physical uplink channel as the target physical uplink channel.
  • the processor 11 is configured to: according to the first determination result, a time domain length of the first physical uplink channel, and a modulation and coding policy MCS of the first physical uplink channel, from the first physical uplink channel and Determining the target physical uplink channel in the second uplink physical channel.
  • the processor 11 is specifically configured to: if the first determination result is yes, the time domain length of the first physical uplink channel is less than or equal to the first threshold, and the spectrum efficiency of the MCS of the first physical uplink channel is If the SE is less than or equal to the second threshold, determining the first physical uplink channel as the target physical uplink channel; or
  • the time domain length of the first physical uplink channel is less than or equal to the first threshold, and the spectrum efficiency SE corresponding to the MCS of the first physical uplink channel is greater than the second threshold,
  • the two physical uplink channels are determined as the target physical uplink channel.
  • the processor 11 is specifically configured to determine the first physical uplink channel as the target physical uplink channel if the first determination result is no; or
  • modules or units in the communication device 10 listed above are merely exemplary.
  • the modules or units in the communication device 10 may be used to perform various actions or processes performed by the terminal device in the above method, where In order to avoid redundancy, a detailed description thereof will be omitted.
  • FIG. 9 is a schematic structural diagram of a terminal device 20 provided by the present application.
  • the terminal device 20 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, in the embodiment of the indication method for supporting the terminal device to perform the foregoing transmission precoding matrix.
  • the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 11 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 11 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 201 of the terminal device 20, and the processor having the processing function is regarded as the processing unit 202 of the terminal device 20.
  • the terminal device 20 includes a transceiver unit 201 and a processing unit 202.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 201 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 201 is regarded as a sending unit, that is, the transceiver unit 201 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • FIG. 10 is a schematic diagram 2 of a device 30 for communication according to an embodiment of the present application.
  • the device 30 may be a network device (for example, the above gNB#A), or may be a chip or A circuit, such as a chip or circuit that can be placed in a network device.
  • the apparatus 30 can include a processor 31 (ie, an example of a processing unit) and a memory 32.
  • the memory 32 is for storing instructions for executing the instructions stored by the memory 32 to cause the apparatus 30 to perform the steps performed by the network device in the aforementioned method.
  • the device 30 may further include an input port 33 (ie, an example of a communication unit) and an output port 33 (ie, another example of the processing unit).
  • an input port 33 ie, an example of a communication unit
  • an output port 33 ie, another example of the processing unit.
  • processor 31, memory 32, input port 33, and output port 34 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • a network device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 31, the input port 33, and the output port 34 is stored in a memory, and the general purpose processor implements the functions of the processor 31, the input port 33, and the output port 34 by executing code in the memory.
  • the memory 32 is configured to store a computer program
  • the processor 31 can be configured to call and run the computer program from the memory 32 to simultaneously detect GB PUSCH and GF PUSCH when the GB PUSCH and the GF PUSCH overlap in the time domain. both sides.
  • the functions and actions of the modules or units in the communication device 30 listed above are merely exemplary.
  • the modules or units in the communication device 30 may be used to perform the network device (eg, gNB#A) executed in the above method. In the respective operations or processes, detailed descriptions thereof will be omitted herein to avoid redundancy.
  • FIG. 11 is a schematic structural diagram of a network device 40 according to an embodiment of the present disclosure, which may be used to implement the functions of a network device (for example, access network device #A or core network device # ⁇ ) in the foregoing method.
  • the network device 40 includes one or more radio frequency units, such as a remote radio unit (RRU) 401 and one or more baseband units (BBUs) (also referred to as digital units, DUs). 402.
  • RRU 401 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4011 and a radio frequency unit 4012.
  • the RRU 401 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 402 portion is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 401 and the BBU 402 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 402 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU (processing unit) 402 can be used to control the base station 40 to perform the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 402 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE system or a 5G system), or may support different ones. Access to the standard wireless access network.
  • the BBU 402 also includes a memory 4021 and a processor 4022.
  • the memory 4021 is used to store necessary instructions and data.
  • the memory 4021 stores the codebook or the like in the above embodiment.
  • the processor 4022 is configured to control a base station to perform necessary actions, for example, to control a base station to perform an operation procedure of the network device in the foregoing method embodiment.
  • the memory 4021 and the processor 4022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • SoC System-on-chip
  • all or part of the functions of the 402 part and the 401 part may be implemented by the SoC technology, for example, by a base station function chip.
  • the base station function chip integrates a processor, a memory, an antenna interface and the like.
  • the program of the base station related function is stored in the memory, and the processor executes the program to implement the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • FIG. 11 It should be understood that the structure of the network device illustrated in FIG. 11 is only one possible form, and should not be construed as limiting the embodiments of the present application. This application does not preclude the possibility of other forms of base station architecture that may arise in the future.
  • the embodiment of the present application further provides a communication system including the foregoing network device and one or more terminal devices.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the communication system of the present application may include one or more of the terminal device 20 shown in FIG. 9 and one or more of the network devices 40 shown in FIG.
  • the communication system of the present application may further include devices other than the terminal device 20 and the network device 40.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法和通信装置,该通信方法包括:当第一物理上行信道与第二物理上行信道在时域上重叠时,确定第一判定结果,该第一判定结果包括是否需要发送第一数据的判定结果,该第一物理上行信道包括动态授权的物理上行信道,该第二物理上行信道包括配置授权的物理上行信道;根据该第一判定结果,从该第一物理上行信道和该第二上行物理信道中确定需要发送的目标物理上行信道,从而,能够提高通信的灵活性。

Description

通信方法和通信装置
本申请要求于2018年05月11日提交中国专利局、申请号为201810450854.8、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及通信方法和通信装置。
背景技术
随着通信技术的发展,出现了例如,极高可靠性低时延通信(Ultra-reliable/low latency communication,URLLC)对传输时延的要求较高的业务。
为了满足上述业务对传输时延的要求,可以基于免调度方式的物理上行信道传输该业务的数据。
因此,可能出现基于调度方式的物理上行信道和免调度方式的物理上行信道在时域上重叠的情况。
目前,针对上述情况的处理方式是,通信系统规定发送基于调度方式的物理上行信道。或者,通信系统规定发送基于调度方式的物理上行信道。
无论上述何种处理方式,均影响了通信的灵活性。
发明内容
本申请提供一种通信方法和通信装置,能够提高通信的灵活性。
第一方面,提供了一种通信方法包括:当第一物理上行信道与第二物理上行信道在时域上重叠时,确定第一判定结果,该第一判定结果包括是否需要发送第一数据的判定结果,该第一物理上行信道包括动态授权的物理上行信道,该第二物理上行信道包括配置授权的物理上行信道;根据该第一判定结果,从该第一物理上行信道和该第二上行物理信道中确定需要发送的目标物理上行信道。
根据本申请的通信方法,通过根据是否有第一数据需要发送的情况,从基于调度方式的物理上行信道和免调度方式的物理上行信道中,确定需要发送的信道,能够避免所选择的信道没有数据要发送的情况,并且,能够可靠地保障第一数据能够被快速可靠地发送,并且,可以降低对其他数据发送的影响,从而,能够提高通信的灵活性。
可选地,该第一数据包括超高可靠性低时延通信URLLC数据。
可选地,该第一数据包括满足预设QoS需求的到达MAC层的高层数据流内的数据。
可选地,该第一数据包括第一逻辑信道上的数据。
可选地,该第一逻辑信道用于发送URLLC数据。
可选地,该第一逻辑信道是网络设备通过高层信令指示的。
可选地,该第一逻辑信道是通信协议预定义的。
可选地,该第一逻辑信道的配置授权类型1允许configured Grant Type1 Allowed参数存在。
可选地,该第一逻辑信道的configured Grant Type1 Allowed参数的值为1。
可选地,该方法还包括:停止发送非目标物理上行信道。
该非目标物理上行信道是该第一物理上行信道与第二物理上行信道中未被确定为目标物理上行信道的一方。
可选地,“停止发送非目标物理上行信道”可以理解为,如果在媒体接入控制MAC层还未开始针对非目标物理上行信道进行逻辑信道优先权LCP处理,或者还没开始针对非目标物理上行信道进行MAC层分组数据单元PDU组包,或者还未完成对应的MAC PDU组包,则MAC层停止或者终端针对该非目标物理上行信道的LCP处理或MAC组包,也就是说,MAC层不会完成针对非目标物理上行信道进行的组包,也不会通知物理PHY层发送该非目标物理上行信道进行;
可选地,“停止发送非目标物理上行信道”可以理解为,如果PHY层已经收到MAC层针对非目标物理上行信道的MAC PDU,但是还没有进行非目标物理上行信道发送,则PHY层停止,或静默,非目标物理上行信道在物理层的发送。
可选地,“停止发送非目标物理上行信道”可以理解为,如果PHY层已经收到MAC层针对非目标物理上行信道的MAC PDU,并且已经开始非目标物理上行信道的发送,则在PHY层终止或中断非目标物理上行信道的发送。
可选地,该根据该第一判定结果,从该第一物理上行信道和该第二上行物理信道中确定需要发送的目标物理上行信道,包括:如果该第一判定结果为否,则将该第一物理上行信道确定为目标物理上行信道。
从而,能够在第一数据未到达的情况下,避免基于调度方式的物理上行信道无法被发送的情况,从而使得eMBB数据只能在免调度的物理上行信道上发送,但是免调度的物理上行信道可能不可以承载eMBB数据,或者即使能够承载,传输频谱效率也很低,会极大地影响eMBB数据传输。
可选地,该根据该第一判定结果,如果该第一判定结果为是,则将该第二物理上行信道确定为目标物理上行信道,并在该该第二物理上行信道上发送第一数据。
可选地,该根据该第一判定结果,如果该第一判定结果为是,则将该第一物理上行信道确定为目标物理上行信道,并在该第一物理上行信道上发送第一数据。
从而,能够在第一数据到达的情况下,确保该第一数据能够被及时发送。
可选地,该根据该第一判定结果,从该第一物理上行信道和该第二上行物理信道中确定需要发送的目标物理上行信道,包括:根据该第一判定结果和第二判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该第二判定结果包括是否已经开始在MAC层对该第一物理上行信道进行LCP处理的判定结果。
可选地,该第二判定结果包括是否已经开始在MAC层对该第一物理上行信道对应的MAC PDU进行组包的判定结果。
可选地,该第二判定结果包括是否已经完成该第一物理上行信道对应的MAC PDU组 包的判定结果。
可选地,该第二判定结果包括是否已经在PHY层开始发送该第一物理上行信道的判定结果。
可选地,该第二判定结果包括获得该第一判定结果的时刻与该第一物理上行信道的起始时刻之间的时间间隔是否小于预设的时间门限的判定结果。
可选地,该时间门限是通信系统或通信协议规定的。
或者,该时间门限是网络设备确定并指示给终端设备的。
可选地,根据该第一判定结果和第二判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第二判定结果为是,则将该第二物理上行信道作为该目标物理上行信道。
从而,在第一物理信道已经开始处理或发送后,UE发现来不及把第一数据放入第一物理信道承载,所以在MAC层处理第二物理信道,在第二物理信道上承载第一数据,并在PHY层发送第二物理信道,从而确保第一数据可以快速可靠发送。
可选地,该根据该第一判定结果和第二判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第二判定结果为否,则将该第一物理上行信道或该第二物理上行信道中的一个信道作为该目标物理上行信道。
可选地,该根据该第一判定结果和第二判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:根据该第一判定结果、第二判定结果和该第一物理上行信道的时域长度,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,根据该第一判定结果、第二判定结果和该第一物理上行信道的时域长度,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:
如果第一判定结果为是、第二判定结果为否,且该第一物理上行信道的时域长度小于或等于第一阈值,则将该第一物理上行信道确定为目标物理上行信。
可选地,该根据该第一判定结果和第二判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果第一判定结果为是、第二判定结果为否则根据该第一物理上行信道的时域长度,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该根据该第一判定结果和第二判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果第一判定结果为是、第二判定结果为否则根据该第一物理上行信道的时域长度和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该根据该第一判定结果和第二判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果第一判定结果为是、第二判定结果为否则根据该第一物理上行信道的时域长度、该第一物理上行信道MCS和该该第一物理上行信道传输块大小TBS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该根据该第一判定结果,从该第一物理上行信道和该第二上行物理信道中确 定需要发送的目标物理上行信道,包括:根据该第一判定结果和该第一物理上行信道的时域长度,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该根据该第一判定结果和该第一物理上行信道的时域长度,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第一物理上行信道的时域长度小于或等于第一阈值,则将该第一物理上行信道确定为目标物理上行信。
可选地,该根据该第一判定结果和该第一物理上行信道的时域长度,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第一物理上行信道的时域长度大于该第一阈值,则将该第二物理上行信道确定为目标物理上行信道。
可选地,该第一阈值是根据该第二物理上行信道的时域长度确定的。
可选地,该第一阈值与根据该第二物理上行信道的时域长度的值相同。
可选地,该根据该第一判定结果和该第一物理上行信道的时域长度,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:根据该第一判定结果、该第一物理上行信道的时域长度和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该根据该第一判定结果、该第一物理上行信道的时域长度和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,该第一物理上行信道的时域长度小于或等于第一阈值,且该第一物理上行信道的MCS对应的频谱效率SE小于或等于第二阈值,则将该第一物理上行信道确定为目标物理上行信道。
可选地,该根据该第一判定结果、该第一物理上行信道的时域长度和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,该第一物理上行信道的时域长度小于或等于第一阈值,且该第一物理上行信道的MCS对应的频谱效率SE大于该第二阈值,则将该第二物理上行信道确定为目标物理上行信道。
可选地,该根据该第一判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:根据该第一判定结果和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该根据该第一判定结果和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第一物理上行信道的MCS对应的频谱效率SE小于或等于第二阈值,则将该第一物理上行信道确定为目标物理上行信道。
可选地,该根据该第一判定结果和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第一物理上行信道的MCS对应的频谱效率SE大于该第二阈值,则将该第二物理上行信道确定为目标物理上行信道。
可选地,该第二阈值是根据该第二物理上行信道的MCS对应的SE确定的。
可选地,该第二阈值与根据该第二物理上行信道的MCS对应的SE的值相同。
可选地,该根据该第一判定结果和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第一物理上行信道的MCS的索引index小于或等于第三阈值,则将该第一物理上行信道确定为目标物理上行信道。
可选地,该根据该第一判定结果和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第一物理上行信道的MCS的index大于该第三阈值,则将该第二物理上行信道确定为目标物理上行信道。
可选地,该第三阈值是根据该第二物理上行信道的MCS的index确定的。
可选地,该第三阈值与根据该第二物理上行信道的MCS的index的值相同。
可选地,该根据该第一判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:根据该第一判定结果和该第一物理上行信道的传输块大小TBS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该根据该第一判定结果和该第一物理上行信道的TBS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第一物理上行信道的TBS大于或等于第四阈值,则将该第一物理上行信道确定为目标物理上行信道。
可选地,该根据该第一判定结果和该第一物理上行信道的TBS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,包括:如果该第一判定结果为是,且该第一物理上行信道的TBS小于第四阈值,则将该第二物理上行信道确定为目标物理上行信道。
可选地,该第四阈值是根据该第二物理上行信道的TBS确定的。
可选地,该第四阈值与根据该第二物理上行信道的TBS的值相同。
可选地,当该第一判定结果为否时,在所述第一物理上行信道能够承载最大数据量小于待发送数据量的情况下,将所述第一物理上行信道确定为所述目标物理上行信道,并停止发送非目标物理上行信道。
可选地,待发送的数据为eMBB数据。
从而,能够提高eMBB数据的传输效率。
第二方面,提供了一种通信方法,包括:当第一数据到达时,如果第一物理上行信道与第二物理上行信道在时域上重叠,则在媒体接入控制MAC层,基于所述第二物理上行信道,对第一数据进行处理,以生成需要通过所述第二物理上行信道发送的第一数据包,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;在MAC层向物理层发送所述第一数据包,并指示所述物理层通过所述第二物理上行信道发送所述第一数据包。
可选地,第一数据包括超高可靠性低时延通信URLLC数据;
可选地,所述第一数据包括第一逻辑信道上的数据。
可选地,该第一数据包括满足预设QoS需求的到达MAC层的高层数据流内的数据。
可选地,该第一逻辑信道用于发送URLLC数据。
可选地,该第一逻辑信道是网络设备通过高层信令指示的。
可选地,该第一逻辑信道是通信协议预定义的。
可选地,该第一逻辑信道的配置授权类型1允许configured Grant Type1 Allowed参数存在。
可选地,该第一逻辑信道的configured Grant Type1 Allowed参数的值为1。
第三方面,提供了一种通信方法,包括:在物理层,接收来自媒体接入控制MAC层的第一数据包,并根据所述MAC层的指示确定在所述第二物理上行信道上发送所述第一数据包;如果第一物理上行信道与第二物理上行信道在时域上重叠,则在物理层停止所述第一物理上行信道的发送,并发送所述第二物理上行信道,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道。
可选地,第一数据包括超高可靠性低时延通信URLLC数据;
可选地,所述第一数据包括第一逻辑信道上的数据。
可选地,该第一数据包括满足预设QoS需求的到达MAC层的高层数据流内的数据。
可选地,该第一逻辑信道用于发送URLLC数据。
可选地,该第一逻辑信道是网络设备通过高层信令指示的。
可选地,该第一逻辑信道是通信协议预定义的。
可选地,该第一逻辑信道的配置授权类型1允许configured Grant Type1 Allowed参数存在。
第四方面,提供了一种通信方法,包括:当第一数据到达时,如果第一物理上行信道与第二物理上行信道在时域上重叠,则在媒体接入控制MAC层,基于所述第二物理上行信道,对第一数据进行处理,以生成需要通过所述第二物理上行信道发送的第一数据包,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;在物理层停止所述第一物理上行信道的发送,并发送所述第二物理上行信道。
可选地,第一数据包括超高可靠性低时延通信URLLC数据;
可选地,该第一数据包括满足预设QoS需求的高层数据流内的数据。
可选地,所述第一数据包括第一逻辑信道上的数据。
可选地,该第一逻辑信道用于发送URLLC数据。
可选地,该第一逻辑信道是网络设备通过高层信令指示的。
可选地,该第一逻辑信道是通信协议预定义的。
可选地,该第一逻辑信道的配置授权类型1允许configured Grant Type1 Allowed参数存在。
第五方面,提供了一种通信方法,包括:在媒体接入控制MAC层按照到达次序对多个数据依次进行处理以生成每个数据对应的数据包,所述多个数据包括需要通过第一物理上行信道发送的数据和需要通过第二物理上行信道发送的数据,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;如果第一物理上行信道与第二物理上行信道在时域上重叠,则在物理层停止所述第一物理上行信道的发送,并发送所述第二物理上行信道。
根据现有技术,如果基于调度方式的物理上行信道和基于免调度方式的物理上行信道重叠,则在MAC层停止对在需要通过基于免调度方式的物理上行信道传输的数据的处理, 从而,影响了该数据的传输,与此相对,在本申请中,如果基于调度方式的物理上行信道和基于免调度方式的物理上行信道重叠,则在MAC层按照到达次序对每个数据均进行处理,并在物理层优先发送所述第二物理上行信道(包括停止或中断第一物理上行信道,发送第二物理上行信道),从而,能够保障URLLC数据的快速可靠传输。
第六方面,提供了一种通信装置,包括用于执行上述第一方面至第五方面中的任一方面及其各实现方式中的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备(例如,终端设备),通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第七方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行上述第一方面至第五方面中的任一方面及其各实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信设备还包括,发射机(发射器)和接收机(接收器)。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行执行上述第一方面至第五方面中的任一方面及其各实现方式中的通信方法。
第九方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行执行上述第一方面至第五方面中的任一方面及其各实现方式中的通信方法。
第十方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面至第五方面中的任一方面及其各实现方式中的通信方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
第十一方面,提供了一种通信系统,包括终端设备和网络设备,其中所述终端设备用于执行上述第一方面及其各实现方式中的通信方法;所述网络设备用于接收所述终端设备从第一物理上行信道和第二上行物理信道中确定的目标物理上行信道,所述第一物理上行信道与所述第二物理上行信道在时域上重叠,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道。
第十二方面,提供了一种通信系统,包括终端设备和网络设备,其中所述终端设备用于执行上述第二方面至第五方面中的任一方面及其各实现方式中的通信方法;并且,所述网络设备用于接收所述终端设备发送的第二物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道,第一物理上行信道与所述第二物理上行信道在时域上重叠,所述第一物理上行信道包括动态授权的物理上行信道。
根据本申请的通信方法,通过根据是否有第一数据需要发送的情况,从基于调度方式 的物理上行信道和免调度方式的物理上行信道中,确定需要发送的信道,能够避免所选择的信道没有数据要发送的情况,并且,能够可靠地确定第一数据能够被发送,从而,能够提高通信的灵活性,并且,能够提高第一数据的传输的可靠性。
附图说明
图1是本申请的通信系统的示意性架构图。
图2是本申请的通信方法的一例的示意性流程图。
图3是本申请的物理上行信道的图案的一例的示意图。
图4是本申请的物理上行信道的图案的另一例的示意图。
图5是本申请的物理上行信道的图案的再一例的示意图。
图6是本申请的物理上行信道的图案的再一例的示意图。
图7是本申请的通信方法的另一例的示意性交互图。
图8是本申请的通信装置的一例的示意性框图。
图9是本申请的通信装置的另一例的示意性框图。
图10是本申请的终端设备的一例的示意性框图。
图11是本申请的网络设备的一例的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
作为示例而非限定,在本申请实施例中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protoco,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上, 或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(Internet of Things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
在本申请实施例中,IOT技术可以通过例如窄带(Narrow Band)NB技术,做到海量连接,深度覆盖,终端省电。例如,NB只包括一个资源块(Resource Bloc,RB),即,NB的带宽只有180KB。要做到海量接入,必须要求终端在接入上是离散的,根据本申请实施例的通信方法,能够有效解决IOT技术海量终端在通过NB接入网络时的拥塞问题。
此外,在本申请中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
网络设备可以是接入网设备等用于与移动设备通信的设备,作为示例而非限定,在本申请中,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),或者是新型无线系统(New Radio,NR)系统中的gNB,还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等。
另外,在本申请实施例中,接入网设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与接入网设备进行通信,该小区可以是接入网设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(Carrier Aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentification,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
核心网设备可以与多个接入网设备连接,用于控制接入网设备,并且,可以将从网络侧(例如,互联网)接收到的数据分发至接入网设备。
此外,在本申请中,网络设备可以包括基站(gNB),例如宏站、微基站、室内热点、以及中继节点等,功能是向终端设备发送无线电波,一方面实现下行数据传输,另一方面发送调度信息控制上行传输,并接收终端设备发送的无线电波,接收上行数据传输。
其中,以上列举的终端设备、接入网设备和核心网设备的功能和具体实现方式仅为示例性说明,本申请并未限定于此。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
需要说明的是,在本申请实施例中,在应用层可以运行多个应用程序,此情况下,执行本申请实施例的通信方法的应用程序与用于控制接收端设备完成所接收到的数据所对应的动作的应用程序可以是不同的应用程序。
图1是能够适用本申请实施例通信方法的系统100的示意图。如图1所示,该系统100包括接入网设备102,接入网设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,接入网设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
接入网设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,接入网设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为接入网设备102的扇区。例如,可将天线组设计为与接入网设备102覆盖区域的扇区中的终端设备通信。接入网设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在接入网设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,接入网设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与接入网设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在接入网设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,接入网设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络、设备到设备(Device-to-Device,D2D
)网络、机器到机器(Machine to Machine,M2M)网络、IoT网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他接入网设备,图1中未予以画出。
在本申请实施例中,数据或信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单位,在频域上,时频资源可以包括频域单位。
其中,一个时域单位可以是一个符号,或者一个迷你时隙(Mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。
一个频域单位可以是一个资源块(Resource block,RB),或者一个资源块组(Resource block group,RBG),或者一个预定义的子带(Subband)。
在本申请实施例中,“数据”或“信息”可以理解为信息块经过编码后生成的比特,或者,“数据”或“信息”还可以理解为信息块经过编码调制后生成的调制符号。
其中,一个信息块可以包括至少一个传输块(Transport Block TB),或者,“一个信息块可以包括至少一个TB组(包括至少一个TB),或者,“一个信息块可以包括至少一个编码块(Code Block,CB),或者,“一个信息块可以包括至少一个CB组(包括至少一个CB)等。
本申请的通信方法可以用于多种类型的业务的传输,该多种类型的业务例如,可以包括但不限于:a.超高可靠性与超低时延业务(Ultra Reliable&Low Latency Communication,URLLC)业务。b.增强型移动互联网业务(Enhanced Mobile Broadband,eMBB)业务。具体地说,国际电信联盟无线通信委员会(International Telecommunications Union-Radio Communications Sector,ITU-R)定义了未来5G的应用场景,该应用场景可以包括eMBB 和URLLC,并从吞吐率、时延、连接密度和频谱效率提升等8个维度定义了对5G网络的能力要求。其中,eMBB业务主要要求大速率,广覆盖、传输时延以及移动性。URLLC业务的主要需求为极高可靠性、极低移动性和传输时延,一般要求无线空口在1毫秒(ms)内达到99.999%的传输可靠性。
在本申请实施例中,通信系统100中的各通信设备(例如,网络设备或终端设备)可以基于免调度传输方案使用资源(例如,频域资源)进行通信,也可以基于调度方式使用资源(例如,频域资源)进行通信,本申请实施例并未特别限定。下面,分别对调度方式和免调度方式进行说明。
A.调度方式
具体地说,在本申请实施例中,数据的传输(例如,上行传输或下行传输)可以是基于网络设备的调度来进行。作为示例而非限定,该调度的数据传输的时域粒度可以是,例如,传输时间间隔(Transmission Time Interval,TTI)、短传输时间间隔(short Transmission Time Interval,sTTI),时隙或者迷你时隙。
具体的调度流程是基站发送控制信道,例如,物理下行控制信道(Physical Downlink Control Channel,PDCCH)或增强物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)或用于调度sTTI传输的物理下行控制信道(sTTI Physical Downlink Control Channel,sPDCCH),该控制信道可以承载使用不同的下行控制信息(Downlink Control Information,DCI)格式的用于调度物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的调度信息,该调度信息包括比如资源分配信息,调制编码方式等控制信息。终端设备检测控制信道,并根据检测出的控制信道中承载的调度信息来进行下行数据信道的接收或上行数据信道的发送。当引入sTTI技术后,控制信道中承载的调度信息可以指示TTI长度为1ms或TTI长度小于1ms的下行数据信道接收或上行数据信道发送。并且,NR中可以直接指示调度数据传输占据哪几个符号。
B.免调度方式
具体的说,为了解决未来网络大量低时延、高可靠的业务传输,可以使用免调度传输方案。在本申请实施例中,数据的传输也可以是免调度的。免调度传输英文可以表示为Grant Free。这里的免调度传输可以针对的是上行数据传输或下行数据传输。免调度传输可以理解为如下含义的任意一种含义,或,多种含义,或者多种含义中的部分技术特征的组合或其他类似含义:
免调度传输可以指:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端设备发送的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
免调度传输可以指:网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
免调度传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时, 从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
免调度传输可以指:不需要网络设备动态调度即可实现终端设备的上行数据传输的方法,所述动态调度可以是指网络设备为终端设备的每次上行数据传输通过信令来指示传输资源的一种调度方式。可选地,实现终端设备的上行数据传输可以理解为允许两个或两个以上终端设备的数据在相同的时频资源上进行上行数据传输。可选地,所述传输资源可以是终端设备接收所述的信令的时刻以后的一个或多个传输时间单元的传输资源。一个传输时间单元可以是指一次传输的最小时间单元,比如TTI或Slot。
免调度传输可以指:终端设备在不需要网络设备调度的情况下进行上行数据传输。所述调度可以指终端设备发送上行调度请求给网络设备,网络设备接收调度请求后,向终端设备发送上行许可,其中所述上行许可指示分配给终端设备的上行传输资源。
免调度传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行调度。
所述的数据可以为包括业务数据或者信令数据。
所述盲检测可以理解为在不预知是否有数据到达的情况下,对可能到达的数据进行的检测。所述盲检测也可以理解为没有显式的信令指示下的检测。
作为示例而非限定,在本申请实施例中,免调度传输的基本时间单元可以是一个TTI(例如,包括上述sTTI)。当引入sTTI技术后,免调度传输可以包括在TTI长度为1ms或TTI长度小于1ms的下行数据信道接收或上行数据信道发送。
“调度”(Grant)也可以称为“授权”,指的是网络设备(例如,gNB)发送的或者高层配置的、用于指示PUSCH传输特征的控制信息。
NR将上行(Uplink,UL)Grant分为动态授权(Dynamic Grant)和配置授权(Configured Grant)。
Dynamic Grant指的就是正常基于调度(Grant-based,GB)的PUSCH传输。即,Dynamic Grant的传输可以是指基于上述调度方式的传输。
Configured Grant指的是基于配置的PUSCH传输。即,Configured Grant的传输可以是指基于上述免调度方式的传输。
例如,Configured Grant可以包括半持续性调度(Semi-Persistent Scheduling,SPS)。并且,该半持续性调度也可以称为第二类配置授权(Type2 configured grant)。
再例如,Configured Grant可以包括NR中的免授权(Grant Free,GF)传输,并且,免授权传输也称为第一类配置授权(Type1 configured grant)。
为了便于理解和说明,以下,将基于调度方式传输的PUSCH称为GB PUSCH。
将基于免调度方式传输的PUSCH称为GF PUSCH。
在本申请中,终端设备,例如,终端设备的媒体接入控制(Media Access Control,MAC)层实体,可以通过例如高层配置等方式,获取MAC层的逻辑信道配置参数。
作为示例而非限定,在本申请中,MAC层逻辑信道可以分为2组。每个逻辑信道组中可以包括至少一个逻辑信道。
其中,一个逻辑信道组(记作,逻辑信道组#1)可以使用GF PUSCH来承载数据与传输,或者说,使用GF PUSCH传输的数据可以被承载于逻辑信道组#1中的逻辑信道中。
并且,作为示例而非限定,逻辑信道组#1中的各逻辑信道的配置参数,例如,配置授权类型1允许(configured Grant Type 1 Allowed)参数可以被配置为存在(present),从而,终端设备可以在确定某个逻辑信道的configured Grant Type 1 Allowed参数存在时,确定该逻辑信道可以使用GF PUSCH传输的数据。
或者,该configured Grant Type 1 Allowed参数的参数值可以被配置为预设的规定值#a(例如,“1”,或“真(True)”),从而,终端设备可以在确定某个逻辑信道的configured Grant Type 1 Allowed参数的参数值为规定值#a(例如,1或True)时,确定该逻辑信道可以使用GF PUSCH传输的数据。
另外,另一个逻辑信道组(记作,逻辑信道组#2)不可以使用GF PUSCH来承载数据与传输,或者说,使用GF PUSCH传输的数据不可以被承载于逻辑信道组#2中的逻辑信道中。
并且,作为示例而非限定,逻辑信道组#2中的各逻辑信道的配置参数,例如,配置授权类型1允许(configured Grant Type 1 Allowed)参数可以被配置为不存在(unpresent),从而,终端设备可以在确定某个逻辑信道的configured Grant Type 1 Allowed参数不存在时,确定该逻辑信道不可以使用GF PUSCH传输的数据。
或者,该configured Grant Type 1 Allowed参数的参数值可以被配置为预设的规定值#b(例如,“0”,或“假(False)”),从而,终端设备可以在确定某个逻辑信道的configured Grant Type 1 Allowed参数的参数值为规定值#b(例如,0或False)时,确定该逻辑信道不可以使用GF PUSCH传输的数据。
由此,终端设备能够确定各逻辑信道是否可以使用GF PUSCH传输的数据,或者说UE能够确定各逻辑信道是否可以与GF PUSCH对应。
并且,在本申请中,终端设备可以根据网络设备的配置,确定GF PUSCH。
例如,终端设备,例如,终端设备的MAC层实体,可以通过例如高层配置等方式,确定GF PUSCH的配置参数。
作为示例而非限定,该GF PUSCH的配置参数可以包括但不限于也以下参数:
1.GF PUSCH的传输周期;
2.GF PUSCH在传输周期内的偏移,或者说,GF PUSCH的时域起始位置与该GF PUSCH所处于的传输周期的起始位置之间的偏移;
3.GF PUSCH占用的时域资源的大小,例如,GF PUSCH占用的时间单元(例如,符号)的数量;
4.GF PUSCH占用的频域资源,例如,GF PUSCH占用的频域资源的大小和频域位置;
5.GF PUSCH使用的调制与编码策略(Modulation and Coding Scheme,MCS),例如,GF PUSCH使用的MCS的索引,或者,GF PUSCH使用的MCS对应的频谱效率(Spectral Efficient,SE);
6.GF PUSCH的重复次数(repetition number);
7.GF PUSCH的冗余版本(Redundancy Version,RV)图案(pattern);
8.GF PUSCH对应的传输块(TransportBlock,TB)大小(Size),或者是,供物理层实体处理的逻辑信道与GF PUSCH之间的数据交换的基本单元的大小。
由此,终端设备(例如,终端设备的MAC层实体)能够确定各GF PUSCH的时域资源以及各GF PUSCH的配置参数。
并且,在本申请中,终端设备可以根据网络设备的调度,例如,网络设备发送的UL Grant,确定GB PUSCH。
例如,终端设备可以在slot n接收UL Grant,对该UL Grant进行解析后获知,该UL Grant调度的GB PUSCH在slot n+2上传输,是基于时隙(slot-based)传输,占据整个14个OFDM符号。
并且,终端设备的物理层实体将该UL Grant上报给MAC层实体,从而,MAC层实体可以基于该UL Grant确定该GB PUSCH的配置参数。
作为示例而非限定,该GB PUSCH的配置参数可以包括但不限于也以下参数:
1.GB PUSCH占用的时域资源,例如,GB PUSCH占用的时域资源的大小,例如,GB PUSCH占用的时间单元(例如,符号)的数量,以及GB PUSCH占用的时域资源的位置,例如,GB PUSCH占用的时域资源的起始位置;
2.GB PUSCH占用的频域资源,例如,GB PUSCH占用的频域资源的大小和频域位置;
3.GB PUSCH使用的MCS,例如,GB PUSCH使用的MCS的索引,或者,GB PUSCH使用的MCS对应的SE;
4.GB PUSCH的重复次数;
5.GB PUSCH的RV pattern;
6.GB PUSCH对应的TB Size,或者是,供物理层实体处理的逻辑信道与GB PUSCH之间的数据交换的基本单元的大小。
由此,终端设备(例如,终端设备的MAC层实体)能够确定各GB PUSCH的时域资源以及各GB PUSCH的配置参数。
本申请主要涉及对在时域上重叠的GF PUSCH与GB PUSCH的处理过程。
即,在本申请中,某个GB PUSCH(记作:PUSCH#1)和某个GF PUSCH(记作:PUSCH#2)可能在时域上重叠。
其中,“PUSCH#1与PUSCH#2在时域上重叠”可以是指,例如,PUSCH#1与PUSCH#2在时域上部分重叠。
或者,“PUSCH#1与PUSCH#2在时域上重叠”可以是指,例如,PUSCH#1与PUSCH#2在时域上完全重叠。
再或者,“PUSCH#1与PUSCH#2在时域上重叠”可以是指,例如,PUSCH#1与PUSCH#2之间具有至少一个相同的时域单位。
例如,该PUSCH#1与PUSCH#2之间具有至少一个相同的子帧。
或者,该PUSCH#1与PUSCH#2之间具有至少一个相同的时隙。
或者,该PUSCH#1与PUSCH#2之间具有至少一个相同的符号。
此外,在时域上重叠的GB PUSCH与GF PUSCH之间,在频域上可以重叠也可以不重叠,本申请并未特别限定。
即,上述PUSCH#1与PUSCH#2可以在频域上重叠,或者,PUSCH#1与PUSCH#2可以在频域上不重叠。
其中,PUSCH#1与PUSCH#2可以在频域上重叠可以是指:该时频资源#2与时频资源#1在频域上部分重叠。
或者,PUSCH#1与PUSCH#2可以在频域上重叠可以是指:该时频资源#2与时频资源#1在频域上完全重叠。
即,该PUSCH#1与PUSCH#2之间具有至少一个相同的频域单位。
例如,该PUSCH#1与PUSCH#2之间具有至少一个相同的子带。
或者,该PUSCH#1与PUSCH#2之间具有至少一个相同的子载波。
或者,该PUSCH#1与PUSCH#2之间具有至少一个相同的RB。
或者,该PUSCH#1与PUSCH#2之间具有至少一个相同的RBG。
下面,结合图2至图10,以对PUSCH#1(GB PUSCH,即,第一物理上行信道的一例)与PUSCH#2(GF PUSCH,即,第二物理上行信道的一例)本申请的通信方法进行详细说明。
图2是针对该PUSCH#1与PUSCH#2的处理过程的一例的示意性流程图。
如图2所示,在S210,UE(例如,UE的MAC层实体)可以执行判定#A,并确定判定#A的结果(即,第一判定结果),进而根据判定#A的结果,从PUSCH#1与PUSCH#2中,确定需要传输的PUSCH,或者说,确定需要停止的PUSCH。
在本申请中,该判定#A可以包括以下任意一种判定。
1.是否需要发送数据#A(即,第一数据的一例)的判定。
需要说明的是,在本申请中,“是否需要发送数据#A”可以理解为,逻辑信道中是否有数据#A到达。
或者,“是否需要发送数据#A”可以理解为,逻辑信道中是否存在待发送的数据#A。
或者,“是否需要发送数据#A”可以理解为,逻辑信道中的数据#A是否已被发送但尚未发送完毕。
在本申请中,该数据#A(具体地说,是数据#A的类型)可以是通信系统或通信协议预定义的,或者,也可以是网络设备确定并通知终端设备的。
例如,该数据#A可以为URLLC数据。
再例如,该数据#A可以为逻辑信道#A(即,第一逻辑信道的一例)上的数据。
在本申请中,该逻辑信道#A可以是通信系统或通信协议预定义的,或者,也可以是网络设备确定并通知终端设备的。
例如,该逻辑信道#A可以为用于承载URLLC数据的逻辑信道。
再例如,该逻辑信道#A可以为与GF PUSCH对应的逻辑信道,或者说,该逻辑信道#A为可以使用GF PUSCH来承载数据与传输的逻辑信道。
再例如,该逻辑信道#A可以为属于上述逻辑信道组#1的逻辑信道。
再例如,该逻辑信道#A可以为configured Grant Type 1 Allowed参数存在的逻辑信道。
再例如,该逻辑信道#A可以为configured Grant Type 1 Allowed参数的值为1的逻辑信道。
再例如,该数据#A可以是到达MAC层的具有预设QoS需求的高层数据流内的数据。
应理解,以上列举的数据#A的具体例仅为示例性说明,本申请并未限定于此,该数据#A也可以是除URLLC数据以外的其他对传输时延要求较高的数据,或者,该数据#A 也可以是除URLLC数据以外的其他对可靠性要求较高的数据。
例如,在本发明实施例中,该数据#A所属于的业务的类型可以是规定的业务类型,例如,实时通信类业务、预警(例如,针对地震或海啸等灾害的预警)类业务、车联网业务等。
2.逻辑信道#A中是否存在需要发送(具体地说,是发送给物理层)的数据的判定。
需要说明的是,在本申请中,“逻辑信道#A是否存在数据”可以理解为:逻辑信道#A中是否有数据到达。
或者,“逻辑信道#A是否存在数据”可以理解为:逻辑信道#A中是否存在待发送的数据。
或者,“逻辑信道#A是否存在数据”可以理解为,在逻辑信道#A中存在数据时,该数据是否已开始被发送但尚未发送完毕。
其后,UE(例如,UE的MAC层实体)可以根据判定#A的结果,从PUSCH#1与PUSCH#2中,确定需要发送的PUSCH,或者说,确定需要停止的PUSCH。
在本申请中,判定#A的结果包括两种情况,即,需要发送数据#A,或者,逻辑信道#A存在数据(即,情况1);不需要发送数据#A,或者,逻辑信道#A不存在数据(即,情况2)。下面,分别对上述两种情况的处理进行详细说明。
情况2
即,如果判定#A的结果为否,则可以执行S235。
在S235,UE(例如,UE的MAC层实体)可以将PUSCH#1确定为需要发送的PUSCH,并将PUSCH#2确定为需要停止发送的PUSCH。
需要说明的是,在本申请中,“停止发送PUSCH”可以理解为,如果该PUSCH未开始发送,则静默(或者说,取消)该PUSCH的发送。
或者,“停止发送PUSCH”可以理解为,如果该PUSCH已经开始发送,则暂停或终止该PUSCH的发送。
可选地,“停止发送PUSCH”可以理解为,如果在媒体接入控制MAC层还未开始针对PUSCH进行逻辑信道优先权LCP处理,或者还没开始针对PUSCH进行MAC层分组数据单元PDU组包,或者还未完成PUSCH对应的MAC PDU组包,则MAC层停止或者终端针对该PUSCH的LCP处理或MAC组包,也就是说,MAC层不会完成针对PUSCH进行的组包,也不会通知物理PHY层发送该PUSCH;
可选地,“停止发送PUSCH”可以理解为,如果PHY层已经收到MAC层针对PUSCH的MAC PDU,但是还没有进行PUSCH发送,则PHY层停止,或静默,PUSCH在物理层的发送。
可选地,“停止发送PUSCH”可以理解为,如果PHY层已经收到MAC层针对PUSCH的MAC PDU,并且已经开始PUSCH的发送,则在PHY层终止或中断PUSCH的发送。
并且,在情况2下,或者说,在S235中,该PUSCH#1上承载的数据可以是原计划传输的数据(例如,eMBB数据),或者说,在情况2下,该PUSCH#1上承载的数据可以是UL Grant所调度的数据。
可选地,如果判定#A的结果为否,例如,当前不需要发送URLLC数据,并且,待发送的数据为eMBB数据,则,即使该PUSCH#1不能满足eMBB数据对传输资源的要求, 或者说,该PUSCH#1所能够承载的数据的最大数据量小于该eMBB数据的数据量,终端设备仍然可以将PUSCH#1确定为需要发送的PUSCH,并停止发送PUSCH#2。
这是因为,GF PUSCH对于eMBB数据的传输效率较低,所以即使PUSCH#1不能满足eMBB数据对于资源的要求,仍然可以使用PUSCH#1发送该eMBB数据,从而,能够提高eMBB数据的传输效率。
情况1
即,如果判定#A的结果为是,则可以执行S230。
在本申请实施例中,可以该S230可以通过以下任意方式执行。
方式1
可选地,UE(例如,UE的MAC层实体)可以将PUSCH#1与PUSCH#2中的任意一个PUCSH确定为需要发送的PUSCH,并将另一个PUSCH确定为需要停止发送的PUSCH。
例如,UE(例如,UE的MAC层实体)可以将PUSCH#2确定为需要发送的PUSCH,并将PUSCH#1确定为需要停止发送的PUSCH。
方式2
可选地,UE(例如,UE的MAC层实体)可以根据PUSCH#1的配置参数#A,从PUSCH#1与PUSCH#2中,确定需要发送的PUSCH,或者说,确定需要停止的PUSCH。
作为示例而非限定,在本申请中,该配置参数#A可以为以下至少一个参数。
参数#1:PUSCH#1的时域长度,例如,PUSCH#1占用的符号的数量。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于阈值#1(即,第一阈值的一例),则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
或者,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
需要说明的是,在本申请中,该阈值#1可以是通信系统或通信协议预配置的,或者,该阈值#1也可以是网络设备确定并通知终端设备的。
并且,作为示例而非限定,该阈值#1可以根据PUSCH#2的时域长度,例如,PUSCH#2占用的符号的数量来确定,例如,该阈值#1的值可以为PUSCH#2占用的符号的数量的取值。
或者,方式2可以通过比较PUSCH#1占用的符号的数量与PUSCH#2的占用的符号的数量的大小来实现。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于该PUSCH#2占用的符号的数量,则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于该PUSCH#2占用的符号的数量,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
参数#2:PUSCH#1的MCS,例如,PUSCH#1的MCS对应的SE。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的MCS对应的SE小 于或等于阈值#2(即,第二阈值的一例),则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
或者,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的MCS对应的SE大于阈值#2,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
需要说明的是,在本申请中,该阈值#2可以是通信系统或通信协议预配置的,或者,该阈值#2也可以是网络设备确定并通知终端设备的。
并且,作为示例而非限定,该阈值#2可以根据PUSCH#2的MCS,例如,PUSCH#2的MCS对应的SE来确定,例如,该阈值#2的值可以为PUSCH#2的MCS对应的SE的取值。
或者,方式2可以通过比较PUSCH#1的MCS对应的SE与PUSCH#2的MCS对应的SE的大小来实现。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的MCS对应的SE小于或等于该PUSCH#2的MCS对应的SE,则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的MCS对应的SE大于该PUSCH#2的MCS对应的SE,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
应理解,以上列举的对于MCS的使用方式仅为示例性说明,本申请并未限定于此。例如,还可以基于PUSCH#1的MCS的索引,进行判定。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的MCS的索引小于或等于阈值#3(即,第三阈值的一例),则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
或者,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的MCS的索引大于阈值#3,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1.
并且,与阈值#2类似,该阈值#3可以基于PUSCH#2的MCS的索引确定,例如,该阈值#3的值可以为PUSCH#2的MCS的索引(index)的取值。
需要说明的是,上述参数#1和参数#2可以单独使用也可以结合使用,本申请并未确定。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于阈值#1,且该PUSCH#1的MCS对应的SE小于或等于阈值#2,则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于阈值#1,且该PUSCH#1的MCS对应的SE大于阈值#2,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1,且该PUSCH#1的MCS对应的SE大于阈值#2,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1,且该PUSCH#1的MCS对应的SE小于或等于阈值#2,则UE可以确定发送 PUSCH#2,并停止发送PUSCH#1。
参数#3:PUSCH#1的TBS。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的TBS大于或等于阈值#4(即,第四阈值的一例),则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
或者,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的的TBS小于阈值#4,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
需要说明的是,在本申请中,该阈值#4可以是通信系统或通信协议预配置的,或者,该阈值#4也可以是网络设备确定并通知终端设备的。
并且,作为示例而非限定,该阈值#4可以根据PUSCH#2的TBS来确定,例如,该阈值#4的值可以为PUSCH#2的TBS的取值。
或者,方式2可以通过比较PUSCH#1的TBS与PUSCH#2的TBS的大小来实现。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的TBS大于或等于该PUSCH#2的TBS,则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的TBS小于该PUSCH#2的TBS,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
需要说明的是,上述参数#1、参数#2和参数#3可以单独使用也可以结合使用,本申请并未确定。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于阈值#1(即,第一阈值的一例),该PUSCH#1的MCS对应的SE小于或等于阈值#2,且该PUSCH#1的TBS大于或等于阈值#4则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE大于阈值#2,且该PUSCH#1的TBS小于阈值#4,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE大于阈值#2,且该PUSCH#1的TBS小于阈值#4,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE大于阈值#2,且该PUSCH#1的TBS大于或等于阈值#4,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE小于或等于阈值#2,且该PUSCH#1的TBS小于阈值#4,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE小于或等于阈值#2,且该PUSCH#1的TBS大于或等于阈值#4,则UE可以确定发送PUSCH#2,并停止 发送PUSCH#1。
参数#4:PUSCH#1的重复次数(repetition number)。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的重复次数大于或等于阈值#5(即,第五阈值的一例),则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
或者,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的重复次数小于阈值5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
需要说明的是,在本申请中,该阈值#5可以是通信系统或通信协议预配置的,或者,该阈值#5也可以是网络设备确定并通知终端设备的。
并且,作为示例而非限定,该阈值#5可以根据PUSCH#2的重复次数来确定,例如,该阈值#5的值可以为PUSCH#2的重复次数的取值。
或者,方式2可以通过比较PUSCH#1的重复次数与PUSCH#2的重复次数的大小来实现。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的重复次数大于或等于该PUSCH#2的重复次数,则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1的重复次数小于该PUSCH#2的重复次数,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
需要说明的是,上述参数#1、参数#2、参数#3和参数#4可以单独使用也可以结合使用,本申请并未确定。
例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于阈值#1(即,第一阈值的一例),该PUSCH#1的MCS对应的SE小于或等于阈值#2,且该PUSCH#1的TBS大于或等于阈值#4,且该PUSCH#1的重复次数大于或等于阈值#5,则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于阈值#1(即,第一阈值的一例),该PUSCH#1的MCS对应的SE小于或等于阈值#2,且该PUSCH#1的TBS大于或等于阈值#4,且该PUSCH#1的重复次数小于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE大于阈值#2,且该PUSCH#1的TBS小于阈值#4,且该PUSCH#1的重复次数大于或等于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量小于或等于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE大于阈值#2,且该PUSCH#1的TBS小于阈值#4,且该PUSCH#1的重复次数小于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE大于阈值#2,且该PUSCH#1的TBS小于阈值#4,且该PUSCH#1的重复次数大于或等于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量 大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE大于阈值#2,且该PUSCH#1的TBS小于阈值#4,且该PUSCH#1的重复次数小于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE大于阈值#2,且该PUSCH#1的TBS大于或等于阈值#4,且该PUSCH#1的重复次数小于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE大于阈值#2,且该PUSCH#1的TBS大于或等于阈值#4,且该PUSCH#1的重复次数大于或等于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE小于或等于阈值#2,且该PUSCH#1的TBS小于阈值#4,且该PUSCH#1的重复次数大于或等于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE小于或等于阈值#2,且该PUSCH#1的TBS小于阈值#4,且该PUSCH#1的重复次数小于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE小于或等于阈值#2,且该PUSCH#1的TBS大于或等于阈值#4,且该PUSCH#1的重复次数小于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定该PUSCH#1占用的符号的数量大于阈值#1(即,第一阈值的一例),且该PUSCH#1的MCS对应的SE小于或等于阈值#2,且该PUSCH#1的TBS大于或等于阈值#4,且该PUSCH#1的重复次数大于或等于阈值#5,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
参数#5:获得判定#A的结果的时刻(记作时刻#A)与PUSCH#1的起始时刻(记作时刻#B)之间的时间间隔。
例如,如果时刻#A与时刻#B之间的间隔小于或等于阈值#6(即,时间门限的一例),则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
或者,如果时刻#A与时刻#B之间的间隔大于于阈值#6,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
需要说明的是,在本申请中,该阈值#6可以是通信系统或通信协议预配置的,或者,该阈值#6也可以是网络设备确定并通知终端设备的。
方式3
UE(例如,UE的MAC层实体)可以执行判定#B,并确定判定#B的结果(即,第二判定结果),进而根据判定#B的结果,从PUSCH#1与PUSCH#2中,确定需要传输的PUSCH,或者说,确定需要停止的PUSCH。
在本申请中,该判定#B可以包括以下任意一种判定。
1.是否已经开始在MAC层对PUSCH#1进行逻辑信道优先化(Logical channel prioritization,LCP)处理的判定。
2.是否已经开始在MAC层对PUSCH#1对应的数据(记作,数据#B)进行组包完的判定。
例如,该数据#B可以为eMBB数据,或者,该数据#B可以为用于信道检测的数据或信息。
应理解,以上列举的数据#B的具体例仅为示例性说明,本申请并未限定于此,该数据#B也可以是除URLLC数据以外的其他数据。
例如,在本发明实施例中,该数据#B所属于的业务的类型可以是规定的业务类型,例如,数据下载类业务等。
3.PUSCH#1对应的数据(即,数据#B)在MAC层是否组包完成的判定,或者说,数据#B对应的MAC层用户分组数据单元(Packet Data Unit,PDU)是否组包完成的判定。
4.PUSCH#1是否已经在PHY层开始发送的判定。
需要说明的是,在本申请中,“PUSCH#1是否已经开始发送”可以理解为:PUSCH#1是否已经完成资源映射并处于可发送状态。
或者,“PUSCH#1是否已经开始发送”可以理解为:“PUSCH#1是否正在发送但尚未发送完毕。
5.获得判定#A的结果的时刻(记作时刻#A)与PUSCH#1的起始时刻(记作时刻#B)之间的时间间隔是否小于或等于预设的时间门限的判定。
例如,如果时刻#A与时刻#B之间的间隔小于或等于阈值#6(即,时间门限的一例),则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
或者,如果时刻#A与时刻#B之间的间隔大于于阈值#6,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
需要说明的是,在本申请中,该阈值#6可以是通信系统或通信协议预配置的,或者,该阈值#6也可以是网络设备确定并通知终端设备的。
其后,UE(例如,UE的MAC层实体)可以根据判定#B的结果,从PUSCH#1与PUSCH#2中,确定需要发送的PUSCH,或者说,确定需要停止的PUSCH。
例如,如果UE(例如,UE的MAC层实体)确定判定#B的结果为是,则UE可以确定发送PUSCH#2,并停止发送PUSCH#1。
再例如,如果UE(例如,UE的MAC层实体)确定判定#B的结果为否,则UE可以确定发送PUSCH#1,并停止发送PUSCH#2。
应理解,以上列举的方式2和方式3可以单独使用,也可以结合使用,例如,UE可以通过方式3初步确定需要发送的PUSCH,并基于方式2最终确定需要发送的PUSCH。
例如,如图2中的可选动作2所示,如果判定#B的结果为是,可以采用方式3的处理,而将该初步确定的结果最为最终结果。
再例如,如图2中的可选动作3所示,判定#B的结果为否,可以进一步执行方式2的处理,并根据方式2的处理结果,最终确定需要发送的PUSCH。
需要说明的是,在情况2下,或者说,在S230中,如果判定为需要发送PUSCH#1,则该PUSCH#1上承载的数据不仅仅是原计划传输的数据(例如,eMBB数据),或者说,在情况2下,该PUSCH#1上承载的数据不仅仅是UL Grant所调度的数据。
或者说,在情况2下,或者说,在S230中,如果判定为需要发送PUSCH#1,则该PUSCH#1上承载的数据为上述数据#A(或者说逻辑信道#A中的数据)。
图3是本申请的物理上行信道的图案的一例的示意图。如图3所示假设GF PUSCH传输占据2个符号,GF PUSCH的传输周期为7个OFDM符号,GF PUSCH的MCS对应的频谱效率为SE#1。此情况下,该阈值#1可以为2。
并且,假设UE在slot n接收UL Grant,对该UL Grant进行解析后获知,该UL Grant调度的GB PUSCH在slot n+2上传输,占据符号0~13。UE端的PHY层将该UL Grant上报给MAC层,告知该GB PUSCH的传输特征,包括时域位置、时域长度、MCS、TBS等等。
如图3所示,在slot n+1,UE需要发送URLLC数据。
例如,URLLC数据到达后,来不及在GB PUSCH之前的GF PUSCH上传输,或者是即使GB PUSCH之前有GF PUSCH,但是没有把URLLC数据传输完,则有URLLC数据需要在于GB PUSCH重叠的GF PUSCH资源上传输。
UE在MAC层发现GB PUSCH与GF PUSCH资源时域重叠,准确说GB PUSCH与2个GF PUSCH重叠,MAC层进行PUSCH删选。
如图3所示,由于GB PUSCH的时域长度为14个符号,大于阈值#1,MAC层选择GF PUSCH用于承载URLLC数据,准确的说,选择第一个GF PUSCH资源进行数据承载,静默GB PUSCH传输。
或者,由于URLLC数据到达时刻,MAC层还没有完成GB PUSCH的组包,因此MAC层进行判决,由于GB PUSCH的时域长度为14个符号,大于阈值#1,MAC层选择GF PUSCH用于承载URLLC数据。这样,MAC层中断该GB PUSCH组包,开始GF PUSCH组包。
UE在MAC层根据选择的PUSCH特征进行逻辑信道删选和LCP处理,完成MAC PDU组包后,将组好的包下发到PHY层,并告诉PHY层选择的PUSCH是GF PUSCH。PHY层按照MAC层指示进行GF PUSCH传输,包括对MAC层下发数据包进行扰码、编码调制、层映射、资源映射和转换编码(如果高层配置需要使用TP),完成上行信息传输。
对应地,gNB端由于不知道UE端URLLC数据是否到达,需要在GB PUSCH和GF PUSCH资源上都进行信号接收。
图4本申请的物理上行信道的图案的另例的示意图。如图4示假设GF PUSCH传输占据2个符号,GF PUSCH的传输周期为7个OFDM符号,GF PUSCH的MCS对应的频谱效率为SE#1。此情况下,该阈值#1可以为2。
并且,假设UE在slot n接收UL Grant,对该UL Grant进行解析后获知,该UL Grant调度的GB PUSCH在slot n+2上传输,占据符号0~13。UE端的PHY层将该UL Grant上报给MAC层,告知该GB PUSCH的传输特征,包括时域位置、时域长度、MCS、TBS等等。
与图3所示示例不同的是,如图4示,URLLC数据到达后,可以在GB PUSCH之前 的GF PUSCH上传输,且所有URLLC数据传输完毕,则UE选择GB PUSCH用于数据承载,静默2个GF PUSCH传输。
图5是本申请的物理上行信道的图案的再一例的示意图。如图5所示假设GF PUSCH传输占据7个符号,GF PUSCH的传输周期为14个OFDM符号,GF PUSCH的MCS对应的频谱效率为SE#1。此情况下,该阈值#1可以为7。
并且,假设UE在slot n接收UL Grant,对该UL Grant进行解析后获知,该UL Grant调度的GB PUSCH在slot n+2上传输,占据符号0~7,并且,GB PUSCH使用的MCS对应的频谱效率为SE#2。UE端的PHY层将该UL Grant上报给MAC层,告知该GB PUSCH的传输特征,包括时域位置、时域长度、MCS、TBS等等。
如图5所示,在slot n+1,UE需要发送URLLC数据。
例如,URLLC数据到达后,来不及在GB PUSCH之前的GF PUSCH上传输,或者是即使GB PUSCH之前有GF PUSCH,但是没有把URLLC数据传输完,则有URLLC数据需要在于GB PUSCH重叠的GF PUSCH资源上传输。
UE在MAC层发现GB PUSCH与GF PUSCH资源时域重叠,准确说GB PUSCH与2个GF PUSCH重叠,MAC层进行PUSCH删选。
如图5所示,由于GB PUSCH的时域长度为7个符号,等于阈值#1,MAC层直接选择GB PUSCH用于承载URLLC数据,或者,MAC层进一步判决GB PUSCH的MCS对应的频谱效率SE#2是否大于第二阈值SE#1,当GB PUSCH的MCS对应的SE#2不大于GF PUSCH的MCS对应的SE#1时,MAC层选择GB PUSCH用于数据承载,静默GF PUSCH。
UE在MAC层根据选择的PUSCH特征进行逻辑信道删选和LCP处理,完成MAC PDU组包后,将组好的包下发到PHY层,并告诉PHY层选择的PUSCH是GB PUSCH。PHY层按照MAC层指示进行GB PUSCH传输,包括对MAC层下发数据包进行扰码、编码调制、层映射、资源映射和转换编码(如果高层配置需要使用TP),完成上行信息传输。
对应地,gNB端由于不知道UE端URLLC数据是否到达,需要在GB PUSCH和GF PUSCH资源上都进行信号接收。
图6是本申请的物理上行信道的图案的再一例的示意图。如图6所示假设GF PUSCH传输占据2个符号,GF PUSCH的传输周期为7个OFDM符号,GF PUSCH的MCS对应的频谱效率为SE#1。此情况下,该阈值#1可以为2。
并且,假设UE在slot n接收UL Grant,对该UL Grant进行解析后获知,该UL Grant调度的GB PUSCH在slot n+2上传输,占据符号0~13。UE端的PHY层将该UL Grant上报给MAC层,告知该GB PUSCH的传输特征,包括时域位置、时域长度、MCS、TBS等等。
如图6所示,在slot n+2,UE开始发送GB PUSCH,同时在该时隙的第三个符号,UE端有URLLC数据到达,由于MAC层组包完成了,URLLC数据无法添加到GB PUSCH中传输,需要在GF PUSCH传输。
UE在MAC层目前只需要处理GF PUSCH,根据GF PUSCH特征进行逻辑信道删选和LCP处理,完成MAC PDU组包后,将组好的包下发到PHY层,并告诉PHY层选择的PUSCH是GF PUSCH。
UE在PHY层发现最近的、可以使用的GF PUSCH资源与一个正在发送的GB PUSCH时域重叠,PHY层中断GB PUSCH传输,启动GF PUSCH传输,包括对MAC层下发数据包进行扰码、编码调制、层映射、资源映射和转换编码(如果高层配置需要使用TP),完成上行信息传输。
对应的gNB端即使开始GB PUSCH接收之后,也需要对潜在的GF PUSCH进行接收。
在现有技术中,关于在是时域上重叠的GB PUSCH与GF PUSCH复用的问题,一种解决方式是:规定GB PUSCH优先级始终大于GF PUSCH,当GB PUSCH与GF PUSCH重叠时,UE选择GB PUSCH进行传输。
众所周知,GF PUSCH往往是用于URLLC业务传输的,而GB PUSCH往往是用于eMBB业务传输的,因此直观上GF PUSCH的优先级高于GB PUSCH。RAN2之所以做出上述结论是出于2点考虑:
1.gNB是智能的,因此不会把eMBB的GB PUSCH调度到GF PUSCH的时域位置上,正常情况下,GB PUSCH与GF PUSCH应该不重叠。如果gNB真的这样调度了,即把GB PUSCH调度在GF PUSCH时域位置,则说明GB PUSCH也很重要,比如也是用于承载URLLC业务,则此时应该优先传输GB PUSCH。
2.GF PUSCH是UE自主行为,不是gNB控制下的数据传输,正常情况下,gNB控制的数据传输更可靠、更高效,因此优先级较高。
但是RAN2的结论并没有充分考虑URLLC数据传输特点,或者说物理层GF资源配置特点。如上所说,GF PUSCH资源配置周期可能很短,最低是2个OFDM符号,这样GF PUSCH可能很密集。如下图所示,当UE配置GF PUSCH资源时,UE有eMBB数据到来,eMBB不一定可以选择GF PUSCH来承载,因此UE必须发生SR请求gNB调度PUSCH,即GB PUSCH,来承载与发送eMBB数据。另一方面,由于GF PUSCH配置很密集,gNB无法通过调度,把GB PUSCH与GF PUSCH时域错开,此时GB PUSCH与GF PUSCH重叠的case必然会出现。当上述case出现后,由于GB PUSCH是由eMBB数据触发的,可能时域符号长度较大,不满足URLLC业务的逻辑信道对于PUSCH的最大长度要求,无法承载URLLC数据。这就导致,当URLLC数据到达时,本来是可以使用GF PUSCH承载的,但是由于GB PUSCH优先级高于GF PUSCH,UE始终选择GB PUSCH,造成URLLC数据被延后传输,甚至是多次延后传输,对URLLC数据的低时延传输时分不利。即使GB PUSCH的时域符号长度较小,可以承载URLLC数据,但是由于传输的是eMBB业务数据,可能目标误块率Target BLER较大,无法保障URLLC数据的高可靠传输。
在现有技术中,关于在是时域上重叠的GB PUSCH与GF PUSCH复用的问题,一种解决方式是:规定GF PUSCH的优先级高于GB PUSCH。主要出发点是保护URLLC业务的低时延与高可靠传输。
但是上述方案忽略了一个重要问题,那就是GF PUSCH虽然被配置了,但是不一定真的会有数据传输,只有对应的逻辑信道有数据到达时,UE才会真的发生GF PUSCH。这样,如果URLLC业务没有数据到达,即对应GF PUSCH的逻辑信道没有数据到达,选择GF PUSCH是不利的,eMBB数据不一定可以在GF PUSCH上传输,eMBB业务对应的逻辑信道往往配置的configured Grant Type1 Allowed为false,所以不可以在GF PUSCH 上传输。同时,由于GF PUSCH可能配置地很密集,eMBB业务数据会被不断延后,极大地影响eMBB数据传输。即使eMBB数据可以在GF PUSCH上承载,但是GF PUSCH由于目标传输的是URLLC业务,TBS较小且Target BLER很低(即MCS很小),用来承载eMBB数据会造成MAC层包切分和物理层传输过保护,不利于提升资源利用效率。退一步,即使URLLC业务有数据到达,可能UE希望的就是走GB流程,比如通过发送特定SR告知gNB有URLLC数据到达,gNB再调度GB PUSCH用于承载URLLC数据。也就是说,GB PUSCH本来就是针对URLLC数据,或者GB PUSCH即使针对eMBB数据,但是传输特征(包括时域长度、MCS等等)也可以用来传输URLLC数据并保障URLLC数据的低时延、高可靠传输,那么此时GB PUSCH由于是gNB调度,行为更加可控,因此优先级还是高于GF PUSCH。一个典型的好处就是,GF PUSCH由于是UE自发传输,可能造成多个UE使用相同的GF PUSCH资源发送数据,这样gNB需要依赖更复杂的接收算法(如置信迭代算法)来区分UE,而GB PUSCH由于是gNB调度的,gNB可以规避上述问题。
与此相对,根据本申请的通信方法,通过根据是否有第一数据需要发送的情况,从基于调度方式的物理上行信道和免调度方式的物理上行信道中,确定需要发送的信道,能够避免所选择的信道没有数据要发送的情况,并且,能够可靠地确定第一数据能够被发送,从而,能够提高通信的灵活性,并且,能够提高第一数据的传输的可靠性。
图7是本申请的通信方法的另一例的示意性交互图。
如图7所示,在S310,终端设备的MAC层实体可以接收来自高层实体的多个数据,其中,该多个数据可以包括需要通过GF PUSCH传输的数据(记作,数据#1)以及需要通过GB PUSCH传输的数据(记作,数据#2)。
并且,终端设备的MAC层实体可以,例如,根据该多个数据到达顺序依次对该多个数据进行处理(例如,LCP处理和MAC PDU组包等),以生成每个数据对应的数据包。
例如,如果数据#1先于数据#2到达终端设备的MAC层实体,或者说,如果当数据#2到达终端设备的MAC层实体时GF PUSCH已经开始发送,则MAC层实体可以在完成需要通过该GF PUSCH发送的全部数据的处理后,再对需要通过该GB PUSCH发送的数据进行处理。
再例如,如果数据#2先于数据#1到达终端设备的MAC层实体,或者说,如果当数据#1到达终端设备的MAC层实体时GB PUSCH已经开始发送,则MAC层实体可以在完成需要通过该GB PUSCH发送的全部数据的处理后,再对需要通过该GF PUSCH发送的数据进行处理。
在S320,终端设备的MAC层实体可以将所生成的多个数据包发送给物理层实体,其中,该多个数据包可以包括需要通过GF PUSCH发送的数据包(记作,数据包#1)和需要通过GB PUSCH发送的数据包(记作,数据包#2)。
并且,终端设备的MAC层实体可以向物理层实体指示各数据包所需要承载于的PUSCH。
例如,该“指示”可以是直接指示,例如,终端设备的MAC层实体可以向物理层实体指示各数据包与各PUSCH之间的对应关系。
或者,该“指示”也可以是间接指示,比如终端设备的MAC层实体可以通过HARQ  process ID来指示各数据包与各PUSCH之间的对应关系。也就是说,UE需要处理的GB PUSCH和GF PUSCH具有不同混合自动重传请求(Hyid Automatic Repeat Request,HARQ)标识(Indentification,ID),该过程可以基于gNB的调度实现。然后每个HARQ实体(entity)有自己的ID,会分别向PHY层下发数据包,PHY层接收到来自某个HARQ实体的数据包,那么就知道了ID,间接知道了对应哪个PUSCH。
在S330,终端设备的物理层实体可以优先发送该数据包#1,或者说,终端设备的物理层实体可以发送GF PUSCH,并停止或静默GB PUSCH的发送。
例如,终端设备可以丢弃该数据包#2。
或者,终端设备可以在缓存装置存储数据包#2。并且,在完成GF PUSCH的发送后,如果网络设备再次调度了GB PUSCH,且指示相同的HARQ进程号,且指示进行重传,则终端设备可以通过新调度的GB PUSCH发送该数据包#2。
根据现有技术,如果基于调度方式的物理上行信道和基于免调度方式的物理上行信道重叠,则在MAC层停止对在需要通过基于免调度方式的物理上行信道传输的数据的处理,从而,影响了该数据的传输,与此相对,在本申请中,如果基于调度方式的物理上行信道和基于免调度方式的物理上行信道重叠,则在MAC层按照到达次序对每个数据均进行处理,并在物理层首先发送所述第二物理上行信道,从而,能够在完成所述第二物理上行信道的发送后,立即发送所述第一物理上行信道,从而,能够提高通信的效率。
根据前述方法,图8为本申请实施例提供的通信装置10的示意图一,如图8所示,该通信装置10可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。
该通信装置10可以包括处理器11(即,处理单元的一例)和存储器12。该存储器12用于存储指令,该处理器11用于执行该存储器12存储的指令,以使该装置20实现如图2中对应的方法中终端设备(例如,上述UE#A)执行的步骤。
进一步的,该通信装置10还可以包括输入口13(即,通信单元的一例)和输出口14(即,通信单元的另一例)。进一步的,该处理器11、存储器12、输入口13和输出口14可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器12用于存储计算机程序,该处理器11可以用于从该存储器12中调用并运行该计算计程序,以控制输入口13接收信号,控制输出口14发送信号,完成上述方法中终端设备的步骤。该存储器12可以集成在处理器11中,也可以与处理器11分开设置。
可选地,若该通信装置10为终端设备,该输入口13为接收器,该输出口14为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置10为芯片或电路,该输入口13为输入接口,该输出口14为输出接口。
作为一种实现方式,输入口13和输出口14的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器11可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端设备。即将实现处理器11、输入口13和输出口14功能的程序代码存储在存储器12中, 通用处理器通过执行存储器12中的代码来实现处理器11、输入口13和输出口14的功能。
在本申请实施例中,该处理器11用于当确定第一物理上行信道与第二物理上行信道在时域上重叠时,确定第一判定结果,该第一判定结果包括是否需要发送第一数据的判定结果,该第一物理上行信道包括动态授权的物理上行信道,该第二物理上行信道包括配置授权的物理上行信道,该第一逻辑信道与该第二物理上行信道对应;根据该第一判定结果,从该第一物理上行信道和该第二上行物理信道中确定需要发送的目标物理上行信道。该输出口14用于发送该目标物理上行信道。
可选地,该处理器11具体用于根据该第一判定结果和第二判定结果,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道,其中,
该第二判定结果包括是否已经开始在媒体接入控制MAC层对该第一物理上行信道进行逻辑信道优先化LCP处理的判定结果;或
该第二判定结果包括是否已经开始在MAC层对该第一物理上行信道对应的MAC层分组数据单元PDU进行组包的判定结果;或
该第二判定结果包括是否已经完成该第一物理上行信道对应的MAC PDU组包的判定结果;或
该第二判定结果包括是否已经在物理层开始发送该第一物理上行信道的判定结果。
可选地,该处理器11具体用于如果该第一判定结果为是,且该第二判定结果为是,则将该第二物理上行信道作为该目标物理上行信道;或
如果该第一判定结果为是,且该第二判定结果为否,则将该第一物理上行信道或该第二物理上行信道中的一个信道作为该目标物理上行信道。
可选地,该处理器11具体用于根据该第一判定结果和该第一物理上行信道的时域长度,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该处理器11具体用于如果该第一判定结果为是,且该第一物理上行信道的时域长度小于或等于第一阈值,则将该第一物理上行信道确定为目标物理上行信道;或
如果该第一判定结果为是,且该第一物理上行信道的时域长度大于该第一阈值,则将该第二物理上行信道确定为目标物理上行信道。
可选地,该处理器11具体用于根据该第一判定结果、该第一物理上行信道的时域长度和该第一物理上行信道的调制与编码策略MCS,从该第一物理上行信道和该第二上行物理信道中确定该目标物理上行信道。
可选地,该处理器11具体用于如果该第一判定结果为是,该第一物理上行信道的时域长度小于或等于第一阈值,且该第一物理上行信道的MCS对应的频谱效率SE小于或等于第二阈值,则将该第一物理上行信道确定为目标物理上行信道;或
如果该第一判定结果为是,该第一物理上行信道的时域长度小于或等于第一阈值,且该第一物理上行信道的MCS对应的频谱效率SE大于该第二阈值,则将该第二物理上行信道确定为目标物理上行信道。
可选地,该处理器11具体用于如果该第一判定结果为否,则将该第一物理上行信道确定为目标物理上行信道;或
如果该第一判定结果为是,则将该第二物理上行信道确定为目标物理上行信
其中,以上列举的通信装置10中各模块或单元的功能和动作仅为示例性说明,通信 装置10中各模块或单元可以用于执行上述方法中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置10所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图9为本申请提供的一种终端设备20的结构示意图。为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,终端设备20包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图11中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备20的收发单元201,将具有处理功能的处理器视为终端设备20的处理单元202。如图11所示,终端设备20包括收发单元201和处理单元202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元201中用于实现接收功能的器件视为接收单元,将收发单元201中用于实现发送功能的器件视为发送单元,即收发单元201包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单 元可以称为发射机、发射器或者发射电路等。
根据前述方法,图10为本申请实施例提供的用于通信的装置30的示意图二,如图10所示,该装置30可以为网络设备(例如,上述gNB#A),也可以为芯片或电路,如可设置于网络设备内的芯片或电路。
该装置30可以包括处理器31(即,处理单元的一例)和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现前述方法中网络设备执行的步骤。
进一步的,该装置30还可以包括输入口33(即,通信单元的一例)和输出口33(即,处理单元的另一例)。
再进一步的,该处理器31、存储器32、输入口33和输出口34可以通过内部连接通路互相通信,传递控制和/或数据信号。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器31、输入口33和输出口34功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器31、输入口33和输出口34的功能。
该存储器32用于存储计算机程序,该处理器31可以用于从该存储器32中调用并运行该计算计程序,以在GB PUSCH与GF PUSCH在时域上重叠时,同时检测GB PUSCH与GF PUSCH双方。
其中,以上列举的通信装置30中各模块或单元的功能和动作仅为示例性说明,通信装置30中各模块或单元可以用于执行上述方法中网络设备(例如,gNB#A)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图11为本申请实施例提供的一种网络设备40的结构示意图,可以用于实现上述方法中的网络设备(例如,接入网设备#A或核心网设备#α)的功能。网络设备40包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)402。所述RRU 401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线4011和射频单元4012。所述RRU 401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 402部分主要用于进行基带处理,对基站进行控制等。所述RRU 401与BBU 402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)402可以用于控制基站40执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 402可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU 402还包括存储器4021和处理器4022。所述存储器4021用以存储必要的指令和数据。例如存储器4021存储上述实施例中的码本等。所述处理器4022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的 操作流程。所述存储器4021和处理器4022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(System-on-chip,SoC)技术的发展,可以将402部分和401部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图11示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请的通信系统可以包括一个或多个图9所示终端设备20和一个或多个图11所示的网络设备40。
此外,本申请的通信系统还可以包括除终端设备20和网络设备40以外的设备。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存 储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (69)

  1. 一种通信方法,其特征在于,包括:
    当第一物理上行信道与第二物理上行信道在时域上重叠时,确定第一判定结果,所述第一判定结果包括是否需要发送第一数据的判定结果,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;
    根据所述第一判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定需要发送的目标物理上行信道。
  2. 根据权利要求1所述的通信方法,其特征在于,所述根据所述第一判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定需要发送的目标物理上行信道,包括:
    根据所述第一判定结果和第二判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道,其中,
    所述第二判定结果包括是否已经开始在媒体接入控制MAC层对所述第一物理上行信道进行逻辑信道优先化LCP处理的判定结果;或
    所述第二判定结果包括是否已经开始在MAC层对所述第一物理上行信道对应的MAC层分组数据单元PDU进行组包的判定结果;或
    所述第二判定结果包括是否已经完成所述第一物理上行信道对应的MAC PDU组包的判定结果;或
    所述第二判定结果包括是否已经在物理PHY层开始发送所述第一物理上行信道的判定结果;或
    所述第二判定结果包括获得所述第一判定结果的时刻与所述第一物理上行信道的起始时刻之间的时间间隔是否小于预设的时间门限的判定结果。
  3. 根据权利要求2所述的通信方法,其特征在于,根据所述第一判定结果和第二判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道,包括:
    如果所述第一判定结果为是,且所述第二判定结果为是,则将所述第二物理上行信道作为所述目标物理上行信道;或者
    如果该第一判定结果为是,且该第二判定结果为否,则将该第一物理上行信道或该第二物理上行信道中的一个信道作为该目标物理上行信道;或者
    如果第一判定结果为是、第二判定结果为否,则根据所述第一物理上行信道的时域长度,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道;或者
    如果第一判定结果为是、第二判定结果为否,则根据所述第一物理上行信道的时域长度和所述第一物理上行信道的调制与编码策略MCS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道;或者
    如果第一判定结果为是、第二判定结果为否,则根据所述第一物理上行信道的时域长度、所述第一物理上行信道MCS和所述所述第一物理上行信道传输块大小TBS,从所述 第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  4. 根据权利要求1至3中任一项所述的通信方法,其特征在于,所述根据所述第一判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定需要发送的目标物理上行信道,包括:
    根据所述第一判定结果和所述第一物理上行信道的时域长度,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  5. 根据权利要求4所述的通信方法,其特征在于,所述根据所述第一判定结果和所述第一物理上行信道的时域长度,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道,包括:
    如果所述第一判定结果为是,且所述第一物理上行信道的时域长度小于或等于第一阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的时域长度大于所述第一阈值,则将所述第二物理上行信道确定为目标物理上行信道。
  6. 根据权利要求1至5中任一项所述的通信方法,其特征在于,所述根据所述第一判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定需要发送的目标物理上行信道,包括:
    根据所述第一判定结果、所述第一物理上行信道的时域长度和所述第一物理上行信道的调制与编码策略MCS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  7. 根据权利要求6所述的通信方法,其特征在于,所述根据所述第一判定结果、所述第一物理上行信道的时域长度和所述第一物理上行信道的MCS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道,包括:
    如果所述第一判定结果为是,所述第一物理上行信道的时域长度小于或等于第一阈值,且所述第一物理上行信道的MCS对应的频谱效率SE小于或等于第二阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,所述第一物理上行信道的时域长度小于或等于第一阈值,且所述第一物理上行信道的MCS对应的频谱效率SE大于所述第二阈值,则将所述第二物理上行信道确定为目标物理上行信道。
  8. 根据权利要求5或7所述的通信方法,其特征在于,该第一阈值是根据该第二物理上行信道的时域长度确定的。
  9. 根据权利要求8所述的通信方法,其特征在于,该第一阈值与根据该第二物理上行信道的时域长度的值相同。
  10. 根据权利要求1至9中任一项所述的通信方法,其特征在于,所述根据所述第一判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定需要发送的目标物理上行信道,包括:
    根据所述第一判定结果和所述第一物理上行信道的MCS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  11. 根据权利要求10所述的通信方法,其特征在于,所述根据所述第一判定结果和所述第一物理上行信道的MCS,从所述第一物理上行信道和所述第二上行物理信道中确 定所述目标物理上行信道,包括:
    如果所述第一判定结果为是,且所述第一物理上行信道的MCS对应的频谱效率SE小于或等于第二阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的MCS对应的频谱效率SE大于所述第二阈值,则将所述第二物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的MCS的索引小于或等于第三阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的MCS的索引大于所述第三阈值,则将所述第二物理上行信道确定为目标物理上行信道。
  12. 根据权利要求7或11所述的通信方法,其特征在于,所述第二阈值是根据所述第二物理上行信道的MCS对应的SE确定的。
  13. 根据权利要求12所述的通信方法,其特征在于,所述第二阈值与所述第二物理上行信道的MCS对应的SE的值相同。
  14. 根据权利要求11所述的通信方法,其特征在于,所述第三阈值是根据所述第二物理上行信道的MCS的索引确定的。
  15. 根据权利要求14所述的通信方法,其特征在于,所述第三阈值与所述第二物理上行信道的MCS的索引的值相同。
  16. 根据权利要求1至15中任一项所述的通信方法,其特征在于,所述根据所述第一判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定需要发送的目标物理上行信道,包括:
    根据所述第一判定结果和所述第一物理上行信道的传输块大小TBS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  17. 根据权利要求16所述的通信方法,其特征在于,所述根据所述第一判定结果和所述第一物理上行信道的TBS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道,包括:
    如果所述第一判定结果为是,且所述第一物理上行信道的TBS大于或等于第四阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的TBS小于所述第四阈值,则将所述第二物理上行信道确定为目标物理上行信道。
  18. 根据权利要求17所述的通信方法,其特征在于,所述第四阈值是根据所述第二物理上行信道的TBS确定的。
  19. 根据权利要求18所述的通信方法,其特征在于,所述第四阈值与所述第二物理上行信道的TBS的值相同。
  20. 根据权利要求1至19中任一项所述的通信方法,其特征在于,所述根据所述第一判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定需要发送的目标物理上行信道,包括:
    根据所述第一判定结果和所述第一物理上行信道能够承载最大数据量与待发送数据量的大小关系,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  21. 根据权利要求20所述的通信方法,其特征在于,所述根据所述第一判定结果和所述第一物理上行信道能够承载最大数据量与待发送数据量的大小关系,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道,包括:
    如果所述第一判定结果为否,且所述第一物理上行信道能够承载最大数据量小于待发送数据量,则所述第一物理上行信道确定为所述目标物理上行信道。
  22. 根据权利要求1至21中任一项所述的通信方法,其特征在于,所述根据所述第一判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定需要发送的目标物理上行信道,包括:
    如果所述第一判定结果为否,则将所述第一物理上行信道确定为目标物理上行信道;或
    如果所述第一判定结果为是,则将所述第二物理上行信道确定为目标物理上行信道;或
  23. 根据权利要求1至22中任一项所述的通信方法,其特征在于,所述方法还包括:
    停止发送非目标物理上行信道,其中,所述非目标物理上行信道是所述第一物理上行信道与第二物理上行信道中未被确定为目标物理上行信道的一方。
  24. 根据权利要求1至23中任一项所述的通信方法,其特征在于,所述第一数据包括超高可靠性低时延通信URLLC数据,或者
    所述第一数据包括到达MAC层的高层数据流内的满足预设服务质量需求的数据,或者
    所述第一数据包括第一逻辑信道上的数据,其中,所述第一逻辑信道包括以下任意一种逻辑信道:
    用于发送URLLC数据的逻辑信道、网络设备通过高层信令指示的逻辑信道、通信协议预定义的逻辑信道、存在配置授权类型1允许参数的逻辑信道、配置授权类型1允许参数的值为1的逻辑信道。
  25. 一种通信方法,其特征在于,包括:
    当第一数据到达时,如果第一物理上行信道与第二物理上行信道在时域上重叠,则
    在媒体接入控制MAC层,基于所述第二物理上行信道,对第一数据进行处理,以生成需要通过所述第二物理上行信道发送的第一数据包,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;
    在MAC层向物理层发送所述第一数据包,并指示物理层通过所述第二物理上行信道发送所述第一数据包。
  26. 根据权利要求25所述的通信方法,其特征在于,所述第一数据包括超高可靠性低时延通信URLLC数据,或者
    所述第一数据包括到达MAC层的高层数据流内的满足预设服务质量需求的数据,或者
    所述第一数据包括第一逻辑信道上的数据,其中,所述第一逻辑信道包括以下任意一种逻辑信道:
    用于发送URLLC数据的逻辑信道、网络设备通过高层信令指示的逻辑信道、通信协议预定义的逻辑信道、存在配置授权类型1允许参数的逻辑信道、配置授权类型1允许参 数的值为1的逻辑信道。
  27. 一种通信方法,其特征在于,包括:
    在物理层,接收来自媒体接入控制MAC层的第一数据包,并根据所述MAC层的指示确定在第二物理上行信道上发送所述第一数据包;
    如果第一物理上行信道与所述第二物理上行信道在时域上重叠,则在物理层停止所述第一物理上行信道的发送,并发送所述第二物理上行信道,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道。
  28. 根据权利要求27所述的通信方法,其特征在于,所述第一数据包括超高可靠性低时延通信URLLC数据,或者
    所述第一数据包括到达MAC层的高层数据流内的满足预设服务质量需求的数据,或者
    所述第一数据包括第一逻辑信道上的数据,其中,所述第一逻辑信道包括以下任意一种逻辑信道:
    用于发送URLLC数据的逻辑信道、网络设备通过高层信令指示的逻辑信道、通信协议预定义的逻辑信道、存在配置授权类型1允许参数的逻辑信道、配置授权类型1允许参数的值为1的逻辑信道。
  29. 一种通信方法,其特征在于,包括:
    当第一数据到达时,如果第一物理上行信道与第二物理上行信道在时域上重叠,则
    在媒体接入控制MAC层,基于所述第二物理上行信道,对第一数据进行处理,以生成需要通过所述第二物理上行信道发送的第一数据包,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;
    在物理层,停止所述第一物理上行信道的发送,并发送所述第二物理上行信道。
  30. 根据权利要求29所述的通信方法,其特征在于,所述第一数据包括超高可靠性低时延通信URLLC数据,或者
    所述第一数据包括到达MAC层的高层数据流内的满足预设服务质量需求的数据,或者
    所述第一数据包括第一逻辑信道上的数据,其中,所述第一逻辑信道包括以下任意一种逻辑信道:
    用于发送URLLC数据的逻辑信道、网络设备通过高层信令指示的逻辑信道、通信协议预定义的逻辑信道、存在配置授权类型1允许参数的逻辑信道、配置授权类型1允许参数的值为1的逻辑信道。
  31. 一种通信方法,其特征在于,包括:
    在媒体接入控制MAC层按照到达次序对多个数据依次进行处理以生成每个数据对应的数据包,所述多个数据包括需要通过第一物理上行信道发送的数据和需要通过第二物理上行信道发送的数据,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;
    如果第一物理上行信道与第二物理上行信道在时域上重叠,则在物理层停止所述第一物理上行信道的发送,并发送所述第二物理上行信道。
  32. 一种通信设备,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,
    以使得所述通信设备执行如权利要求1至24中任一项所述的通信方法;或者
    以使得所述通信设备执行如权利要求25或26所述的通信方法;或者
    以使得所述通信设备执行如权利要求27或28所述的通信方法;或者
    以使得所述通信设备执行如权利要求29或30所述的通信方法;或者
    以使得所述通信设备执行如权利要求31所述的通信方法。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,
    使得所述计算机执行如权利要求1至24中任意一项所述的通信方法;或者
    使得所述计算机执行如行权利要求25或26所述的通信方法;或者
    使得所述计算机执行如权利要求27或28所述的通信方法;或者
    使得所述计算机执行如权利要求29或30所述的通信方法;或者
    使得所述计算机执行如权利要求31所述的通信方法。
  34. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,
    使得所述计算机执行如权利要求1至24中任意一项所述的通信方法;或者
    使得所述计算机执行如行权利要求25或26所述的通信方法;或者
    使得所述计算机执行如权利要求27或28所述的通信方法;或者
    使得所述计算机执行如权利要求29或30所述的通信方法;或者
    使得所述计算机执行如权利要求31所述的通信方法。
  35. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,
    使得安装有所述芯片系统的通信设备执行如权利要求1至24中任一项所述的通信方法;或者
    使得安装有所述芯片系统的通信设备执行如权利要求25或26所述的通信方法;或者
    使得安装有所述芯片系统的通信设备执行如权利要求27或28所述的通信方法;或者
    使得安装有所述芯片系统的通信设备执行如权利要求29或30所述的通信方法;或者
    使得安装有所述芯片系统的通信设备执行如权利要求31所述的通信方法。
  36. 一种通信系统,其特征在于,包括终端设备和网络设备,其中
    所述终端设备用于执行如权利要求1至24中任一项所述的通信方法;
    并且,所述网络设备用于接收所述终端设备从第一物理上行信道和第二上行物理信道中确定的目标物理上行信道,所述第一物理上行信道与所述第二物理上行信道在时域上重叠,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道。
  37. 一种通信系统,其特征在于,包括终端设备和网络设备,其中
    所述终端设备用于执行如权利要求25或26所述的通信方法;或者
    所述终端设备用于执行如权利要求27或28所述的通信方法;或者
    所述终端设备用于执行如权利要求29或30所述的通信方法;或者
    所述终端设备用于执行如权利要求31所述的通信方法;
    并且,所述网络设备用于接收所述终端设备发送的第二物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道,第一物理上行信道与所述第二物理上行信道在时域上重叠,所述第一物理上行信道包括动态授权的物理上行信道。
  38. 一种通信装置,其特征在于,包括处理单元与收发单元:
    所述处理单元用于,当第一物理上行信道与第二物理上行信道在时域上重叠时,确定第一判定结果,所述第一判定结果包括是否需要发送第一数据的判定结果,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;以及根据所述第一判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定需要发送的目标物理上行信道。
  39. 根据权利要求38所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述第一判定结果和第二判定结果,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道,其中,
    所述第二判定结果包括是否已经开始在媒体接入控制MAC层对所述第一物理上行信道进行逻辑信道优先化LCP处理的判定结果;或
    所述第二判定结果包括是否已经开始在MAC层对所述第一物理上行信道对应的MAC层分组数据单元PDU进行组包的判定结果;或
    所述第二判定结果包括是否已经完成所述第一物理上行信道对应的MAC PDU组包的判定结果;或
    所述第二判定结果包括是否已经在物理PHY层开始发送所述第一物理上行信道的判定结果;或
    所述第二判定结果包括获得所述第一判定结果的时刻与所述第一物理上行信道的起始时刻之间的时间间隔是否小于预设的时间门限的判定结果。
  40. 根据权利要求39所述的通信装置,其特征在于,所述处理单元具体用于:
    如果所述第一判定结果为是,且所述第二判定结果为是,则将所述第二物理上行信道作为所述目标物理上行信道;或者
    如果该第一判定结果为是,且该第二判定结果为否,则将该第一物理上行信道或该第二物理上行信道中的一个信道作为该目标物理上行信道;或者
    如果第一判定结果为是、第二判定结果为否,则根据所述第一物理上行信道的时域长度,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道;或者
    如果第一判定结果为是、第二判定结果为否,则根据所述第一物理上行信道的时域长度和所述第一物理上行信道的调制与编码策略MCS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道;或者
    如果第一判定结果为是、第二判定结果为否,则根据所述第一物理上行信道的时域长度、所述第一物理上行信道MCS和所述所述第一物理上行信道传输块大小TBS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  41. 根据权利要求38至40中任一项所述的通信装置,其特征在于,所述处理单元具体用于根据所述第一判定结果和所述第一物理上行信道的时域长度,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  42. 根据权利要求41所述的通信装置,其特征在于,所述处理单元具体用于:
    如果所述第一判定结果为是,且所述第一物理上行信道的时域长度小于或等于第一阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的时域长度大于所述第一阈值,则将所述第二物理上行信道确定为目标物理上行信道。
  43. 根据权利要求38至42中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述第一判定结果、所述第一物理上行信道的时域长度和所述第一物理上行信道的调制与编码策略MCS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  44. 根据权利要求43所述的通信装置,其特征在于,所述处理单元具体用于:
    如果所述第一判定结果为是,所述第一物理上行信道的时域长度小于或等于第一阈值,且所述第一物理上行信道的MCS对应的频谱效率SE小于或等于第二阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,所述第一物理上行信道的时域长度小于或等于第一阈值,且所述第一物理上行信道的MCS对应的频谱效率SE大于所述第二阈值,则将所述第二物理上行信道确定为目标物理上行信道。
  45. 根据权利要求42或44所述的通信装置,其特征在于,该第一阈值是根据该第二物理上行信道的时域长度确定的。
  46. 根据权利要求45所述的通信装置,其特征在于,该第一阈值与根据该第二物理上行信道的时域长度的值相同。
  47. 根据权利要求38至46中任一项所述的通信装置,其特征在于,所述处理单元具体用于包括:
    根据所述第一判定结果和所述第一物理上行信道的MCS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  48. 根据权利要求47所述的通信装置,其特征在于,所述所述处理单元具体用于:
    如果所述第一判定结果为是,且所述第一物理上行信道的MCS对应的频谱效率SE小于或等于第二阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的MCS对应的频谱效率SE大于所述第二阈值,则将所述第二物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的MCS的索引小于或等于第三阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的MCS的索引大于所述第三阈值,则将所述第二物理上行信道确定为目标物理上行信道。
  49. 根据权利要求44或48所述的通信装置,其特征在于,所述第二阈值是根据所述第二物理上行信道的MCS对应的SE确定的。
  50. 根据权利要求49所述的通信装置,其特征在于,所述第二阈值与所述第二物理上行信道的MCS对应的SE的值相同。
  51. 根据权利要求48所述的通信装置,其特征在于,所述第三阈值是根据所述第二 物理上行信道的MCS的索引确定的。
  52. 根据权利要求51所述的通信装置,其特征在于,所述第三阈值与所述第二物理上行信道的MCS的索引的值相同。
  53. 根据权利要求38至52中任一项所述的通信装置,其特征在于,所述处理单元具体用于根据所述第一判定结果和所述第一物理上行信道的传输块大小TBS,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  54. 根据权利要求53所述的通信装置,其特征在于,所述处理单元具体用于:
    如果所述第一判定结果为是,且所述第一物理上行信道的TBS大于或等于第四阈值,则将所述第一物理上行信道确定为目标物理上行信道;或者
    如果所述第一判定结果为是,且所述第一物理上行信道的TBS小于所述第四阈值,则将所述第二物理上行信道确定为目标物理上行信道。
  55. 根据权利要求54所述的通信装置,其特征在于,所述第四阈值是根据所述第二物理上行信道的TBS确定的。
  56. 根据权利要求55所述的通信装置,其特征在于,所述第四阈值与所述第二物理上行信道的TBS的值相同。
  57. 根据权利要求38至56中任一项所述的通信装置,其特征在于,所述处理单元具体用于根据所述第一判定结果和所述第一物理上行信道能够承载最大数据量与待发送数据量的大小关系,从所述第一物理上行信道和所述第二上行物理信道中确定所述目标物理上行信道。
  58. 根据权利要求57所述的通信装置,其特征在于,所述处理单元具体用于如果所述第一判定结果为否,且所述第一物理上行信道能够承载最大数据量小于待发送数据量,则所述第一物理上行信道确定为所述目标物理上行信道。
  59. 根据权利要求38至58中任一项所述的通信装置,其特征在于,所述处理单元具体用于如果所述第一判定结果为否,则将所述第一物理上行信道确定为目标物理上行信道;或
    如果所述第一判定结果为是,则将所述第二物理上行信道确定为目标物理上行信道;或
  60. 根据权利要求38至59中任一项所述的通信装置,其特征在于,所述处理单元还用于停止发送非目标物理上行信道,其中,所述非目标物理上行信道是所述第一物理上行信道与第二物理上行信道中未被确定为目标物理上行信道的一方。
  61. 根据权利要求38至60中任一项所述的通信装置,其特征在于,所述第一数据包括超高可靠性低时延通信URLLC数据,或者
    所述第一数据包括到达MAC层的高层数据流内的满足预设服务质量需求的数据,或者
    所述第一数据包括第一逻辑信道上的数据,其中,所述第一逻辑信道包括以下任意一种逻辑信道:
    用于发送URLLC数据的逻辑信道、网络设备通过高层信令指示的逻辑信道、通信协议预定义的逻辑信道、存在配置授权类型1允许参数的逻辑信道、配置授权类型1允许参数的值为1的逻辑信道。
  62. 一种通信装置,其特征在于,包括处理单元与收发单元,
    所述收发单元用于接收第一数据;
    所述处理单元用于:当第一数据到达时,如果第一物理上行信道与第二物理上行信道在时域上重叠,则在媒体接入控制MAC层,基于所述第二物理上行信道,对第一数据进行处理,以生成需要通过所述第二物理上行信道发送的第一数据包,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;在MAC层向物理层发送所述第一数据包,并指示物理层通过所述第二物理上行信道发送所述第一数据包。
  63. 根据权利要求62所述的通信装置,其特征在于,所述第一数据包括超高可靠性低时延通信URLLC数据,或者
    所述第一数据包括到达MAC层的高层数据流内的满足预设服务质量需求的数据,或者
    所述第一数据包括第一逻辑信道上的数据,其中,所述第一逻辑信道包括以下任意一种逻辑信道:
    用于发送URLLC数据的逻辑信道、网络设备通过高层信令指示的逻辑信道、通信协议预定义的逻辑信道、存在配置授权类型1允许参数的逻辑信道、配置授权类型1允许参数的值为1的逻辑信道。
  64. 一种通信装置,其特征在于,包括处理单元与收发单元,
    所述收发单元用于接收第一数据;
    所述处理单元用于:在物理层,接收来自媒体接入控制MAC层的第一数据包,并根据所述MAC层的指示确定在第二物理上行信道上发送所述第一数据包;如果第一物理上行信道与所述第二物理上行信道在时域上重叠,则在物理层停止所述第一物理上行信道的发送,并发送所述第二物理上行信道,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道。
  65. 根据权利要求64所述的通信装置,其特征在于,所述第一数据包括超高可靠性低时延通信URLLC数据,或者
    所述第一数据包括到达MAC层的高层数据流内的满足预设服务质量需求的数据,或者
    所述第一数据包括第一逻辑信道上的数据,其中,所述第一逻辑信道包括以下任意一种逻辑信道:
    用于发送URLLC数据的逻辑信道、网络设备通过高层信令指示的逻辑信道、通信协议预定义的逻辑信道、存在配置授权类型1允许参数的逻辑信道、配置授权类型1允许参数的值为1的逻辑信道。
  66. 一种通信装置,其特征在于,包括处理单元与收发单元,
    所述收发单元用于接收第一数据;
    所述处理单元用于:当第一数据到达时,如果第一物理上行信道与第二物理上行信道在时域上重叠,则在媒体接入控制MAC层,基于所述第二物理上行信道,对第一数据进行处理,以生成需要通过所述第二物理上行信道发送的第一数据包,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道; 在物理层,停止所述第一物理上行信道的发送,并发送所述第二物理上行信道。
  67. 根据权利要求66所述的通信装置,其特征在于,所述第一数据包括超高可靠性低时延通信URLLC数据,或者
    所述第一数据包括到达MAC层的高层数据流内的满足预设服务质量需求的数据,或者
    所述第一数据包括第一逻辑信道上的数据,其中,所述第一逻辑信道包括以下任意一种逻辑信道:
    用于发送URLLC数据的逻辑信道、网络设备通过高层信令指示的逻辑信道、通信协议预定义的逻辑信道、存在配置授权类型1允许参数的逻辑信道、配置授权类型1允许参数的值为1的逻辑信道。
  68. 一种通信方法,其特征在于,包括处理单元与收发单元,
    所述处理单元用于:在媒体接入控制MAC层按照到达次序对多个数据依次进行处理以生成每个数据对应的数据包,所述多个数据包括需要通过第一物理上行信道发送的数据和需要通过第二物理上行信道发送的数据,所述第一物理上行信道包括动态授权的物理上行信道,所述第二物理上行信道包括配置授权的物理上行信道;如果第一物理上行信道与第二物理上行信道在时域上重叠,则在物理层停止所述第一物理上行信道的发送,并发送所述第二物理上行信道;
    所述收发单元用于发送所述第一物理上行信道或者所述第二物理上行信道。
  69. 一种通信装置,其特征在于,所述通信装置用于
    执行如权利要求1至24中任意一项所述的通信方法;或者
    执行如行权利要求25或26所述的通信方法;或者
    执行如权利要求27或28所述的通信方法;或者
    执行如权利要求29或30所述的通信方法;或者
    执行如权利要求31所述的通信方法。
PCT/CN2019/086099 2018-05-11 2019-05-09 通信方法和通信装置 WO2019214660A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19800223.0A EP3787212A4 (en) 2018-05-11 2019-05-09 COMMUNICATION METHOD AND COMMUNICATION DEVICE
US17/094,516 US11528731B2 (en) 2018-05-11 2020-11-10 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810450854.8A CN110474736B (zh) 2018-05-11 2018-05-11 通信方法和通信装置
CN201810450854.8 2018-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/094,516 Continuation US11528731B2 (en) 2018-05-11 2020-11-10 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019214660A1 true WO2019214660A1 (zh) 2019-11-14

Family

ID=68467769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086099 WO2019214660A1 (zh) 2018-05-11 2019-05-09 通信方法和通信装置

Country Status (4)

Country Link
US (1) US11528731B2 (zh)
EP (1) EP3787212A4 (zh)
CN (1) CN110474736B (zh)
WO (1) WO2019214660A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498209A (zh) * 2020-04-08 2021-10-12 维沃移动通信有限公司 一种冲突处理方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944395B (zh) * 2018-09-21 2022-02-25 华为技术有限公司 无线调度的方法和装置
JP7287787B2 (ja) * 2019-01-10 2023-06-06 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
WO2021034237A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Overlapping transmission in urllc
US11758549B2 (en) * 2020-01-16 2023-09-12 Qualcomm Incorporated Techniques for handling collision in scheduled wireless communications
WO2021142706A1 (zh) * 2020-01-16 2021-07-22 Oppo广东移动通信有限公司 资源冲突的解决方法、装置、终端和存储介质
US20230089923A1 (en) * 2021-09-22 2023-03-23 Qualcomm Incorporated Physical uplink channel handling based on channel security

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104604318A (zh) * 2012-08-23 2015-05-06 交互数字专利控股公司 向不同服务站点提供物理层资源
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
EP3244682A1 (en) * 2016-05-12 2017-11-15 ASUSTek Computer Inc. Uplink transmission in shortened transmission time intervals in a wireless communication system
CN107409370A (zh) * 2014-12-23 2017-11-28 Idac控股公司 Lte系统中的延迟降低

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9000039A (nl) * 1990-01-08 1991-08-01 Philips Nv Digitaal transmissiesysteem, zender en ontvanger te gebruiken in het transmissiesysteem en registratiedrager verkregen met de zender in de vorm van een optekeninrichting.
KR100911304B1 (ko) * 2007-06-18 2009-08-11 엘지전자 주식회사 무선통신 시스템에서 우선순위를 갖는 무선베어러의 데이터전송 방법
CN101771649A (zh) * 2009-01-07 2010-07-07 大唐移动通信设备有限公司 一种传输物理随机接入信道的方法及网络侧设备
CN103916865A (zh) * 2012-12-31 2014-07-09 中兴通讯股份有限公司 用于频谱共享的集成的无线局域网
EP3364701B1 (en) * 2016-03-18 2022-02-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communications method, terminal device, and network device
CN107734680B (zh) * 2016-08-12 2023-05-09 中兴通讯股份有限公司 一种传输信息的方法及装置、接收信息的方法及装置
EP3512287B1 (en) * 2016-09-06 2023-08-02 LG Electronics Inc. Uplink data transmission method in wireless communication system supporting non-licensed band and device supporting same
EP3535917A1 (en) * 2016-11-02 2019-09-11 IDAC Holdings, Inc. Receiver bandwidth adaptation
CN108282312B (zh) * 2017-01-06 2020-09-01 电信科学技术研究院 一种上行传输方法、终端及基站
JP2020057830A (ja) * 2017-02-03 2020-04-09 シャープ株式会社 端末装置および方法
EP3603175B1 (en) * 2017-03-24 2023-04-19 Telefonaktiebolaget LM Ericsson (publ) Apparatus and method for transmitting packet data units
WO2019137116A1 (en) * 2018-01-11 2019-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for controlling override of configured grant
JPWO2019193732A1 (ja) * 2018-04-05 2021-04-15 株式会社Nttドコモ 送信装置及び受信装置
WO2019196125A1 (en) * 2018-04-13 2019-10-17 Nokia Shanghai Bell Co., Ltd. Enhancement of medium access control subheaders

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104604318A (zh) * 2012-08-23 2015-05-06 交互数字专利控股公司 向不同服务站点提供物理层资源
CN107409370A (zh) * 2014-12-23 2017-11-28 Idac控股公司 Lte系统中的延迟降低
EP3244682A1 (en) * 2016-05-12 2017-11-15 ASUSTek Computer Inc. Uplink transmission in shortened transmission time intervals in a wireless communication system
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3787212A4
VIVO: "Discussion on Handling UL Multiplexing of Transmissions with Diffe- rent Reliability Requirements", 3GPP TSG RAN WG1 MEETING #92 RL-1801550, 2 March 2018 (2018-03-02), XP051396802 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498209A (zh) * 2020-04-08 2021-10-12 维沃移动通信有限公司 一种冲突处理方法及装置
CN113498209B (zh) * 2020-04-08 2023-07-04 维沃移动通信有限公司 一种冲突处理方法及装置

Also Published As

Publication number Publication date
US20210058952A1 (en) 2021-02-25
EP3787212A1 (en) 2021-03-03
CN110474736B (zh) 2021-07-16
US11528731B2 (en) 2022-12-13
EP3787212A4 (en) 2021-04-28
CN110474736A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
US11122560B2 (en) Uplink channel transmission method and apparatus, and downlink channel transmission method and apparatus
WO2019214660A1 (zh) 通信方法和通信装置
WO2018171606A1 (zh) 接收数据的方法及其装置和发送数据的方法及其装置
CN109672510B (zh) 通信方法和通信装置
CN113490278B (zh) 下行信号传输的方法和设备
WO2019047819A1 (zh) 发送上行控制信道的方法和装置
US11729819B2 (en) Method and device for determining contention window
WO2019191912A1 (zh) 数据传输的方法、终端设备和网络设备
WO2017132986A1 (zh) 传输控制数据的方法和装置
KR20200061407A (ko) 미디어 액세스 제어 프로토콜 데이터 유닛 처리 방법 및 장치
WO2019076347A1 (zh) 通信方法和通信装置
WO2019192500A1 (zh) 通信方法和通信装置
WO2019047975A1 (zh) 一种控制信息发送方法、接收方法、发送设备和接收设备
WO2019174055A1 (zh) 通信方法和通信装置
US20200374887A1 (en) Channel transmission method and apparatus, and computer storage medium
WO2022032654A1 (zh) 无线通信方法、终端设备和网络设备
WO2020221011A1 (zh) 数据传输的方法和装置
WO2020113424A1 (zh) 确定传输块大小tbs的方法和设备
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022067611A1 (zh) 先侦听后传输失败上报的方法、终端设备和网络设备
WO2021163967A1 (zh) 数据传输方法、终端设备和网络设备
WO2019192002A1 (zh) 信息传输方法、终端设备和网络设备
KR20200118455A (ko) Harq 정보의 전송 방법, 장치 및 컴퓨터 기억 매체
WO2024041465A1 (zh) 通信方法及设备
WO2023155377A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019800223

Country of ref document: EP

Effective date: 20201127